

    
      
          
            
  
Welcome to Platform Migrator’s documentation!

Platform migrator is a tool which helps with migrating software from system to
another. Its main aim is to ease the process of installing dependencies
required for the software. It interfaces with various package managers to
install the required dependencies and runs tests to identify whether the
installation was succesful or not.


Contents:


	Platform Migrator Introduction
	Installation

	Execution

	Supported Package Managers





	CLI Usage
	Command line arguments and options

	Environment variables





	Tutorials
	Migrating from conda to conda

	Configuring an alternate package manager

	Migrating from conda to a different package manager(s)





	Package manager config file

	Writing test configuration files
	Software sections

	Test sections





	Case Studies
	Hello World

	scikit-learn and scikit-image

	Configuring apt-get

	OpenAlea





	Process Internals
	Internal data and files

	Starting the server

	Probing the base system

	Running a migration





	Future work

	Source Code Documentation
	Main module

	Server module

	Migrator module

	Package manager module

	Base system script













          

      

      

    

  

    
      
          
            
  
Platform Migrator Introduction

Platform migrator is a tool which helps with migrating software from system to
another. Its main aim is to ease the process of installing dependencies
required for the software. It interfaces with various package managers to
install the required dependencies and runs tests to identify whether the
installation was succesful or not.

For platform migrator, a system is defined by a set of package managers that
can install software. So, two package managers on the same physical machine
(eg. conda and apt) are considered different systems. The two systems could
also be different OSes or running in a VM. As long as there is a package
manager available and the systems can connect over the network, platform
migrator can port software across them. The rest of the documentation uses
the terms base system and target system to refer to these systems:


	base system

	This is the system on which the software is currently installed within a
conda environment. The current version of platform migrator requires that
there is a conda installation which can provide the list of packages used
by the software. The software itself also must be available in an
executable form, either as a compiled object or as source code.



	target system

	This is the system to which the software will be migrated. Platform
migrator should be installed on this system. Conda is not required on this
system, but there must be some package manager present that the user can
use to install software.





The base system and the target system must be able to connect with each other
over a network through HTTP.


Installation

Platform migrator requires Python >= 3.5 to be available on the target system.
It can be installed directly from pip on the target system

pip3 install --user platform-migrator





Or, if you want to install a development version

pip3 install --user git+ssh://git@gitlab.com/mmc691/platform-migrator.git





If pip is not available, it can be installed by cloning the git repository or
downloading a zip file from Gitlab repository [https://gitlab.com/mmc691/platform-migrator]
and executing

python3 setup.py install --user








Execution

This provides a basic overview of how platform migrator works. See the
tutorials and the internals documentation for the full details on how to use
platform migrator.

The whole process is executed in 4 main steps:


	Start the server on the target system with platform-migrator server start.
This starts an HTTP server which by default listens on localhost:9001.


	On the base system, execute the following on the command line:

curl http://<server-name>:<server-port>/migrate > script.py
python script.py





The server name and port are the hostname and port on which the server on
the target system is listening. See base_sys_script
documentation for details on what the script does.



	Generate the test configuration file on the target system. See the
Writing test configuration files section on how to do this.


	Run platform-migrator migrate <name> <config> on the target system.
See the Tutorials and Case Studies section for detailed description
about this step.




If the migration was successful, the software will be saved in the configured
output directory.




Supported Package Managers

Out of the box, platform migrator supports conda as a package manager on any
OS. If you wish to use platform migrator only with conda, you can skip this
section. For Linux distros, pip, pacman, apt-get and aptitude are also
supported out of the box. For Mac OS, pip is supported out of the box. For
Windows, pip is supported in a POSIX shell environment like Cygwin.

In case of pip, pip2 and pip3 options are provided as well to explicitly use
pip for a specific Python version. Using pip as the package manager will
default to whichever version of pip is installed as the default. The other
version of pip must be installed before it can be used.

However, platform migrator allows you to configure your own package manager if
you do not wish to use any of the package managers listed above. See
Package manager config file and Configuring an alternate package manager for complete
instructions for that.







          

      

      

    

  

    
      
          
            
  
CLI Usage


Command line arguments and options

Platform migrator executes in server mode or in migrate mode. In server mode,
it accepts commands to control the HTTP server, and in migrate mode, it tries
to migrate a software.

