From Github Wiki

Release

Giovanni Blu Mitolo

Mar 06, 2017

Contents

PJON v7.0
L1 Features. o oo
1.2 PJON (Padded Jittering Operative Network) Protocol specification
1.3 PIDL (Padded Jittering Data Link) specification
1.4 Compliant tools L L e
PJON Specifications
2.1 PJON Dynamic Addressing Spec vO.1 e
2.2 PJON Protocol Acknowledge Spec vO.1
2.3 PJON Protocol Spec vO.1 o e e e e e e
2.4 PJON Protocol Spec vO.2 L . e e e e e e e
2.5 PJON Protocol Specification v0.3 e
2.6 PJON Protocol Spec V1.0 o e e e
Strategies
3.1 Whatis a Srate@y? e e e e e e e e e e
32 Howtodefine anew Strategy v vttt e e e e e e e e e e e e e e
3.3 PJON Supported Strate@ies oo e e e e e e
3.3.1 Software BitBang Spec e e e
3.3.2 Padded Jittering Protocol Spec vO.1
3.33 PIDLR Spec VI.O L . o e e e e e e e
3.3.4 Padded Jittering Protocol Spec vO.1 L
Hardware/Software Serial port
4.1 WhyPJONover Serial? e
4.2 How touse ThroughSerial e
43 KNOWNiSSUES . . . v v v v ot i e i e e e e e e e e e e e
Software BitBang
5.1 Performance e e
5.2 Howtouse SoftwareBitBang
5.3 Why notinterrupts? o i e e e e e e e e e e e e e e e e e e
54 KNOWNISSUES . . . v v vt ittt it e e e e e e e
Oversampling
6.1 Compatibility
6.2 Performance

N = =

31
31
31
33

35
35
36
37
37

39
39
39

How touse OverSampling o o o e e 39
Use OverSampling with cheap 433Mhz transceivers
Antenna design L L e e e e e e e e e e e e 40
Knownissues o o i e e e e e e e e 41

CHAPTER 1

PJON v7.0

PJON™ (Padded Jittering Operative Network) is an Arduino compatible, multi-master, multi-media communications
bus system. It proposes a Standard, it is designed as a framework and implements a totally software-emulated network
protocol stack. It is a valid alternative to i2c, 1-Wire, Serial and other Arduino compatible protocols. Visit the Wiki,
Documentation and Troubleshooting wiki pages to know more about the PJON Standard.

Features

» Configurable 2 level addressing (device and bus id) for scalable applications

* Multi-media support with the data link layer abstraction or Strategy framework

» Configurable strategies inclusion (for memory optimization)

» Configurable 1 or 2 bytes packet length (max 255 or 65535 bytes)

* Master-slave or multi-master dynamic addressing

* Configurable synchronous and/or asynchronous acknowledgement of correct packet sending
* Collision avoidance to enable multi-master capability

* Selectable CRCS8 or CRC32 table-less cyclic redundancy check

» Packet manager to handle, track and if necessary retransmit a packet sending in background
¢ Optional ordered packet sending

e Error handling

PJON (Padded Jittering Operative Network) Protocol specification

* PIONv0.1 -v0.2 -v0.3 - v1.0
* PJON Acknowledge v0.!/

https://github.com/gioblu/PJON/wiki
https://github.com/gioblu/PJON/wiki/Documentation
https://github.com/gioblu/PJON/wiki/Troubleshooting

From Github Wiki, Release

* PJON Dynamic addressing v0./

PJDL (Padded Jittering Data Link) specification
e PIDLvO.1-v1.0
e PIDLR v/.0

Compliant tools

* saleae-pjon-protocol-analyzer by Andrew Grande
¢ PJON-python by Zbigniew Zasieczny
* Modulelnterface by Fred Larsen

PJON™ is a self-funded, no-profit open-source project created (in 2010) and mantained by Giovanni Blu Mitolo with
the support ot the internet community if you want to see the PJON project growing with a faster pace, consider a

donation at the following link: https://www.paypal.me/PJON

PJON™ and its brand are unregistered trademarks, property of Giovanni Blu Mitolo gioscarab@ gmail.com

Chapter 1. PJON v7.0

https://github.com/aperepel/saleae-pjon-protocol-analyzer
https://github.com/Girgitt/PJON-python
https://github.com/fredilarsen/ModuleInterface

CHAPTER 2

PJON Specifications

PJON Dynamic Addressing Spec v0.1

PIDL (Padded Jittering Data Link) specification: PJDL v0.1 - PJDL v1.0 - PJDLR v1.0

PJON (Padded Jittering Operative Network) Protocol specification: v0.1 - v0.2 - v0.3 - v1.0
* Acknowledge specification: v0.1

¢ Dynamic addressing specification: v0.1

/ *

Milan, Italy - 02/10/2016

The PJON™ dynamic addressing specification is an invention and intellectual property
of Giovanni Blu Mitolo - Copyright 2010-2017 All rights reserved

Related work: https://github.com/gioblu/PJON/
Compliant implementation versions: PJON 5.2 and following

Inspired by the thesis of Thomas Snaidero:

"Modular components for eye tracking, in the interest of helping persons with,,
—severely impaired motor skills."

Master Thesis, IT University of Copenhagen, Denmark, September 2016

*/

###PJONT™ dynamic addressing specification v0.1 This draft defines the dynamic addressing procedure used by a
device in multi-master configuration or the one imposed and regulated by the master in a master-slave configuration.

