
pleione Documentation

Rodrigo Santibáñez

Jan 13, 2020

Contents

1 Installation 3
1.1 Option 1: Install pleione natively on your computer . 3
1.2 Option 2: Clone the Github repository . 4

2 Parameters estimation 5
2.1 Parameterization with KaSim . 5
2.2 Parameterization with PISKaS . 7
2.3 Parameterization with BioNetGen2 . 9
2.4 Parameterization with NFsim . 11
2.5 Model Validation . 13
2.6 Objective Functions . 14

2.6.1 Algebraic Objective Functions . 14
2.6.2 Statistical Objective Functions . 15
2.6.3 Multiple Objective Functions . 16
2.6.4 Add a fitness function to Pleione . 16

3 Compiling Python3 from source 19

4 Installing SLURM in your machine 21

5 Indices and tables 23

i

ii

pleione Documentation

Pleione is a python3 package that implement methods that are common to traditional modeling frameworks, and apply
them to analyze Rule-Based Models.

Here you’ll find the necessary documentation to install and use the methods in Pleione. At the moment, Pleione
parameterizes Rule-Based Models written either in BioNetGen (BioNetGen) or kappa language (Kappa). Models are
simulated with BNG2 (BioNetGen2, PMID 27402907), NFsim (NFsim, PMID 26556387), KaSim (KaSim, PMID
29950016), or PISKaS (PISKaS, PMID 29175206). Please contact us or write an issue to include your favorite
stochastic simulator to Pleione (https://github.com/glucksfall/pleione/issues).

Pleione implements a Genetic Algorithm with elitism, on the contrary to BioNetFit (BioNetFit, PMID 26556387)
that implements a parents selection within a distribution probability that is inverse to the rank. Nonetheless, Pleione’s
methods to parameterize Rule-Based Models include both, a uniform or inverse to the rank probability to select models
from within an elite or all models.

The plan to add methods into Pleiades (pleiades) includes a sensitivity analysis and a parameterization employing
a Particle Swarm Optimization protocol. You could write us if you wish to add methods into pleione or aid in the
development of them.

Contents 1

http://www.csb.pitt.edu/Faculty/Faeder/?page_id=409
https://www.kappalanguage.org/
https://github.com/RuleWorld/bionetgen
https://www.ncbi.nlm.nih.gov/pubmed/27402907
https://github.com/RuleWorld/nfsim
https://www.ncbi.nlm.nih.gov/pubmed/26556387
https://github.com/Kappa-Dev/KaSim
https://www.ncbi.nlm.nih.gov/pubmed/29950016
https://github.com/DLab/PISKaS
https://www.ncbi.nlm.nih.gov/pubmed/29175206
https://github.com/glucksfall/pleione/issues
https://github.com/RuleWorld/BioNetFit
https://www.ncbi.nlm.nih.gov/pubmed/26556387
https://github.com/glucksfall/pleiades

pleione Documentation

2 Contents

CHAPTER 1

Installation

There are two different ways to install pleione:

1. Install pleione natively (Recommended).

OR

2. Clone the Github repository. If you are familiar with git, pleione can be cloned and the respective folder added
to the python path. Further details are below.

Note: Need Help? If you run into any problems with installation, please visit our chat room: https://gitter.im/
glucksfall/pleiades

1.1 Option 1: Install pleione natively on your computer

The recommended approach is to use system tools, or install them if necessary. To install python packages, you could
use pip, or download the package from python package index.

1. Install with system tools

With pip, you simple need to execute and pleione will be installed on $HOME/.local/lib/python3.6/
site-packages folder or similar.

pip3 install pleione --user

If you have system rights, you could install pleione for all users with

sudo -H pip3 install pleione

2. Download from python package index

Alternatively, you could download the package (useful when pip fails to download the package because of lack
of SSL libraries) and then install with pip. For instance:

3

https://gitter.im/glucksfall/pleiades
https://gitter.im/glucksfall/pleiades
https://pypi.org/project/pleione/

pleione Documentation

wget https://files.pythonhosted.org/packages/a9/6b/
→˓99ae42d1bf3811ff909c8c0fde6a174fbef4d76fe25f0aa0edd13420d4d6/pleione-1.5.1-py3-
→˓none-any.whl
pip3 install pleione-1.5.1-py3-none-any.whl --user

Note: Why Python3?: Pleione is intended to be used with >=python3.4 because python2.7 won’t receive
further development past 2020, including security updates.

