polarTransform Documentation
Release 2.0.0

Addison Elliott

Jan 09, 2019

Contents:

1 Getting Started 1
.1 Introduction e e e e e 1
1.2 License o o e e e e e e 1
1.3 Installing o . e e e e e e e 1
1.4 Testand COVErage v v v v v vt ittt e e e e e e e e e 2
1.5 Using polarTransform o e e e e e e e 2
1.6 SUPPOTL . . . o o o e e e e e e e e e e e e e e 2
L7 0 NeXtSEPS . v o v v o ot e e e e e e e e e e e e e e e e e e 2
2 User Guide 3
2.1 Example I . . . o e e e e e e e 3
2.2 Example 2 . . .o e e e e e e e 5
3 Reference Guide 9
3.1 Tableof Contents L e e e e e e e 9
3.2 polarTransform Module L e 9
4 Indices and tables 23
Python Module Index 25

CHAPTER 1

Getting Started

1.1 Introduction

polarTransform is a Python package for converting images between the polar and Cartesian domain. It contains many
features such as specifying the start/stop radius and angle, interpolation order (bicubic, linear, nearest, etc), and much
more.

1.2 License

polarTransform has an MIT-based license.

1.3 Installing

1.3.1 Prerequisites

* Python 3
¢ Dependencies:
— numpy

— scipy

- scikit-image

1.3.2 Installing polarTransform

polarTransform is currently available on PyPi. The simplest way to install alone is using pip at a command line:

https://github.com/addisonElliott/polarTransform/blob/master/LICENSE
https://pypi.python.org/pypi/polarTransform/

polarTransform Documentation, Release 2.0.0

’pip install polarTransform

which installs the latest release. To install the latest code from the repository (usually stable, but may have undocu-
mented changes or bugs):

’pip install git+https://github.com/addisonElliott/polarTransform.git

For developers, you can clone the pydicom repository and run the setup.py file. Use the following commands to
get a copy from GitHub and install all dependencies:

git clone pip install git+https://github.com/addisonElliott/polarTransform.git
cd polarTransform
pip install

or, for the last line, instead use:

pip install -e .

to install in ‘develop’ or ‘editable’ mode, where changes can be made to the local working code and Python will use
the updated polarTransform code.

1.4 Test and coverage

Run the following command in the base directory to run the tests:

’python -m unittest discover -v polarTransform/tests

1.5 Using polarTransform

Once installed, the package can be imported at a Python command line or used in your own Python program with
import polarTransform. Seethe User Guide for more details of how to use the package.

1.6 Support

Bugs can be submitted through the issue tracker.

Pull requests are welcome too!

1.7 Next Steps

To start learning how to use polarTransform, see the User Guide.

2 Chapter 1. Getting Started

https://github.com/addisonElliott/polarTransform/issues

CHAPTER 2

User Guide

convertToPolarImage and convertToCartesianImage are the two primary functions that make up this
package. The two functions are opposites of one another, reversing the action that the other function does.

As the names suggest, the two functions convert an image from the cartesian or polar domain to the other domain with
a given set of parameters. The power of these functions is that the user can specify the resulting image resolution,
interpolation order, initial and final radii or angles and much much more. See the Reference Guide for more information
on the specific parameters that are supported.

Since there are quite a few parameters that can be specified for the conversion functions, the class TmageTransform
is created and returned from the convertToPolarImage or convertToCartesianImage functions (along
with the converted image) that contains the arguments specified. The benefit of this class is that if one wants to convert
the image back to another domain or convert points on either image to/from the other domain, they can simply call the
functions within the Tmage Trans form class without specifying all of the arguments again.

The examples below use images from the test suite. The code snippets should run without modification except for
changing the paths to point to the correct image.

2.1 Example 1

Let us take a B-mode echocardiogram and convert it to the polar domain. This is essentially reversing the scan
conversion done internally by the ultrasound machine.

