

Podium documentation

Contents:

	Overview
	Features

	Architecture

	The Stack

	Who’s Using it

	How To Contribute?

	Hosting Podium
	Docker

	Binaries

	Source

	Meaning of Leaderboard Names
	Seasonal Leaderboards

	Available expirations

	Podium API
	Healthcheck Routes

	Status Routes

	Leaderboard Routes

	Member Routes

	Library
	Creating the client

	Creating, updating or retrieving member scores

	Setting and getting member scores in bulk

	Retrieving leaderboard leaders

	Incrementing player scores

	Number of players on a leaderboard

	Removing players from a leaderboard

	Total pages of a leaderboard

	Getting players around a player

	Getting players around a score

	Top percentage of a leaderboard

	Getting members in a range

	Removing a leaderboard

	Podium’s Benchmarks
	Running Benchmarks

	Generating test data

	Results

Overview

What is Podium? Podium is a blazing-fast HTTP Leaderboard service and library. It could be used to manage any number of leaderboards of people or groups, but our aim is players in a game.

Podium allows easy creation of different types of leaderboards with no set-up involved. Create seasonal, localized leaderboards just by varying their names.

Features

	Multi-tenant - Just vary the name of the leaderboard and you can have any number of tenants using leaderboards;

	Seasonal Leaderboards - Including suffixes like year2016week01 or year2016month06 is all you need to create seasonal leaders. I’m serious! That’s all there is to it;

	No leaderboard configuration - Just start notifying scores for members of a leaderboard. There’s no need to create, configure or maintain leaderboards. Let Podium do that for you;

	Top Members - Get the top members of a leaderboard whether you need by absolute value (top 200 members) or percentage (top 3% members);

	Members around me - Podium easily returns members around a specific member in the leaderboard. It will even compensate if you ask for the top member or last member to make sure you get a consistent amount of members;

	Batch score update - In a single operation, send a member score to many different leaderboards or many members score to the same leaderboard. This allows easy tracking of member rankings in several leaderboards at once (global, regional, clan, etc.);

	Easy to deploy - Podium comes with containers already exported to docker hub for every single of our successful builds. Just pick your choice!

	Use as library - You can use podium as a library as well, adding leaderboard functionality directly to your application;

Architecture

Podium is based on the premise that you have a backend server for your game. That means we only employ basic authentication (if configured).

The Stack

For the devs out there, our code is in Go, but more specifically:

	Web Framework - Echo [https://github.com/labstack/echo] based on the insanely fast FastHTTP [https://github.com/valyala/fasthttp];

	Database - Redis.

Who’s Using it

Well, right now, only us at TFG Co, are using it, but it would be great to get a community around the project. Hope to hear from you guys soon!

How To Contribute?

Just the usual: Fork, Hack, Pull Request. Rinse and Repeat. Also don’t forget to include tests and docs (we are very fond of both).

Hosting Podium

There are three ways to host Podium: docker, binaries or from source.

Docker

Running Podium with docker is rather simple. Our docker container image comes bundled with the API binary. All you need to do is load balance all the containers and you’re good to go.

Podium uses Redis to store leaderboard information. The container takes parameters to specify this connection:

	PODIUM_REDIS_HOST - Redis host to connect to;

	PODIUM_REDIS_PORT - Redis port to connect to;

	PODIUM_REDIS_PASSWORD - Password of the Redis Server to connect to;

	PODIUM_REDIS_DB - DB Number of the Redis Server to connect to;

Other than that, there are a couple more configurations you can pass using environment variables:

	PODIUM_NEWRELIC_KEY - If you have a New Relic [https://newrelic.com/] account, you can use this variable to specify your API Key to populate data with New Relic API;

	PODIUM_SENTRY_URL - If you have a sentry server [https://docs.getsentry.com/hosted/] you can use this variable to specify your project’s URL to send errors to;

	PODIUM_BASICAUTH_USERNAME - If you specify this key, Podium will be configured to use basic auth with this user;

	PODIUM_BASICAUTH_PASSWORD - If you specify BASICAUTH_USERNAME, Podium will be configured to use basic auth with this password.

