

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: _images/pokemon-env.svg]Build Status [https://travis-ci.com/pokeml/pokemon-env]
[image: _images/pokemon-env1.svg]npm version [https://badge.fury.io/js/pokemon-env]
[image: _images/License-MIT-brightgreen.svg]License: MIT [https://opensource.org/licenses/MIT]
[image: _images/464883985030578177.svg]chat on Discord [https://discord.gg/VYwe6hp]

Pokémon Environment

This project is an environment built for the development of Pokémon battle agents, based on the Pokémon Showdown [https://github.com/Zarel/Pokemon-Showdown] simulator. Check out pokemon-agents [https://github.com/pokeml/pokemon-agents] for usage examples.

Getting Started

Installing

To clone this project and Pokémon Showdown as a submodule, simply run

git clone --recurse-submodules https://github.com/pokeml/pokemon-env.git

This project requires Node.js [https://nodejs.org/] 8.x or later. From within the project’s root directory, run

npm install

to install the necessary dependencies.

Running

For an example of how to simulate a battle between two agents, run

node examples/sim.js

from the project’s root directory.

Contributing

Check out our projects page [https://github.com/pokeml/pokemon-env/projects] for getting ideas how you can contribute. Click on the different projects to see the tasks that still need to be done.

Contributing to Pokémon Showdown

In general, we welcome pull requests that fix bugs.

For feature additions and large projects, please discuss with us at http://psim.us/development first. We’d hate to have to reject a pull request that you spent a long time working on…

If you’re looking for inspiration for something to do, the Ideas issue is a good place to look: https://github.com/Zarel/Pokemon-Showdown/issues/2444

License

Your submitted code should be MIT licensed. The GitHub ToS (and the fact that your fork also contains our LICENSE file) ensures this, so we won’t ask when you submit a pull request, but keep this in mind.

For simplicity (mostly to make relicensing easier), client code should be also be MIT licensed. The first time you make a client pull request, we’ll ask you to explicitly state that you agree to MIT license it.

Commit standards

Commits should describe what the code does, not how it does it.

In other words:

	BAD: Change Wonder Guard from onBeforeMove to onTryHit

	GOOD: Fix Mold Breaker Wonder Guard interaction

The details of how you achieve the fix should be left for the second paragraph of the commit message.

If this is not possible because your code does not make any functionality changes, your commit summary should ideally start with the word “Refactor” (or at least it contain it in some way).

Commits should usually start with a verb in imperative mood, such as “Add”, “Fix”, “Refactor”, etc (if the verb is there, it should be imperative, but it doesn’t have to be there).

	BAD: Adding namefilter

	BAD: Adds namefilter

	GOOD: Add namefilter

The first line of the commit summary should be under 50 characters long.

The first letter of a commit summary should be capitalized (unless the first word starts with a number or is case-sensitive, e.g. ls).

The commit summary should not end in a period.

	BAD: refactor users to use classes

	BAD: Refactor Users to use classes.

	GOOD: Refactor Users to use classes

Your commit summary should make it clear what part of the code you’re talking about. For instance, if you’re editing the Trivia plugin, you might want to add “Trivia: “ to the beginning of your commit summary so it’s clear.

	BAD: Ban Genesect

	GOOD: Monotype: Ban Genesect (notice the uppercase “B”)

OPTIONAL: If you make commits to fix commits in your pull request, you can squash/amend them into one commit. This is no longer required now that GitHub supports squash-merging.

	BAD: Add /lock, Fix crash in /lock, Fix another crash in /lock (if these are the same pullreq, they should be the same commit)

	GOOD: Add /lock

	GOOD: Fix crash in /lock

If you want to have more than one commit in Git master’s history after merge (i.e. you want your pull request to be rebase-merged instead of squash-merged), your commits need to all make sense as separate commits, and none of your commits should be just fixing an earlier commit in your pull request (those need to be squashed/amended).

Here is a guide for squashing, if you need help with that: https://redew.github.io/rebaseguide/

If while rebasing, you somehow unintentionally break your pull request, do not close it and make a new one to replace it. Instead, you can ask in the Development chatroom for help on trying to fix it; it can almost always be fixed.

Code standards

We enforce most of our code standards through eslint. Just run npm test and it’ll tell you if something’s wrong.

Looking at your surrounding text is also a way to get a good idea of our coding style.

Strings

The codebase currently uses a mix of " and ' and ` for strings.

Our current convention is to use ' for IDs; " for names (i.e. usernames, move names, etc), English text in object literals such as in data/, and help entries of chat commands; and ` for code (i.e. protocol code and HTML) and English text outside of object literals (yes, including strings that don’t need interpolation). As far as I know, we don’t use strings for anything else, but if you need to use strings in a way that doesn’t conform the the above three, ask Zarel in the Development chatroom to decide (and default to ` in lieu of a decision).

Unfortunately, since this is not a convention the linter can test for (and also because our older string standards predate PS), a lot of existing code is wrong on this, so you can’t look at surrounding code to get an idea of what the convention should be. Refer to the above paragraph as the definitive rule.

Optionals: null vs undefined vs false

PS convention is to use null for optionals. So a function that retrieves a possible T would return T | null. This is mostly because TypeScript expands T? to T | null.

Some old code returns T | undefined (our previous convention). This is a relatively common standard (ironically, TypeScript itself uses it). Feel free to convert to T | null where you see it.

Some even older code returns T | false. This is a very old PHP convention that has no place in modern PS code. Please convert to T | null if you see it.

false | null | undefined

The simulator (code in sim/, data/, and mods/) will often have functions with return signatures of the form T | false | null | undefined, especially in event handlers. These aren’t optionals, they’re different sentinel values.

Specifically:

	false means “this action failed”

	null means “this action failed silently; suppress any ‘But it failed!’ messages”

	undefined means “this action should be ignored, and treated as if nothing unexpected happened”

So, if Thunder Wave hits a Ground type, the immunity checker returns false to indicate the immunity.

If Volt Absorb absorbs Thunder Wave, Volt Absorb’s TryHit handler shows the Volt Absorb message and returns null to indicate that no other failure message should be shown.

If Water Absorb doesn’t absorb Thunder Wave, Water Absorb’s TryHit handler returns undefined, to show that Water Absorb does not interact with Thunder Wave.

ES5 and ES6

In general, use modern features; recent versions of V8 have fixed the performance problems they used to have.

	let, const: ALWAYS - Supported in Node 4+, good performance.

	for-of on Arrays: ALWAYS - Supported in Node 4+, good performance in Node 8+.

	Array#forEach: NEVER - Poor readability; we prefer for-of.

	for-in on Arrays: NEVER - Horrible performance, weird bugs due to string keys, poor interaction with Array prototype modification. Everyone tells you never to do it; we’re no different. See for-of.

	Map, Set: SOMETIMES - Worse write/iteration performance, better read performance than Object.create(null). Use whatever’s faster for your use case.

	for-in on Objects: ALWAYS - More readable; good performance in Node 8+.

	for-of on Maps and Sets: ALWAYS - Supported in Node 4+, good performance in Node 8+.

	Map#forEach, Set#forEach: NEVER - Poor readability; we prefer for-of.

	Object literal functions: ALWAYS - Supported in Node 4+, good performance.

	Arrow functions: ALWAYS - Supported in Node 4+, good performance. Obviously use only for callbacks; don’t use in situations where this shouldn’t be bound.

	Promises: ALWAYS - Supported in Node 4+, poor performance but worth the readability.

	async/await: ALWAYS - Supported in Node 8+, good performance.

	Function#bind: NEVER - Horrible performance. Use arrow functions.

	classes and subclasses: ALWAYS - Supported in Node 4+ and good performance in Node 6+.

	String#includes: ALWAYS - Supported in Node 4+, poor performance, but not really noticeable and worth the better readability.

	Template strings: ALWAYS - Supported in Node 4+ and good performance in Node 6+; please start refactoring existing code over, but be careful not to use them for IDs (follow the String standards). Look at existing uses for guidance.

Take “good performance” to mean “approximately on par with ES3” and “great performance” to mean “better than ES3”.

Protocol

Pokémon Showdown’s protocol is relatively simple.

Pokémon Showdown is implemented in SockJS. SockJS is a compatibility
layer over raw WebSocket, so you can actually connect to Pokémon
Showdown directly using WebSocket:

ws://sim.smogon.com:8000/showdown/websocket
 or
wss://sim.smogon.com/showdown/websocket

Client implementations you might want to look at for reference include:

	pickdenis’ chat bot (Ruby) -
https://github.com/pickdenis/ps-chatbot

	Quinella and TalkTakesTime’s chat bot (Node.js) -
https://github.com/TalkTakesTime/Pokemon-Showdown-Bot

	Nixola’s chat bot (Lua) -
https://github.com/Nixola/NixPSbot

	the official client (HTML5 + JavaScript) -
https://github.com/Zarel/Pokemon-Showdown-Client

The official client logs protocol messages in the JavaScript console,
so opening that (F12 in most browsers) can help tell you what’s going
on.

Client-to-server messages

Messages from the user to the server are in the form:

ROOMID|TEXT

ROOMID can optionally be left blank if it’s the lobby, or if the room
is irrelevant (for instance, if TEXT is a command like
/join lobby where it doesn’t matter what room it’s sent from, you can
just send |/join lobby.)

TEXT can contain newlines, in which case it’ll be treated the same
way as if each line were sent to the room separately.

A partial list of available commands can be found with /help.