###Master-slave dynamic addressing

SLAVES

| ID 1| | ID 2| | ID 3 | | ID 4

| RID 101 | | RID 41 | | RID 945 | | RID 22 |

| \ \ | \ \ \ \ | MASTER |
\ \ \ \ | ID 254 |

From Github Wiki, Release

| ID 5 | ID 6 | | ID 7 | ID 8 |

| RID 723 | | RID 35 | | RID 585 | | RID 66 |

| | | | \ | \ \
####Master features

e The master id is PJON_MASTER_ ID (value 254)
¢ Master has a caducous internal device archive
* Broadcasts PJON_ID_LIST to get PJON_ID_REFRESH requests from already approved devices
* Handles PJON_ID_REQUEST requests from devices asking for device id assignment
e Sends PJON_ID_NEGATE request to colliding or inconsistent devices
* Handles PJON_ID_NEGATE requests from slaves who are leaving the bus
####Slave features
¢ The slave initial device id is PJON_NOT_ASSIGNED (value 255)
* Slaves have a unique random generated 4 bytes id or rid
* Sends PJON_ID_REFRESH request to master if required by master PJON_ID_LIST broadcast
* Sends PJON_ID_REQUEST to master if device id assignment is necessary
* Regenerates rid and restarts the process if PJON_ID_NEGATE is received from master
* Sends PJON_ID_NEGATE before shut down / leaving the bus
* Fall back to multi-master procedure if no master is present

####Procedure Slave sends an PJON_ID_REQUEST to get a new device id:

\ | HEADER | \ \ \ | \ \
- | \
>| MASTER_ID | 00010100 | LENGTH | ID_REQUEST | RID 1 | RID 2 | RID 3 | RID 4 | CRC |>
< <| ACK |

If master detects a device rid collision, sends a PJON_ID_NEGATE request to PJON_NOT_ASSIGNED device id to
force the collided device still not approved to regenerate a device rid:

\ | HEADER | \ \ \ \ \ \ o
= \ \
>| NOT_ASSIGNED | 00010100 | LENGTH | ID_NEGATE | RID 1 | RID 2 | RID 3 | RID 4 | CRC,
—|> <| ACK |
\ \ \ \ \ \ \ \ \

|

Master broadcasts response containing the new id reserved for the device rid who requested:

| HEADER | o

4 Chapter 2. PJON Specifications

From Github Wiki, Release

>| BROADCAST | 00010000 | LENGTH | ID_REQUEST | RID 1 | RID 2 | RID 3 | RID 4 | ID
~CRC |>
\ \ \ \ \ \ | \ \ l__

—

I

Slave device id acquisition confirmation:

\ | HEADER | \ \ \ | \ \ \
o \ \ \
>| MASTER_ID | 00010100 | LENGTH | ID CONFIRM | RID 1 | RID 2 | RID 3 | RID 4 | ID
CRC |> <| ACK |
\ \ \ \ \ \ | \ \ [

—

If master detects reference inconsistencies at this stage, sends a PJON_ID_NEGATE request to the slave id to force
the device requesting ID_CONF IRM to regenerate a rid and try again:

\ | HEADER | \ \ \ \ | \ | \
< |
>| ID | 00010100 | LENGTH | ID_NEGATE | RID 1 | RID 2 | RID 3 | RID 4 | CRC |> <| ACK_
|
\ \ \ \ \ \ \ | \ | l_

o

If master experience temporary disconnection / malfunction on startup sends a PJON_ID_LIST broadcast request.
Slaves will receive the broadcast and dispatch an PJON_ID_REFRESH request for the master:

Master broadcast PJON_ID_LIST request:

[| HEADER | \ \ \
>| BROADCAST | 00010000 | LENGTH | ID_LIST | CRC |>
\ \ \ | \ \

Slave device PJON_ID_REFRESH request:

\ | HEADER | | \ \ | \ \ \
= \ | \
>| MASTER_ID | 00010100 | LENGTH | ID_REFRESH | RID 1 | RID 2 | RID 3 | RID 4 | ID
- CRC |> <| ACK |
\ \ \ | \ \ | \ \ l__

—

If the id requested by the slave is free in the reference, id is approved by the master and the exchange ends. If the id is
found already in use, the master sends an PJON_ID_NEGATE request forcing the slave to acquire a new id through
an PJON_ID_REQUEST:

Master sends PJON_ID_NEGATE request to the slave:

—
| SLAVE | HEADER |

. |

2.1. PJON Dynamic Addressing Spec v0.1 5

From Github Wiki, Release

> | ID [00010100 | LENGTH | ID_NEGATE | RID 1 | RID 2 | RID 3 | RID 4 | CRC [|> <[

If slave wants to leave the bus must send a PJON_ID_NEGATE request to the master:

\ | HEADER | \ \ \ \ \ \ I
= | \ |
>| MASTER_ID | 00010100 | LENGTH | ID_NEGATE | RID 1 | RID 2 | RID 3 | RID 4 | ID |,
—CRC |> <| ACK |
\ \ \ \ \ \ \ \ \ l_

###Multi-master dynamic addressing

####Procedure In a multi-master scenario, the device actively looks for a free device id and make no use of its rid for
this procedure:

