

Poker package documentation

A Python framework for poker related operations.

It contains classes for parsing card Suits, Cards, Hand combinations (called Combos),
construct hand Ranges and check for syntax, parse Hand histories.

It can get information from poker related websites like
Pocketfives, TwoplusTwo Forum, or PokerStars website by scraping them.
In the long term, it will have a fast hand evaluator and an equity calculator.

It uses the MIT license, so its code can be used in any product without legal consequences.

It aims for quality, fully tested code and easy usability with nice APIs, suitable for beginners
to play with.

Contents

	Installation

	Basic operations
	Card suits

	Card ranks

	Cards

	Implementing a deck

	Operations with Hands and Combos

	Range parsing
	Defining ranges

	Normalization

	Printing the range as an HTML table

	Printing the range as an ASCII table

	Hand history parsing
	Parsing from hand history text

	Parsing from file

	Example

	API

	About hand history changes

	Getting information from poker related websites
	PokerStars status

	List of upcoming tournaments from PokerStars

	Information about a Two plus two forum member

	Getting the top 100 players from Pocketfives

	Room specific operations
	Manipulating PokerStars player notes

	Development
	Git repository

	Versioning

	Coding style

	Dates and times

	Unicode vs Bytes

	New hand history parser

	Testing

	About the state of Python3

	Glossary

	License

API

	Card API
	Suit

	Rank

	Card

	Hand API
	Shape

	Hand

	Combo

	Range

	Hand history parsing API
	Constant values

	Base classes

	PokerStars

	Full Tilt Poker

	PKR

	Room specific classes API
	Pokerstars player notes

	Website API
	Two Plus Two Forum API

	Pocketfives API

	PokerStars website API

Repo and contact

Repo: https://github.com/pokerregion/poker

Issues: https://github.com/pokerregion/poker/issues

@kissgyorgy [https://twitter.com/kissgyorgy] on twitter

or you can reach me on my public Github e-mail [https://github.com/kissgyorgy].

Indices and tables

	Index

	Module Index

	Search Page

Installation

Simple from PYPI:

$ pip install poker

Advanced, directly from package in development mode:

$ git clone git@github.com:pokerregion/poker.git
$ cd poker
$ pip install -e .

Basic operations

Card suits

Enumeration of suits:

>>> from poker import Suit
>>> list(Suit)
[Suit('♣'), Suit('♦'), Suit('♥'), Suit('♠')]

Suits are comparable:

>>> Suit.CLUBS < Suit.DIAMONDS
True

Card ranks

Enumeration of ranks:

>>> from poker import Rank
>>> list(Rank)
[Rank('2'), Rank('3'), Rank('4'), Rank('5'), Rank('6'), Rank('7'), Rank('8'), Rank('9'), Rank('T'), Rank('J'), Rank('Q'), Rank('K'), Rank('A')]

Ranks are comparable:

>>> Rank('2') < Rank('A')
True

Making a random Rank:

>> Rank.make_random()
Rank('2')

Cards

Making a random Card:

>>> Card.make_random()
Card('As')

Comparing Cards:

>>> Card('As') > Card('Ks')
True
>>> Card('Tc') < Card('Td')
True

Implementing a deck

A deck is just a list of poker.card.Cards.
Making a new deck and simulating shuffling is easy:

import random
from poker import Card

deck = list(Card)
random.shuffle(deck)

flop = [deck.pop() for __ in range(3)]
turn = deck.pop()
river = deck.pop()

Operations with Hands and Combos

>>> from poker.hand import Hand, Combo

List of all hands:

>>> list(Hand)
[Hand('32o'), Hand('32s'), Hand('42o'), Hand('42s'), Hand('43o'), Hand('43s'), Hand('52o'),
 ..., Hand('JJ'), Hand('QQ'), Hand('KK'), Hand('AA')]

Comparing:

>>> Hand('AAd') > Hand('KK')
True
>>> Combo('7s6s') > Combo('6d5d')
True

Sorting:

>>> sorted([Hand('22'), Hand('66'), Hand('76o')])
[Hand('76o'), Hand('22'), Hand('66')]

Making a random hand:

>>> Hand.make_random()
Hand('AJs')

Range parsing

The poker.hand.Range class parses human readable (text) ranges like "22+ 54s 76s 98s AQo+" to a set of Hands and
hand Combos.

Can parse ranges and compose parsed ranges into human readable form again.

It’s very fault-tolerant, so it’s easy and fast to write ranges manually.

Can normalize unprecise human readable ranges into a precise human readable form, like "22+ AQo+ 33 AKo" –> "22+ AQo+"

Can tell how big a range is by Percentage or number of Combos.

Defining ranges

Atomic signs

	X

	means “any card”

	A K Q J T 9 8 7 6 5 4 3 2

	Ace, King, Queen, Jack, Ten, 9, …, deuce

	“s” or “o” after hands like AKo or 76s

	suited and offsuit. Pairs have no suit ('')

	-

	hands worse, down to deuces

	+

	hands better, up to pairs

Available formats for defining ranges:

	Format

	Parsed range

	22

	one pair

	44+

	all pairs better than 33

	66-

	all pairs worse than 77

	55-33

	55, 44, 33

None of these below select pairs (for unambiguity):

	AKo, J9o

	offsuit hands

	AKs, 72s

	suited hands

	AJo+
Q8o+

	offsuit hands above this: AJo, AQo, AKo
Q8o, Q9o, QTo, QJo

	AJs+

	same as offsuit

	76s+

	this is valid, although “+” is not neccessary,
because there are no suited cards above 76s

	A5o-

	offsuit hands; A5o-A2o

	A5s-

	suited hands; A5s-A2s

	K7

	suited and offsuited version of hand; K7o, K7s

	J8o-J4o

	J8o, J7o, J6o, J5o, J4o

	76s-74s

	76s, 75s, 74s

	J8-J4

	both ranges in suited an offsuited form;
J8o, J7o, J6o, J5o, J4o, J8s, J7s, J6s, J5s, J4s

	A5+

	either suited or offsuited hands that contains an Ace
and the other is bigger than 5. Same as “A5o+ A5s+”.

	A5-

	downward, same as above

	XX

	every hand (100% range)
In this special case, pairs are also included (but only this)

	AX

	Any hand that contains an ace either suited or offsuit (no pairs)

	AXo

	Any offsuit hand that contains an Ace (equivalent to A2o+)

	AXs

	Any suited hand that contains an Ace (equivalent to A2s+)

	QX+

	Any hand that contains a card bigger than a Jack; Q2+, K2+, A2+

	5X-

	any hand that contains a card lower than 6

	KXs+

	Any suited hand that contains a card bigger than a Queen

	KXo+

	same as above with offsuit hands

	7Xs-

	same as above

	8Xo-

	same as above

	2s2h, AsKc

	exact hand Combos

Note

“Q+” and “Q-” are invalid ranges, because in Hold’em, there are two hands to start with not one.

Ranges are case insensitive, so "AKs" and "aks" and "aKS" means the same.
Also the order of the cards doesn’t matter. "AK" is the same as "KA".
Hands can be separated by space (even multiple), comma, colon or semicolon, and Combo of them (multiple spaces, etc.).

Normalization

Ranges should be rearranged and parsed according to these rules:

	hands separated with one space only in repr, with “, ” in str representation

	in any given hand the first card is bigger than second (except pairs of course)

	pairs first, if hyphened, bigger first

	suited hands after pairs, descending by rank

	offsuited hands at the end

Printing the range as an HTML table

Range has a method to_html(). When you print the result of that, you get a simple HTML table representation of it.

