
politico-elections Documentation
Release 0.0.1

Jon McClure, Tyler Fisher, Sarah Frostenson, Jeremy C.F. Lin, Lily Mihalik

Dec 13, 2017

Contents:

1 Why this? 3
1.1 Principles . 3
1.2 What’s in it . 4

2 Page structure 5

3 Data structure 7
3.1 Results . 7
3.2 Context . 7
3.3 Other data . 8

4 Models 9
4.1 Core models . 9
4.2 Display models . 13
4.3 Other models . 13

5 Serialization 15
5.1 Page serialization . 15
5.2 Serializers . 18

6 Page views 21
6.1 View classes . 21
6.2 Export Inheritance . 23
6.3 Static context builders . 23

7 Bootstrapping data 25
7.1 bootstrap/bootstrap_geography . 25
7.2 bootstrap/bootstrap_fed . 25
7.3 bootstrap/bootstrap_jurisdictions . 25
7.4 bootstrap/bootstrap_census . 25
7.5 bootstrap/bootstrap_election . 25
7.6 bootstrap/bootstrap_content . 26
7.7 bootstrap/bootstrap_results_db . 26
7.8 bootstrap/bootstrap_results_elex . 26
7.9 bootstrap/bootstrap_historical_election . 26

8 Baking data 27

i

8.1 bakery/bake_context . 27
8.2 bakery/bake_election . 27
8.3 bakery/bake_geography . 27
8.4 bakery/bake_pages . 27
8.5 bakery/bake_statics . 27

9 The Front End 29
9.1 Stack . 29
9.2 Front-end Models . 29
9.3 Serialized results . 30
9.4 Static files . 30

10 Styles 33
10.1 Colors . 33

11 Graphics Modules 35

12 Process notes 37
12.1 Starting up . 37
12.2 Preparing Census data . 38
12.3 Bootstrapping a server . 39
12.4 Running results on election night . 40

13 Indices and tables 43

ii

politico-elections Documentation, Release 0.0.1

Contents: 1

politico-elections Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

Why this?

Beginning with the 2018 election cycle, the POLITICO Interactives Team will be handling POLITICO’s coverage of
election results. Our plans include covering everything from statehouses to presidential elections. Thus, we needed a
centralized, reusable system to collect, manage and publish election results. This system also needs to integrate with
a larger campaign database managed by all of POLITICO.

1.1 Principles

1.1.1 Election Results Done Quick

A primary function of this rig is to publish election results from the AP Elections API. We want to do that as quickly
and efficiently as possible, so this system gets as much data as possible before the election begins into our database.
That includes candidates, parties, and geographical information. We bake all of this data out before the election begins.

Once we gather this information, all we have to do for results is gather data from the AP Elections API (using elex,
the best tool for working with AP election results), do minimal filtering in bash, and publish JSON to Amazon S3.

1.1.2 Relational election data

This system contains a fully relational model for election data. We borrowed a lot of inspiration from the fine folks
making OpenCivicData, but we also account for modeling vote totals. This model will end up becoming a part of a
larger campaign database that will include FEC data and campaign staff information, so the highly relational model is
important to us.

See models.

1.1.3 Modular data visualization

The front-end code within this system does not handle any data visualization. Instead, we do all of that work in
separate repos that we install as node modules and use across the application. That means we can use, for example, a
county results map, on multiple types of pages with ease.

3

https://elex.readthedocs.io
https://opencivicdata.readthedocs.io/en/latest/

politico-elections Documentation, Release 0.0.1

1.2 What’s in it

1.2.1 The backend

• Django as the overarching backend framework

• PostgreSQL as the database of choice

• Django REST Framework to serialize our models to JSON

• Elex to process AP election results

• Fabric to handle server management and data processing

And lots more. . .

1.2.2 The frontend

• redux orm to take serialized JSON and build the relationships between live results and contextual data

• Preact to manage front-end views

4 Chapter 1. Why this?

https://www.djangoproject.com/
https://www.postgresql.org/
http://www.django-rest-framework.org/
https://elex.readthedocs.io/en/stable/
http://www.fabfile.org/
https://github.com/tommikaikkonen/redux-orm
https://preactjs.com/

CHAPTER 2

Page structure

Most of this project is organized around the structure of the pages it’s built to produce.

We produce pages that aggregate elections for offices in legislative bodies, individual pages of election results for
executive offices, i.e., the president and state governors, and pages that show all races in a particular state.

Here is a non-exhaustive sample of the pages we build for:

5

politico-elections Documentation, Release 0.0.1

Path Page type
Home
/election-results/2020/ Homepage for a national general election

President
/election-results/2020/president/ National presidential election results
/election-results/2020/president/
texas/

State presidential election results

U.S. House and Senate
/election-results/2020/senate/ U.S. Senate election results
/election-results/2020/senate/
texas/

U.S. Senate election results in Texas

/election-results/2020/house/ U.S. House election results
/election-results/2020/house/
texas/

U.S. House election results in Texas

State races
/election-results/2020/texas/ All elections in Texas
/election-results/2020/texas/
governor/

Texas governor

/election-results/2020/texas/
senate/

Texas state senate

/election-results/2020/texas/
house/

Texas state house

Special elections
/election-results/2017/alabama/
special-election/dec-12/

Special elections in Alabama on Dec. 12

Page types correspond to our models: ElectionCycle, Office, Body and Division.

• Election cycle page

• Federal executive office page (president)

• State federal executive office page (state results)

• Federal legislative body page (U.S. Senate or House)

• State federal legislative body page (state results)

• State page (all races)

• State executive office page (governor)

• State legislative body page (state house or senate)

Note: Special Elections are a bit of a special case that we host at the state level regardless of the office(s) contested.

See election models.

6 Chapter 2. Page structure

CHAPTER 3

Data structure

Data to build pages is represented by two types: election results from the Associated Press and context that helps
interpret and display those results.

3.1 Results

To process our results as fast as possible, we do the bare minimum data manipulation on election night results from
the AP API. The structure contains just the basic keys needed to marry results to the wider context provided by our
app. This data is baked out as ./results.json when publishing.

