

Welcome to Pleione v1.5 documentation!

Pleione is a python3 package that implement methods that are common to
traditional modeling frameworks, and apply them to analyze Rule-Based Models.

Here you’ll find the necessary documentation to install and use the methods in
Pleione. At the moment, Pleione parameterizes Rule-Based Models written
either in BioNetGen (BioNetGen [http://www.csb.pitt.edu/Faculty/Faeder/?page_id=409]) or kappa language (Kappa [https://www.kappalanguage.org/]). Models are
simulated with BNG2 (BioNetGen2 [https://github.com/RuleWorld/bionetgen], PMID 27402907 [https://www.ncbi.nlm.nih.gov/pubmed/27402907]), NFsim (NFsim [https://github.com/RuleWorld/nfsim], PMID 26556387 [https://www.ncbi.nlm.nih.gov/pubmed/26556387]), KaSim (KaSim [https://github.com/Kappa-Dev/KaSim], PMID 29950016 [https://www.ncbi.nlm.nih.gov/pubmed/29950016]), or
PISKaS (PISKaS [https://github.com/DLab/PISKaS], PMID 29175206 [https://www.ncbi.nlm.nih.gov/pubmed/29175206]). Please contact us or write an issue to include your
favorite stochastic simulator to Pleione (https://github.com/glucksfall/pleione/issues).

Pleione implements a Genetic Algorithm with elitism, on the
contrary to BioNetFit (BioNetFit [https://github.com/RuleWorld/BioNetFit], PMID 26556387 [https://www.ncbi.nlm.nih.gov/pubmed/26556387]) that implements a parents selection within
a distribution probability that is inverse to the rank. Nonetheless, Pleione’s
methods to parameterize Rule-Based Models include both, a uniform or inverse to the rank
probability to select models from within an elite or all models.

The plan to add methods into Pleiades (pleiades [https://github.com/glucksfall/pleiades]) includes a sensitivity analysis and a
parameterization employing a Particle Swarm Optimization protocol. You
could write us if you wish to add methods into pleione or aid in the development
of them.

	Installation
	Option 1: Install pleione natively on your computer

	Option 2: Clone the Github repository

	Parameters estimation
	Parameterization with KaSim

	Parameterization with PISKaS

	Parameterization with BioNetGen2

	Parameterization with NFsim

	Model Validation

	Objective Functions
	Algebraic Objective Functions

	Statistical Objective Functions

	Multiple Objective Functions

	Add a fitness function to Pleione

	Compiling Python3 from source

	Installing SLURM in your machine

Indices and tables

	Index

	Module Index

	Search Page

Installation

There are two different ways to install pleione:

	Install pleione natively (Recommended).

OR

	Clone the Github repository. If you are familiar with git, pleione can
be cloned and the respective folder added to the python path. Further details
are below.

Note

Need Help?
If you run into any problems with installation, please visit our chat room:
https://gitter.im/glucksfall/pleiades

Option 1: Install pleione natively on your computer

The recommended approach is to use system tools, or install them if
necessary. To install python packages, you could use pip, or download
the package from python package index [https://pypi.org/project/pleione/].

	Install with system tools

With pip, you simple need to execute and pleione will be installed on
$HOME/.local/lib/python3.6/site-packages folder or similar.

pip3 install pleione --user

If you have system rights, you could install pleione for all users with

sudo -H pip3 install pleione

	Download from python package index

Alternatively, you could download the package (useful when pip fails to download
the package because of lack of SSL libraries) and then install with pip. For instance:

wget https://files.pythonhosted.org/packages/a9/6b/99ae42d1bf3811ff909c8c0fde6a174fbef4d76fe25f0aa0edd13420d4d6/pleione-1.5.1-py3-none-any.whl
pip3 install pleione-1.5.1-py3-none-any.whl --user

Note

Why Python3?:
Pleione is intended to be used with >=python3.4 because python2.7 won’t receive
further development past 2020, including security updates.

Note

pip, Python and Anaconda:
Be aware which pip you invoque. You could install pip3 with
sudo apt-get install python3-pip if you have system rights, or
install python3 from source, and adding <python3 path>/bin/pip3 to the
path, or linking it in a directory like $HOME/bin which is commonly
added to the path at login. Also be aware that, if you installed
Anaconda, pip could be linked to the Anaconda specific version of pip, which
will install pleione into Anaconda’s installation folder.
Type which pip or which pip3 to find out the source of pip, and type
python -m site or python3 -m site to find out where is more likely
pleione will be installed.