Range('XX').to_html() looks like this:

	AA	AKs	AQs	AJs	ATs	A9s	A8s	A7s	A6s	A5s	A4s	A3s	A2s
	AKo	KK	KQs	KJs	KTs	K9s	K8s	K7s	K6s	K5s	K4s	K3s	K2s
	AQo	KQo	QQ	QJs	QTs	Q9s	Q8s	Q7s	Q6s	Q5s	Q4s	Q3s	Q2s
	AJo	KJo	QJo	JJ	JTs	J9s	J8s	J7s	J6s	J5s	J4s	J3s	J2s
	ATo	KTo	QTo	JTo	TT	T9s	T8s	T7s	T6s	T5s	T4s	T3s	T2s
	A9o	K9o	Q9o	J9o	T9o	99	98s	97s	96s	95s	94s	93s	92s
	A8o	K8o	Q8o	J8o	T8o	98o	88	87s	86s	85s	84s	83s	82s
	A7o	K7o	Q7o	J7o	T7o	97o	87o	77	76s	75s	74s	73s	72s
	A6o	K6o	Q6o	J6o	T6o	96o	86o	76o	66	65s	64s	63s	62s
	A5o	K5o	Q5o	J5o	T5o	95o	85o	75o	65o	55	54s	53s	52s
	A4o	K4o	Q4o	J4o	T4o	94o	84o	74o	64o	54o	44	43s	42s
	A3o	K3o	Q3o	J3o	T3o	93o	83o	73o	63o	53o	43o	33	32s
	A2o	K2o	Q2o	J2o	T2o	92o	82o	72o	62o	52o	42o	32o	22

You can format it with CSS, you only need to define td.pair, td.offsuit and td.suited selectors.
It’s easy to recreate PokerStove style colors:

<style>
 td {
 /* Make cells same width and height and centered */
 width: 30px;
 height: 30px;
 text-align: center;
 vertical-align: middle;
 }
 td.pair {
 background: #aaff9f;
 }
 td.offsuit {
 background: #bbced3;
 }
 td.suited {
 background: #e37f7d;
 }
</style>

	AA	AKs	AQs	AJs	ATs	A9s	A8s	A7s	A6s	A5s	A4s	A3s	A2s
	AKo	KK	KQs	KJs	KTs	K9s	K8s	K7s	K6s	K5s	K4s	K3s	K2s
	AQo	KQo	QQ	QJs	QTs	Q9s	Q8s	Q7s	Q6s	Q5s	Q4s	Q3s	Q2s
	AJo	KJo	QJo	JJ	JTs	J9s	J8s	J7s	J6s	J5s	J4s	J3s	J2s
	ATo	KTo	QTo	JTo	TT	T9s	T8s	T7s	T6s	T5s	T4s	T3s	T2s
	A9o	K9o	Q9o	J9o	T9o	99	98s	97s	96s	95s	94s	93s	92s
	A8o	K8o	Q8o	J8o	T8o	98o	88	87s	86s	85s	84s	83s	82s
	A7o	K7o	Q7o	J7o	T7o	97o	87o	77	76s	75s	74s	73s	72s
	A6o	K6o	Q6o	J6o	T6o	96o	86o	76o	66	65s	64s	63s	62s
	A5o	K5o	Q5o	J5o	T5o	95o	85o	75o	65o	55	54s	53s	52s
	A4o	K4o	Q4o	J4o	T4o	94o	84o	74o	64o	54o	44	43s	42s
	A3o	K3o	Q3o	J3o	T3o	93o	83o	73o	63o	53o	43o	33	32s
	A2o	K2o	Q2o	J2o	T2o	92o	82o	72o	62o	52o	42o	32o	22

Printing the range as an ASCII table

to_ascii() can print a nicely formatted ASCII table to the
terminal:

>>> print(Range('22+ A2+ KT+ QJ+ 32 42 52 62 72').to_ascii())
AA AKs AQs AJs ATs A9s A8s A7s A6s A5s A4s A3s A2s
AKo KK KQs KJs KTs
AQo KQo QQ QJs
AJo KJo QJo JJ
ATo KTo TT
A9o 99
A8o 88
A7o 77 72s
A6o 66 62s
A5o 55 52s
A4o 44 42s
A3o 33 32s
A2o 72o 62o 52o 42o 32o 22

Hand history parsing

The classes in poker.room can parse hand histories
for different poker rooms. Right now for PokerStars, Full Tilt Poker and PKR,
very efficiently with a simple API.

Parsing from hand history text

In one step:

from poker.room.pokerstars import PokerStarsHandHistory
First step, only raw hand history is saved, no parsing will happen yet
hh = PokerStarsHandHistory(hand_text)
You need to explicitly parse. This will parse the whole hh at once.
hh.parse()

Or in two steps:

from poker.room.pokerstars import PokerStarsHandHistory
hh = PokerStarsHandHistory(hand_text)
parse the basic information only (really fast)
hh.parse_header()
And later parse the body part. This might happen e.g. in a background task
>>> hh.parse()

I decided to implement this way, and not parse right away at object instantiation, because probably
the most common operation will be looking into the hand history as fast as possible for basic
information like hand id, or deferring the parsing e.g. to a message queue. This way, you
basically just save the raw hand history in the instance, pass it to the queue and it will take
care of parsing by the parse() call.

And also because “Explicit is better than implicit.”

Parsing from file

>>> hh = PokerStarsHandHistory.from_file(filename)
>>> hh.parse()

Example

>>> from poker.room.pokerstars import PokerStarsHandHistory
>>> hh = PokerStarsHandHistory(hand_text)
>>> hh.parse()
>>> hh.players
[_Player(name='flettl2', stack=1500, seat=1, combo=None),
 _Player(name='santy312', stack=3000, seat=2, combo=None),
 _Player(name='flavio766', stack=3000, seat=3, combo=None),
 _Player(name='strongi82', stack=3000, seat=4, combo=None),
 _Player(name='W2lkm2n', stack=3000, seat=5, combo=Combo('A♣J♥')),
 _Player(name='MISTRPerfect', stack=3000, seat=6, combo=None),
 _Player(name='blak_douglas', stack=3000, seat=7, combo=None),
 _Player(name='sinus91', stack=1500, seat=8, combo=None),
 _Player(name='STBIJUJA', stack=1500, seat=9, combo=None)]
>>> hh.date
datetime.datetime(2013, 10, 4, 19, 18, 18, tzinfo=<DstTzInfo 'US/Eastern' EDT-1 day, 20:00:00 DST>)
>>> hh.hero
_Player(name='W2lkm2n', stack=3000, seat=5, combo=Combo('A♣J♥')),
>>> hh.limit, hh.game
('NL', 'HOLDEM')
>>> hh.board
(Card('2♠'), Card('6♦'), Card('6♥'))
>>> hh.flop.is_rainbow
True
>>> hh.flop.has_pair
True
>>> hh.flop.actions
(('W2lkm2n', <Action.BET: ('bet', 'bets')>, Decimal('80')),
 ('MISTRPerfect', <Action.FOLD: ('fold', 'folded', 'folds')>),
 ('W2lkm2n', <Action.RETURN: ('return', 'returned', 'uncalled')>, Decimal('80')),
 ('W2lkm2n', <Action.WIN: ('win', 'won', 'collected')>, Decimal('150')),
 ('W2lkm2n', <Action.MUCK: ("don't show", "didn't show", 'did not show', 'mucks')>))

API

See all the room specific classes in them Hand history parsing API documentation.

About hand history changes

Poker rooms sometimes change the hand history format significally. My goal is to cover all hand
histories after 2014.01.01., because it is the best compromise between fast development and good
coverage. This way we don’t have to deal with ancient hand history files and overcomplicate the
code and we can concentrate on the future instead of the past. Also, hopefully hand history formats
are stable enough nowadays to follow this plan, less and less new game types coming up.