Here is the B-mode image:

polarTransform Documentation, Release 2.0.0

import polarTransform
import matplotlib.pyplot as plt
import imageio

cartesianImage = imageio.imread('IMAGE_PATH_ HERE'")
polarImage, ptSettings = polarTransform.convertToPolarImage (cartesianImage,

—center=[401, 365])
plt.imshow (polarImage.T, origin='lower")

Resulting polar domain image:

4 Chapter 2. User Guide

polarTransform Documentation, Release 2.0.0

The example input image has a width of 800px and a height of 604px. Since many imaging libraries use C-order
rather than Fortran order, the Numpy array containing the image data loaded from imageio has a shape of (604, 800).
This is what polarTransform expects for an image where the first dimension is the slowest varying (y) and the last
dimension is the fastest varying (x). Additional dimensions can be present before the y & x dimensions in which case
polarTransform will transform each 2D slice individually.

The center argument should be a list, tuple or Numpy array of length 2 with format (x, y). A common theme throughout
this library is that points will be specified in Fortran order, i.e. (X, y) or (r, theta) whilst data and image sizes will be
specified in C-order, i.e. (y, x) or (theta, r).

The polar image returned in this example is in C-order. So this means that the data is (theta, r). When displaying an
image using matplotlib, the first dimension is y and second is x. The image is transposed before displaying to flip it
90 degrees.

2.2 Example 2

Input image:

2.2. Example 2 5

polarTransform Documentation, Release 2.0.0

import polarTransform
import matplotlib.pyplot as plt
import imageio

verticallinesImage = imageio.imread('IMAGE_PATH_HERE")

polarImage, ptSettings = polarTransform.convertToPolarImage (verticallLinesImage,
—initialRadius=30,

finalRadius=100,
—initialAngle=2 / 4 * np.pi,

finalAngle=5 / 4 * np.pi,
—~hasColor=True)

cartesianImage = ptSettings.convertToCartesianImage (polarImage)

plt.figure()
plt.imshow (polarImage.T, origin='lower")

plt.figure ()
plt.imshow (cartesianImage, origin='lower")

Resulting polar domain image:

—

Converting back to the cartesian image results in:

6 Chapter 2. User Guide

polarTransform Documentation, Release 2.0.0

Once again, when displaying polar images using matplotlib, the image is first transposed to rotate the image 90 degrees.
This makes it easier to view the image because the theta dimension is longer than the radial dimension.

The hasColor argument was set to True in this example because the image contains color images. The example RGB
image has a width and height of 256px. The shape of the image loaded via imageio package is (256, 256, 3). By
specified hasColor=True, the last dimension will be shifted to the front and then the polar transformation will occur on
each channel separately. Before returning, the function will shift the channel dimension back to the end. If a RGBA
image is loaded, it is advised to only transform the first 3 channels and then set the alpha channel to fully on.

2.2. Example 2 7

polarTransform Documentation, Release 2.0.0

8 Chapter 2. User Guide

CHAPTER 3

Reference Guide

3.1 Table of Contents

polarTransform.convertToCartesianImage(ifdagegrt polar image to cartesian image.
polarTransform.convertToPolarImage(image[Convert cartesian image to polar image.
)
polarTransform.getCartesianPointsImage(.Convert list of polar points from image to cartesian im-
age points based on transform metadata
polarTransform.getPolarPointsImage(points,Convert list of cartesian points from image to polar im-
. age points based on transform metadata
polarTransform. ImageTransform(center,...) Class to store settings when converting between carte-
sian and polar domain

3.2 polarTransform Module

polarTransform.convertToCartesianImage (image, center=None, initialRadius=None, finalRa-
dius=None, initialAngle=None, finalAngle=None,
imageSize=None, hasColor=False, order=3, bor-
der="constant’, borderVal=0.0, useMultiThread-

ing=False, settings=None)
Convert polar image to cartesian image.

Using a polar image, this function creates a cartesian image. This function is versatile because it can automati-
cally calculate an appropriate cartesian image size and center given the polar image. In addition, parameters for
converting to the polar domain are necessary for the conversion back to the cartesian domain.

Parameters
image [N-dimensional numpy .ndarray] Polar image to convert to cartesian domain

Image should be structured in C-order, i.e. the axes should be ordered (..., z, theta, r, [ch]).
The channel axes should only be present if hasColor is True. This format is arbitrary

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True

polarTransform Documentation, Release 2.0.0

but is selected to stay consistent with the traditional C-order representation in the Cartesian
domain.