Option 2: Clone the Github repository

	Clone with git

The source code is uploaded and maintained through Github at
https://github.com/networkbiolab/pleione. Therefore, you could clone the
repository locally, and then add the folder to the PYTHONPATH. Beware
that you should install the pandas package (pandas [https://pandas.pydata.org/]) by any means.

git clone https://github.com/networkbiolab/pleione /opt
echo export PYTHONPATH="\$PYTHONPATH:/opt/pleione" >> $HOME/.profile

Note

Adding the path to $HOME/.profile allows python to find the package
installation folder after each user login. Similarly, adding the path to
$HOME/.bashrc allows python to find the package after each terminal
invocation. Other options include setting the PYTHONPATH environmental
variable in a sh file (see the example folder) or invoke python3 setup.py clean build install
to install Pleione as it was downloaded from the PyPI server.

Parameters estimation

Pleione’s parameterization methods rely on Computational Load Distribution. The
naïve approach is to use the python’s multiprocessing API and each simulation
distributed within the Pool of available (minus one) cores. This approach would
make pleione’s methods compatible with Microsoft Windows and Apple OS X.
However, to take fully advantage of High-Performance Computing architectures,
pleione’s methods rely on SLURM –Simple Linux Utility for Resource
Management– (SLURM [https://slurm.schedmd.com/]) to distribute simulations through your infrastructure,
remote infrastructures, and cloud services like Google Compute Engine, Microsoft
Azure, and Amazon Elastic Compute Cloud.

Up to date, pleione’s parameterization methods rely on 4 simulations engines:
KaSim and PISKaS simulate kappa language models. Unlike KaSim, PISKaS is able
to simulate multiple compartment models distributing the calculation of each
compartment through multiple cores. In the other hand, BioNetGen2 and NFsim
simulate BioNetGen language models. Despite KaSim and PISKaS, BioNetGen2 does
not provide a Command-Line Interface to especify simulation parameters and
rather, the simulation parameters (e.g. time to simulation, number of points to
report, …) must be given inside the model specification. Moreover, you need to
especify the simulation engine to use: Deterministic simulation through CVODE,
the Stochastic Simulation Algorithm SSA, Exact Hybrid Particle/Population
Algorithm HPP, and the Partition-Leap Algorithm PLA. Moreover, NFsim could
be used by BioNetGen2 to simulate models or called externally after creating the
model xml especification with BioNetGen2 –xml option.

Because the software requirements and differences, we provide specific
documentation to all of them rather than provide common guidelines and then
stating the differences.

Parameterization of kappa-language Rule-Based Models

	Parameterization with KaSim

	Parameterization with PISKaS

Parameterization of BioNetGen language Rule-Based Models

	Parameterization with BioNetGen2

	Parameterization with NFsim

Common to all parameterization methods, there are 9 algebraic objective
functions and one statistical function already implemented in the code.
Moreover, the code sort the models by their rank and therefore, ranks can be
added and sorted again, making the possibility to use a Multiple Objective
Genetic Algorithm.

	Model Validation

	Objective Functions
	Algebraic Objective Functions

	Statistical Objective Functions

	Multiple Objective Functions

	Add a fitness function to Pleione

Note

Installation instructions:
Instructions to install KaSim, BioNetGen, NFsim, and PISKaS are
available in their source code webpages. Nonetheless, here you will find
basic information to clone using git or download the software and install
it.

To install SLURM, you should have admin access to your infrastructure and an
UNIX-based OS. Detailed instructions are provided here:
Installing SLURM in your machine

Parameterization with KaSim

	Prepare the model

Pleione finds which variables will be calibrated using
the symbol // (doble slash, as C/C++) followed by:

	An initial distribution type: uniform, loguniform, lognormal

	An initial search space: [min max] or [mean standard_deviation]
in the case if lognormal was selected.

	A type of parameter mutation: uniform or loguniform to use a new search
space; or factor to perform a local mutation search

	A search space for mutated parameters: [min max] or
[probability fold_change] in the case if factor was selected.

	An optional mutation rate per parameter. Without it, the global mutation
rate is used.

For instace:

%var: 'KD1__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'km1__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'K2RT__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'km2__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'kphos__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]
%var: 'kdephos__FREE__' 1.000000e+00 // loguniform[0.01 100] factor[0.2 0.1]

or the following configuration if the model is written in syntax 3 (KaSim v3):

%var: 'KD1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'K2RT__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km2__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kphos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kdephos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note

Factor mutation: This type of mutation strategy comes from BioNetFit and
selects a random value from the range 0.9 * old_value, 1.1 * old_value
if the declared value is 0.1 with probability 0.2.

