
Platypus Boat Documentation
Release 0.1

Alexandre Amory

Apr 30, 2019

Contents

1 About the Boats 1

2 Autonomous Systems Laboratory - PUCRS 3

3 Summary 5
3.1 Getting Started . 5

3.1.1 Bill of Materials for the Boats . 5
3.2 ROS Quick Start Tutorials . 6

3.2.1 ROS Background . 7
3.2.2 ROS Programming . 8
3.2.3 Turtlesim Cleaning Application . 9

3.3 GAMS/MADARA Quick Start Tutorials . 11
3.3.1 GAMS/MADARA Background . 11
3.3.2 Algorithms . 16
3.3.3 GAMS/MADARA Project manipulation . 18
3.3.4 GAMS/MADARA Programming Basics . 20
3.3.5 GAMS/MADARA Compilation . 23
3.3.6 GAMS/MADARA Simulation . 26

3.4 Raspberry Pi . 26
3.4.1 Image Handling . 26
3.4.2 Setting Up the OS . 29
3.4.3 Installing ROS . 29
3.4.4 Installing GAMS/MADARA to the Raspberry Pi . 30
3.4.5 Hooking Up Peripherals to the Raspberry Pi . 31
3.4.6 Video Streaming Tutorials . 43
3.4.7 Thorough Tests for the Board . 55

3.5 ODROID XU4 . 55
3.5.1 Download Image . 55
3.5.2 Write the Image to the SDCard . 56
3.5.3 Write the Image to the eMMC memory . 56
3.5.4 Backing up Image from the eMMC memory . 57
3.5.5 Setting Up ROS . 57
3.5.6 Setting Up GAMS/Madara . 57
3.5.7 Setting Up Peripherals . 57

3.6 NVIDIA Jetsons Boards . 58
3.6.1 Jetson TK1 Module . 58
3.6.2 Jetson TX2 Module . 75

i

3.6.3 References . 85
3.7 Boat Configuration . 85

3.7.1 Tablet Emulator . 85
3.7.2 Setting Up the eBoard . 95

3.8 Preparations for the Field Test . 95
3.8.1 Before Packing up for the Field Test . 96
3.8.2 Packing up for the test . 96
3.8.3 On the test field . 96

3.9 LSA Contributors . 97
3.10 Boat Applications . 97

3.10.1 Path Coverage . 97
3.10.2 Boat Control . 97
3.10.3 Beacon Based Localization . 98

4 Disclaimer 99

5 Feedback 101

ii

CHAPTER 1

About the Boats

1

Platypus Boat Documentation, Release 0.1

2 Chapter 1. About the Boats

CHAPTER 2

Autonomous Systems Laboratory - PUCRS

This documment written by LSA describes the procedure to configure and use Platypus boats. LSA has three boats:
two airboats and a prop boat. They are used for water monitoring and disaster mitigation applications.

3

https://lsa-pucrs.github.io/

Platypus Boat Documentation, Release 0.1

4 Chapter 2. Autonomous Systems Laboratory - PUCRS

CHAPTER 3

Summary

3.1 Getting Started

Before going into the tutorials, follow the instructions below to prepare your environment.

3.1.1 Bill of Materials for the Boats

Note: place here all the accessory/payload for the boats

Mandatory Resources

all missions require at least these parts.

source/getting_started/logo1.png

source/getting_started/logo2.png

5

Platypus Boat Documentation, Release 0.1

Item name photo cost(US$) link to provider

body row 1, column 1 source/getting_started/logo1.pngcolumn 2 column 3

body row 2 source/getting_started/logo1.png.

Optional Resources

depending on the mission’s goals, these other resources are also available.

source/getting_started/logo1.png

source/getting_started/logo2.png

Item name photo cost(US$) link to provider

body row 1, column 1 source/getting_started/logo1.pngcolumn 2 column 3

body row 2 source/getting_started/logo1.png.

3.2 ROS Quick Start Tutorials

In this page, we will provide you a quick start with ROS.

6 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

There are three parts of the ROS Quick Start tutorials. In the first part, you will get an understanding about ROS
main concepts. Then, you will learn how to develop your first program with ROS, namely programming a publisher
and subscriber using both C++ and Python. Finally, some more advanced concepts will be introduced through the
development of a cleaning application with the Turtlesim simulator. At the end of ROS Quick Start tutorials, you will
get a full understanding of ROS that allows you to dive deeper and develop more advanced robotics applications.

Warning:

Before starting these tutorials, it is assumed that you have a very basic knowledge about ROS environment and setting-up a catkin workspace. If not, you need to follow

• Installing and Configuring Your ROS Environment.

• Navigating the ROS Filesystem.

• Creating a ROS Package.

• Building a ROS Package.

You can also start with watching the tutorials of ROS Background

3.2.1 ROS Background

If you are new to ROS, it is recommended to start with taking these online tutorials that will introduce you to the basic
concepts of ROS.

Warning: These tutorials assume that you have already installed ROS on your computer and that you have
configured your environment. You still haven’t done yet, follow in the installation instructions of ROS Indigo, then
you must configure your ROS environment and finally create a ROS package to create and run your programs.

Note: Although some videos are shown for ROS Hydro, they are also valid for all subsquent versions including
Indigo and Jade, as they deal with the basics.

Lecture 1: Start a ROS Master Node

Tip: In this video, you will:

• Learn how to start the main node in ROS, called Master node

• Understand the default workspace

• Configure your ROS environment in the .bashrc script file

• Find the list of ROS nodes and ROS topics

Listen to the following video.

Lecture 2: Understanding ROS Topics, Nodes and Messages

3.2. ROS Quick Start Tutorials 7

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/BuildingPackages
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/CreatingPackage

Platypus Boat Documentation, Release 0.1

Tip: In this video, you will:

• Work with the Turtlesim simulator to understand ROS fundamental concepts

• Understand ROS topics and its related terminal commands

• Understand ROS nodes and its related terminal commands

• Undertsand ROS messages and its related terminal commands

Listen to the following video.

Review Questions

• What is the command to find the list of all ros nodes?

• What is the command to find the list of all ros topics?

• What is the topic that tells about the position of the turtle?

• What is the topic that sends command to the turtle to make it move?

• What is the node used to send velocity commands to the turtle?

• What is the command that allows to see the type of message for a particular topic?

• Write is the command that allows to publish velocity command to the turtle with a linear velocity 1.0 and angular
velocity 0.5.

Online Test

Pass the online quiz for the above review questions

3.2.2 ROS Programming

In this tutorial, you will learn how to start programming with ROS. It’s funny and amazing, yet quite simple. The first
thing you need to understand in ROS is how to subscribe to a ROS topic, and how to publish a message to a ROS topic
as most of ROS operations are based on publishing and subscribing to topics.

Warning: It is assumed that you already know the main concepts on ROS including ROS topics, ROS nodes,
ROS messages and ROS services. If not, you need to first take the first tutorial on ROS Background.

The code of this tutorial is available in src/ros_basics/talker_listener/ of gaitech_edu package.

Note: The following tutorial is based on the ROS tutorial Writing a Simple Publisher and Subscriber (C++) and
Python but provides more practical programming and configuration hints. Although some videos are shown for ROS
Hydro, they are also valid for all subsquent versions including Indigo and Jade, as they deal with the basics.

8 Chapter 3. Summary

https://www.qzzr.com/c/quiz/224621/ros-background-quiz
https://github.com/aniskoubaa/gaitech_edu
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c%2B%2B)
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

Platypus Boat Documentation, Release 0.1

Lecture 1: ROS Publisher and Subscribers in C++ and Python

In this video, you will learn:

• How to develop the simplest program with ROS

• How to publish a message to a ROS topic using C++ and Python

• How to subscribe a message to a ROS topic using C++ and Python

• How to configure CMakeLists.txt and package.xml to add new required packages for compilation and
runtime

• How to run a program in ROS

Review Questions

• Write the C++/Python instruction that creates a new topic called chatter of type String?

• Write the C++/Python instruction that effectively publishes a message on the chatter topic?

• How to add a new exectuable in CMakeLists.txt and package.xml to be able to compile and run a C++
ROS program?

• How to declare a topic subscriber in C++/Python?

• What is the role of the subscriber callback function?

• in C++, what is the difference between std_msgs::String::ConstPtr and std_msgs::String?

Lecture 2: ROS Services in C++ and Python

Coming soon ..

3.2.3 Turtlesim Cleaning Application

In this tutorial, you will learn more advanced concepts on ROS by developing a first application on ROS using the
Turtlesim simulator. The objective of the application is to emulate a cleaning application like Vaccum cleaning robots
(e.g. Roomba). The robot should cover the whole area to be cleaned. For this, we will develop, step-by-step, several
functions to make the robot move straight and rotate and use these functions in developing the cleaning application.
You can then extend this application to make it even smarter and more comprehensive.

The code of this tutorial is available in src/turtlesim/cleaning_app/robot_cleaner.cpp of
gaitech_edu package.

Warning: It is assumed that you already know the main concepts on ROS including ROS topics, ROS nodes,
ROS messages and ROS services. If not, you need to first take the first tutorials on ROS Background and ROS
Programming.

Note: The following tutorial aims at introducing necessary and fundamental concepts of ROS beyond the simple
talker/listener tutorial, like navigation, motion control, distance estimation, rotated angle estimation, and some ROS
packages including TF. This tutorial consists of a series of fives videos that you need to watch in order to get the main
lessons and outcomes. The tutorial could be completed in 2 to 4 hours.

3.2. ROS Quick Start Tutorials 9

https://github.com/aniskoubaa/gaitech_edu

Platypus Boat Documentation, Release 0.1

Warning: It would be appreciated if you already have some background knowledge on introductory robotics
courses. As pre-requisite, you should already know what a 2D/3D frame is, and what a transformation between
frame is, in addition to basic knowledge on 2D kinematics.

Lecture 1: Introducing the Cleaning Application

In this video, you will:

• understand the objectives and tasks of the turtlesim cleaning applications

• recognize the different functions to be developed for the clearning application

Lecture 2: Moving in a Straight Line

In this video, you will:

• develop a function to make the robot move in a straight line forward and backward

• understand how to choose the right ROS topic to publish a message for a certain functionality

• use the Twist message to send linear velocity commands to move in straight line

• control the distance traveled by the robot

Lecture 3: Rotating Left and Right

In this video, you will learn:

• understand rotation conventional assumptions

• develop a function to make the robot rotate left and right

• use the Twist message to send angular velocity commands to rotate

• set the desired orientation of the robot after rotation

• develop and use some basic functions related to rotation

Lecture 4: Go to Goal Location (PID Controller)

In this video, you will:

• understand the essential of PID controllers

• develop a PID controller to make the robot head towards a specified location

For a good introduction on PID controllers for mobile robots, it is recommended to watch Lecture 1 and Lecture of
the online course on Control of Mobile Robots, provided by Georgia Institute of Technology.

Lecture 5: Grid and Spiral Cleaning Application

In this video, you will:

• use the move and rotate functions to develop the clearning applications and area coverage

• develop a new function to make the robot cover the area in spiral form

10 Chapter 3. Summary

https://www.youtube.com/watch?v=KZEWLZJwYNc&list=PLciAw3uhNCiD3dkLTPJgHoMnsu8XgCt1m

Platypus Boat Documentation, Release 0.1

Review Questions

• What are the steps followed to develop the cleaning application?

• Explain how the Twist message is used to make the robot move stright and rotate?

• What is the equation used to make the robot move in spiral form? How this implemented in ROS?

• What is the drawback of method used to control the traveled distance and rotated angle? Explain and justify
your claim.

Do-It-Yourself

You are requested to extend the cleaning application by making it smarter. We want to program the robot such that it
moves 1 meter, then rotates 360 degrees in place, and repeat the process until the area is cleaned. You need to use a
loop to control the robot motion until the end of the mission.

3.3 GAMS/MADARA Quick Start Tutorials

In this page, we will provide you a quick start with GAMS/MADARA.

Here, we focus into practical use of those tools, to formal concepts, we advise you to read papers available into internet.
Also, we can watch some videos online in folowwing link:

3.3.1 GAMS/MADARA Background

In this page, we will provide you a quick start with GAMS/MADARA.