In the mathematical domain, Cartesian coordinates are traditionally represented as (X, y, z)
and as (t, theta, z) in the polar domain. When storing Cartesian data in C-order, the axes are
usually flipped and the data is saved as (z, y, x). Thus, the polar domain coordinates are also
flipped to stay consistent, hence the format (z, theta, r).

Note: For multi-dimensional images above 2D, the cartesian transformation is applied
individually across each 2D slice. The last two dimensions should be the r & theta dimen-
sions, unless hasColor is True in which case the 2nd and 3rd to last dimensions should
be. The multidimensional shape will be preserved for the resulting cartesian image (besides
the polar dimensions).

center [stror(2,) list, tupleor numpy.ndarray of int, optional] Specifies the center
in the cartesian image to use as the origin in polar domain. The center in the cartesian
domain will be (0, 0) in the polar domain.

If center is not set, then it will default to middle-middle. If the image size is None, the
center is calculated after the image size is determined.

For relative positioning within the image, center can be one of the string values in the table
below. The quadrant column contains the visible quadrants for the given center. initialAngle
and finalAngle must contain at least one of the quadrants, otherwise an error will be thrown
because the resulting cartesian image is blank. An example cartesian image is given below
with annotations to what the center will be given a center string.

Table 2: Valid center strings

Value Quadrant | Location in image
top-left v 1
top-middle I, IV 2
top-right I 3
middle-left LIV 4
middle-middle | LI, LIV | 5
middle-right IL III 6
bottom-left I 7
bottom-middle | I, II 8
bottom-right II 9

10 Chapter 3. Reference Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

polarTransform Documentation, Release 2.0.0

1 !' 2 3
]
]
]
]
]
]
]
]
]
]
]
]
h---------------Ii----------------i
4 :5 B
]
]
]
]
]
]
]
]
]
]
7 1 8 9
[] Y []

initialRadius [int, optional] Starting radius in pixels from the center of the cartesian image in
the polar image

The polar image begins at this radius, i.e. the first row of the polar image corresponds to
this starting radius.

If initialRadius is not set, then it will default to 0.

finalRadius [int, optional] Final radius in pixels from the center of the cartesian image in the
polar image

The polar image ends at this radius, i.e. the last row of the polar image corresponds to this
ending radius.

Note: The polar image does not include this radius. It includes all radii starting from initial
to final radii excluding the final radius. Rather, it will stop one step size before the final
radius. Assuming the radial resolution (see radiusSize) is small enough, this should not
matter.

If finalRadius is not set, then it will default to the maximum radius which is the size of the
radial (1st) dimension of the polar image.

initialAngle [f1loat, optional] Starting angle in radians in the polar image

The polar image begins at this angle, i.e. the first column of the polar image corresponds to
this starting angle.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should
be in the range of 0 to 2.

If initial Angle is not set, then it will default to 0. 0.
finalAngle [f1oat, optional] Final angle in radians in the polar image

The polar image ends at this angle, i.e. the last column of the polar image corresponds to
this ending angle.

Note: The polar image does not include this angle. It includes all angles starting from
initial to final angle excluding the final angle. Rather, it stops one step size before the final

3.2. polarTransform Module 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

polarTransform Documentation, Release 2.0.0

angle. Assuming the angular resolution (see angleSize) is small enough, this should not
matter.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should
be in the range of 0 to 2.

If final Angle is not set, then it will default to 2.

imageSize [(2,) 1ist, tuple or numpy.ndarray of int, optional] Desired size of carte-
sian image where 1st dimension is number of rows and 2nd dimension is number of columns

If imageSize is not set, then it defaults to the size required to fit the entire polar image on a
cartesian image.

hasColor [bool, optional] Whether or not the polar image contains color channels

This means that the image is structured as (..., y, X, ch) or (..., theta, r, ch) for Cartesian or
polar images, respectively. If color channels are present, the last dimension (channel axes)
will be shifted to the front, converted and then shifted back to its original location.

