
Playlabs Documentation
Release 0.5

Yourlabs

Nov 29, 2018

Contents:

1 Playlabs: the obscene ansible distribution 3
1.1 Install playlabs . 3
1.2 Quick start . 3
1.3 playlabs init . 4
1.4 playlabs install . 4

2 User and groups management 7
2.1 Pre-requisite . 7
2.2 Adding a new user . 7
2.3 Removing users . 9
2.4 Applying users . 9
2.5 Reference . 9

3 Hosts inventory 11
3.1 Pre-requisite . 11
3.2 Adding a new host . 11
3.3 Setting host groups . 12

4 Managing infra variables in the inventory 13
4.1 Global variables . 13
4.2 Role variables . 13
4.3 Role structure . 13
4.4 Project variables . 13
4.5 Project plugins variable . 14
4.6 Plugin variables . 14

5 Projects deployments and lifecycles 15
5.1 Pre-requisite . 15
5.2 Deploying a docker image . 15
5.3 Deployments . 16
5.4 Project plugins . 16
5.5 Operations . 17

6 CLI Options 19

7 Indices and tables 21

i

ii

Playlabs Documentation, Release 0.5

Playlabs provides a convenient wrapper for the ansible-playbook command and provides a set of ansible roles made
to work together, and to orchestrate containers as much as possible and let only network level provisioning happen on
hosts themselves, and combines straigthforward ansible patterns to install a docker orchestrated paas infra to prototype
products for development to small-size production.

Pre-beta state: works for me, but parts are being rewriten independently until it’s clean enough and declared stable,
documentation is still in progress and so are tests.

Contents: 1

Playlabs Documentation, Release 0.5

2 Contents:

CHAPTER 1

Playlabs: the obscene ansible distribution

Playlabs combines simple ansible patterns with packaged roles to create a docker orchestrated paas to prototype
products for development to production.

Playlabs does not deal with HA, for HA you will need to do the ansible plugins yourself, or use kubernetes . . . but
Playlabs will do everything else, even configure your own sentry or kubernetes servers !

DISCLAMER: maybe it even works for you, but that’s far from garanteed so far.

1.1 Install playlabs

Install with:

pip3 install --user -e git+https://yourlabs.io/oss/playlabs#egg=playlabs

Run the ansible-playbook wrapper command without argument to see the quick getting started commands:

~/.local/bin/playlabs

1.2 Quick start

You have a new host and you need your user to be installed with your public key, passwordless sudo, and secure SSH.
The first command to run on a new host is playlabs init, ie.:

playlabs init root@1.2.3.4

all options are ansible options are proxied
playlabs init @somehost --ask-become-pass

example with a typical openstack vm
playlabs init ubuntu@somehost --ask-become-pass

3

Playlabs Documentation, Release 0.5

Now your user can install roles:

playlabs install ssh,docker,firewall,nginx @somehost

And deploy a project, examples:

playlabs @somehost deploy image=betagouv/mrs:master
playlabs @somehost deploy

image=betagouv/mrs:master
plugins=postgres,django,uwsgi
backup_password=foo
prefix=ybs
instance=hack
env.SECRET_KEY=itsnotasecret

playlabs @somehost deploy
prefix=testenv
instance=$CI_BRANCH
image=$CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

If you have that work, creating an inventory is the way to move on, wether you want to version configuration, add a
deploy user for your CI, configure a secret backup password, add ssh-keys . . . :

playlabs scaffold ./your-inventory

Read on this README for gory details if you are already an Ansible user and only need to know about the patterns
we’re using playlabs for.

A more extensive and user-friendly documentation is in the docs sub-directory of playlabs and online @ https://
playlabs.rtfd.io thanks to RTFD :)

1.3 playlabs init

Initializing means going from a naked system to a system with your own user, ssh key, dotfiles, sudo access, secure
sshd, and all necessary dependencies to execute ansible, such as python3. It will also install your friend account if you
have an ansible inventory repository where you store your friend list in yml.