	PODIUM_EXTENSIONS_DOGSTATSD_HOST - If you have a statsd datadog daemon [https://docs.datadoghq.com/developers/dogstatsd/], Podium will publish metrics to the given host at a certain port. Ex. localhost:8125
]* PODIUM_EXTENSIONS_DOGSTATSD_RATE - If you have a statsd daemon [https://docs.datadoghq.com/developers/dogstatsd/], Podium will export metrics to the deamon at the given rate

	PODIUM_EXTENSIONS_DOGSTATSD_TAGS_PREFIX - If you have a statsd daemon [https://docs.datadoghq.com/developers/dogstatsd/], you may set a prefix to every tag sent to the daemon

Binaries

Whenever we publish a new version of Podium, we’ll always supply binaries for both Linux and Darwin, on i386 and x86_64 architectures. If you’d rather run your own servers instead of containers, just use the binaries that match your platform and architecture.

The API server is the podium binary. It takes a configuration yaml file that specifies the connection to Redis and some additional parameters. You can learn more about it at default.yaml [https://github.com/topfreegames/podium/blob/master/config/default.yaml].

Source

Left as an exercise to the reader.

Meaning of Leaderboard Names

Leaderboard names carry a lot of semantic weight in Podium. Each leaderboard name is composed of two parts: leaderboard name and an optional season suffix.

Seasonal Leaderboards

If you want a leaderboard to be seasonal and have an expiration, Podium allows you to do it just by adding a suffix to it.

Let’s say you want a weekly leaderboard for your Cario Sisters game. You would name that leaderboard cario-sisters-year2016week01 when reporting scores for the first week, cario-sisters-year2016week02 when reporting for the next week and so on.

Podium will expire the leaderboard in twice as many time as you provisioned your leaderboard to contain. That means a leaderboard with a week of data will be expired within 2 weeks after it’s appointed start.

Available expirations

Podium supports many different expirations:

	Unix timestamps from and to;

	yyyymmdd timestamps from and to;

	Yearly expiration;

	Quarterly expiration;

	Monthly expiration;

	Weekly expiration.

Unix Timestamp Expiration

In order to use this type of expiration use leaderboard names like cario-sisters-from1469487752to1469487753. This means a leaderboard from the first timestamp to the second timestamp.

This kind of leaderboard has the ultimate flexibility, allow for configuration of a leaderboard duration up to the second. Just remember this is UTC timestamps.

yyyymmdd Timestamp Expiration

In order to use this type of expiration use leaderboard names like cario-sisters-from20201010to20201011. This means a leaderboard from the first timestamp to the second timestamp.

Yearly Expiration

In order to use this type of expiration use leaderboard names like cario-sisters-year2016. This means a leaderboard ranging from 1st of January of 2016 to the 1st of January of 2017(not included).

Quarterly Expiration

In order to use this type of expiration use leaderboard names like cario-sisters-year2016quarter01. This means a leaderboard ranging from 1st of January of 2016 to the 1st of April of 2016(not included).

Monthly Expiration

In order to use this type of expiration use leaderboard names like cario-sisters-year2016month03. This means a leaderboard ranging from 1st of March of 2016 to the 1st of April of 2016(not included).

Weekly Expiration

In order to use this type of expiration use leaderboard names like cario-sisters-year2016week21. This means a leaderboard ranging from the 23rd of May of 2016 to the 30th of May of 2016(not included).

This mode is a little odd as it uses week numbers and Week 1 does not start in the first of january. For more information about week numbers, refer to this page [https://en.wikipedia.org/wiki/ISO_week_date].

Podium API

Healthcheck Routes

Healthcheck

GET /healthcheck

Validates that the app is still up, including the connection to Redis.

	Success Response

	Code: 200

	Content:

 "WORKING"

	Error Response

It will return an error if it failed to connect to Redis.