The usage for server mode is

platform-migrator server [-h] [--host HOST] [--port PORT] {start,stop,status}

commands:
  start                Starts a simple http server on specified host and port
  stop                 Stops the currently running server
  status               Prints whether a server is currently running or not

optional arguments:
  -h, --help           show this help message and exit
  --host HOST          Hostname or IP address to listen on (Default: localhost)
  --port PORT          Port number to listen on (Default: 9000)





The usage for migrate mode is

platform-migrator migrate [-h] [--skip-tests] [--pck-mgr-configs PCK_MGR_CONFIGS] name test_files [test_files ...]

positional arguments:
  name                  Name of package to migrate
  test_files            One or more test configuration files for migration

optional arguments:
  -h, --help            show this help message and exit
  --skip-tests          Skip tests but install dependencies and copy files
  --pck-mgr-configs PCK_MGR_CONFIGS
                        Config file for additional package managers








Environment variables

Platform migrator uses CONDA_HOME or CONDA_ROOT_DIR environment variables to
determine the location of conda installation. These should point to the top
level directory under which conda is installed. So, if conda is installed in
the home directory of user bob, the value for either variable should be
/home/bob/anaconda.







          

      

      

    

  

    
      
          
            
  
Tutorials

The following tutorials describe some use cases of platform migrator in moving
software from one system to another.


Migrating from conda to conda

This is the simplest and most straightforward use case of platform migrator.
The requirements for this use case are:


	Software to be migrated

	
	The software must be in an executable format (either binary or source
code)


	There should be a set of tests that can be run to determine whether the
software works as intended or not.






	Base System

	
	The base system must contain a dedicated conda environment for the
software. This may be the conda root environment.


	Access to internet






	Target System

	
	The target system must be a system where the user can install or has
already installed conda. The tutorial will cover installation of conda.


	Access to internet









Preparing the target system

First, install platform migrator on the target system as per the instructions
in Installation. There is no need for any configuration in this use case.

Next, go to Anaconda installation page [https://conda.io/docs/user-guide/install/index.html]
and install the version of conda for your target system. You can skip this if
you already have conda installed on the target system.

Start the platform migrator server by executing

platform-migrator server --host 0.0.0.0 start





This will start a simple HTTP server which listens on all IP addresses and port
9001. If you wish to listen only on a particular IP address and port, use the
--host and --port options to change them. Regardless, you should note
the IP address of your target system. On Linux or Mac, this can be obtained by
running ifconfig in a terminal and using the IP address on an interface other
than the loopback interface, lo. On Windows, this can be obtained by running
cmd and typing in ipconfig. Note the IP address of use on the base system.




Transferring the software

Now, on the base system, download a python script from the target system by
running

curl http://<IP-address-of-target-system>:9001/migrate > script.py





If curl is not available, activate the conda root environment on the base
system and run the following code in a python interpreter

import requests
resp = requests.get('http://<IP-address-of-target-system>:9001/migrate')
with open('script.py', 'w') as fp:
    fp.write(resp.text)
exit()





The script is a Python script generated on the target system and it contains
some procedures to probe the conda environment for the packages installed and
to transfer the software and settings over to the target system.

Make sure that the conda executable is on the PATH of the shell. If it is not,
run export PATH=$PATH:/path/to/conda/bin to add it to the PATH variable.
Now, activate the conda environment that is used by the software to be
migrated and run python script.py and follow the prompts on screen. The
script will ask you to enter the name of the software and the directory under
which the source code is saved, if everything goes well.




Installing and testing on the target system

Open up a text editor and create a test configuration for the software. A
minimal test configuration would look like

[<software-name>]
package_managers = conda
output_dir = <directory-where-you-want-to-save-the-software>
tests = <test-name0>, <test-name1>

[test_<test-name0>]
exec = <command-to-run-test0>

[test_<test-name1>]
exec = <command-to-run-test1>





The <software-name> should be replaced by the name used on the base system.
The output_dir should be an absolute path to the directory where the
software must be saved post migration. The tests option contains a comma
separated list of tests that should be run on the software. For each test in
this list, there must be a corresponding test_<name> section which contains
a exec option containing the command to execute. This command must return 0
on success and any other value on failure. The command will be run from inside
the directory in which software is installed and can use paths relative to that.

So, for example, a test called foo executes a script called tests/foo.sh
inside the software, the test configuration will look like

[<software-name>]
package_managers = conda
output_dir = /tmp
tests = foo

[test_foo]
exec = bash tests/foo.sh





See Writing test configuration files for the complete documentation on this.

Once the tests have been configured, execute

platform-migrator migrate <software-name> <tests-config-file-name>





Platform migrator will create a new conda environment called <software-name>
and run the tests for the software there. If the tests pass, the software will
be copied into the output directory. Otherwise, the error message from the tests
will be displayed on screen and the environment will be destroyed.




Installing without any tests

In case there are not tests available, you use the --skip-tests option and
platform migrator will create a conda environment and copy the files to the output
directory. A configuration file is still required but it need not contain any
tests.