You might need to pass extra options to ansible in some cases, for example if your install provides a passworded sudo,
add --ask-sudo-pass or put the password in the CLI, since initializing will remove

playlabs init @somehost
playlabs init user:pass@somehost
playlabs init user@somehost --ask-sudo-pass
playlabs init root@somehost

1.4 playlabs install

If you want to deploy your project, then you need to install the paas which consists of three roles: docker, firewall,
and nginx. The nginx role sets up two containers, nginx-proxy that watches the docker socket and introspects docker
container environment variables, such as VIRTUAL_HOST, to reconfigure itself, it even supports uWSGI. The other
container is nginx-letsencrypt, that shares a cert volume with the nginx-proxy container, and watches the docker socket
for containers and introspect variables such as LETSENCRYPT_EMAIL, to configure the certificates.

Remember the architecture:

4 Chapter 1. Playlabs: the obscene ansible distribution

https://playlabs.rtfd.io
https://playlabs.rtfd.io

Playlabs Documentation, Release 0.5

• nginx-proxy container recieves requests,

• nginx-letsencrypt container generates certificates,

• other docker containers have environment variables necessary for the above

The CLI itself is pretty straightforward:

playlabs install docker,firewall,nginx @somehost # the paas for the project role
playbabs install sendmail,netdata,mailcatcher,gitlab @staging
playbabs install sendmail,netdata,sentry user@production

The difference between traditionnal roles and playlabs roles, is that in playlabs they strive to have stuff running inside
docker to leverage the architecture of the nginx proxy.

Playlabs can configure sendmail of course, but also has roles providing full-featured docker based mailservers or
mailcatcher instances for your dev, training or staging environments for example.

This approach comes from migrating away from “building in production” to “building immutable tested chroots”,
away from “pet” to “cattle”.

But if you’re already an ansible hacker you’re better off with ansible to do a lot more than than what docker-compose
has to offer, such as managing users and roles, on your SDN as in your apps.

In fact, you will see role that consist of a single docker ansible module call, but the thing is that you can spawn it in
one command and have it integrated with the rest of your server, and even rely on ansible to provision fine-grained
RBAC in your own apps.

1.4. playlabs install 5

Playlabs Documentation, Release 0.5

6 Chapter 1. Playlabs: the obscene ansible distribution

CHAPTER 2

User and groups management

The main feature of playlabs is your inventory, it’s meant to make it easy for you to manage users and users to manage
themselves on your infra & external services. For example, playlabs could provision ssh and ldap on an ldap server,
but so far we haven’t provisioned ldap servers with playlabs because we have playlabs . . . wait wut ?

Anyway, when you’re onboarding a hacker you can point them to your inventory repository url and also this documen-
tation with the mission to add themselve.

2.1 Pre-requisite

Clone the inventory repository that you have been given if any. If it doesn’t work, make sure that the git server knows
your ssh public key if authenticating with SSH.

If you haven’t been given an inventory repository to clone, create one with the scaffolt command (note that you can
have as many inventories as you want):

playlabs scaffold your-inventory

2.2 Adding a new user

The users list and roles are defined in a YAML document that would be located in your repository at path
group_vars/all/users.yml. Ansible offers a wide range of possibilities so it might also be elsewhere, but
that’s the convention used in the default playlabs inventory that you can generate with the playlabs scaffold
command.

2.2.1 SSH Public key

Playlabs will use the SSH key it finds in the keys/ inventory of the inventory repository. You can set it up as such:

7

Playlabs Documentation, Release 0.5

generate a key if you don't have any
ssh-keygen -t ed25519 -a 100

create a branch for adding your user
git checkout -b $USER

copy the public key to the keys subdirectory of the inventory repo
if you have generated your key with the above it will be
cp ~/.ssh/id_ed25519.pub keys/$USER

add to the inventory repository
git add keys/$USER

Then, read on the adding your user to the user list.

2.2.2 YAML user list

In the users.yml file, add a list item to the users variable. You should really use your local username if you want to
have a nicer playlabs experience.

users:
...
- name: yourusername
email: your@email.com
roles:

ssh: sudo

Add your modification with git and push it in a branch, then you can create a merge request on gitlab or whatever you
use, ie:

git add -p group_vars/all/users.yml
git commit -m "Add $USER"
git push origin $USER

2.2.3 Kubernetes provisioning

Add k8s: clusten-admin or cluster-admin: k8s to the user roles ie.:

- name: jcarmack
roles:
ssh: sudo
k8s: cluster-admin

Then, playlabs install ssh,k8s @hostname for example will add that user to ssh with sudo and make it
a cluster-admin. It will create a signed certificate in the home directory of the user that they will be able to scp back
and use to authenticate as cluster-admin with kubectl.

