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polo is a header-only C++ library intended to help researchers and practitioners solve optimization problems of the
form

minimize
𝑥∈R𝑑

𝜑(𝑥) := f(𝑥) + h(𝑥) (1)

on different computing platforms. Here, the total loss consists of two parts. The first part, f(·), is a smooth function of
the 𝑑-dimensional decision vector, 𝑥, and it consists of 𝑁 component functions:

f(𝑥) =

𝑁∑︁
𝑛=1

fn(𝑥) .

The second part, h(·), is a possibly nonsmooth function of the decision vector, 𝑥.

In this documentation, we aim at providing the necessary information for both users and future contributors to get
started with polo. In Getting Started, we show how to install the library and what a typical workflow involving polo
looks like. Then, in three parts, we cover different aspects of the library.

In the first part, we follow a tutorial-based approach to show users how to use polo for solving Problem (1) on
different computing platforms. In Serial Execution, we focus on building proximal gradient algorithms that run
sequentially on a single CPU. Then, in Shared-Memory Execution, we switch to parallel versions of the proximal
gradient algorithms, where all the component functions and the decision vector reside in a shared memory space.
These algorithms benefit from multiple CPUs to speed up gradient computations of the smooth loss. Finally, in
Distributed-Memory Execution, we focus on solving Problem (1) when the component functions and the decision
vector are distributed among different nodes.

The second part of the documentation covers more advanced topics that are mostly related to the internals of the
library. These topics would serve as a starting point for users and contributors to extend the functionalities of the
library. In Proximal Gradient Methods, we cover the abstraction for the proximal gradient algorithms, and provide
detailed information on their policies. Then, in Utilities, we cover the functionalities provided by the utilities
layer of the library. Finally, in C-API, we provide the C API of the library, which implements many algorithms from
the proximal gradient family and can be used from high-level languages to solve Problem (1).

In the last part, we provide high-level language integrations of polo. Currently, polo is wrapped and extended in
the Julia language, and we will cover the library in POLO.jl.

CONTENTS 1



POLO Documentation

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

In this chapter, we focus on how to get started with polo.

1.1 Setting Up

In this section, we will cover how to download, and install polo from source, or use the prebuilt multi-architecture
Docker images. The commands given in this section are valid bash commands, and they should work on Unix-like
systems as well as Windows1.

1.1.1 Obtaining the Library

polo is hosted at GitHub under the permissive MIT license. There are two different ways to obtain the library.

The first, and the suggested, way is to use git to clone the repository, and check out a specific version (i.e., a snapshot).
For instance, the following code will clone the latest snapshot (i.e., the master branch) of the library

git clone https://github.com/pologrp/polo $HOME/polo

to polo directory under $HOME, which serves as the default repository for a user’s personal files on Unix-like systems.
Later, we can change directory and check out a different snapshot by issuing the following command

cd $HOME/polo
git checkout v1.0.0

Here, we are checking out the v1.0.0 snapshot.

The second way is to download the master branch as a zip file (named, e.g., polo-master.zip under $HOME/
Downloads directory), and unzip its contents under $HOME by issuing the following command

unzip $HOME/Downloads/polo-master.zip -d $HOME
cd $HOME/polo-master # changes directory to the unzipped library

Similarly, we can visit the releases page of the library, download the specific snapshots, and follow the same procedure
to unzip their contents.

Note: Currently, there are no tagged versions/snapshots in the library. Hence, throughout the documentation, we
assume that the latest snapshot (i.e., the master branch) is checked out under $HOME/polo directory.

1 Windows users might need to install Cygwin or Windows Subsystem for Linux.

3
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Todo: After tagging the first version, reword the above note.

1.1.2 Installing the Library

polo is a C++ template library that uses C++11 features. As a result, we need to have a compiler that supports these
features. Among the well-known compilers, gcc v4.8.1, clang v3.3, and Visual Studio 2015, together
with their newer versions, all support C++11.

In addition to the C++ feature dependencies, polo requires CMake (at least v3.9.0) to manage its optional depen-
dencies:

1. Reference or optimized implementations of BLAS and LAPACK for matrix algebra,

2. Thread support library (usually included in the compilers) for Shared-Memory Execution, and,

3. cURL, 0MQ and cereal for Distributed-Memory Execution.

Todo: Explicitly mention the versions of the required packages.

Having installed an appropriate compiler chain and CMake, we can now start with the installation procedure. First,
because CMake only allows for out-of-source builds, we need to create a new directory (e.g., build) under $HOME/
polo so that CMake can create its artifacts:

cd $HOME/polo
mkdir build
cd build

From this point, there are two options to install polo. The first is to check the system for the installed libraries,
configure polo to enable those features that rely on the optional dependencies if they exist on the system, and finally
install the library and configuration files under $HOME/local:

cmake -D CMAKE_INSTALL_PREFIX=$HOME/local ../src
cmake --build .
cmake --build . --target install

Here, we have used CMAKE_INSTALL_PREFIX to install the library and configuration files under $HOME/local.
This is usually needed on systems where we do not have direct write access to the system directories. As a result, we
need to tell CMake to also search this directory for installed libraries when we compile programs that use polo (we
will come to this later in Compiling, Linking and Executing).

Note: If -D CMAKE_INSTALL_PREFIX=$HOME/local is dropped, and the user has the proper write access,
the library and configuration files will be installed under the system directories. In the documentation, we assume that
the user does not have administrative/system rights.

The second option to install polo is to use the superbuild feature to install all the optional dependencies and turn on
all the features covered in this documentation:

cmake -D CMAKE_BUILD_TYPE=Release \
-D CMAKE_INSTALL_PREFIX=$HOME/local ../

cmake --build .
cmake --build . --target install

4 Chapter 1. Getting Started
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Note that, this time, we use Release mode for CMAKE_BUILD_TYPE to install the optimized binaries of the
optional dependencies.

Note: The superbuild feature requires a Fortran compiler to build BLAS and LAPACK from source.

Todo: Later, think of using Conan to package polo and its dependencies as prebuilt binaries.

1.1.3 Using the Prebuilt Docker Images

On some systems or architectures, installing polo with all the optional dependencies can be involved. To allevi-
ate the problems in these situations, we also provide multi-architecture Docker images that contain all the optional
dependencies. Using the Docker images is as simple as issuing the following:

docker pull pologrp/polo
docker run --tty --interactive pologrp/polo /bin/bash

Here, we are first pulling the latest prebuilt Docker image of polo for our system, and then running it in an isolated
container interactively with bash.