	Code: 500

	Content:

 "<error-details>"

Status Routes

Status

GET /status

Returns statistics on the health of Podium.

	Success Response

	Code: 200

	Content:

 {
 "app": {
 "errorRate": [float] // Exponentially Weighted Moving Average Error Rate
 },
 }

Leaderboard Routes

Create or Update a Member Score

PUT /l/:leaderboardID/members/:memberPublicID/score

optional query string

	prevRank=[true|false]

	if set to true, it will also return the previous rank of the player in the leaderboard, -1 if the player didn’t exist in the leaderboard

	e.g. PUT /l/:leaderboardID/members/:memberPublicID/score?prevRank=true

	defaults to “false”

	scoreTTL=[integer]

	if set, the score of the player will be expired from the leaderboard past [integer] seconds if it does not update it within this interval

	e.g. PUT /l/:leaderboardID/members/:memberPublicID/score?scoreTTL=100

	defaults to none (the score will never expire)

Atomically creates a new member within a leaderboard or if member already exists in leaderboard, update their score.

Leaderboard ID should be a valid leaderboard name and memberPublicID should be a unique identifier for the member associated with the score.

	Payload

{
 "score": [integer] // Integer representing member score
}

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "member": {
 "publicID": [string] // member public id
 "score": [int] // member updated score
 "rank": [int] // member current rank in leaderboard
 "previousRank": [int] // the previous rank of the player in the leaderboard, if requests
 "expireAt": [int] // unix timestamp of when the score will be expired, if scoreTTL is sent
 }
}

	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Create or Update many Members Score

PUT /l/:leaderboardID/scores

optional query string

	prevRank=[true|false]

	if set to true, it will also return the previous rank of the player in the leaderboard, -1 if the player didn’t exist in the leaderboard

	e.g. PUT /l/:leaderboardID/scores?prevRank=true

	defaults to “false”

	scoreTTL=[integer]

	if set, the score of the player will be expired from the leaderboard past [integer] seconds if it does not update it within this interval

	e.g. PUT /l/:leaderboardID/scores?scoreTTL=100

	defaults to none (the score will never expire)

Atomically creates many new members within a leaderboard or if some members already exists in leaderboard, update their scores.

Leaderboard ID should be a valid leaderboard name and publicID should be a unique identifier for the member associated with the score.

	Payload

{
 "members": [{
 "publicID": [string] // member public id
 "score": [int], // member updated score
 }, ...]
}

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "members": [{
 "publicID": [string] // member public id
 "score": [int] // member updated score
 "rank": [int] // member current rank in leaderboard
 "previousRank": [int] // the previous rank of the player in the leaderboard, if requests
 "expireAt": [int] // unix timestamp of when the score will be expired, if scoreTTL is sent
 }, ...]
}

	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Increment a Member Score

PATCH /l/:leaderboardID/members/:memberPublicID/score

optional query string

	scoreTTL=[integer]

	if set, the score of the player will be expired from the leaderboard past [integer] seconds if it does not update it within this interval

	e.g. PUT /l/:leaderboardID/members/:memberPublicID/score?scoreTTL=100

	defaults to none (the score will never expire)

Atomically creates a new member within a leaderboard with the given increment as score. If member already exists in leaderboard just increment their score.

Leaderboard ID should be a valid leaderboard name and memberPublicID should be a unique identifier for the member associated with the score.

WARNING: Incrementing a member score by 0 is not a valid operation and will return a 400 Bad Request result.

	Payload

{
 "increment": [integer] // Integer representing increment in member score
}

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "member": {
 "publicID": [string] // member public id
 "score": [int] // member updated score
 "rank": [int] // member current rank in leaderboard
 "expireAt": [int] // unix timestamp of when the score will be expired, if scoreTTL is sent
 }
}

	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Remove a leaderboard

DELETE /l/:leaderboardID

Remove the entire leaderboard from Podium.

WARNING: This operation cannot be undone and all the information in the leaderboard will be destroyed.

leaderboardID should be a valid leaderboard name.