One of the “recent” changes made by Full Tilt is from 2013.05.10.:

“In the software update from Wednesday, changed the format of the .
This means that Hold’em Manager does no longer import these hands, and the HUD is not working.
… B.t.w. They just renamed “No Limit Hold’em” to “NL Hold’em”,
and swapped position with the blinds, inside the handhistory files.”

Details: http://www.bankrollmob.com/forum.asp?mode=thread&id=307215

Getting information from poker related websites

PokerStars status

You can get information about PokerStars online players, active tournaments,
number of tables currently running:

>>> from poker.website.pokerstars import get_status
>>> status = get_status()
>>> status.players, status.tables
(110430, 16427)

See the possible attributes in the API documentation.

List of upcoming tournaments from PokerStars

>>> from poker.website.pokerstars import get_current_tournaments
get_current_tournaments is a generator, so if you want a list, you need to cast it
otherwise, you can iterate over it
>>> list(get_current_tournaments())
[_Tournament(start_date=datetime.datetime(2014, 8, 16, 8, 2, tzinfo=tzoffset(None, -14400)), name="Copernicus' FL Omaha H/L Freeroll", game='Omaha', buyin='$0 + $0', players=2509),
_Tournament(start_date=datetime.datetime(2014, 8, 16, 8, 2, tzinfo=tzoffset(None, -14400)), name='500 Cap: $0.55 NLHE', game="Hold'em", buyin='$0.50 + $0.05', players=80),
_Tournament(start_date=datetime.datetime(2014, 8, 16, 8, 2, tzinfo=tzoffset(None, -14400)), name='Sunday Million Sat [Rd 1]: $0.55+R NLHE [2x-Turbo], 3 Seats Gtd', game="Hold'em", buyin='$0.50 + $0.05', players=14),
_Tournament(start_date=datetime.datetime(2014, 8, 16, 8, 2, tzinfo=tzoffset(None, -14400)), name='$11 NLHE [Phase 1] Sat: 5+R FPP NLHE [2x-Turbo], 2 Seats Gtd', game="Hold'em", buyin='$0 + $0', players=45),
...
]

Or you can iterate over it and use specific data:

>>> from poker.website.pokerstars import get_current_tournaments
>>> for tournament in get_current_tournaments():
... print(tournament.name)
Play Money, No Limit Hold'em + Knockout (5,000)
Sunday Million Sat [Rd 1]: $2.20 NLHE [Turbo]
Play Money, No Limit Omaha (100k)
Play Money, Hourly 1K, NLHE
$11 NL Hold'em [Time: 15 Minutes]
$2.20 NL Hold'em [Heads-Up,128 Cap, Winner-Take-All]
$2.20 NL Hold'em [4-Max, Turbo,5x-Shootout]
$11+R NL Hold'em [Action Hour], $5K Gtd
...

Information about a Two plus two forum member

If you want to download all the available public information about a forum member
(e.g. http://forumserver.twoplustwo.com/members/115014/) all you need to do is:

>>> from poker.website.twoplustwo import ForumMember
>>> forum_member = ForumMember('Walkman_')
>>> vars(forum_member)
{'public_usergroups': ('Marketplace Approved',),
 'username': 'Walkman_ ',
 'location': 'Hungary',
 'download_date': datetime.datetime(2014, 8, 29, 16, 30, 45, 64197, tzinfo=datetime.timezone.utc),
 'rank': 'enthusiast',
 'total_posts': 92,
 'id': '115014',
 'join_date': datetime.date(2008, 3, 10),
 'posts_per_day': 0.04,
 'profile_picture': 'http://forumserver.twoplustwo.com/customprofilepics/profilepic115014_1.gif',
 'avatar': 'http://forumserver.twoplustwo.com/customavatars/thumbs/avatar115014_1.gif',
 'last_activity': datetime.datetime(2014, 8, 26, 2, 49, tzinfo=<UTC>)}

Getting the top 100 players from Pocketfives

>>> from poker.website.pocketfives import get_ranked_players
>>> list(get_ranked_players())
[_Player(name='pleno1', country='United Kingdom', triple_crowns=1, monthly_win=0, biggest_cash='$110,874.68', plb_score=7740.52, biggest_score=817.0, average_score=42.93, previous_rank='2nd'),
_Player(name='p0cket00', country='Canada', triple_crowns=6, monthly_win=0, biggest_cash='$213,000.00', plb_score=7705.61, biggest_score=1000.0, average_score=47.23, previous_rank='1st'),
_Player(name='r4ndomr4gs', country='Sweden', triple_crowns=2, monthly_win=1, biggest_cash='$174,150.00', plb_score=7583.38, biggest_score=803.0, average_score=46.59, previous_rank='3rd'),
_Player(name='huiiiiiiiiii', country='Austria', triple_crowns=1, monthly_win=0, biggest_cash='$126,096.00', plb_score=7276.52, biggest_score=676.0, average_score=39.26, previous_rank='11th'),
_Player(name='TheClaimeer', country='United Kingdom', triple_crowns=1, monthly_win=0, biggest_cash='$102,296.00', plb_score=6909.56, biggest_score=505.0, average_score=41.68, previous_rank='4th'),

poker.website.pocketfives._Player is a named tuple, so you can look up attributes on it:

>>> for player in get_ranked_players():
... print(player.name, player.country)
pleno1 United Kingdom
p0cket00 Canada
r4ndomr4gs Sweden
huiiiiiiiiii Austria
TheClaimeer United Kingdom
Romeopro Ukraine
PokerKaiser Chile
dipthrong Canad
...

Room specific operations

Manipulating PokerStars player notes

poker.room.pokerstars.Notes class is capable of handling PokerStars Players notes.

You can add and delete labels, and notes, save the modifications to a new file or just print
the object instance and get the full XML.

>>> from poker.room.pokerstars import Notes
>>> notes = Notes.from_file('notes.W2lkm2n.xml')
>>> notes.players
('regplayer', 'sharkplayer', 'fishplayer', '"htmlchar"', '$dollarsign', 'nonoteforplayer',
 '-=strangename=-', '//ÄMGS', '0bullmarket0', 'CarlGardner', 'µ (x+t)', 'Walkman')

>>> notes.labels
(_Label(id='0', color='30DBFF', name='FISH'),
 _Label(id='1', color='30FF97', name='SHARK'),
 _Label(id='2', color='E1FF80', name='REG'),
 _Label(id='3', color='E1FF80', name='GENERAL'))

>>> notes.add_label('NIT', 'FF0000')
>>> notes.labels
(_Label(id='0', color='30DBFF', name='FISH'),
 _Label(id='1', color='30FF97', name='SHARK'),
 _Label(id='2', color='E1FF80', name='REG'),
 _Label(id='3', color='E1FF80', name='GENERAL'))
 _Label(id='4', color='FF0000', name='NIT'))

For the full API, see the Room specific classes API.

Development

Git repository

You find the repository on github:
https://github.com/pokerregion/poker

In the dend/ branches, there are ideas which doesn’t work or has been abandoned for some reason.
They are there for reference as “this has been tried”.

I develop in a very simple Workflow [https://guides.github.com/introduction/flow/index.html]. (Before 662f5d73be1efbf6eaf173da448e0410da431b2c you can
see bigger merge bubbles, because I handled hand history parser code and the rest as two separate
projects, but made a subtree merge and handle them in this package.)
Feature branches with rebases on top of master.
Only merge stable code into master.

The repository tags will match PyPi release numbers.