	Prepare the data files

KaSim produce simulations files with the following format. Please prepare
data files with the same format to avoid incompatibilities.

"[T]","RLbonds","pR"
600.,0,355.3
610.,114.072,356.44
620.,139.1838,349.96
630.,149.1534,343.98
640.,156.8684,342.6
650.,156.788,335.62
660.,163.6668,337.48

Note

About the example model: The model has three parts: An equilibration of
600 seconds, then the model is modified to add a quantity of L(r) agents,
and then perform the actual simulation for 60 seconds. Despite BNG2 and NFsim,
KaSim reports the whole simulation, so to compare effectively, we must offset
the time of the experimental data by 600.

	Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with
sbatch. Note that the export statement is inside the code to tell SLURM
to add the path and ensure proper execution when pleione was cloned with
git. Also, python3 redirects to either the system installed executable
(with pandas installed either as admin or user) or redirects to the user
compiled executable if an alias exists for it.

#!/bin/sh

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-kasim
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

MODEL=pysbmodel-example6-kasim.kappa
FINAL=660
STEPS=10 # KaSim interprets as the period, not how many points to report!

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/kasim/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.kasim --model=$MODEL --final=$FINAL --steps=$STEPS \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR \
--slurm=$PARTITION --syntax=4

Note

sbatch or python multiproccesing? To execute Pleione outside a SLURM
queue, simple execute the shell script with sh, bash or any shell
interpreter without the slurm option. Be aware that, if SLURM is
running in the same machine, Pleione subprocess would impact negatively in
other user’s threads, and vice versa, since SLURM could allow oversubscribe
(see https://slurm.schedmd.com/sbatch.htm for more information)

Note

Need help? type python3 -m pleione.kasim --help to find out the
available command options.

Parameterization with PISKaS

	Prepare the model

Pleione finds which variables will be calibrated using
the symbol # (number sign, hash or pound sign) followed by:

	An initial distribution type: uniform, loguniform, lognormal

	An initial search space: [min max] or [mean standard_deviation]
in the case if lognormal was selected.

	A type of parameter mutation: uniform or loguniform to use a new search
space; or factor to perform a local mutation search

	A search space for mutated parameters: [min max] or
[probability fold_change] in the case if factor was selected.

	An optional mutation rate per parameter. Without it, the global mutation
rate is used.

For instace:

%var: 'KD1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km1__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'K2RT__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'km2__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kphos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
%var: 'kdephos__FREE__' 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note

Factor mutation: This type of mutation strategy comes from BioNetFit and
selects a random value from the range 0.9 * old_value, 1.1 * old_value
if the declared value is 0.1 with probability 0.2.

	Prepare the data files

PISKaS produce simulations files with a similar format as follows. Please prepare
data files, replacing the “#” with the name of the compartments, including the initial
space in each subsequent row.

example time 'RLbonds' 'pR'
 6.000000E+02 0 355.3
 6.100000E+02 114.072 356.44
 6.200000E+02 139.1838 349.96
 6.300000E+02 149.1534 343.98
 6.400000E+02 156.8684 342.6
 6.500000E+02 156.788 335.62
 6.600000E+02 163.6668 337.48

Note

An extra column name? PISKaS produces one output for each compartment
declared in the model. Therefore, adding the name of the compartment as the
first column allows the code to identify the corresponding experimental data
with the simulated compartment and apply correctly the fitness function.
Finally, the model error is the sum of each fitness per compartment.

Note

About the example model: The model has three parts: An equilibration of
600 seconds, then the model is modified to add a quantity of L(r) agents,
and then perform the actual simulation for 60 seconds. Despite BNG2 and NFsim,
PISKaS reports the whole simulation, so to compare effectively, we must offset
the time of the experimental data by 600.

	Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with
sbatch. Note that the export statement is inside the code to tell SLURM
to add the path and ensure proper execution when pleione was cloned with
git. Also, python3 redirects to either the system installed executable
(with pandas installed either as admin or user) or redirects to the user
compiled executable if an alias exists for it.

#!/bin/sh

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-piskas
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

MODEL=pysbmodel-example6-piskas.kappa
FINAL=660
STEPS=66

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/piskas/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.piskas --model=$MODEL --final=$FINAL --steps=$STEPS \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR \
--slurm=$PARTITION

Note

sbatch or python multiproccesing? To execute Pleione outside a SLURM
queue, simple execute the shell script with sh, bash or any shell
interpreter without the slurm option. Be aware that, if SLURM is
running in the same machine, Pleione subprocess would impact negatively in
other user’s threads, and vice versa, since SLURM could allow oversubscribe
(see https://slurm.schedmd.com/sbatch.htm for more information)

Note

Need help? type python3 -m pleione.piskas --help to find out the
available command options.