2.2.4 Password and secret variables

Secret content is handled with the ansible-vault command. You need to store your vault password in a file that will
not be added to the inventory repository. The convention in playlabs is to name the file .vault. Then, ansible will
recognize it with the --vault-id .vault command line argument.

Create a password for yourself:

8 Chapter 2. User and groups management

Playlabs Documentation, Release 0.5

ansible-vault create passwords/$USER
or, automated:
echo -n your password | ansible-vault encrypt --vault-id .vault > passwords/$USER

SSH will not accept password authentication with playlabs by default, however your password will be useable with the
rest of services installed with playlabs, even custom projects if their plugin support it, which is the case of the Django
plugin, thanks to djcli.

2.3 Removing users

To remove a user, remove it from the users variables and then add its username to the users_remove list of
group_vars/all/users.yml ie.:

users_remove:
- usernametodelete

2.4 Applying users

To apply users, you can run the playlabs install ssh @host command that will execute the SSH role,
setting up the SSH users.

If you already have a host inventory.yml then you don’t need to specify the hosts on the command line: all hosts
that are in the ssh group will benefit from a playlabs install ssh call.

The convention accross playlabs is to have a tag named users so that we can also run roles partially in order to only
update users with little efforts.

2.5 Reference

The users YAML document in the default repository serves as reference:

This YAML document defines a list of users for playlabs ansible playbooks.
You can have an automated job that will update users for example with
`playlabs install ssh` and then users will get their credentials deployed on
git push.
#
You need the ansible vault password in cleartext a file that will not be
tracked in git to edit secret variables such as passwords. You should create
this file with the ``.vault`` name at the root of your inventory repository
clone then you can use ansible-vault commands with the ``--vault-id .vault``
argument ie.::
#
echo -n your password | ansible-vault encrypt --vault-id .vault > passwords/
→˓hacker
ansible-vault view --vault-id .vault passwords/hacker
ansible-vault rekey --vault-id .vault passwords/hacker

users:
- name: hacker

(continues on next page)

2.3. Removing users 9

https://yourlabs.io/oss/djcli

Playlabs Documentation, Release 0.5

(continued from previous page)

email: hacker1337@example.pcom
roles:
netdata: [sysadmin, domainadmin, dba, webmaster, proxyadmin]
ssh: [sudo]
superuser on all project instances
project: [superuser]
setting role on group works both ways: don't have groups and roles with
the same name
superuser:
- ci
- project-staging
- sentry

The example inventory provides one deploy user, than has no sudo
access, except for the backup scripts that it cannot write.
He has an ssh account because playlabs found a key in keys/deploy.pub.
For deploy user, we have a key without password, that is supposed to be
crypted with ansible-vault before commit:
#
$ ssh-keygen -t ed25519 -a 100 -f keys/deploy
$ echo -n your vault password > .vault
$ ansible-vault encrypt --vault-id .vault keys/deploy
- name: deploy

sudo:
- /home/*/backup.sh
- /home/*/docker-run.sh

The productowner user does not have ssh access because it does not have a
public key in keys/productowner.pub.
#
However, productowner have a password to pass through htaccess security, for
roles and projects that have it enabled.
#
To generate your own crypted password run this command:
#
$ echo -n your vault password > .vault
$ echo -n password | ansible-vault encrypt --vault-id .vault > passwords/
→˓yourproductowner
- name: productowner

superuser:
- project-staging

Playlabs will remove users in this list
users_remove:
- name: olduser

Name of the user that will be able to write /home/service/docker-image
deploy_user: deploy

10 Chapter 2. User and groups management

CHAPTER 3

Hosts inventory

While running playlabs with @hostname arguments is nice to experiment with, it won’t scale with many machines
nor will be convenient to automate playlabs calls. Most roles require an inventory to be really fun.

3.1 Pre-requisite

Clone the inventory repository that you have been given if any. If it doesn’t work, make sure that the git server knows
your ssh public key if authenticating with SSH.

