

polliwog

Polygonal chains

	
class polliwog.Polyline(v, is_closed=False)[source]

	Represent the geometry of a polygonal chain in 3-space. The chain may be
open or closed.

There are no constraints on the geometry. For example, the chain may be
simple or self-intersecting, and the points need not be unique.

The methods do not mutate; they create new polylines which exhibit the
requested mutation. However, immutability is not enforced. If you wish
you can mutate a polyline by updating polyline.v or polyline.is_closed.

	
aligned_with(vector)[source]

	Flip the polyline if necessary, so it’s aligned with the given
vector rather than against it. Works on open polylines and considers
only the two end vertices.

	
apex(axis)[source]

	Find the most extreme point in the direction of the axis provided.

axis: A vector, which is an 3x1 np.array.

	
bounding_box

	The bounding box which encompasses the entire polyline.

	
copy()[source]

	Return a copy of this polyline.

	
e

	an array containing a pair of
vertex indices for each edge. This is derived automatically from
self.v and self.is_closed whenever those values are set.

	Type

	Return the edges of the polyline

	
flipped()[source]

	Flip the polyline from end to end. Return a new polyline.

	
index_of_vertex(point, atol=1e-08)[source]

	Return the index of the vertex with the given point. If there are
coincident vertices at that point, return the one at the lowest
index.

	
intersect_plane(plane, ret_edge_indices=False)[source]

	Returns the points of intersection between the plane and any of the
edges of polyline, which should be an instance of Polyline.

TODO: This doesn’t correctly handle vertices which lie on the plane.

	
classmethod join(*polylines, is_closed=False)[source]

	Join together a stack of open polylines end-to-end into one
contiguous polyline. The last vertex of the first polyline is
connected to the first vertex of the second polyline, and so on.

	
nearest(points, ret_segment_indices=False)[source]

	For the given query point or points, return the nearest point on the
polyline. With ret_segment_indices=True, also return the segment
indices of those points.

	
num_e

	Return the number of segments in the polyline.

	
num_v

	Return the number of vertices in the polyline.

	
path_centroid

	The weighted average of all the points along the edges of the polyline.

	
rolled(index, ret_edge_mapping=False)[source]

	Return a new Polyline which reindexes the callee polyline, which much
be closed, so the vertex with the given index becomes vertex 0.

	ret_edge_mapping: if True, return an array that maps from old edge

	indices to new.

	
sectioned(section_breakpoints, copy_vs=False)[source]

	Section the given open polyline at the given breakpoints, which indicate
where one segment ends and the next one starts. Each of the breakpoint
vertices is included as an endpoint in one section and a start point in
the next section.

	Parameters

	
	breakpoints (np.arraylike) – The indices of the breakpoints.

	copy_vs (bool) – When True, copy the vertices into the new polylines.
When False, return polylines with views for vertex arrays.

	Returns

	A list of the sectioned polylines.

	Return type

	list

	
segment_lengths

	The length of each of the segments.

	
segment_vectors

	Vectors spanning each segment.

	
segments

	Coordinate pairs for each segment.

	
sliced_at_indices(start, stop)[source]

	Take an slice of the given polyline starting at the start vertex
index and ending just befeor reaching the stop vertex index. Always
returns an open polyline.

When called on a closed polyline, the indies can wrap around the end.

	
sliced_at_points(start_point, end_point, atol=1e-08)[source]

	Take a slice of the given polyline at the given start and end points.
These are expected to be on a vertex or on a segment. If on a segment
(or near to but not directly on a segment) a new point is inserted
at exactly the given point.

	
sliced_by_plane(plane)[source]

	Return a new Polyline which keeps only the part that is in front of the given
plane.

For open polylines, the plane must intersect the polyline exactly once.

For closed polylines, the plane must intersect the polyline exactly
twice, leaving a single contiguous segment in front.

	
subdivided_by_length(max_length, edges_to_subdivide=None, ret_indices=False)[source]

	Subdivide each line segment longer than max_length with
equal-length segments, such that none of the new segments are longer
than max_length. Returns a new Polyline.

	Parameters

	
	max_length (float) – The maximum lenth of a segment.

	edges_to_subdivide (np.arraylike) – An optional boolean mask the same
length as the number of edges. Only the edges marked True are
subdivided. The default is to subdivide all edges longer than
max_length.

	ret_indices (bool) – When True, also returns the indices of the
original vertices.

	
total_length

	The total length of all the segments.

	
with_insertions(points, indices, ret_new_indices=False)[source]

	Return a new polyline with the given points inserted before the given
indices.

With ret_new_indices=True, also returns the new indices of the
original vertices and the new indices of the inserted points.

	
with_segments_bisected(segment_indices, ret_new_indices=False)[source]

	Return a new polyline with the given segments cut in half.

With ret_new_indices=True, also returns the new indices of the
original vertices and the new indices of the inserted points.

Polygonal chain functions

	
polliwog.polyline.inflection_points(points, rise_axis, run_axis)[source]

	Find the list of vertices that preceed inflection points in a curve. The
curve is differentiated with respect to the coordinate system defined by
rise_axis and run_axis.

Interestingly, lambda x: 2*x + 1 should have no inflection points, but
almost every point on the line is detected. It’s because a zero or zero
crossing in the second derivative is necessary but not sufficient to
detect an inflection point. You also need a higher derivative of odd
order that’s non-zero. But that gets ugly to detect reliably using sparse
finite differences. Just know that if you’ve got a straight line this
method will go a bit haywire.

rise_axis: A vector representing the vertical axis of the coordinate system.
run_axis: A vector representing the the horiztonal axis of the coordinate system.

returns: a list of points in space corresponding to the vertices that
immediately preceed inflection points in the curve

	
polliwog.polyline.point_of_max_acceleration(points, rise_axis, run_axis, subdivide_by_length=None)[source]

	Find the point on a curve where the curve is maximally accelerating
in the direction specified by rise_axis. run_axis is the horizontal
axis along which slices are taken.

	Parameters

	
	points (np.arraylike) – A stack of points, as kx3. For best
results, trim these to the area of interest before calling.

	rise_axis (np.arraylike) – The vertical axis, as a 3D vector.

	run_axis (np.arraylike) – The horizonal axis, as a 3D vector.

	subdivide_by_length (float) – When provided, the maximum space
between each point. The idea is keep the slice width small,
however this constraint is applied in 3D space, not along
the run_axis. For best results pass a value that is small
relative to the changes in the geometry. When None, the
points are used without modification.

Planes

	
class polliwog.Plane(point_on_plane, unit_normal)[source]

	A 2-D plane in 3-space (not a hyperplane).

	Parameters

	
	point_on_plane (np.arraylike) – A reference point on the plane, as a
NumPy array with three coordinates.

	unit_normal (np.arraylike) – The plane normal vector, as a NumPy
array with three coordinates.

	
canonical_point

	A canonical point on the plane, the one at which the normal
would intersect the plane if drawn from the origin (0, 0, 0).

This is computed by projecting the reference point onto the
normal.

This is useful for partitioning the space between two planes,
as we do when searching for planar cross sections.

	
equation

	Returns parameters A, B, C, D as a 1x4 np.array, where

Ax + By + Cz + D = 0

defines the plane.

	
classmethod fit_from_points(points)[source]

	Fits a plane whose normal is orthgonal to the first two principal axes
of variation in the data and centered on their centroid.

	
flipped()[source]

	Creates a new Plane with an inverted orientation.

	
classmethod from_points(p1, p2, p3)[source]

	If the points are oriented in a counterclockwise direction, the plane’s
normal extends towards you.

	
classmethod from_points_and_vector(p1, p2, vector)[source]

	Compute a plane which contains two given points and the given
vector. Its reference point will be p1.

For example, to find the vertical plane that passes through
two landmarks:

from_points_and_normal(p1, p2, vector)

Another way to think about this: identify the plane to which
your result plane should be perpendicular, and specify vector
as its normal vector.

	
mirror_point(points)[source]

	Mirror a point (or stack of points) to the opposite side of the plane.

	
normal

	Return the plane’s normal vector.

	
points_in_front(points, inverted=False, ret_indices=False)[source]

	Given an array of points, return the points which lie in the
half-space in front of it (i.e. in the direction of the plane
normal).

	Parameters

	
	points (np.arraylikw) – An array of points.

	inverted (bool) – When True, return the points which lie on or
behind the plane instead.

	ret_indices (bool) – When True, return the indices instead of the
points themselves.

Note

Use points_on_or_in_front() for points which lie either on the
plane or in front of it.

	
points_on_or_in_front(points, inverted=False, ret_indices=False)[source]

	Given an array of points, return the points which lie either on the
plane or in the half-space in front of it (i.e. in the direction of
the plane normal).

	Parameters

	
	points (np.arraylikw) – An array of points.

	inverted (bool) – When True, return the points behind the plane
instead.

	ret_indices (bool) – When True, return the indices instead of the
points themselves.

Note

Use points_in_front() to get points which lie only in front of
the plane.

	
project_point(points)[source]

	Project a given point (or stack of points) to the plane.

	
reference_point

	The point used to create this plane.

	
sign(points)[source]

	Given an array of points, return an array with +1 for points in front
of the plane (in the direction of the normal), -1 for points behind
the plane (away from the normal), and 0 for points on the plane.

	
signed_distance(points)[source]

	Returns the signed distances to the given points or the signed
distance to a single point.

	Parameters

	points (np.arraylike) – A 3D point or a kx3 stack of points.

	Returns

	
	Given a single 3D point, the distance as a NumPy scalar.

	Given a kx3 stack of points, an k array of distances.

	Return type

	depends

	
tilted(new_point, coplanar_point)[source]

	Create a new plane, tilted so it passes through new_point. Also
specify a coplanar_point which the old and new planes should have
in common.

	Parameters

	
	new_point (np.arraylike) – A point on the desired plane, with shape
(3,).

	coplanar_point (np.arraylike) – The (3,) point which the old and
new planes have in common.

	Returns

	The adjusted plane.

	Return type

	Plane

Named coordinate planes

	
polliwog.Plane.xy = <Plane of [0. 0. 1.] through [0. 0. 0.]>

	The xy-plane.

	
polliwog.Plane.xz = <Plane of [0. 1. 0.] through [0. 0. 0.]>

	The xz-plane.

	
polliwog.Plane.yz = <Plane of [1. 0. 0.] through [0. 0. 0.]>

	The yz-plane.

Plane functions

	
polliwog.plane.plane_normal_from_points(points, normalize=True)[source]

	Given a set of three points, compute the normal of the plane which
passes through them. Also works on stacked inputs (i.e. many sets
of three points).

This is the same as polliwog.tri.functions.surface_normals, to
which this delegates.

	
polliwog.plane.plane_equation_from_points(points)[source]

	Given many sets of three points, return a stack of plane equations
[A, B, C, D] which satisfy Ax + By + Cz + D = 0. Also
works on three points to return a single plane equation.

These coefficients can be decomposed into the plane normal vector
which is [A, B, C] and the offset D, either by the caller or
by using normal_and_offset_from_plane_equations().

	
polliwog.plane.normal_and_offset_from_plane_equations(plane_equations)[source]

	Given A, B, C, D of the plane equation Ax + By + Cz + D = 0,
return the plane normal vector which is [A, B, C] and the offset D.

	
polliwog.plane.signed_distance_to_plane(points, plane_equations)[source]

	Return the signed distances from each point to the corresponding plane.

For convenience, can also be called with a single point and a single
plane.

	
polliwog.plane.project_point_to_plane(points, plane_equations)[source]

	Project each point to the corresponding plane.

	
polliwog.plane.mirror_point_across_plane(points, plane_equations)[source]

	Mirror each point to the corresponding point on the opposite side of the
plane.

	
polliwog.plane.intersect_segment_with_plane(start_points, segment_vectors, points_on_plane, plane_normals)[source]

	Check for intersections between a line segment and a plane, or pairwise
between a stack of line segments and a stack of planes.

Triangles

	
polliwog.tri.surface_normals(points, normalize=True)[source]

	Compute the surface normal of a triangle. The direction of the normal
follows conventional counter-clockwise winding and the right-hand
rule.

Also works on stacked inputs (i.e. many sets of three points).

	
polliwog.tri.tri_contains_coplanar_point(a, b, c, point)[source]

	Assuming point is coplanar with the triangle ABC, check if it lies
inside it.

	
polliwog.tri.barycentric_coordinates_of_points(vertices_of_tris, points)[source]

	Compute barycentric coordinates for the projection of a set of points to a
given set of triangles specfied by their vertices.

These barycentric coordinates can refer to points outside the triangle.
This happens when one of the coordinates is negative. However they can’t
specify points outside the triangle’s plane. (That requires tetrahedral
coordinates.)

The returned coordinates supply a linear combination which, applied to the
vertices, returns the projection of the original point the plane of the
triangle.

	Parameters

	
	vertices_of_tris (np.arraylike) – A set of triangle vertices as kx3x3.

	points (np.arraylike) – Coordinates of points as kx3.

	Returns

	Barycentric coordinates as kx3

	Return type

	np.ndarray

See also

	https://en.wikipedia.org/wiki/Barycentric_coordinate_system

	Heidrich, “Computing the Barycentric Coordinates of a Projected
Point,” JGT 05 (http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf)

	
polliwog.tri.quads_to_tris(quads, ret_mapping=False)[source]

	Convert quad faces to triangular faces.

quads: An nx4 array.
ret_mapping: A bool.

When ret_mapping is True, return a 2nx3 array of new triangles and a 2nx3
array mapping old quad indices to new trangle indices.

When ret_mapping is False, return the 2nx3 array of triangles.

Geometric transformations

High-level API

	
class polliwog.CompositeTransform[source]

	Composite transform using homogeneous coordinates.

Example

>>> transform = CompositeTransform()
>>> transform.uniform_scale(10)
>>> transform.reorient(up=[0, 1, 0], look=[-1, 0, 0])
>>> transform.translate([0, -2.5, 0])
>>> transformed_scan = transform(scan_v)
>>> # ... register the scan here ...
>>> untransformed_alignment = transform(alignment_v, reverse=True)

See also

	Computer Graphics: Principles and Practice, Hughes, van Dam,
McGuire, Sklar, Foley

	http://gamedev.stackexchange.com/questions/72044/why-do-we-use-4x4-matrices-to-transform-things-in-3d

	
__call__(points, from_range=None, reverse=False, discard_z_coord=False)[source]

	
	Parameters

	
	points (np.arraylike) – Points to transform, as a 3xn array.

	from_range (tuple) – The indices of the subset of the
transformations to apply. e.g. (0, 2), (2, 4). When
None, which is the default, apply them all.

	reverse (bool) – When True applies the selected transformations
in reverse. This has no effect on how range is interpreted,
only whether the selected transformations apply in the forward
or reverse mode.

	
append_transform(forward, reverse=None)[source]

	Append an arbitrary transformation, defined by 4x4 forward and reverse
matrices.

The new transformation is added to the end. Return its index.

	
convert_units(from_units, to_units)[source]

	Convert the mesh from one set of units to another.

These calls are equivalent:

>>> composite.convert_units(from_units='cm', to_units='m')
>>> composite.uniform_scale(.01)

Supports the length units from Ounce:
https://github.com/lace/ounce/blob/master/ounce/core.py#L26

	
flip(dim)[source]

	Flip about one of the axes.

	Parameters

	dim (int) – The axis to flip about: 0 for x, 1 for y, 2 for z.

	
non_uniform_scale(x_factor, y_factor, z_factor, allow_flipping=False)[source]

	Scale by the given factors along x, y, and z.

	Parameters

	
	x_factor (float) – The scale factor to be applied along the x axis.

	y_factor (float) – The scale factor to be applied along the y axis.

	z_factor (float) – The scale factor to be applied along the z axis.

See also

uniform_scale()

	
reorient(up, look)[source]

	Reorient using up and look.

	
rotate(rotation)[source]

	Rotate by the given 3x3 rotation matrix or a Rodrigues vector.

	
transform_matrix_for(from_range=None, reverse=False)[source]

	Return a 4x4 transformation matrix representation.

	range: The min and max indices of the subset of the transformations to

	apply. e.g. (0, 2), (2, 4). Inclusive of the min value, exclusive of
the max value. The default is to apply them all.

	reverse: When True returns a matrix for the inverse transform.

	This has no effect on how range is interpreted, only whether the
forward or reverse matrices are used.

	
translate(translation)[source]

	Translate by the vector provided.

	Parameters

	vector (np.arraylike) – A 3x1 vector.

	
uniform_scale(factor, allow_flipping=False)[source]

	Scale by the given factor.

	Parameters

	factor (float) – The scale factor.

See also

non_uniform_scale()

	
class polliwog.CoordinateManager[source]

	Example

>>> coordinate_manager = CoordinateManager()
>>> coordinate_manager.tag_as('source')
>>> coordinate_manager.translate(-cube.floor_point)
>>> coordinate_manager.uniform_scale(2)
>>> coordinate_manager.tag_as('floored_and_scaled')
>>> coordinate_manager.translate(np.array([0., -4., 0.]))
>>> coordinate_manager.tag_as('centered_at_origin')

>>> coordinate_manager.source = cube
>>> centered_mesh = coordinate_manager.centered_at_origin

	
__setattr__(name, points)[source]

	value: An nx3 array of points or an instance of Mesh.

	
tag_as(name)[source]

	Give a name to the current state.

Transform functions

	
polliwog.transform.apply_transform(transform)[source]

	Wrap the given transformation matrix with a function which conveniently can
be invoked with either points or a single point, returning the same. It
applies the transformation to those points using homogeneous coordinates.

	Parameters

	points (np.ndarray) – The point (3,) or points kx3 to transform.