Parameterization with BioNetGen2

	Prepare the model

Pleione finds which variables will be calibrated using
the symbol # (number sign, hash or pound sign) followed by:

	An initial distribution type: uniform, loguniform, lognormal

	An initial search space: [min max] or [mean standard_deviation]
in the case if lognormal was selected.

	A type of parameter mutation: uniform or loguniform to use a new search
space; or factor to perform a local mutation search

	A search space for mutated parameters: [min max] or
[probability fold_change] in the case if factor was selected.

	An optional mutation rate per parameter. Without it, the global mutation
rate is used.

For instace:

KD1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
K2RT__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km2__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kphos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kdephos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note

Factor mutation: This type of mutation strategy comes from BioNetFit and
selects a random value from the range 0.9 * old_value, 1.1 * old_value
if the declared value is 0.1 with probability 0.2.

	Prepare the data files

BNG2 produce simulations files with the following format. Please prepare
data files with the same format, including the initial space in each row.

time RLbonds pR
 0.00000000E+00 0.00000000E+00 3.55300000E+02
 1.00000000E+01 1.14072000E+02 3.56440000E+02
 2.00000000E+01 1.39183800E+02 3.49960000E+02
 3.00000000E+01 1.49153400E+02 3.43980000E+02
 4.00000000E+01 1.56868400E+02 3.42600000E+02
 5.00000000E+01 1.56788000E+02 3.35620000E+02
 6.00000000E+01 1.63666800E+02 3.37480000E+02

	Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with
sbatch. Note that the export statement is inside the code to tell SLURM
to add the path and ensure proper execution when pleione was cloned with
git. Also, python3 redirects to either the system installed executable
(with pandas installed either as admin or user) or redirects to the user
compiled executable if an alias exists for it.

#!/bin/sh
export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-bng2
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

MODEL=pysbmodel-example6-bng2.bngl # the model should have the .bngl extension

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/bng2/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.bng2 --model=$MODEL \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR \
--slurm=$PARTITION

Note

sbatch or python multiproccesing? To execute Pleione outside a SLURM
queue, simple execute the shell script with sh, bash or any shell
interpreter without the slurm option. Be aware that, if SLURM is
running in the same machine, Pleione subprocess would impact negatively in
other user’s threads, and vice versa, since SLURM could allow oversubscribe
(see https://slurm.schedmd.com/sbatch.htm for more information)

Note

Need help? type python3 -m pleione.bng2 --help to find out the
available command options.

Parameterization with NFsim

	Prepare the model

Pleione finds which variables will be calibrated using
the symbol # (number sign, hash or pound sign) followed by:

	An initial distribution type: uniform, loguniform, lognormal

	An initial search space: [min max] or [mean standard_deviation]
in the case if lognormal was selected.

	A type of parameter mutation: uniform or loguniform to use a new search
space; or factor to perform a local mutation search

	A search space for mutated parameters: [min max] or
[probability fold_change] in the case if factor was selected.

	An optional mutation rate per parameter. Without it, the global mutation
rate is used.

For instace:

KD1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km1__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
K2RT__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
km2__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kphos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]
kdephos__FREE__ 1.000000e+00 # loguniform[0.01 100] factor[0.2 0.1]

Note

Factor mutation: This type of mutation strategy comes from BioNetFit and
selects a random value from the range 0.9 * old_value, 1.1 * old_value
if the declared value is 0.1 with probability 0.2.

	Prepare the data files

NFsim produce simulations files with the following format. Please prepare
data files with the same format to avoid incompatibilities.

time, RLbonds, pR
0.00000000E+00, 0.00000000E+00, 3.55300000E+02
1.00000000E+01, 1.14072000E+02, 3.56440000E+02
2.00000000E+01, 1.39183800E+02, 3.49960000E+02
3.00000000E+01, 1.49153400E+02, 3.43980000E+02
4.00000000E+01, 1.56868400E+02, 3.42600000E+02
5.00000000E+01, 1.56788000E+02, 3.35620000E+02
6.00000000E+01, 1.63666800E+02, 3.37480000E+02

	Prepare a sbatch configuration file

Use the following code as template to make a shell script and queue it with
sbatch. Note that the export statement is inside the code to tell SLURM
to add the path and ensure proper execution when pleione was cloned with
git. Also, python3 redirects to either the system installed executable
(with pandas installed either as admin or user) or redirects to the user
compiled executable if an alias exists for it.