Versioning

I use Semantic Versioning [http://semver.org/], except for major versions like 1.0, 2.0,
because I think 1.0.0 looks stupid :)

Coding style

PEP8 except for line length, which is 99 max (hard limit).
If your code exceeds 99 characters, you do something wrong anyway, you need to refactor it
(e.g. to deeply nested, harder to understand)

Dates and times

Every datetime throughout the library is in UTC with tzinfo set to pytz.UTC.
If you found a case where it’s not, it’s a bug, please report it on GitHub! [https://github.com/pokerregion/poker/issues/new?title=Incorrect+datetime]
The right way for setting a date correctly e.g. from PokerStars ET time is:

>>> import pytz
>>> ET = pytz.timezone('US/Eastern')
>>> ET.localize(some_datetime).astimezone(pytz.UTC)

This will consider DST settings and ambiguous times. For more information, see pytz documentation [http://pytz.sourceforge.net/#localized-times-and-date-arithmetic]!

Unicode vs Bytes

The library uses the strategy from Python 3: internally, everything is using unicode, and things are
converted only the I/O boundaries (e.g. opening/writing files).
This is implemented by the future mechanism:

from __future__ import unicode_literals

this way, all newly defined text will be unicode by default. I only check for unicode everywhere
in the code, not str, please watch this! It might feel strange the first time, but when the time comes
to convert the library to Python3, it will be much easier!

New hand history parser

Note

Hand history parsing API will change for sure until 1.0 is done.

If you want to support a new poker room you have to subclass the appropriate class from
poker.handhistory like poker.handhistory._SplittableHandHistory depending on the
type of hand history file, like XML, or similar to pokerstars and FTP,
define a couple of methods and done.

class NewPokerRoomHandHistory(HandHistory):
"""Implement PokerRoom specific parsing."""

 def parse_header(self):
 # Parse header only! Usually just the first line. The whole purpose is to do it fast!
 # No need to call super()

 def _parse_table(self):
 # parses table name

 def _parse_players(self):
 # parses players, player positions, stacks, etc
 # set self.players attribute

 def _parse_button(self):

 def _parse_hero(self):

 def _parse_preflop(self):

 def _parse_street(self):

 def _parse_showdown(self):

 def _parse_pot(self):

 def _parse_board(self):

 def _parse_winners(self):

 def _parse_extra(self):

You have to provide all common attributes, and may provide PokerRoom specific extra
attributes described in the base poker.handhistory.HandHistory class API documentation.

Testing

The framework contains a lot of tests (over 400). The basic elements like Card, Hand, Range, etc.
are fully tested.

All the unit tests are written in pytest [http://pytest.org/]. I choose it because it offers very nice functionality,
and no-boilerplate code for tests. No need to subclass anything, just prefix classes with Test
and methods with test_.

All assertion use the default python assert keyword.

You need to install the poker package in development mode:

from directory where setup.py file is
$ pip install -e .

and install pytest [http://pytest.org/] and run it directly:

$ pip install pytest
$ py.test

from the poker module directory and pytest [http://pytest.org/] will automatically pick up all unit tests.

About the state of Python3

Originally I started the library in Python3.4 only, and though everything worked well for a while and
library support seemed fine, the tooling around Python3 is not there at all yet. PyPy, PyInstaller
Kivy, etc, etc. doesn’t support Python3.4 at all, but even if they do, there are bugs/problems which
are hard to solve, because nobody experienced it before. A nice example is that I found a bug in the
3.4 standard library enum module.

As a consequence of this, at v0.22.0 I converted the whole repository to Python2 only. The long-term
strategy is to use Python2 for everything until the tooling for Python3.4 catch up, and at that point,
convert it to Python3.4 and continue from there. I don’t want to develop a 2 and 3 compatible library
for such a niche market, because it’s very time consuming, please don’t even ask me! (E.g. it took
straight 10 hours to convert the whole library to Python2, with no new code at all…)

Glossary

	Suit

	One of ‘c’, ‘d’, ‘h’, or ‘s’. Alternatively ‘♣’, ‘♦’, ‘♥’, ‘♠’.
According to Wikipedia [http://en.wikipedia.org/wiki/High_card_by_suit], suits are ranked as:

spades > hearts > diamonds > clubs

	Shape

	A hand can have three “Shapes” according to Wikipedia [http://en.wikipedia.org/wiki/Texas_hold_'em_starting_hands#Essentials].

‘o’ for offsuit, ‘s’ for suited hands ‘’ for pairs.

	Rank

	One card without suit. One of ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘T’, ‘J’, ‘Q’, ‘K’, ‘A’.

	Card

	One exact card with a suit. e.g. ‘As’, ‘2s’. It has a Rank and a Suit.

	Hand

	Consists two Ranks without precise suits like “AKo”, “22”.

	Hand comparisons

	Comparisons in this library has nothing to do with equities or if a hand beats another.
They are only defined so that a consistent ordering can be ensured when
representing objects. If you want to compare hands by equity, use pypoker-eval [http://pokersource.sourceforge.net/]
instead.

	Comparison rules:

	
	pairs are ‘better’ than none-pairs

	non-pairs are better if at least one of the cards are bigger

	suited better than offsuit

	Combo

	Exact two cards with suits specified like “2s2c”, “7s6c”. There are total of 1326 Combos.

	Range

	A range of hands with either in Hand form or Combo.
e.g. “55+ AJo+ 7c6h 8s6s”, “66-33 76o-73o AsJc 2s2h” or with other speical notation.
(See above.)

	Range percent

	Compared to the total of 1326 hand Combos, how many are in the range?

	Range length	Range size

	How many concrete hand Combos are in the range?

	Range is “bigger” than another

	If there are more hand Combos in it. (Equity vs each other doesn’t matter here.)

	Token

	Denote one part of a range. In a “66-33 76o-73o AsJc 2s2h” range, there are 4 tokens:
- “66-33” meaning 33, 44, 55, 66
- “AsJc” specific Combo
- “2s2h” a specific pair of deuces
- “76o-73o” several offsuit Hands

	Broadway card

	T, J, Q, K, A

	Face card

	Only: J, Q, K.

Warning

Ace is not a face card!

 License

License

The MIT License (MIT)

Copyright (c) 2013-2014 Kiss György

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Card API

Card API

The poker.card module has three basic classes for dealing with card suits, card ranks
and cards. It also has a DECK, which is just a tuple of Cards.

Suit

	
class poker.card.Suit

	Enumeration of the four Suits.

Rank

	
class poker.card.Rank

	Enumeration of the 13 Ranks.

	
classmethod difference(first, second)

	Tells the numerical difference between two ranks.

	Parameters

	
	first (str [https://docs.python.org/3.4/library/stdtypes.html#str],Rank) –

	second (str [https://docs.python.org/3.4/library/stdtypes.html#str],Rank) –

	Returns

	value of the difference (always positive)

	Return type

	int [https://docs.python.org/3.4/library/functions.html#int]

	
poker.card.FACE_RANKS

	See Face card

	
poker.card.BROADWAY_RANKS

	See Broadway card

Card

	
class poker.card.Card

	Represents a Card, which consists a Rank and a Suit.

	
classmethod make_random()

	Returns a random Card instance.

	Return type

	Card

	
is_face

	
	Type

	bool

	
is_broadway

	
	Type

	bool

	
rank

	
	Type

	Rank

	
suit

	
	Type

	Suit

 Hand API

Hand API

Shape

	
class poker.hand.Shape

	See: Shape

Warning

This might be removed in future version for simplify API.

Hand

	
class poker.hand.Hand(hand)

	General hand without a precise suit. Only knows about two ranks and shape.

	Parameters

	hand (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – e.g. ‘AKo’, ‘22’

	Variables

	
	first (Rank) – first Rank

	second (Rank) – second Rank

	shape (Shape) – Hand shape (pair, suited or offsuit)

	
rank_difference

	The difference between the first and second rank of the Hand.

