
Pitaya-Bot Documentation

TFGCo

Sep 11, 2023

Contents:

1 Overview 1
1.1 Features . 1
1.2 Who’s Using it . 1
1.3 How To Contribute? . 1

2 Features 3
2.1 No code writing . 3
2.2 Handler Support . 3
2.3 Bots . 3
2.4 Concurrency . 4
2.5 Monitoring . 4
2.6 Storage . 4
2.7 Custom initialization and wrap-up . 4
2.8 Serializers . 5
2.9 Spec generation . 5

3 Workflow 7
3.1 Basic Workflow . 7
3.2 Workflows . 8

4 Configuration 11
4.1 General . 11
4.2 Prometheus . 11
4.3 Server . 11
4.4 Storage . 12
4.5 Kubernetes . 12
4.6 Manager . 12
4.7 Bot . 13
4.8 Custom initialization and wrap-up . 13

5 Command Options 15
5.1 Pitaya-Bot . 15
5.2 Logger . 15

6 Test Writing 17
6.1 Command Options . 17
6.2 Configuration . 17

i

6.3 Spec Configuration . 17
6.4 Bots . 17
6.5 Operation . 18
6.6 Special Fields . 18

7 Examples 21

8 Indices and tables 23

ii

CHAPTER 1

Overview

Pitaya-Bot is an easy to use, fast and lightweight test server framework for Pitaya. The goal of pitaya-bot is to provide
a basic development framework for testing pitaya servers via integration tests or stress tests.

1.1 Features

• No code writing - Pitaya-Bot only needs JSON specs and a configuration YAML, in order to work. It is simple
to create and test directly into any environment, be it development or production.

• Concurrency - Configurable number of instances, which will run the tests.

• Monitoring - Pitaya-Bot is configurable to work with Prometeus. It allows the user to see metrics of the server,
which the tests are being run. This way, it is possible to run stress or integration tests.

• Communication - Communication between server and client enabled for TCP via JSON.

• Handler Support - Support handler messages, to emulate the behaviour of customers using Pitaya.

• Summary - At the end of the tests, returns if the requests made have the expected responses. Perfect for testing
idempotence of the server.

1.2 Who’s Using it

Well, right now, only us at TFG Co, are using it, but it would be great to get a community around the project. Hope to
hear from you guys soon!

1.3 How To Contribute?

Just the usual: Fork, Hack, Pull Request. Rinse and Repeat. Also don’t forget to include tests and docs (we are very
fond of both).

1

https://github.com/topfreegames/pitaya
https://prometheus.io/

Pitaya-Bot Documentation

2 Chapter 1. Overview

CHAPTER 2

Features

Pitaya-Bot has been developed in conjunction with Pitaya, to allow the usage of every feature contained in Pitaya,
inside this testing framework. It has been created to fulfill every possible testing scenario and make it easy to be used,
without the need to write code.

Some of its core features are described below.

2.1 No code writing

The tests which will be run don’t need the knowledge of Golang. The writting of JSON specs and configuration are
more than enough.

2.2 Handler Support

It is only possible to test handlers, due to the fact that this framework is focused on the scenarios which the user takes
part.

The tests can be created to test idempotency or stress the server and see how it behaves.

2.3 Bots

Bots are “fake” users, which will be doing requests to Pitaya servers. All of them must implement the Bot interface.

Pitaya-Bot comes with a few implemented bots, and more can be implemented as needed. The current existing bots
are:

3

https://github.com/topfreegames/pitaya
https://github.com/topfreegames/pitaya-bot/blob/master/bot/bot.go

Pitaya-Bot Documentation

2.3.1 Sequential

This bot follows exactly the orders written inside the JSON spec and chronologically, one bot after another in each
instance.

2.4 Concurrency

In the test setup, it is possible to inform the number of instances that will be doing it. So that it is possible not only to
make integration tests, but also stress tests.

2.5 Monitoring

Pitaya-Bot is configurable to measure the server health via Prometeus. It is perfect for the testing, because the tester
will be able to see how the server behaves with any number of requests and any handler that he wants to test.

2.6 Storage

Storage is the space that the Bot will retain the information received from Pitaya servers, so that it can be used in
future use cases. All of them must implement the Storage interface. The desired storage must be set via configuration
and will be created via factory method NewStorage. Remember to add new storages into this factory.

Pitaya-Bot comes with a few implemented storages, and more can be implemented as needed. The current existing
storages are:

2.6.1 Memory

This storage retains all information inside the testing machine memory. The stored information is not persistent and
will be flushed with the end of the test.

2.7 Custom initialization and wrap-up

Specs can specify custom initialization and wrap-up routines to do operations such as fetching an initial state from
some storage and saving the final state to a storage.