If you haven’t been given an inventory repository to clone, create one with the scaffolt command (note that you can
have as many inventories as you want):

playlabs scaffold your-inventory

3.2 Adding a new host

Hosts are defined in the inventory.yml file of the inventory repository, use the all variable to add them in no
specific group:

all:
hosts:
yourhost.com: # adds a host with no extra option
otherhost:

fqdn: yourdomain.tld
ansible_port: 22
ansible_host: 123.12.12.23

11

Playlabs Documentation, Release 0.5

3.3 Setting host groups

You can link hosts to groups in the children variable of the inventory.yml YAML document. For example, if
you want playlabs install ssh,netdata without argument (for CI likely) to apply on otherhost, then
this will work:

children:
netdata-ssh:
hosts:

otherhost

12 Chapter 3. Hosts inventory

CHAPTER 4

Managing infra variables in the inventory

4.1 Global variables

Variables that are used by convention accross roles:

letsencrypt_uri=https...
letsencrypt_email=your@...

4.2 Role variables

Base variable are defined in playlabs/roles/rolename/vars/main.yml and start with the rolename_, they can be overrid-
den in your inventory’s group_vars/all/rolename.yml.

The base variable will default to the same variable without the rolename_ prefix:

Set project_image project role variable from the command line
image=your/image:tag

4.3 Role structure

Default roles live in playlabs/roles and share the standard directory structure with ansible roles, that you can scaffold
with the ansible-galaxy tool.

Playlabs use roles as alternatives as docker-compose when possible, rather than polluting the host with many services.

4.4 Project variables

The project role base variables calculate to be overridable by prefix/instance:

13

https://docs.ansible.com/ansible/2.5/user_guide/playbooks_reuse_roles.html

Playlabs Documentation, Release 0.5

project_{image,*} base value references project_staging_{image,*} from inventory
instance=staging

project_{image,*} base value references mrs_production_{image,*} from inventory
instance=production prefix=mrs

4.5 Project plugins variable

The project role has a special plugins variable that can be overridden in the usual way, but it will also try to find it by
introspecting the docker image for the PLAYLABS_PLUGINS env var ie:

ENV PLAYLABS_PLUGINS postgres,django,uwsgi,sentry

4.6 Plugin variables

Plugin variables are loaded by the project role for each plugin that it loads if any.

Base plugin variables start with project_pluginname_ and the special project_pluginname_env variable should be a
dict, they will be all merged to add environment variables to the project container, project_env will be a merge of all
them plugin envs.

Plugin env vars should preferably use overridable variables.

14 Chapter 4. Managing infra variables in the inventory

CHAPTER 5

Projects deployments and lifecycles

WIP doc

5.1 Pre-requisite

You need a sudo access on the remote machine, which can typically be obtained with the playlabs init command
ie.:

playlabs init root@1.2.3.4

all options are ansible options are proxied, so this also works
playlabs init @somehost --ask-become-pass

The ssh, docker and firewall playlabs roles must be installed on the server:

playlabs install ssh,docker,firewall,nginx @somehost

5.2 Deploying a docker image

Examples:

playlabs @somehost deploy image=betagouv/mrs:master
playlabs @somehost deploy

image=betagouv/mrs:master
plugins=postgres,django,uwsgi
backup_password=foo
prefix=ybs
instance=hack
env.SECRET_KEY=itsnotasecret

playlabs @somehost deploy

(continues on next page)

15

Playlabs Documentation, Release 0.5

(continued from previous page)

prefix=testenv
instance=$CI_BRANCH
image=$CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

5.3 Deployments

The project role is made to be generic and cover infrastructure needs to develop a project, from development to
production. Spawn an environment, here with an example image this repo is tested against:

playlabs @yourhost deploy betagouv/mrs:master '{"env":{"SECRET_KEY" :"itsnotasecret"}}
→˓'

It will use the IP address by default if ansible finds it, set the dns with the dns option dns=yourdns.com, or set it
in project_staging_dns yaml variable of your-inventory/group_vars/all/project.yml.