Defaultis False

Note: If an alpha band (4th channel of image is present), then it will be converted. Typi-
cally, this is unwanted, so the recommended solution is to transform the first 3 channels and
set the 4th channel to fully on.

order [int (0-5), optional] The order of the spline interpolation, default is 3. The order has to
be in the range 0-5.

The following orders have special names:
* 0 - nearest neighbor

* 1 - bilinear

* 3 - bicubic

border [{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’}, optional] Polar points outside the cartesian
image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the bound-
aries. The input column is the 1D input array whilst the extended columns on either side of
the input array correspond to the expected values for the given mode if one extends past the
boundaries.

Table 3: Valid border modes and expected output

Mode Ext. | Input Ext.
mirror 432112345678 | 765
reflect 321112345678 | 876
nearest 11112345678 | 888
constant | 000 | 12345678 | 000
wrap 678 | 12345678 | 123

Refer to scipy.ndimage.map_coordinates () for more details on this argument.

12 Chapter 3. Reference Guide

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates

polarTransform Documentation, Release 2.0.0

borderVal [same datatype as image, optional] Value used for polar points outside the cartesian
image boundaries if border = ‘constant’.

Default is 0.0

useMultiThreading [bool, optional] Whether to use multithreading when applying transfor-
mation for 3D images. This considerably speeds up the execution time for large images but
adds overhead for smaller 3D images.

Defaultis False

settings [ImageTransform, optional] Contains metadata for conversion between polar and
cartesian image.

Settings contains many of the arguments in convertToPolarImage () and
convertToCartesianImage () and provides an easy way of passing these parame-
ters along without having to specify them all again.

Warning: Cleaner and more succint to use ImageTransform.
convertToCartesianImage ()

If settings is not specified, then the other arguments are used in this function and the defaults
will be calculated if necessary. If settings is given, then the values from settings will be used.

Returns
cartesianIlmage [N-dimensional numpy .ndarray] Cartesian image

Resulting image is structured in C-order, i.e. the axes are ordered as (..., z, y, X, [ch]). This
format is the traditional method of storing image data in Python.

Resulting image shape will be the same as the input image except for the polar dimensions
are replaced with the Cartesian dimensions.

settings [ImageTransform] Contains metadata for conversion between polar and cartesian
image.

Settings contains many of the arguments in convertToPolarImage () and
convertToCartesianImage () and provides an easy way of passing these parame-
ters along without having to specify them all again.

polarTransform.convertToPolarImage (image, center=None, initialRadius=None, finalRa-
dius=None, initialAngle=None, finalAngle=None,
radiusSize=None, angleSize=None, hasColor=False,
order=3, border="constant’, borderVal=0.0, useMulti-

Threading=False, settings=None)
Convert cartesian image to polar image.

Using a cartesian image, this function creates a polar domain image where the first dimension is radius and
second dimension is the angle. This function is versatile because it allows different starting and stopping radii
and angles to extract the polar region you are interested in.

Note: Traditionally images are loaded such that the origin is in the upper-left hand corner. In these cases the
initialAngle and finalAngle will rotate clockwise from the x-axis. For simplicitly, it is recommended
to flip the image along first dimension before passing to this function.

Parameters

3.2. polarTransform Module 13

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

polarTransform Documentation, Release 2.0.0

image [N-dimensional numpy .ndarray] Cartesian image to convert to polar domain

Image should be structured in C-order, i.e. the axes should be ordered as (..., z, y, X, [ch]).
This format is the traditional method of storing image data in Python.

Note: For multi-dimensional images above 2D, the polar transformation is applied individ-
ually across each 2D slice. The last two dimensions should be the x & y dimensions, unless
hasColor is True in which case the 2nd and 3rd to last dimensions should be. The mul-
tidimensional shape will be preserved for the resulting polar image (besides the Cartesian
dimensions).

center [(2,) 1ist, tuple or numpy.ndarray of int, optional] Specifies the center in the
cartesian image to use as the origin in polar domain. The center in the cartesian domain will
be (0, 0) in the polar domain.

The center is structured as (X, y) where the first item is the x-coordinate and second item is
the y-coordinate.

