

Welcome to Poloniex Lending Bot’s documentation!

Poloniex Lending Bot is an open-source program for automated lending on Poloniex and Bitfinex cryptocurrency exchange.

Contents:

	1. Installation
	1.1. Installing on a Computer

	1.2. Installing on Pythonanywhere.com

	1.3. Using Docker Compose

	2. Configuration
	2.1. Exchange selection, API key and Secret

	2.2. Exchange Sections

	2.3. Timing

	2.4. Min and Max Rates

	2.5. Spreading your Lends

	2.6. Variable loan Length

	2.7. Auto-transfer from Exchange Balance

	2.8. Unimportant settings

	2.9. Max to be lent

	2.10. Config per Coin

	2.11. Advanced logging and Web Display

	2.12. Plugins

	2.13. lendingbot.html options

	2.14. Notifications

	3. Market Analysis
	3.1. Overview

	3.2. Percentile

	3.3. MACD

	3.4. Recording currencies

	3.5. Analysing currencies

	4. Contributing
	4.1. How to format Python Code

	4.2. Making Documentation

	4.3. Javascript

1. Installation

1.1. Installing on a Computer

Installing the bot on a computer is drag-and-drop and platform independent.

1.1.1. Prerequisites

You will need:

	Python 2.7.x (Must be added to PATH)

Recommended for easier use:

	git

	pip (to install following required Python modules)

	Numpy (if using Analysis module)

	requests (HTTPS communication)

	pytz (Timezone calculations)

It is possible to install all required Python modules after downloading of the bot running:

pip install -r requirements.txt

or, if you need to run it as root under Linux:

sudo pip install -r requirements.txt

1.1.2. Downloading

To download the bot you can either:

	(Recommended) Run git clone https://github.com/BitBotFactory/poloniexlendingbot if you have git installed. Using this method will allow you to do git pull at any time to grab updates.

	Download the source .zip file from the GitHub repo page or from this link [https://github.com/BitBotFactory/poloniexlendingbot/archive/master.zip]. Extract it into an empty folder you won’t accidentally delete.

1.1.3. (Optional) Automatically Run on Startup

	Windows using Startup Folder:

Add a shortcut to lendingbot.py to the startup folder of the start menu.
Its location may change with OS version, but for Windows 8/10 is C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

	Linux using systemd:

Create the file /lib/systemd/system/lendingbot.service which contains the following text

[Unit]
Description=LendingBot service
After=network.target

[Service]
Type=simple
ExecStart=/usr/bin/python <INSTALLATION DIRECTORY>/lendingbot.py
WorkingDirectory=<INSTALLATION DIRECTORY>
RestartSec=10
Restart=on-failure

[Install]
WantedBy=multi-user.target

Credit to GitHub user utdrmac.

The permission on the unit file may need to be set to 644 (depending on your OS) :


	```

	sudo chmod 644 /lib/systemd/system/lendingbot.service





```

Modify the ExecStart and WorkingDirectory to match your setup.

First you need to configure systemd (depending on your OS):
```


sudo systemctl daemon-reload




```

Enable the service using the command below:
```


sudo systemctl enable lendingbot.service




```


	OSx:

Help needed! If you have a solution for OSx and would like to share, you can either share it directly with us or make a PR with the edits.

1.1.4. Configuring

You have to configure the bot, especially choosing the exchange and api key/secret to use.

To configure the bot with your settings:

	Copy default.cfg.example to default.cfg (Running lendingbot.py also does this for you if default.cfg doesn’t already exist.)

	Open default.cfg and enter your desired settings (information on settings here) [http://poloniexlendingbot.readthedocs.io/en/latest/configuration.html].

	Save default.cfg

You are now ready to run the bot.

1.1.5. Running

To run, either:

	Double-click lendingbot.py (if you have .py associated with the Python executable)

	Run python lendingbot.py in command prompt or terminal.

Note

You can use arguments to specify a specific config file -cfg or to do dry runs -dry. To see these args do: python lendingbot.py -h

1.2. Installing on Pythonanywhere.com

Pythonanywhere.com [https://www.pythonanywhere.com] is a useful website that will host and run Python code for you.

WARNING: While you should be able to setup the bot on pythonanywhere, there are limitations on running the bot.

1.2.1. Prerequisites

You will need:

	A pythonanywhere.com account (Free version works fine)

1.2.2. Downloading the bot’s files to Pythonanywhere

	Start a new bash console from the “Consoles” tab.

	Get the source code from git GitHub by running git clone https://github.com/Mikadily/poloniexlendingbot.

	You should see some output with counters increasing.

	Change directory to the source code cd poloniexlendingbot

	You should now see ~/poloniexlendingbot (master)$ this means you are looking at the master branch and things are ok to continue.

	Run the command python2.7 lendingbot.py once to generate the default.cfg

	Modify the default.cfg with your settings (See Configuration [http://poloniexlendingbot.readthedocs.io/en/latest/configuration.html].) You can do this with a tool called nano.

	Run nano default.cfg, then use the arrow keys and backspace key to change YourAPIKey and YourSecret. Make sure the layout of the file stays the same as it was. They should both be on separate lines.

	Press Ctr+x to exit, then press y to save the file, then press enter to accept the file name as default.cfg.

	Now you can start up the bot. Run python2.7 lendingbot.py

	If it’s working you will see Welcome to Poloniex Lending Bot displayed in the console.

	To update the bot just enter its directory, cd poloniexlendingbot and type, git pull. This will not change the default.cfg file.

Note

If you are running out of CPU time every day: It is recommended to use a high sleeptimeinactive time for this website, as they meter your CPU usage.

1.2.3. Creating the Web App (Optional)

	If you would like to use the Webserver to view your bot’s status, navigate to the “Web” tab.

	Add a new web app.

	Set the working directory to /home/<username>/poloniexlendingbot/www/

	Set the static files to URL: /static/ Directory: /home/<username>/poloniexlendingbot/www

	Reload your website with the button at the top of the page.

	You will be able to access the webapp at http://<username>.pythonanywhere.com/static/lendingbot.html once it finishes setting up.

	To have the webserver communicate with your bot, you need to edit your settings (default.cfg) and uncomment (remove the # in front of) the following settings: jsonfile and jsonlogsize. Make sure that startWebServer REMAINS commented.

Warning

Do not use the built-in Simple Web Server on any host you do not control.

1.2.4. Running the Bot

To run the bot continuously (Recommended for free accounts):

	Navigate to the “Consoles” tab.

	Add a new “Custom console,” name it “Poloniexlendingbot” and set the path to python /home/<username>/poloniexlendingbot/lendingbot.py

	Click this link whenever you want to start the bot, it will run continuously until the website goes down for maintenance or the bot experiences an unexpected error.

To have the bot restart itself every 24 hours, you need to have a premium pythonanywhere account [https://www.pythonanywhere.com/pricing/]. This will make the bot more or less invincible to crashes and resets, but is not necessary.

	Navigate to the “Schedule” tab.