To define an initialization function in the script you should create a preRun field, with function specifying which
function should be run. It also accepts args as an object with arguments to be passed to the function.

To define a wrap-up function in the script you should create a postRun field, with function specifying which function
should be run. It also accepts args as an object with arguments to be passed to the function.

The JSON testing sample has an example with these fields.

2.7.1 Redis

These initialization and wrap-routines run lua scripts in redis and come with default scripts to fetch a state from a
set and save it to another. The preRun script is expected to return the initial state for the bot and the postRun script
receives the final state and is expected to do something with it.

4 Chapter 2. Features

https://prometheus.io/
https://github.com/topfreegames/pitaya-bot/blob/master/storage/storage.go

Pitaya-Bot Documentation

The default initialization script tries to fetch an element from the set ${name}:available and write it to {name}:used.

The default wrap-up script writes the state to ${name}:available.

The initialization script accepts two arguments:

• name (required): the key argument that is passed to the lua script

• failEmpty (optional): a boolean indicating if the method should fail if the script returns nil

The wrap-up script accepts one argument:

• name (required): the key argument that is passed to the lua script

2.8 Serializers

Pitaya-Bot supports both JSON and Protobuf serializers out of the box for the messages sent to and from the client,
the default serializer is JSON.

2.9 Spec generation

It is possible to create specs from pitaya-cli history by using the parseHistory command.

2.8. Serializers 5

Pitaya-Bot Documentation

6 Chapter 2. Features

CHAPTER 3

Workflow

In this section we will describe in details the available workflow processes, since the setup until the end summary. The
following examples are going to assume the usage of a sequential bot with TCP communication and JSON information
format.

3.1 Basic Workflow

The overview of what happens when pitaya-bot is started:

• Initialization of app, configuration fetch, specs directory lookup and creation of metric reporters

• Instantiation of many go routines, which are defined in spec files

• Validation of selected bot and written specs

• Execution of specs

• Notification of the result to all of metrics reporter

• Summarization of tests

3.1.1 Initialization

The first thing pitaya-bot does is instantiate an App struct based on the config file, receiving the metric reporters that
will be used (Promethues, . . .) and name of the pitaya game which will be tested.

The configuration is also passed to the bots that will follow the specs, so that they know which storage will be used,
endpoint to access, etc.

Another important point is the directory where the specs are located, because it will use the number of spec files as the
number of go routines that will execute each one of them in a parallel way.

7

Pitaya-Bot Documentation

3.1.2 Instances

Based on the spec file, the field numberOfInstances will dictate how many go routines will be created to run
each of the written scenarios.

3.1.3 Validation

For each spec, it will validate if it was able to:

• Create the given type of bot

• Initialize the bot

• Run the given spec without problems

• Finalize the bot

3.1.4 Execution of given spec

In the moment that the bot is initialized, it will fetch all the information contained in the spec and create operations
that will be executed. The operations can vary, it can make all the possible operations that a pitaya client can do and
also store informations from the received responses. It is important to mention that each bot has different operations
that can be used, so consult them before writing your own testing scenarios.

3.1.5 Metric Reporter

After each request to a pitaya server, the pitaya-bot will inform the metric reporter of the response time, which is
important to see the overall QoS(Quality of Service).

3.1.6 Summary

After all specs have been run, it will gather all the results obtained and return in the terminal, informing if it was a
total success or if some errors occurred.

3.2 Workflows

There is the listing of all possible workflows:

1. Local: Pitaya-bot will be instantiated locally and will request the server from current location

2. Local Manager: A Pitaya-Bot manager will be instantiated locally and will create the Kubernetes Jobs inside
kubernetes cluster from given config and specs

3. Remote Manager: A Pitaya-Bot manager will be instantiated inside a kubernetes cluster and will create the
Kubernetes Jobs from given config and specs

8 Chapter 3. Workflow

Pitaya-Bot Documentation

3.2.1 Local

It will instantiate an unit of pitaya-bot, which will run all specs located inside given directory. Each spec file will be
run in a distinct go routine and also, each operation from the spec will be run in another distinct go routine.

The local architecture is represented below:

3.2.2 Local Manager

It will instantiate a pitaya-bot manager, which will create all configmaps, containing all specs and the config.yaml, to
be used by each kubernetes job. After creating all configmaps and jobs, it will start a controller, that will be watching
all the jobs created and after all of them finish their work or time out, it will clean everything that was created inside
the kubernetes cluster.

The local manager architecture is represented below:

3.2.3 Remote Manager

It will instantiate a pitaya-bot manager inside kubernetes cluster, which will create all configmaps, containing all specs
and config.yaml, to be used by each kubernetes job. After creating all configmaps and jobs, it will start a controller,
that will be watching all the jobs created and after all of them finish their work or time out, it will clean everything that
was created and will also delete itself with the its configmaps.

