

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

CITATION

CITING PIrANHA

If you use scripts from this repository as part of your published research, please cite the repository as follows (also see DOI information below):

	Bagley, J.C. 2020. PIrANHA v0.4a4. GitHub repository, Available at: http://github.com/justincbagley/PIrANHA.

Alternatively, provide the following link to this software repository in your manuscript:

	https://github.com/justincbagley/PIrANHA

DOI

The DOI for PIrANHA, via Zenodo [https://zenodo.org] (also indexed by OpenAIRE [https://explore.openaire.eu/]), is as follows: [image: _images/zenodo.596766.svg]DOI [https://doi.org/10.5281/zenodo.596766]. Here are some examples of citing PIrANHA using the DOI:

Bagley, J.C. 2020. PIrANHA v0.4a4. GitHub package, Available at: http://doi.org/10.5281/zenodo.596766.

Bagley, J.C. 2020. PIrANHA. Zenodo, Available at: http://doi.org/10.5281/zenodo.596766.

BIBTEX

BibTeX entries for LaTeX users are as follows:

Standard BibTeX entry:

@misc{PIrANHA,
 author = {Justin C. Bagley},
 title = {PIrANHA},
 year = {2020},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/justincbagley/piranha}}
}

BibTeX entry with Zenodo DOI:

@misc{PIrANHA,
 author = {Justin C. Bagley},
 title = {PIrANHA},
 year = {2020},
 doi = 10.5281/zenodo.596766,
 publisher = {Zenodo},
 journal = {GitHub repository},
 howpublished = {\url{http://doi.org/10.5281/zenodo.596766}}
}

Justin C. Bagley, Ph.D.
December 17, 2020, Jacksonville, AL

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team (Justin C. Bagley) at bagleyj@umsl.edu.
All complaints will be reviewed and investigated and will result in a response
that is deemed necessary and appropriate to the circumstances. The project team
is obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html.

Homepage: https://www.contributor-covenant.org

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq.

Phylo* File Processing and Automation Using PIrANHA

 PIrANHA

 PIrANHA Change Log

PIrANHA Change Log

Changes by release

PIrANHA v1.0 (official major version release #1)

**v1.0 is TBA - Coming soon! Join in on development and help us get there sooner! **

Updates since last pre-release

Development is on-going…

PIrANHA v0.4a4 (official minor pre-release version v0.4-alpha-4), December 18, 2020

	December 15, 2020: Bug fixes for bad piping and other minor errors in batchRunFolders and FASTAsummary functions, and added option for specifying number of threads when running batchRunFolders.

	December 15, 2020: Fixed version printing for piranha main script and functions (piranha -V, piranha --version, piranha -f <function> -V, and piranha -f <function> --version each now yield expected behavior (terse output).

	December 11, 2020: Made various minor fixes to code, READMEs, Quick Guide, etc. fixing Codacy issues (reestablished Codacy grade of “A”!).

	December 7, 2020: Another update to piranha script (now v1.1.6) to make sure that function name tab completions are automatically sourced when running piranha. Also updates to installer scripts and documentation, plus the change log.

	December 3, 2020: Added important updates to PIrANHA, including edits to main piranha script (now v1.1.5) and a new completions/ subfolder, allowing bash tab completion of function names (expected usage: piranha -f <TAB>). Updated Homebrew tap and ‘changelog.md’ accordingly.

	November 23 and December 1, 2020: Bug fixes and updates for assembleReads and phaseAlleles functions of piranha, fixing errors that caused the program to stop due to issues with among other things ls, plus minor change to alignAlleles (not worth a mention).

	November 13, 2020: Bug fix for PHYLIP2NEXUS because failing regex test for hexadecimal characters, if produced, in the resulting (output) NEXUS files. Problem solved by posix solution.

	October 20, 2020 Bug fixes for FASTA2PHYLIP function, which in aggregate fix problems completely for the single-FASTA, -f 1 option.

	August 12, 2020: Updated trimSeqs function to improve performance after issue discussion with Juan Moreira. This updated fixed posix space bug, because [:space:] should be [[:space:]].