	Create a new task to run daily (time does not matter) set the path to: python /home/<username>/poloniexlendingbot/lendingbot.py

	The bot will start once the time comes (UTC) and run indefinitely.

Note

If you are a free user, it will allow you to make the scheduled restart, but then it will only run for one hour and stop for 23.

Note

Free users are also limited to the number of output currencies they can use as blockchain.info is blocked from their servers. You can always use the pairs listed on poloniex, BTC, USDT. But will not have access to currencies such as EUR, GBP.

1.3. Using Docker Compose

There is a docker-compose.yaml file in the root of the source that can be used to start the bot via docker [https://www.docker.com/]. Compose is a tool for defining and running docker applications using a single file to configure the application’s services.

By default this file will start 3 containers:

	An nginx reverse proxy
This allows you to have the nginx web server as the main access point for the other bot’s web pages.
It uses jwilder/nginx-proxy [https://github.com/jwilder/nginx-proxy]

	A python container running the bot on poloniex.
This starts a bot running that connects to poloniex and exposes a web interface.
It uses python:2.7-slim [https://hub.docker.com/r/library/python/tags/]

	A python container running the bot on bitfinex.
This starts a bot running that connects to bitfinex and exposes a web interface.
It uses python:2.7-slim [https://hub.docker.com/r/library/python/tags/]

This allows for simple deployments on a VPS or dedicated server. Each bot will be dynamically assinged a subdomain.
You can also use it to run the bots locally using subdomains.

To use this file:-

	Install and setup docker [https://www.docker.com/] for your platform, available on linux, mac and windows.

	If you are using linux or windows server, you’ll need to install docker-compose separately, see here [https://docs.docker.com/compose/install/].

	If you don’t already have a default.cfg created, then copy the example one and change the values as required using the instructions in this document.

	Edit the docker-compose.yaml file and add your API_apikey and API_apisecret for each exchange. If you wish to use only one exchange, you can comment out all the lines for the one you don’t need.

	If you are running locally, you can leave the VIRTUAL_HOST variable as it is. If you are running on a web server with your won domain, you can set it to something like poloniex.mydomain.com.

	If you don’t have a domain name, you can use a service such as duckdns [http://duckdns.org] to get one for free.

	You can now start the service with docker-compose up -d. It may take a minute or two on the first run as it has to download the required image and then some packages for that image when it starts.

	If all went well you should see something like Starting bitbotfactory_bot_1.

	When you see that message it just means that the container was started successfully, we still need to check the application is running as expected. In the yaml file the web service in the container is mapped to localhost. So you can open your web browser at this point and see if you can connect to the serivce. It should be runnning on http://127.0.0.1/. You should see an nginx welcome page.

	If you don’t see anything when connecting to that you can check the logs of the container with docker-compose logs. You should get some useful information from there. Ask on Slack if you’re stuck.

	If you are running locally you will need to add the subdomains to your hosts file to make sure they are resolved by DNS. You can ignore this step if you’re running on a web server. On linux (and recent OSx) you can add these lines to /etc/hosts, on windows you shoud follow this guide [https://support.rackspace.com/how-to/modify-your-hosts-file/]

127.0.0.1 poloniex.localhost
127.0.0.1 bitfinex.localhost

	You should now be able to point your browser at http://poloniex.localhost and http://bitfinex.localhost/ to see the web pages for each bot.

Extending the file:-

	Most config values from default.cfg can be overridden in the docker-compose file. You should add them in the enviroment section in the same format as the ones listed. i.e. Category_Option

	You can add as many extra bots as you want. Each one will need to have a new VIRTUAL_HOST entry.

	If you prefer to have everything in config files rather than enviroment variables, you can create a new cfg file for each bot and modify the command line to use that cfg file instead.

Other info:-

	Each bot will create a log file in the root of your git checkout.

	If you are using market analysis, you only need one bot per exchange. Extra bots will be able to share the database.

	When you change the config values you need to restart the container, this can be done with docker-compose stop and then after changing configs, docker-compose up -d. You should notice it’s significantly quicker than the first run now.

	The last command to note is docker-compose ps this will give infomation on all running instances and the ports that are mapped. This can be useful if you plan on running multiple bots, or you just want to know if it’s running.

2. Configuration

Configuring the bot can be as simple as select the exchange to use and copy-pasting your API key and Secret.

New features are required to be backwards compatible with previous versions of the .cfg but it is still recommended that you update your config immediately after updating to take advantage of new features.

To begin, copy default.cfg.example to default.cfg. Now you can edit your settings.

2.1. Exchange selection, API key and Secret

Select the exchange to use in attribute exchange. Supported are Poloniex and Bitfinex. Default is Poloniex.

exchange = Poloniex
or
exchange = Bitfinex

Create a NEW API key and Secret from Poloniex [https://poloniex.com/apiKeys]
or Bitfinex [https://www.bitfinex.com/api] and paste them into the respective slots in the config.

apikey = XXXXXXXX-XXXXXXXX-XXXXXXXX-XXXXXXXX

secret = xxx...

Warning

Do not share your API key nor secret with anyone whom you do not trust with all your Poloniex funds.

Note

If you use an API key that has been used by any other application, it will likely fail for one application or the other. This is because the API requires a nonce [https://en.wikipedia.org/wiki/Cryptographic_nonce].

Poloniex

Your Poloniex API key is all capital letters and numbers in groups of 8, separated by hyphens.
Your secret is 128 lowercase letters and numbers.

HIGHLY Recommended:

	Disable the “Enable Trading” checkbox. The bot does not need it to operate normally.

	Enable IP filter to only the IP address the bot will be running from.

Bitfinex

Your Bitfinex API key and secret are both 43 letters and numbers.

HIGHLY Recommended:

	The lending bot needs only READ permission to “Account History”, “Marging Funding”, “Wallets”
and WRITE permission to “Margin Funding” and “Wallets”. Deselect all other on key generation,
especially to “Withdraw”.

2.2. Exchange Sections

There is a section for each exchange to configure exchange specific attributes.

	all_currencies List of all supported currencies for funding. The list have to change only
when the exchange adds a new supported currency or removes one. You can blacklist specific currencies by prefacing it with a ‘#’, this is the same as not including it on the list.

	Format: BTC,BTS,CLAM,DOGE,DASH,LTC,MAID,XMR,XRP,ETH,FCT,#BTG

2.3. Timing

	sleeptimeactive is how long the bot will “rest” (in seconds) between running while the bot has loan offers waiting to be filled.

	Default value: 60 seconds

	Allowed range: 1 to 3600 seconds

	If the bot finishes a cycle and has no open lend orders left to manage, it will change to inactive mode.

Note

Just because 1 second is a permitted sleeptime does not mean it is a good idea.

	sleeptimeinactive is how long the bot will “rest” (in seconds) between running while the bot has nothing to do.

	Default value: 300 seconds (5 minutes)

	Allowed range: 1 to 3600 seconds

	If the bot finishes a cycle and has lend orders to manage, it will change to active mode.

	timeout is how long the bot waits for a response of a request

	Default value: 30 seconds

	Allowed range: 1 to 180 seconds

2.4. Min and Max Rates

	mindailyrate is the minimum rate (in percent) that the bot will allow offer loans at.

