
Platypus Documentation
Release

David Hadka

November 02, 2015

Contents

1 Getting Started 3
1.1 Installing Platypus . 3
1.2 A Simple Example . 3
1.3 Defining Unconstrained Problems . 4
1.4 Defining Constrained Problems . 5

2 Experimenter 7
2.1 Basic Use . 7
2.2 Parallelization . 8
2.3 Comparing Algorithms Visually . 9

3 Algorithms 11
3.1 NSGA-II . 11
3.2 NSGA-III . 12
3.3 𝜖−𝑀𝑂𝐸𝐴 . 12

i

ii

Platypus Documentation, Release

Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms
(MOEAs). It differs from existing optimization libraries, including PyGMO, Inspyred, DEAP, and Scipy, by providing
optimization algorithms and analysis tools for multiobjective optimization.

Contents 1

Platypus Documentation, Release

2 Contents

CHAPTER 1

Getting Started

1.1 Installing Platypus

To install the latest development version of Platypus, run the following commands. Note that Platypus is under active
development, and as such may contain bugs.

git clone https://github.com/Project-Platypus/Platypus.git
cd Platypus
python setup.py develop

1.2 A Simple Example

As an initial example, we will solve the well-known two objective DTLZ2 problem using the NSGA-II algorithm:

from platypus.algorithms import NSGAII
from platypus.problems import DTLZ2

define the problem definition
problem = DTLZ2()

instantiate the optimization algorithm
algorithm = NSGAII(problem)

optimize the problem using 10,000 function evaluations
algorithm.run(10000)

display the results
for solution in algorithm.result:

print solution.objectives

The output shows on each line the objectives for a Pareto optimal solution:

[1.00289403128, 6.63772921439e-05]
[0.000320076737668, 1.00499316652]
[1.00289403128, 6.63772921439e-05]
[0.705383878891, 0.712701387377]
[0.961083112366, 0.285860932437]
[0.729124908607, 0.688608373855]
...

3

Platypus Documentation, Release

If matplotlib is available, we can also plot the results. Note that matplotlib must be installed separately. Running the
following code

import matplotlib.pyplot as plt

plt.scatter([s.objectives[0] for s in algorithm.result],
[s.objectives[1] for s in algorithm.result])

plt.xlim([0, 1.1])
plt.ylim([0, 1.1])
plt.xlabel("$f_1(x)$")
plt.ylabel("$f_2(x)$")
plt.show()

produce a plot similar to:

Note that we did not need to specify many settings when constructing NSGA-II. For any options not specified by the
user, Platypus supplies the appropriate settings using best practices. In this example, Platypus inspected the problem
definition to determine that the DTLZ2 problem consists of real-valued decision variables and selected the Simulated
Binary Crossover (SBX) and Polynomial Mutation (PM) operators. One can easily switch to using different operators,
such as Parent-Centric Crossover (PCX):

from platypus.algorithms import NSGAII
from platypus.problems import DTLZ2
from platypus.operators import PCX

problem = DTLZ2()

algorithm = NSGAII(problem, variator = PCX())
algorithm.run(10000)

1.3 Defining Unconstrained Problems

There are several ways to define problems in Platypus, but all revolve around the Problem class. For unconstrained
problems, the problem is defined by a function that accepts a single argument, a list of decision variables, and returns
a list of objective values. For example, the bi-objective, Schaffer problem, defined by

minimize (𝑥2, (𝑥− 2)2) for 𝑥 ∈ [−10, 10]

4 Chapter 1. Getting Started

Platypus Documentation, Release

can be programmed as follows:

from platypus.algorithms import NSGAII
from platypus.core import Problem
from platypus.types import Real

def schaffer(x):
return [x[0]**2, (x[0]-2)**2]

problem = Problem(1, 2)
problem.types[:] = Real(-10, 10)
problem.function = schaffer

When creating the Problem class, we provide two arguments: the number if decision variables, 1, and the number of
objectives, 2. Next, we specify the types of the decision variables. In this case, we use a real-valued variable bounded
between -10 and 10. Finally, we define the function for evaluating the problem.

Tip: The notation problem.types[:] is a shorthand way to assign all decision variables to the same type.
This is using Python’s slice notation. You can also assign the type of a single decision variable, such as
problem.types[0], or any subset, such as problem.types[1:].