	Success Response

	Code: 200

	Content:

{
 "success": true,
}

	Error Response

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get a member score and rank

GET /l/:leaderboardID/members/:memberPublicID

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/members/:memberPublicID?order=asc

	defaults to “desc”

	scoreTTL=[true|false]

	if set to true, will return the member’s score expiration unix timestamp

	e.g. GET /l/:leaderboardID/members/:memberPublicID?scoreTTL=true

	defaults to “false”

Gets a member score and rank within a leaderboard.

Leaderboard ID should be a valid leaderboard name and memberPublicID should be a unique identifier for the desired member.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "publicID": [string] // member public id
 "score": [int] // member updated score
 "rank": [int] // member current rank in leaderboard
 "expireAt": [int] // unix timestamp of when the member's score will be erased (only if scoreTTL is true)
}

	Error Response

It will return an error if the member is not found.

	Code: 404

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get multiple member scores and rank

GET /l/:leaderboardID/members?ids=publicIDcsv

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/members?ids=publicIDcsv?order=asc

	defaults to “desc”

	scoreTTL=[true|false]

	if set to true, will return the member’s score expiration unix timestamp

	e.g. GET /l/:leaderboardID/members?ids=publicIDcsv?scoreTTL=true

	defaults to “false”

Gets multiple members’ score and ranks within a leaderboard.

If any public IDs are not found, they will be returned in the notFound list in the response. This is so a list of all the desired members (i.e.: player’s friends) can be retrieved and only the ones in the leaderboard get returned.

Leaderboard ID should be a valid leaderboard name and publicIDcsv should be a comma-separated list of the desired members Public IDs.

	Success Response

	Code: 200

	Content:

{
 "members": [
 {
 "publicID": [string] // member public id
 "rank": [int] // member rank in the specific leaderboard
 "position": [int] // member rank for all members returned in this request
 "score": [int] // member score in the leaderboard
 "expireAt": [int] // unix timestamp of when the member's score will be erased (only if scoreTTL is true)
 }
],
 "notFound": [
 "[string]" // list of public ids that were not found in the leaderboard
],
 "success": true
}

	Error Response

It will return an error if a list of member ids is not supplied.

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Remove members from leaderboard

DELETE /l/:leaderboardID/members?ids=memberPublicID1,memberPublicID2,...

Removes specified members from leaderboard. If a member is not in leaderboard, do nothing.

Leaderboard ID should be a valid leaderboard name and ids should be a list of unique identifier for the members being removed, separated by commas.

	Success Response

	Code: 200

	Content:

{
 "success": true,
}

	Error Response

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get a member score and rank in many leaderboards

GET /m/:memberPublicID/scores?leaderboardIds=leaderboard1,leaderboard2,...

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /m/:memberPublicID/scores?leaderboardIds=leaderboard1,leaderboard2,...?order=asc

	defaults to “desc”

	scoreTTL=[true|false]

	if set to true, will return the member’s score expiration unix timestamp

	e.g. GET /m/:memberPublicID/scores?leaderboardIds=leaderboard1,leaderboard2,...?scoreTTL=true

	defaults to “false”

Get a member score and rank within many leaderboards.

Leaderboard Ids should be valid leaderboard names separated by commas.

	Sucess Response

	Code: 200

	Content:

{
 "scores": [
 {
 "leaderboardID": "teste",
 "rank": 1,
 "score": 100,
 "expireAt": [int] // unix timestamp of when the member's score will be erased (only if scoreTTL is true)
 },
 {
 "leaderboardID": "teste2",
 "rank": 1,
 "score": 100,
 "expireAt": [int] // unix timestamp of when the member's score will be erased (only if scoreTTL is true)
 }
],
 "success": true
}

	Error Response

	Code: 500

	Content:

{
 "reason": "Could not find data for member teste3 in leaderboard teste3.",
 "success": false
}

Get a member rank

GET /l/:leaderboardID/members/:memberPublicID/rank

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/members/:memberPublicID/rank?order=asc

	defaults to “desc”

Gets a member rank within a leaderboard.