Note: pip, Python and Anaconda: Be aware which pip you invoque. You could install pip3 with sudo
apt-get install python3-pip if you have system rights, or install python3 from source, and adding
<python3 path>/bin/pip3 to the path, or linking it in a directory like $HOME/bin which is commonly
added to the path at login. Also be aware that, if you installed Anaconda, pip could be linked to the Anaconda
specific version of pip, which will install pleione into Anaconda’s installation folder. Type which pip or
which pip3 to find out the source of pip, and type python -m site or python3 -m site to find out
where is more likely pleione will be installed.

1.2 Option 2: Clone the Github repository

1. Clone with git

The source code is uploaded and maintained through Github at https://github.com/networkbiolab/pleione.
Therefore, you could clone the repository locally, and then add the folder to the PYTHONPATH. Beware that
you should install the pandas package (pandas) by any means.

git clone https://github.com/networkbiolab/pleione /opt
echo export PYTHONPATH="\$PYTHONPATH:/opt/pleione" >> $HOME/.profile

Note: Adding the path to $HOME/.profile allows python to find the package installation folder after
each user login. Similarly, adding the path to $HOME/.bashrc allows python to find the package after each
terminal invocation. Other options include setting the PYTHONPATH environmental variable in a sh file (see
the example folder) or invoke python3 setup.py clean build install to install Pleione as it was
downloaded from the PyPI server.

4 Chapter 1. Installation

https://github.com/networkbiolab/pleione
https://pandas.pydata.org/

CHAPTER 2

Parameters estimation

Pleione’s parameterization methods rely on Computational Load Distribution. The naïve approach is to use the
python’s multiprocessing API and each simulation distributed within the Pool of available (minus one) cores. This
approach would make pleione’s methods compatible with Microsoft Windows and Apple OS X. However, to take fully
advantage of High-Performance Computing architectures, pleione’s methods rely on SLURM –Simple Linux Utility
for Resource Management– (SLURM) to distribute simulations through your infrastructure, remote infrastructures,
and cloud services like Google Compute Engine, Microsoft Azure, and Amazon Elastic Compute Cloud.

Up to date, pleione’s parameterization methods rely on 4 simulations engines: KaSim and PISKaS simulate kappa
language models. Unlike KaSim, PISKaS is able to simulate multiple compartment models distributing the calculation
of each compartment through multiple cores. In the other hand, BioNetGen2 and NFsim simulate BioNetGen language
models. Despite KaSim and PISKaS, BioNetGen2 does not provide a Command-Line Interface to especify simulation
parameters and rather, the simulation parameters (e.g. time to simulation, number of points to report, . . .) must be
given inside the model specification. Moreover, you need to especify the simulation engine to use: Deterministic
simulation through CVODE, the Stochastic Simulation Algorithm SSA, Exact Hybrid Particle/Population Algorithm
HPP, and the Partition-Leap Algorithm PLA. Moreover, NFsim could be used by BioNetGen2 to simulate models or
called externally after creating the model xml especification with BioNetGen2 –xml option.

Because the software requirements and differences, we provide specific documentation to all of them rather than
provide common guidelines and then stating the differences.

Parameterization of kappa-language Rule-Based Models

2.1 Parameterization with KaSim

1. Prepare the model

Pleione finds which variables will be calibrated using the symbol // (doble slash, as C/C++) followed by:

• An initial distribution type: uniform, loguniform, lognormal

• An initial search space: [min max] or [mean standard_deviation] in the case if lognormal
was selected.

5

https://slurm.schedmd.com/

pleione Documentation

• A type of parameter mutation: uniform or loguniform to use a new search space; or factor to
perform a local mutation search

• A search space for mutated parameters: [min max] or [probability fold_change] in the case
if factor was selected.

• An optional mutation rate per parameter. Without it, the global mutation rate is used.

For instace:

%var: 'KD1__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'km1__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'K2RT__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'km2__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'kphos__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'kdephos__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]

or the following configuration if the model is written in syntax 3 (KaSim v3):

%var: 'KD1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'K2RT__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km2__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kphos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kdephos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note: Factor mutation: This type of mutation strategy comes from BioNetFit and selects a random value from the
range 0.9 * old_value, 1.1 * old_value if the declared value is 0.1 with probability 0.2.

2. Prepare the data files

KaSim produce simulations files with the following format. Please prepare data files with the same format to
avoid incompatibilities.

"[T]","RLbonds","pR"
600.,0,355.3
610.,114.072,356.44
620.,139.1838,349.96
630.,149.1534,343.98
640.,156.8684,342.6
650.,156.788,335.62
660.,163.6668,337.48

Note: About the example model: The model has three parts: An equilibration of 600 seconds, then the model is
modified to add a quantity of L(r) agents, and then perform the actual simulation for 60 seconds. Despite BNG2 and
NFsim, KaSim reports the whole simulation, so to compare effectively, we must offset the time of the experimental
data by 600.

2. Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with sbatch. Note that the export
statement is inside the code to tell SLURM to add the path and ensure proper execution when pleione was
cloned with git. Also, python3 redirects to either the system installed executable (with pandas installed either
as admin or user) or redirects to the user compiled executable if an alias exists for it.

6 Chapter 2. Parameters estimation

pleione Documentation

#!/bin/sh

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-kasim
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

MODEL=pysbmodel-example6-kasim.kappa
FINAL=660
STEPS=10 # KaSim interprets as the period, not how many points to report!

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/kasim/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.kasim --model=$MODEL --final=$FINAL --steps=$STEPS \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR \
--slurm=$PARTITION --syntax=4

Note: sbatch or python multiproccesing? To execute Pleione outside a SLURM queue, simple execute the shell
script with sh, bash or any shell interpreter without the slurm option. Be aware that, if SLURM is running in
the same machine, Pleione subprocess would impact negatively in other user’s threads, and vice versa, since SLURM
could allow oversubscribe (see https://slurm.schedmd.com/sbatch.htm for more information)

Note: Need help? type python3 -m pleione.kasim --help to find out the available command options.

2.2 Parameterization with PISKaS

1. Prepare the model

Pleione finds which variables will be calibrated using the symbol # (number sign, hash or pound sign) followed
by:

• An initial distribution type: uniform, loguniform, lognormal

2.2. Parameterization with PISKaS 7

https://slurm.schedmd.com/sbatch.htm

pleione Documentation

• An initial search space: [min max] or [mean standard_deviation] in the case if lognormal
was selected.

• A type of parameter mutation: uniform or loguniform to use a new search space; or factor to
perform a local mutation search

• A search space for mutated parameters: [min max] or [probability fold_change] in the case
if factor was selected.

• An optional mutation rate per parameter. Without it, the global mutation rate is used.

For instace:

%var: 'KD1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'K2RT__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km2__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kphos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kdephos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note: Factor mutation: This type of mutation strategy comes from BioNetFit and selects a random value from the
range 0.9 * old_value, 1.1 * old_value if the declared value is 0.1 with probability 0.2.

2. Prepare the data files

PISKaS produce simulations files with a similar format as follows. Please prepare data files, replacing the “#”
with the name of the compartments, including the initial space in each subsequent row.

example time 'RLbonds' 'pR'
6.000000E+02 0 355.3
6.100000E+02 114.072 356.44
6.200000E+02 139.1838 349.96
6.300000E+02 149.1534 343.98
6.400000E+02 156.8684 342.6
6.500000E+02 156.788 335.62
6.600000E+02 163.6668 337.48

Note: An extra column name? PISKaS produces one output for each compartment declared in the model. Therefore,
adding the name of the compartment as the first column allows the code to identify the corresponding experimental
data with the simulated compartment and apply correctly the fitness function. Finally, the model error is the sum of
each fitness per compartment.

Note: About the example model: The model has three parts: An equilibration of 600 seconds, then the model is
modified to add a quantity of L(r) agents, and then perform the actual simulation for 60 seconds. Despite BNG2 and
NFsim, PISKaS reports the whole simulation, so to compare effectively, we must offset the time of the experimental
data by 600.

2. Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with sbatch. Note that the export
statement is inside the code to tell SLURM to add the path and ensure proper execution when pleione was
cloned with git. Also, python3 redirects to either the system installed executable (with pandas installed either
as admin or user) or redirects to the user compiled executable if an alias exists for it.

8 Chapter 2. Parameters estimation

pleione Documentation

#!/bin/sh

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-piskas
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

MODEL=pysbmodel-example6-piskas.kappa
FINAL=660
STEPS=66

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/piskas/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.piskas --model=$MODEL --final=$FINAL --steps=$STEPS \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR \
--slurm=$PARTITION

Note: sbatch or python multiproccesing? To execute Pleione outside a SLURM queue, simple execute the shell
script with sh, bash or any shell interpreter without the slurm option. Be aware that, if SLURM is running in
the same machine, Pleione subprocess would impact negatively in other user’s threads, and vice versa, since SLURM
could allow oversubscribe (see https://slurm.schedmd.com/sbatch.htm for more information)

Note: Need help? type python3 -m pleione.piskas --help to find out the available command options.

Parameterization of BioNetGen language Rule-Based Models

2.3 Parameterization with BioNetGen2

1. Prepare the model

Pleione finds which variables will be calibrated using the symbol # (number sign, hash or pound sign) followed
by:

• An initial distribution type: uniform, loguniform, lognormal

2.3. Parameterization with BioNetGen2 9

https://slurm.schedmd.com/sbatch.htm

pleione Documentation

• An initial search space: [min max] or [mean standard_deviation] in the case if lognormal
was selected.