	August 3, 2020: Updated README, as well as Quick Guide for wiki [https://github.com/justincbagley/piranha/wiki].

PIrANHA v0.4a3 (official minor pre-release version v0.4-alpha-3), July 31, 2020

	July 31, 2020: Added new trimSeqs function and prepped 0.4a3 release by updating versioning of main piranha script and function scipts, and also updating Wiki and READMEs. The trimSeqs function automates trimming one or multiple DNA sequence alignments in PHYLIP format, with options for custom gap handling parameters for trimAl, and with trimmed alignments output to FASTA, PHYLIP, or NEXUS formats.

	May 27, 2020: Updated repo with new citation file (‘CITATION.md’), code of conduct for developers (‘CODE_OF_CONDUCT.md’), and license (‘LICENSE’).

	May 3-5, 2020: Added new functions. The new geneCounter function counts and summarizes number of gene copies per tip taxon label in a set of input gene trees in Newick format, given a taxon-species assignment file (this function written to handle output from HybPiper pipeline; see Usage text). Also added a new batchRunFolders function to help setting up input files for batch analyses in several popular software programs for phylogenetics.

	April 18-20, 2020: This update builds on the previous pre-release, v0.4a2, by adding minor bug fixes and improvements to several functions. With the addition of the new function alignAlleles, a companion script meant to be run directly after phaseAlleles, this release establishes a new workflow for phasing and aligning consensus sequences from HTS (e.g. targeted sequence capture data) based on reads (re)mapped to a reference assembly FASTA file (i.e. following reference-based assembly). This combination of programs was designed to be run on target capture data after first conducting cleaning, assembly, locus selection, and reference-based assembly (specifically, with SECAPR (Andermann et al. 2018) in mind, and with testing based on output from SECAPR).

	April 17, 2020: Added “Quick Guide” to wiki, entitled “Quick Guide for the Impatient,” with install instructions and example code.

PIrANHA v0.4a2 (official minor pre-release version v0.4-alpha-2), April 17, 2020

	April 13-17, 2020: This update builds on the previous pre-release, v0.4a, by updating the main prianha script (including improvements to messaging and help text); addition of a new phaseAlleles function that automates phasing of consensus sequences from HTS (e.g. targeted sequence capture) based on a (re)mapped assembly reference FASTA; as well as minor updates to all functions (improved messaging and minor bug fixes).

PIrANHA v0.4a (official minor pre-release version 0.4-alpha), April 13, 2020

	April 12, 2020: Various minor updates to piranha bin/ functions, and important update to options in main piranha script now allows arguments to be passed to the program directly after the function call (after -f flag), without -a|–args flag. This fixes a problem where the previous implementation’s reliance on --args='<args>' format (arguments passed in quotes) meant that Bash completion would not work while writing out the arguments.

	April 6-7, 2020: Major piranha package update, including edits to main script, all functions, dir structure, and other files (e.g. test files). Bug fixes for errors when no arguments and failed rm calls, check and update debug code, plus updates to READMEs and help texts.

	April 2-3, 2020: Multiple updates. Added new FASTAsummary function that automates summarizing characteristics of one or multiple FASTA files in current working directory, and I also modified calcAlignmentPIS to integrate with this new function, and now both functions work well when run separately or together (the function to calculate PIS is now called within FASTAsummary. Also updated PHYLIPsummary function. Also added new splitFASTA function that splits each tip taxon (individual sequence) in a FASTA file into a separate FASTA file. This set of updates also includes a new piranha script with updated -f list function accommodating new functions, and with an attempt at adding debugging code (but this needs additional testing and fixing (How to best implement debugging?)).

	March 30, 2020: Multiple updates. Added new nQuireRunner function that automates running nQuire to estimate ploidy levels for samples based on mapped NGS reads (BAM files); updated FASTA2PHYLIP function to have new options (-f and -i) allowing analysis of a single input FASTA or multiple FASTAs (prev. only did multiple FASTAs in cwd); updated MAGNET with minor fixes to v1.1.1 (updated versioning in README as well); and updated piranha function to have complete list function output. Also added test FASTA file ‘test.fasta’ to test/ subfolder of repository containing test input files.