3.3. GAMS/MADARA Quick Start Tutorials 11

https://www.youtube.com/playlist?list=PLSNlEg26NNpwi4ggcPYU8JvS1aVtV60_z

Platypus Boat Documentation, Release 0.1

GAMS / MADARA combines the Group Autonomy for Mobile Systems (GAMS) project and the MADARA mid-
dleware. MADARA is a communication infrastructure between mobile robots that offers network transport services,
threads and automatic sharing of knowledge between agents. The network transport is done via UDP with 3 types
of messages: unicast, broadcast and multicast. GAMS provides high-level functionality, such as area coverage plan-
ning algorithms, and portable platforms for research in Artificial Intelligence with robotics and multi-agent systems.
Researchers can develop algorithms in C ++ and JAVA so that the integration between heterogeneous agents is made
easier, since GAMS was created on top of the MADARA project. The GAMS / Madara integrates the advantages of
MADARA, a middleware for distributed systems with the convenience offered by the GAMS to develop algorithms
for easy interaction between heterogeneous robots. Figure below shows the block diagram of MADARA. MADARA
consists of three components: Knowledge base, threader and transport.

The Knowledge base is essentially the world model generated by each agent. Information about mission, location,
orientation, and robot type (real or simulated) are populated on the basis of knowledges. Each agent mounts its base
of knowledges according to the environment data obtained by the sensors. The data remains at the base as a mapping
of all the stimuli captured by the platform.

The transport block is responsible for transferring knowledges through the agent network, allowing the exchange
of information between the knowledges of each agent. Since the threader allows the programmer to create threads
similarly to libraries threads, such as threads STL, boost threads, among others. The advantage of the threader is that
it comes integrated with Knowledge base, i.e., each thread contains a reference to Knowledge Base, which is shared,
updated by all threads of the agent.

Thus, with the integration of threads, transport services and knowledge services, MADARA stands out by allowing the
sharing of data between agents and within the agent itself. The data are distributed transparently to the programmer,
i.e., that sets new values and MADARA responsibility by grouping them in UDP packets and decide the best time to
send them over the network, which tends to improve use. In addition, each variable mapped on the basis of Knowledge
already offers automatically critical region protection through mutexes hence the user can view and change the values
in different threads without worry with racing conditions.

As can be seen in figure below, the variables are mapped to Knowledge Base by a tuple: key and value. Each key must
be unique and allows the programmer to identify a value stored in knowledge. The programmer can invoke explicit
queries via the functions call, or you can tell that a variable of the type container is related to a specific key of the
Knowledge Base. In the last case, whenever the value is updated, the variable will be automatically updated. The
shape of the key has meaning and helps to identify if the value is private or, in case of being sent to other agents, it
allows identifying who belongs to that value. Private variable keys begin with a dot, whereas a public variable of the
number 4 agent must be prefixed with agent.4..

12 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

However, just set a variable is public does not guarantee that it will be delivered to other agents, you must configure
the transport module, stating the type of message (unicast, multicast and Broadcast), the IP address and the port of
each agent that should receive the information.

Above, you can see GAMS diagram, which is build on top of MADARA middleware. GAMS inherits all character-
istics. Algorithms developed by users are executed by Controller by running MAPE Loop. So, the main loop of
GAMS can be resumed with following sequence diagram:

3.3. GAMS/MADARA Quick Start Tutorials 13

Platypus Boat Documentation, Release 0.1

where the MAPE process is mapped as:

• Monitor phase: platform sense;

• Analyze phase: platform analyze, algorithm analyze;

• Plan phase: algorithm plan;

• Execute phase: algorithm execution.

The possible values of PlatformAnalyzeStatus are:

• UNKNOWN = 0,

• OK = 1,

• WAITING = 2,

• DEADLOCKED = 4,

• FAILED = 8,

• MOVING = 16,

• REDUCED_SENSING_AVAILABLE = 128,

• REDUCED_MOVEMENT_AVAILABLE = 256,

• COMMUNICATION_AVAILABLE = 512,

14 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

• SENSORS_AVAILABLE = 1024,

• MOVEMENT_AVAILABLE = 2048

The possible values of AlgorithmAnalyzeStatus are:

• UNKNOWN = 0x00000000,

• OK = 0x00000001,

• WAITING = 0x00000002,

• DEADLOCKED = 0x00000004,

• FAILED = 0x00000008,

• FINISHED = 0x00000010

There are many algorithms to be used in GAMS/MADARA.

• Formation coverage

• Prioritized Region Coverage

• Minimum Time Coverage

• Serpentine Coverage

• Waypoints

• Formation Follow

• Synchronized Formations

• Convoy Shielding

• Line Defense

• Arc Defense

• Onion Defense

• Executor

Coordinate systems

GAMS supports two types of coordinate systems: GPS and cartesian. Each coordinate system can have a father, so
you can create a tree of coordinate systems. For example, you can specify that an cartesian coordinate system (named
cartesian0) is child of a GPS frame by writing the following code:

gams::pose::GPSFrame gps_frame;
gams::pose::Position gps_loc(gps_frame, 40, 20);
gams::pose::CartesianFrame cartesian0(gloc);
gams::pose::position c_loc0(cartesian0, 1, 1);

In the code above, to create a cartesian frame (named cartesian0) you have to define a position into the
gps_frame. After that, you can create a point in the cartesian frame, by informing location (1,1) in relation to
gps_frame. They will look like this:

3.3. GAMS/MADARA Quick Start Tutorials 15

Platypus Boat Documentation, Release 0.1

Also you can convert between the coodinate systems. For example, to convert the position (2,0) from cartesian frame
(cartesian0) to gps_frame, you should write:

gams::pose::Position c_loc2(cartesian0, 2, 3);
gams::pose::Position gps_loc2 = c_loc2.transform_to(gps_frame);

Also, you can calculate the distance between two points even if they are in different coordinate file system. The only
restrition is that their file systems must be related.

double distance = gps_loc.distance_to(c_loc2);

3.3.2 Algorithms

There is many algorithms to be used in GAMS/MADARA.

• Formation coverage

• Prioritized Region Coverage

• Minimum Time Coverage

• Serpentine Coverage

• Waypoints

• Formation Follow

• Synchronized Formations

• Convoy Shielding

• Line Defense

• Arc Defense

• Onion Defense

16 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

• Executor

Waypoints

To use this kind of algorithm, you should configure some variables into knowledge system. To do that into agent 0
(zero), you can write into agent configuration file agent_0.mf the following lines:

agent.0.algorithm = "waypoints";
agent.0.algorithm.args.locations.size=4;
agent.0.algorithm.args.locations.0=[0, 0, 0];
agent.0.algorithm.args.locations.1=[0, 2, 0];
agent.0.algorithm.args.locations.2=[2, 2, 0];
agent.0.algorithm.args.locations.3=[2, 0, 0];
agent.0.algorithm.args.repeat=3;

So, you can set the number of waypoints with .algorithm.args.locations.size, number of repetitions by
writing .algorithm.args.repeat and the amount of time (in seconds) that robot should wait after reaching one
waypoint by writing .algorithm.args.wait_time.

Random Area Coverage

This algorithm generate random waypoints inside the region to coverage by your robot.

You can specify areas in env.mf to be coverage by agents. So, in env.mf you write:

region.0.object_type = 1;
region.0.type = 0;
region.0.priority = 0;
region.0.size = 4;
region.0.0 = [0, 0];
region.0.1 = [0, 5];
region.0.2 = [5, 5];
region.0.3 = [5, 5];

while, in agent_0.mf you specify the area to covered by the agent:

agent.0.algorithm="urac";
agent.0.algorithm.args.area="region.0";

The object_type can assume the following values:

• 1: region

• 2: prioritized region

• 4: search area (set of regions)

The type should be 0 (zero) to inform that the region polygon is convex. Nowadays, there is not other types of
polygon implemented.

Snake Area Region Coverage

Limitations:

• only accepts gps frame type

• shift is constant (2.5 meters between parallel lines)

3.3. GAMS/MADARA Quick Start Tutorials 17

Platypus Boat Documentation, Release 0.1

• Formation coverage

• Prioritized Region Coverage

• Minimum Time Coverage

• Serpentine Coverage

• Formation Follow

• Synchronized Formations

• Convoy Shielding

• Line Defense

• Arc Defense

• Onion Defense

• Executor

3.3.3 GAMS/MADARA Project manipulation

In this page, we will provide you a quick start with GAMS/MADARA project creation.

Creating a project

To create a new GAMS project, you should use a linux script called gpc.pl. So, you should run the following in a
terminal window:

$GAMS_ROOT/scripts/projects/gpc.pl --path $PROJECT_HOME/tutorial1

With this command, you create a project named tutorial1, which has the following folder structure:

.
bin # store binary files
sim # store simulation files

| agent_0.mf # stores vrep port number, starting location(lat,long,
→˓alt) and algorithm name
| common.mf # stores vrep configuration (ip adress, max distance of
→˓VREPBase::move)
| env.mf # stores vrep environment configuration (size, surface
→˓texture/type, etc)
| run.pl # stores running configurations (number of agents, hosts,
→˓ domains, etc)

src # store your source code files
| algorithms # store algorithms (non blocking piece of code)
| filters #
| platforms #
| | threads # store threads related to platforms
| threads # store algorithms (blocking piece of code)
| transports #

action.bat # script to compile and run the project in Windows
action.sh # script to compile and run the project in Linux
README.txt # some how-to file with compile and run commands

18 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Creating algorithms

You can create an algorithm (named as talker) into your project (called tutorial3) by running the following
code:

$GAMS_ROOT/scripts/projects/gpc.pl --new-algorithm talker --path $PROJECT_HOME/
→˓tutorial1

Creating threads (algorithms)

You can create a thread (named as sense) into your project (called tutorial3) by running the following command
inside your project’s folder:

$GAMS_ROOT/scripts/projects/gpc.pl --new-thread sense

Creating threads (platforms)

You can create a thread (named as pid) into your project (called tutorial3) by running the following command
inside your project’s folder:

$GAMS_ROOT/scripts/projects/gpc.pl --new-platform-thread pid

Adding more agents into simulation

You can add more agents into simulation by running the following command into terminal:

$GAMS_ROOT/scripts/projects/gpc.pl --agents 2 --randomize

With this command, your simulation will have 2 agents, which will generate randomized coordinates (lat, long). These
values is stored into agent_0.mf and agent_1.mf,whose are located into sim folder.

Killing broken V-REP

Sometimes when you try to close your simulation, V-REP stops working. To fast kill it, just run the following com-
mand:

kill $(pgrep vrep)

Creating plataforms

To create plataforms in your projects, you should run the following command:

$GAMS_ROOT/scripts/projects/gpc.pl --new-platform my_platform --path $PROJECT_HOME/
→˓tutorial1

3.3. GAMS/MADARA Quick Start Tutorials 19

Platypus Boat Documentation, Release 0.1

DEBUG LOG LEVELS

You can define the log level that will be printed into gams terminal by configuring the file sim/run.pl:

$madara_debug = 3;
$gams_debug = 3;

You can define the following values to log level:

• LOG_EMERGENCY = 0,

• LOG_ALWAYS = 0,

• LOG_ERROR = 1,

• LOG_WARNING = 2,

• LOG_MAJOR = 3,

• LOG_MINOR = 4,

• LOG_TRACE = 5,

• LOG_DETAILED = 6,

• LOG_MAX = 6

3.3.4 GAMS/MADARA Programming Basics

In this page, we will provide you a quick start with GAMS/MADARA programming. You could follow the several
tutorials that will introduce in a pratical way the main aspects of GAMS/MADARA.

Printing into agent terminal window

To print some message into Agent terminal window you can use the following command:

madara_logger_ptr_log (gams::loggers::global_logger.get (), gams::loggers::LOG_MAJOR,
→˓" My message is hello folks!");

Creating an consumer/producer application

As your first application, we going to create an application that one agent generate values and other agent consume
them. To do that, we start creating our application by running the following command:

$GAMS_ROOT/scripts/projects/gpc.pl --path $PROJECT_HOME/tutorial1

After the project creation, we should create two algorithms producer and consumer. This is done by running:

cd $PROJECT_HOME/tutorial1
$GAMS_ROOT/scripts/projects/gpc.pl --new-algorithm producer --path $PROJECT_HOME/
→˓tutorial1
$GAMS_ROOT/scripts/projects/gpc.pl --new-algorithm consumer --path $PROJECT_HOME/
→˓tutorial1

After running those commands, your filesystem looks like:

20 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

.
bin
sim

| agent_0.mf
| common.mf
| env.mf
| run.pl

src
| controller.cpp
| algorithms
| | consumer.h
| | consumer.cpp
| | producer.h
| | producer.cpp
| filters
| platforms
| threads
| transports

action.bat
action.sh
using_gams.mpb
using_vrep.mpb
using_ace.mpb
using_madara.mpb
workspace.mwc
README.txt

Now, we need add a second agent to our simulation, so we run the following command:

$GAMS_ROOT/scripts/projects/gpc.pl --agents 2 --randomize

With that, the folder sim will get updated by the addition of file agent_1.mf.