	Default value: 0.005 percent

	Allowed range: 0.0031 to 5 percent

	0.0031% every day for a year, works out around 1%. This is less than most bank accounts and is considered not worth while.

	The current default value is a optimistic but very viable for the more high volume currencies. Not viable for lending DOGE, for example.

	maxdailyrate is the maximum rate (in percent) that the bot will allow lends to open.

	Default value: 5 percent

	Allowed range: 0.0031 to 5 percent

	2% is the default value offered by the exchange, but there is little reason not to set it higher if you feel optimistic.

	
	frrasmin tells the bot whether or not to use the flash return rate [https://support.bitfinex.com/hc/en-us/articles/213919009-What-is-the-Flash-Return-Rate-] for mindailyrate.

	
	Default value: False

	Allowed range: True or False

	This will only be used if the frr is above your mindailyrate. So which ever is highest at the time of the loan will be used.

	This options only works on Bitfinex.

	
	frrdelta tells the bot whether or not to use the flash return rate <https://support.bitfinex.com/hc/en-us/articles/115003284729-What-is-the-FRR-Delta->

	
	Default value: 0.0000

	Allowed range: 0.0000 -/+ 7

	This will only be used if the frr is above your mindailyrate. So which ever is highest at the time of the loan will be used.

	This options only works on Bitfinex.

2.5. Spreading your Lends

If spreadlend = 1 and gapbottom = 0, it will behave as simple lending bot lending at lowest possible offer.

	spreadlend is the amount (as an integer) of separate loans the bot will split your balance into across the order book.

	Default value: 3

	Allowed range: 1 to 20 (1 is the same as disabling)

	The loans are distributed evenly between gapbottom and gaptop.

	This allows the bot to benefit from spikes in lending rate but can result in loan fragmentation (not really a bad thing since the bot has to deal with it.)

	gapMode is the “mode” you would like your gaps to be calculated in.

	Default value: Relative

	Allowed values: Relative, RawBTC, Raw

	The values are case insensitive.

	The purpose of spreading your lends is to skip dust offers in the lendbook, and also to take advantage of any spikes that occur.

	
	Mode descriptions:

	
	
	Relative - Gapbottom and Gaptop will be relative to your balance for each coin individually.

	
	This is relative to your total lending balance, both loaned and unloaned.

	gapbottom and gaptop will be in percents of your balance. (A setting of 100 will equal 100%)

	Example: You have 1BTC. If gapbottom = 100 then you will skip 100% of your balance of dust offers, thus skipping 1BTC into the lendbook. If gaptop = 200 then you will continue into the lendbook until you reach 200% of your balance, thus 2BTC. Then, if spreadlend = 5, you will make 5 equal volume loans over that gap.

	
	RawBTC - Gapbottom and Gaptop will be in a raw BTC value, converted to each coin.

	
	Recommended when using one-size-fits-all settings.

	gapbottom and gaptop will be in BTC. (A setting of 3 will equal 3 BTC)

	Example: If gapbottom = 1 and you are currently lending ETH, the bot will check the current exchange rate, say 1BTC = 10ETH. Then the bot will skip 10ETH of dust offers at the bottom of the lendbook before lending. If gaptop = 10, then using the same exchange rate 10BTC will be 100ETH. The bot will then continue 100ETH into the loanbook before stopping. Then, if spreadlend = 5, you will make 5 equal volume loans over that gap.

	
	Raw - Gapbottom and Gaptop will be in a raw value of the coin being lent.

	
	Recommended when used with coin-specific settings.

	gapbottom and gaptop will be in value of the coin. (A setting of 3 will equal 3 BTC, 3 ETH, 3 DOGE, or whatever coin is being lent.)

	Example: If gapbottom = 1 and you are currently lending ETH, the bot will skip 1ETH of dust offers at the bottom of the lendbook before lending. If gaptop = 10, the bot will then continue 10ETH into the loanbook before stopping. Then, if spreadlend = 5, you will make 5 equal volume loans over that gap.

	gapbottom is the lower setting for your gapMode values, and will be where you start to lend.

	Default value: 10 percent

	Allowed range: 0 to <arbitrary large number>

	10% gapbottom is recommended to skip past dust at the bottom of the lending book, but if you have a VERY high volume this will cause issues as you stray to far away from the most competitive bid.

	gaptop is the upper setting for your gapMode values, and will be where you finish spreading your lends.

	Default value: 200 percent

	Allowed range: 0 to <arbitrary large number>

	This value should be adjusted based on your coin volume to avoid going astronomically far away from a realistic rate.

2.6. Variable loan Length

These values allow you to lock in a better rate for a longer period of time, as per your configuration.

	xdaythreshold is the rate (in percent) where the bot will begin attempting to lend for a longer period of time.

	Default value: 0.2 percent

	Allowed range: 0 to 5 percent

	xdays is the length(in days) of any loan whose rate exceeds the set xdaythreshold.

	Default value: 60 days

	Allowed range: 2 to 60 days

	xdayspread will spread the lending days by incrementing linear from 2 days at (xdaythreshold/xdayspread) rate to xdays days at xdaythreshold rate

	Default value: 0 (disabled)

	Allowed range: 0 to 10 as float

	Example: Using values: xdaythreshold = 0.2, xdays = 60, xdayspread = 2, the bot will lend:

	rates < 0.1% (=xdaythreshold/xdayspread) for 2 days

	rates between 0.1% and 0.2%: days will be incremented from 2 to 60 days

(e.g. 0.1%/2d, 0.11%/8d, 0.12%/14d, 0.13%/20d, 0.14%/26d, 0.15%/32d, 0.16%/38d,
0.17%/44d, 0.18%/50d, 0.19%/56d, 0.20%/60d)

	rates > 0.2% for 60 days

2.7. Auto-transfer from Exchange Balance

If you regularly transfer funds into your Poloniex account but don’t enjoy having to log in yourself and transfer them to the lending balance, this feature is for you.

	transferableCurrencies is a list of currencies you would like to be transferred.

	Default value: Commented out

	Format: CURRENCY_TICKER,STR,BTC,BTS,CLAM,DOGE,DASH,LTC,MAID,XMR,XRP,ETH,FCT,ALL,ACTIVE

	Commenting it out will disable the feature.

	Entering ACTIVE within the list will transfer any currencies that are found in your lending account, as well as any other currencies alongside it. Example: ACTIVE, BTC, CLAM will do BTC, CLAM, and any coins you are already lending.

	Entering ALL will simply transfer all coins available to lending.

	Do not worry about duplicates when using ACTIVE, they are handled.

	Coins will be transferred every time the bot runs (60 seconds by default) so if you intend to trade or withdrawal it is recommended to turn off the bot or disable this feature.

2.8. Unimportant settings

Very few situations require you to change these settings.

	minloansize is the minimum size that a bot will make a loan at.