Configuring an alternate package manager

This tutorial walks you through another essential part of platform migrator,
which is configuring it to use a package manage other than conda. These
additional package managers can be added to the default file in
~/.platform-migrator/config/ on POSIX OSes. For Windows, replace ~
with the user’s home directory.

Open up the package-managers.ini file in a text editor. The file contains
the documentation of the file along with some sample package managers. These
package managers are supported out of the box on Linux distros, but not on Windows
and Mac. On Windows, you will probably need Cygwin or some other POSIX shell
utility for these to be actually useful.

To add a new package manager to the file, create a new section. The section name
will be used in the list of package managers in the test configuration file during
the migration process, so keep the indicative of the package manager. Typically,
this would be the name of the executable of the package manager.

In the section, add the following options and their values as described:


	name

	The actual name. This is only for your benefit and not used by platform
migrator.



	exec

	The executable of the package manager used on the command line



	install

	The command used to install a package where the package name will be
at the end of the command.



	install_version

	The command used to install a specific version of package.



	search

	The command used to search the package manager for packages. This will
typically require some further text manipulation since most package
managers tend to provide human readable output rather than machine
parseable output.



	result_fmt

	A regular expression describing the results of the search.





Read the Package manager config file for details on how the values of
each option should be written. An example of Configuring apt-get is also
provided in the Case Studies section.

If you do not wish to edit the default file, you can save your configuration in
a separate .ini file in the ~/.platform-migrator directory and use it in
addition to the default file by using the
--pck-mgr-configs ~/.platform_migrator/<filename>.ini option during
migration.




Migrating from conda to a different package manager(s)

This is a more complex migration which requires some input and knowledge on
the user’s end about the software being migrated.
The requirements for this use case are:


	Software to be migrated

	
	The software must be in an executable format (either binary or source
code)


	There should be a set of tests that can be run to determine whether the
software works as intended or not.






	Base System

	
	The base system must contain a dedicated conda environment for the
software. This may be the conda root environment.


	Access to internet






	Target System

	
	The target system must contain one or more package managers and platform
migrator must be configured to use them.


	Access to internet









Preparing the target system

First, install platform migrator on the target system as per the instructions
in Installation. Follow the tutorial in Configuring an alternate package manager and configure a
new package manager. Further instructions will assume that the package manager
has been configured in a separate file called ~/.platform-migrator/site-pkg-mgrs.ini

Start the platform migrator server by executing

platform-migrator server --host 0.0.0.0 start





This will start a simple HTTP server which listens on all IP addresses and port
9001. If you wish to listen only on a particular IP address and port, use the
--host and --port options to change them. Regardless, you should note
the IP address of your target system. On Linux or Mac, this can be obtained by
running ifconfig in a terminal and using the IP address on an interface other
than the loopback interface, lo. On Windows, this can be obtained by running
cmd and typing in ipconfig. Note the IP address of use on the base system.




Transferring the software

Now, on the base system, download a python script from the target system by
running

curl http://<IP-address-of-target-system>:9001/migrate > script.py





If curl is not available, activate the conda root environment on the base
system and run the following code in a python interpreter

import requests
resp = requests.get('http://<IP-address-of-target-system>:9001/migrate')
with open('script.py', 'w') as fp:
    fp.write(resp.text)
exit()





The script is the same as the one used for the conda to conda migration.

Make sure that the conda executable is on the PATH of the shell. If it is not,
run export PATH=$PATH:/path/to/conda/bin to add it to the PATH variable.
Now, activate the conda environment that is used by the software to be
migrated and run python script.py and follow the prompts on screen. The
script will ask you to enter the name of the software and the directory under
which the source code is saved, if everything goes well.




Installing and testing on the target system

Open up a text editor and create a test configuration for the software. A
minimal test configuration would look like

[<software-name>]
package_managers = <site-package-manager0>, <site-package-manager1>
output_dir = <directory-where-you-want-to-save-the-software>
tests = <test-name0>, <test-name1>

[test_<test-name0>]
exec = <command-to-run-test0>

[test_<test-name1>]
exec = <command-to-run-test1>





The package_managers option is a comma-separated list of the package
managers that will be used by platform-migrator for installing the
required packages. The package managers are used in the order entered, so
<site-package-manager0> is probed before probing <site-package-manager1>.
The <software-name> should be replaced by the name used on the base system.
The output_dir should be an absolute path to the directory where the
software must be saved post migration. The tests option contains a comma
separated list of tests that should be run on the software. For each test in
this list, there must be a corresponding test_<name> section which contains
a exec option containing the command to execute. This command must return 0
on success and any other value on failure. The command will be run from inside
the directory in which software is installed and can use paths relative to that.