To log in, look at the documentation for the |challstr| server message.

Server-to-client messages

Messages from the server to the user are in the form:

>ROOMID
MESSAGE
MESSAGE
MESSAGE
...

>ROOMID and the newline after it can be omitted if the room is lobby
or global. MESSAGE cannot start with >, so it’s unambiguous whether
or not >ROOMID has been omitted.

As for the payload: it’s made of any number of blocks of data
separated by newlines; empty lines should be ignored. In particular,
it should be treated the same way whether or not it ends in a
newline, and if the payload is empty, the entire message should be ignored.

If MESSAGE doesn’t start with |, it should be shown directly in the
room’s log. Otherwise, it will be in the form:

|TYPE|DATA

For example:

|j| Some dude
|c|@Moderator|hi!
|c| Some dude|you suck and i hate you!
Some dude was banned by Moderator.
|l| Some dude
|b|battle-ou-12| Cool guy|@Moderator

This might be displayed as:

Some dude joined.
@Moderator: hi!
Some dude: you suck and i hate you!
Some dude was banned by Moderator.
Some dude left.
OU battle started between Cool guy and Moderator

For bandwidth reasons, five of the message types - chat, join, leave,
name, and battle - are sometimes abbreviated to c, j, l, n,
and b respectively. All other message types are written out in full so they
should be easy to understand.

Four of these can be uppercase: J, L, N, and B, which are
the equivalent of their lowercase versions, but are recommended not to be
displayed inline because they happen too often. For instance, the main server
gets around 5 joins/leaves a second, and showing that inline with chat would
make it near-impossible to chat.

Server-to-client message types

USER = a user, the first character being their rank (users with no rank are
represented by a space), and the rest of the string being their username.

Room initialization

|init|ROOMTYPE

The first message received from a room when you join it. ROOMTYPE is
one of: chat or battle

|users|USERLIST

USERLIST is a comma-separated list of USERs, sent from chat rooms when
they’re joined.

Room messages

||MESSAGE or MESSAGE

We received a message MESSAGE, which should be displayed directly in
the room’s log.

|html|HTML

We received an HTML message, which should be sanitized and displayed
directly in the room’s log.

|uhtml|NAME|HTML

We recieved an HTML message (NAME) that can change what it’s displaying,
this is used in things like our Polls system, for example.

|uhtmlchange|NAME|HTML

Changes the HTML display of the |uhtml| message named (NAME).

|join|USER or |j|USER

USER joined the room.

|leave|USER or |l|USER

USER left the room.

|name|USER|OLDID or |n|USER|OLDID

A user changed name to USER, and their previous userid was OLDID.

|chat|USER|MESSAGE or |c|USER|MESSAGE

USER said MESSAGE. Note that MESSAGE can contain | characters,
so you can’t just split by | and take the fourth string.

|:|TIMESTAMP

|c:|TIMESTAMP|USER|MESSAGE

c: is pretty much the same as c, but also comes with a UNIX timestamp;
(the number of seconds since 1970). This is used for accurate timestamps
in chat logs.

: is the current time according to the server, so that times can be
adjusted and reported in the local time in the case of a discrepancy.

The exact fate of this command is uncertain - it may or may not be
replaced with a more generalized way to transmit timestamps at some point.

|battle|ROOMID|USER1|USER2 or |b|ROOMID|USER1|USER2

A battle started between USER1 and USER2, and the battle room has
ID ROOMID.

Global messages

|popup|MESSAGE

Show the user a popup containing MESSAGE. || denotes a newline in
the popup.

|pm|SENDER|RECEIVER|MESSAGE

A PM was sent from SENDER to RECEIVER containing the message
MESSAGE.

|usercount|USERCOUNT

USERCOUNT is the number of users on the server.

|nametaken|USERNAME|MESSAGE

You tried to change your username to USERNAME but it failed for the
reason described in MESSAGE.

|challstr|CHALLSTR

You just connected to the server, and we’re giving you some information you’ll need to log in.

If you’re already logged in and have session cookies, you can make an HTTP GET request to
http://play.pokemonshowdown.com/action.php?act=upkeep&challstr=CHALLSTR

Otherwise, you’ll need to make an HTTP POST request to http://play.pokemonshowdown.com/action.php
with the data act=login&name=USERNAME&pass=PASSWORD&challstr=CHALLSTR

USERNAME is your username and PASSWORD is your password, and CHALLSTR
is the value you got from |challstr|. Note that CHALLSTR contains |
characters. (Also feel free to make the request to https:// if your client
supports it.)

Either way, the response will start with] and be followed by a JSON
object which we’ll call data.

Finish logging in (or renaming) by sending: /trn USERNAME,0,ASSERTION
where USERNAME is your desired username and ASSERTION is data.assertion.

|updateuser|USERNAME|NAMED|AVATAR

Your name or avatar was successfully changed. Your username is now USERNAME.
NAMED will be 0 if you are a guest or 1 otherwise. And your avatar is
now AVATAR.

|formats|FORMATSLIST

This server supports the formats specified in FORMATSLIST. FORMATSLIST
is a |-separated list of FORMATs. FORMAT is a format name with one or
more of these suffixes: ,# if the format uses random teams, ,, if the
format is only available for searching, and , if the format is only
available for challenging.
Sections are separated by two vertical bars with the number of the column of
that section prefixed by , in it. After that follows the name of the
section and another vertical bar.

|updatesearch|JSON

JSON is a JSON object representing the current state of what battles the
user is currently searching for.

|updatechallenges|JSON

JSON is a JSON object representing the current state of who the user
is challenging and who is challenging the user.

|queryresponse|QUERYTYPE|JSON

JSON is a JSON object representing containing the data that was requested
with /query QUERYTYPE or /query QUERYTYPE DETAILS.

Possible queries include /query roomlist and /query userdetails USERNAME.

Battle messages

In addition to room messages, battles have their own messages.

Battle initialization

|player|PLAYER|USERNAME|AVATAR

Appears when you join a battle room. PLAYER denotes which player it is
(p1 or p2) and USERNAME is the username. AVATAR is the player’s
avatar identifier (usually a number, but other values can be used for
custom avatars).

|gametype|GAMETYPE
|gen|GENNUM
|tier|TIERNAME
|rated
|rule|RULE: DESCRIPTION

Additional details when you join a battle room. GAMETYPE is one of
singles, doubles, or triples; GENNUM denotes the generation of
Pokémon being played; tier is the format; and rule appears multiple
times, once for each clause in effect. rated only appears if the battle
is rated.

|clearpoke
|poke|PLAYER|DETAILS|ITEM
|poke|PLAYER|DETAILS|ITEM
...
|teampreview

These messages appear if you’re playing a format that uses team previews.
PLAYER is the player ID (see |player|) and DETAILS describes the
pokemon. |teampreview commonly appears after |rule tags instead of
immediately after the pokemon list.

The format for DETAILS is described in |switch|, although not
everything may be revealed. In particular, forme is sometimes not
specified (so Arceus would appear as Arceus-* since it’s impossible
to identify Arceus forme in Team Preview).

|start

Indicates that the game has started.

Battle progress

|request|REQUEST

Gives a JSON object containing a request for a choice (to move or
switch). To assist in your decision, REQUEST.active has information
about your active Pokémon, and REQUEST.side has information about your
your team as a whole.

|inactive|MESSAGE or |inactiveoff|MESSAGE

A message related to the battle timer has been sent. The official client
displays these messages in red.

inactive means that the timer is on at the time the message was sent,
while inactiveoff means that the timer is off.

|turn|NUMBER

It is now turn NUMBER.

|win|USER

USER has won the battle.

|tie

The battle has ended in a tie.

Identifying Pokémon

Pokémon can be identified either by a Pokémon ID (generally labeled
POKEMON in this document), or a details string (generally labeled
DETAILS).

A Pokémon ID is in the form POSITION: NAME. POSITION is the spot that
the Pokémon is in: it consists of the PLAYER of the player (see
|player|), followed by a letter indicating the given Pokémon’s position,
counting from a.

An inactive Pokémon will not have a position letter.

In doubles and triples battles, a will refer to the leftmost Pokémon
on one team and the rightmost Pokémon on the other (so p1a faces p2c,
etc). NAME is the nickname of the Pokémon performing the action.

For example: p1a: Sparky could be a Charizard named Sparky.
p1: Dragonite could be an inactive Dragonite being healed by Heal Bell.

DETAILS is a comma-separated list of all information about a pokemon
visible on the battle screen: species, shininess, gender, and level. So it
starts with SPECIES, adding , shiny if it’s shiny, , M if it’s male,
, F if it’s female, , L## if it’s not level 100.

So, for instance, Deoxys-Speed is a level 100 non-shiny genderless
Deoxys (Speed forme). Sawsbuck, shiny, F, L50 is a level 50 shiny female
Sawsbuck (Spring form).

In Team Preview, DETAILS will not include information not available in
Team Preview (in particular, level and shininess will be left off), and
for Pokémon whose forme isn’t revealed in Team Preview, it will be given as
-*. So, for instance, an Arceus in Team Preview would have the details
string Arceus-*.

For most commands, you can just use the position information in the
Pokémon ID to identify the Pokémon. Only a few commands actually change the
Pokémon in that position (|switch| switching, |replace| illusion dropping,
|drag| phazing, and |detailschange| permanent forme changes), and these
all specify DETAILS for you to perform updates with.

Major actions

In battle, most Pokémon actions come in the form |ACTION|POKEMON|DETAILS
followed by a few messages detailing what happens after the action occurs.