	Default value: 0.01 of a coin

	Allowed range: 0.01 and up.

	If you dislike loan fragmentation, then this will make the minimum for each loan larger.

	Automatically adjusts to at least meet the minimum of each coin.

	KeepStuckOrders If True, keeps orders that are “stuck” in the market instead of canceling them.

	Default value: True

	Allowed values: True or False

	A “Stuck” order occurs when it partially fills and leaves the coins balance total (total = open orders + let in balance) below your minloansize and so the bot would not be able to lend it again if it was canceled.

	When disabled, stuck orders will be canceled and held in balance until enough orders expire to allow it to lend again.

	hideCoins If True, will not lend any of a coin if its market low is below the set mindailyrate.

	Default value: True

	Allowed values: True or False. Commented defaults to True

	This hides your coins from appearing in walls.

	Allows you to catch a higher rate if it spikes past your mindailyrate.

	Not necessarily recommended if used with analyseCurrencies with an aggressive lendingStyle, as the bot may miss short-lived rate spikes. This is not the case if using MACD with daily_min_method. In that case it is recommended to set hideCoins to True.

	If you are using the analyseCurrencies option, you will likely see a lot of Not lending BTC due to rate below 0.9631% type messages in the logs. This is normal.

	endDate Bot will try to make sure all your loans are done by this date so you can withdraw or do whatever you need.

	Default value: Disabled

	Uncomment to enable.

	Format: YEAR,MONTH,DAY

2.9. Max to be lent

This feature group allows you to only lend a certain percentage of your total holding in a coin, until the lending rate suprasses a certain threshhold. Then it will lend at max capacity.

	maxtolend is a raw number of how much you will lend of each coin whose lending rate is below maxtolendrate.

	Default value: Disabled

	Allowed range: 0 (disabled) or minloansize and up

	If set to 0, same as if commented.

	If disabled, will check if maxpercenttolend is enabled and use that if it is enabled.

	Setting this overwrites maxpercenttolend

	This is a global setting for the raw value of coin that will be lent if the coins lending value is under maxtolendrate

	Has no effect if current rate is higher than maxtolendrate

	If the remainder (after subtracting maxtolend) in a coin’s balance is less than minloansize, then the remainder will be lent anyway. Otherwise, the coins would go to waste since you can’t lend under minloansize

	maxpercenttolend is a percentage of how much you will lend of each coin whose lending rate is below maxtolendrate

	Default value: Disabled

	Allowed range: 0 (disabled) to 100 percent

	If set to 0, same as if commented.

	If disabled in addition to maxtolend, entire feature will be disabled.

	This percentage is calculated per-coin, and is the percentage of the balance that will be lent if the coin’s current rate is less than maxtolendrate

	Has no effect if current rate is higher than maxtolendrate

	If the remainder (after subtracting maxpercenttolend’s value) in a coin’s balance is less than minloansize, then the remainder will be lent anyway. Otherwise, the coins would go to waste since you can’t lend under minloansize

	maxtolendrate is the rate threshold when all coins are lent.

	Default value: Disabled

	Allowed range: 0 (disabled) or mindailyrate to 5 percent

	Setting this to 0 with a limit in place causes the limit to always be active.

	When an indiviaual coin’s lending rate passes this threshold, all of the coin will be lent instead of the limits maxtolend or maxpercenttolend

2.10. Config per Coin

This can be configured in one of two ways.

Coincfg dictionary

	coinconfig is now REMOVED, please switch to using separate coin sections as described below.

Separate coin sections

This is an alternative layout for the coin config mentioned above. It provides the ability to change the minloansize per coin, but is otherwise identical in functionality.
To use this configuration, make sure to comment out the line where coincfg is defined, then add a section for each coin you wish to configure.

Warning

These sections should come at the end of the file, after the other options for the bot.

Configuration should look like this:

[BTC]
minloansize = 0.01
mindailyrate = 0.1
maxactiveamount = 1
maxtolend = 0
maxpercenttolend = 0
maxtolendrate = 0
gapmode = raw
gapbottom = 10
gaptop = 20
frrasmin = true
frrdelta = 0.000000

2.11. Advanced logging and Web Display

	jsonfile is the location where the bot will log to a .json file instead of into console.

	Default value: Commented out, uncomment to enable.

	Format: www/botlog.json

	This is the location relative to the running instance of the bot where it will store the .json file. The default location or a path inside the customWebServerTemplate folder is recommended if using the webserver functionality.

	jsonlogsize is the amount of lines the botlog will keep before deleting the oldest event.

	Default value: Commented out, uncomment to enable.

	Format: 200

	Reasons to lower this include: you are conscious of bandwidth when hosting your webserver, you prefer (slightly) faster loading times and less RAM usage of bot.

	startWebServer if true, this enables a webserver on the www/ folder.

	Default value: Commented out, uncomment to enable.

	The server page can be accessed locally, at http://localhost:8000/lendingbot.html by default.

	Forces jsonfile to be set using www/botlog.json (unless otherwise configured)

	You must close bot with a keyboard interrupt (CTRL-C on Windows) to properly shutdown the server and release the socket, otherwise you may have to wait several minutes for it to release itself.

	customWebServerAddress is the IP address that the webserver can be found at.

	Advanced users only.

	Default value: 0.0.0.0 Uncomment to change

	Format: IP

	Setting the ip to 127.0.0.1 will ONLY allow the webpage to be accessed at localhost (127.0.0.1)

	Setting the ip to 0.0.0.0 will allow the webpage to be accessed at localhost (127.0.0.1) as well as at the computer’s LAN IP address within the local network. This option is the most versatile, and is default.

	Setting the ip to 192.168.0.<LAN IP> will ONLY allow the webpage to be access at the computer’s LAN IP address within the local network (And not through localhost.) It is recommended to be sure the device has a static local IP.

	You must know what you are doing when changing the IP address to anything other than the three suggested configurations above.

	customWebServerPort is the IP port that the webserver can be found at

	Advanced users only.

	Default value: 8000 Uncomment to change

	Format: PORT

	Do not set the port to a reserved port [http://www.ingate.com/files/422/fwmanual-en/xa10285.html] or you will receive an error when running the bot or attempting to connect (depending on HOW reserved a port is.)

	When you like to run more than one bot on same host (e.g. the first to lend on Poloniex and another one to lend on Bitfinex)
different port numbers have to defined. (e.g 8000 in Poloniex’s config and 8001 in Bitfinex’s config file)

	customWebServerTemplate is the location the bot will use for WebServer HTML GUI template.

	Default value: www, uncomment to enable.

	Format: PATH

	This is the location relative to the running HTML GUI instance used by the bot. Be sure the jsonfile belongs to this folder.

	outputCurrency this is the ticker of the coin which you would like the website to report your summary earnings in.

	Default value: BTC

	Acceptable values: BTC, USDT, Any coin with a direct Poloniex BTC trading pair (ex. DOGE, MAID, ETH), Currencies that have a BTC exchange rate on blockchain.info (i.e. EUR, USD)

	Will be a close estimate, due to unexpected market fluctuations, trade fees, and other unforseeable factors.

	label is a custom name of the bot, that will be displayed in html page.