So, for example, a test called foo executes a script called tests/foo.sh
inside the software and the site runs Archlinux with pip installed on it, the
test configuration will look like

[<software-name>]
package_managers = pacman, pip
output_dir = /tmp
tests = foo

[test_foo]
exec = bash tests/foo.sh





Once the tests have been configured, execute

platform-migrator migrate --pck-mgr-configs site-pkg-mgrs.ini <software-name> <tests-config-file-name>





Platform migrator will prompt the user for each package that needs to be
installed based on the conda environment. For each package, there will be an
option to skip the installation using that package manager. In this case, the
next package manager will be probed, or the package will not be installed in
case there are no further package managers to probe. If a package is not found
in any of the package managers, the user will be asked whether the installation
should be continued or not. After all packages are selected for installation,
each package will be installed individually. Hence, a failure in the
installation of one package will not prevent other packages from being
installed. Once all the packages are installed, the tests will be executed and
if succesful, the software will be copied to the output directory.




Installing without any tests

In case there are not tests available, you use the --skip-tests option and
platform migrator will follow the above process for installing the packages and
copy the software over to the output directory, if the installations were
completed succesfully.









          

      

      

    

  

    
      
          
            
  
Package manager config file

A package manager is configured in a .ini file. One file can contain multiple
package managers.

Each package manager is a section and must contain the following keys:



	name

	The name of the package manager. This can be any string.



	exec

	The package manager executable. If empty, it defaults to the
package manager name.



	install

	An install command which takes the package name as the argument.
Wildcard %p can be used to indicate the position of package name in
the string. Otherwise, it is assumed that the package name is to be
added to the end.



	install_version

	An install command which takes package name and version
as arguments. Wildcards %p and %v can be used in a format string to
indicate the position of the package and version respectively.



	search

	A search command which takes the search expression an input.
Wildcard %s can be used to indicate position of the search expression.
Otherwise, it is assumes that the expression should go at the end.



	result_fmt

	A Python regexp which will match individual lines in the
output returned by the search command. Wildcards %p and %v must be
used to indicate the package name and version.








The commands can have the following substitution parameters:



	%e

	The package manager executable defined in the same section. It may
be used only in the search, install or install_version
options. If this is not present in the option, the command will be
executed as is.



	%p

	The package name. It must be used in the install_version and
in result_fmt otherwise the options are invalid. It may also be
used in the install option, otherwise it will be appended to the
the install option by default. It is not valid in other options.



	%s

	A search string. It may be used only in the search option and
will be appended by defualt if not provided.



	%v

	The package version. It must be used in the install_version
otherwise it is invalid. It may also be used in the result_fmt
option. It is not valid in any other option.












          

      

      

    

  

    
      
          
            
  
Writing test configuration files

This describes how to write a test configuration file for a package migration.
The test configuration can contain tests and settings for multiple software or
multiple test configuration files can be used for a particular software.

In other words, multiple test configurations files are read by platform
migrator as if they were one file and only those sections which are applicable
to a particular software are used.

There are two main types of sections, software sections and test sections. Test
sections have names starting with test_. All other sections are treated as
software sections. A special secction [DEFAULT] may be used to create some
default options for each software like package manager names and output
directory location.


Software sections

A software section is named after the software being migrated and contains the
following options:

[<software-name>]
package_managers = <pkg-mgr0>[, <pkg-mgr1>, ...]
output_dir = /an/absolute/path
tests = <test0>[, <test1>, ...]





The package_managers options is a comma separated list of package managers
that will be used for migrating that particular software. These package manager
names must correspond to section names in the package manager configuration
files being used for the migration.

The output_dir is an absolute path to the location where the software
should be saved.

tests contains a comma separated list of tests for the software. They must
be test section names without the test_ prefix and the test sections must
be in one of the test configuration files being used for the migration.




Test sections

A test section contains only one option, exec:

[test_<test0>]
exec = python some_script.py

[test_<test1>]
exec = ~/test-script.sh





The option must be a command that can be executed by the default shell or an
executable shell script. Any paths in the command must be relative to the
directory which contains the software being migrated or an absolute path. So,
some_script.py should be directly inside the software’s top level directory
while test-script.sh is in the home directory.

If the command returns 0 upon execution, the test is considered successful,
otherwise it is considered a failure. The output from the tests is always
printed out on the terminal.







          

      

      

    

  

    
      
          
            
  
Case Studies

All cases below have been run using conda version 4.3 or above. The cases where
the target system is not conda are only recommended for expert users since the
system-wide packages may need to be installed and user needs to be aware of
what packages to install.