	Returns

	A function which accepts an np.ndarray containing a point
(3,) or points kx3 to transform, and returns an ndarray of the
same shape. Also accepts two kwargs. The first is discard_z_coord.
When True, discard the z coordinate of the result. This is useful
when applying viewport transformations. The second is
treat_input_as_vectors which does not use the homogeneous coordinate,
and therefore ignores translation.

	Return type

	func

	
polliwog.transform.euler(xyz, order='xyz', units='deg')[source]

	Convert a Euler angle representation of 3D rotations to a 3x3 rotation matrix.

Euler angles are a way of representing 3D rotations as a sequence of rotations
about the axes. Conceptually, think of euler([10, 20, 30]) as
“Rotate 10 degrees around the x axis, then 20 degrees around the y axis, then
30 degrees around the z axis” (that ordering can be changed with the order
argument, and the units can be given in degrees or radians by setting units
to ‘deg’ or ‘rad’).

Euler angles are a problematic representation of rotation for numerical methods,
as there are multiple possible representations for a given rotation. But they are
a very intuitive and readable way to initialize a rotation matrix.

See also

	https://en.wikipedia.org/wiki/Euler_angles

	
polliwog.transform.rodrigues_vector_to_rotation_matrix(r, calculate_jacobian=False)[source]

	Convert a 3x1 or 1x3 Rodrigues vector to a 3x3 rotation matrix.

A Rodrigues vector is a 3 element vector representing a 3D rotation.
Its direction represents the axis about which to rotate and its magnitude
represents the amount to rotate by.

All of SO3 (that is, all 3D rotations) can be uniquely represented by a
Rodrigues vector, and it does not suffer from the multiple representation
and gimbal locking problems that Euler angle representations do.

If calculate_jacobian is passed, then the derivative of the rotation is
also computed. Note that the derivative is undefined for a Rodrigues vector
of [0,0,0] (that is, no rotation).

See also

	https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

	
polliwog.transform.rotation_matrix_to_rodrigues_vector(r, calculate_jacobian=False)[source]

	Convert a 3x3 rotation matrix to a 3x1 or 1x3 Rodrigues vector.

A Rodrigues vector is a 3 element vector representing a 3D rotation.
Its direction represents the axis about which to rotate and its magnitude
represents the amount to rotate by.

All of SO3 (that is, all 3D rotations) can be uniquely represented by a
Rodrigues vector, and it does not suffer from the multiple representation
and gimbal locking problems that Euler angle representations do.

If calculate_jacobian is passed, then the derivative of the rotation is
also computed. Note that the derivative is undefined for a Rodrigues vector
of [0,0,0] (that is, no rotation).

See also

	https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

	
polliwog.transform.cv2_rodrigues(r, calculate_jacobian=False)[source]

	cv2_rodrigues is a wrapped function designed to be API compatible with
OpenCV’s cv2.Rodrigues.

If it is given a rotation matrix, it returns a Rodrigues vector.

If it is given a Rodrigues vector, it returns a rotation matrix.

To make your code clearer, call rodrigues_vector_to_rotation_matrix or
rotation_matrix_to_rodrigues_vector directly, which makes the intent of
your code clearer.

	
polliwog.transform.rotation_from_up_and_look(up, look)[source]

	Rotation matrix to rotate a mesh into a canonical reference frame. The
result is a rotation matrix that will make up along +y and look along +z
(i.e. facing towards a default opengl camera).

up: The direction you want to become +y.
look: The direction you want to become +z.

	
polliwog.transform.world_to_view(position, target, up=array([0., 1., 0.]), inverse=False)[source]

	Create a transform matrix which sends world-space coordinates to
view-space coordinates.

	Parameters

	
	position (np.ndarray) – The camera’s position in world coordinates.

	target (np.ndarray) – The camera’s target in world coordinates.
target - position is the “look at” vector.

	up (np.ndarray) – The approximate up direction, in world coordinates.

	inverse (bool) – When True, return the inverse transform instead.

	Returns

	The 4x4 transformation matrix, which can be used with
polliwog.transform.apply_transform().

	Return type

	np.ndarray

See also

https://cseweb.ucsd.edu/classes/wi18/cse167-a/lec4.pdf
http://www.songho.ca/opengl/gl_camera.html

	
polliwog.transform.view_to_orthographic_projection(width, height, near=0.1, far=2000, inverse=False)[source]

	Create an orthographic projection matrix with the given parameters, which
maps points from world space to coordinates in the normalized view volume.
These coordinates range from -1 to 1 in x, y, and z with (-1, -1, -1)
at the bottom-left of the near clipping plane, and (1, 1, 1) at the
top-right of the far clipping plane.

	Parameters

	
	width (float) – Width of the window, in pixels. (FIXME: Is this really
correct?)

	height (float) – Height of the window, in pixels. (FIXME: Is this really
correct?)

	near (float) – Near clipping plane. (FIXME: Clarify!)

	far (float) – Far clipping plane. (FIXME: Clarify!)

	inverse (bool) – When True, return the inverse transform instead.

	Returns

	The 4x4 transformation matrix, which can be used with
polliwog.transform.apply_transform().

	Return type

	np.ndarray

See also

https://cseweb.ucsd.edu/classes/wi18/cse167-a/lec4.pdf
http://www.songho.ca/opengl/gl_projectionmatrix.html
http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/orthographicprojection.html

	
polliwog.transform.viewport_transform(x_right, y_bottom, x_left=0, y_top=0, inverse=False)[source]

	Create a matrix which transforms from the normalized view volume to
screen coordinates, with a depth value ranging from 0 in front to 1 in
back.

No clipping is performed.

	Parameters

	
	x_right (int) – The x coordinate of the right of the viewport.
(usually the width).

	y_bottom (int) – The y coordinate of the bottom of the viewport
(usually the height).

	x_left (int) – The x coordinate of the left of the viewport
(usually zero).

	y_top (int) – The y coordinate of the top of the viewport
(usually zero).

	inverse (bool) – When True, return the inverse transform instead.

	Returns

	The 4x4 transformation matrix, which can be used with
polliwog.transform.apply_transform().

	Return type

	np.ndarray

See also

https://cseweb.ucsd.edu/classes/wi18/cse167-a/lec4.pdf
http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/viewport_transformation.html

	
polliwog.transform.world_to_canvas_orthographic_projection(width, height, position, target, zoom=1, inverse=False)[source]

	Create a transformation matrix which composes camera, orthographic
projection, and viewport transformations into a single operation.

	Parameters

	
	width (float) – Width of the window, in pixels. (FIXME: Is this really
correct?)

	height (float) – Height of the window, in pixels. (FIXME: Is this really
correct?)

	position (np.ndarray) – The camera’s position in world coordinates.

	target (np.ndarray) – The camera’s target in world coordinates.
target - position is the “look at” vector.

	inverse (bool) – When True, return the inverse transform instead.

	Returns

	The 4x4 transformation matrix, which can be used with
polliwog.transform.apply_transform().

	Return type

	np.ndarray

	
polliwog.transform.transform_matrix_for_non_uniform_scale(x_factor, y_factor, z_factor, allow_flipping=False, ret_inverse_matrix=False)[source]

	Create a transformation matrix that scales by the given factors along
x, y, and z.

	Forward:

	[[s_0, 0, 0, 0],
[0, s_1, 0, 0],
[0, 0, s_2, 0],
[0, 0, 0, 1]]

	Reverse:

	[[1/s_0, 0, 0, 0],
[0, 1/s_1, 0, 0],
[0, 0, 1/s_2, 0],
[0, 0, 0, 1]]

	Parameters

	
	x_factor (float) – The scale factor to be applied along the x axis,
which should be positive.

	y_factor (float) – The scale factor to be applied along the y axis,
which should be positive.

	z_factor (float) – The scale factor to be applied along the z axis,
which should be positive.

	allow_flipping (bool) – When True, allows scale factors to be
positive or negative, though not zero.

	ret_inverse_matrix (bool) – When True, also returns a matrix which
provides the inverse transform.

	
polliwog.transform.transform_matrix_for_rotation(rotation, ret_inverse_matrix=False)[source]

	Create a transformation matrix from the given 3x3 rotation matrix or a
Rodrigues vector.

With ret_inverse_matrix=True, also returns a matrix which provides
the reverse transform.

	
polliwog.transform.transform_matrix_for_translation(translation, ret_inverse_matrix=False)[source]

	Create a transformation matrix which translates by the provided
displacement vector.

Forward:

[[1, 0, 0, v_0],
[0, 1, 0, v_1],
[0, 0, 1, v_2],
[0, 0, 0, 1]]

Reverse:

[[1, 0, 0, -v_0],
[0, 1, 0, -v_1],
[0, 0, 1, -v_2],
[0, 0, 0, 1]]

	Parameters

	vector (np.arraylike) – A 3x1 vector.

	
polliwog.transform.transform_matrix_for_uniform_scale(scale_factor, allow_flipping=False, ret_inverse_matrix=False)[source]

	Create a transformation matrix that scales by the given factor.

	Forward:

	[[s_0, 0, 0, 0],
[0, s_1, 0, 0],
[0, 0, s_2, 0],
[0, 0, 0, 1]]

	Reverse:

	[[1/s_0, 0, 0, 0],
[0, 1/s_1, 0, 0],
[0, 0, 1/s_2, 0],
[0, 0, 0, 1]]

	Parameters

	
	factor (float) – The scale factor.

	ret_inverse_matrix (bool) – When True, also returns a matrix which
provides the inverse transform.

Lines

	
class polliwog.Line(point, along, assume_normalized=False)[source]

	
	
intersect_line(other)[source]

	Find the intersection with another line.

	
project(points)[source]

	Project a given point (or stack of points) to the plane.

	
reference_points

	Return two reference points on the line.

	
polliwog.line.intersect_lines(p0, q0, p1, q1)[source]

	Intersect two lines in 3d: (p0, q0) and (p1, q1). Each should be a 3D
point.
See this for a diagram: http://math.stackexchange.com/questions/270767/find-intersection-of-two-3d-lines

	
polliwog.line.intersect_2d_lines(p0, q0, p1, q1)[source]

	Intersect two lines: (p0, q0) and (p1, q1). Each should be a 2D
point.

	
polliwog.line.project_point_to_line(points, reference_points_of_lines, vectors_along_lines)[source]

	Project a point to a line, or pairwise project a stack of points to a
stack of lines.

	
polliwog.line.coplanar_points_are_on_same_side_of_line(a, b, p1, p2)[source]

	Test if the given points are on the same side of the given line.

	Parameters

	
	a (np.arraylike) – The first 3D point of interest.

	b (np.arraylike) – The second 3D point of interest.

	p1 (np.arraylike) – A first point which lies on the line of interest.

	p2 (np.arraylike) – A second point which lies on the line of interest.

	Returns

	True when a and b are on the same side of the line defined
by p1 and p2.

	Return type

	bool

Line segments

	
polliwog.segment.closest_point_of_line_segment(points, start_points, segment_vectors)[source]

	Compute pairwise the point on each line segment that is nearest to the
corresponding query point.

	
polliwog.segment.subdivide_segment(p1, p2, num_points, endpoint=True)[source]

	For two points in n-space, return an np.ndarray of equidistant partition
points along the segment determined by p1 & p2.

The total number of points returned will be n_samples. When n_samples is
2, returns the original points.

When endpoint is True, p2 is the last point. When false, p2 is excluded.

Partition order is oriented from p1 to p2.

	Parameters

	
	p2 (p1,) – 1 x N vectors

	partition_size – size of partition. should be >= 2.

	
polliwog.segment.subdivide_segments(v, num_subdivisions=5)[source]

	
	params:

	
	v:

	V x N np.array of points in N-space

	partition_size:

	how many partitions intervals for each segment?

Fill in the line segments determined by v with equally
spaced points - the space for each segment is determined
by the length of the segment and the supplied partition size.

Boxes

	
class polliwog.Box(origin, size)[source]

	An axis-aligned cuboid or rectangular prism. It’s defined by an origin
point, which is its minimum point in each dimension, and non-negative size
(length, width, and depth).

	Parameters

	
	origin (np.arraylike) – The x, y, and z coordinate of the
origin, the minimum point in each dimension.

	size (np.arraylike) – An array containing the width (dx), height
(dy), and depth (dz), which must be non-negative.

	
center_point

	The box’s geometric center.

	
contains(point, atol=None)[source]

	Test whether the box contains the given point. When atol is
provided, returns True for points inside the box and points
whose coordinates are all within atol of the box boundary.

	
depth

	The box’s depth. Same as max_z - min_z.

	
floor_point

	The center of the side of the box having the minimum y coordinate.
This is center_point projected to the the level of min_y.

	
classmethod from_points(points)[source]

	The smallest box which spans the given points.

	Parameters

	points (np.arraylike) – A kx3 array of points.

	Returns

	The smallest box which spans the given points.

	Return type

	Box

	
height

	The box’s height. Same as max_y - min_y.

	
max_x

	The box’s maximum x coordinate.

	
max_x_plane

	The plane facing the inside of the box, aligned with its maximum
x coordinate.

	
max_y

	The box’s maximum y coordinate.

	
max_y_plane

	The plane facing the inside of the box, aligned with its maximum
y coordinate.

	
max_z

	The box’s maximum z coordinate.

	
max_z_plane

	The plane facing the inside of the box, aligned with its maximum
z coordinate.

	
mid_x

	The x coordinate of the box’s center.

	
mid_y

	The y coordinate of the box’s center.

	
mid_z

	The z coordinate of the box’s center.

	
min_x

	The box’s minimum x coordinate.

	
min_x_plane

	The plane facing the inside of the box, aligned with its minimum
x coordinate.

	
min_y

	The box’s minimum y coordinate.

	
min_y_plane

	The plane facing the inside of the box, aligned with its minimum
y coordinate.

	
min_z

	The box’s minimum z coordinate.

	
min_z_plane

	The plane facing the inside of the box, aligned with its minimum
z coordinate.

	
ranges

	Ranges for each coordinate axis as a 3x2 np.ndarray.

	
surface_area

	The box’s surface area.

	
v

	Corners of the box as an 8x3 array of coordinates.

	
volume

	The box’s volume.

	
width

	The box’s width. Same as max_x - min_x.

Point clouds

Functions for working with point clouds (i.e. unstructured sets of 3D points).

	
polliwog.pointcloud.extent(points, ret_indices=False)[source]

	Find the distance between the two farthest-most points.

	Parameters

	
	points (np.arraylike) – A kx3 stack of points.

	ret_indices (bool) – When True, return the indices along with the
distance.

	Returns

	With ret_indices=False, the distance; with
ret_indices=True a tuple (distance, first_index, second_index).

	Return type

	object

Note

This is implemented using a brute-force method.

	
polliwog.pointcloud.percentile(points, axis, percentile)[source]

	Given a cloud of points and an axis, find a point along that axis
from the centroid at the given percentile.

	Parameters

	
	points (np.arraylike) – A kx3 stack of points.

	axis (np.arraylike) – A 3D vector specifying the direction of
interest.

	percentile (float) – The desired percentile.

	Returns

	A 3D point at the requested percentile.

	Return type

	np.ndarray

Tesselated shapes

Functions for creating sets of triangles to model 3D shapes.

These functions have two possible return types:

	When ret_unique_vertices_and_faces=True, they return a vertex array (with
each vertex listed once) and a face array (i.e. an array of triples of vertex
indices). This is ideal when using with a mesh library like Lace
(https://github.com/lace/lace/) or Trimesh (https://trimsh.org/) or when you
care about the topology.

	When ret_unique_vertices_and_faces=False, they return a flattened array
of triangle coordinates with each vertex repeated. This is useful for
computation that use flattened triangle coordinates, such as the functions
in polliwog.tri.

See also

https://en.wikipedia.org/wiki/Tessellation_(computer_graphics)

	
polliwog.shapes.rectangular_prism(origin, size, ret_unique_vertices_and_faces=False)[source]

	Tesselate an axis-aligned rectangular prism. One vertex is origin. The
diametrically opposite vertex is origin + size.

	Parameters

	
	origin (np.ndarray) – A 3D point vector containing the point on the
prism with the minimum x, y, and z coords.

	size (np.ndarray) – A 3D vector specifying the prism’s length, width,
and height, which should be positive.

	ret_unique_vertices_and_faces (bool) – When True return a vertex
array containing the unique vertices and an array of faces (i.e.
vertex indices). When False, return a flattened array of
triangle coordinates.

	Returns

	
	With ret_unique_vertices_and_faces=True: a tuple containing
an 8x3 array of vertices and a 12x3 array of triangle faces.

	With ret_unique_vertices_and_faces=False: a 12x3x3 matrix of
flattened triangle coordinates.

	Return type

	object

	
polliwog.shapes.cube(origin, size, ret_unique_vertices_and_faces=False)[source]

	Tesselate an axis-aligned cube. One vertex is origin. The diametrically
opposite vertex is size units along +x, +y, and +z.

	Parameters

	
	origin (np.ndarray) – A 3D point vector containing the point on the
prism with the minimum x, y, and z coords.

	size (float) – The length, width, and height of the cube, which should
be positive.

	ret_unique_vertices_and_faces (bool) – When True return a vertex
array containing the unique vertices and an array of faces (i.e.
vertex indices). When False, return a flattened array of
triangle coordinates.

	Returns

	
	With ret_unique_vertices_and_faces=True: a tuple containing
an 8x3 array of vertices and a 12x3 array of triangle faces.

	With ret_unique_vertices_and_faces=False: a 12x3x3 matrix of
flattened triangle coordinates.

	Return type

	object

	
polliwog.shapes.triangular_prism(p1, p2, p3, height, ret_unique_vertices_and_faces=False)[source]

	Tesselate a triangular prism whose base is the triangle p1, p2, p3.
If the vertices are oriented in a counterclockwise direction, the prism
extends from behind them.