	Default value: Lending Bot

	Allowed values: Any literal string

2.12. Plugins

Plugins allow extending Bot functionality with extra features.
To enable/disable a plugin add/remove it to the plugins list config option under the [BOT] section, example:

plugins = Plugin1, Plugin2, etc...

Plugins can add their own HTML pages by calling self.log.addSectionlog('plugins', '<pluginName>', 'navbar', True); within their init code.
This will add a navbar element on the main lendingbot.html page linking to <pluginName>.html

2.12.1. AccountStats Plugin

The AccountStats plugin fetches all your loan history and provides statistics based on it.
Current implementation sends a earnings summary Notification (see Notifications sections) every 24hr.

To enable the plugin add AccountStats to the plugins config options, example:

plugins = AccountStats

There is an optional setting to change how frequently this plugin reports. By default, once per day. Example:

[ACCOUNTSTATS]
ReportInterval = 1800

Be aware that first initialization might take longer as the bot will fetch all the history.

2.12.2. Profit Charts Plugin

The Charts plugin dumps out the historical lending data to a JSON structure which is read by the new charts.html page.
This page reads this dump data and constructs a Google Chart showing daily profit over time.

The AccountStats plugin must be enabled for the Charts plugin to function correctly.

To enable the plugin add Charts to the plugins config options, example:

plugins = AccountStats,Charts

There is an optional setting to change how frequently this plugin dumps data and where that data file is located. By default, four times per day. Example:

[CHARTS]
DumpInterval = 21600
HistoryFile = www/history.json

On a new installation, the AccountStats database may not be up to date on first iteration of the Charts plugin and no data will get dumped. Simply wait for the next interval or restart the bot after the AccountStats plugin is finished.

2.13. lendingbot.html options

You can pass options to statistics page by adding them to URL. Eg, http://localhost:8000/lendingbot.html?option1=value&option2=0

	effrate controls how effective loan rate is calculated. Yearly rates are calculated based on effective rate, so this option affects them as well. Last used mode remembered by browser, so you do not have to specify this option every time. By default, effective loan rate is calculated considering lent precentage (from total available coins) and poloniex 15% fee.

	Allowed values: lentperc, onlyfee.

	Default value: lentperc.

	onlyfee calculates effective rate without considering lent coin percentage.

	displayUnit controls BTC’s unit output.

	Allowed values: BTC, mBTC, Bits, Satoshi

	Default value: BTC

	This setting will change all display of Bitcoin to that unit. Ex. 1 BTC -> 1000 mBTC.

	earningsInOutputCurrency define which earnings are shown in the output currency.

	Allowed values: all, summary

	Default value: all

2.14. Notifications

The bot supports sending notifications for serveral different events on several different platforms. To enable notifications, you must first have a section in your config called [notifications], inside which you should enable at least one of the following events and also at least one notification platfom. The list of events you can notify about are:

2.14.1. Global Notification Settings

	notify_new_loans

	Sends a notification each time a loan offer is filled.

	notify_tx_coins

	This will send a notification if any coins are transferred from your exchange account, to your lending account. You must have transferableCurrencies enabled for this to work. Then you should set notify_tx_coins = True.

	notify_xday_threshold

	This will send a notification every time a loan is created that is above your xdaythreshold config value. To enable you should set notify_xday_threshold = True.

	notify_summary_minutes

	This will send a summary of the current loans you have every X minutes. This is similar to the information you get in the log line when running the bot, or the line a the top of the web page. To enable this add notify_summary_minutes = 120. This will send you a notification every 2 hours (120 minutes).

	notify_caught_exception

	This is more useful for developers and people wanting to help out by raising issues on github. This will send a notification every time there is an exception thrown in the bot that we don’t handle. To enable add notify_caught_exception = True.

	notify_prefix

	This string, if set, will be prepended to any notifications. Useful if you are running multiple bots and need to differentiate the source.

Once you have decided which notifications you want to recive, you can then go about configuring platforms to send them on. Currently the bot supports:

2.14.2. Email notifications

This is probably the easiest to configure, though there can still be issues with gmail where you need to enable a few things. You can find out more about that here [https://support.google.com/mail/answer/7126229?visit_id=1-636225201534132377-750209621&rd=2#cantsignin] if you’re having problems. If you don’t wish to use gmail search google for the smtp settings of your email provider.
To enable email you should configure the following:

email = True
email_login_address = me@gmail.com
email_login_password = secretPassword
email_smtp_server = smtp.gmail.com
email_smtp_port = 465
email_smtp_starttls = False
email_to_addresses = me@gmail.com,you@gmail.com

2.14.3. Slack notifications

Before you can post to slack you need to create an API token, to do this visit this page [https://api.slack.com/docs/oauth-test-tokens]. Once you have a token you can then configure the bot as so:

slack = True
slack_token = xoxp-46351793751-46348393136-47931965411-a8757952e4
slack_channels = #cryptocurrency,@someUser

To post in a channel prefix with # and to post a dm to a user prefix with @. You can send to as many channels or users as you want.

2.14.4. Telegram notifications

	Quickstart

	To have telegram notifications you need to get a bot id from the BotFather. You can do that here [https://core.telegram.org/bots].
Once you have a bot id you need to get your Chat ID or create a channel and invite the bot so it can chat there. Once you have all this in place you configure it like so:

telegram = True
telegram_bot_id = 281421543:AGGB1TqP7XqhxhT7VOty0Aml8DV_R6kimHw
telegram_chat_ids = 123456789,@cryptocurrency

	Detailed

	Messages are sent to the telegram bot API using HTTPS requests. You can read more about it here [https://core.telegram.org/bots/api].

Telegram Bots are special accounts that do not require an additional phone number to set up, they do however need a unique authentication token. This is the token we need to get and add to the lendingbot’s default.cfg. They are normally in the format 123456:ABC-DEF1234ghIkl-zyx57W2v1u123ew11.

When we say we are creating a new telegram bot, all it means is that we are creating an account for the lendingbot to send message through. To create a bot and get a token, we must request it from the BotFather. This is telegram’s tool for creating new bots.

	These are the steps to carry out:

	
	Install the telegram desktop client from their site [https://telegram.org/apps]. Then set it up with your phone number and login.

	Start a conversation with The BotFather [https://telegram.me/botfather]. When you click the link it should open up in the telegram desktop client.

	Once you have a conversation started type /newbot, you’ll then be asked what to call the bot and it’s username. The name of your bot is displayed in contact details and elsewhere. The Username is a short name, to be used in mentions and telegram.me links. When complete you’ll receive a token.

	You can check everything is working OK by going to https://api.telegram.org/bot*YOURTOKEN*/getme, for example my test one is https://api.telegram.org/bot288427377:AAGB1TqL7XqhxhT7VOxu8Ams8DV_J6kimHw/getme. If that’s all working then move on to the next step.