Note: The rest of the documentation can be followed easily after either installing polo from source by using the
superbuild feature or using the prebuilt Docker images.

1.2 Anatomy of a POLO Program

Programs that use polo are written in a single C++ file, as shown in Listing 1.1.

Note: All the code samples presented in this documentation are provided under docs/examples directory in the
source tree. Listing captions give the relative path to the sample file. For example, getting-started/anatomy.
cpp refers to anatomy.cpp file under docs/examples/getting-started.

Listing 1.1: getting-started/anatomy.cpp

1 /* include system libraries */
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5

6 /* include polo */
7 #include <polo/polo.hpp>
8 using namespace polo;
9

10 int main(int argc, char *argv[]) {
11 /* define the problem data */
12 matrix::dmatrix<double, int> A(3, 3, {1, 0, 0, 0, 1, 0, 0, 0, 1});
13 vector<double> b{-1, 1, 1};
14 loss::data<double, int> data(A, b);
15

(continues on next page)
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(continued from previous page)

16 /* define the smooth loss */
17 loss::logistic<double, int> loss(data);
18

19 /* select and configure the desired solver */
20 algorithm::gd<double, int> alg;
21 alg.step_parameters(1.0);
22

23 /* provide an initial vector to the solver, and solve the problem */
24 const vector<double> x0{1, 1, 1};
25 alg.initialize(x0);
26 alg.solve(loss);
27

28 /* print the result */
29 cout << "Optimum: " << alg.getf() << '\n';
30 cout << "Optimizer: [";
31 for (const auto val : alg.getx())
32 cout << val << ',';
33 cout << "].\n";
34

35 return 0;
36 }

As can be observed, after including the system libraries and polo in our C++ file, we follow the following five steps:

1. Define the problem data,

2. Define the smooth loss on the data,

3. Select and configure the desired solver,

4. Initialize the solver and run it to minimize the total loss, and,

5. Print the result.

In Listing 1.1, we first define the problem data (data) using the following (dense) matrix (dmatrix) and vector

𝐴 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑏 =

⎡⎣−11
1

⎤⎦ ,

both of which have values of type double and indices of type int. Then, we pick a predefined loss of type
logistic on data, which describes the smooth loss

f(𝑥) =

𝑁∑︁
𝑛=1

log (1 + exp (−𝑏𝑛 ⟨𝑎𝑛, 𝑥⟩)) ,

where 𝑎𝑛 and 𝑏𝑛 are the 𝑛th row of 𝐴 and 𝑏, respectively. Currently, polo supports several common smooth loss
functions (see Loss Functions). In addition, we can define custom loss functions in just a few lines of code. We
will discuss this in more detail in Defining Custom Loss Functions. After defining the smooth loss, we select a
vanilla gradient descent (gd) algorithm, and set its constant step size. In fact, gd is just an alias for a specific
algorithm among a number of well-known optimization algorithms that polo supports from the proximal gradient
family. polo not only allows users to configure, modify, and extend these algorithms in different ways but also
supports the creation of completely new algorithms. We will describe this functionality in detail later in Proximal
Gradient Methods. After configuring the solver, we initialize it with a decision vector, 𝑥0 = [1, 1, 1]

⊤, and
solve the optimization problem defined on loss. Finally, we get the final decision vector (getx) that the gradient
descent algorithm produces, together with the associated loss value (getf), and print the result.

6 Chapter 1. Getting Started
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1.3 Compiling, Linking and Executing

After writing C++ files, we need to compile the source code, and (optionally) link against different libraries to obtain
the final executable. Traditionally, this compilation and linking process is merged into a single command line, in which
the users provide different compile-time definitions (to configure parts of the dependencies), include directories (to
search for library files), and the libraries to link against. However, this gets tedious when projects get bigger.

As we have discussed in Installing the Library, polo relies on CMake to manage its dependencies in a cross-platform
compatible way. From the user’s perspective, this also has the added advantage of managing the compilation and
linking process much more easily.

To build code that requires polo, we simply create a CMake project. A CMake project is a directory that has a
CMakeLists.txt file, which lists the executable files, and their dependencies in the directory. Most modern inte-
grated development environments (IDEs) natively support CMake projects, and help users create the CMakeLists.
txt file interactively1. However, we briefly mention here how to create and use CMake projects, manually, in the
most basic form.

Let’s assume that we have a directory, $HOME/examples, which contains the sample code in Listing 1.1 in a file,
anatomy.cpp. In the same directory, we create a CMakeLists.txt file that has the following lines

cmake_minimum_required(VERSION 3.9.0)
project(polo-examples)

find_package(polo CONFIG REQUIRED)

add_executable(anatomy anatomy.cpp)
target_link_libraries(anatomy polo::polo)

Here, we first choose a minimum version of CMake that is required for our project, and name our project
polo-examples. Then, we tell CMake to find the configuration files for polo, which is required for our project. If
CMake cannot find the configuration files, the build process will stop. Otherwise, CMake will source the configuration
files, and create a target library called polo::polo, which knows how to handle its own dependencies. Finally, for
each executable we might have in the directory, we create a target executable (add_executable), and we link it
against polo::polo (target_link_libraries). In the example, we have only one target executable, which
is named anatomy, and it consists of only one source file, anatomy.cpp. Note that we do not need to define any
compile-time definitions, include directories, or any of the optional dependencies of polo as they are already handled
transitively by CMake behind the scenes.

The next step is to create a new directory (e.g., build) inside $HOME/examples for CMake to put its build artifacts.
Eventually, we will end up with the following directory structure

cd $HOME/examples # change directory to $HOME/examples
mkdir build # make a directory named build
tree . # check the directory structure
.

anatomy.cpp
build
CMakeLists.txt

Finally, we change directory to build, ask CMake to build the project for us, and run the executable

cd build
cmake -D CMAKE_BUILD_TYPE=Release \

-D CMAKE_PREFIX_PATH=$HOME/local ../
cmake --build .
./anatomy # could be ./anatomy.exe on Windows systems

1 See, for instance, CMake Wiki for a comprehensive list of editors.

1.3. Compiling, Linking and Executing 7
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Here, we again use Release mode for CMAKE_BUILD_TYPE, which results in optimized binaries, and point
CMAKE_PREFIX_PATH to $HOME/local, where we have installed polo, so that CMake can find and source the
configuration files.