An equivalent but more reusable way to define this problem is extending the Problem class. The types are defined
in the __init__ method, and the actual evaluation is performed in the evaluate method.

from platypus.algorithms import NSGAII
from platypus.core import Problem, evaluator
from platypus.types import Real

class Schaffer(Problem):

def __init__(self):
super(Schaffer, self).__init__(1, 2)
self.types[:] = Real(-10, 10)

@evaluator
def evaluate(self, solution):

x = solution.variables[:]
solution.objectives[:] = [x[0]**2, (x[0]-2)**2]

algorithm = NSGAII(Schaffer())
algorithm.run(10000)

Note that the evaluatemethod is decorated by @evaluator. It is important to use this decoration when extending
the Problem class, otherwise certain required attributes of a solution will not be computed.

1.4 Defining Constrained Problems

Constrained problems are defined similarly, but must provide two additional pieces of information. First, they must
compute the constraint value (or values if the problem defines more than one constraint). Second, they must specify
when constraint is feasible and infeasible. To demonstrate this, we will use the Belegundu problem, defined by:

minimize (−2𝑥+ 𝑦, 2𝑥+ 𝑦) subject to 𝑦 − 𝑥 ≤ 1 and 𝑥+ 𝑦 ≤ 7

This problem has two inequality constraints. We first simplify the constraints by moving the constant to the left of the
inequality. The resulting formulation is:

minimize (−2𝑥+ 𝑦, 2𝑥+ 𝑦) subject to 𝑦 − 𝑥− 1 ≤ 0 and 𝑥+ 𝑦 − 7 ≤ 0

1.4. Defining Constrained Problems 5

Platypus Documentation, Release

Then, we program this problem within Platypus as follows:

from platypus.core import Problem
from platypus.types import Real

def belegundu(vars):
x = vars[0]
y = vars[1]
return [-2*x + y, 2*x + y], [-x + y - 1, x + y - 7]

problem = Problem(2, 2, 2)
problem.types[:] = [Real(0, 5), Real(0, 3)]
problem.constraints[:] = "<=0"
problem.function = belegundu

First, we call Problem(2, 2, 2) to create a problem with two decision variables, two objectives, and two con-
straints, respectively. Next, we set the decision variable types and the constraint feasibility criteria. The constraint
feasibility criteria is specified as the string "<=0", meaning a solution is feasible if the constraint values are less than
or equal to zero. Platypus is flexible in how constraints are defined, and can include inequality and equality constraints
such as ">=0", "==0", or "!=5". Finally, we set the evaluation function. Note how the belegundu function
returns a tuple (two lists) for the objectives and constraints.

Alternatively, we can develop a reusable class for this problem by extending the Problem class. Like before, we move
the type and constraint declarations to the __init__ method and assign the solution’s constraints attribute in
the evaluate method.

from platypus.core import Problem, evaluator
from platypus.types import Real

class Belegundu(Problem):

def __init__(self):
super(Belegundu, self).__init__(2, 2, 2)
self.types[:] = [Real(0, 5), Real(0, 3)]
self.constraints[:] = "<=0"

@evaluator
def evaluate(self, solution):

x = solution.variables[0]
y = solution.variables[1]
solution.objectives[:] = [-2*x + y, 2*x + y]
solution.constraints[:] = [-x + y - 1, x + y - 7]

In these examples, we have assumed that the objectives are being minimized. Platypus is flexible and allows the
optimization direction to be changed per objective by setting the directions attribute. For example:

problem.directions[:] = Problem.MAXIMIZE

6 Chapter 1. Getting Started

CHAPTER 2

Experimenter

There are several common scenarios encountered when experimenting with MOEAs:

1. Testing a new algorithm against many test problems

2. Comparing the performance of many algorithms across one or more problems

3. Testing the effects of different parameters

Platypus provides the experimenter module with convenient routines for performing these kinds of experiments.
Furthermore, the experimenter methods all support parallelization.

2.1 Basic Use

Suppose we want to compare NSGA-II and NSGA-III on the DTLZ2 problem. In general, you will want to run each
algorithm several times on the problem with different random number generator seeds. Instead of having to write
many for loops to run each algorithm for every seed, we can use the experiment function. The experiment function
accepts a list of algorithms, a list of problems, and several other arguments that configure the experiment, such as the
number of seeds and number of function evaluations. It then evaluates every algorithm against every problem and
returns the data in a JSON-like dictionary.