	Type

	int

	
first

	
	Type

	poker.card.Rank

	
second

	
	Type

	poker.card.Rank

	
shape

	
	Type

	Shape

	
is_broadway

	

	
is_connector

	

	
is_offsuit

	

	
is_one_gapper

	

	
is_pair

	

	
is_suited

	

	
is_suited_connector

	

	
is_two_gapper

	

	
to_combos()

	

	
poker.hand.PAIR_HANDS = (Hand('22'), Hand('33'), Hand('44'), Hand('55'), Hand('66'), Hand('77'), Hand('88'), Hand('99'), Hand('TT'), Hand('JJ'), Hand('QQ'), Hand('KK'), Hand('AA'))

	Tuple of all pair hands in ascending order.

	
poker.hand.OFFSUIT_HANDS = (Hand('32o'), Hand('42o'), Hand('43o'), Hand('52o'), Hand('53o'), Hand('54o'), Hand('62o'), Hand('63o'), Hand('64o'), Hand('65o'), Hand('72o'), Hand('73o'), Hand('74o'), Hand('75o'), Hand('76o'), Hand('82o'), Hand('83o'), Hand('84o'), Hand('85o'), Hand('86o'), Hand('87o'), Hand('92o'), Hand('93o'), Hand('94o'), Hand('95o'), Hand('96o'), Hand('97o'), Hand('98o'), Hand('T2o'), Hand('T3o'), Hand('T4o'), Hand('T5o'), Hand('T6o'), Hand('T7o'), Hand('T8o'), Hand('T9o'), Hand('J2o'), Hand('J3o'), Hand('J4o'), Hand('J5o'), Hand('J6o'), Hand('J7o'), Hand('J8o'), Hand('J9o'), Hand('JTo'), Hand('Q2o'), Hand('Q3o'), Hand('Q4o'), Hand('Q5o'), Hand('Q6o'), Hand('Q7o'), Hand('Q8o'), Hand('Q9o'), Hand('QTo'), Hand('QJo'), Hand('K2o'), Hand('K3o'), Hand('K4o'), Hand('K5o'), Hand('K6o'), Hand('K7o'), Hand('K8o'), Hand('K9o'), Hand('KTo'), Hand('KJo'), Hand('KQo'), Hand('A2o'), Hand('A3o'), Hand('A4o'), Hand('A5o'), Hand('A6o'), Hand('A7o'), Hand('A8o'), Hand('A9o'), Hand('ATo'), Hand('AJo'), Hand('AQo'), Hand('AKo'))

	Tuple of offsuit hands in ascending order.

	
poker.hand.SUITED_HANDS = (Hand('32s'), Hand('42s'), Hand('43s'), Hand('52s'), Hand('53s'), Hand('54s'), Hand('62s'), Hand('63s'), Hand('64s'), Hand('65s'), Hand('72s'), Hand('73s'), Hand('74s'), Hand('75s'), Hand('76s'), Hand('82s'), Hand('83s'), Hand('84s'), Hand('85s'), Hand('86s'), Hand('87s'), Hand('92s'), Hand('93s'), Hand('94s'), Hand('95s'), Hand('96s'), Hand('97s'), Hand('98s'), Hand('T2s'), Hand('T3s'), Hand('T4s'), Hand('T5s'), Hand('T6s'), Hand('T7s'), Hand('T8s'), Hand('T9s'), Hand('J2s'), Hand('J3s'), Hand('J4s'), Hand('J5s'), Hand('J6s'), Hand('J7s'), Hand('J8s'), Hand('J9s'), Hand('JTs'), Hand('Q2s'), Hand('Q3s'), Hand('Q4s'), Hand('Q5s'), Hand('Q6s'), Hand('Q7s'), Hand('Q8s'), Hand('Q9s'), Hand('QTs'), Hand('QJs'), Hand('K2s'), Hand('K3s'), Hand('K4s'), Hand('K5s'), Hand('K6s'), Hand('K7s'), Hand('K8s'), Hand('K9s'), Hand('KTs'), Hand('KJs'), Hand('KQs'), Hand('A2s'), Hand('A3s'), Hand('A4s'), Hand('A5s'), Hand('A6s'), Hand('A7s'), Hand('A8s'), Hand('A9s'), Hand('ATs'), Hand('AJs'), Hand('AQs'), Hand('AKs'))

	Tuple of suited hands in ascending order.

Combo

	
class poker.hand.Combo

	Hand combination.

See Combo

	
first

	
	Type

	poker.card.Card

	
second

	
	Type

	poker.card.Card

	
shape

	
	Type

	Shape

	
classmethod from_cards(first, second)

	

	
is_broadway

	

	
is_connector

	

	
is_offsuit

	

	
is_one_gapper

	

	
is_pair

	

	
is_suited

	

	
is_suited_connector

	

	
is_two_gapper

	

	
rank_difference

	The difference between the first and second rank of the Combo.

	
to_hand()

	Convert combo to Hand object, losing suit information.

Range

	
class poker.hand.Range(range=u'')

	Parses a str range into tuple of Combos (or Hands).

	Parameters

	range (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Readable range in unicode

Note

All of the properties below are cached_property [https://pypi.python.org/pypi/cached-property/], so make sure you invalidate the cache if you manipulate them!

	
hands

	Tuple of hands contained in this range. If only one combo of the same hand is present,
it will be shown here. e.g. Range('2s2c').hands == (Hand('22'),)

	Type

	tuple of poker.hand.Hands

	
combos

	
	Type

	tuple of poker.hand.Combos

	
percent

	What percent of combos does this range have compared to all the possible combos.

There are 1326 total combos in Hold’em: 52 * 51 / 2 (because order doesn’t matter)
Precision: 2 decimal point

	Type

	float (1-100)

	
rep_pieces

	List of str pieces how the Range is represented.

	Type

	list of str

	
to_html()

	Returns a 13x13 HTML table representing the range.

The table’s CSS class is range, pair cells (td element) are pair, offsuit hands are
offsuit and suited hand cells has suited css class.
The HTML contains no extra whitespace at all.
Calculating it should not take more than 30ms (which takes calculating a 100% range).

	Return type

	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
to_ascii(border=False)

	Returns a nicely formatted ASCII table with optional borders.

	Return type

	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
classmethod from_file(filename)

	Creates an instance from a given file, containing a range.
It can handle the PokerCruncher (.rng extension) format.

	
classmethod from_objects(iterable)

	Make an instance from an iterable of Combos, Hands or both.

	
slots = (u'_hands', u'_combos')

	

 Hand history parsing API

Hand history parsing API

Note

Hand history parsing API will change for sure until 1.0 is done.

