

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 4.1 - Device Addresses

 5.1 Types of controllers

 7.1 - Getting Started

 In Chapter 6 only C++ was used as an example. Since
Player interacts with controlling code over network sockets, it’s pretty
easy to control robots (physical or simulated) with other languages as
well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

In this chapter, I will review the same examples given in
Chapter 6 for C++, hilighting the differences in the
new language. Then, I will provide a new version of the
Trash Zapping Robot
for each.

7.1 - Getting Started

If you are coding in C use the following command to compile:

gcc -o simple `pkg-config --cflags playerc` simple.c `pkg-config --libs playerc`

An even easier and more general way is to make a Makefile that
explains how to compile your code for you. The details of Makefiles [http://www.gnu.org/software/make/manual/make.html] are
beyond the scope of this manual, but an example is given in the tutorial
files that came with this manual. If you have this Makefile in the
same directory as your code, you can just type make file and the make
program will search for file.c and “do the right thing”.

TRY IT OUT (Minimal C Controller)

This is a minimal controller, written in C, almost identical to the one
distributed with player. It goes forward and does very simple collision
avoidance based on the sonars.

Read through the code before executing.

> cd <source_code>/Ch7.1
> player simple.cfg
> make simple
> ./simple

7.2 - Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player header
file. Assuming Player/Stage is installed correctly on your machine then
this can be done with the line

#include <libplayerc/playerc.h>

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the lines:

playerc_client_t *client;
client = playerc_client_create(NULL, "localhost", 6665);

What this does is declare a new object which is a playerc_client called
client which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device Address. If your code is running on the
same computer (or robot) as the Player server you wish to connect to then
the hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port is an optional parameter usually only needed
for simulations, it will be the same as the port you gave in the .cfg file.
This is only useful if your simulation has more than one robot in and you
need your code to connect to both robots. So if you gave your first robot
port 6665 and the second one 6666 (like in the example of
Section 4.2 - Putting the Configuration File Together) then you would need two
player clients, one connected to each robot, and you would do this with the
following code:

client1 = playerc_client_create(NULL, "localhost", 6665);
client2 = playerc_client_create(NULL, "localhost", 6666);

If you are only using one robot and in your .cfg file you said that it
would operate on port 6665 then the port parameter to the player client
constructor is not needed.

Once we have established a player client we should connect our code to the
device proxies so that we can exchange information with them. Which proxies
you can connect your code to is dependent on what you have put in your
configuration file. For instance if your configuration file says your robot
is connected to a laser but not a camera you can connect to the laser
device but not the camera, even if the robot (or robot simulation) has a
camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use the
position2d, ranger, and blobfinder interfaces. In our code then, we should
connect to the position2d, ranger, and blobfinder proxies like so:

position2d_name = playerc_position2d_create(client_name, index);
playerc_position2d_subscribe(position2d_name, PLAYER_OPEN_MODE);

ranger_name = playerc_ranger_create(client_name,index);
playerc_ranger_subscribe(ranger_name,PLAYER_OPEN_MODE);

blobfinder_name = playerc_blobfinder_create(client_name,index);
playerc_blobfinder_subscribe(blobfinder_name,PLAYER_OPEN_MODE);

A full list of which proxies PlayerC supports can be found in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html]
they all follow the convention of being named after the interface they use.
In the above case proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the playerc_client
object earlier and index is the index that the device was given in
your configuration file (probably 0).

7.2.1 - Setting Up Connections: an Example.