#!/bin/sh

#SBATCH --no-requeue
#SBATCH --partition=cpu

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

#SBATCH --job-name=pleione-nfsim
#SBATCH --output=stdout.txt
#SBATCH --error=stderr.txt

export PYTHONPATH="$PYTHONPATH:$HOME/opt/pleione"

MODEL=pysbmodel-example6-nfsim.bngl # the model should have the .bngl extension
FINAL=60
STEPS=6

PARTITION=$SLURM_JOB_PARTITION
DATA=../exp-data/nfsim/data-*.txt

NUM_ITER=100
NUM_SIMS=10
POP_SIZE=100
POP_BEST=0

SWAP=0.5
RATE=0.5
ERROR="SDA"

python3 -m pleione.nfsim --model=$MODEL --final=$FINAL --steps=$STEPS \
--iter=$NUM_ITER --pops=$POP_SIZE --sims=$NUM_SIMS --best=$POP_BEST \
--data=$DATA --rate=$RATE --swap=$SWAP --error=$ERROR --equil 600 \
--slurm=$PARTITION

Note

sbatch or python multiproccesing? To execute Pleione outside a SLURM
queue, simple execute the shell script with sh, bash or any shell
interpreter without the slurm option. Be aware that, if SLURM is
running in the same machine, Pleione subprocess would impact negatively in
other user’s threads, and vice versa, since SLURM could allow oversubscribe
(see https://slurm.schedmd.com/sbatch.htm for more information)

Note

Need help? type python3 -m pleione.nfsim --help to find out the
available command options.

Model Validation

Pleione’s parameter calibration scripts call an external script to calculate
fitness to experimental data. You could use one of the following script to
calculate the fitness of your parameterized model against an independent
experimental data set:

python3 -m pleione.bng2-doerror --data foo --sims bar \
--file output.txt --error SDA

OR

python3 -m pleione.kasim-doerror --data foo --sims bar \
--file output.txt --error SDA

OR

python3 -m pleione.nfsim-doerror --data foo --sims bar \
--file output.txt --error SDA

OR

python3 -m pleione.piskas-doerror --data foo --sims bar \
--file output.txt --error SDA

Note

Fitness Function

Pleione currently support 9 algebraics and 3 statistical tests as fit functions.
To calculate more than one function, include a list such as SDA SSQ CHISQ.
In doing so, this will calculate the contribution of both o more metrics to
the overall error and aid to validate of discard a model calibration. More information
in Objective Functions

Note

All fitness functions

Use the --do_all True argument to calculate all fitness functions included in Pleione.
You should provide a table with critical values (see example folder for the one-tail table)

Note

(non-)Rejection matrices

The --report True argument will print to the console relevant calculations for the
statistical tests.

Note

Need Help?
Type python3 -m pleione.$STOCH_ENGINE-doerror --help where
$STOCH_ENGINE can be the currently supported stochastic engines: BNG2,
NFsim, KaSim and PISKaS (all in lower cases, for instance nfsim-doerror)

Objective Functions

Common to all parameterization methods, there are 9 algebraic objective
functions and one statistical function already implemented in the code.
Moreover, the code sort the models by their rank and therefore, ranks can be
added and sorted again, making the possibility to use a Multiple Objective
Genetic Algorithm.

	Algebraic Objective Functions

	Statistical Objective Functions

	Multiple Objective Functions

	Add a fitness function to Pleione

Note

Need a different Objective Function?
The code that calculates the error is separated from the main Genetic
Algorithm. This make useful to encode other Objective Functions if the
already implemented does not apply to your necessities. You could contact us
to add your function to the pleione package.

Algebraic Objective Functions

Here are the formulas to calculate the error between multiple data sets and
simulations files.