• A type of parameter mutation: uniform or loguniform to use a new search space; or factor to
perform a local mutation search

• A search space for mutated parameters: [min max] or [probability fold_change] in the case
if factor was selected.

• An optional mutation rate per parameter. Without it, the global mutation rate is used.

For instace:

KD1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
K2RT__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km2__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kphos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kdephos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note: Factor mutation: This type of mutation strategy comes from BioNetFit and selects a random value from the
range 0.9 * old_value, 1.1 * old_value if the declared value is 0.1 with probability 0.2.

2. Prepare the data files

BNG2 produce simulations files with the following format. Please prepare data files with the same format,
including the initial space in each row.

time RLbonds pR
0.00000000E+00 0.00000000E+00 3.55300000E+02
1.00000000E+01 1.14072000E+02 3.56440000E+02
2.00000000E+01 1.39183800E+02 3.49960000E+02
3.00000000E+01 1.49153400E+02 3.43980000E+02
4.00000000E+01 1.56868400E+02 3.42600000E+02
5.00000000E+01 1.56788000E+02 3.35620000E+02
6.00000000E+01 1.63666800E+02 3.37480000E+02

3. Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with sbatch. Note that the export
statement is inside the code to tell SLURM to add the path and ensure proper execution when pleione was
cloned with git. Also, python3 redirects to either the system installed executable (with pandas installed either
as admin or user) or redirects to the user compiled executable if an alias exists for it.

#!/bin/sh
export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-bng2
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

(continues on next page)

10 Chapter 2. Parameters estimation

pleione Documentation

(continued from previous page)

MODEL=pysbmodel-example6-bng2.bngl # the model should have the .bngl extension

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/bng2/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.bng2 --model=$MODEL \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR \
--slurm=$PARTITION

Note: sbatch or python multiproccesing? To execute Pleione outside a SLURM queue, simple execute the shell
script with sh, bash or any shell interpreter without the slurm option. Be aware that, if SLURM is running in
the same machine, Pleione subprocess would impact negatively in other user’s threads, and vice versa, since SLURM
could allow oversubscribe (see https://slurm.schedmd.com/sbatch.htm for more information)

Note: Need help? type python3 -m pleione.bng2 --help to find out the available command options.

2.4 Parameterization with NFsim

1. Prepare the model

Pleione finds which variables will be calibrated using the symbol # (number sign, hash or pound sign) followed
by:

• An initial distribution type: uniform, loguniform, lognormal

• An initial search space: [min max] or [mean standard_deviation] in the case if lognormal
was selected.

• A type of parameter mutation: uniform or loguniform to use a new search space; or factor to
perform a local mutation search

• A search space for mutated parameters: [min max] or [probability fold_change] in the case
if factor was selected.

• An optional mutation rate per parameter. Without it, the global mutation rate is used.

For instace:

KD1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
K2RT__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km2__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

(continues on next page)

2.4. Parameterization with NFsim 11

https://slurm.schedmd.com/sbatch.htm

pleione Documentation

(continued from previous page)

kphos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kdephos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note: Factor mutation: This type of mutation strategy comes from BioNetFit and selects a random value from the
range 0.9 * old_value, 1.1 * old_value if the declared value is 0.1 with probability 0.2.

2. Prepare the data files

NFsim produce simulations files with the following format. Please prepare data files with the same format to
avoid incompatibilities.

time, RLbonds, pR
0.00000000E+00, 0.00000000E+00, 3.55300000E+02
1.00000000E+01, 1.14072000E+02, 3.56440000E+02
2.00000000E+01, 1.39183800E+02, 3.49960000E+02
3.00000000E+01, 1.49153400E+02, 3.43980000E+02
4.00000000E+01, 1.56868400E+02, 3.42600000E+02
5.00000000E+01, 1.56788000E+02, 3.35620000E+02
6.00000000E+01, 1.63666800E+02, 3.37480000E+02

2. Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with sbatch. Note that the export
statement is inside the code to tell SLURM to add the path and ensure proper execution when pleione was
cloned with git. Also, python3 redirects to either the system installed executable (with pandas installed either
as admin or user) or redirects to the user compiled executable if an alias exists for it.

#!/bin/sh

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-nfsim
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

MODEL=pysbmodel-example6-nfsim.bngl # the model should have the .bngl extension
FINAL=60
STEPS=6

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/nfsim/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5

(continues on next page)

12 Chapter 2. Parameters estimation

pleione Documentation

(continued from previous page)

RATE=0.5
ERROR="SDA"

python3 -m pleione.nfsim --model=$MODEL --final=$FINAL --steps=$STEPS \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR --equil 600 \
--slurm=$PARTITION

Note: sbatch or python multiproccesing? To execute Pleione outside a SLURM queue, simple execute the shell
script with sh, bash or any shell interpreter without the slurm option. Be aware that, if SLURM is running in
the same machine, Pleione subprocess would impact negatively in other user’s threads, and vice versa, since SLURM
could allow oversubscribe (see https://slurm.schedmd.com/sbatch.htm for more information)

Note: Need help? type python3 -m pleione.nfsim --help to find out the available command options.