For an example of how to connect to the Player sever and device proxies we
will use the example configuration file developed in
Section 4.2 - Putting the Configuration File Together. For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a player client and then connect to proxies on that server we
can use principles discussed in this section to develop the following code:

#include <stdio.h>
#include <libplayerc/playerc.h>

int main(int argc, char *argv[])
{
 playerc_client_t *robot;

 /* Create a client and connect it to the server. */
 robot = playerc_client_create(NULL, "localhost", 6665);
 if (0 != playerc_client_connect(robot)) return -1;

 /* Create and subscribe to a position2d device. */
 p2dProxy = playerc_position2d_create(robot, 0);
 if (playerc_position2d_subscribe(p2dProxy, PLAYER_OPEN_MODE)) return -1;

 /* Create and subscribe to a ranger (sonar) device. */
 sonarProxy = playerc_ranger_create(robot, 0);
 if (playerc_ranger_subscribe(sonarProxy, PLAYER_OPEN_MODE)) return -1;

 /* Create and subscribe to a blobfinder device. */
 BlobfinderProxy = playerc_blobfinder_create(robot, 0);
 if (playerc_blobfinder_subscribe(BlobfinderProxy, PLAYER_OPEN_MODE)) return -1;

 /* Create and subscribe to a ranger (laser) device. */
 laserProxy = playerc_ranger_create(robot, 1);
 if (playerc_ranger_subscribe(laserProxy, PLAYER_OPEN_MODE)) return -1;

 /*some control code */
 return 0;
}

7.3 - Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the device
it connects to. This means that each proxy will have different commands
depending on what it controls. In Player version 3.0.2 there are 39
different proxies which you can choose to use, many of which are not
applicable to Player/Stage. This manual will not attempt to explain them
all, a full list of avaliable proxies and their
functions is in the Player manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html], although the returns, parameters and purpose of the proxy function is not always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

7.3.1 - position2dproxy

The position2dproxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry (where
the robot thinks it is based on how far its wheels have moved).

7.3.1.1 - SetSpeed ()

The SetSpeed command is used to tell the robot’s motors how fast to turn.
There are three different SetSpeed commands that can be called, one is
for robots that can move in any direction (omnidirectional), one is for for
robots with differential drive (i.e. one drive wheel on each side), and the
last for car-like drives.

	playerc_position2d_set_cmd_vel (playerc_position2d_t *device, double XSpeed, double YSpeed, double YawSpeed, int state)

	playerc_position2d_set_cmd_vel_head (playerc_position2d_t *device, double XSpeed, double YSpeed, double YawHeading, int state)

	playerc_position2d_set_cmd_car (playerc_position2d_t *device, double XSpeed, double SteerAngle)

 6.1 - Getting Started

 In this chapter, C++ is used to demonstrate how to write external
controllers. Since
Player interacts with controlling code over network sockets, it’s pretty
easy to control robots (physical or simulated) with other languages as
well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

First, I’ll present serveral examples of how to interface with different
sensors and actuators, then I’ll present two case studies showing these
interfaces in action.

6.1 - Getting Started

In order to compile your C++ program you use the following commands (in Linux):

g++ -o example0 `pkg-config --cflags playerc++` example0.cc `pkg-config --libs playerc++`

That will compile a program to a file called example0 from the C++ code file example0.cc.

An even easier and more general way is to make a Makefile that
explains how to compile your code for you. The details of Makefiles [http://www.gnu.org/software/make/manual/make.html] are
beyond the scope of this manual, but a minimal
example [http://github.com/NickelsLab/Player-Stage-Manual/blob/master/code/Ch6.1/Makefile] is
given in the tutorial files that came with this manual. If you have this
Makefile in the same directory as your code, you can just type make file and if the make program finds file.cc it will just “do
the right thing”.

TRY IT OUT (Minimal C++ Controller)

This is a minimal controller, written in C++, almost identical to the one
distributed with player. It goes forward and does very simple collision
avoidance based on the sonars.

Read through the code before executing.

> cd <source_code>/Ch6.1
> player simple.cfg &
> make example0
> ./example0

6.2 - Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player header
file. Assuming Player/Stage is installed correctly on your machine then
this can be done with the line

#include <libplayerc++/playerc++.h>

Next we need to establish a Player Client, which will interact with the Player server for you. To do this we use the line:

PlayerClient client_name(hostname, port);

What this line does is declare a new object which is a PlayerClient called
client_name which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device Address. If your code is running on the
same computer (or robot) as the Player server you wish to connect to then
the hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port is an optional parameter usually only needed
for simulations, it will be the same as the port you gave in the .cfg file.
This is only useful if your simulation has more than one robot in and you
need your code to connect to both robots. So if you gave your first robot
port 6665 and the second one 6666 (like in the example of
Section 4.2 - Putting the Configuration File Together) then you would need two
PlayerClients, one connected to each robot, and you would do this with the
following code:

PlayerClient robot1("localhost", 6665);
PlayerClient robot2("localhost", 6666);

If you are only using one robot and in your .cfg file you said that it
would operate on port 6665 then the port parameter to the PlayerClient
class is not needed.