	
	
Squared Difference of two Averages (SDA; formerly Mean Square Error, MSE):

\(\left(\frac{1}{m} \sum_{i=1}^{m} \mathrm{exp}_i - \frac{1}{n} \sum_{j=1}^{n} \mathrm{sim}_j \right) ^{2}\)

	
Absolute Difference of two Averages (ADA; formerly Mean Absolute Error, MAE):

\(\mathrm{abs} \left(\frac{1}{m} \sum_{i=1}^{m} \mathrm{exp}_i - \frac{1}{n} \sum_{j=1}^{n} \mathrm{sim}_j \right)\)

	
Pair-Wise Square Deviation (PWSD):

\(\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left({\mathrm{exp}_i - \mathrm{sim}_j } \right)^{2}\)

	
Absolute Pair-Wise Deviation (APWSD):

\(\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{abs} \left(\mathrm{exp}_i - \mathrm{sim}_j \right)\)

	
Normalized Pair-Wise Square Deviation (NPWSD):

\(\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{ \mathrm{exp}_i - \mathrm{sim}_j }{ \mathrm{exp}_i } \right)^{2}\)

	
	
Absolute Normalized Pair-Wise Deviation (ANPWSD):

\(\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{abs} \left(\frac{ \mathrm{exp}_i - \mathrm{sim}_j }{ \mathrm{exp}_i } \right)\)

	
Sum of SQuares (SSQ):

\(\sum_{i=1}^{m} \sum_{j=1}^{n} \left({\mathrm{exp}_i - \mathrm{sim}_j } \right)^{2}\)

	
Chi-Square (CHISQ):

\(\sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{ \mathrm{exp}_i - \mathrm{sim}_j }{ \sigma_{\mathrm{exp}} } \right)^{2}\)

	
Mean Normalized Square Error (MNSE):

\(\sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{ \mathrm{exp}_i - \mathrm{sim}_j }{ \overline{\mathrm{exp}} } \right)^{2}\)

Note

Need a different Objective Function? The code that calculates the error
is separated from the main Genetic Algorithm. This make useful to encode
other Objective Functions if the already implemented does not apply to your
necessities. You could contact us to add your function to the pleione
package. See the fitness.py file and add yours favourite function.

Reach us on GitHub to add yours fitness function to the code, as it might help
other users.

Statistical Objective Functions

We implemented three equivalence tests to determine if two distribution are
similar in a interval. The interval is defined by default as one standard
deviation of experimental data for the two one-sided t-tests (TOST) and the
Double Mann-Whitney U-test (DUT). In the case of the Wellek’s test (WMWET), the
equivalence interval is \(\epsilon_1 = 0.3129\) and \(\epsilon_2 =
0.2661\).

The user can set the --factor argument to divide the standard deviation by
it, or can set the --stdv sims argument to use rather the standard
deviation of simulations, or provide custom limits with --lower and, or
--upper arguments, which point to one file with the same structure as the
experimental data. In the case the user omits --lower or --upper, the
equivalence interval will be symmetrical.

To calculate TOST, we use the ttost_ind function from the python
statsmodels package. In the case of the Wellek’s test, we implemented in
python the mawi.R script from the EQUIVNONINF package
(https://rdrr.io/cran/EQUIVNONINF/man/mawi.html). And for the Double
Mann-Whitney U-test, we implemented it as two Mann-Whitney U-test as follows:

The U-test is a non-parametric statistical test that, within a confidence level,
determine if a random distribution is different (two-tails) or greater
(one-tail) compared to a second distribution. The Algorithm is valid to compare
distribution of 3 to 20 measurements.

1. We count how many times experimental data (\(exp_i\)) are larger than
simulated values (\(sim_j\)):

for \(i \mathrm{\ in\ } \mathrm{range} (\mathrm{len}(exp))\):

for \(j \mathrm{\ in\ } \mathrm{range} (\mathrm{len}(sim))\):

if \(exp_{i} > sim_{j}\):

\(U_{exp} \gets U_{exp} + 1.0\)

else if \(exp_{i} < sim_{j}\):

\(U_{sim} \gets U_{sim} + 1.0\)

else:

\(U_{exp} \gets U_{exp} + 0.5\)

\(U_{sim} \gets U_{sim} + 0.5\)

	We determine if \(U_{exp}\) is statistically significant:

\(U_{\mathrm{model}} = U_{max} = \mathrm{len}(exp) \times \mathrm{len}(sim)\)

for \(i \mathrm{\ in\ } \mathrm{range} (\mathrm{len}(exp) \times \mathrm{len}(sim))\):

test \(H_0: exp > sim − lower\)

if \(U_{max} - U_{exp} \leq U_{critic}\) then null hypothesis, \(H_0\), is rejected

\(U_{lower} = 1.0\)

else

\(U_{lower} = 0.0\)

test \(H_0: exp < sim + upper\)

if \(U_{max} - U_{sim} \leq U_{critic}\) then null hypothesis, \(H_0\), is rejected

\(U_{upper} = 1.0\)

else

\(U_{upper} = 0.0\)

\(U_{model} = U_{model} - U_{lower} \times U_{upper}\)

Note

The iterative statistical tests are fitness functions having known limits: For a
perfect model, the U-test is zero. A complete wrong model will have a
\(U_{model}\) equal to the number of Observables times the number of
experimental time points. For instance, the example model we use to compare
with BioNetFit has 2 Observables and 7 experimental time points, then a max
\(U_{model}\) equal to 14.