Note: If -D CMAKE_INSTALL_PREFIX=$HOME/local is not used in Installing the Library, we can drop -D
CMAKE_PREFIX_PATH=$HOME/local when building targets that require polo. This is the case when polo is
installed in system directories, or when Docker images are used.

In the end, the executable should give the following output:

Optimum: 0.0300018
Optimizer: [-4.57459,4.61311,4.61311,].

1.4 Loading Data

In Anatomy of a POLO Program, we have seen how to manually define problem data (cf. matrix 𝐴 and vector 𝑏 in
Listing 1.1). This approach is appropriate for defining small data sets; however, it gets impractical for larger data
sets that many machine-learning problems involve. To facilitate convenient experimentation on machine-learning
problems, polo includes functionality1 for reading data from common formats such as LIBSVM [2011-Chang].

Now, we briefly demonstrate how polo can be used to solve a logistic regression problem on data in the LIBSVM
format. To this end, we revisit the example in Listing 1.1. Instead of working on the 3×3 data matrix, we download
australian_scale file from australian data set to data folder under $HOME/examples. The data set contains
690 samples, each of which has 14 features and belongs to either of the two classes: -1 or +1. Next, we change the
data-related parts of Listing 1.1 to obtain Listing 1.2 (modifications are highlighted).

Listing 1.2: getting-started/svmdata.cpp

1 /* include system libraries */
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5

6 /* include polo */
7 #include <polo/polo.hpp>
8 using namespace polo;
9

10 int main(int argc, char *argv[]) {
11 /* define the problem data */
12 auto data =
13 utility::reader<double, int>::svm({"../data/australian_scale"}, 690, 14);
14

15 /* define the smooth loss */
16 loss::logistic<double, int> loss(data);
17

18 /* estimate smoothness of the loss */
19 double rowmax{0};
20 for (int row = 0; row < data.nsamples(); row++) {
21 double rowsquare{0};
22 for (const auto val : data.matrix()->getrow(row))
23 rowsquare += val * val;
24 if (rowsquare > rowmax)

(continues on next page)

1 We will cover this functionality in more detail in Data Handling.

8 Chapter 1. Getting Started

https://cmake.org/cmake/help/v3.9/variable/CMAKE_BUILD_TYPE.html
https://cmake.org/cmake/help/v3.9/variable/CMAKE_PREFIX_PATH.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#australian


POLO Documentation

(continued from previous page)

25 rowmax = rowsquare;
26 }
27 const double L = 0.25 * data.nsamples() * rowmax;
28

29 /* select and configure the desired solver */
30 algorithm::gd<double, int> alg;
31 alg.step_parameters(2 / L);
32

33 /* provide an initial vector to the solver, and solve the problem */
34 const vector<double> x0(data.nfeatures());
35 alg.initialize(x0);
36 alg.solve(loss);
37

38 /* print the result */
39 cout << "Optimum: " << alg.getf() << '\n';
40 cout << "Optimizer: [";
41 for (const auto val : alg.getx())
42 cout << val << ',';
43 cout << "].\n";
44

45 return 0;
46 }

As can be observed, we first call svm reader on the data file, providing the number of samples and features the file
contains, and assign its output to the automatic variable data. Then, we try to approximate the Lipschitz smoothness
of the logistic loss defined on data. This is because we are still using the vanilla gradient descent algorithm with a
constant step size, and it is known that the iterates of this algorithm converge to the optimum (for convex functions)
if the step size satisfies 𝛾 < 2/𝐿, where 𝐿 is the smoothness parameter [2004-Nesterov]. Because the logistic loss is
defined as

f(𝑥) :=

𝑁∑︁
𝑛=1

fn(𝑥) =

𝑁∑︁
𝑛=1

log (1 + exp (−𝑏𝑛 ⟨𝑎𝑛, 𝑥⟩)) ,

and each fn(𝑥) is 𝐿𝑛-smooth with 𝐿𝑛 = ‖𝑎𝑛‖22/4 [2014-Xiao], a computationally cheap (albeit conservative) estimate
for 𝐿 is

𝐿 = 0.25𝑁𝐿max , 𝐿max = max
𝑛
‖𝑎𝑛‖22 .

Finally, we set the step size of the algorithm, initialize it with a zero-vector of appropriate dimension, and run the
algorithm. To compile Listing 1.2, we add the following lines to our previous CMakeLists.txt:

add_executable(svmdata svmdata.cpp)
target_link_libraries(svmdata polo::polo)

Building the executable using CMake and running the resulting program give:

Optimum: 229.222
Optimizer: [0.0110083,0.162899,0.0832372,0.627515,0.968077,0.328978,0.257715,1.69923,
→˓0.556535,0.157199,-0.143509,0.328954,-0.358702,0.179352,].

1.5 Logging and Post-Processing

So far, we have seen how to define or load data, pick a loss, select and configure an algorithm, and run it to minimize
a smooth loss, f(𝑥). We have used getx and getf member functions of gd to retreive the last decision vector (i.e.,
iterate) generated by the algorithm and the smooth loss value at that iterate.

1.5. Logging and Post-Processing 9
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Generally, we are not only interested in the last iterate and the loss value generated by the algorithm but also the
sequence of states (e.g., iterates, (partial) gradients, loss values, iteration counts, wall-clock times) the algorithm
generates. To support logging these states while the algorithm is running, polo provides different State Loggers. Here,
we briefly show how to log iteration counts, wall-clock times and the function values easily to a comma-separated
values (csv) file.

Revisiting the example in Listing 1.2, we need to pick a proper state logger, input the logger to the algorithm, and
finally save the (in-memory) logged states to a csv file. We provide the resulting code in Listing 1.3, with the necessary
changes highlighted.

