

Welcome to Plantgl’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 PlantGL	

Index

 P

P

 	
 	PlantGL (module)

PlantGL : The Plant Geometric Library

Module description

Summary

	Version

	2.23.3

	Release

	2.23.3

	Date

	Jun 07, 2019

Overview

PlantGL is an open-source graphic toolkit for the creation, simulation and analysis of 3D virtual plants.

Several methods are provided to create plant architectures from field measurements or from procedural algorithms. Because they reveal particularly useful in plant design and simulation, special attention has been paid to the definition and use of branching system envelops.

PlantGL is design to be :

	Open source : PlantGL is an open source software and can thus be freely used and extended. Providing a standard graphic toolkit to the plant modeling community, it benefits in return of the tests and improvements of users.

	Portable : PlantGL is available on major operating systems (GNU Linux, Microsoft Windows). It is also compatible with various plant modeling systems (L-studio, AMAP, etc.) and graphic toolkits (Pov-Ray, Vrml, etc.).

	Simple : The intended audience is researchers of the plant modeling community with no knowledge in computer graphics. Researchers could create images to illustrate and explore their results.

	Modular : PlantGL is composed of several independent modules like a geometric library, GUI components and Python wrappers. They can be used alone or combined in a specific application.

	Hybrid System : Core computational components of PlantGL are implemented in the C++ compiled language for performance. In addition for flexibility of use, these components are also exported in the Python interpreted language.

Illustrations

[image: fig1] [image: fig2] [image: fig3] [image: fig4]

[image: fig5] [image: fig6]

Documentation

	User Guide

	Reference Guide

Authors

	Frédéric Boudon

	Christophe Pradal

	Christophe Nouguier

With contributions of Christophe Godin, Nicolas Dones, Boris Adam, Pierre Barbier de Reuille.

Related Publications

	PlantGL: A Python-based geometric library for 3D plant modelling at different scales. 2009. C. Pradal & F.Boudon, C.Nouguier, J.Chopard, C.Godin. Graphical Models 71. 2009. https://doi.org/10.1016/j.gmod.2008.10.001

	Déformation asymétrique de houppiers pour la génération de représentations paysagères réalistes, F. Boudon, G. Le Moguedec, Revue Electronique Francophone d’Informatique Graphique (REFIG), 1. 2007.

	Estimating the fractal dimension of plants using the two-surface method. An analysis based on 3d-digitized tree foliage. 2006. F. Boudon, C. Godin, C. Pradal, O. Puech, H. Sinoquet. Fractals, 14c(3) 2006.

Bugs tracking

You can find submit issues in the forum https://github.com/openalea/plantgl/issues

License

OpenAlea.Plantgl is released under a Cecill-C License.

Note

Cecill-C [http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html]
license is a LGPL compatible license.

3. Algorithm library

Contents

	Algorithm library

	Class Inheritance diagram

	openalea.plantgl.algo module

3.1. Class Inheritance diagram

3.2. openalea.plantgl.algo module

PlantGL Library

	1. Math library

	2. Scene Graph library

	3. Algorithm library

	4. GUI library

	5. Extension library

5. Extension library

The ext module contains simple Python extension of PlantGL.

Contents

	Extension library

	openalea.plantgl.ext.absolute_shapes module

	openalea.plantgl.ext.color module

	openalea.plantgl.ext.dresser module

	openalea.plantgl.ext.geom.box module

	openalea.plantgl.ext.geom.color module

	openalea.plantgl.ext.geom.geometrical_concept module

	openalea.plantgl.ext.geom.interface.abstract_geometry module

	openalea.plantgl.ext.geom.nvector module

	openalea.plantgl.ext.geom.point module

	openalea.plantgl.ext.geom.polygon module

	openalea.plantgl.ext.geom.polyhedra module

	openalea.plantgl.ext.geom.segment module

	openalea.plantgl.ext.geom.sphere module

	openalea.plantgl.ext.geom.text module

	openalea.plantgl.ext.geom.tools module

	openalea.plantgl.ext.interactive_mode module

	openalea.plantgl.ext.mesh module

	openalea.plantgl.ext.pgl_utils module

	openalea.plantgl.ext.shape_database module

5.1. openalea.plantgl.ext.absolute_shapes module

5.2. openalea.plantgl.ext.color module

5.3. openalea.plantgl.ext.dresser module

5.4. openalea.plantgl.ext.geom.box module

5.5. openalea.plantgl.ext.geom.color module

5.6. openalea.plantgl.ext.geom.geometrical_concept module

5.7. openalea.plantgl.ext.geom.interface.abstract_geometry module

5.8. openalea.plantgl.ext.geom.nvector module

5.9. openalea.plantgl.ext.geom.point module

5.10. openalea.plantgl.ext.geom.polygon module

5.11. openalea.plantgl.ext.geom.polyhedra module

5.12. openalea.plantgl.ext.geom.segment module

5.13. openalea.plantgl.ext.geom.sphere module

5.14. openalea.plantgl.ext.geom.text module

5.15. openalea.plantgl.ext.geom.tools module

5.16. openalea.plantgl.ext.interactive_mode module

5.17. openalea.plantgl.ext.mesh module

5.18. openalea.plantgl.ext.pgl_utils module

5.19. openalea.plantgl.ext.shape_database module

4. GUI library

Contents

	GUI library

	Class Inheritance diagram

	openalea.plantgl.gui module

4.1. Class Inheritance diagram

4.2. openalea.plantgl.gui module

Plantgl User Guide

	Version

	2.23.3

	Release

	2.23.3

	Date

	Jun 07, 2019

This reference manual details functions, modules, and objects included in
VPlants.Plantgl, describing what they are and what they do. For learning
how to use VPlants.Plantgl see Plantgl Reference Guide.