This is because the default prefix is project and the default instance is staging. Let’s learn a new way of
specifiying variables, add to your variables:

yourproject_production_image: yourimage:production
yourproject_production_env:

SECRET_KEY: itsnotsecret
the above value could be encrypted with ansible-vault s_encrypt

Then you can deploy as such:

playlabs @yourhost deploy prefix=yourproject instance=production

If you configure yourhost in your inventory, in group “yourproject-production”, then you don’t have to specify the host
anymore:

playlabs @yourhost project prefix=$CI_PROJECT instance=$CI_BRANCH

5.4 Project plugins

PostgreSQL or Django or uWSGI support are provided through project plugins, which you may activate as such:

• specify -p postgres,uwsgi,django

• configure yourprefix_yourinstance_plugins=[postgres, uwsgi, django]

• add to Dockerfile ENV PLAYLABS_PLUGINS postgres,uwsgi,django

The order of plugins matters, having postgres first ensures postgres is started before the project image.

Plugins are directories located at the root of playlabs repo, but at some point we can imagine loading them from the
image itself.

Plugins contain the following:

• vars.yml: variables that are auto-loaded

• deploy.pre.yml: tasks to execute before deploy of the project image

• deploy.post.yml: tasks to execute after deploy of the project image

• backup.pre.sh: included in backup.sh template before the backup

16 Chapter 5. Projects deployments and lifecycles

Playlabs Documentation, Release 0.5

• backup.post.sh: included in backup.sh template before the backup

• restore.pre.sh: included in restore.sh template before the restore

• restore.post.sh: included in restore.sh template before the restore

Default plugins live in playlabs/plugins and have the following files:

• backup.pre.sh take files out of containers and add them to the $backup variable

• backup.post.sh clean up files you have taken out after the backup has been done

• restore.pre.sh clear the place where you want to extract data from the restic backup repository

• restore.post.sh load new data and clean after the project was restarted in the snapshot version,

• deploy.pre.yml ansible tasks to execute before project deployment, ie. spawn postgres

• deploy.post.yml ansible tasks to execute after project deployment, ie. create users from inventory

• vars.yml plugin variables declaration

5.5 Operations

By default, it happens in /home/yourprefix-yourinstance. Contents depend on the activated plugins.

In the /home/ directory of the role or project there are scripts:

• docker-run.sh standalone command to start the project container, feel free to have on that one

• backup.sh cause a secure backup, upload with lftp if inventory defines dsn

• restore.sh recovers the secure backup repository with lftp if inventory desfines dsn. Without argument‘ list
snapshots. With a snapshot argument‘ proceed to a restore of that snapshot including project image version and
plugin data

• prune.sh removes un-needed old backup snapshots

• log logs that playlabs rotates for you, just fill in log files, it will do a copy truncate though, but works until you
need prometheus or something

For backups to enable, you need to set backup_password, either with -e, either through yourpe-
fix_yourinstance_backup_password.

The restic repository is encrypted, if you set the lftp_dsn or yourprefix_yourinstance_lftp_dsn then it will use lftp to
mirror them. If you trash the local restic repository, and run restore.sh, then it will fetch the repository with lftp.

5.5. Operations 17

Playlabs Documentation, Release 0.5

18 Chapter 5. Projects deployments and lifecycles

CHAPTER 6

CLI Options

Some of the variables you can like

-e key=value # set variable "key" to "value"
-e '{"key":"value"}' # same in json
-i path/to/inventory_script.ext # load any numbers of inventory variables
-i 1.2.4.4, # add a host by ip to this play
--limit 1.2.4.4, # limit play execution to these hosts
--user your-other-user # specify a particular username
--noroot # don't try becoming root automatically

Note : all ansible-playbook arguments should work.

19

Playlabs Documentation, Release 0.5

20 Chapter 6. CLI Options

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21

	Playlabs: the obscene ansible distribution
	Install playlabs
	Quick start
	playlabs init
	playlabs install

	User and groups management
	Pre-requisite
	Adding a new user
	Removing users
	Applying users
	Reference

	Hosts inventory
	Pre-requisite
	Adding a new host
	Setting host groups

	Managing infra variables in the inventory
	Global variables
	Role variables
	Role structure
	Project variables
	Project plugins variable
	Plugin variables

	Projects deployments and lifecycles
	Pre-requisite
	Deploying a docker image
	Deployments
	Project plugins
	Operations

	CLI Options
	Indices and tables