Hello World

This is a basic use case which demonstrates how you can migrate simple script
from one platform to another. The script used for migration is a simple Python
script that prints ‘Hello world’ and is located at tests/basic-migration/simple-app/simple_app.py
in the git repository [https://gitlab.com/mmc691/platform-migrator/].

Two different scenarios, one where the target system is conda and one where
the target system is Archlinux were run. The base system used was an Ubuntu
16.04 OS running inside VirtualBox, but it can be any system running conda and
bash shell. Miniconda3 was installed on the base system by following the
instructions at the
Anaconda installation page [https://conda.io/docs/user-guide/install/index.html]


Target system with conda

First, a conda environment was created on the base system with

~/miniconda3/bin/conda create -n simple-app python=3
. ~/miniconda3/bin/activate simple-app





The script was created in the home directory with

mkdir -pv simple-app
echo "print('Hello world')" > simple-app/simple_app.py





On the target system, the platform migrator was installed and the server was
started with

pip3 install --user git+ssh://git@gitlab.com/mmc691/platform-migrator.git
platform-migrator server --host <IP-address> start





Now, back on the base system, the script was transferred with

curl http://<IP-address>:9001/migrate > script.py
python script.py





When prompted, for the application name, simple-app was entered, and for the
directory, simple-app was entered.

After this, on the target system, a test configuration was created with the
below contents and saved as test-config.ini

[simple-app]
package_managers = conda
output_dir = /tmp
tests = hello-world

[test_hello-world]
exec = python simple_app.py





Platform migrator was then executed with the following command

CONDA_HOME=~/miniconda3 platform-migrator migrate simple-app test-config.ini





It was verified that the package is available in /tmp by executing

ls -l /tmp
ls -l /tmp/simple-app








Target system with pacman

The initial steps of installing conda on the base system and platform migrator
on the target system were completed as described above. The script was also
transferred to the base system using curl command and was executed. However, on
being prompted for the application name, simple-app-pacman was entered to
avoid conflicts with the previous case. On the target system, the previously
created test-config.ini was edited and the following content was added to
it

[simple-app-pacman]
package_managers = pacman
output_dir = /tmp
tests = hello-world





Platform migrator was then executed with the following command

platform-migrator migrate simple-app-pacman test-config.ini





Since the script only requires Python, all packages other than python were
skipped from installation. The tests were run and it was verified that the
software was available in /tmp with

ls -l /tmp
ls -l /tmp/simple-app-pacman





This use case is available as a regression test in the git repository as
tests/basic-migration/test_simple_app.py and the test config file is
available as  tests/basic-migration/test-config.ini. The regression test
uses two different conda environments on the local machine instead of a VM or
a remote machine.






scikit-learn and scikit-image

Similar to the Hello World case, this case was run from an Ubuntu 16.04 VM
system, once with conda and once with pacman and pip as the target package
managers.

The script used for the software is available as tests/basic-migration/scikit-app/scikit_app.py
in the git repo. It was saved on the base system as ~/scikit-app/scikit_app.py.


Target system with conda

First, a conda environment was created on the base system with

~/miniconda3/bin/conda create -n scikit-app python=2 scikit-learn scikit-image
. ~/miniconda3/bin/activate scikit-app





The script was created in the home directory with

git clone https://gitlab.com/mmc691/platform-migrator
cp -Rv platform-migrator/tests/basic-migration/scikit-app .





On the target system, the platform migrator was installed and the server was
started with

pip3 install --user git+ssh://git@gitlab.com/mmc691/platform-migrator.git
platform-migrator server --host <IP-address> start





Now, back on the base system, the script was transferred using

curl http://<IP-address>:9001/migrate > script.py
python script.py





When prompted, for the application name, scikit-app was entered, and for the
directory, ~/scikit-app was entered.

After this, on the target system, a test configuration was created with the
below contents and saved as test-config.ini

[scikit-app]
package_managers = conda
output_dir = /tmp
tests = scikit-app

[test_scikit-app]
exec = python2 scikit_app.py





Platform migrator was then executed with the following command

CONDA_HOME=~/miniconda3 platform-migrator migrate scikit-app test-config.ini





Since the test is known to fail, this migration throws an error. However, the
conda environment is still created.




Target system with pacman and pip

The initial steps of installing conda on the base system and platform migrator
on the target system were completed as described above. The script was also
transferred to the base system using curl command and was executed. However, on
being prompted for the application name, scikit-app-pacman was entered to
avoid conflicts with the previous case. On the target system, the previously
created test-config.ini was edited and the following content was added to
it

[simple-app-pacman]
package_managers = pip2, pacman
output_dir = /tmp
tests = scikit-app





Since pip is listed before pacman, packages are first searched for in pip and
only if the user decides not to install from pip, are they searched for in
pacman. Also, pip2 was explicitly specified since it is known beforehand that
the code works only for Python 2. This requires that pip2 is installed on the
target system prior to using platform migrator.