	1. Quickstart

	2. Tutorial on creation of geometric content

Warning

This “Reference Guide” is still very much work in progress; the material
is not organized, and many aspects of VPlants.Plantgl are not
covered.

1. Math library

Contents

	Math library

	Class Inheritance diagram

	openalea.plantgl.math module

1.1. Class Inheritance diagram

1.2. openalea.plantgl.math module

1. Quickstart

1.1. Scene creation

First, create a scene:

1.2. Create a shape

Then, create a colored shaped, let us say a Cylinder:

See also

tutorial.rst

1.3. Visualize the scene

The colored shape may now be added to the scene and visualize via the Viewer:

Warning

to run the folling commands in ipython, you must use the following option:

ipython –gui=qt

1.4. Output

Finally, it is time to save the results in a PNG file. First, we set the background color and grids:

[image: user/result.png]

1.5. Apply processing

A number of algorithm are defined and can be applied to the geometric representation that have been created.
For instance, to compute the boundingbox of the scene

Numerous algorithms have been implemented as Action that adapt to the specific structure of each scene graph.

1.6. Turtle Geometry

To assemble iterativelly and easily different shapes, the turtle geometry have been introduced in PlantGL. To use it, a turtle object
has to be created that will register the different drwaing actions to produce a final representation. For instance to produce a torus

>>> turtle = PglTurtle()
>>> for i in xrange(12):
>>> turtle.left(30).F(1)
>>> scene = turtle.getScene()
>>> Viewer.display(scene)

Plantgl Reference Guide

	Version

	2.23.3

	Release

	2.23.3

	Date

	Jun 07, 2019

This reference manual details functions, modules, and objects included in
VPlants.Plantgl, describing what they are and what they do. For learning
how to use VPlants.Plantgl see Plantgl User Guide.

	1. Math library

	2. Scene Graph library

	3. Algorithm library

	4. GUI library

	5. Extension library

2. Scene Graph library

Contents

	Scene Graph library

	Class Inheritance diagram

	openalea.plantgl.scenegraph module

	openalea.plantgl.scenegraph.cspline module

	openalea.plantgl.scenegraph.nurbspatch_nd module

2.1. Class Inheritance diagram

2.2. openalea.plantgl.scenegraph module

2.3. openalea.plantgl.scenegraph.cspline module

2.4. openalea.plantgl.scenegraph.nurbspatch_nd module

Turtle Documentation

First Example

>>> from vplants.plantgl.all import *

2. Tutorial on creation of geometric content

2.1. First step

To make these exercises, you must launch ipython with the following option

terminal_linux:~$ ipython --gui=qt

Warning

If you do not use this option, you will certainly have problems if you want to display your results with the viewer.

Now you must import all modules from plantgl

from openalea.plantgl import *

If you have any remark, question, suggestion, critics about this tutorial, send me an email at: chloe.xavier@gmail.com

Now, as the best way to learn is to practice, we will do some exercises. We indicate what is useful in the documentation.

2.2. Exercises

2.2.1. Hello World

	Invoke help on the Box primitive, what are the possible constructor arguments ?

	Look at the plantgl doc on the web [http://www-sop.inria.fr/virtualplants/doc/plantgl-2.6/].

	Create a Sphere of radius 5.

	Display it on the Viewer.

Your result should be :

[image: ../_images/sphere_5.png]

Note

In the viewer, you can change the camera angle by drag and drop, change the light direction by pressing ctrl and drag and drop, and get closer or further by scrolling.

Solution for Hello World

2.2.2. Material

Create a shape with the previous sphere to associate a red material.

Your result should be :

[image: ../_images/red_sphere.png]
Hint : Use Shape and Material.

Solution for Material

2.2.3. Transformation

Create a Sphere centered at point (-2,0,0).

Your result should be :

[image: ../_images/translated_sphere.png]
Hint : Invoke help on Translated.

Solution for Transformation

2.2.4. Scene

Display a scene with two spheres, one red, one yellow, respectively positioned at (-5,0,0) and (-2,0,1).

Your result should be :

[image: ../_images/scene.png]
Hint : Invoke help on Scene.

Solution for Scene

2.2.5. Instantiation

In the previous scene, use the same sphere primitive for the translations. Change the radius of the sphere and observe the effect on the scene.

[image: ../_images/scene2.png]
Solution for Instantiation

2.2.6. Mesh

	Create a square with QuadSet

	Add different colors to the vertices of the square in the quadset

	Create a box with QuadSet with different colors for each face

	Create a box with QuadSet with a different color associated to each point in each face

[image: ../_images/square.png]
[image: ../_images/color_square.png]
[image: ../_images/cube1.png]
[image: ../_images/cube2.png]
Solution for Mesh

2.2.7. Texture and Billboard

	Add texture coordinates to the vertices of the square in the QuadSet to display an image. You can use this image :

[image: ../_images/wood_texture.png]

Hint : Create a Shape with your square as a geometry and ImageTexture as a material.

	Use transparency to display a leaf onto a square . You can use for instance this image :

[image: ../_images/leaf_tex.png]

	Display the wood texture on the square but only a part of the picture (half of its width and height starting from 1/4,1/4).

	Display always the same image (with same orientation!) on the 6 faces of a cube.

	Create a cross like shape with 5 squares using QuadSet and display part of the texture on each square.