Constant values

These enumerations are used to identify common values like limit types, game, etc.
By unifying these into groups of enumeration classes, it’s possible to have common values
accross the whole framework, even when parsing totally different kind of hand histories, which
uses different values. (Data normalization [http://en.wikipedia.org/wiki/Data_normalization])
It’s recommended to use keys (name property) to save in database, and print them to the user.
(E.g. in a web application template, {{ PokerRoom.STARS }} will be converted to 'PokerStars'.)

	
class poker.constants.Action

	
	
BET = (u'bet', u'bets')

	

	
CALL = (u'call', u'calls')

	

	
CHECK = (u'check', u'checks')

	

	
FOLD = (u'fold', u'folded', u'folds')

	

	
MUCK = (u"don't show", u"didn't show", u'did not show', u'mucks')

	

	
RAISE = (u'raise', u'raises')

	

	
RETURN = (u'return', u'returned', u'uncalled')

	

	
SHOW = (u'show',)

	

	
THINK = (u'seconds left to act',)

	

	
WIN = (u'win', u'won', u'collected')

	

	
class poker.constants.Currency

	
	
EUR = (u'EUR', u'\u20ac')

	

	
GBP = (u'GBP', u'\xa3')

	

	
STARS_COIN = (u'SC', u'StarsCoin')

	

	
USD = (u'USD', u'$')

	

	
class poker.constants.Game

	
	
HOLDEM = (u"Hold'em", u'HOLDEM')

	

	
OHILO = (u'Omaha Hi/Lo',)

	

	
OMAHA = (u'Omaha',)

	

	
RAZZ = (u'Razz',)

	

	
STUD = (u'Stud',)

	

	
class poker.constants.GameType

	
	
CASH = (u'Cash game', u'CASH', u'RING')

	

	
SNG = (u'Sit & Go', u'SNG', u'SIT AND GO', u'Sit&go')

	

	
TOUR = (u'Tournament', u'TOUR')

	

	
class poker.constants.Limit

	
	
FL = (u'FL', u'Fixed limit', u'Limit')

	

	
NL = (u'NL', u'No limit')

	

	
PL = (u'PL', u'Pot limit')

	

	
class poker.constants.MoneyType

	
	
PLAY = (u'Play money',)

	

	
REAL = (u'Real money',)

	

	
class poker.constants.PokerRoom

	
	
EIGHT = (u'888', u'888poker')

	

	
FTP = (u'Full Tilt Poker', u'FTP', u'FULL TILT')

	

	
PKR = (u'PKR', u'PKR POKER')

	

	
STARS = (u'PokerStars', u'STARS', u'PS')

	

	
class poker.constants.Position

	
	
BB = (u'BB', u'big blind')

	

	
BTN = (u'BTN', u'bu', u'button')

	

	
CO = (u'CO', u'cutoff', u'cut off')

	

	
HJ = (u'HJ', u'hijack', u'utg+5', u'utg + 5')

	

	
SB = (u'SB', u'small blind')

	

	
UTG = (u'UTG', u'under the gun')

	

	
UTG1 = (u'UTG1', u'utg+1', u'utg + 1')

	

	
UTG2 = (u'UTG2', u'utg+2', u'utg + 2')

	

	
UTG3 = (u'UTG3', u'utg+3', u'utg + 3')

	

	
UTG4 = (u'UTG4', u'utg+4', u'utg + 4')

	

	
class poker.constants.TourFormat

	
	
ACTION = (u'Action Hour',)

	

	
ONEREB = (u'1R1A',)

	

	
REBUY = (u'Rebuy', u'+R')

	

	
SECOND = (u'2x Chance',)

	

	
class poker.constants.TourSpeed

	
	
DOUBLE = (u'2x-Turbo',)

	

	
HYPER = (u'Hyper-Turbo',)

	

	
REGULAR = (u'Regular',)

	

	
SLOW = (u'Slow',)

	

	
TURBO = (u'Turbo',)

	

Base classes

	
class poker.handhistory._BaseHandHistory(hand_text)

	Abstract base class for all kinds of parser.

	Parameters

	hand_text (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – poker hand text

The attributes can be iterated.

The class can read like a dictionary.

Every attribute default value is None.

	Variables

	
	date_format (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – default date format for the given poker room

	ident (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – hand id

	game_type (poker.constants.GameType) – "TOUR" for tournaments or "SNG" for Sit&Go-s

	tournament_ident (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – tournament id

	tournament_level (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – level of tournament blinds

	currency (poker.constants.Currency) – 3 letter iso code "USD", "HUF", "EUR", etc.

	buyin (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – buyin without rake

	rake (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – if game_type is "TOUR" it’s buyin rake, if "CASH" it’s rake from pot

	game (poker.constants.Game) – "HOLDEM", "OMAHA", "STUD", "RAZZ", etc.

	limit (poker.constants.Limit) – "NL", "PL" or "FL"

	sb (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – amount of small blind

	bb (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – amount of big blind

	date (datetime) – hand date in UTC

	table_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the table. it’s "tournament_number table_number"

	max_players (int [https://docs.python.org/3.4/library/functions.html#int]) – maximum players can sit on the table, 2, 4, 6, 7, 8, 9

	button (poker.handhistory._Player) – player on the button

	hero (poker.handhistory._Player) – hero player

	players (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – list of poker.handhistory._Player.
the sequence is the seating order at the table at the start of the hand

	flop (_Flop) – room specific Flop object

	turn (poker.card.Card) – turn card, e.g. Card('Ah')

	river (poker.card.Card) – river card, e.g. Card('2d')

	board (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – board cards, e.g. (Card('4s'), Card('4d'), Card('4c'), Card('5h'))

	preflop_actions (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – action lines in str

	turn_actions (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – turn action lines

	turn_pot (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – pot size before turn

	turn_num_players (int [https://docs.python.org/3.4/library/functions.html#int]) – number of players seen the turn

	river_actions (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – river action lines

	river_pot (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – pot size before river

	river_num_players (int [https://docs.python.org/3.4/library/functions.html#int]) – number of players seen the river

	tournament_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – e.g. "$750 Guarantee", "$5 Sit & Go (Super Turbo)"

	total_pot (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – total pot after end of actions (rake included)

	show_down (bool [https://docs.python.org/3.4/library/functions.html#bool]) – There was show_down or wasn’t

	winners (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – winner names, tuple if even when there is only one winner. e.g. ('W2lkm2n',)

	extra (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Contains information which are specific to a concrete hand history
and not common accross all. When iterating through the instance,
this extra attribute will not be included. default value is None

	
class poker.handhistory._Player(name, stack, seat, combo)

	Player participating in the hand history.

	Variables

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Player name

	stack (int [https://docs.python.org/3.4/library/functions.html#int]) – Stack size (sometimes called as chips)

	seat (int [https://docs.python.org/3.4/library/functions.html#int]) – Seat number

	combo (Combo,None [https://docs.python.org/3.4/library/constants.html#None]) – If the player revealed his/her hand, this property hold’s it.
None for players didn’t show… autoclass:: poker.handhistory._Player

Every hand history has an attribute flop which is an instance of the room specific _Flop
object which has the following attributes:

	
class _Flop

	
	Variables

	
	cards (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – tuple of poker.card.Cards

	pot (decimal.Decimal [https://docs.python.org/3.4/library/decimal.html#decimal.Decimal]) – pot size after actions

	players (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – tuple of player names

	actions (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) –
tuple of poker.constants.Action in the order of happening.

Form:

(Player name, Action, Amount) or

(Player name, Action) if no amount needed (e.g. in case of Check)

It also has properties about flop texture like:

	Variables

	
	is_rainbow (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

	is_monotone (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

	is_triplet (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

	has_pair (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

	has_straightdraw (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

	has_gutshot (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

	has_flushdraw (bool [https://docs.python.org/3.4/library/functions.html#bool]) –

PokerStars

	
class poker.room.pokerstars.PokerStarsHandHistory(hand_text)

	Parses PokerStars Tournament hands.

Full Tilt Poker

	
class poker.room.fulltiltpoker.FullTiltPokerHandHistory(hand_text)

	Parses Full Tilt Poker hands the same way as PokerStarsHandHistory class.

PokerStars and Full Tilt hand histories are very similar, so parsing them is almost identical.
There are small differences though.