Listing 3.1: results.json

{
"fipscode": "51001",
"level": "county",
"polid": "63126",
"polnum": "49283",
"precinctsreporting": 17,
"precinctsreportingpct": 1,
"precinctstotal": 17,
"raceid": "47225",
"statepostal": "VA",
"votecount": 4879,
"votepct": 0.457306,
"winner": true

}

3.2 Context

Context is provided by our app and includes all the information needed to display results on our election night pages.
The data itself is created through a number of bootstrap procedures. See also Serialization. This data is baked out as

7

politico-elections Documentation, Release 0.0.1

./context.json when publishing.

Listing 3.2: context.json

{
"uid": "<{Body|State|Office} UID>",
"content": { /* ... */ },
"elections": [

{
"uid": "<Election UID>",
"date": "2017-11-07",
"office": { /* ... */},
"primary_party": null,
"division": { /* ... */ },
"candidates": [

{ /* ... */ },
// ...

],
"override_votes": false,
"ap_election_id": "47225",
"called": false,
"tabulated": false,
"override_ap_call": true,
"override_ap_votes": false

},
// ...

],
"parties": [

{ /* ... */ },
// ...

],
"division": {

/* ... */
"children": [
{ /* ... */ },
// ...

]
}
}

3.3 Other data

There are also supplemental data files we bake out. For example, GeoJSON created by commands-export-geography
and county-level census data from commands-run-census.

8 Chapter 3. Data structure

CHAPTER 4

Models

Models for elections.

4.1 Core models

4.1.1 geography models

class geography.models.Division(*args, **kwargs)
A political or administrative geography.

For example, a particular state, county, district, precinct or municipality.

add_intersecting(division, intersection=None, symm=True)
Adds paired relationships between intersecting divisions.

Optional intersection represents the portion of the area of the related division intersecting this division.
You can only specify an intersection on one side of the relationship when adding a peer.

get_intersection(division)
Get intersection percentage of intersecting divisions.

remove_intersecting(division, symm=True)
Removes paired relationships between intersecting divisions

save(*args, **kwargs)
uid: division:{parentuid}_{levelcode}-{code}

set_intersection(division, intersection)
Set intersection percentage of intersecting divisions.

class geography.models.DivisionLevel(*args, **kwargs)
Level of government or administration at which a division exists.

For example, federal, state, district, county, precinct, municipal.

9

politico-elections Documentation, Release 0.0.1

save(*args, **kwargs)
uid: {levelcode}

class geography.models.IntersectRelationship(*args, **kwargs)
Each IntersectRelationship instance represents one side of a paired relationship between intersecting divisions.

The intersection field represents the decimal proportion of the to_division that intersects with the from_division.
It’s useful for apportioning counts between the areas, for example, population statistics from census data.

class geography.models.Geography(*args, **kwargs)
The spatial representation (in GeoJSON) of a Division.

4.1.2 entity models

class entity.models.Person(*args, **kwargs)
A real human being.

save(*args, **kwargs)
uid: person:{slug}

class entity.models.Jurisdiction(*args, **kwargs)
A Jurisdiction represents a logical unit of governance, comprised of a collection of legislative bodies, adminis-
trative offices or public services.

For example: the United States Federal Government, the Government of the District of Columbia, Columbia
Missouri City Government, etc.

save(*args, **kwargs)
uid: {division.uid}_jurisdiction:{slug}

class entity.models.Body(*args, **kwargs)
A body represents a collection of offices or individuals organized around a common government or public
service function.

For example: the U.S. Senate, Florida House of Representatives, Columbia City Council, etc.

Note: Duplicate slugs are allowed on this model to accomodate states, for example:

• florida/senate/

• michigan/senate/

save(*args, **kwargs)
uid: {jurisdiction.uid}_body:{slug}

class entity.models.Office(*args, **kwargs)
An office represents a post, seat or position occuppied by an individual as a result of an election.

For example: Senator, Governor, President, Representative.

In the case of executive positions, like governor or president, the office is tied directlty to a jurisdiction. Other-
wise, the office ties to a body tied to a jurisdiction.

Note: Duplicate slugs are allowed on this model to accomodate states, for example:

• florida/house/seat-2/

• michigan/house/seat-2/

10 Chapter 4. Models

politico-elections Documentation, Release 0.0.1

is_executive()
Is this an executive office?

save(*args, **kwargs)
uid: {body.uid | jurisdiction.uid}_office:{slug}

4.1.3 election models

class election.models.Candidate(*args, **kwargs)
A person who runs in a race for an office.

get_candidate_election(election)
Get a CandidateElection.

get_delegates()
Get all pledged delegates for this candidate.

get_election_delegates(election)
Get all pledged delegates for this candidate in an election.

get_election_electoral_votes(election)
Get all electoral votes for this candidate in an election.

get_election_votes(election)
Get all votes for this candidate in an election.

get_elections()
Get all elections a candidate is in.

save(*args, **kwargs)
uid: {person.uid}_candidate:{party.uid}-{cycle.ap_code}

class election.models.Party(*args, **kwargs)
A political party.

save(*args, **kwargs)
uid: party:{apcode}

class election.models.ElectionCycle(uid, slug, name)

save(*args, **kwargs)
uid: cycle:{year}

class election.models.ElectionType(*args, **kwargs)
e.g., “General”, “Primary”

save(*args, **kwargs)
uid: electiontype:{name}

class election.models.ElectionDay(*args, **kwargs)
A day on which one or many elections can be held.

save(*args, **kwargs)
uid: {cycle.uid}_date:{date}

special_election_datestring()
Formatted date string used in URL for special elections.

class election.models.Race(*args, **kwargs)
A race for an office comprised of one or many elections.

4.1. Core models 11

politico-elections Documentation, Release 0.0.1

save(*args, **kwargs)
uid: {office.uid}_{cycle.uid}_race

class election.models.Election(*args, **kwargs)
A specific contest in a race held on a specific day.

delete_candidate(candidate)
Delete a CandidateElection.

get_candidate_delegates(candidate)
Get all pledged delegates for a candidate in this election.

get_candidate_election(candidate)
Get CandidateElection for a Candidate in this election.

get_candidate_electoral_votes(candidate)
Get all electoral votes for a candidate in this election.

get_candidate_votes(candidate)
Get all votes attached to a CandidateElection for a Candidate in this election.

get_candidates()
Get all CandidateElections for this election.

get_candidates_by_party()
Get CandidateElections serialized into an object with party-slug keys.

get_delegates()
Get all pledged delegates for any candidate in this election.

get_electoral_votes()
Get all electoral votes for all candidates in this election.

get_votes()
Get all votes for this election.

save(*args, **kwargs)
uid: {race.uid}_election:{election_day}-{party}

update_or_create_candidate(candidate, aggregable=True, uncontested=False)
Create a CandidateElection.

class election.models.CandidateElection(*args, **kwargs)
A CandidateEection represents the abstract relationship between a candidate and an election and carries proper-
ties like whether the candidate is uncontested or whether we aggregate their vote totals.

class election.models.BallotMeasure(*args, **kwargs)
A ballot measure.

save(*args, **kwargs)
uid: division_cycle_ballotmeasure:{number}

class election.models.BallotAnswer(*args, **kwargs)
An answer to a ballot question.