Common to all parameterization methods, there are 9 algebraic objective functions and one statistical function already
implemented in the code. Moreover, the code sort the models by their rank and therefore, ranks can be added and
sorted again, making the possibility to use a Multiple Objective Genetic Algorithm.

2.5 Model Validation

Pleione’s parameter calibration scripts call an external script to calculate fitness to experimental data. You could use
one of the following script to calculate the fitness of your parameterized model against an independent experimental
data set:

python3 -m pleione.bng2-doerror --data foo --sims bar \
--file output.txt --error SDA

OR

python3 -m pleione.kasim-doerror --data foo --sims bar \
--file output.txt --error SDA

OR

python3 -m pleione.nfsim-doerror --data foo --sims bar \
--file output.txt --error SDA

OR

python3 -m pleione.piskas-doerror --data foo --sims bar \
--file output.txt --error SDA

Note: Fitness Function

Pleione currently support 9 algebraics and 3 statistical tests as fit functions. To calculate more than one function,
include a list such as SDA SSQ CHISQ. In doing so, this will calculate the contribution of both o more metrics to the
overall error and aid to validate of discard a model calibration. More information in Objective Functions

2.5. Model Validation 13

https://slurm.schedmd.com/sbatch.htm

pleione Documentation

Note: All fitness functions

Use the --do_all True argument to calculate all fitness functions included in Pleione. You should provide a table
with critical values (see example folder for the one-tail table)

Note: (non-)Rejection matrices

The --report True argument will print to the console relevant calculations for the statistical tests.

Note: Need Help? Type python3 -m pleione.$STOCH_ENGINE-doerror --help where
$STOCH_ENGINE can be the currently supported stochastic engines: BNG2, NFsim, KaSim and PISKaS (all in
lower cases, for instance nfsim-doerror)

2.6 Objective Functions

Common to all parameterization methods, there are 9 algebraic objective functions and one statistical function already
implemented in the code. Moreover, the code sort the models by their rank and therefore, ranks can be added and
sorted again, making the possibility to use a Multiple Objective Genetic Algorithm.

2.6.1 Algebraic Objective Functions

Here are the formulas to calculate the error between multiple data sets and simulations files.

• Squared Difference of two Averages (SDA; formerly Mean Square Error, MSE):

(︁
1
𝑚

∑︀𝑚
𝑖=1 exp𝑖 −

1
𝑛

∑︀𝑛
𝑗=1 sim𝑗

)︁2

• Absolute Difference of two Averages (ADA; formerly Mean Absolute Error, MAE):

abs
(︁

1
𝑚

∑︀𝑚
𝑖=1 exp𝑖 −

1
𝑛

∑︀𝑛
𝑗=1 sim𝑗

)︁
• Pair-Wise Square Deviation (PWSD):

1
𝑚𝑛

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 (exp𝑖 − sim𝑗)

2

• Absolute Pair-Wise Deviation (APWSD):

1
𝑚𝑛

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 abs (exp𝑖 − sim𝑗)

• Normalized Pair-Wise Square Deviation (NPWSD):

1
𝑚𝑛

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1

(︁
exp𝑖−sim𝑗

exp𝑖

)︁2

• Absolute Normalized Pair-Wise Deviation (ANPWSD):

1
𝑚𝑛

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 abs

(︁
exp𝑖−sim𝑗

exp𝑖

)︁
• Sum of SQuares (SSQ):

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 (exp𝑖 − sim𝑗)

2

• Chi-Square (CHISQ):

14 Chapter 2. Parameters estimation

pleione Documentation

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1

(︁
exp𝑖−sim𝑗

𝜎exp

)︁2

• Mean Normalized Square Error (MNSE):

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1

(︁
exp𝑖−sim𝑗

exp

)︁2

Note: Need a different Objective Function? The code that calculates the error is separated from the main Genetic
Algorithm. This make useful to encode other Objective Functions if the already implemented does not apply to your
necessities. You could contact us to add your function to the pleione package. See the fitness.py file and add
yours favourite function.

Reach us on GitHub to add yours fitness function to the code, as it might help other users.

2.6.2 Statistical Objective Functions

We implemented three equivalence tests to determine if two distribution are similar in a interval. The interval is
defined by default as one standard deviation of experimental data for the two one-sided t-tests (TOST) and the Double
Mann-Whitney U-test (DUT). In the case of the Wellek’s test (WMWET), the equivalence interval is 𝜖1 = 0.3129 and
𝜖2 = 0.2661.