Finally, we have to configure the algorithm that each agent should run. Edit file agent_0.mf so the algorithm name
be producer. Inside of file agent_0.mf will look like:

agent.0.algorithm = "producer";

Edit file agent_1.mf so the algorithm name be consumer:

agent.0.algorithm = "consumer";

Now, we have to declare a variable counter (of type madara::knowledge::containers::Integer) in
producer.h and consumer.h.

So, your file producer.h will looks like:

class producer : public gams::algorithms::BaseAlgorithm
{

protected:
madara::knowledge::containers::Integer counter;

....

So, your file consumer.h will looks like:

3.3. GAMS/MADARA Quick Start Tutorials 21

Platypus Boat Documentation, Release 0.1

class consumer : public gams::algorithms::BaseAlgorithm
{

protected:
madara::knowledge::containers::Integer counter;

....

In your producer.cpp we should configure the counter variable to be handled by madara::knowledge. So the file
will looks like:

algorithms::producer::producer (
madara::knowledge::KnowledgeBase * knowledge,
gams::platforms::BasePlatform * platform,
gams::variables::Sensors * sensors,
gams::variables::Self * self,
gams::variables::Agents * agents)
: gams::algorithms::BaseAlgorithm (knowledge, platform, sensors, self, agents)

{
status_.init_vars (*knowledge, "producer", self->agent.prefix);
status_.init_variable_values ();
counter.set_name("counter", *knowledge);

}

int algorithms::producer::plan (void)
{

counter += 1;
madara_logger_ptr_log (gams::loggers::global_logger.get (),

→˓gams::loggers::LOG_MAJOR, "\n ----Incrementing the to counter: %d \n\n", counter.to_
→˓integer());

return 0;
}

In your consumer.cpp, we should relate the counter variable with madara::knowledge, so consumer will have
access to updates made by producer.

algorithms::consumer::consumer (
madara::knowledge::KnowledgeBase * knowledge,
gams::platforms::BasePlatform * platform,
gams::variables::Sensors * sensors,
gams::variables::Self * self,
gams::variables::Agents * agents)
: gams::algorithms::BaseAlgorithm (knowledge, platform, sensors, self, agents)

{
status_.init_vars (*knowledge, "consumer", self->agent.prefix);
status_.init_variable_values ();
counter.set_name("counter", *knowledge);

}

int algorithms::consumer::plan (void)
{

madara_logger_ptr_log (gams::loggers::global_logger.get (),
→˓gams::loggers::LOG_MAJOR, "\n ----Now the counter is: %d \n\n", counter.to_
→˓integer());
return 0;

}

22 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

After that, we should configure controller.cpp to share knowledge between the agents. You have to write the
following commands:

// perform main logic of program
int main (int argc, char ** argv)
{

settings.type = madara::transport::MULTICAST;
settings.hosts.push_back("127.0.0.1:19906");
settings.hosts.push_back("127.0.0.1:19907");

...

in above lines, you are telling to MADARA that knowledge should be shared into two hosts (agents): the host located
into IP 127.0.0.1 and at port 19906; and the host located into 127.0.0.1:19907. You can get port number from agent
file configuration located into folder sim (i.e. sim/agent_0.mf and sim/agent_1.mf).

We should compile and run the project by executing the following commands into bash:

$./action compile-vrep
$./action vrep run

You can get full source of this project by running the following command:

git clone https://github.com/marceloparavisi/gams_tutorials.git

3.3.5 GAMS/MADARA Compilation

In this page, we will provide you a quick start to compile GAMS/MADARA for different systems, such as:

GAMS/MADARA Compilation

In this page, we will provide you a quick start to compile GAMS/MADARA for Linux Desktop, more specifically all
scripts was tested with Linux Ubuntu 16.04.

It is expected that all dependencies be resolved automatically by scripts. You have to be aware and look for errors of
download failures, which the script can’t handle.

To download GAMS/MADARA, just run:

$ export GAMS_ROOT=$HOME/gams
$ export CORES=4
$ git clone -b master --single-branch https://github.com/jredmondson/gams $GAMS_ROOT

After that, you should compile the following one of the following commands.

Build C++ with Tests

$ $GAMS_ROOT/scripts/linux/base_build.sh prereqs ace madara gams vrep tests

Build C++ with Tests and Java support

$ $GAMS_ROOT/scripts/linux/base_build.sh prereqs ace madara gams vrep tests java

Build C++ with Tests and Android support

3.3. GAMS/MADARA Quick Start Tutorials 23

Platypus Boat Documentation, Release 0.1

$ $GAMS_ROOT/scripts/linux/base_build.sh prereqs ace madara gams vrep tests android

Build C++ with ROS support

$ $GAMS_ROOT/scripts/linux/base_build.sh prereqs ace madara gams ros

When the compilation finishes, you should see in folder you called the above script the following folders:

.
ace
gams
madara
vrep

The script below show several environment variables that must be configured to properly run and compile your
gams/madara projects.

$ export PROJECT_HOME=$HOME/gamsProjects
$ export ACE_ROOT=$HOME/ace/ACE_wrappers
$ export MADARA_ROOT=$HOME/madara
$ export GAMS_ROOT=$HOME/gams
$ export VREP_ROOT=$HOME/vrep
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACE_ROOT/lib:$MADARA_ROOT/lib:$GAMS_ROOT/
→˓lib:$VREP_ROOT
$ export PATH=$PATH:$ACE_ROOT/bin:$MADARA_ROOT/bin:$GAMS_ROOT/bin:
$ export CORES=4
$ export NDK=$HOME/android_arm_tools
$ export LOCAL_CROSS_PREFIX=$NDK/bin/arm-linux-androideabi-
$ export SYSROOT=$NDK/sysroot
$ export PATH=$PATH:$VREP_ROOT

NOTE: Do not combine several arguments into base_build.sh, otherwise you will suffer with anomalous compi-
lation effects.

JAVA SUPPORT

To allow the java compilation, you should install JAVA JDK (suggested JAVA 8) and configure the environment
variable named JAVA_HOME. To do that, just run the following commands:

$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-set-default
$ export JAVA_HOME=/usr/lib/jvm/java-8-oracle

If you get an error in JavaPlatform, you should edit javaPlatForm.cpp and JavaPlatform.h so the
signature of JavaPlatform::move look likes this in JavaPlatform.h:

int move (const pose::Position & position, double epsilon = 0.1) override;

and looks this in JavaPlatform.cpp:

int gams::platforms::JavaPlatform::move (const pose::Position & position, double
→˓epsilon)

24 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

ANDROID SUPPORT

If you are going to use Android in your aplications, you should download Android NDK. Extract NDK files into a
folder and run the following shell script command inside of that folder.

$./build/tools/make-standalone-toolchain.sh --toolchain=arm-linux-androideabi-4.9 --
→˓arch=arm --platform=android-14 --install-dir=../android_arm_tools

After the process is over, ../android_arm_tools should be automatically created. After that, verify if the
following environment variables are pointing to correct paths: NDK, LOCAL_CROSS_PREFIX, SYSROOT.

$ export NDK=\$HOME/bin/android_arm_tools
$ export LOCAL_CROSS_PREFIX=\$NDK/bin/arm-linux-androideabi-
$ export SYSROOT=\$NDK/sysroot

Minor fixes: UniformRandomEdgeCoverage

You should configure the variable initialized_ to be true in the method generate_new_position:

void
gams::algorithms::area_coverage::UniformRandomEdgeCoverage::generate_new_position
→˓(void)
{

if (platform_ && *platform_->get_platform_status ()->movement_available)
{

.......
initialized_ = true;

}
}

minor fixes: AlgorithmFactoryRepository.cpp

You should change the following code from:

add (aliases, new area_coverage::PriorityWeightedRandomAreaCoverageFactory ());

add (aliases, new area_coverage::SnakeAreaCoverageFactory ());

to:

add (aliases, new area_coverage::PriorityWeightedRandomAreaCoverageFactory ());

aliases.resize (2);
aliases[0] = "snake";
aliases[1] = "sac";

add (aliases, new area_coverage::SnakeAreaCoverageFactory ());

GAMS/MADARA Compilation

In this page, we will provide you a quick start to compile GAMS/MADARA for different systems: Linux Desktop,
Android, Linux RPi.

3.3. GAMS/MADARA Quick Start Tutorials 25

Platypus Boat Documentation, Release 0.1

GAMS/MADARA Compilation

In this page, we will provide you a quick start to compile GAMS/MADARA for different systems: Linux Desktop,
Android, Linux RPi.

3.3.6 GAMS/MADARA Simulation

In this page, we will provide you a quick start with GAMS/MADARA.

There are three parts of the ROS Quick Start tutorials. In the first part, you will get an understanding about ROS
main concepts. Then, you will learn how to develop your first program with ROS, namely programming a publisher
and subscriber using both C++ and Python. Finally, some more advanced concepts will be introduced through the
development of a cleaning application with the Turtlesim simulator. At the end of ROS Quick Start tutorials, you will
get a full understanding of ROS that allows you to dive deeper and develop more advanced robotics applications.

3.4 Raspberry Pi

Warning: @ To be done by Renan, Amory

3.4.1 Image Handling

This section presents how to burn a Linux image into a SDcard and also to backup the SDCard. It has
foucus on RPi, but it should work for any Linux based embedded computer.

Download OS

Oficial Ubuntu MATE 16.04 for Raspberry Pi 3 https://ubuntu-mate.org/raspberry-pi/

Ubuntu MATE 16.04 with ROS Kinetic for Raspberry Pi 3 http://www.german-robot.com/2016/05/26/
raspberry-pi-sd-card-image/

Oficial Ubuntu MATE 16.04 for Odroid XU4 https://wiki.odroid.com/odroid-xu4/os_images/linux/start https://odroid.
in/ubuntu_16.04lts/

Unzip the Image file and go on to the next part.

Write the Image using Windows

Use Win32DiskImager for writing and reading Image files.

Write the Image using Linux

Execute lsblk or df -l to find out the mouting palce for the SDCard. It should be /dev/sdX, most probably
/dev/sdb if your computer has only one disk.

There are several programs to burn the SDcard. dd is most well known but there are newer options such as ddrescue
or dcfldd.

$ sudo ddrescue -D --force MyImage.img /dev/sdx

26 Chapter 3. Summary

https://ubuntu-mate.org/raspberry-pi/
http://www.german-robot.com/2016/05/26/raspberry-pi-sd-card-image/
http://www.german-robot.com/2016/05/26/raspberry-pi-sd-card-image/
https://wiki.odroid.com/odroid-xu4/os_images/linux/start
https://odroid.in/ubuntu_16.04lts/
https://odroid.in/ubuntu_16.04lts/
https://sourceforge.net/projects/win32diskimager/

Platypus Boat Documentation, Release 0.1

$ sudo dcfldd of=/dev/sdb if=~/MyImage.img

Force a synchronise of any outstanding input or output, then the card will be safe to remove.

$ sudo sync

That’s it.

Expand the Image Size to Match the SDCard Size

For Raspberry Pi, execute

$ sudo raspi-config

and select ‘Expand Filesystem’.

or, in the command line

$ sudo raspi-config --expand-rootfs
$ sudo reboot

For other embedded computers (e.g. ODroid), execute:

Note: describe here how to expand the Image on Odroid

Backing Up an Image File

Once your embedded computer is fully configured, it is a good ideia to:

• save a script with all the procedure to build the current image (packages installed, files configured, etc)

• backup the SDCard using minimal size, i.e. shrinking the Image file

Reading the Image file

Shutdown the embedded computer, take the SDCard to a Linux PC computer and proceed with the following steps.

Open a Terminal instance and enter the following Linux command where the SDCard is mounted;

$ df -h

Example:

$ df -h
Filesystem Size Used Avail Use% Mounted on
udev 7,8G 0 7,8G 0% /dev
tmpfs 1,6G 50M 1,6G 4% /run
/dev/sda1 50G 20G 28G 42% /
tmpfs 7,8G 3,4M 7,8G 1% /dev/shm
tmpfs 5,0M 4,0K 5,0M 1% /run/lock
tmpfs 7,8G 0 7,8G 0% /sys/fs/cgroup
/dev/sda4 813G 132G 640G 18% /home
tmpfs 1,6G 124K 1,6G 1% /run/user/1000

(continues on next page)

3.4. Raspberry Pi 27

Platypus Boat Documentation, Release 0.1

(continued from previous page)

/dev/sdb2 58G 6,7G 51G 12% /media/ale/PI_ROOT
/dev/sdb1 63M 21M 43M 34% /media/ale/PI_BOOT

The last two are important: /dev/sdb1 and /dev/sdb2.