4.1.4 Vote models

class vote.models.Votes(*args, **kwargs)
Popular vote results.

class vote.models.ElectoralVotes(*args, **kwargs)
Electoral votes.

12 Chapter 4. Models

politico-elections Documentation, Release 0.0.1

class vote.models.Delegates(*args, **kwargs)
Pledged delegates.

class vote.models.APElectionMeta(*args, **kwargs)
Election information corresponding to AP election night.

class vote.models.ResultRun(*args, **kwargs)
A time we hit the AP election API.

class vote.models.ElexResult(*args, **kwargs)
Bulk store of AP election API response.

4.1.5 Record identifier

Conventions for creating our UID field TK.

4.2 Display models

4.2.1 The Show models

class theshow.models.PageContent(*args, **kwargs)
A specific page that content can attach to.

page_location()
Returns the published URL for page.

class theshow.models.PageType(*args, **kwargs)
A type of page that content can attach to.

page_location_template()
Returns the published URL template for a page type.

class theshow.models.PageContentType(*args, **kwargs)
The kind of content contained in a content block. Used to serialize content blocks.

class theshow.models.PageContentBlock(*args, **kwargs)
A block of content for an individual page.

4.3 Other models

4.3.1 Abstract models

Abstract models are used to fill in common fields on other models.

class core.models.UUIDBase(*args, **kwargs)
A unique id, self-constructed from a UUID.

class core.models.UIDBase(*args, **kwargs)
A unique id conforming to our record identifier conventions.

class core.models.SlugBase(*args, **kwargs)
Adds a unique slug.

class core.models.PrimaryKeySlugBase(*args, **kwargs)
Adds a primary key slug.

4.2. Display models 13

politico-elections Documentation, Release 0.0.1

class core.models.NameBase(*args, **kwargs)
Adds a name field.

class core.models.LabelBase(*args, **kwargs)
Adds a label and short label that can be derived from name.

class core.models.SelfRelatedBase(*args, **kwargs)
Adds a self-referrencing foreign key.

class core.models.EffectiveDateBase(*args, **kwargs)
Adds effective date fields.

class core.models.AuditTrackBase(*args, **kwargs)
Adds auto-generated created and updated fields.

4.3.2 demographic models

Demographic models are used to create serialized data from the U.S. Census Bureau.

See also commands-run-census.

class demographic.models.CensusTable(*args, **kwargs)
A census series.

class demographic.models.CensusVariable(*args, **kwargs)
Individual variables on census series to pull, e.g., “001E” on ACS table 19001, the total for household income.

class demographic.models.CensusEstimate(*args, **kwargs)
Individual census series estimates.

class demographic.models.CensusLabel(*args, **kwargs)
Custom labels for census variables that allow us to aggregate variables.

14 Chapter 4. Models

CHAPTER 5

Serialization

Our front-end app is built to consume all the necessary context to interpret AP election results through JSON. We use
Django REST to serialize our models to provide that context.

Each page we publish has a matching serialization endpoint. In preview we hit that endpoint directly. During publish-
ing we bake out the endpoint as a context.json file that is published with the page alongside a results.json
created by our daemonized results gathering process.

Note: A second serialization step occurs on the front end when we marry context and results. That data is what is
actually fed to our front-end components to display the state of any election. See Front-end Models.

5.1 Page serialization

Page serialization matches our Page structure. Pages endpoints are always parameterized using an election day.

5.1.1 Cycle pages

Serializers

class theshow.serializers.ElectionDaySerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

get_bodies(obj)
Bodies with offices up for election on election day.

get_executive_offices(obj)
Executive offices up for election on election day.

get_special_elections(obj)
States holding a special election on election day.

15

politico-elections Documentation, Release 0.0.1

get_states(obj)
States holding a non-special election on election day.

Viewsets

class theshow.viewsets.ElectionDayList(**kwargs)

class theshow.viewsets.ElectionDayDetail(**kwargs)

5.1.2 State pages

Serializers

class theshow.serializers.StateListSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

class theshow.serializers.StateSerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

get_content(obj)
All content for a state’s page on an election day.

get_division(obj)
Division.

get_elections(obj)
All elections in division.

get_parties(obj)
All parties.

Viewsets

class theshow.viewsets.StateMixin

get_queryset()
Returns a queryset of all states holding a non-special election on a date.

get_serializer_context()
Adds election_day to serializer context.

class theshow.viewsets.StateList(**kwargs)

class theshow.viewsets.StateDetail(**kwargs)

5.1.3 Body pages

Serializers

class theshow.serializers.BodyListSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

16 Chapter 5. Serialization

politico-elections Documentation, Release 0.0.1

class theshow.serializers.BodySerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

get_content(obj)
All content for body’s page on an election day.

get_division(obj)
Division.

get_elections(obj)
All elections held on an election day.

get_parties(obj)
All parties.

Viewsets

class theshow.viewsets.BodyMixin

get_queryset()
Returns a queryset of all bodies holding an election on a date.

get_serializer_context()
Adds election_day to serializer context.

class theshow.viewsets.BodyList(**kwargs)

class theshow.viewsets.BodyDetail(**kwargs)

5.1.4 Office pages

Serializers

class theshow.serializers.OfficeListSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

class theshow.serializers.OfficeSerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

get_content(obj)
All content for office’s page on an election day.

get_division(obj)
Division.

get_elections(obj)
All elections on an election day.

get_parties(obj)
All parties.