1. The device extracts a random device id and tries to contact that device

2. If an answer is received, it adds one to the id and tries again

3. If any answer is obtained from a device id, that is reserved

4. The device receives for a random time to be able to answer to other devices interested in that device id

5. The device tries to contact itself to probe collision, if no answer is received the device id is taken.

PJON Protocol Acknowledge Spec v0.1

PIDL (Padded Jittering Data Link) specification: PJDL v0.1 - PJIDL v1.0 - PJDLR v1.0

PJON (Padded Jittering Operative Network) Protocol specification: v0.1 - v0.2 - v0.3 - v1.0
* Acknowledge specification: v0.1

* Dynamic addressing specification: v0.1

/ *

Milan, Italy - 17/10/2016

The PJON™ protocol acknowledge specification is an invention and intellectual property
of Giovanni Blu Mitolo - Copyright 2010-2017 All rights reserved

Related work: https://github.com/gioblu/PJON/
Compliant implementation versions: PJON 6.0 and following

*/

6 Chapter 2. PJON Specifications

From Github Wiki, Release

###PJONT protocol acknowledge specification v0.1 The PJON Standard supports both synchronous and asyn-
chronous acknowledgement. This two mechanisms are defined to ensure that a packet transmission ended positively
with no errors and can be used individually or together.

####Synchronous acknowledge

Channel analysis Transmission Response
| C-A | | ID | HEADER | LENGTH | CONTENT | CRC | | ACK |
<= === [=< > = | = | ===~ | === | ————= [—=> <= |-~ \
[0 | | 12 | 00000100 | 5 \ 64 [72 | | 6
\ | \ \ \ \ \ \

The graph above contains a standard packet transmission with synchronous acknowledge request where the character
@ or 64 is sent to device id 12 with 00000100 header. As defined by the PJON protocol layer specification v1.0 the
third bit from right up in the header requests to transmitter a synchronous acknowledge response. How the synchronous
acknowledgement procedure works depends on the medium and the strategy used, see PJIDL v1.0 or PJDLR v1.0)
specification.

####Asynchronous acknowledge

Channel analysis Transmission
| C-A | | ID | HEADER | LENGTH | SENDER ID | PACKET ID | CONTENT | CRC |
<= === [< > | === | === | === | === | ===~ [>
| 0 | | 12 | 00001010 | 18 \ 11 \ 99 | 64 \ \
\ \ \ \ \ \

The graph above contains a standard packet transmission with asynchronous acknowledge request where the character
@ or 64 is sent to device id 12 with 0001110 header containing its packet id 99. As defined by the PJON protocol
layer specification v1.0 the fourth bit from right up in the header requests to transmitter an asynchronous acknowledge
response and the presence of the packet id. The second bit from right up signals the inclusion of the sender’s info
necessary to send back an asynchronous acknowledge packet when received.

##H##PJON™ recursive acknowledgement pattern In a scenario where there is no direct communication between two
devices, a synchronous acknowledgement can’t be obtained successfully, so an asynchronous acknowledgement packet
has to be sent back from receiver to the packet’s transmitter to inform of the correct packet reception.

BUS 0.0.0.1 BUS 0.0.0.2

\ \ \ \ \ \
| ID 0 | |ROUTER | | ID 0 |
| | |

A router in the center is connected with two different buses, bus 0.0.0.1 and 0.0.0. 2, communication between
device 0 of bus 0.0.0.1 with device 0 of bus 0. 0.0 .2 can be obtain only through the router.

Channel analysis Transmission o
— Response
| C-A | | ID | HEADER | LENGTH | BUS ID | BUS ID | ID | PACKET ID | CONTENT |
—CRC | | ACK |
| ————~- [< >|==== === | ===~ | === | === |- === [====— |-
———==|> <[-==== \
[0 | [0O | 00001111 | 16 | 0002 [0001 | O | 99 | 64 [

2.2. PJON Protocol Acknowledge Spec v0.1 7

From Github Wiki, Release

[RX INFO | TX INFO |

In the packet shown above device 0 of bus 0.0.0.1 sends @ (64) to device O of bus 0.0.0.2. Being the header
00001000 bit up (asynchronous acknowledgement request) the packet is formatted containing the 2 bytes integer
packet id 99 (used by receiver to send back an asynchronous acknowledgement packet) immediately after the sender
information. Being header’s 00000100 bit up (synchronous acknowledgement request) receiver will acknowledge
synchronously with an PJON_ACK (6) in case of correct reception or PJON_NAK (21) in case of mistake. This precise
case is used as an example to show both features used at the same time to obtain an efficient and secure way to transmit
packets with correct transmission certainty.