Next we unmount, the Raspberry Pi SDcard:

$ sudo umount /dev/sdb1 /dev/sdb2

Now we make a backup copy of the Raspberry Pi image.

$ sudo dcfldd if=/dev/sdb of=~/MyImage.img

If dcfldd is not installed, then install it and reexecute the last command.

$ sudo apt-get update
$ sudo apt-get install dcfldd

Next we use the sync command to force a synchronise of any outstanding input or output

$ sudo sync

Let’s take a look at the backed up image file. The file size should match the SDCard size.

$ ls -lsah ~/MyImage.img

That’s all !

Shrinking the Image file

Let us assume the you used a 64GB SDcard to build your system. When you back it up, it will result in a 64GB image
file, redardless the actual amount of space used in the SDcard. It will not be possible to directly use this image file in
a, for example, 16GB SDCard. Before it, you need to shirink the image file.

This process is not exactly simple. It involves several steps as described here. Fortunalty, there are some scripts that
perform these steps automatically. I personaly suggest this script. To run it you need:

• A Linux PC computer or a Linux VM for windows users

• Take the SDcard from the embedded computer and mount it on the Linux PC computer

• download the PiShrink script and follow the instructions

$ wget https://raw.githubusercontent.com/Drewsif/PiShrink/master/pishrink.sh

$ chmod +x ../pishrink.sh
$ sudo ../pishrink.sh image.img
[sudo] password for ale:
Creating new /etc/rc.local
e2fsck 1.42.13 (17-May-2015)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
PI_ROOT: 289654/3795104 files (0.2% non-contiguous), 2014409/15251456 blocks

(continues on next page)

28 Chapter 3. Summary

http://www.aoakley.com/articles/2015-10-09-resizing-sd-images.php
https://github.com/Drewsif/PiShrink
https://github.com/Drewsif/PiShrink

Platypus Boat Documentation, Release 0.1

(continued from previous page)

resize2fs 1.42.13 (17-May-2015)
resize2fs 1.42.13 (17-May-2015)
Resizing the filesystem on /dev/loop1 to 2226004 (4k) blocks.
Begin pass 2 (max = 369264)
Relocating blocks XX
Begin pass 3 (max = 466)
Scanning inode table XX
Begin pass 4 (max = 22681)
Updating inode references XX
The filesystem on /dev/loop1 is now 2226004 (4k) blocks long.

Shrunk image.img from 59G to 8,6G

Generating checksum

Finally, it is recommended to generate a checksum file for the image file. This is usefull to check whether the file was
correcpted during some data transfer.

$ md5sum image.img > image.md5

It results in a text file like this one. Save this file with the image file.

$ cat image.md5
75e87507e672de53241df4d724a0aac4 image.img

3.4.2 Setting Up the OS

• which basics packages to install

• how to setup the wireless

• main depedencies to intall

• setup automatic login

• how to enable the rpi pins and protocols (i2c, gpio, pwm, spi, etc)

3.4.3 Installing ROS

About ROS

• links to papers and manuals or other tutorials

•

How to install the driver and its depedencies

• where/how to download

• how to configure it

• how to install its depedencies

• how to install software depedencies and additional required nodes

3.4. Raspberry Pi 29

Platypus Boat Documentation, Release 0.1

• provide a script to install it all at once

Known limitations

describe here any known limitation of the software so that the next student is aware of it.

How to test it

• basic testing to see if the is procedure working on the RPi

3.4.4 Installing GAMS/MADARA to the Raspberry Pi

Warning: @ To be done by Marcelo e Davi

About GAMS/MADARA

• links to papers and manuals or other tutorials

•

How to install the driver and its depedencies

• make sure ros was installed first

• where/how to download gams/madara

• where/how to download gams/madara and ROS interface

• how to configures it

• how to install its depedencies

• how to install software depedencies and drivers the required

• provide a script to install it all at once

GAMS/MADARA working with ROS

• Marcelo e Davi describe the interface between them, limitations, how to compile it, how to test it.

Known limitations

describe here any known limitation of the software so that the next student is aware of it.

How to test it

• basic testing to see if the is procedure working on the RPi

30 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

3.4.5 Hooking Up Peripherals to the Raspberry Pi

This section shows how to add the following peripherals to the RPi board

Installing Xbee to the Raspberry Pi

Warning: @ To be done by Renan

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

• basic testing to see if the sensor is working on the RPi

Installing the Adafruit GPS to the Raspberry Pi

Warning: @ To be done by Renan

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

3.4. Raspberry Pi 31

Platypus Boat Documentation, Release 0.1

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

• basic testing to see if the sensor is working on the RPi

Installing the Emlid GPS-RTK to the Raspberry Pi

Warning: @ To be done by Renan

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

32 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

How to test it

• basic testing to see if the sensor is working on the RPi

Installing the IMU to the Raspberry Pi

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

• basic testing to see if the sensor is working on the RPi

Installing the Raspicam to the Raspberry Pi

Warning: @ To be done by Renan

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

3.4. Raspberry Pi 33

Platypus Boat Documentation, Release 0.1

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

• basic testing to see if the sensor is working on the RPi

Installing the Atlas Water Probes to the Raspberry Pi

Warning: @ To be done by ????

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

34 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

How to test it

• basic testing to see if the sensor is working on the RPi

Installing Lowrance sidescanner to the Raspberry Pi

Warning: @ To be done by ?????

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

• basic testing to see if the sensor is working on the RPi

Installing the Water Sampling Device to the Raspberry Pi

Warning: @ To be done by ????

About the sensor

• where to buy, how much

• link to datasheet of the models available at LSA

3.4. Raspberry Pi 35

Platypus Boat Documentation, Release 0.1

How to physically connect it to the RPi

• describe power requirements

• bill of materials if required (ftdi, cables, etc)

• show fritzing schematics to connect the sensors, power, other boards, etc

How to install the driver and its depedencies

• how to install software depedencies and drivers the required

Known limitations of the sensor

describe here any known limitation of the sensor or its drivers so the next student is aware of it.

How to test it

• basic testing to see if the sensor is working on the RPi

Configuring the Ubiquity Bullet M2HP Radio

About

Bullet M2HP (Datasheet) is a high power WiFi radio adapter by Ubiquity.

Features:

• 100+ Mbps throughput

• Weatherproof design

• Compatible with high-gain antennas (N-type connector)

36 Chapter 3. Summary

https://www.ubnt.com/airmax/bulletm
https://dl.ubnt.com/datasheets/bulletm/bm_ds_web.pdf

Platypus Boat Documentation, Release 0.1

• Communication range up to 50 km (depending on the antenna)

• Power-over-Ethernet (PoE)

In the case of the Platypus boat, the Bullet is used as an access point (hotspot), generating a long-range WiFi (WLAN)
network for communcation between the boat and the on-shore devices. It connects to the Raspberry Pi via its Ethernet
port (LAN).

Powering up the Bullet M2HP

As the radio is powered through PoE, it comes with a PoE adapter as seen in the image below (exact model may differ):

After plugging the adapter to a power outlet, the PoE port connects to the Bullet, while the LAN port connects to the
Raspberry Pi’s Ethernet port. In the Platypus boat, the connection is the same, except for the power which comes from
the boat’s electronics board, as shown in the diagram below:

3.4. Raspberry Pi 37

Platypus Boat Documentation, Release 0.1

Accessing the Bullet M2HP configuration page

From a factory reset, the Bullet can be accessed through its standard IP (192.168.1.20). However, its default
settings are WiFi station and bridge mode. As such, it does not generate a WiFi network nor runs a DHCP server,
meaning that a physical cable connection and manual IP setting are necessary. The computer/Raspberry must also be
operating in the same IP range as the Bullet, thus it must be a 192.168.1.x IP.

For this initial setup, it is recommended to connect the Bullet to a conventional computer, as the configuration is done
via browser (or to a Raspberry running a graphical interface OS). In Linux, we can manually connect to the bullet

38 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

through the ifconfig command. After connecting the LAN adapter port into the computer, run:

$ sudo ifconfig

to find out which interface is responsible for Ethernet (e.g., eth0, enp0s3). To manually assign an IP and connect,
run:

$ sudo ifconfig <name_of_interface> 192.168.1.x netmask 255.255.255.0

where x is a number from 1 to 254, excluding 20. For example:

$ sudo ifconfig eth0 192.168.1.7 netmask 255.255.255.0

The Bullet configuration page can the be accessed in a browser by the address http://192.168.1.20. A un-
trusted connection or security certificate warning may appear, which can be safely ignored. A screen like the one
below will appear:

To connect and configure the M2 Bullet, use the credentials:

login: ubnt
password: ubnt

Configuring the Bullet M2HP as an Access Point

To configure the Bullet as an access point, change the following configurations in the Wireless tab:

Wireless mode: Access Point
SSID: <WiFi network name>
Channel Width: 20 MHz
Frequency, MHz: 2412

(continues on next page)

3.4. Raspberry Pi 39

Platypus Boat Documentation, Release 0.1

(continued from previous page)

Output power: Max
Security: None (you may setup WPA-PSK or WPA2-PSK if prefered)

Click “Change” but do not click “Apply” yet. In the leftmost tab, uncheck the “AirMax” box and click “Change”.

40 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

This is sufficient to configure the radio as an Access Point, and it will generate a WiFi network with the specified
SSID. However, there are two possible configurations regarding the Bullet’s network role: Bridge and Router mode.

Note: The typical configuration is to use the Bullet in Router mode with a DHCP server, as to automatically address
an IP to each connecting device. If this is the case, this configuration can be performed in the “Network” tab and the
changes can be applied with the “Apply” button. After a short connection drop, you may connect to the access point’s
WiFi network and access it with the IP specified in the “Network” tab. As the Router mode isolates the LAN and
WLAN interfaces, connection between wireless devices and the Raspberry’s Ethernet becomes impossible. Thus, in
the case of the Platypus boat, the radio must be configured in Bridge mode.

Configuring the Bullet M2HP in Bridge mode

In the Network tab, modify the following fields to configure the radio in bridge mode:

Network mode: Bridge
Management IP Address: Static
IP Address: <IPV4 IP> (e.g., 192.168.10.20)
Netmask: 255.255.255.0
Gateway IP: <First IP in the same range as IP Address> (e.g., 192.168.10.1)
Primary DNS: 8.8.8.8

3.4. Raspberry Pi 41

Platypus Boat Documentation, Release 0.1

Click Change and then Apply. After a short connection drop, the radio will generate a WiFi network with the SSID
specified in the Wireless tab.

Testing the connection between WiFi and the Raspberry’s Ethernet

As there is no DHCP server, the Raspberry and WiFi devices must be manually connected to the Bullet. Once again,
this can be done with the ifconfig command in Linux. For the Raspberry, the interface used is the Ethernet (e.g.,
eth0). After connecting the LAN cable on the Raspberry’s Ethernet port, run:

42 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

$ sudo ifconfig <name of interface> <IP in the same range as the Bullet> netmask 255.
→˓255.255.0

For example:

$ sudo ifconfig eth0 192.168.10.210 netmask 255.255.255.0

Setting IP by ifconfig will assign the IP temporarily to the port. In order to fix a static IP to the Raspberry Pi, the
/etc/dhcpcd.conf must be edited, adding the following lines to the end of the file:

interface eth0
static ip_address=192.168.10.210/24
static routers=192.168.10.1
static domain_name_servers=192.168.10.1

Configuring Android Devices

An IP must also be manually set for the WiFi devices. In Android 7.0, this can be done as follows:

• Settings -> Connections -> Wi-Fi

• Touch the Bullet’s WiFi network

• Check “Show advanced options”

• IP settings -> Static

• IP address -> IP in the same range as the Bullet (e.g., 192.168.10.207)

• Gateway -> Same as specified in the “Network” tab (e.g., 192.168.10.1)

• DNS 1 -> 8.8.8.8

To test the connection, run the “ping” command on the Raspberry:

$ ping <IP of connected WiFi device>

or on the WiFi device (if available):

$ ping <IP of Raspberry>

If successful, there should be a response such as:

PING 192.168.10.207 (192.168.10.207) 56(84) bytes of data.
64 bytes from 192.168.10.207: icmp_seq=1 ttl=64 time=7.03 ms
64 bytes from 192.168.10.207: icmp_seq=2 ttl=64 time=17.1 ms
...