	Parameters

	
	p1 (np.ndarray) – A 3D point on the base of the prism.

	p2 (np.ndarray) – A 3D point on the base of the prism.

	p3 (np.ndarray) – A 3D point on the base of the prism.

	height (float) – The height of the prism, which should be positive.

	ret_unique_vertices_and_faces (bool) – When True return a vertex
array containing the unique vertices and an array of faces (i.e.
vertex indices). When False, return a flattened array of
triangle coordinates.

	Returns

	
	With ret_unique_vertices_and_faces=True: a tuple containing
an 6x3 array of vertices and a 8x3 array of triangle faces.

	With ret_unique_vertices_and_faces=False: a 8x3x3 matrix of
flattened triangle coordinates.

	Return type

	object

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 polliwog	

 	
 	
 polliwog.line	

 	
 	
 polliwog.plane	

 	
 	
 polliwog.pointcloud	

 	
 	
 polliwog.polyline	

 	
 	
 polliwog.segment	

 	
 	
 polliwog.shapes	

 	
 	
 polliwog.transform	

 	
 	
 polliwog.tri	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

_

 	
 	__call__() (polliwog.CompositeTransform method)

 	
 	__setattr__() (polliwog.CoordinateManager method)

A

 	
 	aligned_with() (polliwog.Polyline method)

 	apex() (polliwog.Polyline method)

 	
 	append_transform() (polliwog.CompositeTransform method)

 	apply_transform() (in module polliwog.transform)

B

 	
 	barycentric_coordinates_of_points() (in module polliwog.tri)

 	
 	bounding_box (polliwog.Polyline attribute)

 	Box (class in polliwog)

C

 	
 	canonical_point (polliwog.Plane attribute)

 	center_point (polliwog.Box attribute)

 	closest_point_of_line_segment() (in module polliwog.segment)

 	CompositeTransform (class in polliwog)

 	contains() (polliwog.Box method)

 	
 	convert_units() (polliwog.CompositeTransform method)

 	CoordinateManager (class in polliwog)

 	coplanar_points_are_on_same_side_of_line() (in module polliwog.line)

 	copy() (polliwog.Polyline method)

 	cube() (in module polliwog.shapes)

 	cv2_rodrigues() (in module polliwog.transform)

D

 	
 	depth (polliwog.Box attribute)

E

 	
 	e (polliwog.Polyline attribute)

 	equation (polliwog.Plane attribute)

 	
 	euler() (in module polliwog.transform)

 	extent() (in module polliwog.pointcloud)

F

 	
 	fit_from_points() (polliwog.Plane class method)

 	flip() (polliwog.CompositeTransform method)

 	flipped() (polliwog.Plane method)

 	(polliwog.Polyline method)

 	
 	floor_point (polliwog.Box attribute)

 	from_points() (polliwog.Box class method)

 	(polliwog.Plane class method)

 	from_points_and_vector() (polliwog.Plane class method)

H

 	
 	height (polliwog.Box attribute)

I

 	
 	index_of_vertex() (polliwog.Polyline method)

 	inflection_points() (in module polliwog.polyline)

 	intersect_2d_lines() (in module polliwog.line)

 	
 	intersect_line() (polliwog.Line method)

 	intersect_lines() (in module polliwog.line)

 	intersect_plane() (polliwog.Polyline method)

 	intersect_segment_with_plane() (in module polliwog.plane)

J

 	
 	join() (polliwog.Polyline class method)

L

 	
 	Line (class in polliwog)

M

 	
 	max_x (polliwog.Box attribute)

 	max_x_plane (polliwog.Box attribute)

 	max_y (polliwog.Box attribute)

 	max_y_plane (polliwog.Box attribute)

 	max_z (polliwog.Box attribute)

 	max_z_plane (polliwog.Box attribute)

 	mid_x (polliwog.Box attribute)

 	mid_y (polliwog.Box attribute)

 	
 	mid_z (polliwog.Box attribute)

 	min_x (polliwog.Box attribute)

 	min_x_plane (polliwog.Box attribute)

 	min_y (polliwog.Box attribute)

 	min_y_plane (polliwog.Box attribute)

 	min_z (polliwog.Box attribute)

 	min_z_plane (polliwog.Box attribute)

 	mirror_point() (polliwog.Plane method)

 	mirror_point_across_plane() (in module polliwog.plane)

N

 	
 	nearest() (polliwog.Polyline method)

 	non_uniform_scale() (polliwog.CompositeTransform method)

 	normal (polliwog.Plane attribute)

 	
 	normal_and_offset_from_plane_equations() (in module polliwog.plane)

 	num_e (polliwog.Polyline attribute)

 	num_v (polliwog.Polyline attribute)

P

 	
 	path_centroid (polliwog.Polyline attribute)

 	percentile() (in module polliwog.pointcloud)

 	Plane (class in polliwog)

 	plane_equation_from_points() (in module polliwog.plane)

 	plane_normal_from_points() (in module polliwog.plane)

 	point_of_max_acceleration() (in module polliwog.polyline)

 	points_in_front() (polliwog.Plane method)

 	points_on_or_in_front() (polliwog.Plane method)

 	polliwog.line (module)

 	polliwog.plane (module)

 	
 	polliwog.pointcloud (module)

 	polliwog.polyline (module)

 	polliwog.segment (module)

 	polliwog.shapes (module)

 	polliwog.transform (module)

 	polliwog.tri (module)

 	Polyline (class in polliwog)

 	project() (polliwog.Line method)

 	project_point() (polliwog.Plane method)

 	project_point_to_line() (in module polliwog.line)

 	project_point_to_plane() (in module polliwog.plane)

Q

 	
 	quads_to_tris() (in module polliwog.tri)

R

 	
 	ranges (polliwog.Box attribute)

 	rectangular_prism() (in module polliwog.shapes)

 	reference_point (polliwog.Plane attribute)

 	reference_points (polliwog.Line attribute)

 	reorient() (polliwog.CompositeTransform method)

 	
 	rodrigues_vector_to_rotation_matrix() (in module polliwog.transform)

 	rolled() (polliwog.Polyline method)

 	rotate() (polliwog.CompositeTransform method)

 	rotation_from_up_and_look() (in module polliwog.transform)

 	rotation_matrix_to_rodrigues_vector() (in module polliwog.transform)

S

 	
 	sectioned() (polliwog.Polyline method)

 	segment_lengths (polliwog.Polyline attribute)

 	segment_vectors (polliwog.Polyline attribute)

 	segments (polliwog.Polyline attribute)

 	sign() (polliwog.Plane method)

 	signed_distance() (polliwog.Plane method)

 	signed_distance_to_plane() (in module polliwog.plane)

 	
 	sliced_at_indices() (polliwog.Polyline method)

 	sliced_at_points() (polliwog.Polyline method)

 	sliced_by_plane() (polliwog.Polyline method)

 	subdivide_segment() (in module polliwog.segment)

 	subdivide_segments() (in module polliwog.segment)

 	subdivided_by_length() (polliwog.Polyline method)

 	surface_area (polliwog.Box attribute)

 	surface_normals() (in module polliwog.tri)

T

 	
 	tag_as() (polliwog.CoordinateManager method)

 	tilted() (polliwog.Plane method)

 	total_length (polliwog.Polyline attribute)

 	transform_matrix_for() (polliwog.CompositeTransform method)

 	transform_matrix_for_non_uniform_scale() (in module polliwog.transform)

 	
 	transform_matrix_for_rotation() (in module polliwog.transform)

 	transform_matrix_for_translation() (in module polliwog.transform)

 	transform_matrix_for_uniform_scale() (in module polliwog.transform)

 	translate() (polliwog.CompositeTransform method)

 	tri_contains_coplanar_point() (in module polliwog.tri)

 	triangular_prism() (in module polliwog.shapes)

U

 	
 	uniform_scale() (polliwog.CompositeTransform method)

V

 	
 	v (polliwog.Box attribute)

 	view_to_orthographic_projection() (in module polliwog.transform)

 	
 	viewport_transform() (in module polliwog.transform)

 	volume (polliwog.Box attribute)

W

 	
 	width (polliwog.Box attribute)

 	with_insertions() (polliwog.Polyline method)

 	
 	with_segments_bisected() (polliwog.Polyline method)

 	world_to_canvas_orthographic_projection() (in module polliwog.transform)

 	world_to_view() (in module polliwog.transform)

X

 	
 	xy (in module polliwog.Plane)

 	
 	xz (in module polliwog.Plane)

Y

 	
 	yz (in module polliwog.Plane)

 All modules for which code is available

	polliwog.box._box_object

	polliwog.line._line_functions

	polliwog.line._line_intersect

	polliwog.line._line_object

	polliwog.plane._plane_functions

	polliwog.plane._plane_intersect

	polliwog.plane._plane_object

	polliwog.pointcloud._pointcloud_functions

	polliwog.polyline._inflection_points

	polliwog.polyline._polyline_object

	polliwog.segment._segment_functions

	polliwog.shapes._shapes

	polliwog.transform._affine_transform

	polliwog.transform._apply

	polliwog.transform._composite_transform

	polliwog.transform._coordinate_manager

	polliwog.transform._rodrigues

	polliwog.transform._rotation

	polliwog.transform._viewing

	polliwog.tri.functions

	polliwog.tri.quad_faces

 Source code for polliwog.box._box_object

import numpy as np
import vg
from ..plane._plane_object import Plane

[docs]class Box(object):
 """
 An axis-aligned cuboid or rectangular prism. It's defined by an origin
 point, which is its minimum point in each dimension, and non-negative size
 (length, width, and depth).

 Args:
 origin (np.arraylike): The `x`, `y`, and `z` coordinate of the
 origin, the minimum point in each dimension.
 size (np.arraylike): An array containing the width (dx), height
 (dy), and depth (dz), which must be non-negative.
 """

 def __init__(self, origin, size):
 vg.shape.check(locals(), "origin", (3,))
 vg.shape.check(locals(), "size", (3,))
 if any(np.less(size, 0)):
 raise ValueError("Shape should be zero or positive")
 self.origin = origin
 self.size = size

[docs] @classmethod
 def from_points(cls, points):
 """
 The smallest box which spans the given points.

 Args:
 points (np.arraylike): A `kx3` array of points.

 Returns:
 Box: The smallest box which spans the given points.
 """
 k = vg.shape.check(locals(), "points", (-1, 3))
 if k == 0:
 raise ValueError("Need at least 1 point")
 return cls(np.min(points, axis=0), np.ptp(points, axis=0))

 @property
 def ranges(self):
 """
 Ranges for each coordinate axis as a 3x2 `np.ndarray`.
 """
 ranges = np.array([self.origin, self.origin + self.size]).T
 # ranges is almost, but not quite what we want, since it might
 # include mins which are greater than maxes, and vice versa.
 # TODO: Is this really true? `self.size` is nonnegative...
 return np.vstack([ranges.min(axis=1), ranges.max(axis=1)]).T

 @property
 def min_x(self):
 """
 The box's minimum `x` coordinate.
 """
 return self.origin[0]

 @property
 def min_y(self):
 """
 The box's minimum `y` coordinate.
 """
 return self.origin[1]

 @property
 def min_z(self):
 """
 The box's minimum `z` coordinate.
 """
 return self.origin[2]

 @property
 def max_x(self):
 """
 The box's maximum `x` coordinate.
 """
 return self.origin[0] + self.size[0]

 @property
 def max_y(self):
 """
 The box's maximum `y` coordinate.
 """
 return self.origin[1] + self.size[1]

 @property
 def max_z(self):
 """
 The box's maximum `z` coordinate.
 """
 return self.origin[2] + self.size[2]

 @property
 def mid_x(self):
 """
 The `x` coordinate of the box's center.
 """
 return self.origin[0] + self.size[0] / 2

 @property
 def mid_y(self):
 """
 The `y` coordinate of the box's center.
 """
 return self.origin[1] + self.size[1] / 2

 @property
 def mid_z(self):
 """
 The `z` coordinate of the box's center.
 """
 return self.origin[2] + self.size[2] / 2

 @property
 def min_x_plane(self):
 """
 The plane facing the inside of the box, aligned with its minimum
 `x` coordinate.
 """
 center_of_side = self.center_point
 center_of_side[0] = self.min_x
 return Plane(center_of_side, vg.basis.x)

 @property
 def min_y_plane(self):
 """
 The plane facing the inside of the box, aligned with its minimum
 `y` coordinate.
 """
 center_of_side = self.center_point
 center_of_side[1] = self.min_y
 return Plane(center_of_side, vg.basis.y)

 @property
 def min_z_plane(self):
 """
 The plane facing the inside of the box, aligned with its minimum
 `z` coordinate.
 """
 center_of_side = self.center_point
 center_of_side[2] = self.min_z
 return Plane(center_of_side, vg.basis.z)

 @property
 def max_x_plane(self):
 """
 The plane facing the inside of the box, aligned with its maximum
 `x` coordinate.
 """
 center_of_side = self.center_point
 center_of_side[0] = self.max_x
 return Plane(center_of_side, vg.basis.neg_x)

 @property
 def max_y_plane(self):
 """
 The plane facing the inside of the box, aligned with its maximum
 `y` coordinate.
 """
 center_of_side = self.center_point
 center_of_side[1] = self.max_y
 return Plane(center_of_side, vg.basis.neg_y)

 @property
 def max_z_plane(self):
 """
 The plane facing the inside of the box, aligned with its maximum
 `z` coordinate.
 """
 center_of_side = self.center_point
 center_of_side[2] = self.max_z
 return Plane(center_of_side, vg.basis.neg_z)

 @property
 def width(self):
 """
 The box's width. Same as `max_x - min_x`.
 """
 return self.size[0]

 @property
 def height(self):
 """
 The box's height. Same as `max_y - min_y`.
 """
 return self.size[1]

 @property
 def depth(self):
 """
 The box's depth. Same as `max_z - min_z`.
 """
 return self.size[2]

 @property
 def center_point(self):
 """
 The box's geometric center.
 """
 return self.origin + 0.5 * self.size

 @property
 def floor_point(self):
 """
 The center of the side of the box having the minimum `y` coordinate.
 This is `center_point` projected to the the level of `min_y`.
 """
 return self.origin + [0.5, 0.0, 0.5] * self.size

 @property
 def volume(self):
 """
 The box's volume.
 """
 return np.prod(self.size)

 @property
 def surface_area(self):
 """
 The box's surface area.
 """
 l, h, w = self.size
 return 2 * (w * l + h * l + h * w)

 @property
 def v(self):
 """
 Corners of the box as an `8x3` array of coordinates.
 """
 return np.array(
 [
 self.origin,
 self.origin + np.array([self.size[0], 0, 0]),
 self.origin + np.array([0, self.size[1], 0]),
 self.origin + np.array([0, 0, self.size[2]]),
 self.origin + np.array([self.size[0], self.size[1], 0]),
 self.origin + np.array([0, self.size[1], self.size[2]]),
 self.origin + np.array([self.size[0], 0, self.size[2]]),
 self.origin + np.array([self.size[0], self.size[1], self.size[2]]),
]
)

[docs] def contains(self, point, atol=None):
 """
 Test whether the box contains the given point. When `atol` is
 provided, returns `True` for points inside the box and points
 whose coordinates are all within `atol` of the box boundary.
 """
 vg.shape.check(locals(), "point", (3,))

 if atol is None:
 atol = 0.0
 return np.all(
 np.logical_and(
 self.origin - atol <= point, point <= self.origin + self.size + atol
)
)

 Source code for polliwog.line._line_functions

import vg
from .._common.shape import check_shape_any

__all__ = ["project_point_to_line", "coplanar_points_are_on_same_side_of_line"]

[docs]def project_point_to_line(points, reference_points_of_lines, vectors_along_lines):
 """
 Project a point to a line, or pairwise project a stack of points to a
 stack of lines.
 """
 k = check_shape_any(points, (3,), (-1, 3), name="points")
 check_shape_any(
 reference_points_of_lines,
 (3,),
 (-1 if k is None else k, 3),
 name="reference_points_of_lines",
)
 vg.shape.check(locals(), "vectors_along_lines", reference_points_of_lines.shape)

 return reference_points_of_lines + vg.project(
 points - reference_points_of_lines, onto=vectors_along_lines
)

[docs]def coplanar_points_are_on_same_side_of_line(a, b, p1, p2):
 """
 Test if the given points are on the same side of the given line.

 Args:
 a (np.arraylike): The first 3D point of interest.
 b (np.arraylike): The second 3D point of interest.
 p1 (np.arraylike): A first point which lies on the line of interest.
 p2 (np.arraylike): A second point which lies on the line of interest.