BUS 0.0.0.1
— BUS 0.0.0.2

1 Packet tx 2 rx, sync ACK, packet tx 3 rx, sync ACK,
—async ACK tx
TX START--->0-00001111-16-0002-0001-0-99-@-CRC-><-ACK->0-00001111-16-0002-0001-0-99-@~
—CRC—><—ACK-|

| | \ | o
= |
| ID 0 | | ROUTER |

—~__ | ID 0 | |
| | \ | o
- |

>
TX END——————— ACK-><-0-00001111-15-0001-0002-0-99-CRC-<-ACK-><-0-00001111-15-0001-0002—-
—~0-99-CRC—<—|

5 rx, sync ACK 4 rx, sync ACK, packet tx

/+ If packet length - its overhead is 4, it is an asynchronous acknowledgement packet

containing only its packet id =/

1. Device 0 sends the packet, the router has a route to device 0 of bus 0. 0.0 .2 so responds with a synchronous

acknowledgement
| ID | HEADER | LENGTH | BUS ID | BUS ID | ID | PACKET ID | CONTENT | CRC |
—| ACK |
> 0 | 00001111 | 16 | 0.0.0.2 | 0.0.0.12 | O | 99 \ 64 | | >
—<| 6 |

\ \ \ \ \ \ \ \ I I

—

| RX iNFO | TX INFO |

1. Device 0 of bus 0.0.0.1 wait for an asynchronous acknowledgement of the packet sent. Router sends to
device id 0 of bus 0. 0. 0. 2 and receives a synchronous acknowledgement

| ID | HEADER | LENGTH | BUS ID | BUS ID | ID | PACKET ID | CONTENT | CRC | -
— | ACK |
> 0 | 00001111 | 16 | 0.0.0.2 | 0.0.0.2 | O | 99 | 64 | | >
< 6

8 Chapter 2. PJON Specifications

From Github Wiki, Release

RX 1iNFO TX INFO

1. Device 0 of bus 0.0.0.2 sends an asynchronous acknowledgement packet to device 0 of bus 0.0.0.1.
Router has a route to device 0 of bus 0.0.0.1 so responds with a synchronous acknowledgement and device
0 of bus 0.0.0.2 ends the transaction after receiving a synchronous acknowledgement by the router

D HEADER LENGTH | BUS ID | BUS ID ID | PACKET ID CRC | | ACK
> 0 | 00001111 | 15 | 0.0.0.1 | 0.0.0.2 | O | 99 \ > <] 6 |
\ \ \ \ \ \ \ \ \ \ \
| RX iNFO | TX INFO \

1. Device 0 of bus 0.0.0.2 ends the transaction after receiving a synchronous acknowledgement by the router.
Device 0 of bus 0.0.0.1 receives the asynchronous acknowledgement packet forwarded by the router and
responds with a synchronous acknowledgement.

| ID | HEADER | LENGTH | BUS ID | BUS ID | ID | PACKET ID | CRC | | ACK |
> 0 | 00001111 | 15 | 0.0.0.1 | 0.0.0.2 | O | 99 | [> <] 6 |
\ \ \ \ \ \ \ \ \ \ \

| RX iNFO | TX INFO |

This documents doesn’t want to specify in any way the routing mechanism (still not officially specified), but uses
routing as a necessary example to showcase clearly the power of the recursive acknowledgement pattern.

PJON Protocol Spec v0.1

PJDL (Padded Jittering Data Link) specification: PJDL v0.1 - PJDL v1.0 - PIDLR v1.0

PJON (Padded Jittering Operative Network) Protocol specification: v0.1 - v0.2 - v0.3 - v1.0
* Acknowledge specification: vO0.1

* Dynamic addressing specification: v0.1

J *

Milan, Italy - 10/04/2010

The PJON™ protocol specification is an invention and intellectual property
of Giovanni Blu Mitolo - Copyright 2010-2017 All rights reserved

Related work: https://github.com/gioblu/PJON
Compliant implementation versions: PJON 1.0-3.0-beta

*/

###PJONT™ Protocol specification v0.1 The first experimental specification of the PJON protocol has been drafted
with the goal of offering a new open-source, multi-master communications bus system Standard. Its more common
applications are in the field of internet of things and embedded systems. Extended tests proved its effectiveness on
different media like electricity, radio frequency and light.

###Basic concepts
* Every device has an unique 1 byte ID (0-255)
* Every device transmits and receives on the same common medium

* Every device has an equal right to transmit and receive on the common medium

2.3. PJON Protocol Spec v0.1 9

From Github Wiki, Release

 Every device can be connected to n PJON network media (with n dedicated pins)
» Transmission occurs only if the communication medium is not in use

» Synchronization occurs every byte

* Devices communicate through packets

###Packet transmission The concept of packet enables to send a communication payload to every connected device
with correct reception certainty. A packet contains the recipient id, the length of the packet, its content and the CRC.
Here is an example of a packet sending to device id 12 containing the string “@”’:

ID 12 LENGTH 4 CONTENT 64 CRC 130

| Byte || Byte || Byte || Byte \

\ 1 N N I _

\ R I T L]

00001110 |/00000]1]0011]10]2]000000] | |
K \

\
011100001110
\

A standard packet transmission is a bidirectional communication between two devices that can be divided in 3 different
phases: channel analysis, transmission and response.

Channel analysis Transmission Response
| C-A | | ID | LENGTH | CONTENT | CRC | | ACK |
el | === | === === | === e i > <emm | \
[0 | [12 | 4 | 64 \ | 6
\ \ \ \ \ \ \

In the first phase the bus is analyzed by transmitter reading 10 logical bits, if any logical high is detected, the channel
is considered free and transmission phase starts in which the packet is entirely transmitted. Receiver calculates CRC
and starts the response phase transmitting a single byte, PJON_ACK (dec 6) in case of correct reception or PJON_NAK
(dec 21) if an error in the packet’s content is detected. If transmitter receives no answer or PJON_NAK the packet
sending has to be scheduled with a delay of ATTEMPTS * ATTEMPTS with a maximum of 250 ATTEMPTS to obtain
data transmission quadratic back-off.