3.4.6 Video Streaming Tutorials

Video Streaming with RaspberryPi Using VLC

Tip:

In this tutorial, you will:

3.4. Raspberry Pi 43

Platypus Boat Documentation, Release 0.1

• Learn how to configure your Raspberry Pi for video streaming

• Know the commands needed for simple video streaming through the VLC media tool

Tip:

This demonstration was tested on:

• VLC 2.2.4 on a Windows 8.1 64-bit Computer

• 2017/1/11 Raspbian Jessi on a RBpi 2 Model B V1.1 using Pi Camera rev 1.3

• Note: Pi Camera V2.1 was also tested successfully

This tutorial will introduce to you to your Raspberry Pi Camera Module to view a video stream from your Pi setup,
the server using Raspbian, to a different computer, a client using Windows, in your home network

Configuring your RaspberryPi

Firstly, on your Pi’s terminal, Update and Upgrade the environment so it can be up to date. This helps in reducing
future problems. Don’t forget to ENABLE your Raspberry Pi Camera using ‘raspi-config’.

$ sudo apt-get update
$ sudo apt-get upgrade

$ sudo raspi-config

A blue BIOS-like screen will appear, go into the Enable Camera Options and enable the camera.

44 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Note: Depending on your version of Raspbian, the Enable setting may not first appear on the main list. You will have
to go under the settings in the blue screen to locate the enable option.

It is also advised now to see what is the IP Address of your Pi. Type in the following to locate the IP as you will need
it in the VLC program for your Windows machine.

$ ifconfig

If you are using a wireless connection,
the IP you want is located in the lo section under inet addr:x.x.x.x

If you are using ethernet,

3.4. Raspberry Pi 45

Platypus Boat Documentation, Release 0.1

it will be under eth0 in inet addr:x.x.x.x

Getting VLC

On your Client PC that is running Windows, download the VLC software media tool on here through the VLC’s
Website

Now on your Pi’s terminal, download and install the VLC for Raspbian.

$ sudo apt-get install vlc

Note: Make sure that your Pi is up-to-date and also now has VLC and that your PC has VLC installed, before going
to the next step

Initiating the Stream

Once installed, you may now start the video streaming by typing the folloing in your Pi’s Terminal.

$ raspivid -o - -t 0 -hf -w 800 -h 400 -fps 24 |cvlc -vvv stream:///dev/stdin --sout '
→˓#standard{access=http,mux=ts,dst=:8160}' :demux=h264

• -o Specifies the output filename. the ‘-‘ beside denotes no filename

• -t is the duration of the recoding, 0 being infinity

• -hf is Horizontal Flip

• -w and -h is the resolution for Width and Height

• -fps is Frames per Second

• The rest means that on port 8160, data will be sent through http using h264 as stdout using VLC

Once entered, the Pi Camera will turn on and start recording and simultaneously send it over http. This is now the time
to go to your Windows machine and watch your streaming footage.

Note: You may want to experiment and change settings like -w, -h, and -fps.

Open the VLC program on your Windows Machine.

And under Media > Open Network Stream > Network > Please enter a network URL:

Type in the IP address that you got from ifconfig like so;

46 Chapter 3. Summary

http://www.videolan.org/vlc/index.html
http://www.videolan.org/vlc/index.html

Platypus Boat Documentation, Release 0.1

http://x.x.x.x:8160

As we have specified the port to be 8160 in our terminal on the Pi

Once entered, VLC will automatically start playing the stream from the Pi over your network.

Conclusion

Note: As you can see from the stream that the video quality is not that ground breaking but is acceptable, and the
latency is the biggest issue of this streaming method.

Video Demonstration

Note: The Monitor on the left displays real time from the Raspberry directly, whereas the Laptop is displaying the
VLC stream.

Raspberry Pi camera module streaming video to another computer. This video tutorial shows the overview of this
written tutorial.

3.4. Raspberry Pi 47

Platypus Boat Documentation, Release 0.1

END

Video Streaming with RapsberryPI Using gStreamer

Tip:

In this tutorial, you will:

• Learn how to configure your Raspberry Pi for video streaming through the gStreamer Method

• Know the commands needed for simple video streaming through gStreamer

Note: This demonstration uses a Linux based environment (Ubuntu) as the client side, NOT a Windows PC like the
other methods.

Tip:

This demonstration was tested on:

• Google Chrome Version 56.0.2924.87 on Ubuntu 14.04 64-bit

• 2017/1/11 Raspbian Jessi on a RBpi 2 Model B V1.1 using Pi Camera rev 1.3

• Note: Pi Camera V2.1 was also tested successfully

This tutorial will introduce to you to your Raspberry Pi Camera Module to view a video stream from your Pi setup,
the server using Raspbian, to a different computer, a client using Ubuntu, in your home network

48 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Configuring your RaspberryPi

Firstly, on your Pi’s terminal, Update and Upgrade the environment so it can be up to date. This helps in reducing
future problems. Don’t forget to ENABLE your Raspberry Pi Camera using ‘raspi-config’.

$ sudo apt-get update
$ sudo apt-get upgrade

$ sudo raspi-config

A blue BIOS-like screen will appear, go into the Enable Camera Options and enable the camera.

Note: Depending on your version of Raspbian, the Enable setting may not first appear on the main list. You will have

3.4. Raspberry Pi 49

Platypus Boat Documentation, Release 0.1

to go under the settings in the blue screen to locate the enable option.

It is also advised now to see what is the IP Address of your Pi. Type in the following to locate the IP as you will need
it in the Browser for your Windows machine.

$ ifconfig

If you are using a wireless connection,
the IP you want is located in the lo section under inet addr:x.x.x.x

If you are using ethernet,
it will be under eth0 in inet addr:x.x.x.x

Getting gStreamer

Now we will get into the main focus of this tutorial, gStreamer. gStreamer is a multimedia tool that connects a
sequence of elements through a pipeline.

We will now get gStreamer for both the Pi and your Ubuntu

$ sudo add-apt-repository ppa:gstreamer-developers/ppa
$ sudo apt-get update
$ sudo apt-get install gstreamer1.0*

Initiating the Video Stream

After the installation, to begin the video stream, we can type in the Pi:

$ raspivid -fps 26 -h 450 -w 600 -vf -n -t 0 -b 200000 -o - | gst-launch-1.0 -v fdsrc
→˓! h264parse ! rtph264pay config-interval=1 pt=96! gdppay ! tcpserversink host=x.x.x.
→˓x port=5000

..NOTE::

• You can remove -n so you can start a preview on your Pi, -n disables the preview

• -b is for the bitrate

Please note that the host here must be changed to YOUR host IP from the ifconfig above. That will initiate the
stream from the Pi side.

On your client with Linux, also install gStreamer, and then type in the terminal

$ gst-launch-0.10 -v tcpclientsrc host=x.x.x.x port=5000 ! gdpdepay ! rtph264depay !
→˓ffdec_h264 ! ffmpegcolorspace ! autovideosink sync=false

Please note that the host here must be changed to YOUR host IP from the ifconfig above. Now you will see the
stream from the Pi server.

Note: As you can see, the quality and latency is ground breaking this time compared to the VLC and mjpgStreamer
methods.

50 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Video Demonstration

Note: The Monitor on the left displays real time from the Raspberry directly, whereas the Laptop is displaying the
gStreamer stream.

Wirelessly streaming a video from a Raspberry to a remote laptop. This video tutorial shows the overview of this
written tutorial.

END 3

Video Streaming with RapsberryPI Using mjpgStreamer

Tip:

In this tutorial, you will:

• Learn how to configure your Raspberry Pi for video streaming through the mjpgStreamer Method

• Know the commands needed for simple video streaming through mjpgStreamer

• Acquire the dependencies needed for mjpgStreamer

Tip:

This demonstration was tested on:

• Google Chrome Version 56.0.2924.87 on a Windows 8.1 64-bit Computer

• 2017/1/11 Raspbian Jessi on a RBpi 2 Model B V1.1 using Pi Camera rev 1.3

• Note: Pi Camera V2.1 was also tested successfully

This tutorial will introduce to you to your Raspberry Pi Camera Module to view a video stream from your Pi setup,
the server using Raspbian, to a different computer, a client using Windows, in your home network

3.4. Raspberry Pi 51

Platypus Boat Documentation, Release 0.1

Configuring your RaspberryPi

Firstly, on your Pi’s terminal, Update and Upgrade the environment so it can be up to date. This helps in reducing
future problems. Don’t forget to ENABLE your Raspberry Pi Camera using ‘raspi-config’.

$ sudo apt-get update
$ sudo apt-get upgrade

$ sudo raspi-config

A blue BIOS-like screen will appear, go into the Enable Camera Options and enable the camera.

52 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Note: Depending on your version of Raspbian, the Enable setting may not first appear on the main list. You will have
to go under the settings in the blue screen to locate the enable option.

It is also advised now to see what is the IP Address of your Pi. Type in the following to locate the IP as you will need
it in the Browser for your Windows machine.

$ ifconfig

If you are using a wireless connection,
the IP you want is located in the lo section under inet addr:x.x.x.x

If you are using ethernet,

3.4. Raspberry Pi 53

Platypus Boat Documentation, Release 0.1

it will be under eth0 in inet addr:x.x.x.x

Getting mjpgStreamer

We will now install mjpgStreamer on our Pi, the main focus of this method To do this, we will go to the mjpgStreamer
website which will automatically start the download.

We will need to decompress the file, this process will also install it at the same time.

$ tar -zxvf mjpg-streamer.tar.gz

Press Enter, and you should see a new directory called mjpg-streamer

Note: You can check for directories in the terminal by typing in ls

Getting mjpgStreamer’s Dependencies

Now we need mjpgStreamer’s dependancies to make it fully functional.

$ sudo apt-get install libjpeg8-dev
$ sudo apt-get install imagemagick

After this is done, go into the mjpg-streamer directory inside the already existing mjpg-streamer. Yes, type it twice.
And then type make which will build the system and compile it

$ cd mjpg-streamer
$ cd mjpg-streamer
$ make

In order to start the capture, we must make a temporary file that will save the image taken by raspistill, and then it will
get updated many times every second. So in ~/mjpg-streamer/mjpg-streamer $ type in:

$ mkdir /tmp/stream

We can now initiate the stream by typing in

$ LD_LIBRARY_PATH=./ ./mjpg_streamer -i "input_file.so -f /tmp/stream -n pic.jpg" -o
→˓"output_http.so -w ./www"

Open a new terminal window and type

$ raspistill -w 640 -h 480 -q 5 -o /tmp/stream/pic.jpg -tl 1 -t 9999999 -th 0:0:0

• -w and -h is resolution

• -q is quality

• -o is the Specified output filename

• -tl is the time interval between each snap shot (here is 1 millisecond)

• -t is the camera’s ON time in seconds, 9999999 is 115 Days

• -th Set thumbnail parameters (x:y:quality)

54 Chapter 3. Summary

https://lilnetwork.com/download/raspberrypi/mjpg-streamer.tar.gz
https://lilnetwork.com/download/raspberrypi/mjpg-streamer.tar.gz

Platypus Boat Documentation, Release 0.1

Now, on your client computer, open your preferred browser and type in your IP and port# which will be 8080 by
default.

x.x.x.x:8080

A website will display showing you the mjpgStreamer Demo Page and a congratulation message. Go to the stream
section in the menu to see the live footage from your Pi.

Note: As you can see from the stream that the video quality is not that ground breaking but is acceptable, although a
little worse than the VLC method, however the latency is a so much better than in the VLC method.

Video Demonstration

Note: The Monitor on the left displays real time from the Raspberry directly, whereas the Laptop is displaying the
mjpgSteamer stream.

Raspberry Pi Camera Stream Web Video. This video tutorial shows the overview of this written tutorial.

END 2

The Raspberry Pi camera module can be used to take high-definition video, as well as stills photographs. This tutorial
will introduce to you the Raspberry Pi Camera Module to view a video stream from your Pi setup and show you how
to start video streaming through several tools.

3.4.7 Thorough Tests for the Board

• describe here how one can test the features of the board

Possible Faults

• describe here usual fault and how to solve it

• describe where to buy replacement parts

3.5 ODROID XU4

Warning: @ To be done by Roger and Amory

3.5.1 Download Image

Oficial Ubuntu MATE 16.04 for Odroid XU4:

• https://wiki.odroid.com/odroid-xu4/os_images/linux/start

• https://odroid.in/ubuntu_16.04lts/

3.5. ODROID XU4 55

https://wiki.odroid.com/odroid-xu4/os_images/linux/start
https://odroid.in/ubuntu_16.04lts/

Platypus Boat Documentation, Release 0.1

Unzip the Image file and go on to the next part.