Viewsets

class theshow.viewsets.OfficeMixin

5.1. Page serialization 17

politico-elections Documentation, Release 0.0.1

get_queryset()
Returns a queryset of all executive offices holding an election on a date.

get_serializer_context()
Adds election_day to serializer context.

class theshow.viewsets.OfficeList(**kwargs)

class theshow.viewsets.OfficeDetail(**kwargs)

5.2 Serializers

class election.serializers.DivisionSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

get_level(obj)
DivisionLevel slug

class election.serializers.PersonSerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

get_images(obj)
Object of images serialized by tag name.

class election.serializers.CandidateSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

get_party(obj)
Party AP code.

class election.serializers.CandidateElectionSerializer(instance=None,
data=<class
’rest_framework.fields.empty’>,
**kwargs)

get_override_winner(obj)
Winner marked in backend.

class election.serializers.OfficeSerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

class election.serializers.APElectionMetaSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

class election.serializers.ElectionSerializer(instance=None, data=<class
’rest_framework.fields.empty’>,
**kwargs)

get_candidates(obj)
CandidateElections.

get_date(obj)
Election date.

get_office(obj)
Office candidates are running for.

18 Chapter 5. Serialization

politico-elections Documentation, Release 0.0.1

get_override_votes(obj)
Votes entered into backend. Only used if override_ap_votes = True.

get_primary_party(obj)
If primary, party AP code.

class election.serializers.PartySerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

class vote.serializers.VotesSerializer(instance=None, data=<class
’rest_framework.fields.empty’>, **kwargs)

get_fipscode(obj)
County FIPS code

get_level(obj)
DivisionLevel.

get_polid(obj)
AP polid minus ‘polid’ prefix if polid else None.

get_polnum(obj)
AP polnum minus ‘polnum’ prefix if polnum else None.

get_precinctsreporting(obj)
Precincts reporting if vote is top level result else None.

get_precinctsreportingpct(obj)
Precincts reporting percent if vote is top level result else None.

get_precinctstotal(obj)
Precincts total if vote is top level result else None.

get_raceid(obj)
AP election ID.

get_statepostal(obj)
State postal abbreviation if county or state else None.

5.2. Serializers 19

politico-elections Documentation, Release 0.0.1

20 Chapter 5. Serialization

CHAPTER 6

Page views

Page views are constructed to support both a live preview and an export view that will be rendered to S3 when
publishing an election.

6.1 View classes

6.1.1 Cycle pages

class theshow.views.cycles.CyclePage(**kwargs)
Preview URL: /election-results/cycle/{YEAR}/

model
alias of ElectionCycle

class theshow.views.cycles.CyclePageExport(**kwargs)
Publish URL: /election-results/{YEAR}/

6.1.2 State pages

class theshow.views.states.StatePage(**kwargs)
Preview URL: /election-results/state/{YEAR}/{STATE}/

model
alias of Division

class theshow.views.states.StatePageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{STATE}/

class theshow.views.states.StateFedPage(**kwargs)
Preview URL: /election-results/state/{YEAR}/{BRANCH}/{STATE}/

(BRANCH is either a congressional body or the office of the presidency.)

21

politico-elections Documentation, Release 0.0.1

class theshow.views.states.StateFedPageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{BRANCH}/{STATE}/

(BRANCH is either a congressional body or the office of the presidency.)

6.1.3 Body pages

class theshow.views.bodies.FederalBodyPage(**kwargs)
Preview URL: /election-results/body/{YEAR}/{BODY}/

model
alias of Body

class theshow.views.bodies.FederalBodyPageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{BODY}/

class theshow.views.bodies.StateBodyPage(**kwargs)
Preview URL: /election-results/body/{YEAR}/{STATE}/{BODY}/

model
alias of Body

class theshow.views.bodies.StateBodyPageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{STATE}/{BODY}/

6.1.4 Race pages

class theshow.views.races.FederalExecutiveRacePage(**kwargs)
Preview URL: /election-results/race/{YEAR}/{OFFICE}/

model
alias of Race

class theshow.views.races.FederalExecutiveRacePageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{OFFICE}/

class theshow.views.races.StateExecutiveRacePage(**kwargs)
Preview URL: /election-results/race/{YEAR}/{STATE}/{OFFICE}/{ELECTION DAY}/

static build_context(election_datestring, state_slug, office_slug, context={})
Build context through a staticmethod so that we can call it without an HTTPRequest when baking to AWS.

model
alias of Race

class theshow.views.races.StateExecutiveRacePageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{STATE}/{OFFICE}/

6.1.5 Special Elections

class theshow.views.specials.SpecialElectionPage(**kwargs)
Preview URL: /election-results/special/{YEAR}/{STATE}/special-election/
{MMM}-{DD}/

static build_context(election_datestring, state_slug, context={})
Build context through a staticmethod so that we can call it without an HTTPRequest when baking to AWS.

cf. utils.bake.election.special_election

22 Chapter 6. Page views

politico-elections Documentation, Release 0.0.1

model
alias of Division

class theshow.views.specials.SpecialElectionPageExport(**kwargs)
Publish URL: /election-results/{YEAR}/{STATE}/special-election/{MMM}-{DD}/

6.2 Export Inheritance

To swap out key script references on the server once we bake out pages, each view class generally has a child that
inherits from it. For example, if there is a RacePage view, there will also be a RacePageExport view.

The child view uses a template that also inherits from the parent’s template, but overrides any resources that will be
baked out.

For example, a parent template may reference a script on the server like this:

class RacePage(ClassView):
template = 'page.html'

<!-- page.html -->

{%block foot%}
<script src="{% static 'theshow/js/app.js'%}"></script>
{%endblock%}

. . . while the export view’s template would override that reference with the script’s URL on AWS:

class RacePageExport(RacePage):
template = 'page.export.html'

<!-- page.export.html -->

{% extends "page.html" %}

{%block foot%}
<script src="http://politico.com/election-results/cdn/{{election_day}}/js/app.js"></
→˓script>
{%endblock%}

6.3 Static context builders

To support exporting views in a management command, the parent view class has a static build_context method
that can return a context object. That context object should be enough to render the child template with the django.
template.loader.render_to_string method when baking to AWS.

6.2. Export Inheritance 23

politico-elections Documentation, Release 0.0.1

24 Chapter 6. Page views

CHAPTER 7

Bootstrapping data

These commands help us import data from the Associated Press, U.S. Census and other sources used to build context
and other data sources.

If bootstrapping from scratch, they should be run in the order below.

7.1 bootstrap/bootstrap_geography

Command.help = 'Downloads and bootstraps geographic data for states and counties from the U.S. Census Bureau simplified cartographic boundary files'

7.2 bootstrap/bootstrap_fed

Command.help = 'Loads basic structure of the federal governement. Must be run AFTER bootstrap_geography command.'