###Bus A PJON Bus is made by a group of up to 255 devices transmitting and receiving on the same medium.
Communication between devices occurs through packets and it is based on democracy: every device has the right to
transmit on the common medium for up to (1000 / devices number) milliseconds / second.

PJON Protocol Spec v0.2

* PJDL (Padded Jittering Data Link) specification: PJDL v0.1 - PJDL v1.0 - PIDLR v1.0
* PJON (Padded Jittering Operative Network) Protocol specification: v0.1 - v0.2 - v0.3 - v1.0

* Acknowledge specification: vO0.1

10 Chapter 2. PJON Specifications

From Github Wiki, Release

* Dynamic addressing specification: v0.1

/%

Milan, Italy - 19/08/2015

The PJON™ protocol specification is an invention and intellectual property
of Giovanni Blu Mitolo - Copyright 2010-2017 All rights reserved

Related work: https://github.com/gioblu/PJON/
Compliant implementation versions: PJON 3.0-beta-3.0

New feature: Bus identification

*/

###PJONT™ Protocol Specification v0.2 After more than 4 years of testing, a second, experimental draft of the PION
protocol specification has been released to continue to pursue the goal of providing a new and open-source, multi-
master communications bus system Standard. The main changes contains the addition of a IPv4 like 4 byte bus id.
This extends the network capabilities of the PJON protocol from 254 devices of the 0.1 version to 1.090.921.692.930
devices supported by the 0.2 version. It is created to provide the community with a new and easy way to communicate
data and build a network of devices. Its more common applications are in the field of the internet of things and
embedded systems. Extended tests proved its effectiveness on different media like electricity, radio and light.

###Basic concepts
» Every bus has a unique IPv4 like 4 bytes id
* Many buses can coexist on the same medium
* Every device has a unique 1 byte id
* Every device transmits and receives on the same common medium
» Every device has an equal right to transmit and receive on the common medium
» Every device can be connected to n PJON buses (with n dedicated pins)
» Transmission occurs only if the communication medium is not in use
* Synchronization occurs every byte
* Devices communicate through packets

The PJON protocol v0.2 handles internal bus connectivity and unique addressing for 254 devices, through bus com-
munication with unique bus addressing for 4.294.967.295 buses, supporting up to 1.090.921.692.930 devices.

###Bus A PJON bus is made by a group of up to 254 devices transmitting and receiving on the same medium.
Communication between devices occurs through packets and it is based on democracy: every device has the right to
transmit on the common medium for up to (1000 / devices number) milliseconds / second.

###Packet transmission The concept of packet enables to send a communication payload to every connected device
with correct reception certainty. A packet contains the recipient id, the length of the packet, its content and the CRC.
In this example is shown a packet sending to device id 12 on a local bus containing the string “@”’:

2.4. PJON Protocol Spec v0.2 11

From Github Wiki, Release

ID 12 LENGTH 4 CONTENT 64 CRC 130

| Byte || Byte || Byte || Byte \
\ _ [_ [[—_
\ N [T \ [\ (I
|0000]11100|[00000|1]00]| [

\ [| [

|
011100001110
|

A standard local packet transmission is a bidirectional communication between two devices that can be divided in 3
different phases: channel analysis, transmission and response.

Channel analysis Transmission Response
| C-A | | ID | LENGTH | CONTENT | CRC | | ACK |
Sl Bttt Bttt | === === | ————————= [————=1—= > <———— | \
\ [12 | 4 \ 64 | 6 |
\ \ \ \ \ \

In the first phase the bus is analyzed by transmitter reading 10 logical bits, if any logical high is detected, the channel is
considered free and transmission phase starts in which the packet is entirely transmitted. Receiver calculates CRC and
starts the response phase transmitting a single byte, PJON_ACK (dec 6) in case of correct reception or PJON_NAK (dec
21) if an error in the packet’s content is detected. If transmitter receives no answer or PJON_NAK the packet sending
has to be scheduled with a delay of ATTEMPTS * ATTEMPTS * ATTEMPTS with a maximum of 125 ATTEMPTS to
obtain data transmission 3rd degree polynomial back-off.

In a shared medium it is necessary to define a bus id to isolate devices from outcoming communication of other buses
nearby. Below is shown the same local transmission (with the obvious 0.0. 0. 0 or localhost bus id omitted) used as
an example before, in a shared environment instead the packet’s content is prepended with the bus id:

Channel analysis Transmission Response
| C-A | | ID | LENGTH | BUS ID | CONTENT | CRC | | ACK |
<= === | === | === === | === | === | ===—= [> <|===—= \
[0 | [12 | 8 | 0.0.0.1 | 64 [130 | | 6
\ | \ \ \ \ \

Thanks to this rule it is not only possible to share a medium with neighbors, but also network with them and enhance
connectivity for free.

###Bus network A PJON bus network is the result of n PJON buses sharing the same medium and or interconnection
of PJON buses using routers. A router is a device connected to n PJON buses with n dedicated pins on n dedicated
media, able to route a packet from a bus to anotherone.

TWO BUSES CONNECTED THROUGH A ROUTER

BUS ID 0.0.0.1 BUS ID 0.0.0.2

In a shared medium it is necessary to define a bus id to isolate devices from outcoming communication of other buses
nearby, enabling many to coexist on the same communication medium.