 Returns:
 bool: `True` when `a` and `b` are on the same side of the line defined
 by `p1` and `p2`.
 """
 check_shape_any(a, (3,), (-1, 3), name="a")
 vg.shape.check(locals(), "b", a.shape)
 vg.shape.check(locals(), "p1", a.shape)
 vg.shape.check(locals(), "p2", a.shape)

 # Uses "same-side technique" from http://blackpawn.com/texts/pointinpoly/default.html
 along_line = b - a
 return vg.dot(vg.cross(along_line, p1 - a), vg.cross(along_line, p2 - a)) >= 0

 Source code for polliwog.line._line_intersect

import numpy as np

[docs]def intersect_lines(p0, q0, p1, q1):
 """
 Intersect two lines in 3d: (p0, q0) and (p1, q1). Each should be a 3D
 point.
 See this for a diagram: http://math.stackexchange.com/questions/270767/find-intersection-of-two-3d-lines
 """
 e = p0 - q0 # direction of line 0
 f = p1 - q1 # direction of line 1

 # Check for special case where we're given the intersection
 # Note that we must check for these, because if p0 == p1 then
 # g would be zero length and we can't continue
 if np.all(p0 == p1) or np.all(p0 == q1):
 return p0
 if np.all(q0 == p1) or np.all(p0 == q1):
 return q0

 g = p0 - p1 # line between to complete a triangle
 h = np.cross(f, g)
 k = np.cross(f, e)
 h_ = np.linalg.norm(h)
 k_ = np.linalg.norm(k)
 if h_ == 0 or k_ == 0:
 # There is no intesection; either parallel (k=0) or collinear (both=0) lines.
 return None

 l = h_ / k_ * e # noqa: E741 (FIXME)
 sign = -1 if np.all(h / h_ == k / k_) else +1
 return p0 + sign * l

[docs]def intersect_2d_lines(p0, q0, p1, q1):
 """
 Intersect two lines: (p0, q0) and (p1, q1). Each should be a 2D
 point.
 """
 # Adapted from http://stackoverflow.com/a/26416320/893113
 dy = q0[1] - p0[1]
 dx = q0[0] - p0[0]
 lhs0 = [-dy, dx]
 rhs0 = p0[1] * dx - dy * p0[0]

 dy = q1[1] - p1[1]
 dx = q1[0] - p1[0]
 lhs1 = [-dy, dx]
 rhs1 = p1[1] * dx - dy * p1[0]

 a = np.array([lhs0, lhs1])
 b = np.array([rhs0, rhs1])

 try:
 return np.linalg.solve(a, b)
 except np.linalg.LinAlgError:
 return None

 Source code for polliwog.line._line_object

import vg

[docs]class Line:
 def __init__(self, point, along, assume_normalized=False):
 vg.shape.check(locals(), "point", (3,))
 vg.shape.check(locals(), "along", (3,))

 if vg.almost_zero(along):
 raise ValueError("along should not be the zero vector")

 self.reference_point = point
 self.along = along
 self.assume_normalized = assume_normalized

 @classmethod
 def from_points(cls, p1, p2):
 vg.shape.check(locals(), "p1", (3,))
 vg.shape.check(locals(), "p2", (3,))
 return cls(point=p1, along=p2 - p1)

 @property
 def reference_points(self):
 """
 Return two reference points on the line.
 """
 return self.reference_point, self.reference_point + self.along

[docs] def intersect_line(self, other):
 """
 Find the intersection with another line.
 """
 from ._line_intersect import intersect_lines

 return intersect_lines(*(self.reference_points + other.reference_points))

[docs] def project(self, points):
 """
 Project a given point (or stack of points) to the plane.
 """
 from ._line_functions import project_point_to_line

 return project_point_to_line(
 points=points,
 reference_points_of_lines=self.reference_point,
 vectors_along_lines=self.along,
)

 Source code for polliwog.plane._plane_functions

import numbers
import numpy as np
import vg
from .._common.shape import check_shape_any, columnize

__all__ = [
 "plane_normal_from_points",
 "plane_equation_from_points",
 "normal_and_offset_from_plane_equations",
 "signed_distance_to_plane",
 "project_point_to_plane",
 "mirror_point_across_plane",
]

[docs]def plane_normal_from_points(points, normalize=True):
 """
 Given a set of three points, compute the normal of the plane which
 passes through them. Also works on stacked inputs (i.e. many sets
 of three points).

 This is the same as `polliwog.tri.functions.surface_normals`, to
 which this delegates.
 """
 from ..tri import surface_normals

 return surface_normals(points=points, normalize=normalize)

[docs]def plane_equation_from_points(points):
 """
 Given many sets of three points, return a stack of plane equations
 [`A`, `B`, `C`, `D`] which satisfy `Ax + By + Cz + D = 0`. Also
 works on three points to return a single plane equation.

 These coefficients can be decomposed into the plane normal vector
 which is `[A, B, C]` and the offset `D`, either by the caller or
 by using `normal_and_offset_from_plane_equations()`.
 """
 points, _, transform_result = columnize(points, (-1, 3, 3), name="points")

 p1s = points[:, 0]
 unit_normals = plane_normal_from_points(points)
 D = -vg.dot(p1s, unit_normals)

 return transform_result(np.hstack([unit_normals, D.reshape(-1, 1)]))

[docs]def normal_and_offset_from_plane_equations(plane_equations):
 """
 Given `A`, `B`, `C`, `D` of the plane equation `Ax + By + Cz + D = 0`,
 return the plane normal vector which is `[A, B, C]` and the offset `D`.
 """
 check_shape_any(plane_equations, (4,), (-1, 4), name="plane_equations")

 if plane_equations.ndim == 2:
 normal = plane_equations[:, :3]
 offset = plane_equations[:, 3]
 else:
 normal = plane_equations[:3]
 offset = plane_equations[3]
 return normal, offset

[docs]def signed_distance_to_plane(points, plane_equations):
 """
 Return the signed distances from each point to the corresponding plane.

 For convenience, can also be called with a single point and a single
 plane.
 """
 k = check_shape_any(points, (3,), (-1, 3), name="points")
 check_shape_any(
 plane_equations, (4,), (-1 if k is None else k, 4), name="plane_equations"
)

 normals, offsets = normal_and_offset_from_plane_equations(plane_equations)
 return vg.dot(points, normals) + offsets

def translate_points_along_plane_normal(points, plane_equations, factor):
 """
 Translate each point along the plane normal. The distance translated
 is specified in terms of its initial distance from the plane.

 Args:
 factor (float): Transform this multiple of the normal. With `0`,
 this returns the identity. With `-1`, this projects to the
 plane. When `-2` it returns the opposite point.
 """
 k = check_shape_any(points, (3,), (-1, 3), name="points")
 check_shape_any(
 plane_equations, (4,), (-1 if k is None else k, 4), name="plane_equations"
)
 assert isinstance(factor, numbers.Real)

 # Translate the point back to the plane along the normal.
 signed_distance = signed_distance_to_plane(points, plane_equations)
 normals, _ = normal_and_offset_from_plane_equations(plane_equations)

 if np.isscalar(signed_distance):
 return points + factor * signed_distance * normals
 else:
 return points + factor * signed_distance.reshape(-1, 1) * normals

[docs]def project_point_to_plane(points, plane_equations):
 """
 Project each point to the corresponding plane.
 """
 k = check_shape_any(points, (3,), (-1, 3), name="points")
 check_shape_any(
 plane_equations, (4,), (-1 if k is None else k, 4), name="plane_equations"
)

 return translate_points_along_plane_normal(
 points=points, plane_equations=plane_equations, factor=-1
)

[docs]def mirror_point_across_plane(points, plane_equations):
 """
 Mirror each point to the corresponding point on the opposite side of the
 plane.
 """
 k = check_shape_any(points, (3,), (-1, 3), name="points")
 check_shape_any(
 plane_equations, (4,), (-1 if k is None else k, 4), name="plane_equations"
)

 return translate_points_along_plane_normal(
 points=points, plane_equations=plane_equations, factor=-2
)

 Source code for polliwog.plane._plane_intersect

import numpy as np
import vg
from .._common.shape import columnize

[docs]def intersect_segment_with_plane(
 start_points, segment_vectors, points_on_plane, plane_normals
):
 """
 Check for intersections between a line segment and a plane, or pairwise
 between a stack of line segments and a stack of planes.
 """
 orig_shape = start_points.shape
 start_points, _, transform_result = columnize(
 start_points, (-1, 3), name="start_points"
)
 vg.shape.check(locals(), "segment_vectors", orig_shape)
 vg.shape.check(locals(), "points_on_plane", orig_shape)
 vg.shape.check(locals(), "plane_normals", orig_shape)

 # Compute t values such that
 # `result = reference_point + t * segment_vectors`.
 t = np.nan_to_num(
 vg.dot(points_on_plane - start_points, plane_normals)
 / vg.dot(segment_vectors, plane_normals)
)

 intersection_points = start_points + t.reshape(-1, 1) * segment_vectors

 # Discard points which lie past the ends of the segment.
 intersection_points[t < 0] = np.nan
 intersection_points[t > 1] = np.nan

 return transform_result(intersection_points)

 Source code for polliwog.plane._plane_object

import numpy as np
import vg
from ._plane_functions import (
 mirror_point_across_plane,
 plane_normal_from_points,
 project_point_to_plane,
 signed_distance_to_plane,
)

[docs]class Plane(object):
 """
 A 2-D plane in 3-space (not a hyperplane).

 Args:
 point_on_plane (np.arraylike): A reference point on the plane, as a
 NumPy array with three coordinates.
 unit_normal (np.arraylike): The plane normal vector, as a NumPy
 array with three coordinates.
 """

 def __init__(self, point_on_plane, unit_normal):
 vg.shape.check(locals(), "point_on_plane", (3,))
 vg.shape.check(locals(), "unit_normal", (3,))

 if vg.almost_zero(unit_normal):
 raise ValueError("unit_normal should not be the zero vector")

 unit_normal = vg.normalize(unit_normal)

 self._r0 = np.asarray(point_on_plane)
 self._n = np.asarray(unit_normal)

 def __repr__(self):
 return "<Plane of {} through {}>".format(self.normal, self.reference_point)

[docs] @classmethod
 def from_points(cls, p1, p2, p3):
 """
 If the points are oriented in a counterclockwise direction, the plane's
 normal extends towards you.

 """
 vg.shape.check(locals(), "p1", (3,))
 vg.shape.check(locals(), "p2", (3,))
 vg.shape.check(locals(), "p3", (3,))
 points = np.array([p1, p2, p3])
 return cls(point_on_plane=p1, unit_normal=plane_normal_from_points(points))

[docs] @classmethod
 def from_points_and_vector(cls, p1, p2, vector):
 """
 Compute a plane which contains two given points and the given
 vector. Its reference point will be p1.

 For example, to find the vertical plane that passes through
 two landmarks:

 from_points_and_normal(p1, p2, vector)

 Another way to think about this: identify the plane to which
 your result plane should be perpendicular, and specify vector
 as its normal vector.

 """
 vg.shape.check(locals(), "p1", (3,))
 vg.shape.check(locals(), "p2", (3,))
 vg.shape.check(locals(), "vector", (3,))

 normal = np.cross(p2 - p1, vector)

 return cls(point_on_plane=p1, unit_normal=normal)

[docs] @classmethod
 def fit_from_points(cls, points):
 """
 Fits a plane whose normal is orthgonal to the first two principal axes
 of variation in the data and centered on their centroid.
 """
 vg.shape.check(locals(), "points", (-1, 3))

 eigval, eigvec = np.linalg.eig(np.cov(points.T))
 ordering = np.argsort(eigval)[::-1]
 normal = np.cross(eigvec[:, ordering[0]], eigvec[:, ordering[1]])

 centroid = points.mean(axis=0)

 return cls(centroid, normal)

 @property
 def equation(self):
 """
 Returns parameters `A`, `B`, `C`, `D` as a 1x4 `np.array`, where

 `Ax + By + Cz + D = 0`

 defines the plane.
 """
 A, B, C = self._n
 D = -self._r0.dot(self._n)

 return np.array([A, B, C, D])

 @property
 def reference_point(self):
 """
 The point used to create this plane.

 """
 return self._r0

 @property
 def canonical_point(self):
 """
 A canonical point on the plane, the one at which the normal
 would intersect the plane if drawn from the origin (0, 0, 0).

 This is computed by projecting the reference point onto the
 normal.

 This is useful for partitioning the space between two planes,
 as we do when searching for planar cross sections.

 """
 return self._r0.dot(self._n) * self._n

 @property
 def normal(self):
 """
 Return the plane's normal vector.

 """
 return self._n

[docs] def flipped(self):
 """
 Creates a new Plane with an inverted orientation.
 """
 return Plane(point_on_plane=self._r0, unit_normal=-self._n)

[docs] def sign(self, points):
 """
 Given an array of points, return an array with +1 for points in front
 of the plane (in the direction of the normal), -1 for points behind
 the plane (away from the normal), and 0 for points on the plane.

 """
 return np.sign(self.signed_distance(points))

[docs] def points_in_front(self, points, inverted=False, ret_indices=False):
 """
 Given an array of points, return the points which lie in the
 half-space in front of it (i.e. in the direction of the plane
 normal).

 Args:
 points (np.arraylikw): An array of points.
 inverted (bool): When `True`, return the points which lie on or
 behind the plane instead.
 ret_indices (bool): When `True`, return the indices instead of the
 points themselves.

 Note:
 Use `points_on_or_in_front()` for points which lie either on the
 plane or in front of it.
 """
 sign = self.sign(points)

 if inverted:
 mask = np.less(sign, 0)
 else:
 mask = np.greater(sign, 0)

 indices = np.flatnonzero(mask)

 return indices if ret_indices else points[indices]

[docs] def points_on_or_in_front(self, points, inverted=False, ret_indices=False):
 """
 Given an array of points, return the points which lie either on the
 plane or in the half-space in front of it (i.e. in the direction of
 the plane normal).

 Args:
 points (np.arraylikw): An array of points.
 inverted (bool): When `True`, return the points behind the plane
 instead.
 ret_indices (bool): When `True`, return the indices instead of the
 points themselves.

 Note:
 Use `points_in_front()` to get points which lie only in front of
 the plane.
 """
 sign = self.sign(points)

 if inverted:
 mask = np.less_equal(sign, 0)
 else:
 mask = np.greater_equal(sign, 0)

 indices = np.flatnonzero(mask)

 return indices if ret_indices else points[indices]

[docs] def signed_distance(self, points):
 """
 Returns the signed distances to the given points or the signed
 distance to a single point.

 Args:
 points (np.arraylike): A 3D point or a `kx3` stack of points.

 Returns:
 depends:

 - Given a single 3D point, the distance as a NumPy scalar.
 - Given a `kx3` stack of points, an `k` array of distances.
 """
 return signed_distance_to_plane(points, self.equation)

 def distance(self, points):
 return np.absolute(self.signed_distance(points))

[docs] def project_point(self, points):
 """
 Project a given point (or stack of points) to the plane.
 """
 return project_point_to_plane(points, self.equation)

[docs] def mirror_point(self, points):
 """
 Mirror a point (or stack of points) to the opposite side of the plane.
 """
 return mirror_point_across_plane(points, self.equation)

 def line_xsection(self, pt, ray):
 vg.shape.check(locals(), "pt", (3,))
 vg.shape.check(locals(), "ray", (3,))
 return self._line_xsection(np.asarray(pt).ravel(), np.asarray(ray).ravel())

 def _line_xsection(self, pt, ray):
 denom = np.dot(ray, self.normal)
 if denom == 0:
 return None # parallel, either coplanar or non-intersecting
 p = np.dot(self.reference_point - pt, self.normal) / denom
 return p * ray + pt

 def line_segment_xsection(self, a, b):
 vg.shape.check(locals(), "a", (3,))
 vg.shape.check(locals(), "b", (3,))
 return self._line_segment_xsection(np.asarray(a).ravel(), np.asarray(b).ravel())

 def _line_segment_xsection(self, a, b):
 pt = self._line_xsection(a, b - a)
 if pt is not None:
 if any(np.logical_and(pt > a, pt > b)) or any(
 np.logical_and(pt < a, pt < b)
):
 return None
 return pt

 def line_xsections(self, pts, rays):
 k = vg.shape.check(locals(), "pts", (-1, 3))
 vg.shape.check(locals(), "rays", (k, 3))
 denoms = np.dot(rays, self.normal)
 denom_is_zero = denoms == 0
 denoms[denom_is_zero] = np.nan
 p = np.dot(self.reference_point - pts, self.normal) / denoms
 return np.vstack([p, p, p]).T * rays + pts, ~denom_is_zero

 def line_segment_xsections(self, a, b):
 pts, pt_is_valid = self.line_xsections(a, b - a)
 pt_is_out_of_bounds = np.logical_or(
 np.any(
 np.logical_and(
 pts[pt_is_valid] > a[pt_is_valid], pts[pt_is_valid] > b[pt_is_valid]
),
 axis=1,
),
 np.any(
 np.logical_and(
 pts[pt_is_valid] < a[pt_is_valid], pts[pt_is_valid] < b[pt_is_valid]
),
 axis=1,
),
)
 pt_is_valid[pt_is_valid] = ~pt_is_out_of_bounds
 pts[~pt_is_valid] = np.nan
 return pts, pt_is_valid

[docs] def tilted(self, new_point, coplanar_point):
 """
 Create a new plane, tilted so it passes through `new_point`. Also
 specify a `coplanar_point` which the old and new planes should have
 in common.

 Args:
 new_point (np.arraylike): A point on the desired plane, with shape
 `(3,)`.
 coplanar_point (np.arraylike): The `(3,)` point which the old and
 new planes have in common.

 Returns:
 Plane: The adjusted plane.
 """
 vg.shape.check(locals(), "new_point", (3,))
 vg.shape.check(locals(), "coplanar_point", (3,))

 vector_along_old_plane = self.project_point(new_point) - coplanar_point
 vector_along_new_plane = new_point - coplanar_point
 axis_of_rotation = vg.perpendicular(vector_along_old_plane, self.normal)
 angle_between_vectors = vg.signed_angle(
 vector_along_old_plane,
 vector_along_new_plane,
 look=axis_of_rotation,
 units="rad",
)
 new_normal = vg.rotate(
 self.normal,
 around_axis=axis_of_rotation,
 angle=angle_between_vectors,
 units="rad",
)
 return Plane(point_on_plane=coplanar_point, unit_normal=new_normal)

Plane.xy = Plane(point_on_plane=np.zeros(3), unit_normal=vg.basis.z)
Plane.xy.__doc__ = "The `xy`-plane."
Plane.xz = Plane(point_on_plane=np.zeros(3), unit_normal=vg.basis.y)
Plane.xz.__doc__ = "The `xz`-plane."
Plane.yz = Plane(point_on_plane=np.zeros(3), unit_normal=vg.basis.x)
Plane.yz.__doc__ = "The `yz`-plane."