Once we have established a PlayerClient we should connect our code to the
device proxies so that we can exchange information with them. Which proxies
you can connect your code to is dependent on what you have put in your
configuration file. For instance if your configuration file says your robot
is connected to a laser but not a camera you can connect to the laser
device but not the camera, even if the robot (or robot simulation) has a
camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use the
position2d, ranger, and blobfinder interfaces. In our code then, we should
connect to the position2d, ranger, and blobfinder proxies like so:

Position2dProxy positionProxy_name(&client_name,index);
RangerProxy sonarProxy_name(&client_name,index);
BlobfinderProxy blobProxy_name(&client_name,index);
RangerProxy laserProxy_name(&client_name,index);

A full list of which proxies Player supports can be found in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html].
They all follow the convention of being named after the interface they use.

In the above case Proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the PlayerClient
object earlier and index is the index that the device was given in
your configuration file (probably 0).

6.2.1 - Setting Up Connections: an Example.

For an example of how to connect to the Player sever and device proxies we
will use the example configuration file developed in
Section 4.2 - Putting the Configuration File Together. For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a PlayerClient and then connect to proxies on that server we can
use principles discussed in this section to develop the following code:

#include <stdio.h>
#include <libplayerc++/playerc++.h>

int main(int argc, char *argv[])
{
 using namespace PlayerCc; /*need to do this line in c++ only*/

 PlayerClient robot("localhost");

 Position2dProxy p2dProxy(&robot,0);
 RangerProxy sonarProxy(&robot,0);
 BlobfinderProxy blobProxy(&robot,0);
 RangerProxy laserProxy(&robot,1);

 //some control code
 return 0;
}

6.3 - Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the device
it connects to. This means that each proxy will have different commands
depending on what it controls.

In Player version 3.0.2 there are 39 different proxies which you can choose
to use, many of which are not applicable to Player/Stage. This manual will
not attempt to explain them all, a full list of avaliable proxies and their
functions is in the
Player manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html],
although the returns, parameters and purpose of the proxy function are not
always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

6.3.1 - Position2dProxy

The Position2dProxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry (where
the robot thinks it is based on how far its wheels have moved).

6.3.1.1 - SetSpeed()

The SetSpeed command is used to tell the robot’s motors how fast to turn.
There are two different SetSpeed commands that can be called, one is for
robots that can move in any direction and the other is for robots with
differential or car-like drives.

	SetSpeed(double XSpeed, double YSpeed, double YawSpeed)

	SetSpeed(double XSpeed, double YawSpeed)

	SetCarlike(double XSpeed, double DriveAngle)

 9.1 - Coding in Python with playerc.py

 In Chapter 6 only C++ was used as an example. Since
Player interacts with controlling code over network sockets, it’s pretty
easy to control robots (physical or simulated) with other languages as
well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

In this chapter, I will review the same examples given in
Chapter 7 for Python, hilighting the differences in the
new language.Then, I will provide a new version of the
case studies
Trash Zapping Robot
and
Simulating Multiple Robots
for each.

9.1 - Coding in Python with playerc.py

9.1.1 - Setting up playerc.py interface

The C bindings are made by default in player. To check to see if the bindings are available, and to locate where they are, type

locate playerc.py

and observe the path with site-packages in it’s name.