7.3 bootstrap/bootstrap_jurisdictions

Command.help = 'Loads federal and state jurisdictions. Must be run AFTER thebootstrap_geography command.'

7.4 bootstrap/bootstrap_census

Command.help = 'After modeling your desired census tables and estimates in Django, this command will bootstrap estimates from the Census API and then create and upload state-level JSON files to S3.'

7.5 bootstrap/bootstrap_election

Command.help = 'Bootstraps election meta models for all elections on an election date.'

25

politico-elections Documentation, Release 0.0.1

7.6 bootstrap/bootstrap_content

Command.help = 'Bootstraps page content items for pages for all elections on an election day. Must be run AFTER bootstrap_election command.'

7.7 bootstrap/bootstrap_results_db

Command.help = 'Ingests master results JSON file from Elex and updates the results models in Django.'

7.8 bootstrap/bootstrap_results_elex

Command.help = 'Creates config files used by our bash process to bake out election results from Elex and the AP.'

7.9 bootstrap/bootstrap_historical_election

Command.help = 'This is some ugly code that bootstraps previous presidential election results from some junky data at openelections.'

26 Chapter 7. Bootstrapping data

CHAPTER 8

Baking data

These commands help us export data used by.

8.1 bakery/bake_context

Command.help = 'Bakes out context for an election.'

8.2 bakery/bake_election

Command.help = 'Publishes an election!'

8.3 bakery/bake_geography

Command.help = 'Uploads county-level topojson by state.'

8.4 bakery/bake_pages

Command.help = 'Bakes pages for an election.'

8.5 bakery/bake_statics

Command.help = 'Bakes JavaScript and CSS for election date'

27

politico-elections Documentation, Release 0.0.1

28 Chapter 8. Baking data

CHAPTER 9

The Front End

Front-end applications are built in this repo using generator-politico-django in theshow/staticapp.

9.1 Stack

• redux

• redux-orm

• preact

9.2 Front-end Models

We let the client resolve the relationships between our slim results data and the context of any campaigns, passing only
the keys needed to deserialize results.json and context.json.

To ensure we’re reliably setting and querying relationships between our data, we use a front-end ORM. We also
centralize in model methods all the logic needed to resolve any overrides of AP data we set in the backend and pass
clean data to all our front-end components.

Model files for the front-end are in theshow/staticapp/src/js/common/models/ and include models for:

• Division

• Office

• Election

• Party

• Candidate

• AP election status

• AP results

29

https://github.com/The-Politico/generator-politico-django
https://redux.js.org/
https://github.com/tommikaikkonen/redux-orm
https://preactjs.com/

politico-elections Documentation, Release 0.0.1

• Override results from our backend

See redux-orm for details on interacting with models.

Each model contains a serialize() method except Election, which contains a
serializeResults(divisions) method that serializes results for an election in the given division(s)
and handles all AP overrides. Most dataviz components consume the serialized results returned from an Election
model.

9.3 Serialized results

Election’s serialize results method returns a data structure that all of our dataviz components use.

Listing 9.1: serialized results

{
id: <Election UID>,
status: {

called: <APMeta called>,
tabulated: <APMeta tabulated>,
overrideApCall: <APMeta override AP call>,
overrideApVotes: <APMeta override AP votes>,

},
office: { /* ... */ },
divisions: {
<Division ID>: {

code: <Division code>,
codeComponents: { /* ... */ },
id: <Division ID>,
label: <Division label>,
level: <Division level>,
parent: <Division parent>,
postalCode: <Division postal code>,
precinctsReporting: precinctsReporting,
precinctsReportingPct: precinctsReportingPct,
precinctsTotal: precinctsTotal,
results: [

{
candidate: { /* ... */ }
voteCount: voteCount,
votePct: votePct,
winner: winner,

},
/* ... */

],
shortLabel: <Division short label>
topojson: { /* ... */}

}
}

}

9.4 Static files

JS, CSS and images are shared across page types. We bake them out to static paths we can reference absolutely in our
baked pages suffixed with a random hash.

30 Chapter 9. The Front End

https://github.com/tommikaikkonen/redux-orm

politico-elections Documentation, Release 0.0.1

/election-results/cdn/{election day}/{js|css|images}/{filename}-{hash}.{ext}

See commands-bake-statics.

9.4. Static files 31

politico-elections Documentation, Release 0.0.1

32 Chapter 9. The Front End

CHAPTER 10

Styles

Style guides for elections.

10.1 Colors

Always use class names to target data-driven colors.

Our convention for color class names is:

.{palette}-{length}-{index}-{property}

• palette

The name of the palette. For example, gop or dem.

• length

If applicable, the length of the palette ramp. For example, 8 for an 8-color palette ramp.

• index

If applicable, the index of the color within the palette ramp to use. For example, 1 for the first color
in the palette ramp.

• property

The property to target with the specified color. For example, stroke or fill. Concatenate multipart properties into
camel-case, for example, backgroundColor.

Some example of fully specified color classes:

• .gop-4-1-stroke

• .gop-fill

• .dem-backgroundColor

33

politico-elections Documentation, Release 0.0.1

34 Chapter 10. Styles

CHAPTER 11

Graphics Modules

Candidate results bar

County results map

County swing chart

Demographic vote trend scatterplots

Demographic county maps

35

https://github.com/The-Politico/module_candidate-results-bar
https://github.com/The-Politico/module_elections-results-county-map
https://github.com/The-Politico/module_elections-county-arrow-swing-chart
https://github.com/The-Politico/module_elections-demographic-vote-trend-scatterplots
https://github.com/The-Politico/module_elections-demographic-county-map

politico-elections Documentation, Release 0.0.1

36 Chapter 11. Graphics Modules

CHAPTER 12

Process notes

Notes on processes.

12.1 Starting up

12.1.1 Prerequisites

• Have PostgreSQL installed and a local database called elections

• Have python3 installed

• Have virtualenv installed

• Have jq installed (brew install jq)

• Have topojson and topojson-simplify installed globally

12.1.2 Steps

1. Clone this repo to a local directory

2. Start a virtualenv in the directory

$ virtualenv -p python3 venv

3. Start the virtual environment and source any environment variables.

$ source venv/bin/activate
$ source .env

4. Bootstrap the database.

$ fab data.bootstrap_db

37

politico-elections Documentation, Release 0.0.1

5. Move to theshow/staticapp directory and yarn install node dependencies.

$ yarn

6. Run gulp to start developing.

$ gulp

12.2 Preparing Census data

12.2.1 Creating census data

This app contains models and commands to create county-level census data files you can use in your dataviz.