Leaderboard ID should be a valid leaderboard name and memberPublicID should be a unique identifier for the desired member.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "publicID": [string] // member public id
 "rank": [int], // member current rank in leaderboard
}

	Error Response

It will return an error if the member is not found.

	Code: 404

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get members around a member

GET /l/:leaderboardID/members/:memberPublicID/around?pageSize=10

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/members/:memberPublicID/around?pageSize=10?order=asc

	defaults to “desc”

	getLastIfNotFound=[true|false]

	if set to true, will treat members not in ranking as being in last position

	if set to false, will return 404 when the member is not in the ranking

	e.g. GET /l/:leaderboardID/members/:memberPublicID/around?getLastIfNotFound=true

	defaults to “false”

Gets a list of members with ranking around that of the specified member within a leaderboard.

The pageSize querystring parameter specifies the number of members that will be returned from this operation. This means that pageSize/2 members will be above the specified member and the other pageSize/2 will be below.

Podium will compensate if no more members can be found above or below (first or last member in the leaderboard ranking) to ensure that the desired number of members is returned (up to the number of members in the leaderboard).

Leaderboard ID should be a valid leaderboard name and memberPublicID should be a unique identifier for the desired member.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "members": [
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 //...
],
}

	Error Response

It will return an error if the member is not found.

	Code: 404

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get members around a score

GET /l/:leaderboardID/scores/:score/around?pageSize=10

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/scores/:score/around?pageSize=10?order=asc

	defaults to “desc”

Gets a list of members with score around that of the specified specified in the request. If the score parameter falls outside the leaderboard [minScore, maxScore], it will return the bottom/top rank members in the leaderboard, respectively.

The pageSize querystring parameter specifies the number of members that will be returned from this operation. That means there will be around pageSize/2 (+-1) members with score above the specified score, and pageSize/2(+-1) with score below.

Podium will compensate if no more members can be found above or below (first or last member in the leaderboard ranking) to ensure that the desired number of members is returned (up to the number of members in the leaderboard).

Leaderboard ID should be a valid leaderboard name and score should be a valid number.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "members": [
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 //...
],
}

	Error Response

It will return an error if the leaderboard is not found or the request has invalid parameters.

	Code: 404

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get the number of members in a leaderboard

GET /l/:leaderboardID/members-count/

Gets the number of members in a leaderboard.

Leaderboard ID should be a valid leaderboard name.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "count": [int], // number of members in leaderboard
}

	Error Response

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get the top N members in a leaderboard (by page)

GET /l/:leaderboardID/top/:pageNumber?pageSize=:pageSize

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/top/:pageNumber?pageSize=:pageSize?order=asc

	defaults to “desc”

Gets the top N members in a leaderboard, by page.

leaderboardID should be a valid leaderboard name, pageNumber is the current page you are looking for and pageSize is the number of members per page that will be returned.

This means that if you want the top 20 members, you’ll call /l/my-leaderboard/top/1?pageSize=20 for the first 20, /l/my-leaderboard/top/2?pageSize=20 for members 21-40 and so on.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "members": [
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 //...
]
}

	Error Response

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Get the top x% members in a leaderboard

GET /l/:leaderboardID/top-percent/:percentage

optional query string

	order=[asc|desc]

	if set to asc, will treat the ranking with ascending scores (less is best)

	e.g. GET /l/:leaderboardID/top-percent/:percentage?order=asc

	defaults to “desc”

Gets the top x% members in a leaderboard.

leaderboardID should be a valid leaderboard name, percentage is the % of members you want to return.

The number of members is bound by the configuration api.maxReturnedMembers, that defaults to 2000 members.

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "members": [
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 {
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 },
 //...
]
}

	Error Response

If the percentage is not a valid integer between 1 and 100, you’ll get a 400.