3.5.2 Write the Image to the SDCard

The procedure is the same compared to procedure for Raspberry Pi

• Write the Image using Linux

• Write the Image using Windows

3.5.3 Write the Image to the eMMC memory

One of the nice features of Odroid XU4 is that it has the eMMC memory module. According to them, the eMMC
5.0 storage is ~7x faster than the MicroSD Class-10 card in read tests. When using it, one can realise that the boot is
clearly faster than SD cards.

There are two ways to load eMMC memory, depending whether the eMMC Module Reader is available or not.

Using eMMC Module Reader

This method requires the eMMC Module Reader

Then, the procedure to write the Image is the same for SDCards.

Using Odroid and SDCard

If the Reader is not available, one can follow these steps:

• Load the Image on a SDCard as described above

• Set the memory Switch to select SDCard

• Plug the eMMC module

• Turn the system on and boot the system

• Plug in the USB3 interface a external drive with the Image file

• Find out the mounting point for the eMMC module, which is most probably /dev/mmcblk1

56 Chapter 3. Summary

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145628174287
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G135415955758

Platypus Boat Documentation, Release 0.1

• Go to the directory with the Image file and

• Execute: sudo dcfldd of=/dev/mmcblk1 if=./MyImage.img

Done, the eMMC module was loaded without using the Reader. Now, to test boot with the eMMC, follow these steps:

• Shutdown the computer

• Remove the SDCard and make sure the eMMC is connected

• Set the memory Switch to select eMMC

• Turn the system on and boot the system

You will see that the time for the boot is shorter and the computer is faster. It will boot twice when you boot it for the
first time. The reason is that it automatically expand the file system in the 1st boot. However, it is transparant to the
user.

3.5.4 Backing up Image from the eMMC memory

A similar procedure as described in the previous section can be used for backing up the Image in the eMMC module.
Follow these steps:

• Load the Image on a SDCard as described above

• Set the memory Switch to select SDCard

• Turn the system on and boot the system

• Plug in the USB3 interface an external drive where the Image file will be saved

• Find out the mounting point for the eMMC module, which is most probably /dev/mmcblk1

• Go to the directory where the Image file will be saved and

• Execute: sudo dcfldd if=/dev/mmcblk1 of=./MyImage.img

Done! Now it is recommended to shrink the Image file. For more information about loading Image, refer to Raspberry
Pi 3 procedure.

3.5.5 Setting Up ROS

There is no special procedure to install ROS dor Odroid. Just follow the same procedure for Raspberry Pi 3, using
Ubuntu Mate 16.04.

3.5.6 Setting Up GAMS/Madara

There is no special procedure to install GAMS/Madara dor Odroid. Just follow the same procedure for Raspberry Pi
3, using Ubuntu Mate 16.04.

3.5.7 Setting Up Peripherals

GPS

describe here how to install GPS drivers.

3.5. ODROID XU4 57

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G142502154078

Platypus Boat Documentation, Release 0.1

oCam-1MGN-U Global Shutter

describe here how to install the oCam-1MGN-U Global Shutter camera.

Wifi

The recommended wifi dongle is called Wifi module 3 because it has deattachable antenna

It works out of the box for Ubuntu Mate. No further installation or configuration is required.

USB IO Board

describe here how to install and use the USB IO Board.

3.6 NVIDIA Jetsons Boards

3.6.1 Jetson TK1 Module

NVIDIA Tegra K1 (TK1) is NVIDIA’s first mobile processor to have the same advanced features & architecture as a
modern desktop GPU while still using the low power draw of a mobile chip. Therefore Tegra K1 allows embedded
devices to use the exact same CUDA code that would also run on a desktop GPU (used by over 100,000 developers),
with similar levels of GPU-accelerated performance as a desktop1.

1 Jetson TK1 Wiki

58 Chapter 3. Summary

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G147245683619
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137447734369
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G135390529643
https://elinux.org/Jetson_TK1

Platypus Boat Documentation, Release 0.1

Specifications

• Tegra K1 SOC
– NVIDIA Kepler GPU with 192 CUDA Cores
– NVIDIA 4-Plus-1™ Quad-Core ARM® Cortex™-A15 CPU

• 2 GB x16 Memory with 64-bit Width
• 16 GB 4.51 eMMC Memory
• 1 Half Mini-PCIE Slot
• 1 Full-Size SD/MMC Connector
• 1 Full-Size HDMI Port
• 1 USB 2.0 Port, Micro AB
• 1 USB 3.0 Port, A
• 1 RS232 Serial Port
• 1 ALC5639 Realtek Audio Codec with Mic
• In and Line Out
• 1 RTL8111GS Realtek GigE LAN
• 1 SATA Data Port
• SPI 4 MByte Boot Flash

The following signals are available through an expansion port:

• DP/LVDS

• Touch SPI 1x4 + 1x1 CSI-2

• GPIOs

• UART

• HSIC

3.6. NVIDIA Jetsons Boards 59

Platypus Boat Documentation, Release 0.1

• i2c

Installing JetPack L4T

JetPack (the Jetson SDK) is an on-demand all-in-one package that bundles and installs all software tools required to
develop for the NVIDIA® Jetson Embedded Platform (including flashing the Jetson Developer Kit). JetPack includes
host and target developer tools, APIs and packages (OS images, tools, APIs, middleware, samples, documentation
including compiling samples) to enable developers to jump-start their development environment for developing with
the Jetson Embedded Platform. The latest release of JetPack runs on an Ubuntu 14.04 Linux 64-bit host system and
supports the Jetson TK1 Developer Kit1.

Setting up the local host

In order to flash the Jetson board with the SDK, the first step consists of installing Jetpack in a local machine. The
local machine can set up all the environment before flashing the board with the SDK. From an Ubuntu 14.04 PC 64 bit
host computer, you simply download the JetPack LT4 3.0 installer with the latest OS image from NVIDIA Web site
(you’ll have to sign in with your developer account) and follow the instructions in the setup guide. After downloading
JetPack, install it in your local machine (not in the Jetson board).

$ chmod +x JetPack-L4T-3.0-linux-x64.run
$./JetPack-L4T-3.0-linux-x64.run

The process starts asking the folder to install JetPack and the board you are using to install the SDK, as follows the
image:

1 JetPack release notes

60 Chapter 3. Summary

https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack-3_0

Platypus Boat Documentation, Release 0.1

Select JETSON TK1 Developer Kit (32-bit) and Ubuntu host option and click Next. Keep configuring according
to your needs. After finishing the selections, click Next to start downloading all packages, as the image:

3.6. NVIDIA Jetsons Boards 61

Platypus Boat Documentation, Release 0.1

After downloading all packages, it starts to installing them in your local machine. It took about 20 minutes in my
machine. . . When the installation in the local host is finished, the following image is presented:

62 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Flashing the Jetson board

Next step is to configure how the binaries are transmited to the Jetson board. Thus, JetPack asks what is the layout of
the network to transmit the data. Select Device accesses internet via houter/switch. and click Next, as the image:

3.6. NVIDIA Jetsons Boards 63

Platypus Boat Documentation, Release 0.1

JetPack then asks you to put the Jetson board in the Recovery Mode, by powering down the device (in case Jetson is
on), connecting the micro-USB cable in the recovery port and in the USB of the local host, pressing and holding the
FORCE RECOVERY button while turning the board on, as the image:

64 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

In order to check if the Jetson board is set in recovery mode, open the terminal in the local host and type:

$ lsusb

If the board is in revery mode, you should see the Jetson listed as NVidia (ID 0955:7140 NVidia Corp.) in the output,
as the image:

3.6. NVIDIA Jetsons Boards 65

Platypus Boat Documentation, Release 0.1

If you don’t see the Jetson using lsusb, then the device will not be flashed. In case the Jetson appears in lsusb,
return to the screen with the instructions and press Enter to start flashing the OS image in the board.

References

Setting Up the OS

NVIDIA Jetson TK1 exhibits a lot of promise with lots of raw performance for its form factor and intended use, with
low power consumption to boot. But as is typical with most of these types of products, the “out of the box” experience
needs some help. A missing part in TK1 is a support out of the box for WiFi or Bluetooth. For people coming from
commodity PCs, tablets, phones and such this is a little confusing. Usually one just installs a driver and the device
starts to work. In the case of the Jetson, the actual signals on the board need to be played with a little, as well as having
the driver issue1. In order to overcome such issues, a new Linux kernel named Grinch includes a lot of the features to
which most desktop users are accustomed.

Installing Grinch kernel

The Grinch Kernel for L4T provides over 60 changes and additions to the kernel, including fixes, configuration, module
and firmware support to the stock kernel. The kernel is written and supported by Jetson Forum user Santyago. For
further information about the Grinch Kernel, please see the NVidia Jetson Forum.

In order to install the Grinch kernel, download the installGrinch.sh file and run as:
1 Installing Grinch L4T

66 Chapter 3. Summary

https://devtalk.nvidia.com/forums/board/162/
http://www.jetsonhacks.com/2014/10/12/installing-grinch-linuxfortegra-l4t-nvidia-jetson-tk1/

Platypus Boat Documentation, Release 0.1

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/jetson/scripts/installGrinch.sh
$ chmod +x installGrinch.sh
$./installGrinch.sh

Running these command will download the kernel image and install it in Jetson board. After the install script com-
pletes, reboot the Jetson TK1.

Enabling USB 3.0

By default, the USB port in Jetson TK1 is not compatible to 3.0 devices. In order to enable the USB 3.0 sup-
port, you have to configure the extlinux.conf file, changing the parameter usb_port_owner_info=0 to
usb_port_owner_info=2. In order to do so, run:

$ sudo gedit /boot/extlinux/extlinux.conf

The extlinux.conf file looks like:

TIMEOUT 30
DEFAULT primary

MENU TITLE Jetson-TK1 eMMC boot options

LABEL primary
MENU LABEL primary kernel
LINUX /boot/zImage
FDT /boot/tegra124-jetson_tk1-pm375-000-c00-00.dtb
APPEND console=ttyS0,115200n8 console=tty1 no_console_suspend=1 lp0_

→˓vec=2064@0xf46ff000 mem=2015M@2048M memtype=255 ddr_die=2048M@2048M section=256M
→˓pmuboard=0x0177:0x0000:0x02:0x43:0x00 tsec=32M@3913M otf_
→˓key=c75e5bb91eb3bd947560357b64422f85 usbcore.old_scheme_first=1 core_edp_mv=1150
→˓core_edp_ma=4000 tegraid=40.1.1.0.0 debug_uartport=lsport,3 power_supply=Adapter
→˓audio_codec=rt5640 modem_id=0 android.kerneltype=normal fbcon=map:1 commchip_id=0
→˓usb_port_owner_info=2 lane_owner_info=6 emc_max_dvfs=0 touch_id=0@0 board_
→˓info=0x0177:0x0000:0x02:0x43:0x00 net.ifnames=0 root=/dev/mmcblk0p1 rw rootwait
→˓tegraboot=sdmmc gpt

Look for usb_port_owner_info=0 in the file and replace it by usb_port_owner_info=2. Finally, save the
file and exit.

References

Post Installation

Adding a SSD Disk

In order to add a SSD disk in Jetson board, we have to connect a SATA cable and a power cable in the board as
illustrated in the image below:

3.6. NVIDIA Jetsons Boards 67

Platypus Boat Documentation, Release 0.1

After connecting the SSD disk, we format it using ext4 file system by logging into Ubuntu and accessing Disks
application. Inside the application, select the SSD disk and click on the gear and select Format (or press
Shift+Ctrl+F). Then, add a name to the disk (e.g. JetsonSSD) and click in Format, as the images below:

68 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

After formating the SSD disk, we have to mount it at startup. In order to do it, we have to add a call in /etc/fstab
with the mounting point. In order to add this line, we have to discover the uuid of the device. With the disk manually

3.6. NVIDIA Jetsons Boards 69

Platypus Boat Documentation, Release 0.1

mounted, we run the mount command to discover where the SSD is mounted, obtaining:

$ mount
/dev/sda on /media/ubuntu/JetsonSSD type ext4 (rw,nosuid,nodev,uhelper=udisk2)

Knowing the mounting local of the SSD disk (/dev/sda), we have to discover its uuid. To discover the uuid we run:

$ ls -al /dev/disk/by-uuid
lrwxrwxrwx 1 root root 9 Dec 31 21:00 ac183b24-3e75-4190-bcb7-32160e9a7c55 -> ../../
→˓sda

Having the uuid of the disk we can add a line to the /etc/fstab with a call to the mounting point. Running the
command:

$ sudo gedit /etc/fstab

We add the following line to the file:

/dev/disk/by-uuid/ac183b24-3e75-4190-bcb7-32160e9a7c55 /media/JetsonSSD ext4 defaults
→˓0 2

Save the file and close it. Next time Ubuntu is started, the SSD disk will be mounted at startup.