Class specific

	Variables

	
	tournament_level – None

	buyin – None: it’s not in the hand history, but the filename

	rake – None: also

	currency – None

	table_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – just a number, but str type

Extra

	Variables

	
	turn_pot (Decimal) – pot size before turn

	turn_num_players (int [https://docs.python.org/3.4/library/functions.html#int]) – number of players seen the turn

	river_pot (Decimal) – pot size before river

	river_num_players (int [https://docs.python.org/3.4/library/functions.html#int]) – number of players seen the river

	tournament_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – e.g. "$750 Guarantee", "$5 Sit & Go (Super Turbo)"

PKR

	
class poker.room.pkr.PKRHandHistory(hand_text)

	Parses PKR hand histories.

Class specific

	Variables

	table_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – “#table_number - name_of_the_table”

Extra

	Variables

	
	last_ident (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – last hand id

	money_type (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – "R" for real money, "P" for play money

 Room specific classes API

Room specific classes API

Pokerstars player notes

	
class poker.room.pokerstars.Notes(notes)

	Class for parsing pokerstars XML notes.

	
get_note(player)

	Return _Note tuple for the player.

	Raises

	poker.room.pokerstars.NoteNotFoundError –

	
add_note(player, text, label=None, update=None)

	Add a note to the xml. If update param is None, it will be the current time.

	Raises

	poker.room.pokerstars.LabelNotFoundError – if there is no such label name

	
del_note(player)

	Delete a note by player name.

	Raises

	poker.room.pokerstars.NoteNotFoundError –

	
add_label(name, color)

	Add a new label. It’s id will automatically be calculated.

	
append_note(player, text)

	Append text to an already existing note.

	
del_label(name)

	Delete a label by name.

	
classmethod from_file(filename)

	Make an instance from a XML file.

	
get_label(name)

	Find the label by name.

	
get_note_text(player)

	Return note text for the player.

	
label_names

	Tuple of label names.

	
labels

	Tuple of labels.

	
notes

	Tuple of notes..

	
players

	Tuple of player names.

	
prepend_note(player, text)

	Prepend text to an already existing note.

	
replace_note(player, text)

	Replace note text with text. (Overwrites previous note!)

	
save(filename)

	Save the note XML to a file.

	
class poker.room.pokerstars._Label(id, color, name)

	Labels in Player notes.

	Variables

	
	id [https://docs.python.org/3.4/library/functions.html#id] (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – numeric id for the label. None when no label (‘-1’ in XML)

	color (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – color code for note

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the note

	
class poker.room.pokerstars._Note(player, label, update, text)

	Player note.

	Variables

	
	player (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – player name

	label (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Label name of note

	update (datetime.datetime [https://docs.python.org/3.4/library/datetime.html#datetime.datetime]) – when was the note last updated

	text (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Note text

	
exception poker.room.pokerstars.NoteNotFoundError

	Note not found for player.

	
exception poker.room.pokerstars.LabelNotFoundError

	Label not found in the player notes.

 Website API

Website API

This package contains mostly scraping tools for well known websites like Two Plus Two forum,
Pocketsfives, etc…

Two Plus Two Forum API

	
poker.website.twoplustwo.FORUM_URL

	http://forumserver.twoplustwo.com

	
poker.website.twoplustwo.FORUM_MEMBER_URL

	http://forumserver.twoplustwo.com/members

	
class poker.website.twoplustwo.ForumMember(username)

	Download and store a member data from the Two Plus Two forum.

	Parameters

	id (int [https://docs.python.org/3.4/library/functions.html#int],str [https://docs.python.org/3.4/library/stdtypes.html#str]) –
Forum id (last part of members URL, e.g. in case of

http://forumserver.twoplustwo.com/members/407153/

the id is 407153)

	Variables

	
	id [https://docs.python.org/3.4/library/functions.html#id] (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Forum id

	username (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Forum username

	rank (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Forum rank like 'enthusiast'

	profile_picture (str [https://docs.python.org/3.4/library/stdtypes.html#str],None [https://docs.python.org/3.4/library/constants.html#None]) – URL of profile if set.

	location (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Location (country)

	total_posts (int [https://docs.python.org/3.4/library/functions.html#int]) – Total posts

	posts_per_day (float [https://docs.python.org/3.4/library/functions.html#float]) – Posts per day on account page

	last_activity (datetime) – Last activity with the website timezone

	join_date (date) – Join date on account page

	public_usergroups (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – Public usergroup permission as in the box on the top right

	donwload_date (datetime) – When were the data downloaded from TwoplusTwo

Pocketfives API

	
class poker.website.pocketfives._Player(name, country, triple_crowns, monthly_win, biggest_cash, plb_score, biggest_score, average_score, previous_rank)

	Pocketfives player data.

	Variables

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Player name

	country (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Country name

	triple_crowns (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of triple crowns won

	monthly_win (int [https://docs.python.org/3.4/library/functions.html#int]) –

	biggest_cash (str [https://docs.python.org/3.4/library/stdtypes.html#str]) –

	plb_score (float [https://docs.python.org/3.4/library/functions.html#float]) –

	biggest_score (float [https://docs.python.org/3.4/library/functions.html#float]) – Biggest Pocketfives score

	average_score (float [https://docs.python.org/3.4/library/functions.html#float]) – Average pocketfives score

	previous_rank (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Previous pocketfives rank

	
poker.website.pocketfives.get_ranked_players()

	Get the list of the first 100 ranked players.

	Returns

	generator of _Players

Note

Downloading this list is a slow operation!

PokerStars website API

	
poker.website.pokerstars.WEBSITE_URL

	http://www.pokerstars.eu

	
poker.website.pokerstars.TOURNAMENTS_XML_URL

	http://www.pokerstars.eu/datafeed_global/tournaments/all.xml

	
poker.website.pokerstars.STATUS_URL

	http://www.psimg.com/datafeed/dyn_banners/summary.json.js

	
poker.website.pokerstars.get_current_tournaments()

	Get the next 200 tournaments from pokerstars.

	Returns

	generator of _Tournament

Note

Downloading this list is an extremly slow operation!

	
poker.website.pokerstars.get_status()

	Get pokerstars status: players online, number of tables, etc.

	Returns

	_Status

	
class poker.website.pokerstars._Tournament(start_date, name, game, buyin, players)

	Upcoming pokerstars tournament.

	Variables

	
	start_date (datetime) –

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Tournament name as seen in PokerStars Lobby

	game (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Game Type

	buyin (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Buy in with fee

	players (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of players already registered

	
class poker.website.pokerstars._Status(updated, tables, next_update, players, clubs, active_tournaments, total_tournaments, sites, club_members)

	PokerStars status.

	Variables

	
	updated (datetime) – Status last updated

	tables (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of tournament tables

	players (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of players logged in to PokerStars

	clubs (int [https://docs.python.org/3.4/library/functions.html#int]) – Total number of Home Game clubs created

	club_members (int [https://docs.python.org/3.4/library/functions.html#int]) – Total number of Home Game club members

	active_tournaments (int [https://docs.python.org/3.4/library/functions.html#int]) –

	total_tournaments (int [https://docs.python.org/3.4/library/functions.html#int]) –

	sites (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – Tuple of _SiteStatus

	
class poker.website.pokerstars._SiteStatus(id, tables, players, active_tournaments)

	PokerStars status on different subsites like FR, ES IT or Play Money.