Afterwards, we can use the calculate function to calculate one or more performance indicators for the results. The
result is another JSON-like dictionary storing the numeric indicator values. We finish by pretty printing the results
using display.

from platypus.algorithms import NSGAII, NSGAIII
from platypus.problems import DTLZ2
from platypus.indicators import Hypervolume
from platypus.experimenter import experiment, calculate, display

if __name__ == "__main__":
algorithms = [NSGAII, (NSGAIII, {"divisions":12})]
problems = [DTLZ2(3)]

run the experiment
results = experiment(algorithms, problems, nfe=10000)

calculate the hypervolume indicator
hyp = Hypervolume(minimum=[0, 0, 0], maximum=[1, 1, 1])
hyp_result = calculate(results, hyp)
display(hyp_result, ndigits=3)

The output of which appears similar to:

7

Platypus Documentation, Release

NSGAII
DTLZ2

Hypervolume : [0.361, 0.369, 0.372, 0.376, 0.376, 0.388, 0.378, 0.371, 0.363, 0.364]
NSGAIII

DTLZ2
Hypervolume : [0.407, 0.41, 0.407, 0.405, 0.405, 0.398, 0.404, 0.406, 0.408, 0.401]

Once this data is collected, we can then use statistical tests to determine if there is any statistical difference between
the results. In this case, we may want to use the Mann-Whitney U test from scipy.stats.mannwhitneyu.

Note how we listed the algorithms: [NSGAII, (NSGAIII, {"divisions":12})]. Normally you just need
to provide the algorithm type, but if you want to customize the algorithm, you can also provide optional arguments. To
do so, you need to pass a tuple with the values (type, dict), where dict is a dictionary containing the arguments.
If you want to test the same algorithm with different parameters, pass in a three-element tuple containing (type,
dict, name). The name element provides a custom name for the algorithm that will appear in the output. For
example, we could use (NSGAIII, {"divisions":24}, "NSGAIII_24"). The names must be unique.

2.2 Parallelization

One of the major advantages to using the experimenter is that it supports parallelization. For example, we can use the
multiprocessing module as demonstrated below:

from platypus.algorithms import NSGAII, NSGAIII
from platypus.problems import DTLZ2
from platypus.indicators import Hypervolume
from platypus.experimenter import experiment, calculate, display
from multiprocessing import Pool, freeze_support

if __name__ == "__main__":
freeze_support() # required on Windows
pool = Pool(6)

algorithms = [NSGAII, (NSGAIII, {"divisions":12})]
problems = [DTLZ2(3)]

results = experiment(algorithms, problems, nfe=10000, map=pool.map)

hyp = Hypervolume(minimum=[0, 0, 0], maximum=[1, 1, 1])
hyp_result = calculate(results, hyp, map=pool.map)
display(hyp_result, ndigits=3)

pool.close()
pool.join()

Alternatively, here is an example using Python’s concurrent.futures module:

from platypus.algorithms import NSGAII, NSGAIII
from platypus.problems import DTLZ2
from platypus.indicators import Hypervolume
from platypus.experimenter import experiment, calculate, display
from concurrent.futures import ProcessPoolExecutor

if __name__ == "__main__":
algorithms = [NSGAII, (NSGAIII, {"divisions":12})]
problems = [DTLZ2(3)]

8 Chapter 2. Experimenter

Platypus Documentation, Release

with ProcessPoolExecutor(6) as pool:
results = experiment(algorithms, problems, nfe=10000, submit=pool.submit)

hyp = Hypervolume(minimum=[0, 0, 0], maximum=[1, 1, 1])
hyp_result = calculate(results, hyp, submit=pool.submit)
display(hyp_result, ndigits=3)

Observe that we use the map=pool.map if the parallelization library provides a “map-like” function and
submit=pool.submit if the library provides “submit-like” functionality. See PEP-3148 for a description of
the submit function. Not shown, but Platypus also accepts the apply arguments for methods similar to the built-in
apply function. The primary difference between apply and submit is that apply returns a ApplyResult object
while submit returns a Future.

2.3 Comparing Algorithms Visually

Extending the previous examples, we can perform a full comparison of all supported algorithms on the DTLZ2 problem
and display the results visually. Note that several algorithms, such as NSGA-III, CMAES, OMOPSO, and EpsMOEA,
require additional parameters.