Listing 1.3: getting-started/logger.cpp

1 /* include system libraries */
2 #include <fstream>
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6

7 /* include polo */
8 #include <polo/polo.hpp>
9 using namespace polo;

10

11 int main(int argc, char *argv[]) {
12 /* define the problem data */
13 auto data =
14 utility::reader<double, int>::svm({"../data/australian_scale"}, 690, 14);
15

16 /* define the smooth loss */
17 loss::logistic<double, int> loss(data);
18

19 /* estimate smoothness of the loss */
20 double rowmax{0};
21 for (int row = 0; row < data.nsamples(); row++) {
22 double rowsquare{0};
23 for (const auto val : data.matrix()->getrow(row))
24 rowsquare += val * val;
25 if (rowsquare > rowmax)
26 rowmax = rowsquare;
27 }
28 const double L = 0.25 * data.nsamples() * rowmax;
29

30 /* select and configure the desired solver */
31 algorithm::gd<double, int> alg;
32 alg.step_parameters(2 / L);
33

34 /* pick a state logger */
35 utility::logger::value<double, int> logger;
36

37 /* provide an initial vector to the solver, and solve the problem */
38 const vector<double> x0(data.nfeatures());
39 alg.initialize(x0);
40 alg.solve(loss, logger);
41

42 /* open a csv file for writing */
43 ofstream file("logger.csv");
44 if (file) { /* if successfully opened for writing */
45 file << "k,t,f\n";
46 for (const auto &log : logger)

(continues on next page)
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(continued from previous page)

47 file << log << '\n';
48 }
49

50 /* print the result */
51 cout << "Optimum: " << alg.getf() << '\n';
52 cout << "Optimizer: [";
53 for (const auto val : alg.getx())
54 cout << val << ',';
55 cout << "].\n";
56

57 return 0;
58 }

First, we include the standard C++ <fstream> library to be able to open a csv file. Then, we pick a value logger,
which logs the iteration counts, wall-clock times and the loss values generated by the algorithm, and we provide the
logger to the solve method of our algorithm as the second argument. Last, for post-processing purposes, we open
a csv file, named logger.csv, and write each log line by line. Note that the value logger, by default, outputs the
iteration count, wall-clock time (in milliseconds) and the loss value in the given order, delimited by a comma.

We append the following lines to CMakeLists.txt

add_executable(logger logger.cpp)
target_link_libraries(logger polo::polo)

and build the project. Running the executable should give the same output as before:

Optimum: 229.222
Optimizer: [0.0110083,0.162899,0.0832372,0.627515,0.968077,0.328978,0.257715,1.69923,
→˓0.556535,0.157199,-0.143509,0.328954,-0.358702,0.179352,].

However, this time, our executable has created an artifact, named logger.csv. We can check, for instance, the last
5 lines of the file:

# assuming that we are already in $HOME/examples/build
tail -n 5 logger.csv
96,5.61734,229.408
97,5.66521,229.37
98,5.70951,229.332
99,5.75266,229.295
100,5.79627,229.258

Moreover, we can use a plotting script such as that given in Listing 1.4 to plot the loss values with respect to iteration
counts and wall-clock times.

Listing 1.4: getting-started/logger.py

import csv # for reading a csv file
from matplotlib import pyplot as plt # for plotting

k = []
t = []
f = []

with open("logger.csv") as csvfile:
csvReader = csv.reader(csvfile, delimiter=",")
next(csvReader) # skip the header

(continues on next page)
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for row in csvReader:
k.append(int(row[0]))
t.append(float(row[1]))
f.append(float(row[2]))

h, w = plt.figaspect(0.5)
fig, axes = plt.subplots(1, 2, sharey=True, figsize=(h, w))

# f vs k
axes[0].plot(k, f)
axes[0].set_xlabel(r"$k$")
axes[0].set_ylabel(r"$f(\cdot)$")
axes[0].grid()

# f vs t
axes[1].plot(t, f)
axes[1].set_xlabel(r"$t$ [ms]")
axes[1].grid()

plt.tight_layout()
plt.savefig("logger.svg")
plt.savefig("logger.pdf")

The resulting figure should look similar to Fig. 1.1. There, we observe the loss values plotted against the iteration
counts (left) and the wall-clock times (right).
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Fig. 1.1: Loss values generated by the algorithm in Listing 1.3.

Note: For this example, we have used matplotlib as the plotting library in Python. The library can be installed easily,
if there exists pip on the system, by issuing pip install --user --upgrade matplotlib.
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1.6 Terminating the Algorithm

When we check the tail of logger.csv file in Logging and Post-Processing, we realize that the iteration count, 𝑘,
is at 100. It is not a coincidence; in polo, the default termination criterion is to have “100 iterations.” Just as most
parts of the algorithm, the termination criterion can also be easily changed, or even replaced by a custom terminator.
To demonstrate this, we revisit the example in Listing 1.3, and change the default terminator to a value terminator,
which terminates the algorithm if the change in the loss value satisfies certain conditions (see Listing 1.5).

Listing 1.5: getting-started/terminator.cpp

1 /* include system libraries */
2 #include <fstream>
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6

7 /* include polo */
8 #include <polo/polo.hpp>
9 using namespace polo;

10

11 int main(int argc, char *argv[]) {
12 /* define the problem data */
13 auto data =
14 utility::reader<double, int>::svm({"../data/australian_scale"}, 690, 14);
15

16 /* define the smooth loss */
17 loss::logistic<double, int> loss(data);
18

19 /* estimate smoothness of the loss */
20 double rowmax{0};
21 for (int row = 0; row < data.nsamples(); row++) {
22 double rowsquare{0};
23 for (const auto val : data.matrix()->getrow(row))
24 rowsquare += val * val;
25 if (rowsquare > rowmax)
26 rowmax = rowsquare;
27 }
28 const double L = 0.25 * data.nsamples() * rowmax;
29

30 /* select and configure the desired solver */
31 algorithm::gd<double, int> alg;
32 alg.step_parameters(2 / L);
33

34 /* pick a state logger */
35 utility::logger::value<double, int> logger;
36

37 /* pick a terminator */
38 terminator::value<double, int> terminator(1E-3, 1E-8);
39

40 /* provide an initial vector to the solver, and solve the problem */
41 const vector<double> x0(data.nfeatures());
42 alg.initialize(x0);
43 alg.solve(loss, logger, terminator);
44

45 /* open a csv file for writing */
46 ofstream file("terminator.csv");
47 if (file) { /* if successfully opened for writing */

(continues on next page)
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48 file << "k,t,f\n";
49 for (const auto &log : logger)
50 file << fixed << log.getk() << ',' << log.gett() << ',' << log.getf()
51 << '\n';
52 }
53

54 /* print the result */
55 cout << "Optimum: " << fixed << alg.getf() << '\n';
56 cout << "Optimizer: [";
57 for (const auto val : alg.getx())
58 cout << val << ',';
59 cout << "].\n";
60

61 return 0;
62 }

In this example, we first construct a value terminator with absolute and relative tolerances of 1E-3 and 1E-8,
respectively. This means that terminator will stop the algorithm when

|f (𝑥𝑘−1)− f (𝑥𝑘)| < 𝛿abs = 10−3 or
⃒⃒⃒⃒
f (𝑥𝑘−1)− f (𝑥𝑘)

f (𝑥𝑘−1) + 𝜖

⃒⃒⃒⃒
< 𝛿rel = 10−8 ,

where 𝜖 is, by default, the machine epsilon, and is used to prevent dividing by zero1. Then, we provide terminator
to the solve method of our algorithm as the third argument. Finally, compared to Listing 1.3, we change how the
function values are logged to terminator.csv and output to cout in Listing 1.5. In the code, we use std::fixed
to print floating-point numbers in a fixed, 6-digit precision (default) format, and getk, gett and getf member
functions of log2 to get the iteration count, wall-clock time and the loss value of each logged iteration of the algorithm.