The remote manager architecture is represented below:

3.2. Workflows 9

Pitaya-Bot Documentation

3.2.4 Deploy Manager

It will create a kubernetes deployment, which will be running a pitaya-bot remote manager inside a kubernetes cluster.

3.2.5 Delete All

It will delete everything that is related to pitaya-bot inside the kubernetes cluster and is mentioned in the config.yaml.

10 Chapter 3. Workflow

CHAPTER 4

Configuration

Pitaya-Bot uses Viper to control its configuration. Below we describe the configuration variables split by topic. We
judge the default values are good for most cases, but might need to be changed for some use cases. The default
directory for the config file is: ./config/config.yaml.

4.1 General

These are general configurations

Configuration Default
value

Type Description

game string Name of the application being tested, to appear in Prometheus

4.2 Prometheus

These configuration values configure the Prometheus monitoring service to check how the server being tested is be-
having. To monitor the application, the option report-metrics must be true when starting the Pitaya-Bot.

Configuration Default
value

Type Description

prometheus.port 9191 int Port which the Prometheus instance will run

4.3 Server

The configurations needed to access the Pitaya server being tested

11

Pitaya-Bot Documentation

Configuration Default
value

Type Description

server.host localhost string Pitaya server host
server.tls false bool Boolean to enable/disable TLS to connect with Pitaya server
server.requestTimeout5s time.DurationRequest timeout for the Pitaya client
server.serializer json string must be json or protobuffer
server.protobuffer.docs“” string Route for server documentation. Target server must implement

handlers for protobuf descriptors and auto documentation.
server.protobuffer.pushinfo.routes[] []string Information about the protos used by push messages from the

server, this part contains the routes of the messages
server.protobuffer.pushinfo.protos[] []string Information about the protos used by push messages from the

server, this part contains the names of the protos

If your application use protobuffers, specifying docs is required. You can also add a list of routes and protobuffer types
if your application sends push information to the bot. See testing/protobuffer/config/config.yaml for
example.

4.4 Storage

Configuration Default
value

Type Description

storage.type memory string Type of storage which the bot will use

4.5 Kubernetes

Configuration Default
value

Type Description

kubernetes.config $HOME/.kube/configstring Path where kubernetes configuration file is located
kubernetes.context string Kubernetes configuration file context
kubernetes.cpu 250m string CPU which will be allocated for each Kubernetes Pod
kubernetes.image tfgco/pitaya-

bot:latest
string Pitaya-Bot docker image that kubernetes will use to deploy pods

kubernetes.imagepullAlways string Kubernetes docker image pull policy
kubernetes.masterurl string Master URL for Kubernetes
kubernetes.memory256Mi string RAM Memory which will be allocated for each Kubernetes Pod
kubernetes.namespacedefault string Kubernetes namespace that will be used to deploy the jobs
kubernetes.job.retry0 int Backoff limit from the jobs that will run each spec file

4.6 Manager

Configuration Default
value

Type Description

manager.maxrequeues5 int Maximum number of requeues that will be done, if some error
occurs while processing a job

manager.wait 1s time.Period Waiting time between each job process

12 Chapter 4. Configuration

Pitaya-Bot Documentation

4.7 Bot

Configuration Default
value

Type Description

bot.operation.maxSleep500ms time.DurationMaximum sleep duration between bot operations, the launcher se-
lects a random value in the range [0, maxSleep]

bot.operation.stopOnErrorfalse bool Defines if the bot should stop running on error, by default it restarts
the spec

bot.spec.parallelism1 int Defines the number of instances to run for each spec when running
on kubernetes

4.8 Custom initialization and wrap-up

Configuration Default
value

Type Description

custom.redis.pre.urlredis://localhost:9010string Redis url to connect if using a custom redis initialization
custom.redis.pre.connectionTimeout10 int Timeout in seconds to connect to redis
custom.redis.pre.script“” string Path to the lua script to run if using a custom redis initialization
custom.redis.post.urlredis://localhost:9010string Redis url to connect if using a custom redis wrap-up
custom.redis.post.connectionTimeout10 int Timeout in seconds to connect to redis
custom.redis.post.script“” string Path to the lua script to run if using a custom redis wrap-up

4.7. Bot 13

Pitaya-Bot Documentation

14 Chapter 4. Configuration

CHAPTER 5

Command Options

Pitaya-Bot is a CLI application, that has many command options, which will be described below by topic. We judge
the default values are good for most cases, but might need to be changed for some use cases. The default verbosity for
the application logger is Debug.