Before you begin, make sure you have these environment variables set:

export AWS_S3_PUBLISH_BUCKET="com.politico.interactives.politico.com"
export AWS_ACCESS_KEY_ID="<YOUR ACCESS KEY>"
export AWS_SECRET_ACCESS_KEY="<YOUR SECRET ACCESS KEY>"

12.2.2 Steps

1. From the root of the elections project, start the development server:

$ python manage.py runserver

2. Login to the backend admin at http://localhost:8000/admin

3. Under Demographic, click to add a new Census Table.

4. Create the table you want using Census table and variable codes. (Use Social Explorer to find the codes.) Be
sure to append an “E” to variable codes to get the census estimate, not the margin of error. For example,
001E.

5. Once you’ve created your table, you’re ready to run the census command that will create your tables on the
server. Specify states by FIPS codes to create county-level Census data files by state:

$ python manage.py run_census 51 34

6. You can find your new data at a URL specified with this pattern:

https://www.politico.com/interactives/elections/data/us-census/{series code}/
→˓{table year}/{state fips}/{table code}.json

For example https://www.politico.com/interactives/elections/data/us-census/acs5/2015/34/B03002.json

12.2.3 Current tables used in modules

• B03002 - Hispanic or Latino Origin by Race

• B19001 - Household Income in the Past 12 months

• B17020 - Poverty Status in the Past 12 Months By Age

• B15003 - Education Attainment for the Population 25 years and Over

38 Chapter 12. Process notes

https://www.socialexplorer.com/explore/tables
https://www.politico.com/interactives/elections/data/us-census/acs5/2015/34/B03002.json

politico-elections Documentation, Release 0.0.1

12.3 Bootstrapping a server

To bootstrap a new server, log into the AWS console and create a new EC2 server using the AMI for elections.

![AMI dashboard](images/ami.png)

Once the server is bootstrapped and has an IP address, use the pem file in the Private Eye repo to login to the server as
such:

ssh ubuntu@ip-address-of-server -i path/to/private-eye/politico-east.pem

Once you’re in the server:

12.3.1 Get Your SSH key on there

You can’t rely on your pem file to get into the server; Fabric depends on your SSH key having ssh access to run its
commands. So you’ll need to copy your SSH key to the server.

1. On your local machine, run pbcopy < ~/.ssh/id_rsa.pub

2. SSH into the server with the pem file, as above

3. nano ~/.ssh/authorized_keys (or vi if that’s your thing)

4. Paste your ssh key on the bottom line

5. Save the file and disconnect from the server (ctrl+d).

6. Try to ssh into the server with ssh ubuntu@ipaddress

12.3.2 Getting the app on the server

Okay, now you’re ready to (attempt to) get the app on the server.

First, double check a few variables in server_config.py. SERVER_PYTHON should match the version you’re
running, such as python3. PRODUCTION_SERVERS/STAGING_SERVERS should have the IP addresses of the
servers in the lists.

> For the following commands, staging represents the server you want to target (either staging or
production) and master represents the branch you want to deploy.

Run fab staging master servers.setup

Then, install the confs with fab staging master servers.deploy_confs.

Check your site and see if it works! If you get an nginx error or it hangs, start checking your logs and welcome to
server hell!

12.3.3 Updating the server

To update the server with changes in the repo, first ensure that all of your changes are pushed to Github. Then, run
fab staging master deploy_server.

12.3. Bootstrapping a server 39

https://github.com/The-Politico/private-eye

politico-elections Documentation, Release 0.0.1

12.3.4 Running commands on the server

To run any fab command on the server from your local machine, use servers.fabcast. For example, if you want
to run the data.bootstrap_db command on the server, you would run:

fab staging master servers.fabcast:data.bootstrap_db

Note that fabcast can only run fabric commands.

12.3.5 Upstart Services

On the server, the app basically functions through two upstart services: app and deploy. The app service starts
uWSGI to serve Django through nginx. The deploy service runs the results daemon.

In the confs folder, you will see the upstart configuration files for those two. Hopefully, you’ll never need to touch
them.

You can control them through Fabric. There are three commands:

1. fab staging master servers.start_service:name_of_service

2. fab staging master servers.stop_service:name_of_service

3. fab staging master servers.restart_service:name_of_service

12.4 Running results on election night

You can run our results deployment for an election night on either your local computer or on a server. This will walk
through both.

12.4.1 Local computer

To run results on your local computer, first ensure you are connected to the correct database and have your AP API
key. You can do this by putting the correct environment variables in your .env file. The environment variables are:

export AP_API_KEY="YOURAPIKEYHERE"
export DATABASE_URL="postgresql://username:password@url:port/elections"

Next, check server_config.py and ensure the correct global variables are set. These are set per deployment
target (production, staging and local). For election nights, make sure they are correct for production. For testing, make
sure they are correct for staging and local.

You will want to pay special attention to the following:

• ELEX_FLAGS: An array of the flags that elex will run. Consult the elex docs.

• CURRENT_ELECTION: The election date we care about

Finally, go into scripts/results.sh and make sure the elex command matches the elex flags in your server
config (we don’t have a good way of matching these yet).

With these variables set, you can bootstrap the AP data. Do that by running fab data.prepare_races.

Warning: Do not run the Fabric command that would wipe the production database.

40 Chapter 12. Process notes

http://elex.readthedocs.io/en/stable/cli.html

politico-elections Documentation, Release 0.0.1

Note: For special elections, you will need to go into your Django admin and set the Election special
boolean to True. Then, run python manage.py bootstrap_results_elex <election-date
(YYYY-MM-DD)> and python manage.py bootstrap_content <election-date
(YYYY-MM-DD)>.

Context

For results pages, we bake out most things like candidate names, election labels and geography labels to the page in a
JSON file for each page. You can bake out that information with the following management command:

python manage.py bake_election <election-date (YYYY-MM-DD)>

If we are getting results for a new state, you will also need to bake out the geography for those pages. Consult the
[geography docs](./geography.md) for how to do that.