from platypus.algorithms import *
from platypus.problems import DTLZ2
from platypus.experimenter import experiment
from multiprocessing import Pool, freeze_support
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

if __name__ == '__main__':
freeze_support() # required on Windows
pool = Pool(6)

setup the experiment
problem = DTLZ2(3)
algorithms = [NSGAII,

(NSGAIII, {"divisions":12}),
(CMAES, {"epsilons":[0.05]}),
GDE3,
IBEA,
MOEAD,
(OMOPSO, {"epsilons":[0.05]}),
SMPSO,
SPEA2,
(EpsMOEA, {"epsilons":[0.05]})]

run the experiment
results = experiment(algorithms, problem, seeds=1, nfe=10000, map=pool.map)

display the results
fig = plt.figure()

for i, algorithm in enumerate(results.iterkeys()):
result = results[algorithm]["DTLZ2"][0]

ax = fig.add_subplot(2, 5, i+1, projection='3d')
ax.scatter([s.objectives[0] for s in result],

[s.objectives[1] for s in result],
[s.objectives[2] for s in result])

2.3. Comparing Algorithms Visually 9

Platypus Documentation, Release

ax.set_title(algorithm)
ax.set_xlim([0, 1.1])
ax.set_ylim([0, 1.1])
ax.set_zlim([0, 1.1])
ax.view_init(elev=30.0, azim=15.0)
ax.locator_params(nbins=4)

plt.show()

pool.close()
pool.join()

Running this script produces the figure below:

10 Chapter 2. Experimenter

CHAPTER 3

Algorithms

All optimization algorithms extend the Algorithm class. The typical use of an optimization algorithm begins by
first creating a new instance of the algorithm. Then, run() is called to optimize the problem for a given number of
function evaluations. Finally, the result is read from result. For example, optimizing the three-objective DTLZ2
problem with NSGA-II could be programmed as follows

from platypus.problems import DTLZ2
from platypus.algorithms import NSGAII

problem = DTLZ2(3)

algorithm = NSGAII(problem)
algorithm.run(10000)

result = algorithm.result

Note: The contents of the result is defined by each algorithm. Some algorithms may return a list of solutions,
whereas others may return an Archive. Additionally, the result may include dominated or infeasible solutions. It
is therefore good pratice to remove any dominated solutions by calling nondominated(result)‘check for
feasibility using :code:‘solution.is_feasible.

The choice of optimization algorithm can greatly affect the solution quality both in terms of convergence and diversity,
the required number of function evaluations to converge to quality solutions, and the types of problems they can solve.
Some algorithms may only support real-valued or binary decision variables, for example.

3.1 NSGA-II

class NSGAII(problem[, population_size[, generator[, selector[, variator]]]])
An instance of the Nondominated Sorting Genetic Algorithm II (NSGA-II) optimization algorithm. NSGA-II
supports problems defined using Real, Binary, or Permutation types.

Parameters

• problem (Problem) – the problem definition

• population_size (int) – the size of the population

• generator (Generator) – the generator for initializing the population

• selector (Selector) – the selector for selecting parents during recombination

• variator (Variator) – the recombination operator

11

Platypus Documentation, Release

3.2 NSGA-III

class NSGAIII(problem, divisions[, divisions_inner[, generator[, selector[, variator]]]])
An instance of the Nondominated Sorting Genetic Algorithm III (NSGA-III) optimization algorithm. NSGA-III
extends NSGA-II to using reference points to handle many-objective problems. NSGA-III supports problems
defined using Real, Binary, or Permutation types.

Parameters

• problem (Problem) – the problem definition

• divisions (int) – the number of divisions when generating reference points

• divisions_inner (int or None) – when specified, use the two-layered approach for
generating reference points

• generator (Generator) – the generator for initializing the population

• selector (Selector) – the selector for selecting parents during recombination

• variator (Variator) – the recombination operator

Note: NSGA-III is designed for many-objective problems. Its use is discouraged on problems with one or two
objectives.

3.3 𝜖-MOEA

class EpsMOEA(problem, epsilons[, population_size[, generator[, selector[, variator]]]])
An instance of the steady-state 𝜖-MOEA optimization algorithm. 𝜖-MOEA supports problems defined using
Real, Binary, or Permutation types.

Parameters

• problem (Problem) – the problem definition

• epsilons – the 𝜖 value used for 𝜖-dominance

• population_size – the size of the population

• generator (Generator) – the generator for initializing the population

• selector (Selector) – the selector for selecting parents during recombination

• variator (Variator) – the recombination operator

12 Chapter 3. Algorithms

Index

E
EpsMOEA (built-in class), 12

N
NSGAII (built-in class), 11
NSGAIII (built-in class), 12

13

	Getting Started
	Installing Platypus
	A Simple Example
	Defining Unconstrained Problems
	Defining Constrained Problems

	Experimenter
	Basic Use
	Parallelization
	Comparing Algorithms Visually

	Algorithms
	NSGA-II
	NSGA-III
	-MOEA