5.1 Pitaya-Bot

Base configuration needed to run pitaya-bot

Command Command
Letter

Default
value

Type Description

config ./config/config.yamlstring Config file path from pitaya-bot
dir d ./specs/ string Specs directory
duration 1m time.DurationMinimum total duration of tests
report-
metrics

false bool Enable/Disable metrics reporter

pitaya-bot-
type

t local string Pitaya-Bot workflow type that will be executed. It can be:
local, local-manager, remote-manager, deploy-manager,
delete-all

delete false bool Delete all pods, config maps, jobs and deployements before
run. Only available when pitaya-bot-type is local-manager
or remote-manager.

5.2 Logger

These are logging configurations

15

Pitaya-Bot Documentation

Command Command
Letter

Default
value

Type Description

verbose v 3 int Logger verbosity level => v0: Error, v1=Warning, v2=Info,
v3=Debug

logJSON j false bool Enable/Disable logJSON output mode

16 Chapter 5. Command Options

CHAPTER 6

Test Writing

6.1 Command Options

The execution of pitaya-bot offers many command options, that enable/disable many functionalities and different types
of workflows. The command options can be found in the command section.

6.2 Configuration

It is important to create the config.yaml file before running the tests, so that pitaya-bot knows which server to access
and which report metrics to use. The configuration options can be found in the configuration section.

6.3 Spec Configuration

Before executing any spec, it is possible to use the following options:

• numberOfInstances: The number of instances(go routines) that will run the same spec in parallel

6.4 Bots

There are bots that will be able to follow the operations given to them in each spec file. The available bots are:

6.4.1 Sequential Bot

This bot will follow the orders contained inside a spec file sequentially and chronologically. The possible operation
types for it are:

• Request: Requests pitaya server being tested

17

command_options.html
configuration.html

Pitaya-Bot Documentation

• Notify: Notifies pitaya server being tested

• Function: Internal operations for the bot, such as:

– Disconnect: Disconnect from pitaya server

– Connect: Connect to pitaya server

– Reconnect: Reconnects to pitaya server

• Listen: Listen to push notifications from pitaya server

6.5 Operation

Operation is the generalistic struct which contains the action that the specified bot will do. The fields are:

• Type: Type of operation which the bot will do. Each bot has different types

• Timeout: Time that the bot has to execute given operation

• Uri: URI which the bot will use to make request, notification, listen, . . .

• Args: Arguments that will be used in given operation

• Expect: Expected result from operation

• Store: Which field from the response it should retain

6.6 Special Fields

These are fields that when used will fetch the information from given structure:

• $response: When used in Expect field as key, will get the object response, that can access his attributes via
. or []

• $store: The information contained inside a storage, can be used as a Expect value or Args value.

6.6.1 Config example

Below is a simple example of a config file, for another one which is being used, check: config

game: "example"

storage:
type: "memory"

server:
host: "localhost"
tls: true

prometheus:
port: 9191

18 Chapter 6. Test Writing

https://github.com/topfreegames/pitaya-bot/blob/master/testing/config/config.yaml

Pitaya-Bot Documentation

6.6.2 Spec example

Below is a base example of a spec file, for a working example, check: spec

{
"numberOfInstances": 1,
"sequentialOperations": [
{
"type": "request",
"uri": "connector.gameHandler.create",
"expect": {

"$response.code": {
"type": "string",
"value": "200"

}
},
"store": {

"playerAccessToken": {
"type": "string",
"value": "$response.token"

}
}

}
]

}

6.6.3 Testing example

For a complete working example, check the testing example.

6.6. Special Fields 19

https://github.com/topfreegames/pitaya-bot/blob/master/testing/specs/default.json
https://github.com/topfreegames/pitaya-bot/tree/master/testing

Pitaya-Bot Documentation

20 Chapter 6. Test Writing

CHAPTER 7

Examples

Example projects can be found here

P.S. If you are using Minikube and have a testing pitaya server running locally(host OS), change the config.yaml to
an address that the pods from minikube can access. Normally it is: 192.168.99.1, but you can find it running ifconfig
from host OS and looking at the inet from vboxnet

21

https://github.com/topfreegames/pitaya-bot/tree/master/testing

Pitaya-Bot Documentation

22 Chapter 7. Examples

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

23

	Overview
	Features
	Who’s Using it
	How To Contribute?

	Features
	No code writing
	Handler Support
	Bots
	Concurrency
	Monitoring
	Storage
	Custom initialization and wrap-up
	Serializers
	Spec generation

	Workflow
	Basic Workflow
	Workflows

	Configuration
	General
	Prometheus
	Server
	Storage
	Kubernetes
	Manager
	Bot
	Custom initialization and wrap-up

	Command Options
	Pitaya-Bot
	Logger

	Test Writing
	Command Options
	Configuration
	Spec Configuration
	Bots
	Operation
	Special Fields

	Examples
	Indices and tables