Battle actions (especially minor actions) often come with tags such as
|[from] EFFECT|[of] SOURCE. EFFECT will be an effect (move, ability,
item, status, etc), and SOURCE will be a Pokémon. These can affect the
message or animation displayed, but do not affect anything else. Other
tags include |[still] (suppress animation) and |[silent] (suppress
message).

|move|POKEMON|MOVE|TARGET

The specified Pokémon has used move MOVE at TARGET. If a move has
multiple targets or no target, TARGET should be ignored. If a move
targets a side, TARGET will be a (possibly fainted) Pokémon on that
side.

If |[miss] is present, the move missed.

|[anim] MOVE2 tells the client to use the animation of MOVE2 instead
of MOVE when displaying to the client.

|switch|POKEMON|DETAILS|HP STATUS or |drag|POKEMON|DETAILS|HP STATUS

A Pokémon identified by POKEMON has switched in (if there was an old
Pokémon in that position, it is switched out).

For the DETAILS format, see “Identifying Pokémon” above.

POKEMON|DETAILS represents all the information that can be used to tell
Pokémon apart. If two pokemon have the same POKEMON|DETAILS (which will
never happen in any format with Species Clause), you usually won’t be able
to tell if the same pokemon switched in or a different pokemon switched
in.

The switched Pokémon has HP HP, and status STATUS. HP is specified as
a fraction; if it is your own Pokémon then it will be CURRENT/MAX, if not,
it will be /100 if HP Percentage Mod is in effect and /48 otherwise.
STATUS can be left blank, or it can be slp, par, etc.

switch means it was intentional, while drag means it was unintentional
(forced by Whirlwind, Roar, etc).

|detailschange|POKEMON|DETAILS|HP STATUS or
|-formechange|POKEMON|SPECIES|HP STATUS

The specified Pokémon has changed formes (via Mega Evolution, ability, etc.)
to SPECIES. If the forme change is permanent (Mega Evolution or a
Shaymin-Sky that is frozen), then detailschange will appear; otherwise,
the client will send -formechange.

Syntax is the same as |switch| above.

|replace|POKEMON|DETAILS|HP STATUS

Illusion has ended for the specified Pokémon. Syntax is the same as |switch|
above, but remember that everything you thought you knew about the previous
Pokémon is now wrong.

POKEMON will be the NEW Pokémon ID - i.e. it will have the nickname of the
Zoroark (or other Illusion user).

|swap|POKEMON|POSITION

Moves already active POKEMON to active field POSITION where the
leftmost position is 0 and each position to the right counts up by 1.

|cant|POKEMON|REASON or |cant|POKEMON|REASON|MOVE

The Pokémon POKEMON could not perform a move because of the indicated
REASON (such as paralysis, Disable, etc). Sometimes, the move it was
trying to use is given.

|faint|POKEMON

The Pokémon POKEMON has fainted.

Minor actions

Minor actions are less important than major actions. In the official client,
they’re usually displayed in small font if they have a message. Pretty much
anything that happens in a battle other than a switch or the fact that a move
was used is a minor action. So yes, the effects of a move such as damage or
stat boosts are minor actions.

|-fail|POKEMON|ACTION

The specified ACTION has failed against the POKEMON targetted. The ACTION
in question can be a move that fails, or a stat drop blocked by an ability
like Hyper Cutter, in which case ACTION will be unboost|STAT, where STAT
indicates where the ability prevents stat drops. (For abilities that block all
stat drops, like Clear Body, |STAT does not appear.)

|-damage|POKEMON|HP STATUS

The specified Pokémon POKEMON has taken damage, and is now at
HP STATUS (see |switch| for details).

If HP is 0, STATUS should be ignored. The current behavior is for
STATUS to be fnt, but this may change and should not be relied upon.

|-heal|POKEMON|HP STATUS

Same as -damage, but the Pokémon has healed damage instead.

|-status|POKEMON|STATUS

The Pokémon POKEMON has been inflicted with STATUS.

|-curestatus|POKEMON|STATUS

The Pokémon POKEMON has recovered from STATUS.

|-cureteam|POKEMON

The Pokémon POKEMON has used a move that cures its team of status effects,
like Heal Bell.

|-boost|POKEMON|STAT|AMOUNT

The specified Pokémon POKEMON has gained AMOUNT in STAT, using the
standard rules for Pokémon stat changes in-battle. STAT is a standard
three-letter abbreviation fot the stat in question, so Speed will be spe,
Special Defense will be spd, etc.

|-unboost|POKEMON|STAT|AMOUNT

Same as -boost, but for negative stat changes instead.

|-weather|WEATHER

Indicates the weather that is currently in effect. If |[upkeep] is present,
it means that WEATHER was active previously and is still in effect that
turn. Otherwise, it means that the weather has changed due to a move or ability,
or has expired, in which case WEATHER will be none.

|-fieldstart|CONDITION

The field condition CONDITION has started. Field conditions are all effects that
affect the entire field and aren’t a weather. (For example: Trick Room, Grassy
Terrain)

|-fieldend|CONDITION

Indicates that the field condition CONDITION has ended.

|-sidestart|SIDE|CONDITION

A side condition CONDITION has started on SIDE. Side conditions are all effects
that affect one side of the field. (For example: Tailwind, Stealth Rock, Reflect)

|-sideend|SIDE|CONDITION

Indicates that the side condition CONDITION ended for the given SIDE.

|-crit|POKEMON

A move has dealt a critical hit against the POKEMON.

|-supereffective|POKEMON

A move was super effective against the POKEMON.

|-resisted|POKEMON

A move was not very effective against the POKEMON.

|-immune|POKEMON

The POKEMON was immune to a move.

|-item|POKEMON|ITEM

The ITEM held by the POKEMON has been changed or revealed due to a move or
ability. In addition, Air Balloon reveals itself when the Pokémon holding it
switches in, so it will also cause this message to appear.

|-enditem|POKEMON|ITEM

The ITEM held by POKEMON has been destroyed, and it now holds no item. This can
be because of an item’s own effects (consumed Berries, Air Balloon), or by a move or
ability, like Knock Off. If a berry is consumed, it also has an additional modifier
|[eat] to indicate that it was consumed. This message does not appear if the item’s
ownership was changed (with a move or ability like Thief or Trick), even if the move
or ability would result in a Pokémon without an item.

|-ability|POKEMON|ABILITY

The ABILITY of the POKEMON has been changed due to a move/ability, or it has
activated in a way that could not be better described by one of the other minor
messages. For example, Clear Body sends -fail when it blocks stat drops, while
Mold Breaker sends this message to reveal itself upon switch-in.

Note that Skill Swap does not send this message despite it changing abilities,
because it does not reveal abilities when used between allies in a Double or
Triple Battle.

|-endability|POKEMON

The POKEMON has had its ability surpressed, either by a move like Gastro Acid, or
by the effects of Mummy.

|-transform|POKEMON|SPECIES

The Pokémon POKEMON has transformed into SPECIES by the effect of Transform
or the ability Imposter.

|-mega|POKEMON|MEGASTONE

The Pokémon POKEMON used MEGASTONE to Mega Evolve.

|-activate|EFFECT

A miscellaneous effect has activated. This is triggered whenever an effect could
not be better described by one of the other minor messages: for example, healing
abilities like Water Absorb simply use -heal, and items that are consumed upon
use have the -enditem message instead.

|-hint|MESSAGE

Displays a message in parentheses to the client. Hint messages appear to explain and
clarify why certain actions, such as Fake Out and Mat Block failing, have occurred,when there would normally be no in-game messages.

|-center

Appears in Triple Battles when only one Pokémon remains on each side, to indicate
that the Pokémon have been automatically centered.

|-message|MESSAGE

Displays a miscellaneous message to the client. These messages are primarily used
for messages from game mods that aren’t supported by the client, like rule clauses
such as Sleep Clause, or other metagames with custom messages for specific scenarios.

I’ll document all the message types eventually, but for now this should be
enough to get you started. You can watch the data sent and received from
the server on a regular connection, or look at the client source code
for a full list of message types.

Action requests

These are how the client sends the player’s decisions to the server. All
requests except /undo can be sent with |RQID at the end. RQID is
REQUEST.rqid from |request|. Each RQID is a unique number used to
identify which action the request was intended for and is used to protect
against race conditions involving /undo (the cancel button).

If an invalid request is sent, the game will replace the missing or
erroneous request with a valid choice, which is usually the first usable
move.

|/team ORDER

Chooses the team order. Numbers not listed are displaced to the back by swapping
them with the number that took their place. For example /team 25 sets the team
order from default to 253416.

|/move NUMBER TARGET

Uses your active Pokémon’s NUMBERth move on TARGET Pokémon. NUMBER is usually
a number ranging from 1 to 4 (although it can range up to 24 in Custom Games where
Pokémon can have that many moves).

TARGET is optional and only needs to be specified for single target moves in
doubles/triples formats. Moves with TARGET specify which position they are trying
to use the move on as a number wherein the opposing Pokémon are positive integers
counting up from 1 starting on the right. Ally Pokémon targets are negative
integers counting down from -1 starting on the left.