You should have as results :

[image: ../_images/tex1.png]
[image: ../_images/tex2.png]
[image: ../_images/tex3.png]
[image: ../_images/tex4.png]
[image: ../_images/tex5.png]
Solution for Texture and Billboard

2.2.8. Discretisation

	Create a QuadSet corresponding to a cylinder

	Create a TriangleSet corresponding to a cylinder

	(Difficult) Create a Sphere as a truncated icosahedron

Your results should be alike this :

[image: ../_images/cyl_quads.png]
[image: ../_images/cyl_tris.png]
Solution for Discretisation

2.2.9. Hulls

	Create python function to display a growing AsymmetricHull

[image: ../_images/asym_hull1.png]
[image: ../_images/asym_hull2.png]
[image: ../_images/asym_hull3.png]
[image: ../_images/asym_hull4.png]

	Create profiles with positive x coordinates with Polyline2D, BezierCurve2D, NurbsCurve2D

[image: ../_images/polyline.png]
[image: ../_images/beziercurve.png]
[image: ../_images/nurbscurve.png]

	Create a Swung hull with previous profiles positioned at different angles between [0;2*pi] to get something like

[image: ../_images/profile_hulls.png]

	Create a circle with Polyline2D.Circle and a closed profile representing silhouette of a tree.

[image: ../_images/hulls_circle.png]

	With these 2 profiles, create an ExtrudedHull to get something looking like :

[image: ../_images/extruded_hulls.png]

Solution for Hulls

2.2.10. Generalized Cylinder

With a circle and 3D line create a branch with an Extrusion. Your result should be something like :

[image: ../_images/branches.png]
Solution for Generalized Cylinder

2.2.11. Positioning objects

	Create a trunk of 2 meter with a cylinder and regular lateral pair of leaves at every 50 cm.
Hints : Use Translated, AxisRotated, EulerRotated, etc.

	Same with size of leaves diminishing.
Hints : Use Scaled.

	Same with a trunk with an elbow of 30 degree in the middle.

[image: ../_images/tree1.png]
[image: ../_images/tree2.png]
[image: ../_images/tree3.png]
Hints : Take care of the order in which the transformations are performed !

Solution for Positioning Objects

2.3. Solutions

2.3.1. Solution for Hello World

The python script to get help on Box is

from openalea.plantgl.all import *

help(Box)
b = Box(1,2,4)
Viewer.display(b)

Thanks to the help, we see that args for initializing a Box are the scaling in all 3 directions x, y and z. We call it and display it to obtain as a result :

[image: ../_images/box.png]
And then to create the sphere of radius 5, we call

from openalea.plantgl.all import *

s = Sphere(5)
Viewer.display(s)

To obtain

[image: ../_images/sphere_5.png]

2.3.2. Solution for Material

To associate a red material to a sphere, the python script is :

from openalea.plantgl.all import *

s1 = Sphere(3)
m = Material("red", Color3(150,0,0))
Shape1 = Shape(s1,m)
Viewer.display(Shape1)

and the resulting image is :

[image: ../_images/red_sphere.png]

2.3.3. Solution for Transformation

To translate a sphere, the python script is :

from openalea.plantgl.all import *

s1 = Sphere()
s2 = Translated(2,0,0,s1)
Viewer.display(s2)

and the resulting image is :

[image: ../_images/translated_sphere.png]

2.3.4. Solution for Scene

To make a scene with two different spheres, the python script is :

from openalea.plantgl.all import *

s = [Sphere() for i in range(2)]
m = [Material(Color3(150,0,0)), Material(Color3(100,150,0))]
s = [Translated(-5,0,0,s[0]),Translated(-3,0,1,s[1])]
shapes = [Shape(sp,m[i]) for i,sp in enumerate(s)]
scene = Scene(shapes)
Viewer.display(scene)

and the resulting image is :

[image: ../_images/scene.png]

2.3.5. Solution for Instantiation

To make a scene with two different spheres from the same sphere primitive, the python script is :

from openalea.plantgl.all import *

s = Sphere(2)
m = [Material(Color3(150,0,0)), Material(Color3(100,150,0))]
s = [Translated(-5,0,0,s),Translated(-3,0,1,s)]
shapes = [Shape(sp,m[i]) for i,sp in enumerate(s)]
scene = Scene(shapes)
Viewer.display(scene)

and the resulting image is :

[image: ../_images/scene2.png]

2.3.6. Solution for Mesh

To get the square with colors to each vertex, the python script is:

from openalea.plantgl.all import *

A list of the coordinates of the square
points = [(-1,-1,0),(1,-1,0),(1,1,0),(-1,1,0)]
A list of colors
colors = [Color4(150,0,0,155),
 Color4(150,150,0,155),
 Color4(0,150,0,155),
 Color4(0,150,150,155)]
A list of directions for the normals
normals = [(0,0,1) for i in range(4)]
A list of indices that set the indices for the quads
indices = [(0, 1, 2, 3)]
Creation of the quadset
carre = QuadSet(points,indices,normals,indices,colors)
Viewer.display(carre)

and the resulting image is:

[image: ../_images/quadset.png]
The list of points indicates the coordinates of the vertices, each tuple of indices indicates which point are used for a specific quad, linked in the given order. We set the normals, indicate colors and associate with indices each color to a different vertex.