We append the following lines to CMakeLists.txt

add_executable(terminator terminator.cpp)
target_link_libraries(terminator polo::polo)

and build the project. Running the executable should give the output:

Optimum: 222.288758
Optimizer: [0.042932,0.140170,-0.352319,0.907892,1.224258,0.230179,0.558908,1.755445,
→˓0.474237,0.592185,-0.117172,0.669261,-2.293000,1.374797,].

In this example, we realize that the “optimum” (i.e., loss value at the last iterate when the algorithm is stopped by the
terminator) is lower than the one obtained in Logging and Post-Processing. When we check the tail of terminator.
csv, we observe the following:

1307,52.607826,222.293771
1308,52.645069,222.292765
1309,52.680067,222.291760
1310,52.715353,222.290757
1311,52.751290,222.289757

The algorithm stops at the 1312th iteration because the absolute change in the loss value becomes less than the tolerance
we have asked for. Using the Python script in Listing 1.6, we obtain a figure similar to Fig. 1.2.

1 More information on terminators is provided in Algorithm Terminators.
2 More information on state loggers and their logged data is provided in State Loggers.
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Listing 1.6: getting-started/terminator.py

import csv # for reading a csv file
from matplotlib import pyplot as plt # for plotting

k = []
t = []
f = []

with open("terminator.csv") as csvfile:
csvReader = csv.reader(csvfile, delimiter=",")
next(csvReader) # skip the header
for row in csvReader:

k.append(int(row[0]))
t.append(float(row[1]))
f.append(float(row[2]))

h, w = plt.figaspect(0.5)
fig, axes = plt.subplots(1, 2, sharey=True, figsize=(h, w))

# f vs k
axes[0].plot(k, f)
axes[0].set_xlabel(r"$k$")
axes[0].set_ylabel(r"$f(\cdot)$")
axes[0].grid()

# f vs t
axes[1].plot(t, f)
axes[1].set_xlabel(r"$t$ [ms]")
axes[1].grid()

plt.tight_layout()
plt.savefig("terminator.svg")
plt.savefig("terminator.pdf")

In Fig. 1.2, we observe that the value terminator with the selected tolerances has resulted in more than 12 times more
iterations (left) compared to the default iteration terminator with 100 iterations. Because we run both algorithms
serially using one CPU, this directly translates to the wall-clock runtimes (right) of the algorithms (cf. Fig. 1.1).

1.7 Defining Custom Loss Functions

In our examples, we have thus far used the logistic loss on data that is either defined manually or read from a
dataset. However, we can also define our custom loss functions, and pass them as the first argument to the solve
member function of the algorithms. To demonstrate this, we focus on the following simple loss function:

f(𝑥) =

𝑁∑︁
𝑛=1

1

𝑛

(︁
𝑥(𝑛) − 𝑛

)︁2

for some 𝑁 ≥ 1. As can be observed, the loss is a convex quadratic function of the 𝑁 -dimensional decision vector,
and the optimizer of Problem (1) with this loss is

𝑥⋆ =

⎡⎢⎢⎢⎣
1
2
...
𝑁

⎤⎥⎥⎥⎦ with f (𝑥⋆) = 0 .
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Fig. 1.2: Loss values generated by the algorithm in Listing 1.5.

Furthermore, it can easily be verified that the gradient and the Hessian of the loss are

∇ f(𝑥) =

⎡⎢⎢⎢⎣
2
1

(︀
𝑥(1) − 1

)︀
2
2

(︀
𝑥(2) − 2

)︀
...

2
𝑁

(︀
𝑥(𝑁) −𝑁

)︀
⎤⎥⎥⎥⎦ and ∇2 f(𝑥) =

⎡⎢⎢⎢⎣
2

1
. . .

2
𝑁

⎤⎥⎥⎥⎦ .

In polo, a smooth loss is any object that, when called with two input arguments, x and g, returns the loss value
associated with x and writes the gradient in g. Because the loss objects are not allowed to modify the decision vector
and because of compatibility with other (high-level) languages, the types of x and g are const value_t * and
value_t *, respectively, where value_t is the type (e.g., double) of the values that the decision vector and the
gradient contain. Hence, one way to define the loss mentioned above is to create a new struct as follows

struct simple_loss {
simple_loss(const int N) : N{N} {}

double operator()(const double *x, double *g) const {
double loss{0};
for (int n = 1; n <= N; n++) {

const double residual{x[n - 1] - n};
loss += residual * residual / n;
g[n - 1] = 2 * residual / n;

}
return loss;

}

private:
const int N;

};

where we keep the data (N) of the loss private, and define the operator() member function appropriately. Note
that, because C++ has zero-based numbering, we use n-1 when indexing x and g.

16 Chapter 1. Getting Started
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To use a custom loss object of type simple_loss, we first construct loss with, e.g., N = 10. Thanks to the
simple and closed-form representation of this simple loss function, we can easily verify that the loss is a 𝜇-strongly
convex function with 𝜇 = 𝜆min = 2/𝑁 and 𝐿 = 𝜆max = 2, where 𝜆min and 𝜆max are the minimum and maximum
eigenvalues of the Hessian, respectively. We know from [2004-Nesterov] that the vanilla gradient descent algorithm
with constant step size 𝛾 = 2

𝜇+𝐿 converges linearly to the optimum. We set the step size of the algorithm accordingly,
and define a value terminator with absolute and relative tolerances of 10−8 and 10−13, respectively. The resulting
code is given in Listing 1.7.