12 Chapter 2. PJON Specifications

From Github Wiki, Release

TWO BUSES SHARING THE SAME MEDIUM

BUS ID 0.0.0.1 BUS ID 0.0.0.2

PJON Protocol Specification v0.3

PIDL (Padded Jittering Data Link) specification: PJDL v0.1 - PJDL v1.0 - PJDLR v1.0

PJON (Padded Jittering Operative Network) Protocol specification: v0.1 - v0.2 - v0.3 - v1.0
* Acknowledge specification: v0.1

¢ Dynamic addressing specification: v0.1

/ *

Milan, Italy - 04/09/2016

The PJON™ protocol specification is an invention and intellectual property
of Giovanni Blu Mitolo - Copyright 2010-2017 All rights reserved

Related work: https://github.com/gioblu/PJON/
Compliant implementation versions: PJON 4.0-5.0

New feature: Header driven dynamical configuration proposed and implemented by Fred,

—Larsen

*/

###PJONT Protocol specification v0.3 A third draft of the PJON protocol has been released with the addition of a
1 byte header designed to contain the configuration for the packet’s communication procedure and its meta-data. In
versions 0.1 and 0.2, the PION communication procedure configuration was static and the header not present, for this
reason two differently configured devices, could not establish nominal communication, without configuration pairing.
It is now possible for the packet’s receiver to read the header, react as transmitter requested and parse the packet and

its info correctly.

###Network protocol stack model The actual PJON network protocol stack model lacks segmentation and routing

procedures, dedicated to higher level layers to be added during development.

| PJON Protocol layer \
| Addressing, acknowledgement |
| multiplexing, traffic control |

| STRATEGY
| Data link, transmission of data frames |

| Physical layer |
| Cable, transceivers ecc |
\ \

2.5. PJON Protocol Specification v0.3

13

From Github Wiki, Release

###Basic concepts
* Every bus has a unique IPv4 like 4 bytes id
* Many buses can coexist on the same medium
» Every device has a unique 1 byte id
* Every device has an equal right to transmit and receive on the common medium
» Every device can be connected to n PJON buses
 Transmission occurs only if the communication medium is not in use
* Devices communicate through packets
* Packet transmission is regulated by a 1 byte header

The PJON protocol v0.3 handles internal bus connectivity and unique addressing for 254 devices, through bus com-
munication with unique bus addressing for 4.294.967.295 buses, supporting up to 1.090.921.692.930 devices.

###Bus A PJON bus is made by a group of up to 255 devices transmitting and receiving on the same medium.
Communication between devices occurs through packets and it is based on democracy: every device has the right to
transmit on the common medium forupto (1000 / devices number) milliseconds / second.

###Packet transmission A packet transmission is the exchange of a string to one of the devices connected to the bus
with optional correct reception certainty. A packet contains the recipient id, its length, its header, its content and the
CRC. In this example is shown a packet transmission in a local bus to device id 12 containing the string @ (decimal
64):

ID 12 LENGTH 5 HEADER 1 CONTENT 64 CRC 72

| Byte || Byte | | Byte | | Byte | | Byte |
\ _ [_ _ 1 _ N N _ |
\ \ \ [[N I] (N [\ ([|
|0000(11100||0000012/0|1]1100000(2100]10/11000000]1 | |
\ [[[\ |

A default local packet transmission is a bidirectional communication between two devices that can be divided in 3
different phases: channel analysis, transmission and response. The packet transmission procedure is regulated by
its header.

Channel analysis Transmission Response
| C-A | | ID | LENGTH | HEADER | CONTENT | CRC | | ACK |

<= === [===< > [[=== | === | ===~ [—=> <=~ \
[0 | | 12 | 5 | 00000100 | 64 [72 | | 6 |
\ | \ \ \ \ \ \

In the first phase the bus is analyzed by transmitter reading 10 logical bits, if any logical 1 is detected the channel is
considered free, transmission phase starts in which the packet is entirely transmitted. Receiver calculates CRC and

14 Chapter 2. PJON Specifications

From Github Wiki, Release

starts the response phase transmitting a single byte, PJON_ACK (decimal 6) in case of correct reception or PJON_NAK
(decimal 21) if an error in the packet’s content is detected. If transmitter receives no answer or PJON_NAK the packet
sending is scheduled with a delay of ATTEMPTS * ATTEMPTS ATTEMPTS with amaximum of 125 ATTEMPTS
to obtain data transmission 3rd degree polynomial back-off.

Below is shown the same local transmission used as an example before, formatted to be sent in a shared environment,
where deviceid 12 of bus 0.0.0. 1 sends @ (decimal 64) to deviceid 11 inbusid 0.0.0. 1. The packet’s content
is prepended with the bus id of the recipient, and optionally the sender’s bus and device id:

Channel analysis Transmission .
—~Response
| C-A | | ID | LENGTH | HEADER | BUS ID | BUS ID | ID | CONTENT | CRC | | ACK,,
- |
| ===~ [< >|==== == | ——=———= | === | === i i | === [> <|===—=
— |
| 0 | | 12 | 14 | 111 | 0001 | 0001 [11 | 64 | | | 6
— |
\ \ \ \ \ \ \ \ \ \ \ [
- |

| RX INFO | TX INFO |

###Header configuration The header bitmask let the packet’s receiver handle the exchange as transmitter requested.