Now we compute a cube with a color for each face. The python script is:

from openalea.plantgl.all import *

list of points
points = [(-1,-1,-1), # coordinates of bottom right corner
 (1,-1,-1),
 (1,1,-1),
 (-1,1,-1),
 (-1,-1,1),
 (1,-1,1),
 (1,1,1), # coordinates of top left corner
 (-1,1,1)]

list of indices to make the quads from the points
indices = [(0, 1, 2, 3), # indices for bottom face
 (4, 5, 6, 7), # indices for top face
 (0, 1, 5, 4), #
 (1, 2, 6, 5), # indices for
 (2, 3, 7, 6), # side faces
 (3, 0, 4, 7)] #

list of colors
colors = [Color4(150,0,0,155),
 Color4(150,150,0,155),
 Color4(0,150,0,155),
 Color4(0,150,150,155),
 Color4(0,0,150,155),
 Color4(150,0,150,155)]

construction of the geometry
cube = QuadSet(points,indices)
adding information to the geometry
cube.colorList = colors

list of indices to associate a vertex in a face to a color
here each face will be associated to only one color of the list
cube.colorIndexList = [(0,0,0,0),
 (1,1,1,1),
 (2,2,2,2),
 (3,3,3,3),
 (4,4,4,4),
 (5,5,5,5)]
Viewer.display(cube)

for the result :

[image: ../_images/cube1.png]
We define a list of 8 vertices, then a list of squares using those vertices. Then we define a list of 6 colors, and the color indices allow to associate a color for a vertex in a given square. For the first square, vertex v1 is associated with color 0, for the second square it is associated to color 1, for the third adjacent square it is associated with color 4. If you let colorIndexList to default (to none), a color must be associated to each vertex.

If we want to compute now a cube with, for each face, a color per vertex, we will use the python script :

from openalea.plantgl.all import *

list of points
points = [(-1,-1,-1), # coordinates of bottom right corner
 (1,-1,-1),
 (1,1,-1),
 (-1,1,-1),
 (-1,-1,1),
 (1,-1,1),
 (1,1,1), # coordinates of top left corner
 (-1,1,1)]

list of indices to make the quads from the points
indices = [(0, 1, 2, 3), # indices for bottom face
 (4, 5, 6, 7), # indices for top face
 (0, 1, 5, 4), #
 (1, 2, 6, 5), # indices for
 (2, 3, 7, 6), # side faces
 (3, 0, 4, 7)] #

list of colors
colors = [Color4(150,0,0,155),Color4(150,150,0,155),
 Color4(0,150,0,155),Color4(0,150,150,155)]

construction of the geometry
cube = QuadSet(points,indices)
adding information to the geometry
cube.colorList = colors

list of indices to associate a vertex in a face to a color
here each face will be alike, with top left corner in color 0,
top right corner in color 1, bottom right corner in color 2
and bottom left corner in color 3
cube.colorIndexList = [(0,1,2,3) for i in range(len(indices))]
Viewer.display(cube)

for the result :

[image: ../_images/cube2.png]

2.3.7. Solution for Texture and Billboard

Here is the python script to get a textured squared :

from openalea.plantgl.all import *

list of points
points = [(-1,-1,0),
 (1,-1,0),
 (1,1,0),
 (-1,1,0)]
list of indices
indices = [(0, 1, 2, 3)]
creating the geometry
carre = QuadSet(points,indices)
creating the texture in a material
tex = ImageTexture("./textures/wood_texture.png")
the texture coordinates that we will use
texCoord = [(0,0),(0,1),(1,1),(1,0)]
how texture coordinates are associated to vertices
texCoordIndices = [(0,1,2,3)]
adding information to the geometry
carre.texCoordList = texCoord
carre.texCoordIndexList = texCoordIndices
associating the geometry and the material in a shape
sh = Shape(carre,tex)
Viewer.display(sh)

for the result :

[image: ../_images/tex1.png]
It is the same python script to get a textured squared, with a texture which as an alpha channel :

from openalea.plantgl.all import *

list of points
points = [(-1,-1,0),
 (1,-1,0),
 (1,1,0),
 (-1,1,0)]
list of indices
indices = [(0, 1, 2, 3)]
creating the geometry
carre = QuadSet(points,indices)
creating a texture from a file
tex = ImageTexture("./textures/leaf_tex.png")
the coordinates of the texture that we may use
texCoord = [(0,0),(0,1),(1,1),(1,0)]
how we associate the coordinates of the texture to
the vertices of the quad
texCoordIndices = [(0,1,2,3)]
adding those informations to the geometry
carre.texCoordList = texCoord
carre.texCoordIndexList = texCoordIndices
associating the texture and the geometry in a shape
sh = Shape(carre,tex)
Viewer.display(sh)

for the result :

[image: ../_images/tex2.png]
It is nearly the same python script to have only part of the texture on the square. All you need to do is change the texture coordinates :

from openalea.plantgl.all import *

list of points
points = [(-1,-1,0),
 (1,-1,0),
 (1,1,0),
 (-1,1,0)]
list of indices
indices = [(0, 1, 2, 3)]
creating the geometry
carre = QuadSet(points,indices)
creating the texture
tex = ImageTexture("./textures/wood_texture.png")
the texture coordinates that we will use
texCoord = [(0.25,0.25),(0.25,0.75),(0.75,0.75),(0.75,0.25)]
associating the coordinates and the vertices
texCoordIndices = [(0,1,2,3)]
adding the information to the geometry
carre.texCoordList = texCoord
carre.texCoordIndexList = texCoordIndices
associating the material and the geometry
sh = Shape(carre,tex)
Viewer.display(sh)

for the result :

[image: ../_images/tex3.png]
To get a textured cube, here is the python script :

from openalea.plantgl.all import *

list of points
points = [(-1,-1,-1),
 (1,-1,-1),
 (1,1,-1),
 (-1,1,-1),
 (-1,-1,1),
 (1,-1,1),
 (1,1,1),
 (-1,1,1)]
list of indices
indices = [(0, 1, 2, 3),
 (4, 5, 6, 7),
 (0, 1, 5, 4),
 (1, 2, 6, 5),
 (2, 3, 7, 6),
 (3, 0, 4, 7)]
creation of the geometry
cube = QuadSet(points,indices)
creation of a texture from a file
tex = ImageTexture("./textures/wood_texture.png")
the texture coordinates that we will use
texCoord = [(0,0),(0,1),(1,1),(1,0)]
how we associate texture coordinates to vertices in a quad
texCoordIndices = [(0,1,2,3) for i in range(len(indices))]
adding those informations to the geometry
cube.texCoordList = texCoord
cube.texCoordIndexList = texCoordIndices
associating the geometry and the material in a Shape
sh = Shape(cube,tex)
Viewer.display(sh)

for the result :