If center is not set, then it will default to round (image.shape[::-1] / 2).

initialRadius [int, optional] Starting radius in pixels from the center of the cartesian image
that will appear in the polar image

The polar image will begin at this radius, i.e. the first row of the polar image will correspond
to this starting radius.

If initialRadius is not set, then it will default to 0.

finalRadius [int, optional] Final radius in pixels from the center of the cartesian image that
will appear in the polar image

The polar image will end at this radius, i.e. the last row of the polar image will correspond
to this ending radius.

Note: The polar image will not include this radius. It will include all radii starting from
initial to final radii excluding the final radius. Rather, it will stop one step size before
the final radius. Assuming the radial resolution (see radiusSize) is small enough, this
should not matter.

If finalRadius is not set, then it will default to the maximum radius of the cartesian image.
Using the furthest corner from the center, the finalRadius can be calculated as:

fz'nalRadius = \/((Xmam - Xcenter)2 + (Yma:z: - chenter)Q)

initialAngle [f1oat, optional] Starting angle in radians that will appear in the polar image

The polar image will begin at this angle, i.e. the first column of the polar image will corre-
spond to this starting angle.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should
be in the range of 0 to 2.

If initial Angle is not set, then it will defaultto 0. 0.
finalAngle [float, optional] Final angle in radians that will appear in the polar image

The polar image will end at this angle, i.e. the last column of the polar image will correspond
to this ending angle.

14 Chapter 3. Reference Guide

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

polarTransform Documentation, Release 2.0.0

Note: The polar image will not include this angle. It will include all angle starting from
initial to final angle excluding the final angle. Rather, it will stop one step size before the
final angle. Assuming the angular resolution (see angleSize) is small enough, this should
not matter.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should
be in the range of 0 to 27.

If final Angle is not set, then it will default to 27.
radiusSize [int, optional] Size of polar image for radial (1st) dimension

This in effect determines the resolution of the radial dimension of the polar image based on
the initialRadius and finalRadius. Resolution can be calculated using equation
below in radial px per cartesian px:

radiusSize

radial Resolution = final Radius — initial Radius
If radiusSize is not set, then it will default to the minimum size necessary to ensure that
image information is not lost in the transformation. The minimum resolution necessary
can be found by finding the smallest change in radius from two connected pixels in the
cartesian image. Through experimentation, there is a surprisingly close relationship between
the maximum difference from width or height of the cartesian image to the center times
two.

The radiusSize is calculated based on this relationship and is proportional to the
initialRadius and finalRadius given.

angleSize [int, optional] Size of polar image for angular (2nd) dimension

This in effect determines the resolution of the angular dimension of the polar image based
onthe initialAngle and finalAngle. Resolution can be calculated using equation
below in angular px per cartesian px:

angleSize

angular Resolution =
g final Angle — initial Angle

If angleSize is not set, then it will default to the minimum size necessary to ensure that
image information is not lost in the transformation. The minimum resolution necessary can
be found by finding the smallest change in angle from two connected pixels in the cartesian
image.

For a cartesian image with either dimension greater than 500px, the angleSize is set
to be two times larger than the largest dimension proportional to initialAngle
and finalAngle. Otherwise, for a cartesian image with both dimensions less than
500px, the angleSize is set to be four times larger the largest dimension proportional to
initialAngle and finalAngle.

Note: The above logic estimates the necessary angleSize to reduce image information loss.
No algorithm currently exists for determining the required angleSize.

hasColor [bool, optional] Whether or not the cartesian image contains color channels

This means that the image is structured as (..., y, X, ch) or (..., theta, r, ch) for Cartesian or
polar images, respectively. If color channels are present, the last dimension (channel axes)
will be shifted to the front, converted and then shifted back to its original location.

3.2. polarTransform Module 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

polarTransform Documentation, Release 2.0.0

Defaultis False

Note: If an alpha band (4th channel of image is present), then it will be converted. Typi-
cally, this is unwanted, so the recommended solution is to transform the first 3 channels and
set the 4th channel to fully on.

order [int (0-5), optional] The order of the spline interpolation, default is 3. The order has to
be in the range 0-5.