Multiple Objective Functions

A Multiple Objective Function is build from two or more fitness functions.
Firstly, a fitness is calculated and all models ranked. Then, the next fitness.
Finally, the sum of ranks is use to rank agains the models.

Algoritmically:

\[\begin{split}rank_1 &= \mathrm{sort\ models\ following\ function\ 1} \\
&\mathrel{\vdots} \\
rank_n &= \mathrm{sort\ models\ following\ function\ n} \\
\\
rank_{MO} &= \mathrm{sort\ models\ following\ } (rank_1 + \ldots + rank_n)\end{split}\]

Note

We currently don’t provide weights to rank the models. Be aware that, if you
use multiple algebraic functions and the statistical fitness function, the
importance of the statistical function is diluited.

Add a fitness function to Pleione

Each simulator are provided with two scripts that calculate errors. They are
located at the same path as the main scripts that calibrate. Inside each,
there is a template intended with instructions:

Fitness Calculation Template:
if set(args.error).issuperset(set(['the-acronysm'])):
 1. func = 0

 2. func = an algebraic expression combining the data average (data_avrg), data standard deviation (data_stdv), simulation average (sims_stdv),
 simulation standard deviation (sims_stdv), single experimental files (data.loc[i]), and/or simulation files (sims.loc[j])
 Note1: Perform two for-loops if using data.loc[i] and sims.loc[j].
 Note2: Please consider these variables are DataFrames, meaning that multiplication and division are methods (e.g. df1.division(df2))

 3. Drop NaN values (from experimental time points without simulated values, or simulated values without experimental data)
 with dropna(axis = 0, how = 'all').dropna(axis = 1, how = 'all'). Also transform Inf values with replace([numpy.inf, -numpy.inf], numpy.nan)

 4. Sum the two dimensions, and return a 6 float points scientific notation number (0 float points for statistical tests):
 error['the-acronysm'] = '{:.6e}'.format(func.dropna(axis = 0, how = 'all').dropna(axis = 1, how = 'all').sum().sum())

To use:

	Define an acronysm for your fitness function and replace the-acronysm in the template

	Define func as an operation of DataFrames: data_avrg, data_stdv, sims_avrg, sims_stdv, data.loc[i], and sims.loc[j]

Note

Do not use data.iloc[i] or sims.iloc[i] as they provide wrong access to the data structure, possibly returning wrong calculations.

Compiling Python3 from source

If you don’t have admin access to the cluster configuration, you could compile
and install python3 from source following these instructions:

wget https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tgz \
-O ~/opt/ubuntu-software/Python-3.6.5.tgz
if [-d ~/opt/Python-3.6.5]; then rm -rf ~/opt/Python-3.6.5; fi
tar xvzf ~/opt/ubuntu-software/Python-3.6.5.tgz -C ~/opt
cd ~/opt/Python-3.6.5
if [-f Makefile]; then make clean; fi
if [-d $(HOME)/opt/python-3.6.5]; then rm -rf $(HOME)/opt/python-3.6.5; fi
./configure --prefix=$(HOME)/opt/python-3.6.5
make
make install

Note

Don’t copy an installation folder from another machine since there may be
libraries incompatibilities. Instead, the code will download, configure,
compile, and install. To make accesible from anywhere, you could add an
alias into ~/.bashrc or a symbolic in your $HOME/bin folder for
$HOME/opt/python-3.6.5/bin/python3 and pip3.

To install numpy and pandas use the following instructions, in order since some
pandas dependencies has also dependencies:

wget https://files.pythonhosted.org/packages/71/90/ca61e203e0080a8cef7ac21eca199829fa8d997f7c4da3e985b49d0a107d/numpy-1.14.3-cp36-cp36m-manylinux1_x86_64.whl
wget https://files.pythonhosted.org/packages/dc/83/15f7833b70d3e067ca91467ca245bae0f6fe56ddc7451aa0dc5606b120f2/pytz-2018.4-py2.py3-none-any.whl
wget https://files.pythonhosted.org/packages/67/4b/141a581104b1f6397bfa78ac9d43d8ad29a7ca43ea90a2d863fe3056e86a/six-1.11.0-py2.py3-none-any.whl
wget https://files.pythonhosted.org/packages/cf/f5/af2b09c957ace60dcfac112b669c45c8c97e32f94aa8b56da4c6d1682825/python_dateutil-2.7.3-py2.py3-none-any.whl
wget https://files.pythonhosted.org/packages/69/ec/8ff0800b8594691759b78a42ccd616f81e7099ee47b167eb9bbd502c02b9/pandas-0.23.0-cp36-cp36m-manylinux1_x86_64.whl