[image: ../_images/tex4.png]
And to have a textured cross, with only part of the texture here is the script :

from openalea.plantgl.all import *

list of vertices
points = [(-1,1,0),(-1,3,0),
 (1,3,0),(1,1,0),
 (3,1,0),(3,-1,0),
 (1,-1,0),(1,-3,0),
 (-1,-3,0),(-1,-1,0),
 (-3,-1,0),(-3,1,0)]
list of indices to make the quads
indices = [(0, 1, 2, 3),
 (3, 4, 5, 6),
 (6, 7, 8, 9),
 (9, 10, 11, 0),
 (0, 3, 6, 9)]
creating the geometry
cross = QuadSet(points,indices)
creating the textures from files in materials
tex = ImageTexture("./textures/wood_texture.png")
tex2 = ImageTexture("./textures/leaf_tex.png")

the coordinates of the texture to use
texCoord = [(0.33,0.66),(0.33,0.99),
 (0.66,0.99),(0.66,0.66),
 (0.99,0.66),(0.99,0.33),
 (0.66,0.33),(0.66,0),
 (0.33,0),(0.33,0.33),
 (0,0.33),(0,0.66)]
how the coordinates are associated with the vertices
texCoordIndices = [(0, 1, 2, 3),
 (3, 4, 5, 6),
 (6, 7, 8, 9),
 (9, 10, 11, 0),
 (0, 3, 6, 9)]

adding the information to the geometry
cross.texCoordList = texCoord
cross.texCoordIndexList = texCoordIndices
cross2 = Translated(-7,0,0,cross)
associating the different textures to the same geometry
sh = [Shape(cross,tex), Shape(cross2,tex2)]
Viewer.display(Scene(sh))

for the result :

[image: ../_images/tex5.png]

2.3.8. Solution for Discretisation

Here is the python script to get a cylinder with QuadSet :

from math import cos
from math import sin
from math import pi
from openalea.plantgl.all import *

def quad_cyl(radius, height, slices = 12):
 """ quad_cyl(radius, height) makes a cylinder with quads as primitives
 with height height and radius radius """
 # we create the empty lists of points and indices
 points = []
 indices = []
 for i in range(slices):
 # we had 2 points at each iteration, the top and bottom
 # of a slice inn the cylinder, after a rotation of 2*pi
 # over the number of slices
 points += [(radius*cos(2*i*pi/slices),radius*sin(2*i*pi/slices), 0),
 (radius*cos(2*i*pi/slices),radius*sin(2*i*pi/slices), height)]
 # we set the indices, each quad joining two slices
 if i is not (slices -1):
 indices += [(2*i,2*i+1,2*i+3,2*i+2)]
 else:
 indices += [(2*i,2*i+1,1,0)]
 # we create the geometry
 cyl = QuadSet(points,indices)
 return cyl

The same cylinder with 3 different discretizations
cyl1 = quad_cyl(1,4)
cyl2 = Translated(-4,0,0,quad_cyl(1,4,6))
cyl3 = Translated(4,0,0,quad_cyl(1,4,3))

m1 = Material(Color3(150,0,0))
m2 = Material(Color3(0,150,0))
m3 = Material(Color3(0,0,150))

shapes = [Shape(cyl1,m1), Shape(cyl2,m2), Shape(cyl3,m3)]
Viewer.display(Scene(shapes))

for the result :

[image: ../_images/cyl_quads.png]
Here is the python script to get a cylinder with TriangleSet :

from math import cos
from math import sin
from math import pi
from openalea.plantgl.all import *

def tri_cyl(radius, height, slices = 12):
 """ tri_cyl(radius, height) makes a cylinder with triangles
 as primitives with height height and radius radius """
 points = []
 indices = []
 for i in range(slices):
 points += [(radius*cos(2*i*pi/slices),radius*sin(2*i*pi/slices), 0),
 (radius*cos(2*i*pi/slices),radius*sin(2*i*pi/slices), height)]
 if i is not (slices -1):
 indices += [(2*i,2*i+1,2*i+2),(2*i+1,2*i+2,2*i+3)]
 else:
 indices += [(2*i,2*i+1,0),(2*i+1,0,1)]
 cyl = TriangleSet(points,indices)
 return cyl

cyl1 = tri_cyl(1,4)
cyl2 = Translated(-4,0,0,tri_cyl(1,4,6))
cyl3 = Translated(4,0,0,tri_cyl(1,4,3))

m1 = Material(Color3(150,0,0))
m2 = Material(Color3(0,150,0))
m3 = Material(Color3(0,0,150))

shapes = [Shape(cyl1,m1), Shape(cyl2,m2), Shape(cyl3,m3)]
Viewer.display(Scene(shapes))

for the result :

[image: ../_images/cyl_tris.png]
As you can see, there is already a class to create a cylinder. Why should that be interesting to do a cylinder with QuadSet or TriangleSet ? Well, doing it with QuadSet and TriangleSet will give you more freedom to apply a material (texture or colors) on the geometry.