TRY IT OUT

> cd <source_code>/Ch9.1
> player simple.cfg &
> gedit simple.py & (update /usr/local/lib/pyton2.7/site-packages to wherever you found playerc.py)
> python simple.py

9.2 Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player interface
file. Assuming Player/Stage is installed correctly on your machine then
this can be done with the line

from playerc import *

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the line:

robot = playerc_client(None, 'localhost',6665)

What this does is declare a new object which is a playerc_client called
robot which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device Address. If your code is running on the
same computer (or robot) as the Player server you wish to connect to then
the hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port will be the same as the port you gave in the
.cfg file. So if you gave your first robot
port 6665 and the second one 6666 (like in the example of
Section 4.2 - Putting the Configuration File Together) then you would need two
player client, one connected to each robot, and you would do this with the
following code:

robot1 = playerc_client(None, 'localhost',6665)
robot2 = playerc_client(None, 'localhost',6666)

Unlike in C, even if you are only using one robot and in your .cfg file you
still need to specify the port parameter.

Once we have established a player client we should connect our code to the
device proxies so that we can exchange information with them. Which proxies
you can connect your code to is dependent on what you have put in your
configuration file. For instance if your configuration file says your robot
is connected to a laser but not a camera you can connect to the laser
device but not the camera, even if the robot (or robot simulation) has a
camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use the
position2d, ranger, and blobfinder interfaces. In our code then, we should
connect to the position2d, ranger, and blobfinder proxies like so:

position2d_name = playerc_position2d_create(client_name, index);
playerc_position2d_name.subscribe(position2d_name, PLAYER_OPEN_MODE);

sonar_name = playerc_ranger_create(client_name,index);
playerc_sonar_name.subscribe(sonar_name,PLAYER_OPEN_MODE);

blobfinder_name = playerc_blobfinder_create(client_name,index);
playerc_blobfinder_name.subscribe(blobfinder_name,PLAYER_OPEN_MODE);

laser_name = playerc_ranger_create(client_name,index);
playerc_laser_name.subscribe(laser_name,PLAYER_OPEN_MODE);

A full list of which proxies PlayerC supports can be found in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html]
They all follow the convention of being named after the interface they use.

In the above case Proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the player client
object earlier and index is the index that the device was given in
your configuration file (probably 0).

9.2.1 - Setting Up Connections: an Example

For an example of how to connect to the Player sever and device proxies we
will use the example configuration file developed in
Section 4.2 - Putting the Configuration File Together. For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a player client and then connect to proxies on that server we can
use principles discussed in this section to develop the following code:

from playerc import *

Make proxies for Client, blobfinder
robot = playerc_client(None, 'localhost', 6665)
if robot.connect():
 raise Exception(playerc_error_str())

p = playerc_position2d(robot,0)
if p.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

s = playerc_ranger(robot,0)
if s.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

bf = playerc_blobfinder(robot,0);
if bf.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

l = playerc_ranger(robot,1)
if l.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

some control code
return 0;

9.3 Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the device
it connects to. This means that each proxy will have different commands
depending on what it controls.

In Player version 3.0.2 there are 39 different proxies which you can choose
to use, many of which are not applicable to Player/Stage. This manual will
not attempt to explain them all, a full list of avaliable proxies and their
functions is in the
Player manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html], although the returns, parameters and purpose of the proxy function is not always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

9.3.1 position2dproxy

The position2dproxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry (where
the robot thinks it is based on how far its wheels have moved).

9.3.1.1 - SetSpeed ()

The SetSpeed command is used to tell the robot’s motors how fast to turn.
There are three different SetSpeed commands that can be called, one is
for robots that can move in any direction (omnidirectional), one is for for
robots with differential drive (i.e. one drive wheel on each side), and the
last for car-like drives.

	set_cmd_vel (XSpeed, YSpeed, YawSpeed, int state)

	set_cmd_vel_head (XSpeed, YSpeed, YawHeading, state)

	set_cmd_car (XSpeed, SteerAngle)

 8.1 - Coding in Python with playercpp.py

 In Chapter 6 only C++ was used as an example. Since
Player interacts with controlling code over network sockets, it’s pretty
easy to control robots (physical or simulated) with other languages as
well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

In this chapter, I will review the same examples given in
Chapter 6 for C++, hilighting the differences in the
new language.Then, I will provide a new version of the
case studies
Trash Zapping Robot
and
Simulating Multiple Robots
for each.