The following orders have special names:
* 0 - nearest neighbor

* 1 - bilinear

* 3 - bicubic

border [{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’}, optional] Polar points outside the cartesian
image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the bound-
aries. The input column is the 1D input array whilst the extended columns on either side of
the input array correspond to the expected values for the given mode if one extends past the
boundaries.

Table 4: Valid border modes and expected output

Mode Ext. | Input Ext.
mirror 432112345678 | 765
reflect 321112345678 | 876
nearest 11112345678 | 888
constant | 000 | 12345678 | 000
wrap 678 | 12345678 | 123

Referto scipy.ndimage.map_coordinates () for more details on this argument.

borderVal [same datatype as image, optional] Value used for polar points outside the cartesian
image boundaries if border = ‘constant’.

Default is 0.0

useMultiThreading [bool, optional] Whether to use multithreading when applying transfor-
mation for 3D images. This considerably speeds up the execution time for large images but
adds overhead for smaller 3D images.

Defaultis False

settings [TmageTransform, optional] Contains metadata for conversion between polar and
cartesian image.

Settings contains many of the arguments in convertToPolarImage () and
convertToCartesianImage () and provides an easy way of passing these parame-
ters along without having to specify them all again.

Warning: Cleaner and more succint to use ImageTransform.
convertToPolarImage ()

16 Chapter 3. Reference Guide

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False

polarTransform Documentation, Release 2.0.0

If settings is not specified, then the other arguments are used in this function and the defaults
will be calculated if necessary. If settings is given, then the values from settings will be used.

Returns
polarImage [N-dimensional numpy . ndarray] Polar image

Resulting image is structured in C-order, i.e. the axes are be ordered as (..., z, theta, r,
[ch]) depending on if the input image was 3D. This format is arbitrary but is selected to stay
consistent with the traditional C-order representation in the Cartesian domain.

In the mathematical domain, Cartesian coordinates are traditionally represented as (X, y, z)
and as (r, theta, z) in the polar domain. When storing Cartesian data in C-order, the axes are
usually flipped and the data is saved as (z, y, x). Thus, the polar domain coordinates are also
flipped to stay consistent, hence the format (z, theta, r).

Resulting image shape will be the same as the input image except for the Cartesian dimen-
sions are replaced with the polar dimensions.

settings [ImageTransform] Contains metadata for conversion between polar and cartesian
image.

Settings contains many of the arguments in convertToPolarImage () and
convertToCartesianImage () and provides an easy way of passing these parame-
ters along without having to specify them all again.

class polarTransform.ImageTransform (center, initialRadius, finalRadius, initialAngle, finalAn-

gle, cartesianlmageSize, polarlmageSize, hasColor)
Class to store settings when converting between cartesian and polar domain

convertToCartesianImage (image, order=3, border="constant’, borderVal=0.0, useMultiThread-
ing=False)
Convert polar image to cartesian image.
Using a polar image, this function creates a cartesian image. This function is versatile because it can
automatically calculate an appropiate cartesian image size and center given the polar image. In addition,
parameters for converting to the polar domain are necessary for the conversion back to the cartesian do-
main.

Parameters
image [N-dimensional numpy .ndarray] Polar image to convert to cartesian domain

Image should be structured in C-order, i.e. the axes should be ordered (..., z, theta, r,
[ch]). The channel axes should only be present if hasColor is True. This format is
arbitrary but is selected to stay consistent with the traditional C-order representation in the
Cartesian domain.

In the mathematical domain, Cartesian coordinates are traditionally represented as (X, y,
z) and as (1, theta, z) in the polar domain. When storing Cartesian data in C-order, the axes
are usually flipped and the data is saved as (z, y, x). Thus, the polar domain coordinates
are also flipped to stay consistent, hence the format (z, theta, r).

Note: For multi-dimensional images above 2D, the cartesian transformation is applied
individually across each 2D slice. The last two dimensions should be the r & theta di-
mensions, unless hasColor is True in which case the 2nd and 3rd to last dimensions
should be. The multidimensional shape will be preserved for the resulting cartesian image
(besides the polar dimensions).