	December 12, 2019: Added new BEAST_logThinner function script that downsizes, or ‘thins’, BEAST2 .log files to every nth line. Tested and working interactively. Outputs new log file in current working directory, without replacement.

	October 23, 2019: Added new PHYLIPsummary function script that summarizes no. taxa and no. characters for one or multiple PHYLIP DNA sequence alignments in current directory.

	October 22, 2019: Made minor edits (e.g. fixing versioning) and bug fixes (fixing sed code that caused failures when user had GNU SED installed instead of BSD SED) to PhyloMapperNullProc, PHYLIPsubsampler, PHYLIPcleaner, PHYLIP2PFSubsets, MLEResultsProc, getBootTrees, fastSTRUCTURE, dropRandomHap, dadiUncertainty, dadiRunner, dadiPostProc, calcAlignmentPIS, BEASTRunner, BEAST_PSPrepper, RAxMLRunChecker, RAxMLRunner, SNAPPRunner, SpeciesIdentifier, AnouraNEXUSPrepper, concatenateSeqs, concatSeqsPartitions, FASTA2VCF, getTaxonNames, makePartitions, MrBayesPostProc, phyNcharSumm, pyRAD2PartitionFinder, pyRADLocusVarSites, renameForStarBeast2, renameTaxa, renameTaxa_v1, splitPHYLIP, taxonCompFilter, treeThinner, vcfSubsampler, completeSeqs, RYcoder, RogueNaRokRunner, PHYLIP2NEXUS, PHYLIP2Mega, NEXUS2PHYLIP, NEXUS2MultiPHYLIP, Mega2PHYLIP, BEASTReset, FASTA2PHYLIP, and completeConcatSeqs.

PIrANHA v0.3a2 (official minor pre-release version 0.3-alpha.2), July 26, 2019

	July 25, 2019: Added new RogueNaRokRunner function that reads in a Newick tree file and runs it through RogueNaRok to identify rogue taxa. Additionally, I conducted a comlete rewrite of the NEXUS2PHYLIP function that removes its dependence on N. Takebayashi’s Perl script (see previous version), and I made minor edits to piranha and edits and bug fixes for other functions including RYcoder.

	July 24, 2019: Minor updates and bug fixes for PHYLIP2NEXUS function.

	July 11, 2019: Minor updates and fixes for PHYLIP2Mega function.

	June 11, 2019: Added new RYcoder function that reads in a PHYLIP or NEXUS DNA sequence alignment and converts it into ‘RY’-coded, binary format, with purines (A, G) coded as 0’s and pyrimidines (C, T) coded as 1’s.

PIrANHA v0.3a1 (official minor pre-release version 0.3-alpha.1), May 7, 2019

	May 7, 2019: Fixed main piranha function so that it correctly reads in all arguments passed with the –args=’’ flag (should also work with -a), which previously caused several functions to fail and invoke trapExit.

	April 30 – May 7, 2019: Added bug fixes and updates to dropRandomHap, PHYLIP2NEXUS, PHYLIP2FASTA, PHYLIP2Mega, and splitPHYLIP functions.

	April 10, 2019: Added new renameTaxa function that renames taxon (sample) names in genetic data files of type FASTA, NEXUS, PHYLIP, and VCF according to user specifications.

	April 9, 2019: Added updated scripts to fix bugs in FASTA2PHYLIP and getTaxonNames functions.

PIrANHA v0.2-alpha.2 (official minor pre-release version), April 9, 2019

This is a minor update to the pre-release version that adds a new FASTA2VCF function which acts as a wrapper for the software program snp-sites (link [https://github.com/sanger-pathogens/snp-sites]) and converts a sequential FASTA multiple sequence alignment into a variant call format (VCF) v4.1 file, with or without subsampling 1 SNP per partition/locus. This update also includes edits to the README, index.html, changeLog.md, and travis.yml files. Importantly, I have also now created a successful homebrew [https://brew.sh] tap for PIrANHA here [https://github.com/justincbagley/homebrew-piranha] with a formula that is working with v0.2-alpha, and that is now described in the documentation wiki [https://github.com/justincbagley/piranha/wiki].