 Source code for polliwog.pointcloud._pointcloud_functions

import numpy as np
import vg

[docs]def percentile(points, axis, percentile):
 """
 Given a cloud of points and an axis, find a point along that axis
 from the centroid at the given percentile.

 Args:
 points (np.arraylike): A `kx3` stack of points.
 axis (np.arraylike): A 3D vector specifying the direction of
 interest.
 percentile (float): The desired percentile.

 Returns:
 np.ndarray: A 3D point at the requested percentile.
 """
 k = vg.shape.check(locals(), "points", (-1, 3))
 if k < 1:
 raise ValueError("At least one point is needed")
 vg.shape.check(locals(), "axis", (3,))
 if vg.almost_zero(axis):
 raise ValueError("Axis must be non-zero")

 axis = vg.normalize(axis)
 coords_on_axis = points.dot(axis)
 selected_coord_on_axis = np.percentile(coords_on_axis, percentile)
 centroid = np.average(points, axis=0)
 return vg.reject(centroid, axis) + selected_coord_on_axis * axis

[docs]def extent(points, ret_indices=False):
 """
 Find the distance between the two farthest-most points.

 Args:
 points (np.arraylike): A `kx3` stack of points.
 ret_indices (bool): When `True`, return the indices along with the
 distance.

 Returns:
 object: With `ret_indices=False`, the distance; with
 `ret_indices=True` a tuple `(distance, first_index, second_index)`.

 Note:
 This is implemented using a brute-force method.
 """
 k = vg.shape.check(locals(), "points", (-1, 3))
 if k < 2:
 raise ValueError("At least two points are required")

 farthest_i = -1
 farthest_j = -1
 farthest_distance = -1
 for i, probe in enumerate(points):
 distances = vg.euclidean_distance(points, probe)
 this_farthest_j = np.argmax(distances)
 if distances[this_farthest_j] > farthest_distance:
 farthest_i = i
 farthest_j = this_farthest_j
 farthest_distance = distances[this_farthest_j]
 if ret_indices:
 return farthest_distance, farthest_i, farthest_j
 else:
 return farthest_distance

 Source code for polliwog.polyline._inflection_points

import numpy as np
import vg

[docs]def inflection_points(points, rise_axis, run_axis):
 """
 Find the list of vertices that preceed inflection points in a curve. The
 curve is differentiated with respect to the coordinate system defined by
 `rise_axis` and `run_axis`.

 Interestingly, `lambda x: 2*x + 1` should have no inflection points, but
 almost every point on the line is detected. It's because a zero or zero
 crossing in the second derivative is necessary but not sufficient to
 detect an inflection point. You also need a higher derivative of odd
 order that's non-zero. But that gets ugly to detect reliably using sparse
 finite differences. Just know that if you've got a straight line this
 method will go a bit haywire.

 rise_axis: A vector representing the vertical axis of the coordinate system.
 run_axis: A vector representing the the horiztonal axis of the coordinate system.

 returns: a list of points in space corresponding to the vertices that
 immediately preceed inflection points in the curve
 """
 vg.shape.check(locals(), "points", (-1, 3))
 vg.shape.check(locals(), "rise_axis", (3,))
 vg.shape.check(locals(), "run_axis", (3,))

 coords_on_run_axis = points.dot(run_axis)
 coords_on_rise_axis = points.dot(rise_axis)

 # Take the second order finite difference of the curve with respect to the
 # defined coordinate system
 finite_difference_1 = np.gradient(coords_on_rise_axis, coords_on_run_axis)
 finite_difference_2 = np.gradient(finite_difference_1, coords_on_run_axis)

 # Compare the product of all neighboring pairs of points in the second
 # derivative. If a pair of points has a negative product, then the second
 # derivative changes sign between those points. These are the inflection
 # points.
 is_inflection_point = np.concatenate(
 [finite_difference_2[:-1] * finite_difference_2[1:] <= 0, [False]]
)

 return points[is_inflection_point]

[docs]def point_of_max_acceleration(points, rise_axis, run_axis, subdivide_by_length=None):
 """
 Find the point on a curve where the curve is maximally accelerating
 in the direction specified by `rise_axis`. `run_axis` is the horizontal
 axis along which slices are taken.

 Args:
 points (np.arraylike): A stack of points, as `kx3`. For best
 results, trim these to the area of interest before calling.
 rise_axis (np.arraylike): The vertical axis, as a 3D vector.
 run_axis (np.arraylike): The horizonal axis, as a 3D vector.
 subdivide_by_length (float): When provided, the maximum space
 between each point. The idea is keep the slice width small,
 however this constraint is applied in 3D space, not along
 the `run_axis`. For best results pass a value that is small
 relative to the changes in the geometry. When `None`, the
 points are used without modification.
 """
 from ..polyline._polyline_object import Polyline

 k = vg.shape.check(locals(), "points", (-1, 3))
 vg.shape.check(locals(), "rise_axis", (3,))
 vg.shape.check(locals(), "run_axis", (3,))

 if k < 2:
 raise ValueError("At least two points are required")

 if subdivide_by_length is not None:
 subdivided = Polyline(v=points, is_closed=False).subdivided_by_length(
 subdivide_by_length
)
 points = subdivided.v

 coords_on_run_axis = points.dot(run_axis)
 coords_on_rise_axis = points.dot(rise_axis)

 finite_difference_1 = np.gradient(coords_on_rise_axis, coords_on_run_axis)
 finite_difference_2 = np.gradient(finite_difference_1, coords_on_run_axis)

 # `np.argmax(finite_difference_2)` produces false positives where the first
 # derivative of the next point is positive. Exclude these bogus points.
 valid_points = np.logical_and(
 np.roll(finite_difference_1, 1) > 0,
 np.roll(finite_difference_1, -1) > 0,
)
 valid_points[0] = False
 valid_points[-1] = False

 try:
 index = np.argmax(finite_difference_2[valid_points])
 except ValueError:
 return None

 return points[valid_points][index]

 Source code for polliwog.polyline._polyline_object

import numpy as np
import vg

[docs]class Polyline(object):
 """
 Represent the geometry of a polygonal chain in 3-space. The chain may be
 open or closed.

 There are no constraints on the geometry. For example, the chain may be
 simple or self-intersecting, and the points need not be unique.

 The methods do not mutate; they create new polylines which exhibit the
 requested mutation. However, immutability is not enforced. If you wish
 you can mutate a polyline by updating `polyline.v` or `polyline.is_closed`.
 """

 def __init__(self, v, is_closed=False):
 """
 v: np.array containing points in 3-space.
 is_closed: True indicates a closed chain, which has an extra
 segment connecting the last point back to the first
 point.

 """
 # Avoid invoking _update_edges before setting closed and v.
 self.__dict__["is_closed"] = is_closed
 self.v = v

[docs] @classmethod
 def join(cls, *polylines, is_closed=False):
 """
 Join together a stack of open polylines end-to-end into one
 contiguous polyline. The last vertex of the first polyline is
 connected to the first vertex of the second polyline, and so on.
 """
 if len(polylines) == 0:
 raise ValueError("Need at least one polyline to join")
 if any([polyline.is_closed for polyline in polylines]):
 raise ValueError("Expected input polylines to be open, not closed")
 return cls(
 np.vstack([polyline.v for polyline in polylines]), is_closed=is_closed
)

 def __repr__(self):
 if self.v is not None and self.num_v != 0:
 if self.is_closed:
 return "<closed Polyline with {} verts>".format(self.num_v)
 else:
 return "<open Polyline with {} verts>".format(self.num_v)
 else:
 return "<Polyline with no verts>"

 def __len__(self):
 return self.num_v

 @property
 def num_v(self):
 """
 Return the number of vertices in the polyline.
 """
 return len(self.v)

 @property
 def num_e(self):
 """
 Return the number of segments in the polyline.
 """
 return len(self.e)

[docs] def copy(self):
 """
 Return a copy of this polyline.

 """
 v = None if self.v is None else np.copy(self.v)
 return self.__class__(v, is_closed=self.is_closed)

 def to_dict(self, decimals=3):
 return {
 "vertices": [np.around(v, decimals=decimals).tolist() for v in self.v],
 "edges": self.e,
 }

 def _update_edges(self):
 if self.v is None:
 self.__dict__["e"] = None
 return

 num_vertices = self.v.shape[0]
 num_edges = num_vertices if self.is_closed else num_vertices - 1

 edges = np.vstack([np.arange(num_edges), np.arange(num_edges) + 1]).T

 if self.is_closed:
 edges[-1][1] = 0

 edges.flags.writeable = False

 self.__dict__["e"] = edges

 @property
 def v(self):
 return self.__dict__["v"]

 @v.setter
 def v(self, new_v):
 """
 Update the vertices to a new array-like thing containing points
 in 3D space. Set to None for an empty polyline.

 """
 if new_v is not None:
 vg.shape.check_value(new_v, (-1, 3))
 self.__dict__["v"] = new_v
 self._update_edges()

 @property
 def is_closed(self):
 return self.__dict__["is_closed"]

 @is_closed.setter
 def is_closed(self, new_is_closed):
 """
 Update whether the polyline is closed or open.

 """
 self.__dict__["is_closed"] = new_is_closed
 self._update_edges()

 @property
 def e(self):
 """
 Return the edges of the polyline: an array containing a pair of
 vertex indices for each edge. This is derived automatically from
 `self.v` and `self.is_closed` whenever those values are set.
 """
 return self.__dict__["e"]

 @property
 def segments(self):
 """
 Coordinate pairs for each segment.
 """
 return self.v[self.e]

 @property
 def segment_vectors(self):
 """
 Vectors spanning each segment.
 """
 segments = self.segments
 return segments[:, 1] - segments[:, 0]

 @property
 def segment_lengths(self):
 """
 The length of each of the segments.

 """
 if self.e is None:
 return np.zeros(0)
 else:
 segments = self.segments
 return vg.euclidean_distance(segments[:, 0], segments[:, 1])

 @property
 def total_length(self):
 """
 The total length of all the segments.

 """
 return np.sum(self.segment_lengths)

 @property
 def path_centroid(self):
 """
 The weighted average of all the points along the edges of the polyline.
 """
 edge_centers = np.average(self.segments, axis=1)
 return np.average(edge_centers, weights=self.segment_lengths, axis=0)

 @property
 def bounding_box(self):
 """
 The bounding box which encompasses the entire polyline.
 """
 from .. import Box

 if self.num_v == 0:
 return None

 return Box.from_points(self.v)

[docs] def index_of_vertex(self, point, atol=1e-08):
 """
 Return the index of the vertex with the given point. If there are
 coincident vertices at that point, return the one at the lowest
 index.
 """
 vg.shape.check(locals(), "point", (3,))

 (matching_indices,) = (
 np.isclose(self.v - point, 0, atol=atol).all(axis=1).nonzero()
)

 try:
 return matching_indices[0]
 except IndexError:
 # `pass` before `raise` to avoid propagating the IndexError.
 pass
 raise ValueError("No matching vertex")

[docs] def with_insertions(self, points, indices, ret_new_indices=False):
 """
 Return a new polyline with the given points inserted before the given
 indices.

 With `ret_new_indices=True`, also returns the new indices of the
 original vertices and the new indices of the inserted points.
 """
 k = vg.shape.check(locals(), "points", (-1, 3))
 vg.shape.check(locals(), "indices", (k,))

 new_polyline = Polyline(
 v=np.insert(self.v, indices, points, axis=0),
 is_closed=self.is_closed,
)

 if not ret_new_indices:
 return new_polyline

 # Compute indices of original vertices.
 old_num_v = self.num_v
 stepwise_index_offsets = np.zeros(old_num_v, dtype=np.int64)
 stepwise_index_offsets[indices[indices < old_num_v]] = 1
 cumulative_index_offsets = np.cumsum(stepwise_index_offsets)
 indices_of_original_vertices = np.arange(old_num_v) + cumulative_index_offsets

 # Compute indices of inserted points. When more than one point is
 # inserted, this will differ from `indices`.
 # TODO: I think this will cause an IndexError when new points are
 # inserted at the end. `indices + cumulative_index_offsets[indices - 1]`
 # would work instead, but would produce an incorrect result for points
 # inserted at the beginning.
 indices_of_inserted_points = indices + cumulative_index_offsets[indices] - 1

 return new_polyline, indices_of_original_vertices, indices_of_inserted_points

[docs] def flipped(self):
 """
 Flip the polyline from end to end. Return a new polyline.
 """
 return Polyline(v=np.flipud(self.v), is_closed=self.is_closed)

[docs] def aligned_with(self, vector):
 """
 Flip the polyline if necessary, so it's aligned with the given
 vector rather than against it. Works on open polylines and considers
 only the two end vertices.
 """
 if self.is_closed:
 raise ValueError("Can't align a closed polyline")

 vg.shape.check(locals(), "vector", (3,))

 if self.num_v < 2:
 return self

 extent = self.v[-1] - self.v[0]
 projected = vg.project(extent, onto=vector)
 if vg.scale_factor(projected, vector) < 0:
 return self.flipped()
 else:
 return self

[docs] def rolled(self, index, ret_edge_mapping=False):
 """
 Return a new Polyline which reindexes the callee polyline, which much
 be closed, so the vertex with the given index becomes vertex 0.

 ret_edge_mapping: if True, return an array that maps from old edge
 indices to new.
 """
 if not self.is_closed:
 raise ValueError("Can't roll an open polyline")

 result = Polyline(v=np.roll(self.v, -index, axis=0), is_closed=True)

 if ret_edge_mapping:
 edge_mapping = np.roll(np.arange(self.num_v), -index)
 return result, edge_mapping
 else:
 return result

[docs] def subdivided_by_length(
 self, max_length, edges_to_subdivide=None, ret_indices=False
):
 """
 Subdivide each line segment longer than `max_length` with
 equal-length segments, such that none of the new segments are longer
 than `max_length`. Returns a new Polyline.

 Args:
 max_length (float): The maximum lenth of a segment.
 edges_to_subdivide (np.arraylike): An optional boolean mask the same
 length as the number of edges. Only the edges marked `True` are
 subdivided. The default is to subdivide all edges longer than
 `max_length`.
 ret_indices (bool): When `True`, also returns the indices of the
 original vertices.
 """
 import itertools
 from ..segment import subdivide_segment

 if edges_to_subdivide is None:
 edges_to_subdivide = np.ones(self.num_e, dtype=np.bool)
 else:
 vg.shape.check(locals(), "edges_to_subdivide", (self.num_e,))

 old_num_e = self.num_e
 old_num_v = self.num_v
 num_segments_needed = np.ceil(self.segment_lengths / max_length).astype(
 dtype=np.int64
)
 (es_to_subdivide,) = np.logical_and(
 edges_to_subdivide, num_segments_needed > 1
).nonzero()
 vs_to_insert = [
 subdivide_segment(
 self.v[self.e[old_e_index][0]],
 self.v[self.e[old_e_index][1]],
 np.int(num_segments_needed[old_e_index]),
 endpoint=False,
)[
 # Exclude the start point, which like the endpoint, is already
 # present.
 1:
]
 for old_e_index in es_to_subdivide
]

 splits_of_original_vs = np.vsplit(self.v, es_to_subdivide + 1)
 new_polyline = Polyline(
 v=np.concatenate(
 list(
 itertools.chain(
 *zip(
 splits_of_original_vs,
 vs_to_insert + [np.empty((0, 3), dtype=np.float64)],
)
)
)
),
 is_closed=self.is_closed,
)

 if not ret_indices:
 return new_polyline

 # In a degenerate case, `partition_segment()` may return fewer than
 # the requested number of indices. So, recompute the actual number of
 # segments inserted.
 num_segments_inserted = np.zeros(old_num_e, dtype=np.int64)
 num_segments_inserted[es_to_subdivide] = [len(vs) for vs in vs_to_insert]
 stepwise_index_offsets = np.concatenate(
 [
 # The first vertex is never moved.
 np.zeros(1, dtype=np.int64),
 # In a closed polyline, the last edge goes back to vertex
 # 0. Subdivisions of that segment do not affect indexing of
 # any of the vertices (since the original end vertex is
 # still at index 0).
 num_segments_inserted[:-1] if self.is_closed else num_segments_inserted,
]
)
 cumulative_index_offsets = np.sum(
 np.tril(np.broadcast_to(stepwise_index_offsets, (old_num_v, old_num_v))),
 axis=1,
)
 indices_of_original_vertices = np.arange(old_num_v) + cumulative_index_offsets
 return new_polyline, indices_of_original_vertices

[docs] def with_segments_bisected(self, segment_indices, ret_new_indices=False):
 """
 Return a new polyline with the given segments cut in half.

 With `ret_new_indices=True`, also returns the new indices of the
 original vertices and the new indices of the inserted points.
 """
 return self.with_insertions(
 points=np.mean(self.segments[segment_indices], axis=0),
 indices=self.e[segment_indices][:, 1],
 ret_new_indices=ret_new_indices,
)

[docs] def apex(self, axis):
 """
 Find the most extreme point in the direction of the axis provided.

 axis: A vector, which is an 3x1 np.array.

 """
 return vg.apex(self.v, axis)

[docs] def intersect_plane(self, plane, ret_edge_indices=False):
 """
 Returns the points of intersection between the plane and any of the
 edges of `polyline`, which should be an instance of Polyline.