Listing 1.7: getting-started/loss.cpp

1 /* include system libraries */
2 #include <fstream>
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6

7 /* include polo */
8 #include <polo/polo.hpp>
9 using namespace polo;

10

11 struct simple_loss {
12 simple_loss(const int N) : N{N} {}
13

14 double operator()(const double *x, double *g) const {
15 double loss{0};
16 for (int n = 1; n <= N; n++) {
17 const double residual{x[n - 1] - n};
18 loss += residual * residual / n;
19 g[n - 1] = 2 * residual / n;
20 }
21 return loss;
22 }
23

24 private:
25 const int N;
26 };
27

28 int main(int argc, char *argv[]) {
29 /* define the smooth loss */
30 const int N{10};
31 simple_loss loss(N);
32 const double mu{2. / N};
33 const double L{2.};
34

35 /* select and configure the desired solver */
36 algorithm::gd<double, int> alg;
37 alg.step_parameters(2 / (mu + L));
38

39 /* pick a state logger */
40 utility::logger::value<double, int> logger;
41

42 /* pick a terminator */
43 terminator::value<double, int> terminator(1E-8, 1E-13);
44

45 /* provide an initial vector to the solver, and solve the problem */
46 const vector<double> x0(N);
47 alg.initialize(x0);

(continues on next page)
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48 alg.solve(loss, logger, terminator);
49

50 /* open a csv file for writing */
51 ofstream file("loss.csv");
52 if (file) { /* if successfully opened for writing */
53 file << "k,t,f\n";
54 for (const auto &log : logger)
55 file << fixed << log.getk() << ',' << log.gett() << ',' << log.getf()
56 << '\n';
57 }
58

59 /* print the result */
60 cout << "Optimum: " << fixed << alg.getf() << '\n';
61 cout << "Optimizer: [";
62 for (const auto val : alg.getx())
63 cout << val << ',';
64 cout << "].\n";
65

66 return 0;
67 }

We append the following lines to CMakeLists.txt

add_executable(loss loss.cpp)
target_link_libraries(loss polo::polo)

and build the project. Running the executable should give the output:

Optimum: 0.000000
Optimizer: [1.000036,2.000000,3.000000,4.000000,5.000000,6.000000,6.999998,7.999984,8.
→˓999910,9.999641,].

Here, we observe that the optimum value is attained (up to the fixed, 6-digit precision) by the algorithm, even though
the optimizer is not. This is because the value terminator only checks the absolute and relative changes in the loss
value. If we want to have a termination condition based on the changes in the decision vector instead, we can replace

terminator::value<double, int> terminator(1E-8, 1E-13);

with

terminator::decision<double, int> terminator(1E-8);

This decision terminator with the tolerance 10−8 will stop the algorithm when the following condition holds:

‖𝑥𝑘−1 − 𝑥𝑘‖2 < 𝜖abs = 10−8 .

Rebuilding the project and rerunning the executable should give the following:

Optimum: 0.000000
Optimizer: [1.000000,2.000000,3.000000,4.000000,5.000000,6.000000,7.000000,8.000000,9.
→˓000000,10.000000,].
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CHAPTER

TWO

SERIAL EXECUTION

In this chapter, we focus on solving Problem (1) sequentially on a single CPU.

2.1 Proximal Gradient Methods

One approach for solving instances of Problem (1) is to use proximal gradient methods. The basic form of the proximal
gradient iteration is

𝑥𝑘+1 = arg min
𝑥∈R𝑑

{︂
f(𝑥𝑘) + ⟨∇ f(𝑥𝑘), 𝑥− 𝑥𝑘⟩+ h(𝑥) +

1

2𝛾𝑘
‖𝑥− 𝑥𝑘‖22

}︂
, (2.1)

where 𝛾𝑘 is the step size. Thus, the next iterate, 𝑥𝑘+1, is selected to be the minimizer of the sum of the first-order
approximation of the smooth loss function around the current iterate, 𝑥𝑘, the nonsmooth loss function, and a quadratic
penalty on the deviation from the the current iterate [2017-Beck]. After some algebraic manipulations, one can rewrite
Equation (2.1) in terms of the proximal operator [2017-Beck]

𝑥𝑘+1 = arg min
𝑥∈R𝑑

{︂
𝛾𝑘 h(𝑥) +

1

2
‖𝑥− (𝑥𝑘 − 𝛾𝑘∇ f(𝑥𝑘))‖22

}︂
:= prox𝛾𝑘 h (𝑥𝑘 − 𝛾𝑘∇ f(𝑥𝑘)) .

As a result, the method can be interpreted as a two-step procedure: first, a query point is computed by modifying the
current iterate in the direction of the negative gradient, and then the prox operator is applied to this query point.

Even though the proximal gradient method described in Equation (2.1) looks involved, in the sense that it requires
solving an optimization problem at each iteration, the prox-mapping can actually be evaluated very efficiently for
several important functions h(·) such as, for instance, projections onto affine sets, half-spaces, boxes, and ℓ1- and
ℓ2-norm balls. Together with its strong theoretical convergence guarantees, this makes the proximal gradient method a
favorable option in many applications. However, the gradient calculation step in the vanilla proximal gradient method
can be prohibitively expensive when the number of component functions (𝑁 ) or the dimension of the decision vector
(𝑑) is large enough. To improve the scalability of the proximal gradient method, researchers have long tried to come up
with ways of parallelizing the proximal gradient computations and more clever query points than the simple gradient
step in Equation (2.1). As a result, the proximal gradient family encompasses a large variety of algorithms. We have
listed some of the more influential variants in Table 2.11.

1 Meanings of boosting, smoothing, step, prox, and execution will be clear in Proximal Gradient Methods.
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Table 2.1: Some members of the proximal gradient methods. s, cr, ir
and ps stand for serial, consistent read/write, inconsistent read/write and
Parameter Server [2013-Li], respectively.

Algorithm boosting smoothing step prox execution
(S)GD × × 𝛾, 𝛾𝑘 × s, cr, ps
IAG [2007-Blatt] aggregated × 𝛾 × s, cr, ps
PIAG [2016-Aytekin] aggregated × 𝛾 X s, cr, ps
SAGA [2014-Defazio] saga × 𝛾 X s
Heavyball [1964-Polyak] classical × 𝛾 × s
Nesterov [1983-Nesterov] nesterov × 𝛾 × s
AdaGrad [2011-Duchi] × adagrad 𝛾 × s
AdaDelta [2012-Zeiler] × adadelta 𝛾 × s
Adam [2014-Kingma] classical rmsprop 𝛾 × s
Nadam [2016-Dozat] nesterov rmsprop 𝛾 × s
AdaDelay [2015-Sra] × × 𝛾𝑘 X s, cr, ps
HOGWILD! [2011-Recht] × × 𝛾 × ir
ASAGA [2016-Leblond] saga × 𝛾 × ir
ProxASAGA [2017-Pedregosa] saga × 𝛾 X ir

In the rest of the chapter, we will use different preconfigured algorithms from Table 2.1 on two different problems:
Logistic Regression and Least Squares Regression.