If mega is added as a final parameter, the Pokémon will Mega Evolve if possible.

|/switch NUMBER

Switches the active Pokémon with the NUMBERth Pokémon on the team. In cases where
a Pokémon is KOed, their replacement is also chosen with /switch. This should
correspond to a non-active, non-fainted Pokémon, which means NUMBER should be
between 2 and 6.

|/choose ACTION,ACTION,ACTION

For doubles/triples formats, decisions are sent for all team positions in the same
line separated by commas. ACTION can be any of the following: move, switch,
shift, pass.

move and switch use the same syntax as their respective commands explained above
except without the /. In triples, /choose shift requests to |swap| the current
outside Pokémon to the middle team position. pass is used to indicate that the Pokémon
in that slot is not performing an action, for instance, because the Pokémon is fainted
and you have no non-fainted Pokémon to replace it with, or because the Pokémon is not
fainted while you are switching in replacements for fainted Pokémon. For example,
/choose move 1 2,move 4 -1,pass will have the leftmost Pokémon attack the opponent’s
middle Pokémon with its first move, the middle Pokémon will attack its ally to the
left with its fourth move, and the third team slot is empty.

|/undo

Attempts to cancel the last request so a new one can be made.

Pokémon Showdown

Navigation: Website [http://pokemonshowdown.com/] | Server repository | Client repository [https://github.com/Zarel/Pokemon-Showdown-Client] | Dex repository [https://github.com/Zarel/Pokemon-Showdown-Dex]

[image: ../_images/Pokemon-Showdown.svg]Build Status [https://travis-ci.com/Zarel/Pokemon-Showdown]
[image: ../_images/Pokemon-Showdown1.svg]Dependency Status [https://david-dm.org/zarel/Pokemon-Showdown]
[image: ../_images/dev-status.svg]devDependency Status [https://david-dm.org/zarel/Pokemon-Showdown?type=dev]

Introduction

This is the source code for the game server of Pokémon Showdown [http://pokemonshowdown.com/], a website for Pokémon battling. Pokémon Showdown simulates singles, doubles and triples battles in all the games out so far (Generations 1 through 7).

This repository contains the files needed to set up your own Pokémon Showdown server. Note that to set up a server, you’ll also need a server computer.

You can use your own computer as a server, but for other people to connect to your computer, you’ll need to expose a port (default is 8000 but you can choose a different one) to connect to, which sometimes requires port forwarding [http://en.wikipedia.org/wiki/Port_forwarding]. Note that some internet providers don’t let you host a server at all, in which case you’ll have to rent a VPS to use as a server.

Installing

./pokemon-showdown

(Requires Node.js 8+)

Detailed installation instructions

Pokémon Showdown requires you to have Node.js [https://nodejs.org/] installed, 8.x or later (7.7 or later can work, but you might as well be on the latest stable).

Next, obtain a copy of Pokémon Showdown. If you’re reading this outside of GitHub, you’ve probably already done this. If you’re reading this in GitHub, there’s a “Clone or download” button near the top right (it’s green). I recommend the “Open in Desktop” method - you need to install GitHub Desktop which is more work than “Download ZIP”, but it makes it much easier to update in the long run (it lets you use the /updateserver command).

Pokémon Showdown is installed and run using a command line. In Mac OS X, open Terminal (it’s in Utilities). In Windows, open Command Prompt (type cmd into the Start menu and it should be the first result). Type this into the command line:

cd LOCATION

Replace LOCATION with the location Pokémon Showdown is in (ending up with, for instance, cd "~/Downloads/Pokemon-Showdown" or cd "C:\Users\Bob\Downloads\Pokemon-Showdown\").

This will set your command line’s location to Pokémon Showdown’s folder. You’ll have to do this each time you open a command line to run commands for Pokémon Showdown.

Copy config/config-example.js into config/config.js, and edit as you please.

Congratulations, you’re done setting up Pokémon Showdown.

Now, to start Pokémon Showdown, run the command:

node pokemon-showdown

(If you’re not on Windows, we recommend doing ./pokemon-showdown instead.)

You can also specify a port:

node pokemon-showdown 8000

Visit your server at http://SERVER:8000

Replace SERVER with your server domain or IP. Replace 8000 with your port if it’s not 8000 (the default port).

Yes, you can test even if you are behind a NAT without port forwarding: http://localhost:8000 will connect to your local machine. Some browser setups might prevent this sort of connection, however (NoScript, for instance). If you can’t get connecting locally to work in Firefox, try Chrome.

You will be redirected to http://SERVER.psim.us. The reason your server is visited through psim.us is to make it more difficult for servers to see a user’s password in any form, by handling logins globally. You can embed this in an iframe in your website if the URL is a big deal with you.

If you truly want to host the client yourself, there is a repository for the Pokémon Showdown Client [https://github.com/Zarel/Pokemon-Showdown-Client]. It’s not recommended for beginners, though.

Setting up an Administrator account

Once your server is up, you probably want to make yourself an Administrator (~) on it.

config/usergroups.csv

To become an Administrator, create a file named config/usergroups.csv containing

USER,~

Replace USER with the username that you would like to become an Administrator. Do not put a space between the comma and the tilde.

This username must be registered. If you do not have a registered account, you can create one using the Register button in the settings menu (it looks like a gear) in the upper-right of Pokémon Showdown.

Once you’re an administrator, you can promote/demote others easily with the /globaladmin, /globalleader, /globalmod, etc commands.

Browser support

Pokémon Showdown currently supports, in order of preference:

	Chrome

	Firefox

	Opera

	Safari 5+

	IE11+

	Chrome/Firefox/Safari for various mobile devices

Pokémon Showdown is usable, but expect degraded performance and certain features not to work in:

	Safari 4+

	IE9+

Pokémon Showdown is mostly developed on Chrome, and Chrome or the desktop client is required for certain features like dragging-and-dropping teams from PS to your computer. However, bugs reported on any supported browser will usually be fixed pretty quickly.

Community

PS has a built-in chat service. Join our main server to talk to us!

You can also visit the Pokémon Showdown forums [https://www.smogon.com/forums/forums/pok%C3%A9mon-showdown.209/] for discussion and help.

If you’d like to contribute to programming and don’t know where to start, feel free to check out Ideas for New Developers [https://github.com/Zarel/Pokemon-Showdown/issues/2444].

License

Pokémon Showdown’s server is distributed under the terms of the MIT License [https://github.com/Zarel/Pokemon-Showdown/blob/master/LICENSE].

Credits

Owner

	Guangcong Luo [Zarel] - Development, Design, Sysadmin

Staff

	Chris Monsanto [chaos] - Sysadmin

	Leonardo Julca [Slayer95] - Development

	Mathieu Dias-Martins [Marty-D] - Research (game mechanics), Development

	[The Immortal] - Development

Retired Staff

	Bill Meltsner [bmelts] - Development, Sysadmin

	Cathy J. Fitzpatrick [cathyjf] - Development, Sysadmin

	Hugh Gordon [V4] - Research (game mechanics), Development

	Juanma Serrano [Joim] - Development, Sysadmin

Major Contributors

	Bär Halberkamp [bumbadadabum] - Development

	Kevin Lau [Ascriptmaster] - Development, Art (battle animations)

	Konrad Borowski [xfix] - Development

	Quinton Lee [sirDonovan] - Development

Contributors

	Andrew Goodsell [Zracknel] - Art (battle weather backdrops)

	Avery Zimmer [Lyren, SolarisFox] - Development

	Ben Davies [Morfent] - Development

	Ben Frengley [TalkTakesTime] - Development

	Cody Thompson [Rising_Dusk] - Development

	Ian Clail [Layell] - Art (battle graphics, sprites)

	Jeremy Piemonte [panpawn] - Development

	Kris Johnson [Kris] - Development

	Neil Rashbrook [urkerab] - Development

	Robin Vandenbrande [Quinella] - Development

	[Ridaz] - Art (battle animations)

	Tobias Mann [asgdf] - Development

Special thanks

	See http://pokemonshowdown.com/credits

Pokémon Showdown Command API

Defining a Command

You can define the commands such as ‘whois’, then use them by typing
/whois into Pokémon Showdown.

A command can be in the form:

ip: 'whois',

This is called an alias: it makes it so /ip does the same thing as
/whois.

But to actually define a command, it’s a function:

avatars: function (target, room, user) {
	if (!this.runBroadcast()) return;
	this.sendReplyBox('You can <button name="avatars">change ' +
		'your avatar</button> by clicking on it in the <button ' +
		'name="openOptions"><i class="icon-cog"></i> Options' +
		'</button> menu in the upper right. Custom avatars are ' +
		'only obtainable by staff.');
}

Parameters

Commands are actually passed five parameters:

function (target, room, user, connection, cmd, message)

Most of the time, you only need the first three, though.

	target = the part of the message after the command

	room = the room object the message was sent to(The room name is room.id)

	user = the user object that sent the message(The user’s name is user.name)

	connection = the connection that the message was sent from

	cmd = the name of the command

	message = the entire message sent by the user

For instance, if a user types in /msg zarel, hello,

`target` = `"zarel, hello"`
`cmd` = `"msg"`
`message` = `"/msg zarel, hello"`

Commands return the message the user should say. If they don’t
return anything or return something falsy, the user won’t say
anything.

Help Entries

A /help entry can be added for a command by adding a command in the
form <command>help: ["<help text>"],, where <command> is the primary function
name, followed by an array or function.

If the help entry is an array, each element of the array will be sent as a
new line. If the help entry is a function, the help command will execute
that function.

As an example:

ip: 'whois',
rooms: 'whois',
whois: function (target, room, user, connection, cmd) {
	<function body>
},
whoishelp:["/whois - Get details on yourself: alts, group, IP address,
	and rooms.",
	"/whois [username] - Get details on a username: group and rooms."],

/help whois will send the information in whoishelp.