| 00000110 | Acknowledge requested | Sender info included | Local bus |
—DEFAULT

00000100	Acknowledge requested	Sender info not included	Local bus
00000010	Acknowledge not requested	Sender info included	Local bus
00000000	Acknowledge not requested	Sender info not included	Local bus
-	-	-	- \
00000111	Acknowledge requested	Sender info included	Shared bus
00000101	Acknowledge requested	Sender info not included	Shared bus
00000011	Acknowledge not requested	Sender info included	Shared bus
00000001	Acknowledge not requested	Sender info not included	Shared bus
\ \ \ \ \

As you can see for now, only the uppermost bit states are used for packet transmission exchange configuration, the
unused bits may be used in future to extend or optimize the PJON Standard, so it is suggested not make use of them
on application level.

###Bus network A PJON bus network is the result of n PJON buses sharing the same medium and or interconnection
of PJON buses using routers. A router is a device connected to n PJON buses with n dedicated pins on n dedicated
media, able to route a packet from a bus to anotherone. Thanks to this rule is not only possible to share a medium with
neighbours, but also network with them and enhance connectivity for free.

TWO BUSES CONNECTED THROUGH A ROUTER

BUS ID 0.0.0.1 BUS ID 0.0.0.2

2.5. PJON Protocol Specification v0.3 15

From Github Wiki, Release

In a shared medium it is necessary to define a bus id to isolate devices from outcoming communication of other buses
nearby, enabling many to coexist on the same communication medium.

TWO BUSES SHARING THE SAME MEDIUM

BUS ID 0.0.0.1 BUS ID 0.0.0.2

PJON Protocol Spec v1.0

PJDL (Padded Jittering Data Link) specification: PJDL v0.1 - PJDL v1.0 - PIDLR v1.0

PJON (Padded Jittering Operative Network) Protocol specification: v0.1 - v0.2 - v0.3 - v1.0
* Acknowledge specification: v0.1

* Dynamic addressing specification: v0.1

/%

Milan, Italy - 3/10/2016

The PJON™ protocol layer specification is an invention and intellectual property
of Giovanni Blu Mitolo - Copyright 2010-2016 All rights reserved

Related work: https://github.com/gioblu/PJON/
Compliant implementation versions: PJON 6.0 and following

New features:

— Header switched position with length to enable more than one byte length
- Optional extended header by Fred Larsen

— Header bits function definition

- Configurable 1 or 2 bytes length (max packet length 255/65535 bytes)

- Configurable CRC used (8/32 bit)

- Configurable auto-addressing

*/

###PJON™ Protocol specification v1.0 With this release, the PJION protocol layer has been vastly extended and
generalized aiming to interoperability and to offer a real and complete alternative to the actual set of standards used
for networking today. The strong plus of the approach used by the protocol mechanism is high efficiency and low
overhead thanks to the configuration driven packet format, enabling easy constrain to application needs.

###Network protocol stack model In the graph below is shown the protocol stack model proposed. The differences
between the OSI model and the PJON stack is the presence or absence of some features and how they are distributed in
its layers. Those engineering choices are made to offer a scalable and low overhead stack of protocols able to be used
as a set or individually. This stack has been engineered “bottom to top” and was originally applied as an alternative to
1-Wire or i2c, with this release features has been extended enabling many use cases where the OSI model is generally
applied.

| 7 Application layer

16 Chapter 2. PJON Specifications

From Github Wiki, Release

| APIs, data sharing, remote access |

| 6 Presentation layer |
| Encryption, encoding, data compression \

| 5 Session layer |
| Session

| 4 Network layer |
| Routing, segmentation

| 3 Protocol layer: PJON

| Addressing, reliable packet transmission,
| multiplexing, traffic control,

| asynchronous acknowledgement

| 2 Data link layer: PJDL/PJDLR |
| Data 1link, collision avoidance, |

| synchronous acknowledgment

| 1 Physical layer: Cables, transceivers ecc. |

###Basic concepts
» Every bus has a unique IPv4 like 4 bytes id
* Many buses can coexist on the same medium
* Every device has an equal right to transmit and receive
» Every device can be connected to n PJON buses
 Every device has a unique 1 byte id
 Every device can obtain an id if available (see Dynamic addressing specification v0.1)
» Transmission occurs only if the communication medium is not in use
* Devices communicate through packets with a maximum length of 255 or 65535 bytes
* Packet transmission is regulated by a 1, 2 or 3 byte header
* Synchronous and or asynchronous acknowledgement can be requested (see Acknowledge specification v0.1)

The PJON protocol v1.0 handles internal bus connectivity and unique addressing for 254 devices, through bus com-
munication with unique bus addressing for 4.294.967.295 buses and supports up to 1.090.921.692.930 devices. It
regulates the exchange of packets with a configurable set of features driven by its header. Depending on the packet
configuration a certain overhead is added to information varying from 3 up to 19 bytes.

###Bus A PJON bus is made by a group of up to 254 devices transmitting and receiving on the same medium.
Communication between devices occurs through packets and it is based on democracy: every device has the right to
transmit on the common medium forup to (1000 / devices number) milliseconds / second.