Platform migrator was then executed with the following command

platform-migrator migrate scikit-app-pacman test-config.ini





Since the test is known to fail, this migration throws an error. However, the
the selected packages will still be installed.




Target system with aptitude and pip

The initial steps of installing conda on the base system and platform migrator
on the target system were completed as described above. The script was also
transferred to the base system using curl command and was executed. However, on
being prompted for the application name, scikit-app-apt was entered to
avoid conflicts with the previous case. On the target system, the previously
created test-config.ini was edited and the following content was added to
it

[simple-app-apt]
package_managers = pip2, aptitude
output_dir = /tmp
tests = scikit-app





Since pip is listed before aptitude, packages are first searched for in pip and
only if the user decides not to install from pip, are they searched for in aptitude.

Platform migrator was then executed with the following command

platform-migrator migrate scikit-app-apt test-config.ini





Since the test is known to fail, this migration throws an error. However, the
the selected packages will still be installed.

The conda portion of this use case is available as a regression test in the git
repository as tests/basic-migration/test_scikit_app.py and the test config
file is available as  tests/basic-migration/test-config.ini. The regression
test uses two different conda environments on the local machine instead of a VM
or a remote machine.






Configuring apt-get

This case study describes how apt-get package manager was configured in the
config/package-managers.ini file. This is the typical process that should
be followed for configuring a new package manager.

First, a new section called apt-get was created in the config file. Then,
the various options were added without any values.

[apt-get]
name =
exec =
install =
install_version =
search =
result_fmt =





The name and exec options were set to apt-get since the executable
is called apt-get.

The installation of a new package is done using
sudo apt-get -y install <package-name>. So, the install option was set
to sudo %e install. The %e wildcard is replaced by the value in
exec option and the package name is automatically appened to the end of
the command by platform migrator since the %p wildcard is not specified.

To install a specific version of the package in apt-get, - is used as a
delimiter. So, the install_version option was set to
sudo %e apt-get %p-%v and the %p and %v wildcards were used to
specify the position of the package name and version.

Now, packages are searched using the apt-cache command. Since platform
migrator searched using package name and version only, the -n flag is
specified to apt-cache search so that package descriptions are not
searched. However, the results from this still contain a small description
for the package. So, the desccription needs to trimmed using other tools
typically available on OSes which use apt-get. First, the results are
piped into awk with the field delimiter set to ' - '. The spaces
around the hyphen make sure that the package name and description are split
but the version and build string are part of the name. Only the name is
printed out using '{print $1}' command. So, the search command now looks
like apt-cache search -n %s | awk -F ' - ' '{print $2}'. Here, the %s
wildcard replaced by the search expression.

Since the results are now in a format suitable to use for the install command,
each result is treated as a separate package. So, the result_fmt option is
set to %p. The final config section looks like

[apt-get]
name = apt-get
exec = apt-get
install = sudo %e -y install
install_version = sudo %e -y install %p-%v
search = apt-cache search -n %s | awk -F ' - ' '{print $2}'
result_fmt = %p





For other default package managers, a similar process was followed.




OpenAlea







          

      

      

    

  

    
      
          
            
  
Process Internals


Internal data and files

When platform migrator is installed, it creates an internal directory,
.platform_migrator in the home directory of the user. This directory is
stores all data related to the migrations attempted and also acts as the
initial working directory for the process and the server. Platform migrator
does not put any internal data outside this directory unless instructed to
do so otherwise.




Starting the server

When the command platform-migrator server start is executed, the
main module, switches the working directory to
.platform_migrator and executes the script
server as subprocess and exits.

The server script contains
MigrateRequestHandler and
PMServer classes, which are the request
handler and the HTTP server respectively. The request handler implements a
do_GET() method,
which listens for get requests on the /migrate route and a
do_POST(), which
listens for any incoming data on /yml, /min and /zip routes. The
/yml route is to receive the conda environment YAML file from the base
system, /min for the minimal dependencies identified, if any, and /zip
to receive a zip of the software itself.

All three POST routes take a JSON input with two attributes, name and
data, where name contains the name of the software being migrated and
data contains base64 encoded binary data corresponsing to the what the
route takes.

On startup, the server first creates a PIDFILE in the working directory, which
is used to track which PID the server is running as, and also creates a copy of
base_sys_script with the HOST and PORT
variables updated to the value under which the server is running. This script
is returned as the response when /migrate a request is received on
/migrate route. The server now waits for requests.

The server will fail to start in case a PIDFILE already exists. So, only one
instance of the server can be running at any point in time. When the server is
stopped, it deletes the PIDFILE and the script before exiting.