Functions

Commands have access to the following functions:

this.sendReply(message)

	Sends a message back to the room the user typed the command into.

this.sendReplyBox(html)

	Same as sendReply, but shows it in a box, and you can put HTML in it.

this.popupReply(message)

	Shows a popup in the window the user typed the command into.

this.add(message)

	Adds a message to the room so that everyone can see it.
This is like this.sendReply, except everyone in the room gets it,
instead of just the user that typed the command.

this.send(message)

	Sends a message to the room so that everyone can see it.
This is like this.add, except it’s not logged, and users who join the
room later won’t see it in the log, and if it’s a battle, it won’t show
up in saved replays.
You USUALLY want to use this.add instead.

this.roomlog(message)

	Log a message to the room’s log without sending it to anyone. This is
like this.add, except no one will see it.

this.addModAction(message)

	Like this.add, except it logs the message as being sent as the user who used the command.
This does not log anything into the modlog

this.modlog(action, user, note, options)

	Adds a log line into the room’s modlog, similar to this.globalModlog.
The arguments user (the targeted user), note (details), and options (no ip, no alts) are optional.

this.can(permission)this.can(permission, targetUser)

	Checks if the user has the permission to do something, or if a
targetUser is passed, check if the user has permission to do it to that
user. Will automatically give the user an “Access denied” message if
the user doesn’t have permission: use user.can() if you don’t want that
message.

Should usually be near the top of the command, like:

if (!this.can('potd')) return false;

this.runBroadcast()

	Signifies that a message can be broadcast, as long as the user has
permission to. This will check to see if the user used !command
instead of /command. If so, it will check to see if the user has
permission to broadcast (by default, voice+ can), and return false if
not. Otherwise, it will add the message to the room, and turn on the
flag this.broadcasting, so that this.sendReply and this.sendReplyBox
will broadcast to the room instead of just the user that used the
command.

Should usually be near the top of the command, like:

if (!this.canBroadcast()) return false;

this.runBroadcast(suppressMessage)

	Functionally the same as this.canBroadcast(). However, it will look as
if the user had written the text suppressMessage.

this.canTalk()

	Checks to see if the user can speak in the room. Returns false if the
user can’t speak (is muted, the room has modchat on, etc), or true
otherwise.

Should usually be near the top of the command, like:

if (!this.canTalk()) return false;

this.canTalk(message, room)

	Checks to see if the user can say the message in the room.
If a room is not specified, it will default to the current one.
If it has a falsy value, the check won’t be attached to any room.
In addition to running the checks from this.canTalk(), it also checks
to see if the message has any banned words, is too long, or was just
sent by the user. Returns the filtered message, or a falsy value if the
user can’t speak.

Should usually be near the top of the command, like:

target = this.canTalk(target);
if (!target) return false;

this.parse(message, inNamespace)

	Runs the message as if the user had typed it in.

Mostly useful for giving help messages, like for commands that require
a target:

if (!target) return this.parse('/help msg');

If inNamespace is true, then the message is parsed in that
corresponding namespace:

// command msg is in namespace test. (ie. /test msg)
this.parse('/help', true); // is parsed as if the user said
						 // '/test help'

After 10 levels of recursion (calling this.parse from a command called
by this.parse from a command called by this.parse etc) we will assume
it’s a bug in your command and error out.

this.targetUserOrSelf(target, exactName)

	If target is blank, returns the user that sent the message.
Otherwise, returns the user with the username in target, or a falsy
value if no user with that username exists.
By default, this will track users across name changes. However, if
exactName is true, it will enforce exact matches.

this.splitTarget(target, exactName)

	Splits a target in the form <user>, <message> into its constituent parts.
Returns <message>, and sets this.targetUser to the user, and
this.targetUsername to the username.

If a user doesn’t exist (because they are offline or otherwise),
this.targetUser will be falsy but this.targetUsername will still exist.
If this.targetUser exists, this.targetUsername will have the same
capitalization as the user’s username, otherwise the capitalization
will be however it was passed into the function.

By default, this will track users across name changes. However, if
exactName is true, it will enforce exact matches.

Remember to check if this.targetUser exists before going further.

Unless otherwise specified, these functions will return undefined, so you
can return this.sendReply or something to send a reply and stop the command
there.

Namespace Commands

A command can also be an object, in which case is treated like
a namespace:

game: {
	play: function (target, room, user) {
		user.isPlaying = true;
		this.sendReply("Playing.");
	},
	stop: function (target, room, user) {
		user.isPlaying = false;
		this.sendReply("Stopped.");
	}
}

These commands can be called by /game play and /game stop.

Namespaces help organise commands, and nest them under
one main command.

Note: Multiple namespaces can be nested, but the final (innermost)
command must be a function.

Namespace objects can have help entries and so can the internal
commands:

game: {
	play: function (target, room, user) {
		user.isPlaying = true;
		this.sendReply("Playing.");
	},
	playhelp: ["Tells you if the user is playing."],
	stop: function (target, room, user) {
		user.isPlaying = false;
		this.sendReply("Stopped.");
	},
	stophelp: ["Tells you if the user has stopped playing."]
},
gamehelp: ["commands for /game are:",
	"/game play - Tells you if the user is playing.",
	"/game stop - Tells you if the user stopped playing."]

The help entries are accessed with /help game play and /help game
respectively.

Avatars directory

You can specify custom avatars for users in config/config.js using the customavatars option. After doing so, place your custom avatar files in this directory.

Your server must be registered in order to use custom avatars.

 Chat plugin config files are stored in this directory.

 Ladders are stored here in files named FORMATID.tsv.

TSV files are spreadsheets and are best opened with spreadsheet programs such as Excel. Text editors can also handle them, although not as easily.

Streams

Streams are variables used to interact with large amounts of data without needing to keep it all loaded in RAM.

A stream is used where you would normally use a string, Buffer, or Array, but only part of it is kept in memory at once.

Node.js comes with built-in support for streams, and there is also a WHATWG Streams spec (which are incompatible, of course). Both APIs are hard to use and have unnecessary amounts of boilerplate; the Node version more so. This API can wrap Node’s API, or it can be used independently, and is a lot easier to use.

An overview:

	WriteStream is a string/Buffer write stream. Write to it with writeStream.write(data).

	ReadStream is a string/Buffer read stream. Read inputs by line with readStream.readLine() or by chunk with readStream.read(), or pipe inputs to a WriteStream with readStream.pipe(writeStream).

	ReadWriteStream is a string/Buffer read/write stream.

These streams are not API-compatible with Node streams, but can wrap them.

“override encoding”

Buffer stream methods often take an “override encoding” parameter. Normally, you should never use it: streams will automatically convert between strings and Buffers using their built-in encoding, which defaults to utf8, and can be changed by setting stream.encoding.

However, if for some reason you need to change which encoding you use on a per-read or per-write basis, you can pass the relevant encoding to the individual methods.

Interface: WriteStream

A WriteStream can be written to.

writeStream.write(chunk, [encoding])

	chunk {string|Buffer|null} data to write

	encoding [override encoding][]

	Returns: {Promise} for the next time it’s safe to write to the writeStream.

 Pokémon Showdown Logging

Pokémon Showdown Logging

This is the Pokémon Showdown log directory.

Pokémon Showdown will, by default, log rated battles in each format, but not unrated
battles. To enable logging of unrated battles, turn on the config setting logchallenges.
There is currently no config option to disable logs for rated battles.
Battle logs are placed under a subdirectory for each month (e.g. 2013-02).

Moderator actions are logged in the subdirectory modlog.
Each chat room has a separate log file (e.g. modlog_lobby.txt).
Battle rooms share a single log file, which is named modlog_battle.txt.

If the server or the simulator process crashes, a stack trace will
usually be logged to errors.txt.

By default, Pokémon Showdown does not log chat rooms. However, you can
enable their logging by setting the logchat option in config.js.
If you enable it, the logs are written in the subdirectory named chat.
Each room gets their own subdirectory within, which are furthermore classified by month.

 <no title>

 Logs of chat rooms are stored in this directory if logchat is enabled.

 <no title>

 Logs of moderation actions are stored in this directory.

 repl directory

repl directory

The REPL feature is enabled by default; it can be disabled in config.js.

This directory is used by default to store the REPL sockets to all of showdown’s processes.

The intended uses of these REPL sockets are for debugging (especially when the server is seemingly frozen) and scripting.

You can use any tool capable of talking to Unix sockets such as nc. e.g. nc -U app, replacing app with the name of any socket in this directory.

 Gen 1, the beginning

Gen 1, the beginning

Introduction

Generation 1 includes the original japanese Green and Red, Blue, and Yellow games.
It was very different than the game we get to know today, and it was, in fact, very different to Gen 2 as well.
The mechanics were very different, and the game was quite glitched, but most glitches were important parts of the metagame.
There were only 151 Pokémon plus Missingno, just a handful of moves, no abilities, no items, all stats were
EVd to the max and we had some kind of different IVs, which maxed at 15 and every point gave 2 to the stat, so in
a similar fashion, Pokes used to have 30 IVs on each stat.

The following sources have been used and extremly useful when developing this mod:
https://raw.github.com/po-devs/pokemon-online/master/bin/database/rby-stuff.txt
https://www.smogon.com/rb/articles/differences
https://www.smogon.com/forums/threads/past-gens-research-thread.3506992/#post-5878612

Special Stat

Back then, there weren’t Special Defense and Special Attack stats. It was just “Special”, and moves raised and lowered it.
That’s why Special walls were so OP in Gen 1.