 TODO: This doesn't correctly handle vertices which lie on the plane.
 """
 # TODO: Refactor to use `..plane.intersections.intersect_segment_with_plane()`.
 # Identify edges with endpoints that are not on the same side of the plane
 signed_distances = plane.signed_distance(self.v)
 which_es = np.abs(np.sign(signed_distances)[self.e].sum(axis=1)) != 2
 # For the intersecting edges, compute the distance of the endpoints to the plane
 endpoint_distances = np.abs(signed_distances[self.e[which_es]])
 # Normalize the rows of endpoint_distances
 t = endpoint_distances / endpoint_distances.sum(axis=1)[:, np.newaxis]
 # Take a weighted average of the endpoints to obtain the points of intersection
 intersection_points = (
 (1.0 - t[:, :, np.newaxis]) * self.segments[which_es]
).sum(axis=1)
 if ret_edge_indices:
 return intersection_points, which_es.nonzero()[0]
 else:
 return intersection_points

[docs] def sliced_by_plane(self, plane):
 """
 Return a new Polyline which keeps only the part that is in front of the given
 plane.

 For open polylines, the plane must intersect the polyline exactly once.

 For closed polylines, the plane must intersect the polyline exactly
 twice, leaving a single contiguous segment in front.
 """
 from ._slice_by_plane import slice_open_polyline_by_plane

 if self.is_closed and self.num_v > 1:
 signed_distances = plane.signed_distance(self.v)
 signs_of_verts = np.sign(signed_distances)
 # For closed polylines, roll the edges so the ones in front of the
 # plane start at index 1 and the one to be cut is at index 0. (If
 # that edge stops directly on the plane, it may not actually need
 # to be cut.) This reduces it to the open polyline intersection
 # problem.
 if signs_of_verts[-1] == 1:
 # e.g. signs_of_verts = np.array([1, -1, -1, 1, 1, 1, 1])
 (vertices_not_in_front,) = np.where(signs_of_verts != 1)
 roll = -vertices_not_in_front[-1]
 else:
 # e.g. signs_of_verts = np.array([-1, 1, 1, 1, 1, 1, -1, -1])
 (vertices_in_front,) = np.where(signs_of_verts == 1)
 if len(vertices_in_front) > 0:
 roll = -vertices_in_front[0] + 1
 else:
 roll = 0
 working_v = np.roll(self.v, roll, axis=0)
 else:
 working_v = self.v

 return Polyline(
 v=slice_open_polyline_by_plane(working_v, plane), is_closed=False
)

[docs] def sliced_at_indices(self, start, stop):
 """
 Take an slice of the given polyline starting at the `start` vertex
 index and ending just befeor reaching the `stop` vertex index. Always
 returns an open polyline.

 When called on a closed polyline, the indies can wrap around the end.
 """
 if stop <= start:
 if self.is_closed:
 num_to_keep = len(self.v) - start + stop
 working_v = np.roll(self.v, -start, axis=0)[0:num_to_keep]
 else:
 raise ValueError(
 "For an open polyline, start index of slice should be less than stop index"
)
 else:
 working_v = self.v[start:stop]
 return Polyline(v=working_v, is_closed=False)

[docs] def nearest(self, points, ret_segment_indices=False):
 """
 For the given query point or points, return the nearest point on the
 polyline. With `ret_segment_indices=True`, also return the segment
 indices of those points.
 """
 from .._common.shape import columnize
 from ..segment import closest_point_of_line_segment

 points, _, transform_result = columnize(points, name="points")
 num_points = len(points)

 stacked_points = np.repeat(points, self.num_e, axis=0)
 closest_points_of_segments = closest_point_of_line_segment(
 points=stacked_points,
 start_points=np.tile(self.segments[:, 0], (num_points, 1)),
 segment_vectors=np.tile(self.segment_vectors, (num_points, 1)),
)
 distance_to_closest_points_of_segments = vg.euclidean_distance(
 stacked_points, closest_points_of_segments
)

 closest_points_of_segments = closest_points_of_segments.reshape(
 num_points, self.num_e, 3
)
 distance_to_closest_points_of_segments = (
 distance_to_closest_points_of_segments.reshape(num_points, self.num_e)
)

 indices_of_nearest_segments = np.argmin(
 distance_to_closest_points_of_segments, axis=1
)
 closest_points_of_polyline = np.take_along_axis(
 closest_points_of_segments,
 indices_of_nearest_segments.reshape(num_points, 1, 1),
 axis=1,
).reshape(num_points, 3)

 if ret_segment_indices:
 return (
 transform_result(closest_points_of_polyline),
 transform_result(indices_of_nearest_segments),
)
 else:
 return transform_result(closest_points_of_polyline)

[docs] def sliced_at_points(self, start_point, end_point, atol=1e-8):
 """
 Take a slice of the given polyline at the given start and end points.
 These are expected to be on a vertex or on a segment. If on a segment
 (or near to but not directly on a segment) a new point is inserted
 at exactly the given point.
 """
 vg.shape.check(locals(), "start_point", (3,))
 vg.shape.check(locals(), "end_point", (3,))

 working_polyline = self

 try:
 # Check if the start point intersects a vertex. If it does, great;
 # if not, insert it.
 start_v_index = working_polyline.index_of_vertex(start_point)
 except ValueError:
 nearest_point, segment_index = working_polyline.nearest(
 start_point, ret_segment_indices=True
)
 (_, start_v_index) = working_polyline.e[segment_index]
 working_polyline = working_polyline.with_insertions(
 points=nearest_point.reshape(-1, 3),
 indices=np.array([start_v_index]),
)

 try:
 end_v_index = working_polyline.index_of_vertex(end_point)
 except ValueError:
 nearest_point, segment_index = working_polyline.nearest(
 end_point, ret_segment_indices=True
)
 (_, end_v_index) = working_polyline.e[segment_index]
 (
 working_polyline,
 indices_of_original_vertices,
 _,
) = working_polyline.with_insertions(
 points=nearest_point.reshape(-1, 3),
 indices=np.array([end_v_index]),
 ret_new_indices=True,
)
 start_v_index = indices_of_original_vertices[start_v_index]

 # Then slice at those points.
 return working_polyline.sliced_at_indices(start_v_index, end_v_index + 1)

[docs] def sectioned(self, section_breakpoints, copy_vs=False):
 """
 Section the given open polyline at the given breakpoints, which indicate
 where one segment ends and the next one starts. Each of the breakpoint
 vertices is included as an endpoint in one section and a start point in
 the next section.

 Args:
 breakpoints (np.arraylike): The indices of the breakpoints.
 copy_vs (bool): When `True`, copy the vertices into the new polylines.
 When `False`, return polylines with views for vertex arrays.

 Returns:
 list: A list of the sectioned polylines.
 """
 if self.is_closed:
 raise NotImplementedError("Not implemented for closed polylines")

 vg.shape.check(locals(), "section_breakpoints", (-1,))

 section_breakpoints = section_breakpoints.astype(np.uint64)
 maybe_copy = np.copy if copy_vs else lambda vs: vs
 section_starts = np.hstack([np.array(0, dtype=np.uint64), section_breakpoints])
 section_ends = np.hstack(
 [section_breakpoints + 1, np.array([self.num_v], dtype=np.uint64)]
)

 edges_per_section = section_ends - section_starts - 1
 if (edges_per_section < 1).any():
 raise ValueError("Every section must have at least one edge")

 return [
 Polyline(v=maybe_copy(self.v[start:end]), is_closed=False)
 for (start, end) in zip(section_starts, section_ends)
]

 Source code for polliwog.segment._segment_functions

import numpy as np
import vg

[docs]def subdivide_segment(p1, p2, num_points, endpoint=True):
 """
 For two points in n-space, return an np.ndarray of equidistant partition
 points along the segment determined by p1 & p2.

 The total number of points returned will be n_samples. When n_samples is
 2, returns the original points.

 When endpoint is True, p2 is the last point. When false, p2 is excluded.

 Partition order is oriented from p1 to p2.

 Args:
 p1, p2:
 1 x N vectors

 partition_size:
 size of partition. should be >= 2.

 """
 if not isinstance(num_points, int):
 raise TypeError("partition_size should be an int.")
 elif num_points < 2:
 raise ValueError("partition_size should be bigger than 1.")

 return (p2 - p1) * np.linspace(0, 1, num=num_points, endpoint=endpoint)[
 :, np.newaxis
] + p1

[docs]def subdivide_segments(v, num_subdivisions=5):
 """

 params:
 v:
 V x N np.array of points in N-space

 partition_size:
 how many partitions intervals for each segment?

 Fill in the line segments determined by v with equally
 spaced points - the space for each segment is determined
 by the length of the segment and the supplied partition size.

 """
 src = np.arange(len(v) - 1)
 dst = src + 1

 diffs = v[dst] - v[src]

 sqdis = np.square(diffs)
 dists = np.sqrt(np.sum(sqdis, axis=1))

 unitds = diffs / dists[:, np.newaxis]
 widths = dists / num_subdivisions

 domain = widths[:, np.newaxis] * np.arange(0, num_subdivisions)
 domain = domain.flatten()[:, np.newaxis]

 points = np.repeat(v[:-1], num_subdivisions, axis=0)
 unitds = np.repeat(unitds, num_subdivisions, axis=0)

 filled = points + (unitds * domain)

 return np.vstack((filled, v[-1]))

[docs]def closest_point_of_line_segment(points, start_points, segment_vectors):
 """
 Compute pairwise the point on each line segment that is nearest to the
 corresponding query point.
 """
 # Adapted from public domain algorithm
 # https://gdbooks.gitbooks.io/3dcollisions/content/Chapter1/closest_point_on_line.html
 k = vg.shape.check(locals(), "points", (-1, 3))
 vg.shape.check(locals(), "start_points", (k, 3))
 vg.shape.check(locals(), "segment_vectors", (k, 3))

 # Compute t values such that
 # `result = reference_point + t * vector_along_line`.
 square_of_segment_lengths = vg.dot(segment_vectors, segment_vectors)
 # Degenerate segments will cause a division by zero, so handle that.
 t = np.nan_to_num(
 vg.dot(points - start_points, segment_vectors) / square_of_segment_lengths
)

 # When `0 <= t <= 1`, the point is on the segment. When `t < 0`, the
 # closest point is the segment start. When `t > 1`, the closest point is
 # the segment end.
 #
 # Start with the `0 <= t <= 1 case`, then use masks to apply the clamp.
 result = start_points + t.reshape(-1, 1) * segment_vectors

 clamped_to_start_point = t < 0
 result[clamped_to_start_point] = start_points[clamped_to_start_point]

 clamped_to_end_point = t > 1
 result[clamped_to_end_point] = (
 start_points[clamped_to_end_point] + segment_vectors[clamped_to_end_point]
)

 return result

 Source code for polliwog.shapes._shapes

import numpy as np
import vg

__all__ = [
 "rectangular_prism",
 "cube",
 "triangular_prism",
]

def _maybe_flatten(vertices, faces, ret_unique_vertices_and_faces):
 if ret_unique_vertices_and_faces:
 return vertices, faces
 else:
 return vertices[faces]

[docs]def rectangular_prism(origin, size, ret_unique_vertices_and_faces=False):
 """
 Tesselate an axis-aligned rectangular prism. One vertex is `origin`. The
 diametrically opposite vertex is `origin + size`.

 Args:
 origin (np.ndarray): A 3D point vector containing the point on the
 prism with the minimum x, y, and z coords.
 size (np.ndarray): A 3D vector specifying the prism's length, width,
 and height, which should be positive.
 ret_unique_vertices_and_faces (bool): When `True` return a vertex
 array containing the unique vertices and an array of faces (i.e.
 vertex indices). When `False`, return a flattened array of
 triangle coordinates.

 Returns:
 object:

 - With `ret_unique_vertices_and_faces=True`: a tuple containing
 an `8x3` array of vertices and a `12x3` array of triangle faces.
 - With `ret_unique_vertices_and_faces=False`: a `12x3x3` matrix of
 flattened triangle coordinates.
 """
 from ..tri import quads_to_tris

 vg.shape.check(locals(), "origin", (3,))
 vg.shape.check(locals(), "size", (3,))

 lower_base_plane = np.array(
 [
 # Lower base plane
 origin,
 origin + np.array([size[0], 0, 0]),
 origin + np.array([size[0], 0, size[2]]),
 origin + np.array([0, 0, size[2]]),
]
)
 upper_base_plane = lower_base_plane + np.array([0, size[1], 0])

 vertices = np.vstack([lower_base_plane, upper_base_plane])

 faces = np.array(
 quads_to_tris(
 np.array(
 [
 [0, 1, 2, 3], # lower base (-y)
 [7, 6, 5, 4], # upper base (+y)
 [4, 5, 1, 0], # +z face
 [5, 6, 2, 1], # +x face
 [6, 7, 3, 2], # -z face
 [3, 7, 4, 0], # -x face
],
 dtype=np.uint64,
)
),
 dtype=np.uint64,
)

 return _maybe_flatten(vertices, faces, ret_unique_vertices_and_faces)

[docs]def cube(origin, size, ret_unique_vertices_and_faces=False):
 """
 Tesselate an axis-aligned cube. One vertex is `origin`. The diametrically
 opposite vertex is `size` units along `+x`, `+y`, and `+z`.

 Args:
 origin (np.ndarray): A 3D point vector containing the point on the
 prism with the minimum x, y, and z coords.
 size (float): The length, width, and height of the cube, which should
 be positive.
 ret_unique_vertices_and_faces (bool): When `True` return a vertex
 array containing the unique vertices and an array of faces (i.e.
 vertex indices). When `False`, return a flattened array of
 triangle coordinates.

 Returns:
 object:

 - With `ret_unique_vertices_and_faces=True`: a tuple containing
 an `8x3` array of vertices and a `12x3` array of triangle faces.
 - With `ret_unique_vertices_and_faces=False`: a `12x3x3` matrix of
 flattened triangle coordinates.
 """
 vg.shape.check(locals(), "origin", (3,))
 if not isinstance(size, float):
 raise ValueError("`size` should be a number")

 return rectangular_prism(
 origin,
 np.repeat(size, 3),
 ret_unique_vertices_and_faces=ret_unique_vertices_and_faces,
)

[docs]def triangular_prism(p1, p2, p3, height, ret_unique_vertices_and_faces=False):
 """
 Tesselate a triangular prism whose base is the triangle `p1`, `p2`, `p3`.
 If the vertices are oriented in a counterclockwise direction, the prism
 extends from behind them.

 Args:
 p1 (np.ndarray): A 3D point on the base of the prism.
 p2 (np.ndarray): A 3D point on the base of the prism.
 p3 (np.ndarray): A 3D point on the base of the prism.
 height (float): The height of the prism, which should be positive.
 ret_unique_vertices_and_faces (bool): When `True` return a vertex
 array containing the unique vertices and an array of faces (i.e.
 vertex indices). When `False`, return a flattened array of
 triangle coordinates.

 Returns:
 object:

 - With `ret_unique_vertices_and_faces=True`: a tuple containing
 an `6x3` array of vertices and a `8x3` array of triangle faces.
 - With `ret_unique_vertices_and_faces=False`: a `8x3x3` matrix of
 flattened triangle coordinates.
 """
 from .. import Plane

 vg.shape.check(locals(), "p1", (3,))
 vg.shape.check(locals(), "p2", (3,))
 vg.shape.check(locals(), "p3", (3,))
 if not isinstance(height, float):
 raise ValueError("`height` should be a number")

 base_plane = Plane.from_points(p1, p2, p3)
 lower_base_to_upper_base = height * -base_plane.normal
 vertices = np.vstack(([p1, p2, p3], [p1, p2, p3] + lower_base_to_upper_base))

 faces = np.array(
 [
 [0, 1, 2], # base
 [0, 3, 4],
 [0, 4, 1], # side 0, 3, 4, 1
 [1, 4, 5],
 [1, 5, 2], # side 1, 4, 5, 2
 [2, 5, 3],
 [2, 3, 0], # side 2, 5, 3, 0
 [5, 4, 3], # base
],
 dtype=np.uint64,
)

 return _maybe_flatten(vertices, faces, ret_unique_vertices_and_faces)

 Source code for polliwog.transform._affine_transform

import numpy as np
import vg

__all__ = [
 "transform_matrix_for_non_uniform_scale",
 "transform_matrix_for_rotation",
 "transform_matrix_for_translation",
 "transform_matrix_for_uniform_scale",
]

def _convert_33_to_44(matrix):
 """
 Transform from:
 array([[1., 2., 3.],
 [2., 3., 4.],
 [5., 6., 7.]])
 to:
 array([[1., 2., 3., 0.],
 [2., 3., 4., 0.],
 [5., 6., 7., 0.],
 [0., 0., 0., 1.]])

 """
 vg.shape.check(locals(), "matrix", (3, 3))
 result = np.pad(matrix, ((0, 1), (0, 1)), mode="constant")
 result[3][3] = 1
 return result

[docs]def transform_matrix_for_rotation(rotation, ret_inverse_matrix=False):
 """
 Create a transformation matrix from the given 3x3 rotation matrix or a
 Rodrigues vector.

 With `ret_inverse_matrix=True`, also returns a matrix which provides
 the reverse transform.
 """
 from ._rodrigues import rodrigues_vector_to_rotation_matrix

 if rotation.shape == (3, 3):
 forward3 = rotation
 else:
 vg.shape.check(locals(), "rotation", (3,))
 forward3 = rodrigues_vector_to_rotation_matrix(rotation)

 forward = _convert_33_to_44(forward3)

 if not ret_inverse_matrix:
 return forward

 # The inverse of a rotation matrix is its transpose.
 inverse = forward.T
 return forward, inverse

[docs]def transform_matrix_for_translation(translation, ret_inverse_matrix=False):
 """
 Create a transformation matrix which translates by the provided
 displacement vector.