2.3.9. Solution for Hulls

A little python script to display 3 hulls with growing volume :

from openalea.plantgl.all import *

First hull with bottom point (0,0,-1), top point (0,0.3,3.8)
With side points (0.5,0,0.3), (0,0.9,0), (0.6,0,0.1), (0,0.8,-0.3)
With tangent at bottom 0.9, at top 0.8
hull = AsymmetricHull(0.5,0.9,0.6,0.8,0.3,0.,0.1,-0.3,(0,0,-1),(0,0.3,3.8),0.9,0.8)
green = Material(Color3(0,150,0))

scene = Scene()
scene += Shape(Translated(-8,0,0,hull),green)

We do the same with a bigger tangent for top
hull = AsymmetricHull(0.5,0.9,0.6,0.8,0.3,0.,0.1,-0.3,(0,0,-1),(0,0.3,3.8),0.9,1.2)
scene += Shape(Translated(-4,0,0,hull),green)

hull = AsymmetricHull(0.5,0.9,0.6,0.8,0.3,0.,0.1,-0.3,(0,0,-1),(0,0.3,3.8),0.9,2.0)
scene += Shape(hull,green)

hull = AsymmetricHull(0.5,0.9,0.6,0.8,0.3,0.,0.1,-0.3,(0,0,-1),(0,0.3,3.8),0.9,4.0)
scene += Shape(Translated(4,0,0,hull),green)
Viewer.display(scene)

You notice that we change only one arg, the topShape float argument. The hull is controlled by 6 points, the bottom and top points, and by four points in north, east, west and south directions, defined by their radius and height. An interpolation is computed between those points. The tangent at top and bottom are controlled by bottomShape and topShape, while the other tangents are calculated. So, by changing the topShape parameter, we have a growing shape at the top of the hull.

Results :

[image: ../_images/asym_hulls.png]
The python script to get swung hulls from diverse profiles is

from openalea.plantgl.all import *
from math import pi

def line_prof():
 """ create a list of profiles with polyline """
 return [Polyline2D([(0,0),(1.5,0.1),(0.75,2),(1.1,2.2),(0.55,3),(0.8,3.1),(0,4),(0,4)]),
 Polyline2D([(0,0),(1.2,0.1),(0.7,2),(1.0,2.3),(0.5,3.1),(0.8,3.1),(0,4),(0,4)]),
 Polyline2D([(0,0),(1.4,0.1),(0.8,2),(1.1,2.1),(0.6,3),(0.85,3.0),(0,4),(0,4)]),
 Polyline2D([(0,0),(1.6,0.1),(0.8,2),(1.2,2.2),(0.4,3),(0.7,3.2),(0,4),(0,4)]),
 Polyline2D([(0,0),(1.5,0.1),(0.75,2),(1.1,2.2),(0.55,3),(0.8,3.1),(0,4),(0,4)])]

def bezier_prof():
 """ create a list of profiles with curves of Bezier """
 return [BezierCurve2D([(0,0,1),(1.5,1,1),(2.4,2,6),(0.9,3,2),(0,4,1),(0,4,1)]),
 BezierCurve2D([(0,0,1),(1.6,1,1),(2.5,2,6),(1.2,3,2),(0,4,1),(0,4,1)]),
 BezierCurve2D([(0,0,1),(1.6,1,1),(2.0,2,6),(0.8,3,2),(0,4,1),(0,4,1)]),
 BezierCurve2D([(0,0,1),(1.1,1,1),(2.5,2,6),(0.7,3,2),(0,4,1),(0,4,1)]),
 BezierCurve2D([(0,0,1),(1.3,1,1),(2.2,2,6),(1.2,3,2),(0,4,1),(0,4,1)])]

def nurbs_prof():
 """ create a list of profiles with nurbs curves """
 return [NurbsCurve2D([(0,0,1),(0.5,1,1),(1,2,1),(0.5,3,1),(0,4,1),(0,4,1)]),
 NurbsCurve2D([(0,0,1),(0.7,1,1),(1,2.1,1),(0.5,3.2,1),(0,4,1),(0,4,1)]),
 NurbsCurve2D([(0,0,1),(0.4,1,1),(0.8,2.2,1),(0.4,2.9,1),(0,4,1),(0,4,1)]),
 NurbsCurve2D([(0,0,1),(0.6,1,1),(1.2,2,1),(0.3,3,1),(0,4,1),(0,4,1)]),
 NurbsCurve2D([(0,0,1),(0.7,1,1),(1.2,2.1,2),(0.6,3.1,1),(0,4,1),(0,4,1)])]

def mixed_prof():
 """ create a list of profiles of different types """
 return [Polyline2D([(0,0),(1.5,0.1),(0.75,2),(1.1,2.2),(0.55,3),(0.8,3.1),(0,4),(0,4)]),
 BezierCurve2D([(0,0,1),(1.5,1,1),(2.4,2,6),(0.9,3,2),(0,4,1),(0,4,1)]),
 NurbsCurve2D([(0,0,1),(0.5,1,1),(1,2,1),(0.5,3,1),(0,4,1),(0,4,1)]),
 BezierCurve2D([(0,0,1),(1.6,1,1),(2.0,2,6),(0.8,3,2),(0,4,1),(0,4,1)]),
 Polyline2D([(0,0),(1.5,0.1),(0.75,2),(1.1,2.2),(0.55,3),(0.8,3.1),(0,4),(0,4)])]

scene = Scene()
the angles to associate to profiles
angles = [0,pi/2.,pi,3.*pi/2.,2.*pi]
col = Material(Color3(0,100,50))
create a swung interpolating the profiles associated to the angles
scene += Shape(Translated(-5,0,0,Swung(line_prof(),angles)),col)
scene += Shape(Translated(5,0,0,Swung(nurbs_prof(),angles)),col)
scene += Shape(Translated(5,5,0,Swung(mixed_prof(),angles)),col)
scene += Shape(Swung(bezier_prof(),angles),col)

Viewer.display(scene)

to get as a result :

[image: ../_images/profile_hulls2.png]
As the rotation axis cannot be told to Swung, you must make your curve with growing y and positive x, so that the revolution happens as you expect. It is better to precise 0 and 2*pi in the angles array.