Live Results

You can publish live results from your personal computer. First, make sure you have your AP API key exported as an
environment variable:

Also, make sure you are connected to the production database as demonstrated above and you have bootstrapped the
current election date to the production database.

Then, you can run fab production daemon.deploy. This will begin deploying live results to S3.

Once the race is over and AP has finished tabulating results, you can run python manage.py
bootstrap_results_db (YYYY-MM-DD) to update the database with the AP’s tabulated results.

Replaying Tests

The results daemon process will record results automatically. Currently, they are recorded to /tmp/
ap-elex-recordings/<election-date>/national/. You can check that folder to ensure recording is
working if you run fab staging daemon.deploy during a live AP test.

To replay a test, run fab staging daemon.test, which will loop through the files in this folder and serve them locally
and to your deployment target.

12.4.2 Server

TKTK

12.4. Running results on election night 41

politico-elections Documentation, Release 0.0.1

42 Chapter 12. Process notes

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

43

politico-elections Documentation, Release 0.0.1

44 Chapter 13. Indices and tables

Index

A
add_intersecting() (geography.models.Division method),

9
APElectionMeta (class in vote.models), 13
APElectionMetaSerializer (class in election.serializers),

18
AuditTrackBase (class in core.models), 14

B
BallotAnswer (class in election.models), 12
BallotMeasure (class in election.models), 12
Body (class in entity.models), 10
BodyDetail (class in theshow.viewsets), 17
BodyList (class in theshow.viewsets), 17
BodyListSerializer (class in theshow.serializers), 16
BodyMixin (class in theshow.viewsets), 17
BodySerializer (class in theshow.serializers), 16
build_context() (theshow.views.races.StateExecutiveRacePage

static method), 22
build_context() (theshow.views.specials.SpecialElectionPage

static method), 22

C
Candidate (class in election.models), 11
CandidateElection (class in election.models), 12
CandidateElectionSerializer (class in election.serializers),

18
CandidateSerializer (class in election.serializers), 18
CensusEstimate (class in demographic.models), 14
CensusLabel (class in demographic.models), 14
CensusTable (class in demographic.models), 14
CensusVariable (class in demographic.models), 14
CyclePage (class in theshow.views.cycles), 21
CyclePageExport (class in theshow.views.cycles), 21

D
Delegates (class in vote.models), 12
delete_candidate() (election.models.Election method), 12
Division (class in geography.models), 9

DivisionLevel (class in geography.models), 9
DivisionSerializer (class in election.serializers), 18

E
EffectiveDateBase (class in core.models), 14
Election (class in election.models), 12
ElectionCycle (class in election.models), 11
ElectionDay (class in election.models), 11
ElectionDayDetail (class in theshow.viewsets), 16
ElectionDayList (class in theshow.viewsets), 16
ElectionDaySerializer (class in theshow.serializers), 15
ElectionSerializer (class in election.serializers), 18
ElectionType (class in election.models), 11
ElectoralVotes (class in vote.models), 12
ElexResult (class in vote.models), 13

F
FederalBodyPage (class in theshow.views.bodies), 22
FederalBodyPageExport (class in theshow.views.bodies),

22
FederalExecutiveRacePage (class in

theshow.views.races), 22
FederalExecutiveRacePageExport (class in

theshow.views.races), 22

G
Geography (class in geography.models), 10
get_bodies() (theshow.serializers.ElectionDaySerializer

method), 15
get_candidate_delegates() (election.models.Election

method), 12
get_candidate_election() (election.models.Candidate

method), 11
get_candidate_election() (election.models.Election

method), 12
get_candidate_electoral_votes() (elec-

tion.models.Election method), 12
get_candidate_votes() (election.models.Election

method), 12

45

politico-elections Documentation, Release 0.0.1

get_candidates() (election.models.Election method), 12
get_candidates() (election.serializers.ElectionSerializer

method), 18
get_candidates_by_party() (election.models.Election

method), 12
get_content() (theshow.serializers.BodySerializer

method), 17
get_content() (theshow.serializers.OfficeSerializer

method), 17
get_content() (theshow.serializers.StateSerializer

method), 16
get_date() (election.serializers.ElectionSerializer

method), 18
get_delegates() (election.models.Candidate method), 11
get_delegates() (election.models.Election method), 12
get_division() (theshow.serializers.BodySerializer

method), 17
get_division() (theshow.serializers.OfficeSerializer

method), 17
get_division() (theshow.serializers.StateSerializer

method), 16
get_election_delegates() (election.models.Candidate

method), 11
get_election_electoral_votes() (elec-

tion.models.Candidate method), 11
get_election_votes() (election.models.Candidate

method), 11
get_elections() (election.models.Candidate method), 11
get_elections() (theshow.serializers.BodySerializer

method), 17
get_elections() (theshow.serializers.OfficeSerializer

method), 17
get_elections() (theshow.serializers.StateSerializer

method), 16
get_electoral_votes() (election.models.Election method),

12
get_executive_offices() (theshow.serializers.ElectionDaySerializer

method), 15
get_fipscode() (vote.serializers.VotesSerializer method),

19
get_images() (election.serializers.PersonSerializer

method), 18
get_intersection() (geography.models.Division method),

9
get_level() (election.serializers.DivisionSerializer

method), 18
get_level() (vote.serializers.VotesSerializer method), 19
get_office() (election.serializers.ElectionSerializer

method), 18
get_override_votes() (elec-

tion.serializers.ElectionSerializer method),
18

get_override_winner() (elec-
tion.serializers.CandidateElectionSerializer

method), 18
get_parties() (theshow.serializers.BodySerializer

method), 17
get_parties() (theshow.serializers.OfficeSerializer

method), 17
get_parties() (theshow.serializers.StateSerializer method),

16
get_party() (election.serializers.CandidateSerializer

method), 18
get_polid() (vote.serializers.VotesSerializer method), 19
get_polnum() (vote.serializers.VotesSerializer method),

19
get_precinctsreporting() (vote.serializers.VotesSerializer

method), 19
get_precinctsreportingpct()