PIrANHA v0.2-alpha.1c (official minor pre-release version), March 15, 2019

This is a minor update to the pre-release version that includes edits to the README and index.html files, and that adds this slightly updated changeLog.md file back into the repository. Other changes include removing bin/trash function due to conflicts with /usr/local/bin/trash symlink belonging to trash on macOS, which caused homebrew install to fail. After fixing this, I have also now created a successful homebrew tap for PIrANHA that is working with this release (more info soon, to be added to the README).

PIrANHA v0.2-alpha.1b (official minor pre-release version), March 15, 2019

This is a very minor update to the pre-release version removing some PHYLIP and FASTA DNA sequence alignments that I had previously included in the repo for my own testing purposes, and updating README and index.html files.

PIrANHA v0.2-alpha.1 (official minor pre-release version), March 15, 2019

Since v0.2-alpha, the pre-release version of PIrANHA v0.2-alpha.1 added several updates including redos for the PIrANHA etc/ dir, a README for bin/, and new scripts for the MLEResultsProc, getTaxonNames, taxonCompFilter, and SNAPPRunner functions.

PIrANHA v0.2-alpha (official minor pre-release version), March 15, 2019

Pre-release version, PIrANHA v0.2-alpha, involved a virtually complete rewrite and reorganization of PIrANHA (with >1,200 additions and >400 deletions). All scripts were converted to ‘function’ programs in bin/ or bin/MAGNET-1.0.0/ of the repo, and I have written a new program, piranha, that is now the main program and runs all functions. I am still in the process of updating the README and all function scripts, but I did a pre-release ratcheted up to v0.2 due to the great improvements in modularization and efficiency that this update allowed (selecting a function and passing all arguments, all from piranha), and because I wanted a new release to use as a starting point to create Debian and Homebrew distribution releases (i.e. brew tap(s) to update as new versions roll out during development). The current organization of PIrANHA is much better suited for general use, and for adding other collaborators or developers.

The changeLog.md [https://github.com/justincbagley/PIrANHA/blob/master/changeLog] is not yet up to date (not even for v0.2-alpha) and the repository is close but still not ready for a v1.0 major release, but we’re getting there!!

	March 2019: Changed license to 3-Clause BSD license. Need to delete old versions still available on GitHub or Zenodo with GPLv2+ license, so that only this release, with current license, is available.

	March 2019: Updated script headers, dates, and copyright information for most scripts.

	February to March 2019: Added -V and --version flag options, to echo version to screen, to most scripts in the repo.

PIrANHA v0.1.7 (official minor version release), February 19, 2019

	February 19, 2019: Improved phylipSubsampler.sh to check and account for differences in machine type. Now correctly accommodations UNIX (Mac) and LINUX systems.

	February 19, 2019: Updated MAGNET script by adding a getBipartTrees function to the MAGNET pipeline, which organizes RAxML bipartitions trees for each locus (= best ML trees with bootstrap proportions along nodes the corresponding bootstrap searches search; resulting from -f a -x options, which are included in all MAGNET calls to RAxML). Edited header and script banner to be prepped for future official release of MAGNET with versioning 0.1.9.

	December 2018: Added new MAGNET script updated to include --resume option, and to set raxml executable name one of two ways after detecting machine type (raxml on Mac, raxmlHPC-SS3 on Linux/supercomputer).

	November 25, 2018: Added to MAGNET/shell folder a new RAxMLRunChecker.sh script v1.0, which counts the number of completed RAxML runs during the course of, or after, a MAGNET pipeline run, and also collates information on the dataset (e.g. number of patterns) and run (e.g. run time, optimum likelihood) for each locus/partition.

	November 20, 2018 bug fix: Updated MAGNET with edited MAGNET.sh (now v0.1.7+) and ‘NEXUS2gphocs.sh’ (now v1.3+) scripts containing an important bug fix and some new code checking for whether the NEXUS to fasta file conversion succeeded.