Important Packages

Here we add several packages that should be installed to work in Jetson. All packages are installed via apt-get. In
order to easily install all packages a script was created and can be downloaded by running:

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/jetson/scripts/additionalPackages.sh
$ chmod +x additionalPackages.sh
$./additionalPackages.sh

The script installs the following packages:

• Informational list of build-essential packages (build-essential)

• Cross-platform, open-source make system (CMake)

• Curses based user interface for CMake (cmake-curses-gui)

• GNU C++ compiler (G++)

• Set of I2C tools for Linux

• Userspace I2C programming library development files

• Distributed revision control system (Git)

• Multiple GNOME terminals in one window

• Terminal multiplexer with VT100/ANSI terminal emulation (Screen)

Cloning and Restoring Image

In many cases there is a large amount of work that goes into creating a working Jetson development system. This can
include such things as loading drivers, compiling source files and libraries, system configuration, and so on. During
development, sometimes things can go south and leave the system in a non-working state. Wouldn’t it be great if you
could take a snapshot of a baseline system for just such occasions? Well, you can! This is known as “cloning” the

70 Chapter 3. Summary

https://packages.ubuntu.com/trusty/build-essential
https://packages.ubuntu.com/trusty/cmake
https://packages.ubuntu.com/trusty/cmake-curses-gui
https://packages.ubuntu.com/trusty/g++
https://packages.ubuntu.com/trusty/i2c-tools
https://packages.ubuntu.com/trusty/libi2c-dev
https://packages.ubuntu.com/trusty/git
https://packages.ubuntu.com/trusty/terminator
https://packages.ubuntu.com/trusty/screen

Platypus Boat Documentation, Release 0.1

system1. In this section we describe how to save and restore the system image from a Jetson to a file in the local host.
The host must be the same that contains the JetPack installer that flashed the Jetson.

Cloning the system image to localhost

In order to clone the image to the localhost, first you navigate to the proper directory on the localhost to begin the
process. Open a Terminal and go to the JetPack install directory (e.g., /home/roger/JetPack/). The correct
folder has the following content:

GameWorksOpenGLSamples
JetPack-L4T-3.0-linux-x64.run
JetPack_Uninstaller
TK1
_installer
host-x64-linux-public-3.7.224-e982b7b
jetpack_docs
manifest.json
repository.json
tmp
update.lock

From this folder, navigate to the bootloader folder with:

$ cd TK1/Linux_for_Tegra_tk1/bootloader

When in the correct folder, turn on the Jetson board in the Recovery Mode by powering down the device (in case Jetson
is on), connecting the micro-USB cable in the recovery port and in the USB of the local host, pressing and holding
the FORCE RECOVERY button while turning the board on. In order to check if Jetson is in Recovery Mode, in your
localhost, run:

$ lsusb

If the board is in Recovery Mode, you should see the Jetson listed as NVidia (ID 0955:7140 NVidia Corp.) in the
output, as the image:

1 JetsonHacks: Clone Image Tk1

3.6. NVIDIA Jetsons Boards 71

http://www.jetsonhacks.com/2015/08/26/clone-image-nvidia-jetson-tk1/

Platypus Boat Documentation, Release 0.1

Having the Jetson board in Recovery Mode, run:

$ sudo ./nvflash --read APP clone.img --bl ardbeg/fastboot.bin --go

When running this command, an image of the Jetson board starts to be recorded into clone.img file.

Restoring the system image to Jetson

In order to restore the image from the localhost to the Jetson, first you navigate to the proper directory on the localhost
to begin the process. Open a Terminal and go to the JetPack install directory (e.g., /home/roger/JetPack/).
From this folder, navigate to the Linux_for_Tegra_tk1 folder with:

$ cd TK1/Linux_for_Tegra_tk1/

When in the correct folder, turn on the Jetson board in the Recovery Mode by powering down the device (in case Jetson
is on), connecting the micro-USB cable in the recovery port and in the USB of the local host, pressing and holding
the FORCE RECOVERY button while turning the board on. In order to check if Jetson is in Recovery Mode, in your
localhost, run:

$ lsusb

If the board is in Recovery Mode, you should see the Jetson listed as NVidia (ID 0955:7140 NVidia Corp.) in the
output, as the image:

72 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Having the Jetson board in Recovery Mode, run:

$ sudo ./flash.sh -r -S 14580MiB jetson-tk1 mmcblk0p1

When running this command, the image stored in system.img in the bootloader folder will be flashed in the
Jetson board. The -r flag skips building and reuse the existing system.img file. The partition size -S 14580MiB
is the default that JetPack uses. When the flashing process termines, reboot the Jetson. The Jetson will be restored to
the state of the original at the time of cloning.

Note: If you already have performed a cloning before restoring the image to the Jetson, you should rename the clone
image to system.img. Otherwise, the image restored to the Jetson board contains the original SDK.

References

Robot Operating System (ROS) on Jetson TK1

Robot Operating System (ROS) is an open-source, meta-operating system for your robot. It provides the services
you would expect from an operating system, including hardware abstraction, low-level device control, implementa-
tion of commonly-used functionality, message-passing between processes, and package management. It also provides
tools and libraries for obtaining, building, writing, and running code across multiple computers. The ROS runtime
“graph” is a peer-to-peer network of processes (potentially distributed across machines) that are loosely coupled using
the ROS communication infrastructure. ROS implements several different styles of communication, including syn-
chronous RPC-style communication over services, asynchronous streaming of data over topics, and storage of data on

3.6. NVIDIA Jetsons Boards 73

Platypus Boat Documentation, Release 0.1

a Parameter Server1.

The primary goal of ROS is to support code reuse in robotics research and development so you can find a built-in
package system. It is interesting to note that although ROS contains Operation System in the name, keep in mind that
ROS is not an OS, a library, or an RTOS, but a framework using the concept of an OS. A good introduction is given in
the freely available book named A Gentle Introduction to ROS by Jason O’Kane. The ROS Wiki also contains lots of
tutorials to introduce you to its main concepts.

Installing ROS in Jetson TK1

JetsonPack for Jetson TK1 is based on Ubuntu 14.04 and thus, the ROS version to install is named Indigo. In order to
install the ROS package, you can run the installROS.sh file as:

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/jetson/TK1/scripts/installROS.sh
$ chmod +x installROS.sh
$./installROS.sh

This script installs ROS Indigo Desktop and the Point Cloud Library.

Creating Catkin workspace to run ROS

Catkin packages can be built as a standalone project, in the same way that normal cmake projects can be built, but
catkin also provides the concept of workspaces, where you can build multiple, interdependent packages together all at
once. A catkin workspace is a folder where you modify, build, and install catkin packages2. In order to create a Catkin
workspace, you should download and run the file createCatkin.sh as:

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/jetson/scripts/createCatkin.sh
$ chmod +x createCatkin.sh
$./createCatkin.sh

This script creates a structure in the home folder with the root workspace set in /home/ubuntu/catkin_ws.

Installing vision_opencv in ROS

By default, ROS has support to native OpenCV. However, when trying to compile a C++ code with a call to
cv_bridge, the following error

Error: make[2]: *** No rule to make target ‘/usr/lib/arm-linux-gnueabihf/libopencv_videostab.so.2.4.8’. Stop.

In order to get rid of the error, we have to compile vision_opencv in our Catkin workspace. Hence, the first step is
to clone the Indigo version of vision_opencv into the catkin_ws/src folder. Then, we have to compile the
workspace, by running:

$ cd ~/catkin_ws/src
$ git clone https://github.com/ros-perception/vision_opencv.git
$ cd vision_opencv/

(continues on next page)

1 ROS Introduction
2 Catkin Workspaces

74 Chapter 3. Summary

https://www.cse.sc.edu/~jokane/agitr/agitr-letter.pdf
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces

Platypus Boat Documentation, Release 0.1

(continued from previous page)

$ git checkout indigo
$ cd ../..
$ catkin_make

Next time you compile a C++ code that contains a call to cv_bridge, no errors should appear.

Testing ROS installation

To check if the ROS is installed correctly, run:

$ roscore

And see it starts running correctly. In case of problem, you can check the log files by running:

$ roscd log

References

3.6.2 Jetson TX2 Module

NVIDIA Tegra X2 (TX2) is the fastest, most power-efficient embedded AI computing device. This 7.5-watt super-
computer on a module brings true AI computing at the edge. It’s built around an NVIDIA Pascal-family GPU and
loaded with 8GB of memory and 59.7GB/s of memory bandwidth. It features a variety of standard hardware interfaces
that make it easy to integrate it into a wide range of products and form factors.2.

2 Jetson TX2

3.6. NVIDIA Jetsons Boards 75

https://developer.nvidia.com/embedded/buy/jetson-tx2

Platypus Boat Documentation, Release 0.1

Specifications

• Tegra X2 SOC
– NVIDIA Pascal™, 256 CUDA cores
– HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB L2

• 8 GB 128 bit LPDDR4 59.7 GB/s
• 32 GB eMMC, SDIO, SATA
• 4K x 2K 60 Hz Encode (HEVC)
• 4K x 2K 60 Hz Decode (12-Bit Support)
• 2x DSI, 2x DP 1.2 / HDMI 2.0 / eDP 1.4
• 1 USB 2.0 Port, Micro AB
• 1 USB 3.0 Port, A
• 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth
• 50 mm x 87 mm (400-Pin)

76 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

The following signals are available through an expansion port:

• SPI

• GPIOs

• UART

• i2c

• i2s

Installing JetPack L4T

JetPack (the Jetson SDK) is an on-demand all-in-one package that bundles and installs all software tools required to
develop for the NVIDIA® Jetson Embedded Platform (including flashing the Jetson Developer Kit). JetPack includes
host and target developer tools, APIs and packages (OS images, tools, APIs, middleware, samples, documentation
including compiling samples) to enable developers to jump-start their development environment for developing with
the Jetson Embedded Platform. The latest release of JetPack runs on an Ubuntu 16.04 Linux 64-bit host system and
supports the Jetson TX2 Developer Kit1.

Setting up the local host

In order to flash the Jetson board with the SDK, the first step consists of installing Jetpack in a local machine. The
local machine can set up all the environment before flashing the board with the SDK. From an Ubuntu 16.04 PC 64 bit
host computer, you simply download the JetPack LT4 3.3 installer with the latest OS image from NVIDIA Web site

1 JetPack release notes

3.6. NVIDIA Jetsons Boards 77

https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack-3_3

Platypus Boat Documentation, Release 0.1

(you’ll have to sign in with your developer account) and follow the instructions in the setup guide. After downloading
JetPack, install it in your local machine (not in the Jetson board).

$ chmod +x JetPack-L4T-3.3-linux-x64_b39.run
$./JetPack-L4T-3.3-linux-x64_b39.run

The process starts asking the folder to install JetPack and the board you are using to install the SDK, as follows the
image:

Select Jetson TX2 option and click Next. Keep configuring according to your needs. After finishing the selections,
click Next to start downloading all packages, as the image:

78 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

After downloading all packages, it starts to installing them in your local machine. It took about 20 minutes in my
machine. . . When the installation in the local host is finished, the following image is presented:

3.6. NVIDIA Jetsons Boards 79

Platypus Boat Documentation, Release 0.1

Flashing the Jetson board

Next step is to configure how the binaries are transmited to the Jetson board. Thus, JetPack asks what is the layout of
the network to transmit the data. Select Device accesses internet via houter/switch. and click Next, as the image:

80 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

JetPack then asks you to put the Jetson board in the Recovery Mode, by powering down the device (in case Jetson is
on), connecting the micro-USB cable in the recovery port and in the USB of the local host, pressing and holding the
REC button while turning the board on, as the image:

3.6. NVIDIA Jetsons Boards 81

Platypus Boat Documentation, Release 0.1

In order to check if the Jetson board is set in recovery mode, open the terminal in the local host and type:

$ lsusb

If the board is in revery mode, you should see the Jetson listed as NVidia (ID 0955:7c18 NVidia Corp.) in the output,
as the image:

82 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

If you don’t see the Jetson using lsusb, then the device will not be flashed. In case the Jetson appears in lsusb,
return to the screen with the instructions and press Enter to start flashing the OS image in the board.