(vote.serializers.VotesSerializer method),
19

get_precinctstotal() (vote.serializers.VotesSerializer
method), 19

get_primary_party() (elec-
tion.serializers.ElectionSerializer method),
19

get_queryset() (theshow.viewsets.BodyMixin method),
17

get_queryset() (theshow.viewsets.OfficeMixin method),
17

get_queryset() (theshow.viewsets.StateMixin method), 16
get_raceid() (vote.serializers.VotesSerializer method), 19
get_serializer_context() (theshow.viewsets.BodyMixin

method), 17
get_serializer_context() (theshow.viewsets.OfficeMixin

method), 18
get_serializer_context() (theshow.viewsets.StateMixin

method), 16
get_special_elections() (theshow.serializers.ElectionDaySerializer

method), 15
get_statepostal() (vote.serializers.VotesSerializer

method), 19
get_states() (theshow.serializers.ElectionDaySerializer

method), 16
get_votes() (election.models.Election method), 12

H
help (bakery.management.commands.bake_context.Command

attribute), 27
help (bakery.management.commands.bake_election.Command

attribute), 27
help (bakery.management.commands.bake_geography.Command

attribute), 27
help (bakery.management.commands.bake_pages.Command

attribute), 27
help (bakery.management.commands.bake_statics.Command

attribute), 27

46 Index

politico-elections Documentation, Release 0.0.1

help (bootstrap.management.commands.bootstrap_census.Command
attribute), 25

help (bootstrap.management.commands.bootstrap_content.Command
attribute), 26

help (bootstrap.management.commands.bootstrap_election.Command
attribute), 25

help (bootstrap.management.commands.bootstrap_fed.Command
attribute), 25

help (bootstrap.management.commands.bootstrap_geography.Command
attribute), 25

help (bootstrap.management.commands.bootstrap_historical_election.Command
attribute), 26

help (bootstrap.management.commands.bootstrap_jurisdictions.Command
attribute), 25

help (bootstrap.management.commands.bootstrap_results_db.Command
attribute), 26

help (bootstrap.management.commands.bootstrap_results_elex.Command
attribute), 26

I
IntersectRelationship (class in geography.models), 10
is_executive() (entity.models.Office method), 10

J
Jurisdiction (class in entity.models), 10

L
LabelBase (class in core.models), 14

M
model (theshow.views.bodies.FederalBodyPage at-

tribute), 22
model (theshow.views.bodies.StateBodyPage attribute),

22
model (theshow.views.cycles.CyclePage attribute), 21
model (theshow.views.races.FederalExecutiveRacePage

attribute), 22
model (theshow.views.races.StateExecutiveRacePage at-

tribute), 22
model (theshow.views.specials.SpecialElectionPage at-

tribute), 22
model (theshow.views.states.StatePage attribute), 21

N
NameBase (class in core.models), 13

O
Office (class in entity.models), 10
OfficeDetail (class in theshow.viewsets), 18
OfficeList (class in theshow.viewsets), 18
OfficeListSerializer (class in theshow.serializers), 17
OfficeMixin (class in theshow.viewsets), 17
OfficeSerializer (class in election.serializers), 18

OfficeSerializer (class in theshow.serializers), 17

P
page_location() (theshow.models.PageContent method),

13
page_location_template() (theshow.models.PageType

method), 13
PageContent (class in theshow.models), 13
PageContentBlock (class in theshow.models), 13
PageContentType (class in theshow.models), 13
PageType (class in theshow.models), 13
Party (class in election.models), 11
PartySerializer (class in election.serializers), 19
Person (class in entity.models), 10
PersonSerializer (class in election.serializers), 18
PrimaryKeySlugBase (class in core.models), 13

R
Race (class in election.models), 11
remove_intersecting() (geography.models.Division

method), 9
ResultRun (class in vote.models), 13

S
save() (election.models.BallotMeasure method), 12
save() (election.models.Candidate method), 11
save() (election.models.Election method), 12
save() (election.models.ElectionCycle method), 11
save() (election.models.ElectionDay method), 11
save() (election.models.ElectionType method), 11
save() (election.models.Party method), 11
save() (election.models.Race method), 11
save() (entity.models.Body method), 10
save() (entity.models.Jurisdiction method), 10
save() (entity.models.Office method), 11
save() (entity.models.Person method), 10
save() (geography.models.Division method), 9
save() (geography.models.DivisionLevel method), 9
SelfRelatedBase (class in core.models), 14
set_intersection() (geography.models.Division method), 9
SlugBase (class in core.models), 13
special_election_datestring() (elec-

tion.models.ElectionDay method), 11
SpecialElectionPage (class in theshow.views.specials), 22
SpecialElectionPageExport (class in

theshow.views.specials), 23
StateBodyPage (class in theshow.views.bodies), 22
StateBodyPageExport (class in theshow.views.bodies), 22
StateDetail (class in theshow.viewsets), 16
StateExecutiveRacePage (class in theshow.views.races),

22
StateExecutiveRacePageExport (class in

theshow.views.races), 22
StateFedPage (class in theshow.views.states), 21

Index 47

politico-elections Documentation, Release 0.0.1

StateFedPageExport (class in theshow.views.states), 21
StateList (class in theshow.viewsets), 16
StateListSerializer (class in theshow.serializers), 16
StateMixin (class in theshow.viewsets), 16
StatePage (class in theshow.views.states), 21
StatePageExport (class in theshow.views.states), 21
StateSerializer (class in theshow.serializers), 16

U
UIDBase (class in core.models), 13
update_or_create_candidate() (election.models.Election

method), 12
UUIDBase (class in core.models), 13

V
Votes (class in vote.models), 12
VotesSerializer (class in vote.serializers), 19

48 Index

	Why this?
	Principles
	What’s in it

	Page structure
	Data structure
	Results
	Context
	Other data

	Models
	Core models
	Display models
	Other models

	Serialization
	Page serialization
	Serializers

	Page views
	View classes
	Export Inheritance
	Static context builders

	Bootstrapping data
	bootstrap/bootstrap_geography
	bootstrap/bootstrap_fed
	bootstrap/bootstrap_jurisdictions
	bootstrap/bootstrap_census
	bootstrap/bootstrap_election
	bootstrap/bootstrap_content
	bootstrap/bootstrap_results_db
	bootstrap/bootstrap_results_elex
	bootstrap/bootstrap_historical_election

	Baking data
	bakery/bake_context
	bakery/bake_election
	bakery/bake_geography
	bakery/bake_pages
	bakery/bake_statics

	The Front End
	Stack
	Front-end Models
	Serialized results
	Static files

	Styles
	Colors

	Graphics Modules
	Process notes
	Starting up
	Preparing Census data
	Bootstrapping a server
	Running results on election night

	Indices and tables