	Now we need somewhere to send the messages, if you want to send a message to yourself, you first need your Chat ID. The easiest way I’ve found to get this is to send the bot a message from your desktop client and then use the getupdates method. So search for the bot in the desktop client’s search bar and start a conversation. Then in your browser go to https://api.telegram.org/bot*YOURTOKEN*/getupdates. You should see a few lines of text, the one we’re interested in looks like "chat":{"id":123456789,"first_name":"Michael","last_name":"Robinson","type":"private"}. The number after ID is your chat ID.

	Again, just to check everything is working, lets send ourselves a message. You can do this by putting this in your browser https://api.telegram.org/bot*YOURTOKEN*/sendmessage?text=TEST%20BOT&chat_id=*YOUR_CHAT_ID* You should see a message in your desktop client. If so you have the right ID and we can move on.

	The last step to get it working is just adding the two values to your default.cfg file and turning on telegram = True. You should set telegram_bot_id to the token you got from the BotFather, and set the telegram_chat_ids to a comma separated list of people you want to send messages to.

	
	(optional) If you’d like a specific channel for the bot to send messages you can follow these steps.

	
	Open the desktop client and create a new channel

	Start a conversation with the BotFather and type /setjoingroups, then follow the questsions he asks.

	Click on the message we sent earlier from the bot, then click on the bot’s name in the conversation. You should see ‘Add To Group’. Click this and add it to the new group you created.

	Now you should be able to add the @nameOfChannel to your default.cfg file and post all the updates there too. Make sure the list is comma separated and you have the ‘@’ infront of the channel name. This is only done for names, not Chat IDs.

2.14.5. Pushbullet notifications

To enable Pushbullet [https://www.pushbullet.com/] notifications, you first need to create an API key and then discover your device ID.

Visit your Account Settings [https://www.pushbullet.com/#settings/account] and click ‘Create Access Token’. Add this to the config file as shown below.

You then need to visit this documentation page [https://docs.pushbullet.com/#list-devices] and run the example curl command for listing your devices (be sure to substitute your API token as created in the previous step). Copy the value listed for ‘iden’ into the config file as shown below.:

pushbullet = True
pushbullet_token = l.2mDDvy4RRdzcQN9LEWSy22amS7u3LJZ1
pushbullet_deviceid = ujpah72o0sjAoRtnM0jb

2.14.6. IRC notifications

IRC is very easy to configure, if you are already interested in using it you’ll understand what each of the options are.

The main thing to note is that you need to have the python module ‘irc’ installed. You can git it from pip like so:

pip install irc

Once you have that installed you have access to the following options for configuration:

irc = True
irc_host = irc.freenode.net
irc_port = 6667
irc_nick = LendingBot
irc_ident = ledningbot
irc_realname = Poloniex lending bot
irc_target = #bitbotfactory

If you want to send a message directly to a user rather than a channel, you can specify it in the irc_target without the preceeding ‘#’. There is currently only support for one channel or user, but we can add more if there’s any interest for it.

3. Market Analysis

3.1. Overview

This feature records a currency’s market and allows the bot see trends. With this data, we can compute a recommended minimum lending rate per currency to avoid lending at times when the rate dips.

When this module is enabled it will start recording the lending rates for the market in an sqlite database. This will be seen in the market_data folder for your bot. This supersedes the previous method of storing it in a file. The files can be removed if you have them from older versions of the bot.

There will be a DB created for each currency you wish to record. These can be enabled in the analyseCurrencies configuration option.

Warning

The more currencies you record, the more data stored on disk and CPU processing time will be used. You will also not get as frequent results for the currencies, i.e. You may have trouble getting results for your configured analyseUpdateInterval This is explained further in the Recording currencies section.

A quick list of each config option and what they do

	analyseCurrencies

	A list of each currency you wish to record and analyse

	analyseUpdateInterval

	The frequency between rates requested and stored in the DB

	lendingStyle

	The percentage used for the percentile calculation

	percentile_seconds

	The number of seconds to analyse when working out the percentile

	MACD_long_win_seconds

	The number of seconds to used for the long moving average

	MACD_short_win_seconds

	The number of seconds to used for the short moving average

	keep_history_seconds

	The age (in seconds) of the oldest data you wish to keep in the DB

	recorded_levels

	The depth of the lending book to record in the DB, i.e. how many unfilled loans

	data_tolerance

	The percentage of data that can be ignore as missing for the time requested in
percentile_seconds and MACD_long_win_seconds

	daily_min_method

	Which method (MACD or percentile) to use for the daily min calculation

	MACD_multiplier

	Only valid for MACD method. The figure to scale up the returned rate value from the MACD calculation

	ma_debug_log

	Print some extra info on what’s happening with the rate calculations

The module has two main methods to calculate the minimum rate:

3.2. Percentile

This method takes all the data for the given time period (percentile_seconds) and works out the Xth percentile (lendingStyle) for that set of data. For example if you are using a lendingStyle of 85 and you had a list of rates like so

	Example

	0.04, 0.04, 0.05, 0.05, 0.05, 0.05, 0.06, 0.06, 0.06, 0.07, 0.07, 0.07, 0.08, 0.08, 0.09, 0.09, 0.09, 0.10, 0.10, 0.10

The 85th percentile would be 0.985 because 85% of rates are below this. The following configuration options should be considered when using the percentile calculation method:-

3.3. MACD

Moving Average Convergence Divergence, this method using moving averages to work out if it’s a good time to lend or not. Currently this is only implemented to limit the minimum daily rate for a currency. This will be changing in the future.
It by looking at the best rate that is available from the recorded market data for two windows, the long and short window, then taking an average of them both. If the short average is higher than the long average then it considers the market to be in a good place to lend (as the trend for rates is going up) and it will return a suggested loan rate. If the long window is greater than the short window, then we will not lend as trend for rates is below what it should be.
So for example:

	Time

	Short

	Long

	Suggested

	12:00

	0.08

	0.1

	0.1

	12:01

	0.09

	0.1

	0.1

	12:02

	0.1

	0.1

	0.105

	12:03

	0.11

	0.1

	0.1155

	12:04

	0.12

	0.1

	0.126

In this example, the bot would start to lend at 12:02 and it would suggest a minimum lending rate of 0.1 * MACD_multiplier, which by default is 1.05. Giving a rate of 0.105. This is then passed back to the main lendingbot where it will use your gaptop and gapbottom, along with spreads and all the other smarts to place loan offers.

Currently using this method gives the best results with well configured gaptop and gapbottom. This allows you to catch spikes in the market as see above.

The short window and long window are configured by a number of seconds, the data is then taken from the DB requesting MACD_long_win_seconds * 1.1. This is to get an extra 10% of data as there is usually some lost in the recording from Poloniex.
You can also use the data_tolerance to help with the amount of data required by the bot for this calculation, that is the number of seconds that can be missing for the data to still be valid.

This current implementation is basic in it’s approach, but will be built upon with time. Results seem to be good though and we would welcome your feedback if you play around with it.