 Forward:

 [[1, 0, 0, v_0],
 [0, 1, 0, v_1],
 [0, 0, 1, v_2],
 [0, 0, 0, 1]]

 Reverse:

 [[1, 0, 0, -v_0],
 [0, 1, 0, -v_1],
 [0, 0, 1, -v_2],
 [0, 0, 0, 1]]

 Args:
 vector (np.arraylike): A 3x1 vector.
 """
 vg.shape.check(locals(), "translation", (3,))

 forward = np.eye(4)
 forward[:, -1][:-1] = translation

 if not ret_inverse_matrix:
 return forward

 inverse = np.eye(4)
 inverse[:, -1][:-1] = -translation
 return forward, inverse

[docs]def transform_matrix_for_non_uniform_scale(
 x_factor, y_factor, z_factor, allow_flipping=False, ret_inverse_matrix=False
):
 """
 Create a transformation matrix that scales by the given factors along
 `x`, `y`, and `z`.

 Forward:
 [[s_0, 0, 0, 0],
 [0, s_1, 0, 0],
 [0, 0, s_2, 0],
 [0, 0, 0, 1]]

 Reverse:
 [[1/s_0, 0, 0, 0],
 [0, 1/s_1, 0, 0],
 [0, 0, 1/s_2, 0],
 [0, 0, 0, 1]]

 Args:
 x_factor (float): The scale factor to be applied along the `x` axis,
 which should be positive.
 y_factor (float): The scale factor to be applied along the `y` axis,
 which should be positive.
 z_factor (float): The scale factor to be applied along the `z` axis,
 which should be positive.
 allow_flipping (bool): When `True`, allows scale factors to be
 positive or negative, though not zero.
 ret_inverse_matrix (bool): When `True`, also returns a matrix which
 provides the inverse transform.
 """
 if x_factor == 0 or y_factor == 0 or z_factor == 0:
 raise ValueError("Scale factors should be nonzero")
 if not allow_flipping and (x_factor < 0 or y_factor < 0 or z_factor < 0):
 raise ValueError("Scale factors should be greater than zero")
 scale = np.array([x_factor, y_factor, z_factor])

 forward = _convert_33_to_44(np.diag(scale))

 if not ret_inverse_matrix:
 return forward

 inverse = _convert_33_to_44(np.diag(1.0 / scale))
 return forward, inverse

[docs]def transform_matrix_for_uniform_scale(
 scale_factor, allow_flipping=False, ret_inverse_matrix=False
):
 """
 Create a transformation matrix that scales by the given factor.

 Forward:
 [[s_0, 0, 0, 0],
 [0, s_1, 0, 0],
 [0, 0, s_2, 0],
 [0, 0, 0, 1]]

 Reverse:
 [[1/s_0, 0, 0, 0],
 [0, 1/s_1, 0, 0],
 [0, 0, 1/s_2, 0],
 [0, 0, 0, 1]]

 Args:
 factor (float): The scale factor.
 ret_inverse_matrix (bool): When `True`, also returns a matrix which
 provides the inverse transform.
 """
 if scale_factor == 0:
 raise ValueError("Scale factor should be nonzero")
 if not allow_flipping and scale_factor < 0:
 raise ValueError("Scale factor should be greater than zero")
 return transform_matrix_for_non_uniform_scale(
 scale_factor,
 scale_factor,
 scale_factor,
 allow_flipping=allow_flipping,
 ret_inverse_matrix=ret_inverse_matrix,
)

 Source code for polliwog.transform._apply

import numpy as np
import vg
from .._common.shape import columnize

__all__ = [
 "apply_transform",
 "compose_transforms",
]

[docs]def apply_transform(transform):
 """
 Wrap the given transformation matrix with a function which conveniently can
 be invoked with either points or a single point, returning the same. It
 applies the transformation to those points using homogeneous coordinates.

 Args:
 points (np.ndarray): The point `(3,)` or points `kx3` to transform.

 Return:
 func: A function which accepts an `np.ndarray` containing a point
 `(3,)` or points `kx3` to transform, and returns an `ndarray` of the
 same shape. Also accepts two kwargs. The first is `discard_z_coord`.
 When `True`, discard the z coordinate of the result. This is useful
 when applying viewport transformations. The second is
 `treat_input_as_vectors` which does not use the homogeneous coordinate,
 and therefore ignores translation.

 """
 vg.shape.check(locals(), "transform", (4, 4))

 def apply(points, discard_z_coord=False, treat_input_as_vector=False):
 points, is_columnized, maybe_decolumnize = columnize(
 points, (-1, 3), name="points"
)

 homogenous_coordinate_value = 0 if treat_input_as_vector else 1
 padded_points = np.pad(
 points,
 ((0, 0), (0, 1)),
 mode="constant",
 constant_values=homogenous_coordinate_value,
)
 transformed_padded_points = np.dot(transform, padded_points.T).T
 transformed_points = np.delete(transformed_padded_points, 3, axis=1)

 result = maybe_decolumnize(transformed_points)
 if discard_z_coord:
 return result[:, 0:2] if is_columnized else result[0:2]
 else:
 return result

 return apply

def compose_transforms(*transforms):
 """
 Compose the provided transformation matrices in order, returning a composite
 transformation.

 Args:
 transforms (list): One or more `4x4` transformation matrices.

 Return:
 np.ndarray: A `4x4` transformation matrix.
 """
 from functools import reduce

 for transform in transforms:
 vg.shape.check(locals(), "transform", (4, 4))

 if len(transforms) == 0:
 return np.eye(4)

 return reduce(np.dot, reversed(transforms))

 Source code for polliwog.transform._composite_transform

import numpy as np
import vg
from ._affine_transform import (
 transform_matrix_for_non_uniform_scale,
 transform_matrix_for_rotation,
 transform_matrix_for_translation,
 transform_matrix_for_uniform_scale,
)
from ._apply import apply_transform
from ._rotation import rotation_from_up_and_look

[docs]class CompositeTransform(object):
 """
 Composite transform using homogeneous coordinates.

 Example:
 >>> transform = CompositeTransform()
 >>> transform.uniform_scale(10)
 >>> transform.reorient(up=[0, 1, 0], look=[-1, 0, 0])
 >>> transform.translate([0, -2.5, 0])
 >>> transformed_scan = transform(scan_v)
 >>> # ... register the scan here ...
 >>> untransformed_alignment = transform(alignment_v, reverse=True)

 See also:

 - *Computer Graphics: Principles and Practice*, Hughes, van Dam,
 McGuire, Sklar, Foley
 - http://gamedev.stackexchange.com/questions/72044/why-do-we-use-4x4-matrices-to-transform-things-in-3d
 """

 def __init__(self):
 # List of tuples, containing forward and reverse matrices.
 self.transforms = []

[docs] def __call__(self, points, from_range=None, reverse=False, discard_z_coord=False):
 """
 Args:
 points (np.arraylike): Points to transform, as a 3xn array.
 from_range (tuple): The indices of the subset of the
 transformations to apply. e.g. `(0, 2)`, `(2, 4)`. When
 `None`, which is the default, apply them all.
 reverse (bool): When `True` applies the selected transformations
 in reverse. This has no effect on how range is interpreted,
 only whether the selected transformations apply in the forward
 or reverse mode.

 """
 return apply_transform(
 self.transform_matrix_for(from_range=from_range, reverse=reverse)
)(points, discard_z_coord=discard_z_coord)

[docs] def transform_matrix_for(self, from_range=None, reverse=False):
 """
 Return a 4x4 transformation matrix representation.

 range: The min and max indices of the subset of the transformations to
 apply. e.g. (0, 2), (2, 4). Inclusive of the min value, exclusive of
 the max value. The default is to apply them all.
 reverse: When `True` returns a matrix for the inverse transform.
 This has no effect on how range is interpreted, only whether the
 forward or reverse matrices are used.

 """
 from ._apply import compose_transforms

 if from_range is not None:
 start, stop = from_range
 selected_transforms = self.transforms[start:stop]
 else:
 selected_transforms = self.transforms

 if reverse:
 matrices = [inverse for _, inverse in reversed(selected_transforms)]
 else:
 matrices = [forward for forward, _ in selected_transforms]

 return compose_transforms(*matrices)

[docs] def append_transform(self, forward, reverse=None):
 """
 Append an arbitrary transformation, defined by 4x4 forward and reverse
 matrices.

 The new transformation is added to the end. Return its index.

 """
 vg.shape.check(locals(), "forward", (4, 4))
 if reverse is None:
 reverse = np.linalg.inv(forward)
 else:
 vg.shape.check(locals(), "reverse", (4, 4))

 new_index = len(self.transforms)
 self.transforms.append((forward, reverse))
 return new_index

[docs] def uniform_scale(self, factor, allow_flipping=False):
 """
 Scale by the given factor.

 Args:
 factor (float): The scale factor.

 See also:
 `non_uniform_scale()`
 """
 forward, inverse = transform_matrix_for_uniform_scale(
 factor, allow_flipping=allow_flipping, ret_inverse_matrix=True
)
 return self.append_transform(forward, inverse)

[docs] def non_uniform_scale(self, x_factor, y_factor, z_factor, allow_flipping=False):
 """
 Scale by the given factors along `x`, `y`, and `z`.

 Args:
 x_factor (float): The scale factor to be applied along the `x` axis.
 y_factor (float): The scale factor to be applied along the `y` axis.
 z_factor (float): The scale factor to be applied along the `z` axis.

 See also:
 `uniform_scale()`
 """
 forward, inverse = transform_matrix_for_non_uniform_scale(
 x_factor,
 y_factor,
 z_factor,
 allow_flipping=allow_flipping,
 ret_inverse_matrix=True,
)
 return self.append_transform(forward, inverse)

[docs] def convert_units(self, from_units, to_units):
 """
 Convert the mesh from one set of units to another.

 These calls are equivalent:

 >>> composite.convert_units(from_units='cm', to_units='m')
 >>> composite.uniform_scale(.01)

 Supports the length units from Ounce:
 https://github.com/lace/ounce/blob/master/ounce/core.py#L26
 """
 import ounce

 factor = ounce.factor(from_units, to_units)
 return self.uniform_scale(factor)

[docs] def flip(self, dim):
 """
 Flip about one of the axes.

 Args:
 dim (int): The axis to flip about: 0 for `x`, 1 for `y`, 2 for `z`.
 """
 if dim not in (0, 1, 2):
 raise ValueError("Expected dim to be 0, 1, or 2")

 scale_factors = np.ones(3)
 scale_factors[dim] = -1.0
 return self.non_uniform_scale(*scale_factors, allow_flipping=True)

[docs] def translate(self, translation):
 """
 Translate by the vector provided.

 Args:
 vector (np.arraylike): A 3x1 vector.
 """
 forward, inverse = transform_matrix_for_translation(
 translation, ret_inverse_matrix=True
)
 return self.append_transform(forward, inverse)

[docs] def reorient(self, up, look):
 """
 Reorient using up and look.
 """
 return self.rotate(rotation_from_up_and_look(up, look))

[docs] def rotate(self, rotation):
 """
 Rotate by the given 3x3 rotation matrix or a Rodrigues vector.
 """
 forward, inverse = transform_matrix_for_rotation(
 rotation, ret_inverse_matrix=True
)
 return self.append_transform(forward, inverse)

 Source code for polliwog.transform._coordinate_manager

import vg
from ._composite_transform import CompositeTransform

[docs]class CoordinateManager(object):
 """
 Example:
 >>> coordinate_manager = CoordinateManager()
 >>> coordinate_manager.tag_as('source')
 >>> coordinate_manager.translate(-cube.floor_point)
 >>> coordinate_manager.uniform_scale(2)
 >>> coordinate_manager.tag_as('floored_and_scaled')
 >>> coordinate_manager.translate(np.array([0., -4., 0.]))
 >>> coordinate_manager.tag_as('centered_at_origin')

 >>> coordinate_manager.source = cube
 >>> centered_mesh = coordinate_manager.centered_at_origin
 """

 def __init__(self):
 self.__dict__.update(
 {
 # A map from tag names to indices into the transform stack.
 "_tags_to_indices": {},
 # Our currently set points, and the tag at which they belong.
 "_points_tag": None,
 "_points": None,
 # Our worthy collaborator.
 "_transform": CompositeTransform(),
 }
)

 def append_transform(self, *args, **kwargs):
 self._transform.append_transform(*args, **kwargs)

 def uniform_scale(self, *args, **kwargs):
 self._transform.uniform_scale(*args, **kwargs)

 def non_uniform_scale(self, *args, **kwargs):
 self._transform.non_uniform_scale(*args, **kwargs)

 def convert_units(self, *args, **kwargs):
 self._transform.convert_units(*args, **kwargs)

 def flip(self, *args, **kwargs):
 self._transform.flip(*args, **kwargs)

 def translate(self, *args, **kwargs):
 self._transform.translate(*args, **kwargs)

 def reorient(self, *args, **kwargs):
 self._transform.reorient(*args, **kwargs)

 def rotate(self, *args, **kwargs):
 self._transform.rotate(*args, **kwargs)

[docs] def tag_as(self, name):
 """
 Give a name to the current state.

 """
 # The indices of CompositeTransform are 0-based, which means the first
 # transform is transform 0.
 #
 # In CoordinateManager, we refer to the initial state -- i.e. no
 # transforms -- with 0. The state after the first transform is 1.
 # After two transforms, 2. Put another way: we refer to a given state
 # with a value that is *one more than* the index of the state's last
 # transform. This is a little strange, but we need the extra zero
 # state. And it ends up playing nicely with array slicing.
 self._tags_to_indices[name] = len(self._transform.transforms)

 def do_transform(self, points, from_tag, to_tag):
 try:
 from_index = self._tags_to_indices[from_tag]
 to_index = self._tags_to_indices[to_tag]
 except KeyError as e:
 tag = e.args[0]
 raise KeyError("No such tag: {}".format(tag))

 if from_index == to_index:
 return points
 elif from_index < to_index:
 from_range = from_index, to_index
 return self._transform(points, from_range=from_range)
 else:
 from_range = to_index, from_index
 return self._transform(points, from_range=from_range, reverse=True)

[docs] def __setattr__(self, name, points):
 """
 value: An nx3 array of points or an instance of Mesh.
 """
 if name not in self._tags_to_indices:
 raise AttributeError("No such tag: %s" % name)

 vg.shape.check(locals(), "points", (-1, 3))

 self.__dict__["_points_tag"] = name
 self.__dict__["_points"] = points

 def __getattr__(self, name):
 from_tag = self._points_tag
 if from_tag is None:
 raise ValueError("Must set the points before trying to read them")

 return self.do_transform(
 points=self._points, from_tag=self._points_tag, to_tag=name
)

 Source code for polliwog.transform._rodrigues

import numpy as np
import vg

[docs]def rodrigues_vector_to_rotation_matrix(r, calculate_jacobian=False):
 """
 Convert a 3x1 or 1x3 Rodrigues vector to a 3x3 rotation matrix.

 A Rodrigues vector is a 3 element vector representing a 3D rotation.
 Its direction represents the axis about which to rotate and its magnitude
 represents the amount to rotate by.

 All of SO3 (that is, all 3D rotations) can be uniquely represented by a
 Rodrigues vector, and it does not suffer from the multiple representation
 and gimbal locking problems that Euler angle representations do.

 If `calculate_jacobian` is passed, then the derivative of the rotation is
 also computed. Note that the derivative is undefined for a Rodrigues vector
 of `[0,0,0]` (that is, no rotation).

 See also:

 - https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
 """
 r = np.array(r, dtype=np.double)
 r = r.flatten()
 vg.shape.check_value(r, (3,))
 eps = np.finfo(np.double).eps
 theta = np.linalg.norm(r)
 if theta < eps:
 r_out = np.eye(3)
 if calculate_jacobian:
 jac = np.zeros((3, 9))
 jac[0, 5] = jac[1, 6] = jac[2, 1] = -1
 jac[0, 7] = jac[1, 2] = jac[2, 3] = 1
 else:
 c = np.cos(theta)
 s = np.sin(theta)
 c1 = 1.0 - c
 itheta = 1.0 if theta == 0.0 else 1.0 / theta
 r *= itheta
 I = np.eye(3) # noqa: E741 I is an identity matrix
 rrt = np.array([r * r[0], r * r[1], r * r[2]])
 _r_x_ = np.array([[0, -r[2], r[1]], [r[2], 0, -r[0]], [-r[1], r[0], 0]])
 r_out = c * I + c1 * rrt + s * _r_x_
 if calculate_jacobian:
 drrt = np.array(
 [
 [r[0] + r[0], r[1], r[2], r[1], 0, 0, r[2], 0, 0],
 [0, r[0], 0, r[0], r[1] + r[1], r[2], 0, r[2], 0],
 [0, 0, r[0], 0, 0, r[1], r[0], r[1], r[2] + r[2]],
]
)
 d_r_x_ = np.array(
 [
 [0, 0, 0, 0, 0, -1, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, -1, 0, 0],
 [0, -1, 0, 1, 0, 0, 0, 0, 0],
]
)
 I_jac = np.array([I.flatten(), I.flatten(), I.flatten()])
 ri = np.array([[r[0]], [r[1]], [r[2]]])
 a0 = -s * ri
 a1 = (s - 2 * c1 * itheta) * ri
 a2 = np.ones((3, 1)) * c1 * itheta
 a3 = (c - s * itheta) * ri
 a4 = np.ones((3, 1)) * s * itheta
 jac = (
 a0 * I_jac
 + a1 * rrt.flatten()
 + a2 * drrt
 + a3 * _r_x_.flatten()
 + a4 * d_r_x_
)
 if calculate_jacobian:
 return r_out, jac
 else:
 return r_out

[docs]def rotation_matrix_to_rodrigues_vector(r, calculate_jacobian=False):
 """
 Convert a 3x3 rotation matrix to a 3x1 or 1x3 Rodrigues vector.