3.2. polarTransform Module 17

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True

polarTransform Documentation, Release 2.0.0

order [int (0-5), optional] The order of the spline interpolation, default is 3. The order has
to be in the range 0-5.

The following orders have special names:
* 0 - nearest neighbor

* 1 - bilinear

* 3 - bicubic

border [{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’ }, optional] Polar points outside the cartesian
image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the bound-
aries. The input column is the 1D input array whilst the extended columns on either side
of the input array correspond to the expected values for the given mode if one extends past
the boundaries.

Table 5: Valid border modes and expected output

Mode Ext. | Input Ext.
mirror 432112345678 | 765
reflect 321112345678 | 876
nearest 11112345678 | 888
constant | 000 | 12345678 | 000
wrap 678 | 12345678 | 123

Refer to scipy.ndimage.map_coordinates () for more details on this argument.

borderVal [same datatype as image, optional] Value used for polar points outside the carte-
sian image boundaries if border = ‘constant’.

Default is 0.0

useMultiThreading [bool, optional] Whether to use multithreading when applying trans-
formation for 3D images. This considerably speeds up the execution time for large images
but adds overhead for smaller 3D images.

Defaultis False
Returns
cartesianlmage [N-dimensional numpy .ndarray] Cartesian image

Resulting image is structured in C-order, i.e. the axes are ordered as (..., z, y, X, [ch]).
This format is the traditional method of storing image data in Python.

Resulting image shape will be the same as the input image except for the polar dimensions
are replaced with the Cartesian dimensions.

See also:
convertToCartesianImage ()

convertToPolarImage (image, order=3, border="constant’, borderVal=0.0, useMultiThread-
ing=False)
Convert cartesian image to polar image.

Using a cartesian image, this function creates a polar domain image where the first dimension is radius and
second dimension is the angle. This function is versatile because it allows different starting and stopping
radii and angles to extract the polar region you are interested in.

18 Chapter 3. Reference Guide

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

polarTransform Documentation, Release 2.0.0

Note: Traditionally images are loaded such that the origin is in the upper-left hand corner. In these
cases the initialAngle and finalAngle will rotate clockwise from the x-axis. For simplicitly, it is
recommended to flip the image along first dimension before passing to this function.

Parameters
image [N-dimensional numpy .ndarray] Cartesian image to convert to polar domain

Image should be structured in C-order, i.e. the axes should be ordered as (... ., z, y, X, [ch]).
This format is the traditional method of storing image data in Python.

Note: For multi-dimensional images above 2D, the polar transformation is applied indi-
vidually across each 2D slice. The last two dimensions should be the x & y dimensions,
unless hasColor is True in which case the 2nd and 3rd to last dimensions should be.
The multidimensional shape will be preserved for the resulting polar image (besides the
Cartesian dimensions).

order [int (0-5), optional] The order of the spline interpolation, default is 3. The order has
to be in the range 0-5.

The following orders have special names:
* 0 - nearest neighbor

* 1 - bilinear

* 3 - bicubic

border [{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’ }, optional] Polar points outside the cartesian
image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the bound-
aries. The input column is the 1D input array whilst the extended columns on either side
of the input array correspond to the expected values for the given mode if one extends past
the boundaries.

Table 6: Valid border modes and expected output

Mode Ext. | Input Ext.
mirror 432112345678 | 765
reflect 321112345678 | 876
nearest 11112345678 | 888
constant | 000 | 12345678 | 000
wrap 678 | 12345678 | 123

Referto scipy.ndimage.map_coordinates () for more details on this argument.

borderVal [same datatype as image, optional] Value used for polar points outside the carte-
sian image boundaries if border = ‘constant’.

Default is 0.0

Returns

. polarTransform Module 19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates

polarTransform Documentation, Release 2.0.0

polarImage [N-dimensional numpy . ndarray] Polar image

Resulting image is structured in C-order, i.e. the axes are be ordered as (..., z, theta, 1,
[ch]) depending on if the input image was 3D. This format is arbitrary but is selected to
stay consistent with the traditional C-order representation in the Cartesian domain.