pip3 install numpy-1.14.3-cp36-cp36m-manylinux1_x86_64.whl
pip3 install pytz-2018.4-py2.py3-none-any.whl
pip3 install six-1.11.0-py2.py3-none-any.whl
pip3 install python_dateutil-2.7.3-py2.py3-none-any.whl
pip3 install pandas-0.23.0-cp36-cp36m-manylinux1_x86_64.whl

If you have admin access (and willing to compile python3 from source) you could
install the following dependencies:

apt-get install libssl-dev zlib1g-dev libncurses5-dev \
libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \
libdb5.3-dev libbz2-dev libexpat1-dev liblzma-dev tk-dev

Compiling python3 with all dependencies would make installation of packages
easier. Just follow the instructions:

pip3 install pandas

Note

Installing pandas with pip will install numpy as its dependency.

Note

Be sure you are calling pip3 after creating an alias or a symbolic link.
Without admin credentials, pip3 would fail to install pandas.

Installing SLURM in your machine

To install SLURM you need admin access to the machine. Please follow this
instructions to start up running the workload manager, in the controller as well
in the controlled machines.

sudo apt-get -y install slurm-wlm
sudo nano /etc/slurm-llnl/slurm.conf

sudo chown -R slurm:slurm /var/run/slurm-llnl/
sudo chown -R slurm:slurm /var/lib/slurm-llnl/
sudo chown -R slurm:slurm /var/log/slurm-llnl/
sudo mkdir /var/spool/slurmd
sudo chown -R slurm:slurm /var/spool/slurmd

sudo systemctl start slurmd

Replace $HOST_NAME with your machine name that is going to act as the
controller. If you have multiple machines, this configuration file must be
identical and in all machines in the queue.

slurm.conf - Slurm config file.

#ClusterName=$HOST_NAME
ControlMachine=$HOST_NAME
SlurmUser=slurm
AuthType=auth/munge

SlurmctldPidFile=/var/run/slurm-llnl/slurmctld.pid
SlurmdPidFile=/var/run/slurm-llnl/slurmd.pid
SlurmdSpoolDir=/var/lib/slurm-llnl/slurmd
StateSaveLocation=/var/lib/slurm-llnl/slurmctld

SwitchType=switch/none
ProctrackType=proctrack/pgid
TaskPlugin=task/none

MpiDefault=none
MaxJobCount=100000
MaxArraySize=64000

TIMERS
SlurmdTimeout=300
InactiveLimit=0
MinJobAge=300
KillWait=30
Waittime=0

SCHEDULING
SchedulerType=sched/backfill
SelectType=select/cons_res
SelectTypeParameters=CR_Core
FastSchedule=1

LOGGING
SlurmctldDebug=3
SlurmctldLogFile=/var/log/slurm-llnl/slurmctld.log
SlurmdDebug=3
SlurmdLogFile=/var/log/slurm-llnl/slurmd.log

COMPUTE NODES

Here you add the machine hardware configurations
NodeName=$HOST_NAME Procs=8 Boards=1 SocketsPerBoard=1 CoresPerSocket=4 ThreadsPerCore=2 State=idle

Here you add the machine(s) to a Partition
PartitionName=MyCluster Nodes=$HOST_NAME Default=yes MaxTime=INFINITE State=up

Note

Please refer to SLURM [https://slurm.schedmd.com/] for advance configuration like limiting time, CPUs
and RAM for users or groups, to balance load in your cluster.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pleione v1.5 documentation!

 		
 Installation

 		
 Option 1: Install pleione natively on your computer

 		
 Option 2: Clone the Github repository

 		
 Parameters estimation

 		
 Parameterization with KaSim

 		
 Parameterization with PISKaS

 		
 Parameterization with BioNetGen2

 		
 Parameterization with NFsim

 		
 Model Validation

 		
 Objective Functions

 		
 Algebraic Objective Functions

 		
 Statistical Objective Functions

 		
 Multiple Objective Functions

 		
 Add a fitness function to Pleione

 		
 Compiling Python3 from source

 		
 Installing SLURM in your machine

_static/up.png