References

Robot Operating System (ROS) on Jetson TX2

Robot Operating System (ROS) is an open-source, meta-operating system for your robot. It provides the services
you would expect from an operating system, including hardware abstraction, low-level device control, implementa-
tion of commonly-used functionality, message-passing between processes, and package management. It also provides
tools and libraries for obtaining, building, writing, and running code across multiple computers. The ROS runtime
“graph” is a peer-to-peer network of processes (potentially distributed across machines) that are loosely coupled using
the ROS communication infrastructure. ROS implements several different styles of communication, including syn-
chronous RPC-style communication over services, asynchronous streaming of data over topics, and storage of data on
a Parameter Server1.

The primary goal of ROS is to support code reuse in robotics research and development so you can find a built-in
package system. It is interesting to note that although ROS contains Operation System in the name, keep in mind that
ROS is not an OS, a library, or an RTOS, but a framework using the concept of an OS. A good introduction is given in
the freely available book named A Gentle Introduction to ROS by Jason O’Kane. The ROS Wiki also contains lots of
tutorials to introduce you to its main concepts.

1 ROS Introduction

3.6. NVIDIA Jetsons Boards 83

https://www.cse.sc.edu/~jokane/agitr/agitr-letter.pdf
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/Introduction

Platypus Boat Documentation, Release 0.1

Installing ROS in Jetson TX2

JetsonPack for Jetson TX2 is based on Ubuntu 16.04 and thus, the ROS version to install is named Kinetic. In order to
install the ROS package, you can run the installROS.sh file as:

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/jetson/TX2/scripts/installROS.sh
$ chmod +x installROS.sh
$./installROS.sh

This script installs ROS Kinetic Desktop and the Point Cloud Library.

Creating Catkin workspace to run ROS

Catkin packages can be built as a standalone project, in the same way that normal cmake projects can be built, but
catkin also provides the concept of workspaces, where you can build multiple, interdependent packages together all at
once. A catkin workspace is a folder where you modify, build, and install catkin packages2. In order to create a Catkin
workspace, you should download and run the file createCatkin.sh as:

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/jetson/scripts/createCatkin.sh
$ chmod +x createCatkin.sh
$./createCatkin.sh

This script creates a structure in the home folder with the root workspace set in /home/ubuntu/catkin_ws.

Installing vision_opencv in ROS

By default, ROS has support to native OpenCV. However, when trying to compile a C++ code with a call to
cv_bridge, the following error

Error: make[2]: *** No rule to make target ‘/usr/lib/arm-linux-gnueabihf/libopencv_videostab.so.2.4.8’. Stop.

In order to get rid of the error, we have to compile vision_opencv in our Catkin workspace. Hence, the first step is
to clone the Indigo version of vision_opencv into the catkin_ws/src folder. Then, we have to compile the
workspace, by running:

$ cd ~/catkin_ws/src
$ git clone https://github.com/ros-perception/vision_opencv.git
$ cd vision_opencv/
$ git checkout kinetic
$ cd ../..
$ catkin_make

Next time you compile a C++ code that contains a call to cv_bridge, no errors should appear.

Testing ROS installation

To check if the ROS is installed correctly, run:
2 Catkin Workspaces

84 Chapter 3. Summary

http://wiki.ros.org/vision_opencv
http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces

Platypus Boat Documentation, Release 0.1

$ roscore

And see it starts running correctly. In case of problem, you can check the log files by running:

$ roscd log

References

3.6.3 References

3.7 Boat Configuration

Here we describe the settings to perform on the boat in order to test it in the water.

3.7.1 Tablet Emulator

Some Platypus LLC boats are configured to work with two cellphones: one to control the path of the boat and the other
to receive the information of the path and transmit to the eboard. Here we change the cellphone that send controls to
the boat by an emulator, and thus, we need only the cellphone to receive the commands and control the boat. Here, our
steps are based on the Android SDK emulator using the version 7.0 (Android Nougat) with Google API Intel Atom
CPU/ABI.

Downloading and Installing the Emulator

Android SDK emulator can be download directly from Android site using wget. After downloading, extract the
content in the folder of your preference and add the paths to the tool folder in .bashrc file as:

$ wget http://dl.google.com/android/android-sdk_r20-linux.tgz
$ tar -zxvf android-sdk_r20-linux.tgz
$ mv android-sdk-linux /home/
$ echo "export PATH=$PATH:$HOME/android-sdk-linux/tools" >> .bashrc
$ source ~/.bashrc

Having the SDK installed, you should update it and download the API 24 corresponding to the Android version 7.0.
Although the many options you have to install the API support, you can download only the SDK and the Google API
Intel Atom CPU/ABI. In order to download the corresponding SDK you may type:

$ android

This command opens a window with options to download. Inicially, the API 24 to Android will not appear in the op-
tions, but you can update the current Android SDK tools and Android SDK Platform-Tools and restart
the application up to appear in the screen the newest versions of the APIs. The resulting screen seems like the picture
below:

3.7. Boat Configuration 85

https://www.android.com/versions/nougat-7-0/

Platypus Boat Documentation, Release 0.1

After installing the SDK, you have to create the Android Virtual Device (AVD). You can do that by typing:

$ android avd

And a window to create AVDs appears. On this window, select Create... and a screen to create an AVD will
appear. On this screen, create an AVD name and select Nexus 10 as device, Android 7.0 - API Level 24
as Target, Google API Intel Atom as CPU/ABI, No skin in Skin, set a value to SD Card and finally check
the Use Host GPU in emulation options in order to increase the processing speed. Following these steps you have
a screen filled as follows:

86 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Clicking in OK will create a AVD in your hard drive that you can access next time as the picture shows:

3.7. Boat Configuration 87

Platypus Boat Documentation, Release 0.1

If everything goes right, you can select your AVD and Start.... Android emulator will start and finally a screen
will appear like:

88 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Error: When loading the AVD (Boat) may appear an error sh: 1: glxinfo: not found.

In case the sh: 1: glxinfo: not found error appear, you have to install mesa-utils via apt-get
by using:

$ sudo apt-get install mesa-utils

Installing and Configuring Platypus Control

Platypus Control is the app responsible to send the commands to the boat indicating the paths it should follow, as well
as controlling the boat with a joystick. The code of this app can be download and compiled from Github official site
using Android SDK, but in order to simplify this process, you can download the apk direclty from our repository using
wget as:

$ wget --no-check-certificate --content-disposition https://raw.githubusercontent.com/
→˓lsa-pucrs/platypus_doc/master/docs/source/boat/scripts/tablet.apk

Send the apk to the emulator and install it. In order to send the apk to the emulator, just drag and drop the file inside
the emulator. If it was successful, the app will appear in the list of installed apps as presented in the picture:

3.7. Boat Configuration 89

https://github.com/platypusllc/tablet

Platypus Boat Documentation, Release 0.1

In the next step we have to set the permissions to the app work, otherwise you cannot open the app. In order to set
the permissions, go to Settings -> Apps -> Platypus Control. In App Info select Permissions. In
the permissions window, slide to the right all options Location, Phone and Storage. The sequence of steps is
presented in the pictures:

90 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

3.7. Boat Configuration 91

Platypus Boat Documentation, Release 0.1

92 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

3.7. Boat Configuration 93

Platypus Boat Documentation, Release 0.1

With all permissions set, you can open the Platypus Control app. If everything is fine, you should see a screen like:

94 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

3.7.2 Setting Up the eBoard

Warning: @ To be done by Roger

Hardware Description

Installing the Firmware

Testing

3.8 Preparations for the Field Test

Field testing is all about preparation, prior testing, and forseen possible failures. Failing to follow these steps will
certainly cause alot of wasted time, effort, money (transportation fuel, admission fees, cost of lunch, etc).

Warning: @ To be done by Roger and Amory

3.8. Preparations for the Field Test 95

Platypus Boat Documentation, Release 0.1

3.8.1 Before Packing up for the Field Test

• make sure the goal of the test is clear for every one involved. The goal will determine which materials must
be carried to the testing field, the time required for settiing up the boat, etc. Example of goals: take images of
obstacles, test visual odometry, take gps and imu readings, take water samples, use the water probes, perform a
bathymetry survey, etc.

• prepare a check list of materials to carry on the field test. You will waste the entire effort if, for instance, you
forget to carry the laptop power adaptor, power extension cord, etc.

• setup the boat according to the mission of the field test

• test the boat on the lab and outside the lab. for instance, in the campus

• check the weather forecast one day before the planned date. Dont waste your time if there is a slightly chance
of rain and wind. In addition, you will put the Lab‘s resources at risk.

• one day before, let all the baterries been carried

• you will need a NF to carry the resources out of the campus

3.8.2 Packing up for the test

• use appropriate boxes to carry the materials. cardboard boxes will probably not survive the handling and you
might loose materials due to wholes on the boxes.

• separate the materials according to its costs, and/or fragility. Those materials you dont want to place them under
other heavy materials.

• use your checklist

• for heavy or big materials, you could you LSA‘s cart localted in the 3rd floor of P32.

• dont forget to carry protective materials againts mosquitos, sun burn, etc. Use appropriate shoes (they might get
wet), and light clothes (you are going to sweet carrying all the materials)

• check the battery of everything: laptops, eletronics, etc

3.8.3 On the test field

• first choose an appropriate place with the following caracteristics: protected from the sun, not so many people
passing around, etc

• make sure you have a backup plan to rescue the boats, like a kaiak, a swimmer (use life jacket or any buoyancy
device!)

• setup the power cord and the battery chargers

• check the GPS reception

• double check the batteries

• setup the wifi and any other RF communication system (antennas, signal boosters)

• setup the external access to the boat using the laptops

• test the boats on the margins

• place at the margin an drive around for about 5 min. If you are confident of it, start the planned test

Good luck !

96 Chapter 3. Summary

Platypus Boat Documentation, Release 0.1

Setting Up Wireless Communication in the Field

Warning: @ To be done by Davi

Resources Available

list here the types of antennas and signal boosters availabe at the lab.

Setting up Antenna XYZ

Setting up Antenna ABC

3.9 LSA Contributors

The list of contributors to this document.

• @Alexandre Amory

• @Roger

• @Renan

• @Marcelo

• @Davi

• @Beltrano com webpage

3.10 Boat Applications

describe here the applications developed for the boats

3.10.1 Path Coverage

describe here the applications developed for the boats

Warning: @ To be done by Marcelo

3.10.2 Boat Control

describe some simple control method for the boat

Warning: @ To be done by Davi

3.9. LSA Contributors 97

https://amamory.github.io/
https://github.com/Amahmoud1994

Platypus Boat Documentation, Release 0.1

3.10.3 Beacon Based Localization

describe here the setup pf the localization method proposed by Renan

Warning: @ To be done by Renan

98 Chapter 3. Summary

CHAPTER 4

Disclaimer

The purpose of this document is for the use of LSA group only, but we open it in case it can be usefull for someone
else. Thus, we dont fill obliged to give any technical support, although we might help in some special situations. In
addition, we are not associated with Platypus LLC.

Everything you find here is without absolutly no waranty and I’m not responsible for any inconveniences or issues that
might occurs.

99

http://senseplatypus.com/

Platypus Boat Documentation, Release 0.1

100 Chapter 4. Disclaimer

CHAPTER 5

Feedback

Don’t hesitate to ask about some additional info or next guides and also if you find some mistakes, please let me know.
This can be done by submitting an issue or a push request on github.

101

	About the Boats
	Autonomous Systems Laboratory - PUCRS
	Summary
	Getting Started
	Bill of Materials for the Boats

	ROS Quick Start Tutorials
	ROS Background
	ROS Programming
	Turtlesim Cleaning Application

	GAMS/MADARA Quick Start Tutorials
	GAMS/MADARA Background
	Algorithms
	GAMS/MADARA Project manipulation
	GAMS/MADARA Programming Basics
	GAMS/MADARA Compilation
	GAMS/MADARA Simulation

	Raspberry Pi
	Image Handling
	Setting Up the OS
	Installing ROS
	Installing GAMS/MADARA to the Raspberry Pi
	Hooking Up Peripherals to the Raspberry Pi
	Video Streaming Tutorials
	Thorough Tests for the Board

	ODROID XU4
	Download Image
	Write the Image to the SDCard
	Write the Image to the eMMC memory
	Backing up Image from the eMMC memory
	Setting Up ROS
	Setting Up GAMS/Madara
	Setting Up Peripherals

	NVIDIA Jetsons Boards
	Jetson TK1 Module
	Jetson TX2 Module
	References

	Boat Configuration
	Tablet Emulator
	Setting Up the eBoard

	Preparations for the Field Test
	Before Packing up for the Field Test
	Packing up for the test
	On the test field

	LSA Contributors
	Boat Applications
	Path Coverage
	Boat Control
	Beacon Based Localization

	Disclaimer
	Feedback