2.6. PJON Protocol Spec vi1.0 17

From Github Wiki, Release

###Bus network A PJON bus network is the result of n PJON buses sharing the same medium and or being inter-
connected to other PJON buses through routers. A router is a device connected to n PJON buses with n dedicated,
potentially different, data link layers on n dedicated media, able to route a packet from a bus to another. Thanks to
this rule is not only possible to share the same medium with neighbours, but also network with them and enhance

connectivity.

TWO BUSES CONNECTED THROUGH A ROUTER

BUS ID 0.0.0.1 BUS ID 0.0.0.2

In a shared medium it is defined a IPv4 like bus id to isolate devices from outcoming communication of other buses
nearby, enabling many to coexist on the same communication medium.

TWO BUSES SHARING THE SAME MEDIUM

BUS ID 0.0.0.1 BUS ID 0.0.0.2

###Packet transmission A packet transmission is an exchange of a string to one or many of the devices connected to
the bus with optional correct reception certainty. The simplest form of packet is constructed by a recipient id, a header,
the length, the content and its CRC. In this example is shown a packet transmission in a local bus to device id 12
containing the string @ (decimal 64):

ID 12 HEADER 1 LENGTH 5 CONTENT 64 CRC 72

A default local packet transmission is a optionally bidirectional communication between two devices that can be
divided in 3 different phases: channel analysis, transmission and optional response. The packet transmission proce-
dure is regulated by its header:

HEADER BITMASK

18 Chapter 2. PJON Specifications

From Github Wiki, Release

1 2 3 4 5 6 7 8
\ | \ \ \ | \
—byte 1
| EXTENDED | EXTENDED | CRC | ADDRESS | ACKMODE | ACK | TX INFO | MODE
| HEADER | LENGTH | | | | |
\ | \ \ \ \ \
\ \ \ \ \ | \
—byte 2
| EXTENDED | ROUTING | SEGMENT | SESSION | PARITY | ENCODING | DATA | ENCRY
—~OPTIONAL
| HEADER | | ATION | \ | | COMP. | PTION
\ | \ \ \ \ \
\ \ \ \ \ \ \
—byte 3
| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A
—~OPTIONAL

Header byte 1 bits roles:

* Extended header bit informs if the header is composed by 1 (value 0) or 2 bytes (value 1)

* Extended Length bit informs the receiver if the packet contains 1 (value 0) or 2 (value 1) bytes length

* CRC bit informs the receiver which CRC was used as check for the packet, CRC 8 (value 0) or CRC 32 (value

1y

¢ Address bit informs if the packet is part of an addressing procedure (value 1) or not (value 0)

* Acknowledge mode bit informs if the requested acknowledge is synchronous (value 0) or asynchronous (value

1)

* Acknowledge bit informs if acknowledge is requested (value 1) or not (value 0)

¢ Transmitter info bit informs if the sender info are included (value 1) or not (value 0)

* Mode bit informs if the packet is a shared mode (value 1) or if local mode formatted (value 0)
Header byte 2 bits roles:

» Extended header bit informs if the header is composed by 2 (value 0) or 3 bytes (value 1)

* Routing bit informs if routing meta-data is included (value 1) or not (value 0)

* Segmentation bit informs it part of a segmented transmission (value 1) or not (value 0)

¢ Session bit informs if session meta-data is included (value 1) or not (value 0)

¢ Parity bit informs if parity information for auto-correction is included (value 1) or not (value 0)

* Encoding bit informs if encoding meta-data is included (value 1) or not (value 0)

* Data compression bit informs if data compression meta-data is included (value 1) or not (value 0)

* Encryption bit informs if encryption meta-data is included (value 1) or not (value 0)

Channel analysis Transmission Response
| C-A | | ID | HEADER | LENGTH | CONTENT | CRC | | ACK |

<= === [===< > = | ——===—= | === e > <emmm e \
[0 | \ \ 5 \ 64 \ [6 |
\ \ \ \ \ \

2.6. PJON Protocol Spec vi1.0

19

From Github Wiki, Release

In the first phase the bus is analyzed by transmitter reading 10 logical bits, if any logical 1 is detected the channel is
considered free and transmission phase starts in which the packet is entirely transmitted. Receiver calculates CRC and
starts the response phase transmitting a single byte, PJON_ACK (decimal 6) in case of correct reception or PJON_NAK
(decimal 21) if an error in the packet’s content is detected. If transmitter receives no answer or PJON_NAK the packet
sending is scheduled with a delay of ATTEMPTS * ATTEMPTS x ATTEMPTS * ATTEMPTS with a maximum
of 42 ATTEMPTS to obtain data transmission 4rd degree polynomial back-off.

Below is shown the same local transmission used as an example before, formatted to be sent over a shared medium,
where device id 12 of bus 0.0.0.1 sends @ (decimal 64) to deviceid 11 inbusid 0.0.0. 1. The packet’s content
is prepended with the bus id of the recipient, and optionally the sender’s bus and device id:

Channel analysis Transmission -
—Response
| C-A | | ID | HEADER | LENGTH | BUS ID | BUS ID | ID | CONTENT | CRC | I
—ACK |
| === R R | === | === | == e | === 1> <|---
==
[0 | [12 | 00000111 | 14 | 0001 | 0001 | 11 | 64 \ | (-
6 |
\ \ \ \ \ \ \ \ | \ \ [
—__|

| RX INFO | TX INFO |

Configuring the header it is possible to leverage of the extended features of the protocol:

Channel analysis