In order to achieve a similar effect without heavily changing other scripts rather than just the mod, the mod’s Pokedex
and the mod’s moves have been edited in order to emulate it, making all Pokémon have the old special stat in both SpA and
SpD and making moves raise and lower both SpA and SpD at the same time.

Critical Hits

Critical hits in Gen 1 work with Speed. The faster you are, the more you crit.
This is the regular critical hit formula:
CH% = BaseSpeed * 100 / 512.
This is the high critical hit moves formula:
CH% = BaseSpeed * 100 / 64.
That means that a Persian with Slash is going to crit. This made the metagame adapt so OU prefers all the faster Pokémon
in the game.

However, if you used Focus Energy, your crit rate was ruined instead of increased, so if you were slower than your
opponent you couldn’t crit at all.

Status

Freeze never thaws unless hit by a Fire-type attack or by Haze.
Sleep lasts 1-7 turns and you wake up at the end of the turn.

1/256 miss

All moves but Swift and Bide (while on duration, not first hit) have a 1/256 chance to miss.

Partial Trapping Moves

Partial trapping moves let either Pokémon switch but target will be unable to move for its duration.

TODO. Glitches not implemented

There are a couple of divisions by zero in the original game in the cartridge. Those have not been implemented.

 Gen 2

Gen 2

Introduction

Generation 2 includes the games Pokémon Silver, Gold, and Crystal. Stadium 2 may also be counted, but for simulating purposes the mechanics of choice are those of Crystal.
In this metagame we find 251 Pokémon, three of which are banned to Ubers, that have no abilities, basically can only use Leftovers as an item, have poor attacking moves, no coverage, and Rest and Sleep Talk which can use Rest. Therefore we find a very stally meta, for the defense overcomes the offense easily.

EVs and IVs

Since Generation 2 was still a Game Boy game and it’s retrocompatible with Generation 1, the Special EV and IV was still used for both Special Attack and Special Defense.
IVs were still called DVs and they ranged from 0 to 15, each giving 2 points to the stat.
The DVs decided the gender, male to female ratio, shinyness, Hidden Power base power and type, and Unown’s letter. The EVs could all still be maxed as happened with Stat Experience in Generation 1.

Hidden Power

Hidden Power is an excellent coverage move and it’s decided by a Pokémon’s DVs.
The type was decided with the following operation:
4 * (atkDV % 4) + (defDV % 4)
Which gives as a number from 0 to 16, giving us the index in the type table to use.
The Hidden Power base power was decided with the following formula:
Math.floor((5 * ((spcDV >> 3) + (2 * (speDV >> 3)) + (4 * (defDV >> 3)) + (8 * (atkDV >> 3))) + (spcDV > 2 ? 3 : spcDV)) / 2 + 31);
The DVs are shifted 3 positions, taking thus the most important byte, thus having no value under 8 DVs and a value on 8 and higher.
The most important DV was attack and special.

Critical Hits

Critical hits ignore defensive boosts but not defensive drops.

Status

Sleep lasts 1-5 turns and you the counter is not reset upon switch.

 Generation NEXT!

Generation NEXT!

Manifesto

The goal of NEXT is to improve the diversity of the OU metagame by only doing
things that could plausibly be done between gens.

Specifically, the core rules of NEXT are:

	no base stat changes

	no removing from movepools

	no removing from ability distribution

	no typing changes (except on formes)

	no buffing OU mons, except maybe tiny buffs to mons at the bottom of OU

	no doing things that make zero sense flavor-wise

What’s left is mainly changes to how abilities and moves work, which is
most of what NEXT is about.

A good example is what Game Freak did by giving Ditto the Imposter ability.
This gave a Ditto a role in OU, while still making sense flavor-wise, and
without removing anything it used to have.

A good example of what NEXT changes is Cherrim. We have taken an interesting
idea (ability designed for Sunny Day support) and made it viable in OU.

This approach is in sharp contrast to many mods that do change many things on
NEXT’s “don’t change” list. The result is a metagame that feels a lot like
a new generation: existing OU threats stay mostly the same, but many new
threats and strategies are introduced.

And yes, we know that “no base stat changes” has been broken in Gen 6. We’re
still not doing it, because it’s hard to constrain and hard to keep track of.

Recent changes

A changelog for NEXT is available here:

https://github.com/Zarel/Pokemon-Showdown/commits/master/mods/gennext

Changes

Generation NEXT currently makes the following changes:

Major changes:

	Stealth Rock now does 1/4 damage against Flying-types, and 1/8 damage against
everything else.

	Drives will change Genesect’s typing immediately after switch-in, to Bug/Ice,
Bug/Fire, Bug/Electric, or Bug/Water. However, Download will not activate for
Genesect unless it holds a Drive.

	Unown gets an item named Strange Orb (select “Stick” in the teambuilder)
It doubles its SpA, SpD, and Spe, and changes its type to the type of its
Hidden Power.

	Weather moves, such as Sunny Day, Rain Dance, Hail, and Sandstorm have +1
Priority.

	Forecast will make weather moves last forever. Cherrim will make Sunny Day
last forever. Phione will make Rain Dance last forever. Cryogonal will make
Hail last forever. Probopass will make Sandstorm last forever.

	Hail is improved:

	Silver Wind, Ominous Wind, and Avalanche deal 1.5x damage in Hail

	Snow Cloak no longer modifies evasion, but instead decreases damage by 25%
in Hail (and 12.5% out of Hail)

	Ice Body has 30% chance of freezing a contact move (and grants passive
healing out of Hail, too)

	Thick Fat, Marvel Scale, and Flame Body grant immunity to Hail damage

	Freezing doesn’t have a 20% thaw chance. Instead, thawing happens at the end
of the second turn. Because this new freeze effect is a nerf, Blizzard now
has a 30% chance of inflicting freeze.

	Swift Swim, Chlorophyll, and Sand Rush are nerfed to give a 1.5x speed buff instead.

	Every Hidden Ability is released.

	Moves with a charge turn are now a lot more powerful. They remove Protect and
Substitute before hitting, they always crit (although their base power has
been adjusted accordingly), they have perfect accuracy, and one other change
depending on the move:

	SolarBeam: heal 50% on the charge turn, 80 bp

	Razor Wind: 100% confusion, 60 bp

	Skull Bash: +1 Def, +1 SpD, +1 accuracy on the charge turn, 70 bp

	Sky Attack: 100% -1 Def, 95 bp

	Freeze Shock: 100% paralysis, 95 bp

	Ice Burn: 100% burn, 95 bp

	Bounce: 30% paralysis, 60 bp

	Fly: 100% -1 Def, 60 bp

	Dig: 100% -1 Def, 60 bp

	Dive: 100% -1 Def, 60 bp

	Shadow Force: 100% Ghost-Curse, 40 bp

	Sky Drop: 100% -1 Def, 60 bp

	Phantom Force: 100% -1 Def, 60 bp

	Recharge moves are similarly buffed. They have 100 base power, always crit,
and they only recharge if they KO. Be careful - in return for a KO, they
still give the foe a free switch-in and a turn to set up.

	Flower Gift now only boosts Sp. Def, but if Sunny Day is used while Cherrim
is out, the next switch-in also receives +1 SpD

	All Quiver Dancers (except Smeargle) get an item named Gossamer Wing (Select
“Stick” in the teambuilder). It makes them take half damage from Rock, Ice,
and Electric moves if they are Flying type, prevents them from taking
double SR damage, heals 1/16 after using a Status move, and makes Twister
do 1.5x Damage.

	Swarm also makes the user take half damage from Rock, Ice, Electric moves,
and Stealth Rock if they are Flying type.

	Relic Song switches Meloetta’s SpA and Atk EVs, boosts, and certain natures,
specifically: Modest <-> Adamant, Jolly <-> Timid, other natures are left
untouched. It’s now 60 base power +1 priority, with no secondary.

	Shuckle gets Berry Shell (select “Stick” in the teambuilder), which gives a
50% boost to Defense and Sp. Def.

	Ambipom, Spinda, and Mr. Mime get Sketch as an egg move, allowing it to use
exactly one move not normally in its learnset.

	Spinda gets V-Create, Superpower, Close Combat, Overheat, Leaf Storm, Draco
Meteor.

	Echoed Voice now has 80 base power, hits once, and then, 2 turns later,
hits again for 80 base power. It’s like Doom Desire, except it still hits
that first time.

	Confusion now deals 30 base power damage every attack, but does not stop
the attack. It now lasts 3-5 turns.

	Parental Bond now deals half damage on both hits, but confers perfect
accuracy like all multi-hit moves.

	Life Orb now behaves much more consistently as normal recoil. Reckless
will boost every move if Life Orb is held, and Rock Head will negate Life
Orb recoil.

	Twister is now a 80 base power Flying move with a 30% confusion chance

	Floette-Eternal-Flower is released.

New mechanic: Signature Pokémon:

	Certain moves have a Signature Pokémon associated with them. A move will
deal 1.5x its usual damage when used by its Signature Pokémon. Some of these
moves also receive other changes that apply to all Pokémon using the move -
those changes are listed in parentheses.