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Member Routes

Create or update score for a member in several leaderboards

PUT /m/:memberPublicID/scores

optional query string

	prevRank=[true|false]

	if set to true, it will also return the previous rank of the player in the leaderboard, -1 if the player didn’t exist in the leaderboard

	e.g. PUT /l/:leaderboardID/members/:memberPublicID/score?prevRank=true

	defaults to “false”

	scoreTTL=[integer]

	if set, the score of the player will be expired from the leaderboards past [integer] seconds if it does not update it within this interval

	e.g. PUT /l/:leaderboardID/members/:memberPublicID/score?scoreTTL=100

	defaults to none (the score will never expire

Atomically creates a new member within many leaderboard or if member already exists in each leaderboard, updates their score.

memberPublicID should be a unique identifier for the member associated with the score. Each leaderboardID should be a valid leaderboard name.

	Payload

{
 "score": [integer], // Integer representing member score
 "leaderboards": [array of leaderboardID] // List of all leaderboards to update
}

	Success Response

	Code: 200

	Content:

{
 "success": true,
 "scores": [
 {
 "leaderboardID": [string] // leaderboard where this score was set
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 "previousRank": [int] // the previous rank of the player in the leaderboard, if requests
 },
 {
 "leaderboardID": [string] // leaderboard where this score was set
 "publicID": [string] // member public id
 "score": [int], // member updated score
 "rank": [int], // member current rank in leaderboard
 "previousRank": [int] // the previous rank of the player in the leaderboard, if requests
 },
 //...
]
}

	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

	Code: 400

	Content:

{
 "success": false,
 "reason": [string]
}

	Code: 500

	Content:

{
 "success": false,
 "reason": [string]
}

Library

For detailed information, check our reference [https://godoc.org/github.com/topfreegames/podium/leaderboard].
All examples below have imported the leaderboard module using:

import "github.com/topfreegames/podium/leaderboard"

Creating the client

const host = "localhost"
const port = 1234
const password = ""
const db = 0
const connectionTimeout = 200

leaderboards, err := leaderboard.NewClient(host, port, password, db, connectionTimeout)

Creating, updating or retrieving member scores

const leaderboardID = "lbID"
const playerID = "playerID"
const score = 100
const wantToKnowPreviousRank = false //do I want to receive also the previous rank on the user?
const scoreTTL = "100" //how many seconds my score will be kept on the leaderboard

member, err := leaderboards.SetMemberScore(context.Background(), leaderboardID, playerID, score, wantToKnowPreviousRank, scoreTTL)
if err != nil {
 return err
}

playerPrinter := func(publicID string, score int64, rank int) {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", publicID, score, rank)
}

playerPrinter(member.PublicID, member.Score, member.Rank)

const order = "desc" //if set to asc, will treat the ranking with ascending scores (less is best)
const includeTTL = false //if set to true, will return the member's score expiration unix timestamp
member, err = leaderboards.GetMember(context.Background(), leaderboardID, playerID, order, includeTTL)
if err != nil {
 return err
}

playerPrinter(member.PublicID, member.Score, member.Rank)

Setting and getting member scores in bulk

const leaderboardID = "lbID"

players := leaderboard.Members{
 &leaderboard.Member{Score: 1000, PublicID: "playerA"},
 &leaderboard.Member{Score: 2000, PublicID: "playerB"},
}

err := leaderboards.SetMembersScore(context.Background(), leaderboardID, players, false, "")
if err != nil {
 return err
}

const order = "desc" //if set to asc, will treat the ranking with ascending scores (less is best)
const includeTTL = false //if set to true, will return the member's score expiration unix timestamp
members, err := leaderboards.GetMembers(context.Background(), leaderboardID, []string{"playerA", "playerB"}, order, includeTTL)

for _, member := range members {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", member.PublicID, member.Score, member.Rank)
}