The user can set the --factor argument to divide the standard deviation by it, or can set the --stdv sims argu-
ment to use rather the standard deviation of simulations, or provide custom limits with --lower and, or --upper
arguments, which point to one file with the same structure as the experimental data. In the case the user omits
--lower or --upper, the equivalence interval will be symmetrical.

To calculate TOST, we use the ttost_ind function from the python statsmodels package. In the case of the
Wellek’s test, we implemented in python the mawi.R script from the EQUIVNONINF package (https://rdrr.io/cran/
EQUIVNONINF/man/mawi.html). And for the Double Mann-Whitney U-test, we implemented it as two Mann-
Whitney U-test as follows:

The U-test is a non-parametric statistical test that, within a confidence level, determine if a random distribution is
different (two-tails) or greater (one-tail) compared to a second distribution. The Algorithm is valid to compare distri-
bution of 3 to 20 measurements.

1. We count how many times experimental data (𝑒𝑥𝑝𝑖) are larger than simulated values (𝑠𝑖𝑚𝑗):

for 𝑖 in range(len(𝑒𝑥𝑝)):
for 𝑗 in range(len(𝑠𝑖𝑚)):

if 𝑒𝑥𝑝𝑖 > 𝑠𝑖𝑚𝑗 :
𝑈𝑒𝑥𝑝 ← 𝑈𝑒𝑥𝑝 + 1.0

else if 𝑒𝑥𝑝𝑖 < 𝑠𝑖𝑚𝑗 :
𝑈𝑠𝑖𝑚 ← 𝑈𝑠𝑖𝑚 + 1.0

else:
𝑈𝑒𝑥𝑝 ← 𝑈𝑒𝑥𝑝 + 0.5

𝑈𝑠𝑖𝑚 ← 𝑈𝑠𝑖𝑚 + 0.5

2. We determine if 𝑈𝑒𝑥𝑝 is statistically significant:

𝑈model = 𝑈𝑚𝑎𝑥 = len(𝑒𝑥𝑝)× len(𝑠𝑖𝑚)

for 𝑖 in range(len(𝑒𝑥𝑝)× len(𝑠𝑖𝑚)):
test 𝐻0 : 𝑒𝑥𝑝 > 𝑠𝑖𝑚𝑙𝑜𝑤𝑒𝑟

if 𝑈𝑚𝑎𝑥 − 𝑈𝑒𝑥𝑝 ≤ 𝑈𝑐𝑟𝑖𝑡𝑖𝑐 then null hypothesis, 𝐻0, is rejected
𝑈𝑙𝑜𝑤𝑒𝑟 = 1.0

2.6. Objective Functions 15

https://rdrr.io/cran/EQUIVNONINF/man/mawi.html
https://rdrr.io/cran/EQUIVNONINF/man/mawi.html

pleione Documentation

else
𝑈𝑙𝑜𝑤𝑒𝑟 = 0.0

test 𝐻0 : 𝑒𝑥𝑝 < 𝑠𝑖𝑚+ 𝑢𝑝𝑝𝑒𝑟

if 𝑈𝑚𝑎𝑥 − 𝑈𝑠𝑖𝑚 ≤ 𝑈𝑐𝑟𝑖𝑡𝑖𝑐 then null hypothesis, 𝐻0, is rejected
𝑈𝑢𝑝𝑝𝑒𝑟 = 1.0

else
𝑈𝑢𝑝𝑝𝑒𝑟 = 0.0

𝑈𝑚𝑜𝑑𝑒𝑙 = 𝑈𝑚𝑜𝑑𝑒𝑙 − 𝑈𝑙𝑜𝑤𝑒𝑟 × 𝑈𝑢𝑝𝑝𝑒𝑟

Note: The iterative statistical tests are fitness functions having known limits: For a perfect model, the U-test is zero.
A complete wrong model will have a 𝑈𝑚𝑜𝑑𝑒𝑙 equal to the number of Observables times the number of experimental
time points. For instance, the example model we use to compare with BioNetFit has 2 Observables and 7 experimental
time points, then a max 𝑈𝑚𝑜𝑑𝑒𝑙 equal to 14.

2.6.3 Multiple Objective Functions

A Multiple Objective Function is build from two or more fitness functions. Firstly, a fitness is calculated and all models
ranked. Then, the next fitness. Finally, the sum of ranks is use to rank agains the models.