	Flareon: Fire Fang (20% burn, 30% flinch, 100% accuracy)

	Walrein: Ice Fang (20% freeze, 30% flinch, 100% accuracy)

	Luxray: Thunder Fang (20% paralysis, 30% flinch, 100% accuracy)

	Drapion: Poison Fang (65 base power, 100% toxic poison, 30% flinch)

	Seviper: Poison Tail (60 base power, 60% toxic poison)

	Muk: Sludge (60 base power, 100% poison)

	Weezing: Smog (75 base power, 100% poison, 100% accuracy)

	Rapidash: Flame Charge (60 base power)

	Darmanitan: Flame Wheel

	Eelektross: Spark

	Hitmontop: Triple Kick

	Kingdra: BubbleBeam (30% -1 Spe)

	Galvantula: Electroweb (60 base power, 100% accuracy)

	Skarmory: Steel Wing (60 base power, 100% accuracy, 50% +1 Def)

	Beautifly: Giga Drain

	Glaceon: Icy Wind (60 base power, 100% accuracy)

	Swampert: Mud Shot (60 base power, 100% accuracy)

	Kyurem: Glaciate (80 base power, 100% accuracy)

	Octillery: Octazooka (75 base power, 90% accuracy, 100% -1 accuracy)

	Serperior: Leaf Tornado (75 base power, 90% accuracy, 100% -1 accuracy)

	Weavile: Ice Shard

	Sharpedo: Aqua Jet

	Hitmonchan: Mach Punch

	Banette: Shadow Sneak

	Masquerain: Surf (10% -1 Spe)

	Snorlax: Snore (100 base power)

	Persian: Slash (60 base power 30% -1 Def)

	Again, note that while the Signature Pokémon will get the 1.5x damage boost,
all Pokémon will get the other changes to the move listed above.

New mechanic: Intrinsics:

	Pokémon that previously get Levitate are now immune to Ground intrinsically, although
Mold Breaker still bypasses this immunity. Instead, many of them get new abilities
in addition to their Ground immunity:

	Azelf: Steadfast

	Bronzong: Heatproof

	Claydol: Filter

	Cryogonal: Ice Body

	Eelektross: Poison Heal

	Flygon: Compoundeyes, Sand Rush

	Hydreigon: Sheer Force

	Mesprit: Serene Grace

	Mismagius: Cursed Body

	Rotom (all formes): Trace

	Unown: Shadow Tag

	Uxie: Synchronize

	Weezing: Aftermath

New: Type-specific items:

	Big Root: also acts like Leftovers + Shell Bell for Grass types

	Black Sludge: heals 1/8 per turn for pure Poison types

	Focus Band: breaks on first hit, but allows pure Fighting types to survive
that hit with 1 HP (so basically it’d be a Focus sash that stays intact
after residual damage); does nothing for other Pokémon

	Wise Glasses: 1.2x Special damage for pure Psychic types

	Muscle Band: 1.2x Physical damage for pure Fighting types

Minor move changes:

	Parabolic Charge now has 40 base power, but gives -1 SpA, -1 SpD to the
target and +1 SpA, +1 SpD to the user

	Draining Kiss now has 40 base power, but gives -1 SpA, -1 Atk to the
target and +1 SpA, +1 Atk to the user

	Defend Order and Heal Order now have +1 priority

	Rock Throw now removes Stealth Rock from the user’s side of the field,
and has 100% accuracy

	Rapid Spin now has 30 base power

	Rock Throw and Rapid Spin remove hazards before fainting from Rocky
Helmet etc. And double in power if they remove hazards.

	All moves’ accuracy is rounded up to the nearest multiple of 10%
(including Jump Kick)

	Charge Beam and Rock Slide are now 100% accurate

	Blue Flare has 30% burn chance, Fire Blast has 20% burn chance and is
80% accurate

	Focus Blast has 30% accuracy (use HP Fighting unless you have No Guard)

	Close Combat has been nerfed: it now gives -2 Def, -2 SpD

	Moves that were originally perfect accuracy have their base power increased
to 90 (this includes Aerial Ace, Disarming Voice, and Aura Sphere, among
others)

	Scald and Steam Eruption’s damage is no longer affected by weather:
instead, they get 60% burn chance in sun

	High Jump Kick now has 100 base power

	Shadow Ball now has 90 base power and 30% -SpD

	Multi-hit moves are now all perfect-accuracy

	Silver Wind, Ominous Wind, and AncientPower have a 100% chance of raising
one of Def/SpA/SpD/Spe at random, rather than a 10% chance of raising every
stat

	Twineedle has a new base power of 50

	Tri Attack now hits 3 times and has a base power of 30

	Strength now has a 30% chance of raising user’s Atk

	Cut and Rock Smash are 50 base power and now have a 100% chance of
lowering foe’s Def

	Psycho Cut’s Base Power is now 90

	Drill Peck, Needle Arm, Attack Order, and Leaf Blade’s Base
Powers are now 100

	Stomp and Steamroller now have 100 Base Power and perfect accuracy to
reflect their thematic status as counters to Minimize

	Bide is now a +1 priority move that gives the user Endure (the user
survives all move damage with at least 1 HP) for its duration. Bide fails
if the user has 1 HP when it’s used, or if the user’s last move used was
Bide.

	Withdraw gives +1 SpD as well as +1 Def

	Muddy Water is now 85 base power and 100% accurate

	Leech Life is now 75 base power

	Sound-based moves are no longer affected by immunities (ghosts can hear
things)

	Bonemerang, Bone Club and Bone Rush are no longer affected by immunities
(you can throw a bone to hit birds), Bone Rush nerfed to 20 base power
since it should never be viable

	Wing Attack and Power Gem are now like Dual Chop: 40 base power, 2-hit

	Autotomize now gives +3 Speed

	Zoroark gets a significantly wider movepool. It now learns: Ice Beam, Giga
Drain, Earthquake, Stone Edge, Superpower, X-Scissor

	If Illusion is active, Night Daze now displays as a random non-Status move
in the copied Pokémon’s moveset

	Selfdestruct and Explosion are now 200 and 250 base power autocrit moves,
respectively, and they are both perfect-accuracy

	Acid and Acid Spray aren’t affected by immunities

	Protect does not protect Substitutes (with passive healing being more
common, Sub/Protect stalling could be overpowered) and Substitutes increase
accuracy against them to 100%

	Dizzy Punch is 90 base power, 50% confusion chance

	Sacred Sword now has 95 base power

	Egg Bomb is now 40 base power autocrit

	Minimize only increases evasion by one stage

	Double Team takes 25% of user’s max HP (like Substitute)

Minor learnset changes:

	Azumarill gets Belly Drum with no incompatibilities

	Mantine gets many new moves: Recover, Whirlwind, Baton Pass, Wish, Soak,
Lock-On, Acid Spray, Octazooka, Stockpile

	Masquerain gets Surf

	Butterfree, Beautifly, Masquerain, and Mothim get Hurricane

	Roserade gets Sludge

	Meloetta gets Fiery Dance

	Galvantula gets Zap Cannon

	Virizion gets Horn Leech

	Scolipede and Steelix get Coil

	Lumineon, Ampharos, and Lanturn get Tail Glow

	Rotom formes learn more things:

	Rotom-Wash: BubbleBeam

	Rotom-Fan: Hurricane, Twister

	Rotom-Frost: Frost Breath

	Rotom-Heat: Heat Wave

	Rotom-Mow: Magical Leaf

	Starters get a new ability option

	Venusaur: Leaf Guard

	Charizard: Flame Body

	Blastoise: Shell Armor

	Meganium: Harvest

	Typhlosion: Magma Armor

	Feraligatr: Strong Jaw

	Sceptile: Limber

	Blaziken: Reckless

	Swampert: Hydration

	Torterra: Weak Armor

	Infernape: No Guard

	Empoleon: Ice Body

	Serperior: Own Tempo

	Emboar: Sheer Force

	Samurott: Technician

	Chesnaught: Battle Armor

	Delphox: Magic Guard

	Greninja: Pickpocket

	Crawdaunt’s Hidden Ability is now Tough Claws (this is because of a
nerf to Adaptability which is discussed below)

Minor ability changes:

	Static, Poison Point, and Cute Charm now always activate on
contact.

	Weak Armor reduces incoming move damage by 1/10 of the user’s max HP
and increases the user’s Speed for the first hit after switch-in (and
does not activate again until the next switch-in) instead of its
previous effect

	Shell Armor and Battle Armor reduce incoming move damage by 1/10 of
the user’s max HP in addition to their crit negation (also, Shell
Armor is removed when using Shell Smash)

	Magma Armor reduces incoming move damage by 1/10 of the user’s max HP,
provides immunity to Hail and freeze, and provides a one-time immunity
to Water and Ice, after which it turns into Battle Armor

	Prism Armor reduces incoming move damage by 1/10 of the user’s max HP in addition to its normal effects.