	Variables

	
	id [https://docs.python.org/3.4/library/functions.html#id] (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – ID of the site (".IT", ".FR", "Play Money")

	tables (int [https://docs.python.org/3.4/library/functions.html#int]) –

	player (int [https://docs.python.org/3.4/library/functions.html#int]) –

	active_tournaments (int [https://docs.python.org/3.4/library/functions.html#int]) –

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 poker	

 	
 	
 poker.constants	

 	
 	
 poker.website.pocketfives	

 	
 	
 poker.website.pokerstars	

 	
 	
 poker.website.twoplustwo	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	_BaseHandHistory (class in poker.handhistory)

 	_Flop (built-in class)

 	_Label (class in poker.room.pokerstars)

 	_Note (class in poker.room.pokerstars)

 	
 	_Player (class in poker.handhistory)

 	(class in poker.website.pocketfives)

 	_SiteStatus (class in poker.website.pokerstars)

 	_Status (class in poker.website.pokerstars)

 	_Tournament (class in poker.website.pokerstars)

A

 	
 	Action (class in poker.constants)

 	ACTION (poker.constants.TourFormat attribute)

 	
 	add_label() (poker.room.pokerstars.Notes method)

 	add_note() (poker.room.pokerstars.Notes method)

 	append_note() (poker.room.pokerstars.Notes method)

B

 	
 	BB (poker.constants.Position attribute)

 	BET (poker.constants.Action attribute)

 	
 	Broadway card

 	BROADWAY_RANKS (in module poker.card)

 	BTN (poker.constants.Position attribute)

C

 	
 	CALL (poker.constants.Action attribute)

 	Card

 	(class in poker.card)

 	CASH (poker.constants.GameType attribute)

 	CHECK (poker.constants.Action attribute)

 	
 	CO (poker.constants.Position attribute)

 	Combo

 	(class in poker.hand)

 	combos (poker.hand.Range attribute)

 	Currency (class in poker.constants)

D

 	
 	del_label() (poker.room.pokerstars.Notes method)

 	del_note() (poker.room.pokerstars.Notes method)

 	
 	difference() (poker.card.Rank class method)

 	DOUBLE (poker.constants.TourSpeed attribute)

E

 	
 	EIGHT (poker.constants.PokerRoom attribute)

 	
 	EUR (poker.constants.Currency attribute)

F

 	
 	Face card

 	FACE_RANKS (in module poker.card)

 	first (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	FL (poker.constants.Limit attribute)

 	FOLD (poker.constants.Action attribute)

 	FORUM_MEMBER_URL (in module poker.website.twoplustwo)

 	
 	FORUM_URL (in module poker.website.twoplustwo)

 	ForumMember (class in poker.website.twoplustwo)

 	from_cards() (poker.hand.Combo class method)

 	from_file() (poker.hand.Range class method)

 	(poker.room.pokerstars.Notes class method)

 	from_objects() (poker.hand.Range class method)

 	FTP (poker.constants.PokerRoom attribute)

 	FullTiltPokerHandHistory (class in poker.room.fulltiltpoker)

G

 	
 	Game (class in poker.constants)

 	GameType (class in poker.constants)

 	GBP (poker.constants.Currency attribute)

 	get_current_tournaments() (in module poker.website.pokerstars)

 	
 	get_label() (poker.room.pokerstars.Notes method)

 	get_note() (poker.room.pokerstars.Notes method)

 	get_note_text() (poker.room.pokerstars.Notes method)

 	get_ranked_players() (in module poker.website.pocketfives)

 	get_status() (in module poker.website.pokerstars)

H

 	
 	Hand

 	(class in poker.hand)

 	Hand comparisons

 	
 	hands (poker.hand.Range attribute)

 	HJ (poker.constants.Position attribute)

 	HOLDEM (poker.constants.Game attribute)

 	HYPER (poker.constants.TourSpeed attribute)

I

 	
 	is_broadway (poker.card.Card attribute)

 	(poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	is_connector (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	is_face (poker.card.Card attribute)

 	is_offsuit (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	is_one_gapper (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	
 	is_pair (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	is_suited (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	is_suited_connector (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	is_two_gapper (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

L

 	
 	label_names (poker.room.pokerstars.Notes attribute)

 	LabelNotFoundError

 	
 	labels (poker.room.pokerstars.Notes attribute)

 	Limit (class in poker.constants)

M

 	
 	make_random() (poker.card.Card class method)

 	
 	MoneyType (class in poker.constants)

 	MUCK (poker.constants.Action attribute)

N

 	
 	NL (poker.constants.Limit attribute)

 	NoteNotFoundError

 	
 	Notes (class in poker.room.pokerstars)

 	notes (poker.room.pokerstars.Notes attribute)

O

 	
 	OFFSUIT_HANDS (in module poker.hand)

 	OHILO (poker.constants.Game attribute)

 	
 	OMAHA (poker.constants.Game attribute)

 	ONEREB (poker.constants.TourFormat attribute)

P

 	
 	PAIR_HANDS (in module poker.hand)

 	percent (poker.hand.Range attribute)

 	PKR (poker.constants.PokerRoom attribute)

 	PKRHandHistory (class in poker.room.pkr)

 	PL (poker.constants.Limit attribute)

 	PLAY (poker.constants.MoneyType attribute)

 	players (poker.room.pokerstars.Notes attribute)

 	
 	poker.constants (module)

 	poker.website.pocketfives (module)

 	poker.website.pokerstars (module)

 	poker.website.twoplustwo (module)

 	PokerRoom (class in poker.constants)

 	PokerStarsHandHistory (class in poker.room.pokerstars)

 	Position (class in poker.constants)

 	prepend_note() (poker.room.pokerstars.Notes method)

R

 	
 	RAISE (poker.constants.Action attribute)

 	Range

 	(class in poker.hand)

 	Range is "bigger" than another

 	Range length

 	Range percent

 	Range size

 	Rank

 	(class in poker.card)

 	
 	rank (poker.card.Card attribute)

 	rank_difference (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	RAZZ (poker.constants.Game attribute)

 	REAL (poker.constants.MoneyType attribute)

 	REBUY (poker.constants.TourFormat attribute)

 	REGULAR (poker.constants.TourSpeed attribute)

 	rep_pieces (poker.hand.Range attribute)

 	replace_note() (poker.room.pokerstars.Notes method)

 	RETURN (poker.constants.Action attribute)

S

 	
 	save() (poker.room.pokerstars.Notes method)

 	SB (poker.constants.Position attribute)

 	SECOND (poker.constants.TourFormat attribute)

 	second (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	Shape

 	(class in poker.hand)

 	shape (poker.hand.Combo attribute)

 	(poker.hand.Hand attribute)

 	SHOW (poker.constants.Action attribute)

 	
 	slots (poker.hand.Range attribute)

 	SLOW (poker.constants.TourSpeed attribute)

 	SNG (poker.constants.GameType attribute)

 	STARS (poker.constants.PokerRoom attribute)

 	STARS_COIN (poker.constants.Currency attribute)

 	STATUS_URL (in module poker.website.pokerstars)

 	STUD (poker.constants.Game attribute)

 	Suit

 	(class in poker.card)

 	suit (poker.card.Card attribute)

 	SUITED_HANDS (in module poker.hand)

T

 	
 	THINK (poker.constants.Action attribute)

 	to_ascii() (poker.hand.Range method)

 	to_combos() (poker.hand.Hand method)

 	to_hand() (poker.hand.Combo method)

 	to_html() (poker.hand.Range method)

 	
 	Token

 	TOUR (poker.constants.GameType attribute)

 	TourFormat (class in poker.constants)

 	TOURNAMENTS_XML_URL (in module poker.website.pokerstars)

 	TourSpeed (class in poker.constants)

 	TURBO (poker.constants.TourSpeed attribute)

U

 	
 	USD (poker.constants.Currency attribute)

 	UTG (poker.constants.Position attribute)

 	UTG1 (poker.constants.Position attribute)

 	
 	UTG2 (poker.constants.Position attribute)

 	UTG3 (poker.constants.Position attribute)

 	UTG4 (poker.constants.Position attribute)

W

 	
 	WEBSITE_URL (in module poker.website.pokerstars)

 	
 	WIN (poker.constants.Action attribute)

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Poker package documentation

 		
 Installation

 		
 Basic operations

 		