8.1 - Coding in Python with playercpp.py

8.1.1 - Setting up playercpp.py interface

The C++ bindings are NOT made by default in player. You’ll need to
configure and compile player locally to make these - how to do this is well beyond the scope of this manual, but an overall procedure can be found here. [http://playerstage.sourceforge.net/doc/Player-cvs/player/install.html]

To see if the bindings are available, and to locate where they are, type

locate playercpp.py

and observe the path with site-packages in it’s name.

TRY IT OUT

> cd <source_code>/Ch8.1
> locate playercpp.py (note where it was found)
> player simple.cfg &
> gedit example0.py & (update /usr/local/lib/pyton2.7/site-packages to wherever you found playercpp.py)
> python example0.py

8.2 Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player interface
file. Assuming Player/Stage is installed correctly on your machine then
this can be done with the line

from playercpp import *

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the line:

robot = PlayerClient("localhost");

What this does is declare a new object which is a PlayerClient called
robot which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device Address. If your code is running on the
same computer (or robot) as the Player server you wish to connect to then
the hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port is an optional parameter usually only needed
for simulations, it will be the same as the port you gave in the .cfg file.
This is only useful if your simulation has more than one robot in and you
need your code to connect to both robots. So if you gave your first robot
port 6665 and the second one 6666 (like in the example of
Section 4.2 - Putting the Configuration File Together) then you would need two
PlayerClients, one connected to each robot, and you would do this with the
following code:

robot1 = PlayerClient("localhost",6665);
robot2 = PlayerClient("localhost",6666);

If you are only using one robot and in your .cfg file you said that it
would operate on port 6665 then the port parameter to the PlayerClient
class is not needed.

Once we have established a PlayerClient we should connect our code to the
device proxies so that we can exchange information with them. Which proxies
you can connect your code to is dependent on what you have put in your
configuration file. For instance if your configuration file says your robot
is connected to a laser but not a camera you can connect to the laser
device but not the camera, even if the robot (or robot simulation) has a
camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use the
position2d, ranger, and blobfinder interfaces. In our code then, we should
connect to the position2d, ranger, and blobfinder proxies like so:

positionProxy_name = Position2dProxy (client_name,index)
sonarProxy_name = RangerProxy (client_name,index)
blobProxy_name = BlobfinderProxy (client_name,index)
laserProxy_name = RangerProxy (client_name,index)

A full list of which proxies Player supports can be found in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html].
They all follow the convention of being named after the interface they use.

In the above case Proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the PlayerClient
object earlier and index is the index that the device was given in
your configuration file (probably 0).

8.2.1 - Setting Up Connections: an Example

For an example of how to connect to the Player sever and device proxies we
will use the example configuration file developed in
Section 4.2 - Putting the Configuration File Together. For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a PlayerClient and then connect to proxies on that server we can
use principles discussed in this section to develop the following code:

from playercpp import *

robot = PlayerClient("localhost");
p2dProxy = Position2dProxy(robot,0);
sonarProxy = RangerProxy(robot,0);
blobProxy = BlobfinderProxy(robot,0);
laserProxy = RangerProxy(robot,1);

some control code
return 0;

8.3 Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the device
it connects to. This means that each proxy will have different commands
depending on what it controls.

In Player version 3.0.2 there are 39 different proxies which you can choose
to use, many of which are not applicable to Player/Stage. This manual will
not attempt to explain them all, a full list of avaliable proxies and their
functions is in the
Player manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html],
although the returns, parameters and purpose of the proxy function are not
always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

8.3.1 Position2dProxy

The Position2dProxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry (where
the robot thinks it is based on how far its wheels have moved).

8.3.1.1 - SetSpeed ()

The SetSpeed command is used to tell the robot’s motors how fast to turn.
There are three different SetSpeed commands that can be called, one is
for robots that can move in any direction (omnidirectional), one is for for
robots with differential drive (i.e. one drive wheel on each side), and the