	Adaptability is now 1.33x to non-STAB moves instead of to STAB moves

	Shadow Tag now lasts only one turn

	Static and Poison Point have a 100% chance of activating

	Speed Boost does not activate on turns Protect, Detect, Endure, etc
are used

	Telepathy grants Imprison on switch-in

	Compound Eyes and Keen Eye now grant 1.6x accuracy (this replaces Keen
Eye’s previous effect)

	Victory Star grants 1.5x accuracy (but only for the user)

	Solid Rock and Filter now reduce damage of SE moves by 1/2, not 1/4

	Iron Fist now grants a 1.33x boost to punching moves

	Outrage, Thrash, and Petal Dance don’t lock if the user has Own Tempo

	Stench now grants a 40% flinch chance

	Slow Start now only lasts 3 turns instead of 5

	Truant will only activate if a move succeeds (e.g. not if it misses, fails,
or is Protected against), and will heal the user by 33% during its Truant
turn

	Clear Body and White Smoke prevents all stat lowering (relevant: the Regis’
Superpower, Metagross’ Hammer Arm, and Torkoal’s Overheat)

	Thick Fat grants half damage from Fighting

	Aftermath no longer requires contact, and is buffed to deal 1/3 of the
foe’s max HP

	Cursed Body works like Aftermath now, but instead of dealing damage, it
causes the foe to be Cursed (like Ghost-type Curse)

	Gluttony allows a Pokémon to use a Berry twice

	Heatproof now grants the user immunity to Fire and burns

	Guts, Quick Feet, and Toxic Boost take half damage from poisoning

	Guts, Quick Feet, and Flare Boost take half damage from burns

	Sand Veil grants 20% damage reduction in sand (this replaces Sand Veil’s
usual effect)

	Water Veil grans 12.5% damage reduction out of rain and 25% damage
reduction in rain, in addition to its usual effect

	Multiscale decreases damage by 1/3 rather than 1/2 (Sorry, Dragonite,
this is in exchange for a usable physical Flying STAB from a buffed
Aerial Ace)

Minor item changes:

	Zoom Lens now grants 1.6x accuracy

	Wide Lens now grants 1.3x accuracy

Bans:

	The OU banlist (i.e. Pokémon considered Uber) is now:

	Every Pokémon with over 600 BST except Slaking, Regigigas, and Hoopa-Unbound

	Deoxys (all formes)

	Darkrai

	Shaymin-Sky

	The following clauses are in effect:

	OHKO Clause

	Sleep Clause

	Soul Dew is banned

Specifically, differences from regular OU:

	unbanned: Aegislash, Blaziken, Genesect, Landorus, Gengarite, Kangaskhanite,
Lucarionite, Mawilite, Salamencite

	banned: Hoopa-Unbound, Kyurem, Kyurem-Black

	There is no Moody Clause or Evasion Clause

 Stadium

Stadium

This mod inherits from gen 1, which inherits from gen 2, and then applies the Stadium changes upon the gen 1 engine.

List of major changes:
*Sleep lasts between 1 and 3 turns.
*Hyper Beam does recharge after a faint.
*Critical hits happen way less.
*Substitute now blocks all status ailments and draining.
*It allows tradebacks.
*Partial trapping moves miss and stop their duration upon target switch.
*Focus Energy actually works.
*Stat calculations are done properly, burn and para drop are lost if you lose status.

 Simulator

Simulator

Pokémon Showdown’s new simulator API is designed to be relatively more straightforward to use than the old one.

It is implemented as a ReadWriteStream. You write to it player choices, and you read protocol messages from it.

const Sim = require('Pokemon-Showdown/sim');
stream = new Sim.BattleStream();

(async () => {
 let output;
 while ((output = await stream.read())) {
 console.log(output);
 }
})();

stream.write(`>start {"format":"gen7randombattle"}`);
stream.write(`>player p1 {"name":"Alice"}`);
stream.write(`>player p2 {"name":"Bob"}`);

The stream can be accessed from other programming languages using standard IO:

echo '>start {"formatid":"gen7randombattle"}
>player p1 {"name":"Alice"}
>player p2 {"name":"Bob"}
' | ./pokemon-showdown simulate-battle

Writing to the simulator

In a standard battle, what you write to the simulator looks something like this:

>start {"format":"gen7ou"}
>player p1 {"name":"Alice","team":"insert packed team here"}
>player p2 {"name":"Bob","team":"insert packed team here"}
>p1 team 123456
>p2 team 123456
>p1 move 1
>p2 switch 3
>p1 move 3
>p2 move 2

(In a data stream, messages should be delimited by \n; in an object stream, \n will be implicitly added after every message.)

Notice that every line starts with >. Lines not starting with > are comments, so that input logs can be mixed with output logs and/or normal text easily.

Note that the text after >p1 or >p2 can be untrusted input directly from the player, and should be treated accordingly.

Possible message types include:

>start OPTIONS

Starts a battle:

OPTIONS is a JSON object containing the following properties (optional, except formatid):

	formatid - a string representing the format ID

	seed - an array of four numbers representing a seed for the random number generator (defaults to a random seed)

	p1 - PLAYEROPTIONS for player 1 (defaults to no player; player options must then be passed with >player p1)

	p2 - PLAYEROPTIONS for player 2 (defaults to no player; player options must then be passed with >player p2)

If p1 and p2 are specified, the battle will begin immediately. Otherwise, they must be specified with >player before the battle will begin.

See documentation of >player (below) for PLAYEROPTIONS.

>player PLAYERID PLAYEROPTIONS

Sets player information:

PLAYERID is either p1 or p2

PLAYEROPTIONS is a JSON object containing the following properties (all optional):

	name is a string for the player name (defaults to “Player 1” or “Player 2”)

	avatar is a string for the player avatar (defaults to “”)

	team is a team (either in JSON or a string in packed format)

>p1 CHOICE
>p2 CHOICE

Makes a choice for a player (see “Choice specification”)

Choice specification

Using the Pokémon Showdown client, you can specify choices with /choose CHOICE, or, for move and switch choices, just /CHOICE works as well.

Using the simulator API, you would write >p1 CHOICE or >p2 CHOICE into the battle stream.

You can see the syntax in action by looking at the console when playing a battle in the Pokémon Showdown client.

As an overview:

	switch Pikachu, switch pikachu, or switch 2 are all valid CHOICE strings to switch to a Pikachu in slot 2.

	move Focus Blast, move focusblast, or move 4 are all valid CHOICE strings to use Focus Blast, your active Pokemon’s 4th move.

In Doubles, decisions are delimited by ,. If you have a Manectric and a Cresselia, move Thunderbolt 1 mega, move Helping Hand -1 will make the Manectric mega evolve and use Thunderbolt at the opponent in slot 1, while Cresselia will use Helping Hand at Manectric.

To be exact, CHOICE is one of:

	team TEAMSPEC, during Team Preview, where TEAMSPEC is a list of pokemon slots.

	For instance, team 213456 will swap the first two Pokemon and keep all other pokemon in order.

	TEAMSPEC does not have to be all pokemon: team 5231 might be a choice in VGC.

	TEAMSPEC does not need separators unless you have over 10 Pokémon, but in custom games, separate slots with ,. For instance: team 2, 1, 3, 4, 5, 6, 7, 8, 9, 10

	default, to auto-choose a decision. This will be the first possible legal choice. This is what’s used in VGC if you run out of Move Time.

	undo, to cancel a previously-made choice. This can only be done if the another player needs to make a choice and hasn’t done so yet (or if you are calling side.choose() directly, which doesn’t auto-continue when both players have made a choice).

	POKEMONCHOICE in Singles

	POKEMONCHOICE, POKEMONCHOICE in Doubles

POKEMONCHOICE is one of:

	default, to auto-choose a decision

	pass, to skip a slot in Doubles/Triples that doesn’t need a decision (never required, but can be useful for readability, to mean “the pokemon in this slot is fainted and won’t be making a move”)

	move MOVESPEC, to make a move

	move MOVESPEC mega, to mega-evolve and make a move

	move MOVESPEC zmove, to use a z-move version of a move

	switch SWITCHSPEC, to make a switch

MOVESPEC is:

	MOVESLOTSPEC or MOVESLOTSPEC TARGETSPEC

	MOVESLOTSPEC is a move name (capitalization/spacing-insensitive) or 1-based move slot number

	TARGETSPEC is a 1-based target slot number. Add a - in front of it to refer to allies. Remember that slots oppose each other, so in a battle, the slots go as follows:

Triples Doubles Singles
3 2 1 2 1 1
-1 -2 -3 -1 -2 -1

(But note that slot numbers are unnecessary in Singles: you can never choose a target in Singles.)

SWITCHSPEC is:

	a pokemon nickname or 1-based slot number

	Note that if you have multiple Pokémon with the same nickname, using the nickname will select the first unfainted one. If you want another Pokémon, you’ll need to specify it by slot number.

Once a choice has been set for all players who need to make a choice, the battle will continue.

Reading from the simulator

The simulator will send back messages. In a data stream, they’re delimited by \n\n. In an object stream, they will just be sent as separate strings.

Messages start with a message type followed by \n. A message will never have two \n in a row, so that \n\n always delimits a They look like:

update
MESSAGES

An update which should be sent to all players and spectators.

The messages the simulator sends back are documented in PROTOCOL.md. You can also look at a replay log for examples.

https://github.com/Zarel/Pokemon-Showdown/blob/master/PROTOCOL.md#battle-messages

One message type that only appears here is |split. This splits the next four lines into spectator, p1, p2, and omniscient messages. The p1 and p2 logs will have exact HP values only for the corresponding player, while the spectator log will not have exact HP values for either player, and the omniscient logs will have exact HP values for both.

sideupdate
PLAYERID
MESSAGES

Send messages to only one player. |split will never appear here.

PLAYERID will be either p1 or p2.

Note that choice requests (updates telling the player what choices they have for using moves or switching pokemon) are sent this way. Choice requests are documented in:

https://github.com/Zarel/Pokemon-Showdown/blob/master/PROTOCOL.md#battle-progress

end
LOGDATA

Sent at the end of a battle. LOGDATA is a JSON object that has various information you might find useful but are too lazy to extract from the update messages, such as t