2.2 Logistic Regression

In the previous chapter, we used a vanilla gradient descent (gd) algorithm to solve a logistic loss minimization prob-
lem. gd is the most basic member of the proximal gradient family.

In this section, we first revisit the logistic loss minimization problem, use different (and more advanced) mem-
bers of the family, i.e., Heavyball [1964-Polyak], Nesterov [1983-Nesterov], AdaGrad [2011-Duchi] and Adam
[2014-Kingma], and compare their performances. To this end, we need to change the algorithm-related parts of
Listing 1.5 to obtain Listing 2.1.

Listing 2.1: serial/logistic.cpp

1 /* include system libraries */
2 #include <fstream>
3 #include <iostream>
4 #include <string>
5 #include <vector>
6 using namespace std;
7

8 /* include polo */
9 #include <polo/polo.hpp>

10 using namespace polo;
11

12 int main(int argc, char *argv[]) {
13 /* define the problem data */
14 auto data =
15 utility::reader<double, int>::svm({"../data/australian_scale"}, 690, 14);
16

17 /* define the smooth loss */
18 loss::logistic<double, int> loss(data);

(continues on next page)
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20 /* estimate smoothness of the loss */
21 double rowmax{0};
22 for (int row = 0; row < data.nsamples(); row++) {
23 double rowsquare{0};
24 for (const auto val : data.matrix()->getrow(row))
25 rowsquare += val * val;
26 if (rowsquare > rowmax)
27 rowmax = rowsquare;
28 }
29 const double L = 0.25 * data.nsamples() * rowmax;
30

31 /* select and configure the desired solver */
32 #ifdef MOMENTUM
33 algorithm::momentum<double, int> alg;
34 alg.boosting_parameters(0.9, 1 / L);
35 const string filename{"logistic-momentum.csv"};
36 #elif defined NESTEROV
37 algorithm::nesterov<double, int> alg;
38 alg.boosting_parameters(0.9, 1 / L);
39 const string filename{"logistic-nesterov.csv"};
40 #elif defined ADAGRAD
41 algorithm::adagrad<double, int> alg;
42 const string filename{"logistic-adagrad.csv"};
43 #elif defined ADAM
44 algorithm::adam<double, int> alg;
45 alg.boosting_parameters(0.9, 0.1);
46 alg.smoothing_parameters(0.999, 1E-8);
47 alg.step_parameters(0.001);
48 const string filename{"logistic-adam.csv"};
49 #endif
50

51 /* pick a state logger */
52 utility::logger::value<double, int> logger;
53

54 /* pick a terminator */
55 terminator::value<double, int> terminator(5E-2);
56

57 /* provide an initial vector to the solver, and solve the problem */
58 const vector<double> x0(data.nfeatures());
59 alg.initialize(x0);
60 alg.solve(loss, logger, terminator);
61

62 /* open a csv file for writing */
63 ofstream file(filename);
64 if (file) { /* if successfully opened for writing */
65 file << "k,t,f\n";
66 for (const auto &log : logger)
67 file << fixed << log.getk() << ',' << log.gett() << ',' << log.getf()
68 << '\n';
69 }
70

71 /* print the result */
72 cout << "Optimum: " << fixed << alg.getf() << '\n';
73 cout << "Optimizer: [";
74 for (const auto val : alg.getx())
75 cout << val << ',';

(continues on next page)

2.2. Logistic Regression 21



POLO Documentation

(continued from previous page)

76 cout << "].\n";
77

78 return 0;
79 }

In this example, we use preprocessor directives to conditionally compile parts of the file. For instance, if the prepro-
cessor directive MOMENTUM is defined, alg will be an instance of momentum (i.e., Heavyball), which updates, at
each iteration 𝑘, the decision variable 𝑥𝑘 as follows:

𝜈𝑘 = 𝜇𝜈𝑘−1 + 𝜖𝑔𝑘

𝑥𝑘+1 = 𝑥𝑘 − 𝜈𝑘 ,

where 𝜇 is the momentum term and usually set to 0.9 [2016-Ruder], 𝑔𝑘 is the gradient at 𝑥𝑘 (i.e., 𝑔𝑘 = ∇ f(𝑥𝑘))
in the example, and 𝜈𝑘 is the variable that holds the exponential moving average of the gradient at iteration 𝑘. We
set 𝜇 = 0.9 and 𝜖 = 1/𝐿 by using boosting_parameters1 member function of alg, and filename to
logistic-momentum.csv, which is used for saving the logged states of the algorithm. We select and configure1

other algorithms similarly, and guard them with the preprocessor directives. To compile Listing 2.1 for different
algorithms, we add the following lines to CMakeLists.txt:

add_executable(logistic-momentum logistic.cpp)
target_compile_definitions(logistic-momentum PUBLIC MOMENTUM)
target_link_libraries(logistic-momentum polo::polo)

add_executable(logistic-nesterov logistic.cpp)
target_compile_definitions(logistic-nesterov PUBLIC NESTEROV)
target_link_libraries(logistic-nesterov polo::polo)

add_executable(logistic-adagrad logistic.cpp)
target_compile_definitions(logistic-adagrad PUBLIC ADAGRAD)
target_link_libraries(logistic-adagrad polo::polo)

add_executable(logistic-adam logistic.cpp)
target_compile_definitions(logistic-adam PUBLIC ADAM)
target_link_libraries(logistic-adam polo::polo)

CMake’s target_compile_definitions command helps us define the appropriate preprocessor directives. Basically, using
this command, we create four different executables from the same source file. Building the project, running the
executables, and using the plotting script given in Listing 2.2 result in a figure similar to Fig. 2.1.

Listing 2.2: serial/logistic.py

import csv # for reading a csv file
from matplotlib import pyplot as plt # for plotting

h, w = plt.figaspect(1)
fig, axes = plt.subplots(2, 2, sharey=True, figsize=(h, w))

algorithms = ["momentum", "nesterov", "adagrad", "adam"]

for (algorithm, axis) in zip(algorithms, axes.reshape(-1)):
k = []
f = []

with open(f"logistic-{algorithm}.csv") as csvfile:

(continues on next page)

1 The configuration of the algorithms and the terminology will become more evident in Proximal Gradient Methods.
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csvReader = csv.reader(csvfile, delimiter=",")
next(csvReader) # skip the header
for row in csvReader:

k.append(int(row[0]))
f.append(float(row[2]))

axis.plot(k, f)
axis.set_title(algorithm)
axis.set_xlabel(r"$k$")
axis.set_ylabel(r"$f(\cdot)$")
axis.grid()

plt.tight_layout()
plt.savefig("logistic.svg")
plt.savefig("logistic.pdf")
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Fig. 2.1: Loss values generated by the algorithms in Listing 2.1.