Probing the base system

On the base system, platform migrator probes the conda environment using the
functions in base_sys_script.

The script gets dowloaded to the base system when a request is made to the
platform migrator server on the /migrate path. See the Tutorials for
how to make the request using curl or Python. The script is compatible with
both Python 2 and 3 specifically to allow it to run on older systems that may
not be upgraded to latest version of Python.

When the script is executed, it first tries to identify which conda
environment is active and uses that or prompts the user to enter the name of
a conda environment and tries to source that before. In case the user input
is required, it assumes that the activate shell script provided by conda
is in the current working directory.

Once the conda environment is identified, the script will run the
get_conda_min_deps() function to
identify a closure of conda packages that can be used to minimize the number
of installs on the target system.

It then prompts the user to enter the name of the software and the directory
where it is saved. The conda environment data and the software are zipped up
and sent back to the target system using the POST routes of the server. The
script then exits.




Running a migration

Once the data from the base system has been transferred over, any number of
migration attempts can be made on it using platform migrator. All data gets
saved in ~/.platform_migrator/<software-name>/ directory on the target
system. When platform-migrator migrate <software-name> <test-config> is
executed, the main script parses the command line
arguments and passes them over to the
migrate() function, which is works as a
wrapper to control the Migrator class.

The Migrator class parses the test
config files and creates a new migration id for the job. This migration id is
used to create a new directory for the migration and allows users to perform
multiple attempts for the same software. In future, this may also store
metadata about the attempted migration.


With conda as a package manager

Next, the conda environemnt YAML file is parsed and conda internal packages are
removed. Now, if the test configuration lists conda as one of the package
managers available, platform migrator will just use conda and ignore all other
package managers. A new conda environemnt with the same name as the software is
created and the YAML file is used to install the packages in it.

Now, the software is unzipped inside the migration directory and the tests
configured for the software are run inside a sub-shell with the new conda
environment activated. If multiple tests are configured, each test is run in a
separate sub-shell. All tests are run even if one of the test fails. However,
the migration is marked as an failure if any of the tests fail.

Once the migration is complete, the unzipped software is deleted. If the tests
were succesful, the software is unzipped again in the output directory from the
test configuration.




With external package managers

If conda is not one of the package managers listed in the test configuration,
get_package_manager() is used to
parse the package manager configuration files. The function is a factory
function for creating
:py:class`~platform_migrator.package_manager.PackageManager` objects. Once the
package managers are obtained, each package in the YAML file is searched for
in the package managers and the user is prompted to confirm which of the search
result should be used. If the user does not install any of the offered packages
from any of the package managers, an option to abort the migration is offered.

The searches try to offer the user with as few options as possible by removing
by using stricter search criteria first and only using the relaxed criteria if
there are no results returned. As soon as a search returns results, they are
presented to the user for selection.

Once all the packages have been selected by the user, they are installed one by
one. This is intentionally done so that even if one package fails to install,
other packages can still be installed and tests can be run.

The tests here are run similar to the conda case, except that there is no conda
environment which needs to be activated. Other than that, the same process is
used for running the tests.









          

      

      

    

  

    
      
          
            
  
Future work


	Currently, platform migrator stores history of all migrations done, including
failed attempts. However, the user cannot easily see this and the history is
not used for anything. Work can be done around how this history can be used
to determine systems and packages that are not compatible with each other.
Also, features can be built around querying it.


	More package managers can be added and configured to be available by default.
Also, there can be an option to list the usable package managers available on
the system.








          

      

      

    

  

    
      
          
            
  
Source Code Documentation


Main module




Server module




Migrator module




Package manager module




Base system script

This module runs on the base system as a Python script

The module mainly discovers the existing conda environments and sends
the source code over to the target system for further processing.


	NOTE:

	The script should be compatible with both Python 2 and 3. It will
be executed using whichever version of Python is available using
python command.






	
platform_migrator.base_sys_script.create_zip_file(zip_dir, quiet=False)

	Create a zip file of a directory


	Args:

	
	zip_dir

	The directory to zip







	Kwargs:

	
	quiet=False

	If True, no messages are printed







	Return:

	A bytes buffer containing the zip file data










	
platform_migrator.base_sys_script.get_conda_env(env=None)

	Return the yml file of current conda environment

The function runs a subprocess to get the yml file of the current
conda environment. The results of the subprocess are returned as
a tuple and if the yml file was obtained, it will be index 1 of
the tuple.


	Kwargs:

	
	env=None

	Conda environment to source, if not the currently
active environment.