The python script to get extruded hulls is

from openalea.plantgl.all import *
from math import pi

we create a circle
c = Polyline2D.Circle(1.,50)
m1 = Material(Color3(80,150,0))
we create a profile
p1 = NurbsCurve2D([(0,0,1),(0.5,1,1),(1,2,1),(0.5,3,1),
 (0,4,1),(0,4,1),(-0.7,3,1),(-1,2,1),(-0.8,1,1),(0,0,1)])
we create a geometry extruding the circle along the profile
sh1 = Shape(Translated(-2,0,0,ExtrudedHull(p1,c)),m1)

m2 = Material(Color3(0,150,80))
an other profile
p2 = NurbsCurve2D([(0,0,1),(1,1.6,1),(2,1.8,1),(3,2.5,1),
 (4,0,1),(4,0,1),(3,-2.5,1),(2,-1.8,1),(1,-1.6,1),(0,0,1)])
sh2 = Shape(Translated(2,0,0,ExtrudedHull(c,p2,True)), m2)

scene = Scene([sh1,sh2])

Viewer.display(scene)

And the result is

[image: ../_images/extruded_hulls.png]

2.3.10. Solution for Generalized Cylinder

To get some branches with Extrusion, here is the python script :

from openalea.plantgl.all import *

cir = Polyline2D.Circle(1,50)
prof1 = NurbsCurve([(0.0, 0.0, 0, 1),
 (0.8, 1.0, 3, 1),
 (0.4, 1.1, 6, 2),
 (-0.2, 0.3, 8, 2),
 (-0.4, 0.0, 9, 2)])
scales1 = [(0.9, 0.7),
 (0.7, 0.6),
 (0.5, 0.4),
 (0.2, 0.2),
 (0.0, 0.0)]
prof2 = NurbsCurve([(0.8, 1.0, 3, 1),
 (1.5, 1.8, 4, 1),
 (1.7, 2.1, 5, 1),
 (1.2, 1.7, 6, 1),
 (1.0, 1.5, 7, 1)])
scales2 = [(0.5, 0.5),
 (0.37, 0.35),
 (0.24, 0.21),
 (0.11, 0.08),
 (0.0, 0.0)]

br1 = Extrusion(prof1, cir, scales1)
br2 = Extrusion(prof2, cir, scales2)
col = Material(Color3(127,72,0))
shb = [Shape(br1,col), Shape(br2,col)]
scene = Scene(shb)
Viewer.display(scene)

To get the result :

[image: ../_images/branches.png]
We made a circle as the 2D form to extrude, a 3D profile with NurbsCurve, we indicated a set of scales for each control point of the profile, and extruded according to those parameters.

2.3.11. Solution for Positioning Objects

The python script to get a tree with leaves of same size is :

from openalea.plantgl.all import *
from math import pi
from math import sqrt

This is the function for a tree with leaves
along the trunk on both sides
def tree1():

 # We compute the trunk of the tree with an extruded circle
 cyl = Extrusion(Polyline([(0,0,0),(0,0,6)]),Polyline2D.Circle(1.0,50))
 cyl.solid = True
 tex = ImageTexture("./textures/wood_texture.png")
 trunk = Shape(cyl,tex)

 # Now we compute a leaf. We will use a transparent texture over a square
 points = [(0,-1,-1),
 (0,1,-1),
 (0,1,1),
 (0,-1,1)]
 indices = [(0, 1, 2, 3)]
 square = QuadSet(points,indices)
 tex = ImageTexture("./textures/palm_leaf.png")
 texCoord = [(0,0),(0,1),(1,1),(1,0)]
 texCoordIndices = [(0,1,2,3)]
 square.texCoordList = texCoord
 square.texCoordIndexList = texCoordIndices
 square = EulerRotated(0,pi/2.,0,square)
 square = AxisRotated((1,0,0),pi/4., square)
 square = Translated(0,2.0,1.1,square)
 # scale factor
 sf = 0.6

 leaves = [Shape(Translated(0,0,1.5*i,square),tex) for i in range(4)]
 square = AxisRotated((0,0,1),pi,square)
 leaves += [Shape(Translated(0,-0,1.5*i,square),tex) for i in range(4)]

 return leaves+[trunk]

scene = Scene(tree1())
Viewer.display(scene)

for the result :

[image: ../_images/tree1.png]
The python script to get a tree with leaves of decreasing size is :

from openalea.plantgl.all import *
from math import cos
from math import sin
from math import pi
from math import sqrt

a function to make a textured cylinder
with quads as primitives
def quad_cyl(radius, height, slices = 12):
 """ quad_cyl(radius, height) makes a textured cylinder with quads as primitives """
 points = []
 indices = []
 texCoords = []
 for i in range(slices):
 points += [(radius*cos(2*i*pi/slices),radius*sin(2*i*pi/slices), 0),
 (radius*cos(2*i*pi/slices),radius*sin(2*i*pi/slices), height)]
 texCoords += [(i*1./slices,0),(i*1./slices,1)]
 if i is not (slices -1):
 indices += [(2*i,2*i+1,2*i+3,2*i+2)]
 else:
 #texCoordsIndices = indices + [(2*i,2*i+1,2*i+3,2*i+2)]
 indices += [(2*i,2*i+1,1,0)]
 texCoords += [(1,0),(0,0)]
 cyl = QuadSet(points,indices)
 cyl.texCoordList = texCoords
 cyl.texCoordIndexList = indices #texCoordsIndices
 return cyl

def tree2():