In the mathematical domain, Cartesian coordinates are traditionally represented as (x, y,
z) and as (1, theta, z) in the polar domain. When storing Cartesian data in C-order, the axes
are usually flipped and the data is saved as (z, y, x). Thus, the polar domain coordinates
are also flipped to stay consistent, hence the format (z, theta, r).

Resulting image shape will be the same as the input image except for the Cartesian dimen-
sions are replaced with the polar dimensions.

getCartesianPointsImage (points)
Convert list of polar points from image to cartesian image points based on transform metadata

Note: This does not convert from polar to cartesian points, but rather converts pixels from polar image to
pixels from cartesian image using TmageTransform.

The returned points are not rounded to the nearest point. User must do that by hand if desired.
Parameters
points [(N, 2) or (2,) numpy . ndarray] List of polar points to convert to cartesian domain
First column is r and second column is theta

Returns

cartesianPoints [(N, 2) or (2,) numpy .ndarray] Corresponding cartesian points from
polar points using TmageTransform

See also:
getCartesianPointsImage (), getCartesianPoints (), getCartesianPoints2 ()

getPolarPointsImage (points)
Convert list of cartesian points from image to polar image points based on transform metadata

Note: This does not convert from cartesian to polar points, but rather converts pixels from cartesian image
to pixels from polar image using TmageTransform.

The returned points are not rounded to the nearest point. User must do that by hand if desired.
Parameters
points [(N, 2) or (2,) numpy . ndarray] List of cartesian points to convert to polar domain
First column is x and second column is y

Returns

polarPoints [(N, 2) or (2,) numpy . ndarray] Corresponding polar points from cartesian
pointsusing ImageTransform

See also:

getPolarPointsImage (),getPolarPoints (), getPolarPoints2 ()

20 Chapter 3. Reference Guide

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

polarTransform Documentation, Release 2.0.0

polarTransform.getCartesianPointsImage (points, settings)
Convert list of polar points from image to cartesian image points based on transform metadata

Warning: Cleaner and more succinct to use TmageTransform.getCartesianPointsImage ()

Note: This does not convert from polar to cartesian points, but rather converts pixels from polar image to pixels
from cartesian image using TmageTransform.

The returned points are not rounded to the nearest point. User must do that by hand if desired.
Parameters
points [(N, 2) or (2,) numpy . ndarray] List of polar points to convert to cartesian domain
First column is r and second column is theta

settings [ImageTransform] Contains metadata for conversion from polar to cartesian do-
main

Settings contains many of the arguments in convertToPolarImage () and
convertToCartesianImage () and provides an easy way of passing these parame-
ters along without having to specify them all again.

Returns

cartesianPoints [(N, 2) or (2,) numpy . ndarray] Corresponding cartesian points from polar
points using settings

See also:

ImageTransform.getCartesianPointsImage (), getCartesianPoints (),
getCartesianPoints2 ()

3.2. polarTransform Module 21

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

polarTransform Documentation, Release 2.0.0

22 Chapter 3. Reference Guide

CHAPTER 4

Indices and tables

* genindex

¢ modindex

23

polarTransform Documentation, Release 2.0.0

24 Chapter 4. Indices and tables

Python Module Index

P

polarTransform, 9

25

polarTransform Documentation, Release 2.0.0

26 Python Module Index

Index

C

convertToCartesianlmage() (in module polarTransform),
9

convertToCartesianlmage() (polarTrans-
form.ImageTransform method), 17

convertToPolarImage() (in module polarTransform), 13

convertToPolarImage() (polarTransform.ImageTransform
method), 18

G

getCartesianPointsImage() (in module polarTransform),
20

getCartesianPointsImage() (polarTrans-
form.ImageTransform method), 20

getPolarPointsImage() (polarTransform.ImageTransform
method), 20

ImageTransform (class in polarTransform), 17

P

polarTransform (module), 9

27

	Getting Started
	Introduction
	License
	Installing
	Test and coverage
	Using polarTransform
	Support
	Next Steps

	User Guide
	Example 1
	Example 2

	Reference Guide
	Table of Contents
	polarTransform Module

	Indices and tables
	Python Module Index