Algoritmically:

𝑟𝑎𝑛𝑘1 = sort models following function 1

...
𝑟𝑎𝑛𝑘𝑛 = sort models following function n

𝑟𝑎𝑛𝑘𝑀𝑂 = sort models following (𝑟𝑎𝑛𝑘1 + . . .+ 𝑟𝑎𝑛𝑘𝑛)

Note: We currently don’t provide weights to rank the models. Be aware that, if you use multiple algebraic functions
and the statistical fitness function, the importance of the statistical function is diluited.

2.6.4 Add a fitness function to Pleione

Each simulator are provided with two scripts that calculate errors. They are located at the same path as the main scripts
that calibrate. Inside each, there is a template intended with instructions:

Fitness Calculation Template:
if set(args.error).issuperset(set(['the-acronysm'])):

1. func = 0

2. func = an algebraic expression combining the data average (data_
→˓avrg), data standard deviation (data_stdv), simulation average (sims_stdv),

simulation standard deviation (sims_stdv), single experimental files
→˓(data.loc[i]), and/or simulation files (sims.loc[j])

Note1: Perform two for-loops if using data.loc[i] and sims.loc[j].
Note2: Please consider these variables are DataFrames, meaning that

→˓multiplication and division are methods (e.g. df1.division(df2))

3. Drop NaN values (from experimental time points without simulated
→˓values, or simulated values without experimental data)

(continues on next page)

16 Chapter 2. Parameters estimation

pleione Documentation

(continued from previous page)

with dropna(axis = 0, how = 'all').dropna(axis = 1, how = 'all').
→˓Also transform Inf values with replace([numpy.inf, -numpy.inf], numpy.nan)

4. Sum the two dimensions, and return a 6 float points scientific
→˓notation number (0 float points for statistical tests):

error['the-acronysm'] = '{:.6e}'.format(func.dropna(axis = 0, how =
→˓'all').dropna(axis = 1, how = 'all').sum().sum())

To use:

1) Define an acronysm for your fitness function and replace the-acronysm in the template

2) Define func as an operation of DataFrames: data_avrg, data_stdv, sims_avrg, sims_stdv, data.loc[i], and
sims.loc[j]

Note: Do not use data.iloc[i] or sims.iloc[i] as they provide wrong access to the data structure, possibly returning
wrong calculations.

Note: Need a different Objective Function? The code that calculates the error is separated from the main Genetic
Algorithm. This make useful to encode other Objective Functions if the already implemented does not apply to your
necessities. You could contact us to add your function to the pleione package.

Note: Installation instructions: Instructions to install KaSim, BioNetGen, NFsim, and PISKaS are available in their
source code webpages. Nonetheless, here you will find basic information to clone using git or download the software
and install it.

To install SLURM, you should have admin access to your infrastructure and an UNIX-based OS. Detailed instructions
are provided here: Installing SLURM in your machine

2.6. Objective Functions 17

pleione Documentation

18 Chapter 2. Parameters estimation

CHAPTER 3

Compiling Python3 from source

If you don’t have admin access to the cluster configuration, you could compile and install python3 from source fol-
lowing these instructions:

wget https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tgz \
-O ~/opt/ubuntu-software/Python-3.6.5.tgz
if [-d ~/opt/Python-3.6.5]; then rm -rf ~/opt/Python-3.6.5; fi
tar xvzf ~/opt/ubuntu-software/Python-3.6.5.tgz -C ~/opt
cd ~/opt/Python-3.6.5
if [-f Makefile]; then make clean; fi
if [-d $(HOME)/opt/python-3.6.5]; then rm -rf $(HOME)/opt/python-3.6.5; fi
./configure --prefix=$(HOME)/opt/python-3.6.5
make
make install

Note: Don’t copy an installation folder from another machine since there may be libraries incompatibilities. Instead,
the code will download, configure, compile, and install. To make accesible from anywhere, you could add an alias
into ~/.bashrc or a symbolic in your $HOME/bin folder for $HOME/opt/python-3.6.5/bin/python3
and pip3.

To install numpy and pandas use the following instructions, in order since some pandas dependencies has also depen-
dencies:

wget https://files.pythonhosted.org/packages/71/90/
→˓ca61e203e0080a8cef7ac21eca199829fa8d997f7c4da3e985b49d0a107d/numpy-1.14.3-cp36-
→˓cp36m-manylinux1_x86_64.whl
wget https://files.pythonhosted.org/packages/dc/83/
→˓15f7833b70d3e067ca91467ca245bae0f6fe56ddc7451aa0dc5606b120f2/pytz-2018.4-py2.py3-
→˓none-any.whl
wget https://files.pythonhosted.org/packages/67/4b/
→˓141a581104b1f6397bfa78ac9d43d8ad29a7ca43ea90a2d863fe3056e86a/six-1.11.0-py2.py3-
→˓none-any.whl
wget https://files.pythonhosted.org/packages/cf/f5/
→˓af2b09c957ace60dcfac112b669c45c8c97e32f94aa8b56da4c6d1682825/python_dateutil-2.7.3-
→˓py2.py3-none-any.whl