Retrieving leaderboard leaders

const leaderboardID = "myleaderboardID"

players := leaderboard.Members{
 &leaderboard.Member{Score: 10, PublicID: "player1"},
 &leaderboard.Member{Score: 20, PublicID: "player2"},
}

err = leaderboards.SetMembersScore(context.Background(), leaderboardID, players, false, "")
if err != nil {
 log.Fatalf("leaderboards.SetMembersScore failed: %v", err)
}
const pageSize = 10
const pageIdx = 1 //starts at 1
leaders, err := leaderboards.GetLeaders(context.Background(), leaderboardID, pageSize, pageIdx, "desc")
if err != nil {
 log.Fatalf("leaderboards.GetLeaders failed: %v", err)
}

for _, player := range leaders {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", player.PublicID, player.Score, player.Rank)
}

Incrementing player scores

const leaderboardID = "lbID"
const playerID = "playerA"
const scoreIncrement = 500
const scoreTTL = ""
member, err := leaderboards.IncrementMemberScore(context.Background(), leaderboardID, playerID, scoreIncrement,
 scoreTTL)
if err != nil {
 return err
}

fmt.Printf("Player(id: %s, score: %d rank: %d)\n", member.PublicID, member.Score, member.Rank)

Number of players on a leaderboard

const leaderboardID = "lbID"
count, err := leaderboards.TotalMembers(context.Background(), leaderboardID)
if err != nil {
 return err
}
fmt.Printf("Total number of players on leaderboard %s: %d\n", leaderboardID, count)

Removing players from a leaderboard

const leaderboardID = "lbID"
const playerIdToRemove = "playerID"
err := leaderboards.RemoveMember(context.Background(), leaderboardID, playerIdToRemove) //removing a single player
if err != nil {
 return err
}

playerIDsToRemove := make([]interface{}, 2)
playerIDsToRemove[0] = "playerA"
playerIDsToRemove[1] = "playerB"

err = leaderboards.RemoveMembers(context.Background(), leaderboardID, playerIDsToRemove) //removing multiple players
if err != nil {
 return err
}

Total pages of a leaderboard

const leaderboardID = "lbID"
const pageSize = 10
pageCount, err := leaderboards.TotalPages(context.Background(), leaderboardID, pageSize)
if err != nil {
 return err
}
fmt.Printf("total pages: %d\n", pageCount)

Getting players around a player

const leaderboardID = "lbID"
const pageSize = 10
const getLastIfNotFound = false //if set to true, will treat members not in ranking as being in last position
//if set to false, will return 404 when the member is not in the ranking
const order = "asc"
members, err := leaderboards.GetAroundMe(context.Background(), leaderboardID, pageSize, "playerID",
 order, getLastIfNotFound)
if err != nil {
 return err
}
for _, member := range members {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", member.PublicID, member.Score, member.Rank)
}

Getting players around a score

const leaderboardID = "lbID"
const pageSize = 10
const score = 1500
const order = "desc"

members, err := leaderboards.GetAroundScore(context.Background(), leaderboardID, pageSize, score, order)
if err != nil {
 return err
}
for _, member := range members {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", member.PublicID, member.Score, member.Rank)
}

Top percentage of a leaderboard

const leaderboardID = "lbID"
const pageSize = 10
const percent = 10
const maxMembersToReturn = 100
const order = "asc"
top10, err := leaderboards.GetTopPercentage(context.Background(), leaderboardID, pageSize, percent,
 maxMembersToReturn, order)
if err != nil {
 return err
}
for _, member := range top10 {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", member.PublicID, member.Score, member.Rank)
}

Getting members in a range

const leaderboardID = "lbID"
const startOffset = 0
const endOffset = 10
const order = "asc"
members, err := leaderboards.GetMembersByRange(context.Background(), leaderboardID, startOffset, endOffset, order)
if err != nil {
 return err
}
for _, member := range members {
 fmt.Printf("Player(id: %s, score: %d rank: %d)\n", member.PublicID, member.Score, member.Rank)
}

Removing a leaderboard

const leaderboardID = "lbID"
err := leaderboards.RemoveLeaderboard(context.Background(), leaderboardID)

Podium’s Benchmarks

You can see podium’s benchmarks in our CI server [https://travis-ci.org/topfreegames/podium/] as they get run with every build.