 # We compute the trunk of the tree with an extruded circle
 cyl = quad_cyl(1.0,6,50)
 tex = ImageTexture("./textures/wood_texture.png")
 trunk = Shape(cyl,tex)

 # Now we compute a leaf. We will use a transparent texture over a square
 points = [(0,-0.6,-0.6),
 (0,0.6,-0.6),
 (0,0.6,0.6),
 (0,-0.6,0.6)]
 indices = [(0, 1, 2, 3)]
 square = QuadSet(points,indices)
 tex = ImageTexture("./textures/palm_leaf.png")
 texCoord = [(0,0),(0,1),(1,1),(1,0)]
 texCoordIndices = [(0,1,2,3)]
 square.texCoordList = texCoord
 square.texCoordIndexList = texCoordIndices
 square = EulerRotated(0,pi/2.,0,square)
 square = AxisRotated((1,0,0),pi/4., square)
 square = Translated(0,1.6,0.9,square)

 # scale factor
 sf = 0.9

 leaves = [Shape(Translated(0,1.-(sf*(4-i)),1.6*i,Scaled((sf*(4-i),sf*(4-i),sf*(4-i)),square)),tex) for i in range(4)]
 square = AxisRotated((0,0,1),pi,square)
 leaves += [Shape(Translated(0,-(1.-(sf*(4-i))),1.6*i,Scaled((sf*(4-i),sf*(4-i),sf*(4-i)),square)),tex) for i in range(4)]

 return leaves+[trunk]

scene = Scene(tree2())
Viewer.display(scene)

for the result :

[image: ../_images/tree2.png]
The python script to get a tree with leaves of same size along a bowing trunk is :

from openalea.plantgl.all import *
from math import pi
from math import sqrt

def tree3():

 # We compute the trunk of the tree with an extruded circle
 cyl = Extrusion(Polyline([(0,0,0),(0,0,3),(0,2,5)]),Polyline2D.Circle(1.0,50))
 cyl.solid = True
 tex = ImageTexture("./textures/wood_texture.png")
 trunk = Shape(cyl,tex)

 # Now we compute a leaf. We will use a transparent texture over a square
 points = [(0,-1,-1),
 (0,1,-1),
 (0,1,1),
 (0,-1,1)]
 indices = [(0, 1, 2, 3)]
 square = QuadSet(points,indices)
 tex = ImageTexture("./textures/palm_leaf.png")
 texCoord = [(0,0),(0,1),(1,1),(1,0)]
 texCoordIndices = [(0,1,2,3)]
 square.texCoordList = texCoord
 square.texCoordIndexList = texCoordIndices
 square = EulerRotated(0,pi/2.,0,square)
 square = AxisRotated((1,0,0),pi/4., square)
 square = Translated(0,1.8,1.1,square)

 leaves = [Shape(Translated(0,0,1.6*i,square),tex) for i in range(2)]
 square = AxisRotated((0,0,1),pi,square)
 leaves += [Shape(Translated(0,0,1.6*i,square),tex) for i in range(2)]

 leaves += [Shape(Translated(0,1.6*i*1./sqrt(2),1.6*(2+i*1./sqrt(2)),AxisRotated((1,0,0),-pi/4.,square)),tex) for i in range(2)]
 leaves += [Shape(Translated(0,1.6*i*1./sqrt(2),1.6*(2+i*1./sqrt(2)),AxisRotated((0,2,2),pi,AxisRotated((1,0,0),-pi/4.,square))),tex) for i in range(2)]

 return leaves+[trunk]

scene = Scene(tree3())
Viewer.display(scene)

for the result :

[image: ../_images/tree3.png]

 _static/down.png

_static/comment.png

_static/down-pressed.png

_images/branches.png

_static/plus.png

_images/cactus.png

_images/beziercurve.png

_static/file.png

_images/box.png
YA
c

s

T, o:
IS
,,m.,w,..,.“.,::‘“.a%v%“o‘

_static/minus.png

_images/cube2.png

_images/cyl_quads.png
| ALK
Iy Y
....“.“.....,.«?
‘.“.:..,“

i
W

i

i)

%0
v&ooﬂ
i’ ’
< d‘b’ V
Y

it
s

i

_images/color_square.png

_static/up-pressed.png

_images/cube1.png

_static/up.png

_images/cyl_tris.png
.A

o

ot

BRI

i

_images/extruded_hulls.png

_images/asym_hull3.png
I {
fi
g....‘s:‘ ““;‘» v

| i [p‘“

d

_images/asym_hull4.png

_images/asym_hull1.png

_images/asym_hull2.png

_images/asym_hulls.png

_images/hulls_circle.png

nav.xhtml

 Table of Contents

 		
 Welcome to Plantgl’s documentation!

_images/pinecone.png

_images/ac4-5.png

_images/polyline.png

_images/leaf_tex.png

_images/nurbscurve.png

_images/quadset.png

_images/rdstand.png

_images/profile_hulls.png

_images/profile_hulls2.png

_images/rdstandglobala.png

_images/red_sphere.png

_images/scene.png
0

i
i

o

i
.............&)

A

_images/square.png
/

_images/tex1.png

_images/scene2.png
e,
I

Z=

4l

s

_images/sphere_5.png

_images/tex4.png
it
i
“...“....“.“..

i

|

!

.

i

i

_images/tex5.png

_images/tex2.png

_images/tex3.png

_images/tree1.png

_images/tree2.png

_images/translated_sphere.png

_images/wood_texture.png

_static/ajax-loader.gif

_images/tree3.png
e i,

T

o L

Tyt

_images/tulipa.png

_static/comment-close.png

_static/comment-bright.png