(continues on next page)

19

pleione Documentation

(continued from previous page)

wget https://files.pythonhosted.org/packages/69/ec/
→˓8ff0800b8594691759b78a42ccd616f81e7099ee47b167eb9bbd502c02b9/pandas-0.23.0-cp36-
→˓cp36m-manylinux1_x86_64.whl

pip3 install numpy-1.14.3-cp36-cp36m-manylinux1_x86_64.whl
pip3 install pytz-2018.4-py2.py3-none-any.whl
pip3 install six-1.11.0-py2.py3-none-any.whl
pip3 install python_dateutil-2.7.3-py2.py3-none-any.whl
pip3 install pandas-0.23.0-cp36-cp36m-manylinux1_x86_64.whl

If you have admin access (and willing to compile python3 from source) you could install the following dependencies:

apt-get install libssl-dev zlib1g-dev libncurses5-dev \
libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \
libdb5.3-dev libbz2-dev libexpat1-dev liblzma-dev tk-dev

Compiling python3 with all dependencies would make installation of packages easier. Just follow the instructions:

pip3 install pandas

Note: Installing pandas with pip will install numpy as its dependency.

Note: Be sure you are calling pip3 after creating an alias or a symbolic link. Without admin credentials, pip3 would
fail to install pandas.

20 Chapter 3. Compiling Python3 from source

CHAPTER 4

Installing SLURM in your machine

To install SLURM you need admin access to the machine. Please follow this instructions to start up running the
workload manager, in the controller as well in the controlled machines.

sudo apt-get -y install slurm-wlm
sudo nano /etc/slurm-llnl/slurm.conf

sudo chown -R slurm:slurm /var/run/slurm-llnl/
sudo chown -R slurm:slurm /var/lib/slurm-llnl/
sudo chown -R slurm:slurm /var/log/slurm-llnl/
sudo mkdir /var/spool/slurmd
sudo chown -R slurm:slurm /var/spool/slurmd

sudo systemctl start slurmd

Replace $HOST_NAME with your machine name that is going to act as the controller. If you have multiple machines,
this configuration file must be identical and in all machines in the queue.

slurm.conf - Slurm config file.

#ClusterName=$HOST_NAME
ControlMachine=$HOST_NAME
SlurmUser=slurm
AuthType=auth/munge

SlurmctldPidFile=/var/run/slurm-llnl/slurmctld.pid
SlurmdPidFile=/var/run/slurm-llnl/slurmd.pid
SlurmdSpoolDir=/var/lib/slurm-llnl/slurmd
StateSaveLocation=/var/lib/slurm-llnl/slurmctld

SwitchType=switch/none
ProctrackType=proctrack/pgid
TaskPlugin=task/none

MpiDefault=none

(continues on next page)

21

pleione Documentation

(continued from previous page)

MaxJobCount=100000
MaxArraySize=64000

TIMERS
SlurmdTimeout=300
InactiveLimit=0
MinJobAge=300
KillWait=30
Waittime=0

SCHEDULING
SchedulerType=sched/backfill
SelectType=select/cons_res
SelectTypeParameters=CR_Core
FastSchedule=1

LOGGING
SlurmctldDebug=3
SlurmctldLogFile=/var/log/slurm-llnl/slurmctld.log
SlurmdDebug=3
SlurmdLogFile=/var/log/slurm-llnl/slurmd.log

COMPUTE NODES

Here you add the machine hardware configurations
NodeName=$HOST_NAME Procs=8 Boards=1 SocketsPerBoard=1 CoresPerSocket=4
→˓ThreadsPerCore=2 State=idle

Here you add the machine(s) to a Partition
PartitionName=MyCluster Nodes=$HOST_NAME Default=yes MaxTime=INFINITE State=up

Note: Please refer to SLURM for advance configuration like limiting time, CPUs and RAM for users or groups, to
balance load in your cluster.

22 Chapter 4. Installing SLURM in your machine

https://slurm.schedmd.com/

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

	Installation
	Option 1: Install pleione natively on your computer
	Option 2: Clone the Github repository

	Parameters estimation
	Parameterization with KaSim
	Parameterization with PISKaS
	Parameterization with BioNetGen2
	Parameterization with NFsim
	Model Validation
	Objective Functions
	Algebraic Objective Functions
	Statistical Objective Functions
	Multiple Objective Functions
	Add a fitness function to Pleione

	Compiling Python3 from source
	Installing SLURM in your machine
	Indices and tables