In Fig. 2.1, we observe that all four algorithms converge roughly to the same loss value when a value terminator
with an absolute value tolerance of 5E-2 is used. Both momentum and nesterov require the knowledge of the
Lipschitz parameter (𝐿) of the logistic loss, and they have similar convergence profiles. adagrad and adam, on the
other hand, are configured without using the knowledge of 𝐿 (cf. Listing 2.1), and they can adapt their learning rates
to the loss function at hand. For instance, in adagrad, there is an increase in the loss value initially resulting from a
too big initial step size, which is later accounted for as the algorithm proceeds. It is also worth noting that, in polo,
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the default initial step size for adagrad is 1, and the configuration in Listing 2.1 for adam is the one suggested in
[2014-Kingma]. Both algorithms can be tuned to have better performances than the ones obtained in this example.

Now, we add different regularizers to the problem, and repeat the same procedure to solve the corresponding regular-
ized problems.

2.2.1 ℓ1 Regularization

2.2.2 Elastic Net Regularization

2.3 Least Squares Regression

2.3.1 ℓ1 Regularization

2.3.2 Elastic Net Regularization
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THREE

SHARED-MEMORY EXECUTION

In this chapter, we focus on solving Problem (1) using multiple CPUs in a shared-memory architecture.

3.1 Managing Shared Data

3.2 Examples
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CHAPTER

FOUR

DISTRIBUTED-MEMORY EXECUTION

In this chapter, we focus on solving Problem (1) over multiple computing nodes in a distributed-memory architecture.

4.1 A Lightweight Parameter Server

4.2 Setting Up

4.2.1 Multiple Local Machines

4.2.2 Multiple Machines on AWS

4.3 An Example: Proximal Incremental Aggregated Gradient

4.4 Improving Communication
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CHAPTER

FIVE

PROXIMAL GRADIENT METHODS

A careful review of the serial algorithms in the proximal gradient family reveals that, given an initial search direction,
which we call a gradient surrogate, they differ from each other in their choices of four distinctive algorithm primitives:

1. how they combine multiple gradient surrogates to form a better search direction, a step we refer to as boosting,

2. how this search direction is filtered or scaled, which we call smoothing,

3. which step size policy they use, and,

4. the type of projection they do in the prox step.

For instance, stochastic gradient descent (SGD) algorithms use partial gradient information coming from component
functions or decision vector coordinates as the gradient surrogate at each iteration, whereas their aggregated versions
accumulate previous partial gradient information to boost the descent direction. Similarly, different momentum-based
methods such as the Heavyball [1964-Polyak] and Nesterov’s [1983-Nesterov] momentum accumulate the full gradient
information over iterations. Algorithms such as AdaGrad [2011-Duchi] and AdaDelta [2012-Zeiler], on the other hand,
use the second-moment information from the gradient surrogates and the decision vector updates to adaptively scale,
i.e., smooth, the gradient surrogates. Popular algorithms such as Adam [2014-Kingma] and Nadam [2016-Dozat],
available in most machine-learning libraries, incorporate both boosting and smoothing to get better update directions.
Algorithms in the serial setting can also use different step size policies and projections independently of the choices
above, and benefit from different samplers to form partial gradients as well as encoders to compress the gradient
information. This results in the following pseudocode representation of these algorithms:

Data: Differentiable functions, {fn(·)}; regularizer, h(·).
Input: Initial decision vector, 𝑥0.

Output: Final decision vector, 𝑥𝑘.

Initialize: 𝑘 ← 0.

while not_done(𝑘, 𝑔, 𝑥𝑘, 𝜑(𝑥𝑘)) do
𝑔 ← gradient(𝑥𝑘; fn(·)); /* full or incremental */

𝑔 ← sample(𝑔); /* block coordinate; optional */

𝑒← encode(𝑔); /* optional */

𝑔 ← decode(𝑒); /* optional */

𝑔 ← boosting(𝑘, 𝑔); /* optional */

𝑔 ← smoothing(𝑘, 𝑔, 𝑥𝑘); /* optional */

𝛾𝑘 ← step(𝑘, 𝑔, 𝑥𝑘, 𝜑(𝑥𝑘));

𝑥𝑘+1 ← prox𝛾𝑘 h(𝑥𝑘 − 𝛾𝑘𝑔);

𝑘 ← 𝑘 + 1;

end
return 𝑥𝑘;
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Most of the serial algorithms in this family either have direct counterparts in the parallel setting or can be extended to
have the parallel execution support. However, adding parallel execution support brings yet another layer of complexity
to algorithm prototyping. First, there are a variety of parallel computing environments to consider, from shared-
memory and distributed-memory environments with multiple CPUs to distributed-memory heterogeneous computing
environments that involve both CPUs and GPUs. Second, some of these environments, such as the shared-memory,
offer different choices in how to manage race conditions. For example, some algorithms choose to use mutexes to
consistently read from and write to the shared decision vector from different processes, whereas others prefer atomic
operations to allow for inconsistent reads and writes. Finally, the choice in a specific computing environment might
constrain choices in other algorithm primitives. For instance, if the algorithm is to run on a distributed-memory
environment such as the Parameter Server [2013-Li], where only parts of the decision vector and data are stored in
individual nodes, then only updates and projections that embrace data locality can be used.

In the rest of the chapter, we cover the five major policies that are used as building blocks for the proximal gradient
methods.

5.1 Boosting

5.2 Smoothing

5.3 Step

5.4 Prox

Todo: Include a table of implemented prox operators.

5.5 Execution

5.5.1 Traits
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CHAPTER

SIX

UTILITIES

In this chapter, we cover the utilities layer of polo.

6.1 State Loggers

6.2 Algorithm Terminators

6.3 Matrix Algebra

6.4 Data Handling

6.5 Loss Functions

6.6 Samplers

6.7 Encoders
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CHAPTER

SEVEN

C-API

In this chapter, we cover the C-API of polo for high-level language integrations.
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CHAPTER

EIGHT

POLO.JL

In this chapter, we cover POLO.jl, the Julia library that wraps and extends polo in the Julia language.
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