	Return:

	A tuple whose elements are a boolean indicating whether the
process ran error free, the stdout of the process and the
stderr of the process










	
platform_migrator.base_sys_script.get_conda_min_deps(env, source_env=False)

	Try to create a list of minimal dependencies to install

The function queries the conda environment for all dependencies and
then tries to determine the which dependencies are sub-dependencies of
others. In this way, a minimal list of dependencies is created.


	Args:

	
	env

	The name of the conda environment to query







	Kwargs:

	
	source_env=False

	Boolean indicator whether to source conda env
before getting data or not







	Return:

	A list of conda package objects if succesful, or None
if the conda envrionment could not be loaded










	
platform_migrator.base_sys_script.main()

	Main function that is executed






	
platform_migrator.base_sys_script.send_data(app_name, path, data, name, quiet=False)

	Send data back to the server


	Args:

	
	app_name (str)

	The name of the application



	path (str)

	The path to send data to, without the base address



	data

	Buffer containing the data



	name (str)

	The name to use for the data in messages







	Kwargs:

	
	quiet=False (bool)

	If True, no messages are printed














	
platform_migrator.base_sys_script.send_env_yml(app_name, env_yml, quiet=False)

	Send the environment yml data back to the server


	Args:

	
	app_name (str)

	The name of the application



	env_yml

	Buffer containing the environment yml data







	Kwargs:

	
	quiet=False (bool)

	If True, no messages are printed














	
platform_migrator.base_sys_script.send_min_deps(app_name, min_deps, quiet=False)

	Send a zip of the repository back to the server


	Args:

	
	app_name (str)

	The name of the application



	min_deps (list)

	List containing the minimal required dependencies







	Kwargs:

	
	quiet=False (bool)

	If True, no messages are printed














	
platform_migrator.base_sys_script.send_repo_zip(app_name, zip_file, quiet=False)

	Send a zip of the repository back to the server


	Args:

	
	app_name (str)

	The name of the application



	zip_file

	Buffer containing the zip of the code repository







	Kwargs:

	
	quiet=False (bool)

	If True, no messages are printed



















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       platform_migrator	
       

     
       	
       	   
       platform_migrator.base_sys_script	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | G
 | M
 | P
 | S
 


C


  	
      	create_zip_file() (in module platform_migrator.base_sys_script)


  





G


  	
      	get_conda_env() (in module platform_migrator.base_sys_script)


  

  	
      	get_conda_min_deps() (in module platform_migrator.base_sys_script)


  





M


  	
      	main() (in module platform_migrator.base_sys_script)


  





P


  	
      	platform_migrator.base_sys_script (module)


  





S


  	
      	send_data() (in module platform_migrator.base_sys_script)


      	send_env_yml() (in module platform_migrator.base_sys_script)


  

  	
      	send_min_deps() (in module platform_migrator.base_sys_script)


      	send_repo_zip() (in module platform_migrator.base_sys_script)


  







          

      

      

    

  _static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Platform Migrator’s documentation!
        


        		
          Platform Migrator Introduction
          
            		
              Installation
            


            		
              Execution
            


            		
              Supported Package Managers
            


          


        


        		
          CLI Usage
          
            		
              Command line arguments and options
            


            		
              Environment variables
            


          


        


        		
          Tutorials
          
            		
              Migrating from conda to conda
              
                		
                  Preparing the target system
                


                		
                  Transferring the software
                


                		
                  Installing and testing on the target system
                


                		
                  Installing without any tests
                


              


            


            		
              Configuring an alternate package manager
            


            		
              Migrating from conda to a different package manager(s)
              
                		
                  Preparing the target system
                


                		
                  Transferring the software
                


                		
                  Installing and testing on the target system
                


                		
                  Installing without any tests
                


              


            


          


        


        		
          Package manager config file
        


        		
          Writing test configuration files
          
            		
              Software sections
            


            		
              Test sections
            


          


        


        		
          Case Studies
          
            		
              Hello World
              
                		
                  Target system with conda
                


                		
                  Target system with pacman
                


              


            


            		
              scikit-learn and scikit-image
              
                		
                  Target system with conda
                


                		
                  Target system with pacman and pip
                


                		
                  Target system with aptitude and pip
                


              


            


            		
              Configuring apt-get
            


            		
              OpenAlea
            


          


        


        		
          Process Internals
          
            		
              Internal data and files
            


            		
              Starting the server
            


            		
              Probing the base system
            


            		
              Running a migration
              
                		
                  With conda as a package manager
                


                		
                  With external package managers
                


              


            


          


        


        		
          Future work
        


        		
          Source Code Documentation
          
            		
              Main module
            


            		
              Server module
            


            		
              Migrator module
            


            		
              Package manager module
            


            		
              Base system script
            


          


        


      


    
  

_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