3.3.1. suggested loan rate

If the average of the short window is greater than the average of the long window we will return the current

3.3.2. configuring

The number of config options and combinations for this can be quite daunting. As time goes on I hope more people will feed back useful figures for all our different configuration set ups. I have put in sensible defaults into the config for the MACD section. These are options that I have changed that aren’t set by default and work better if you’re using MACD as the rate calculation method. Change the currency to whatever you want, though best not use more than 3 really, as it slows down the calls to poloniex considerably. If you can use just one, then do it.

I’m hoping that once more people test and report back results, this can be updated and more information passed to everyone else.

The most important is probably the hidecoins change to False. This means that it will always place loans so you don’t need to have as low a resolution on the sleep timers. You also want to make sure the gaptop and gapbottom are high so you can get a large spread.

	Config

	Value

	sleeptimeactive

	10

	sleeptimeinactive

	10

	spreadlend

	3

	gapMode

	RawBTC

	gapbottom

	40

	gaptop

	200

	hideCoins

	False

	analyseCurrencies

	ETH,BTC

3.3.3. notes

	MACD will default back to the percentile method if it can’t function. This will happen at start up for a while when it’s collecting data and can also happen if something goes wrong with the Database or other failures. It’s basically a failsafe to make sure you’re still using some sort of market analsis while MACD is offline.

	You can turn on ma_debug_log to get some more information if things aren’t working.

	When it’s start up you will see Need more data for analysis, still collecting. I have Y/X records, so long as it’s still increasing then this is fine. If it always prints that message then you should change your data_tolerance

3.4. Recording currencies

All the options in this section deal with how data from poloniex is collected and stored. All the data is stored in an sqlite database, one per currency that you are recording. You can see the database files in the market_data folder of the bot.
There are a number of things to consider before configuring this section. The most important being that you can only make 6 api calls to poloniex every second. This limit includes returning your open loans, placing an loan and returning data for the live market to store in the database.

Warning

If you start to see the error message: HTTP Error 429: Too Many Requests then you need to review the settings in this file. In theory this shouldn’t be a problem as our API limits calls to 6 per second. But it appears that it’s not completely thread safe, so it can sometimes make more than 6 per second.
If this happens, stop the bot. Increase your timer or decrease the number of recorded currencies, wait a five minutes, then start the bot again. Repeat as required.

3.4.1. analyseCurrencies

analyseCurrencies is the list of currencies to record (and analyse)

None of the points below need be considered problematic unless you are planning to run with low (single digit seconds) timers on the bot. That is, the sleeptimeinactive, sleeptimeactive and the analyseUpdateInterval.

With that said, every currency you add to this will:

	Increase the number of db files (and therefore disk usage)

	Increase I/O and CPU usage (each currency will be writing to disk and if there’s a balance, calculating the best rate)

	Reduce the number of requests you can make the API per second. This means times between stored records in the DB will be further apart and calls to place loans to Poloniex will be slower.

3.4.1.1. configuration

	Format

	CURRENCY_TICKER,STR,BTC,BTS,CLAM,DOGE,DASH,LTC,MAID,XMR,XRP,ETH,FCT,ALL,ACTIVE

	Disabling

	Commenting it out will disable the entire feature.

	ACTIVE

	Entering ACTIVE analyses any currencies found in your lending account along with any other configured currencies.

	ALL

	Will analyse all coins on the lending market, whether or not you are using them.

	Example

	ACTIVE, BTC, CLAM will record and analyse BTC, CLAM, and any coins you are already lending.

	Notes

	Don’t worry about duplicates when using ACTIVE, they are handled internally.

3.4.2. keep_history_seconds

keep_history_seconds is the maximum duration to store market data. Any data that is older that this number of seconds will be deleted from the DB.
This delete runs periodically, so it is possible for the there to be data older than the specified age in the database, however it won’t be there for long.

3.4.2.1. configuration

	Default value

	86400 (1 day)

	Allowed range

	3600+

3.4.3. analyseUpdateInterval

analyseUpdateInterval is how long the bot will sleep between requests for rate data from Poloniex. Each coin has it’s own thread for requests and each thread has it’s own sleep.
You are not guaranteed to get data at exactly the update interval. Setting it to 1 second, with several currencies
each one of them will take up one of the 6 API calls that are allowed per second. These calls need to be used to place
loans and other interactions with poloniex.
Also, it can take some time to get data back from poloniex, because there is a single thread making all the requests
per currency, it will block the next request. I did have a multi threaded model for this currency recording, but it
frequently created too many threads when polo was lagging, causing more harm than good.

3.4.3.1. configuration

	Default value

	10

	Allowed range

	1 - 3600 (1 hour)

3.4.4. recorded_levels

recorded_levels is the number of rates found in the current offers on poloniex that will be recorded in the db.
There is currently no reason to set this greater than 1 as we’re not using the rest of the levels, this will change in the future though. You can raise it if you’re examining the data yourself also.

3.4.4.1. configuration

	Default value

	10

	Allowed range

	1 - 100

3.5. Analysing currencies

Everything in this section relates to how the analysis is carried out. So how much data is used and how it is used.

3.5.1. lendingStyle

lendingStyle lets you choose the percentile of each currency’s market to lend at.

	Recommendations: Conservative = 50, Moderate = 75, Aggressive = 90, Very Aggressive = 99

	This is a percentile, so choosing 75 would mean that your minimum will be the value that the market is above 25% of the recorded time.

	This will stop the bot from lending during a large dip in rate, but will still allow you to take advantage of any spikes in rate.

	Default value

	75

	Allowed range

	1-99

3.5.2. percentile_seconds

percentile_seconds is the number of seconds worth of data to use for the percentile calculation. This value is not used in MACD methods.

3.5.2.1. configuration

	Default value

	86400

	Allowed range

	300 - keep_history_seconds

3.5.3. MACD_long_win_seconds

MACD_long_win_seconds is the number of seconds used for the long window average in the MACD method.

3.5.3.1. configuration

	Default value

	1800 (30 minutes)

	Allowed range

	300 - keep_history_seconds

3.5.4. MACD_short_win_seconds

MACD_short_win_seconds is the number of seconds used for the short window average in the MACD method.

3.5.4.1. configuration

	Default value

	150 (2.5 minutes)

	Allowed range

	25 - MACD_long_win_seconds

3.5.5. data_tolerance

data_tolerance is the percentage of data that can be missed from poloniex and still considered that we have enough data to work with.
This was added because there are frequently problems with poloniex sending back data, also it’s not always possible to get all the data you want if you are using multiple currencies. We are limited to 6 calls to poloniex every second.

If you keep seeing messages saying Need more data for analysis, still collecting. I have Y/X records, then you
need to reduce this or reduce the number of currencies you are analysing.

3.5.5.1. configuration

	Default value

	15

	Allowed range

	10 - 90

3.5.6. daily_min_method

daily_min_method is the method in which you wish to calculate the daily_min for each currency. This is how we stop lending when the market rates are below average.
This can be either MACD or percentile. See MACD and Percentile sections for more information.
This will not change the mindailyrate that you have set for coins in the main config. So you will still never lend below what you have statically configured.