 A Rodrigues vector is a 3 element vector representing a 3D rotation.
 Its direction represents the axis about which to rotate and its magnitude
 represents the amount to rotate by.

 All of SO3 (that is, all 3D rotations) can be uniquely represented by a
 Rodrigues vector, and it does not suffer from the multiple representation
 and gimbal locking problems that Euler angle representations do.

 If `calculate_jacobian` is passed, then the derivative of the rotation is
 also computed. Note that the derivative is undefined for a Rodrigues vector
 of `[0,0,0]` (that is, no rotation).

 See also:

 - https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
 """
 r = np.array(r, dtype=np.double)
 vg.shape.check_value(r, (3, 3))
 u, _, v = np.linalg.svd(r)
 r = np.dot(u, v)
 rx = r[2, 1] - r[1, 2]
 ry = r[0, 2] - r[2, 0]
 rz = r[1, 0] - r[0, 1]
 s = np.linalg.norm(np.array([rx, ry, rz])) * np.sqrt(0.25)
 c = np.clip((np.sum(np.diag(r)) - 1) * 0.5, -1, 1)
 theta = np.arccos(c)
 if s < 1e-5:
 if c > 0:
 r_out = np.zeros((3, 1))
 else:
 rx, ry, rz = np.clip(np.sqrt((np.diag(r) + 1) * 0.5), 0, np.inf)
 if r[0, 1] < 0:
 ry = -ry
 if r[0, 2] < 0:
 rz = -rz
 if (
 np.abs(rx) < np.abs(ry)
 and np.abs(rx) < np.abs(rz)
 and ((r[1, 2] > 0) != (ry * rz > 0))
):
 rz = -rz
 r_out = np.array([[rx, ry, rz]]).T
 theta /= np.linalg.norm(r_out)
 r_out *= theta
 if calculate_jacobian:
 jac = np.zeros((9, 3))
 if c > 0:
 jac[1, 2] = jac[5, 0] = jac[6, 1] = -0.5
 jac[2, 1] = jac[3, 2] = jac[7, 0] = 0.5
 else:
 vth = 1.0 / (2.0 * s)
 if calculate_jacobian:
 dtheta_dtr = -1.0 / s
 dvth_dtheta = -vth * c / s
 d1 = 0.5 * dvth_dtheta * dtheta_dtr
 d2 = 0.5 * dtheta_dtr
 dvardR = np.array(
 [
 [0, 0, 0, 0, 0, 1, 0, -1, 0],
 [0, 0, -1, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, -1, 0, 0, 0, 0, 0],
 [d1, 0, 0, 0, d1, 0, 0, 0, d1],
 [d2, 0, 0, 0, d2, 0, 0, 0, d2],
]
)
 dvar2dvar = np.array(
 [
 [vth, 0, 0, rx, 0],
 [0, vth, 0, ry, 0],
 [0, 0, vth, rz, 0],
 [0, 0, 0, 0, 1],
]
)
 domegadvar2 = np.array(
 [
 [theta, 0, 0, rx * vth],
 [0, theta, 0, ry * vth],
 [0, 0, theta, rz * vth],
]
)
 jac = np.dot(np.dot(domegadvar2, dvar2dvar), dvardR)
 for ii in range(3):
 jac[ii] = jac[ii].reshape((3, 3)).T.flatten()
 jac = jac.T
 vth *= theta
 r_out = np.array([[rx, ry, rz]]).T * vth
 if calculate_jacobian:
 return r_out, jac
 else:
 return r_out

[docs]def cv2_rodrigues(r, calculate_jacobian=False):
 """
 `cv2_rodrigues` is a wrapped function designed to be API compatible with
 OpenCV's `cv2.Rodrigues`.

 If it is given a rotation matrix, it returns a Rodrigues vector.

 If it is given a Rodrigues vector, it returns a rotation matrix.

 To make your code clearer, call `rodrigues_vector_to_rotation_matrix` or
 `rotation_matrix_to_rodrigues_vector` directly, which makes the intent of
 your code clearer.
 """
 r = np.array(r, dtype=np.double)
 if r.size == 3:
 return rodrigues_vector_to_rotation_matrix(r, calculate_jacobian)
 elif r.shape == (3, 3):
 return rotation_matrix_to_rodrigues_vector(r, calculate_jacobian)
 else:
 raise ValueError("rodrigues: input matrix must be 1x3, 3x1 or 3x3.")

 Source code for polliwog.transform._rotation

import numpy as np
import vg

[docs]def rotation_from_up_and_look(up, look):
 """
 Rotation matrix to rotate a mesh into a canonical reference frame. The
 result is a rotation matrix that will make up along +y and look along +z
 (i.e. facing towards a default opengl camera).

 up: The direction you want to become `+y`.
 look: The direction you want to become `+z`.

 """
 vg.shape.check(locals(), "up", (3,))
 vg.shape.check(locals(), "look", (3,))

 up, look = [np.asarray(vector, dtype=np.float64) for vector in (up, look)]

 if np.linalg.norm(up) == 0:
 raise ValueError("Singular up")
 if np.linalg.norm(look) == 0:
 raise ValueError("Singular look")

 y = up / np.linalg.norm(up)
 z = look - np.dot(look, y) * y
 if np.linalg.norm(z) == 0:
 raise ValueError("up and look are collinear")
 z = z / np.linalg.norm(z)
 x = np.cross(y, z)
 return np.array([x, y, z])

[docs]def euler(xyz, order="xyz", units="deg"):
 """
 Convert a Euler angle representation of 3D rotations to a 3x3 rotation matrix.

 Euler angles are a way of representing 3D rotations as a sequence of rotations
 about the axes. Conceptually, think of `euler([10, 20, 30])` as
 "Rotate 10 degrees around the x axis, then 20 degrees around the y axis, then
 30 degrees around the z axis" (that ordering can be changed with the `order`
 argument, and the units can be given in degrees or radians by setting `units`
 to `'deg'` or `'rad'`).

 Euler angles are a problematic representation of rotation for numerical methods,
 as there are multiple possible representations for a given rotation. But they are
 a very intuitive and readable way to initialize a rotation matrix.

 See also:

 - https://en.wikipedia.org/wiki/Euler_angles
 """
 if not hasattr(xyz, "__iter__"):
 xyz = [xyz]
 if units == "deg":
 xyz = np.radians(xyz)
 r = np.eye(3)
 for theta, axis in zip(xyz, order):
 c = np.cos(theta)
 s = np.sin(theta)
 if axis == "x":
 r = np.dot(np.array([[1, 0, 0], [0, c, -s], [0, s, c]]), r)
 if axis == "y":
 r = np.dot(np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]), r)
 if axis == "z":
 r = np.dot(np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]]), r)
 return r

 Source code for polliwog.transform._viewing

import numpy as np
import vg
from ._affine_transform import (
 transform_matrix_for_rotation,
 transform_matrix_for_translation,
)
from ._apply import compose_transforms

[docs]def world_to_view(position, target, up=vg.basis.y, inverse=False):
 """
 Create a transform matrix which sends world-space coordinates to
 view-space coordinates.

 Args:
 position (np.ndarray): The camera's position in world coordinates.
 target (np.ndarray): The camera's target in world coordinates.
 `target - position` is the "look at" vector.
 up (np.ndarray): The approximate up direction, in world coordinates.
 inverse (bool): When `True`, return the inverse transform instead.

 Returns:
 np.ndarray: The `4x4` transformation matrix, which can be used with
 `polliwog.transform.apply_transform()`.

 See also:
 https://cseweb.ucsd.edu/classes/wi18/cse167-a/lec4.pdf
 http://www.songho.ca/opengl/gl_camera.html
 """
 vg.shape.check(locals(), "position", (3,))
 vg.shape.check(locals(), "target", (3,))

 look = vg.normalize(target - position)
 left = vg.normalize(vg.cross(look, up))
 recomputed_up = vg.cross(left, look)

 rotation = transform_matrix_for_rotation(np.array([left, recomputed_up, look]))
 if inverse:
 inverse_rotation = rotation.T
 inverse_translation = transform_matrix_for_translation(position)
 return compose_transforms(inverse_rotation, inverse_translation)
 else:
 translation = transform_matrix_for_translation(-position)
 return compose_transforms(translation, rotation)

[docs]def view_to_orthographic_projection(width, height, near=0.1, far=2000, inverse=False):
 """
 Create an orthographic projection matrix with the given parameters, which
 maps points from world space to coordinates in the normalized view volume.
 These coordinates range from -1 to 1 in x, y, and z with `(-1, -1, -1)`
 at the bottom-left of the near clipping plane, and `(1, 1, 1)` at the
 top-right of the far clipping plane.

 Args:
 width (float): Width of the window, in pixels. (FIXME: Is this really
 correct?)
 height (float): Height of the window, in pixels. (FIXME: Is this really
 correct?)
 near (float): Near clipping plane. (FIXME: Clarify!)
 far (float): Far clipping plane. (FIXME: Clarify!)
 inverse (bool): When `True`, return the inverse transform instead.

 Returns:
 np.ndarray: The `4x4` transformation matrix, which can be used with
 `polliwog.transform.apply_transform()`.

 See also:
 https://cseweb.ucsd.edu/classes/wi18/cse167-a/lec4.pdf
 http://www.songho.ca/opengl/gl_projectionmatrix.html
 http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/orthographicprojection.html
 """
 if inverse:
 inverse_translate = np.array(
 [
 [1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, (far + near) / (far - near)],
 [0, 0, 0, 1],
]
)
 inverse_scale = np.array(
 [
 [width / 2, 0, 0, 0],
 [0, height / 2, 0, 0],
 [0, 0, (far - near) / -2, 0],
 [0, 0, 0, 1],
]
)
 return compose_transforms(inverse_translate, inverse_scale)
 else:
 scale = np.array(
 [
 [2 / width, 0, 0, 0],
 [0, 2 / height, 0, 0],
 [0, 0, -2 / (far - near), 0],
 [0, 0, 0, 1],
]
)
 translate = np.array(
 [
 [1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, -(far + near) / (far - near)],
 [0, 0, 0, 1],
]
)
 return compose_transforms(scale, translate)

[docs]def viewport_transform(x_right, y_bottom, x_left=0, y_top=0, inverse=False):
 """
 Create a matrix which transforms from the normalized view volume to
 screen coordinates, with a depth value ranging from 0 in front to 1 in
 back.

 No clipping is performed.

 Args:
 x_right (int): The `x` coordinate of the right of the viewport.
 (usually the width).
 y_bottom (int): The `y` coordinate of the bottom of the viewport
 (usually the height).
 x_left (int): The `x` coordinate of the left of the viewport
 (usually zero).
 y_top (int): The `y` coordinate of the top of the viewport
 (usually zero).
 inverse (bool): When `True`, return the inverse transform instead.

 Returns:
 np.ndarray: The `4x4` transformation matrix, which can be used with
 `polliwog.transform.apply_transform()`.

 See also:
 https://cseweb.ucsd.edu/classes/wi18/cse167-a/lec4.pdf
 http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/viewport_transformation.html
 """
 if inverse:
 inverse_translate = np.array(
 [
 [1, 0, 0, -0.5 * (x_right + x_left)],
 [0, 1, 0, -0.5 * (y_top + y_bottom)],
 [0, 0, 1, -0.5],
 [0, 0, 0, 1],
]
)
 inverse_scale = np.array(
 [
 [2 / (x_right - x_left), 0, 0, 0],
 [0, 2 / (y_top - y_bottom), 0, 0],
 [0, 0, 2, 0],
 [0, 0, 0, 1],
]
)
 return compose_transforms(inverse_translate, inverse_scale)
 else:
 scale = np.array(
 [
 [0.5 * (x_right - x_left), 0, 0, 0],
 [0, 0.5 * (y_top - y_bottom), 0, 0],
 [0, 0, 0.5, 0],
 [0, 0, 0, 1],
]
)
 translate = np.array(
 [
 [1, 0, 0, 0.5 * (x_right + x_left)],
 [0, 1, 0, 0.5 * (y_top + y_bottom)],
 [0, 0, 1, 0.5],
 [0, 0, 0, 1],
]
)
 return compose_transforms(scale, translate)

[docs]def world_to_canvas_orthographic_projection(
 width, height, position, target, zoom=1, inverse=False
):
 """
 Create a transformation matrix which composes camera, orthographic
 projection, and viewport transformations into a single operation.

 Args:
 width (float): Width of the window, in pixels. (FIXME: Is this really
 correct?)
 height (float): Height of the window, in pixels. (FIXME: Is this really
 correct?)
 position (np.ndarray): The camera's position in world coordinates.
 target (np.ndarray): The camera's target in world coordinates.
 `target - position` is the "look at" vector.
 inverse (bool): When `True`, return the inverse transform instead.

 Returns:
 np.ndarray: The `4x4` transformation matrix, which can be used with
 `polliwog.transform.apply_transform()`.

 """
 from ._apply import compose_transforms

 transforms = [
 world_to_view(position=position, target=target, inverse=inverse),
 view_to_orthographic_projection(
 width=width / zoom, height=height / zoom, inverse=inverse
),
 viewport_transform(x_right=width, y_bottom=height, inverse=inverse),
]
 if inverse:
 transforms.reverse()
 return compose_transforms(*transforms)

 Source code for polliwog.tri.functions

import numpy as np
import vg
from .._common.shape import check_shape_any, columnize
from ..line._line_functions import coplanar_points_are_on_same_side_of_line

__all__ = [
 "surface_normals",
 "tri_contains_coplanar_point",
 "barycentric_coordinates_of_points",
]

[docs]def surface_normals(points, normalize=True):
 """
 Compute the surface normal of a triangle. The direction of the normal
 follows conventional counter-clockwise winding and the right-hand
 rule.

 Also works on stacked inputs (i.e. many sets of three points).
 """
 points, _, transform_result = columnize(points, (-1, 3, 3), name="points")

 p1s = points[:, 0]
 p2s = points[:, 1]
 p3s = points[:, 2]
 v1s = p2s - p1s
 v2s = p3s - p1s
 normals = vg.cross(v1s, v2s)

 if normalize:
 normals = vg.normalize(normals)

 return transform_result(normals)

[docs]def tri_contains_coplanar_point(a, b, c, point):
 """
 Assuming `point` is coplanar with the triangle `ABC`, check if it lies
 inside it.
 """
 check_shape_any(a, (3,), (-1, 3), name="a")
 vg.shape.check(locals(), "b", a.shape)
 vg.shape.check(locals(), "c", a.shape)
 vg.shape.check(locals(), "point", a.shape)

 # Uses "same-side technique" from http://blackpawn.com/texts/pointinpoly/default.html
 return np.logical_and(
 np.logical_and(
 coplanar_points_are_on_same_side_of_line(b, c, point, a),
 coplanar_points_are_on_same_side_of_line(a, c, point, b),
),
 coplanar_points_are_on_same_side_of_line(a, b, point, c),
)

[docs]def barycentric_coordinates_of_points(vertices_of_tris, points):
 """
 Compute barycentric coordinates for the projection of a set of points to a
 given set of triangles specfied by their vertices.

 These barycentric coordinates can refer to points outside the triangle.
 This happens when one of the coordinates is negative. However they can't
 specify points outside the triangle's plane. (That requires tetrahedral
 coordinates.)

 The returned coordinates supply a linear combination which, applied to the
 vertices, returns the projection of the original point the plane of the
 triangle.

 Args:
 vertices_of_tris (np.arraylike): A set of triangle vertices as `kx3x3`.
 points (np.arraylike): Coordinates of points as `kx3`.

 Returns:
 np.ndarray: Barycentric coordinates as `kx3`

 See Also:
 - https://en.wikipedia.org/wiki/Barycentric_coordinate_system
 - Heidrich, "Computing the Barycentric Coordinates of a Projected
 Point," JGT 05 (http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf)
 """
 k = vg.shape.check(locals(), "vertices_of_tris", (-1, 3, 3))
 vg.shape.check(locals(), "points", (k, 3))

 p = points.T
 q = vertices_of_tris[:, 0].T
 u = (vertices_of_tris[:, 1] - vertices_of_tris[:, 0]).T
 v = (vertices_of_tris[:, 2] - vertices_of_tris[:, 0]).T

 n = np.cross(u, v, axis=0)
 s = np.sum(n * n, axis=0)

 # If the triangle edges are collinear, cross-product is zero,
 # which makes "s" 0, which gives us divide by zero. So we
 # make the arbitrary choice to set s to epsv (=numpy.spacing(1)),
 # the closest thing to zero
 s[s == 0] = np.spacing(1)

 oneOver4ASquared = 1.0 / s
 w = p - q
 b2 = np.sum(np.cross(u, w, axis=0) * n, axis=0) * oneOver4ASquared
 b1 = np.sum(np.cross(w, v, axis=0) * n, axis=0) * oneOver4ASquared
 b = np.vstack((1 - b1 - b2, b1, b2))

 return b.T

 Source code for polliwog.tri.quad_faces

import numpy as np
import vg

[docs]def quads_to_tris(quads, ret_mapping=False):
 """
 Convert quad faces to triangular faces.

 quads: An nx4 array.
 ret_mapping: A bool.

 When `ret_mapping` is `True`, return a 2nx3 array of new triangles and a 2nx3
 array mapping old quad indices to new trangle indices.

 When `ret_mapping` is `False`, return the 2nx3 array of triangles.
 """
 vg.shape.check(locals(), "quads", (-1, 4))

 tris = np.empty((2 * len(quads), 3))
 tris[0::2, :] = quads[:, [0, 1, 2]]
 tris[1::2, :] = quads[:, [0, 2, 3]]
 if ret_mapping:
 f_old_to_new = np.arange(len(tris)).reshape(-1, 2)
 return tris, f_old_to_new
 else:
 return tris

 _static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 polliwog

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