Running Benchmarks

If you want to run your own benchmarks, just download the project, and run:

$ make bench-redis bench-podium-app bench-run

Generating test data

If you want to run your perf tests against a database with more volume of data, just run this command, instead:

$ make bench-redis bench-seed bench-podium-app bench-run

Warning: This will take a long time running.

Results

The results should be similar to these:

BenchmarkSetMemberScore-8 30000 284307 ns/op 0.32 MB/s 5635 B/op 81 allocs/op
BenchmarkSetMembersScore-8 5000 1288746 ns/op 3.01 MB/s 51452 B/op 583 allocs/op
BenchmarkIncrementMemberScore-8 30000 288306 ns/op 0.32 MB/s 5651 B/op 81 allocs/op
BenchmarkRemoveMember-8 50000 202398 ns/op 0.08 MB/s 4648 B/op 68 allocs/op
BenchmarkGetMember-8 30000 215802 ns/op 0.33 MB/s 4728 B/op 68 allocs/op
BenchmarkGetMemberRank-8 50000 201367 ns/op 0.28 MB/s 4712 B/op 68 allocs/op
BenchmarkGetAroundMember-8 20000 397849 ns/op 3.14 MB/s 8703 B/op 69 allocs/op
BenchmarkGetTotalMembers-8 50000 192860 ns/op 0.16 MB/s 4536 B/op 64 allocs/op
BenchmarkGetTopMembers-8 20000 306186 ns/op 3.85 MB/s 8585 B/op 66 allocs/op
BenchmarkGetTopPercentage-8 1000 10011287 ns/op 11.88 MB/s 510300 B/op 77 allocs/op
BenchmarkSetMemberScoreForSeveralLeaderboards-8 1000 106129629 ns/op 1.03 MB/s 516103 B/op 98 allocs/op
BenchmarkGetMembers-8 2000 3931289 ns/op 9.13 MB/s 243755 B/op 76 allocs/op

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Podium documentation

 		
 Overview

 		
 Features

 		
 Architecture

 		
 The Stack

 		
 Who’s Using it

 		
 How To Contribute?

 		
 Hosting Podium

 		
 Docker

 		
 Binaries

 		
 Source

 		
 Meaning of Leaderboard Names

 		
 Seasonal Leaderboards

 		
 Available expirations

 		
 Unix Timestamp Expiration

 		
 yyyymmdd Timestamp Expiration

 		
 Yearly Expiration

 		
 Quarterly Expiration

 		
 Monthly Expiration

 		
 Weekly Expiration

 		
 Podium API

 		
 Healthcheck Routes

 		
 Healthcheck

 		
 Status Routes

 		
 Status

 		
 Leaderboard Routes

 		
 Create or Update a Member Score

 		
 Create or Update many Members Score

 		
 Increment a Member Score

 		
 Remove a leaderboard

 		
 Get a member score and rank

 		
 Get multiple member scores and rank

 		
 Remove members from leaderboard

 		
 Get a member score and rank in many leaderboards

 		
 Get a member rank

 		
 Get members around a member

 		
 Get members around a score

 		
 Get the number of members in a leaderboard

 		
 Get the top N members in a leaderboard (by page)

 		
 Get the top x% members in a leaderboard

 		
 Member Routes

 		
 Create or update score for a member in several leaderboards

 		
 Library

 		
 Creating the client

 		
 Creating, updating or retrieving member scores

 		
 Setting and getting member scores in bulk

 		
 Retrieving leaderboard leaders

 		
 Incrementing player scores

 		
 Number of players on a leaderboard

 		
 Removing players from a leaderboard

 		
 Total pages of a leaderboard

 		
 Getting players around a player

 		
 Getting players around a score

 		
 Top percentage of a leaderboard

 		
 Getting members in a range

 		
 Removing a leaderboard

 		
 Podium’s Benchmarks

 		
 Running Benchmarks

 		
 Generating test data

 		
 Results

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