3.5.6.1. configuration

	Default value

	MACD

	Allowed values

	MACD, percentile

3.5.7. MACD_multiplier

MACD_multiplier is what to scale up the returned average from the MACD calculation by. See MACD for more details.
In the future this will probably be removed in favour of sending back spread information that can be used for gaptop and gapbottom.

3.5.7.1. configuration

	Default value

	1.05

	Allowed range

	1 - 2

3.5.8. ma_debug_log

ma_debug_log when enabled will print to screen some of the internal information around the MACD and percentile calculations

3.5.8.1. configuration

	Default value

	False

	Allowed range

	True, False

4. Contributing

4.1. How to format Python Code

If you want to make a successful pull request, here are some suggestions. [http://blog.ploeh.dk/2015/01/15/10-tips-for-better-pull-requests/]

Recommended IDE: PyCharm [https://www.jetbrains.com/pycharm/]

4.1.1. PEP8

Poloniex lending bot follows PEP8 styling guidelines [https://www.python.org/dev/peps/pep-0008/] to maximize code readability and maintenance.

To help out users and automate much of the process, the Codacy Continuous Integration bot [https://www.codacy.com/app/PoloniexLendingBot/poloniexlendingbot/dashboard] will comment on pull requests to alert you to any changes you need to make.
Codacy has many inspections it does, which may extend past PEP8 conventions. We recommend you follow its suggestions as much as possible.

To make following PEP8 as painless as possible, we strongly recommend using an Integrated Development Environment that features PEP8 suggestions, such as PyCharm [https://www.jetbrains.com/pycharm/].

4.1.2. Indent Style

You may have your own preference, it does not matter because spaces and tabs do not mix.

Poloniexlendingbot uses spaces to conform with PEP8 standards. Please use an IDE that can help you with this.

4.1.3. Commenting Code

Many coders learned to code without commenting their logic.
That works if you are the only person working on the project, but quickly becomes a problem when it is your job to decipher what someone else was thinking when coding.

You will probably be relieved to read that code comments are not mandatory, because code comments are an apology. [http://butunclebob.com/ArticleS.TimOttinger.ApologizeIncode]

Only comment your code if you need to leave a note. (We won’t judge you for it.)

4.1.4. Variable or Option Naming

Whenever you create a variable or configuration option, follow PEP8 standards, they are as follows:

Do not make global single-letter variable names, those do not help anybody. Using them within a function for a few lines in context is okay, but calling it much later requires it be given a proper name.

Functions are named like create_new_offer() and variables are named similarly, like amount_of_lends.

4.1.5. Line Length

To make it simple to review code in a diff viewer (and several other reasons) line length is limited to 128 characters in Python code.

Python allows plenty of features for one line to be split into multiple lines, those are permitted.

4.1.6. Configuration Options

New configuration options should be placed near similar options (see categories on the configuration page) and require a short description above the actual setting.

If a setting is added that changes functionality, it is required that you add handling for having the option commented out.

How to use the Configuration module:

	If your change is in a new module, you need to init it to import the Config object. Create a function init(<args>) that set the args to global variables within the module. With this, pass Config from the main of the bot.

	Use option = Config.get(CATEGORY, OPTION, DEFAULT_VALUE, LOWER_LIMIT, UPPER_LIMIT) to get the option from the Config. Only do this in your init()

	CATEGORY: The category of the config file it goes under. Currently there is only ‘API’ and ‘BOT’

	OPTION: Case-sensitive name of the option you are pulling from the bot.

	DEFAULT_VALUE: Default: False. This is the value that .get() will return if no value is set (option is commented). If set to “None”: the bot will not allow it to be left blank ever. Optional.

	LOWER_LIMIT: Default: False. The lower float value that the option can be set to. If OPTION’s value is lesser than this, the bot will alert them and exit. Optional. Only use for numerical options.

	UPPER_LIMIT: Default: False. The upper float value that the option can be set to. If OPTION’s value is greater than this, the bot will alert them and exit. Optional. Only use for numerical options.

Config.has_option(CATEGORY, OPTION) will always return a boolean for whether the option exists or not. If the option is commented it will return False.

4.2. Making Documentation

It is important to keep proper documentation of configuration options, to make it as clear as possible for the user.

4.2.1. Building Docs

If you want to be able to build the html files of the documentation, you need to have Sphinx installed. You can install this with pip install sphinx.
From there, run make html in the docs directory. These instructions can also be found in the included README.

4.2.2. Writing Docs

Just follow the lead of the rest of the docs.

	Configurations need a default, allowed values, effect, etc. in a format similar to the other options.

	Installation instructions should be similar to a followable list.

4.3. Javascript

Codacy will offer suggestions for fixes to standardize/fix the code. Do not worry about having too many commits in your PR.

Lendingbot.js is already quite messy, so following Codacy’s suggestions is highly encouraged.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Poloniex Lending Bot’s documentation!

 		
 Installation

 		
 Installing on a Computer

 		
 Prerequisites

 		
 Downloading

 		
 (Optional) Automatically Run on Startup

 		
 Configuring

 		
 Running

 		
 Installing on Pythonanywhere.com

 		
 Prerequisites

 		
 Downloading the bot’s files to Pythonanywhere

 		
 Creating the Web App (Optional)

 		
 Running the Bot

 		
 Using Docker Compose

 		
 Configuration

 		
 Exchange selection, API key and Secret

 		
 Exchange Sections

 		
 Timing

 		
 Min and Max Rates

 		
 Spreading your Lends

 		
 Variable loan Length

 		
 Auto-transfer from Exchange Balance

 		
 Unimportant settings

 		
 Max to be lent

 		
 Config per Coin

 		
 Advanced logging and Web Display

 		
 Plugins

 		
 AccountStats Plugin

 		
 Profit Charts Plugin

 		
 lendingbot.html options

 		
 Notifications

 		
 Global Notification Settings

 		
 Email notifications

 		
 Slack notifications

 		
 Telegram notifications

 		
 Pushbullet notifications

 		
 IRC notifications

 		
 Market Analysis

 		
 Overview

 		
 Percentile

 		
 MACD

 		
 suggested loan rate

 		
 configuring

 		
 notes

 		
 Recording currencies

 		
 analyseCurrencies

 		
 keep_history_seconds

 		
 analyseUpdateInterval

 		
 recorded_levels

 		
 Analysing currencies

 		
 lendingStyle

 		
 percentile_seconds

 		
 MACD_long_win_seconds

 		
 MACD_short_win_seconds

 		
 data_tolerance

 		
 daily_min_method

 		
 MACD_multiplier

 		
 ma_debug_log

 		
 Contributing

 		
 How to format Python Code

 		
 PEP8

 		
 Indent Style

 		
 Commenting Code

 		
 Variable or Option Naming

 		
 Line Length

 		
 Configuration Options

 		
 Making Documentation

 		
 Building Docs

 		
 Writing Docs

 		
 Javascript

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