	November 2018: Rewrote pyRAD2PartitionFinder.sh script, adding several options including options for choosing the PartitionFinder path and version, model set, model selection parameter (BIC, AIC, or AICc default), and whether or not to run PartitionFinder (or just create the input files). This new pyRAD2PartitionFinder script supersedes the old Super-pyRAD2PartitionFinder.sh script that was previously included for use on HPC supercomputer clusters, which has now been removed from the repo. The new script has been tested on mac/UNIX and Linux (CentOS 6).

	June 2018: Created ‘snapp_runner.cfg’ example configuration file for SNAPPRunner.

	August 2018: Created runSpeciesIdentifier.sh script for running SpeciesIdentifier DNA barcoding software on supercomputer.

	May 2018: Updated BEASTReset.sh and fastSTRUCTURE.sh scripts.

	October 2017: Added dadiUncertainty.sh, a pipeline program and ∂a∂i wrapper that automates running uncertainty analysis on a ∂a∂i demographic model, using either the Godambe Information Matrix (GIM) or Fisher Information Matrix (FIM), to estimate standard deviations for calculating 95% CIs for model parameter estimates.

	September 2017: Added vcfSubsampler.sh, a utility script that uses a list file to subsample a ‘.vcf’ file so that it only contains SNPs in the list.

	September 2017: Added phylipSubsampler.sh, a utility script that automates subsampling one or multiple Phylip alignments down to one sequence per population/species (assuming no missing data).

	September 2017: Updated README. A specific fix to the README is giving an updated DOI in the Zenodo badge (DOI section). Another fix was switching the DOI in example citations to a Zenodo DOI that applies to all versions; the new DOI will always resolve to the latest release tracked by Zenodo.

	August-September 2017: Bug fix for phylipSubsampler.sh (fixes bug causing incorrect number of characters on first line of input files)

PIrANHA v0.1.6.1 (official minor version release), September 13, 2017

	August 2017: Made several updates to README and documentation for the repository.

PIrANHA v0.1.6 (official minor version release), September 13, 2017

	August 2017: Updated all README files in the repository (for PIrANHA and BEASTPostProc, BEASTRunner, ExaBayesPostProc, MLEResultsProc, and fastSTRUCTURE scripts).

	August 2017: Added new BEASTReset.sh script, and corresponding README, into BEASTReset sub-folder. This script automates re-setting random starting number seeds in BEAST run submission scripts for supercomputer runs. This is a time-saving script when many failed runs need to be restarted from a different seed!

	bug fix: MLEResultsProc.sh (expands capability of detecting and accounting for PS/SS runs conducted in different versions of BEAST, i.e. v1 vs. v2)

	bug fix: PFSubsetSum.sh (fixes incorrect ordering of summary statistics)

	bug fix: PFSubsetSum.sh (fixed script so that it works with PartitionFinder v1 and v2; last testing: v2.1.1)

PIrANHA v0.1.5 (official minor version release), August 21, 2017

The current release, PIrANHA v0.1.5, contains the following updates, in addition to minor improvements in the code:

	August 2017: Added a Change Log file (‘changeLog.md’) to supplement releases page and provide log file within master.

	August 2017: Updated MAGNET pipeline by editing MAGNET.sh by adding three new command line options (\-e, \-m, and \-o flags), as follows:

 -e executable (def: raxmlHPC-SSE3) name of RAxML executable, accessible from command line
 on user's machine
 -m indivMissingData (def: 1=allowed; 0=removed)
 -o outgroup (def: NULL) outgroup given as single taxon name (tip label) or comma-separated list

	August 2017: Updated MAGNET pipeline by adding getBootTrees.sh script, which collates and organizes bootstrap trees from all RAxML runs in sub-folders of a working directory, especially results of a MAGNET run. This is the standalone version of the script.

	August 2017: Updated BEASTPostProc.sh

	August 2017: Updated BEASTRunner.sh

	August 2017: Updated BEAST_PSPrepper.sh script automating editing existing BEAST v2+ (e.g. v2.4.5) input XML files for path sampling analysis, so that users don’t have to do this by hand!

	bug fix: Bug fix for MAGNET.sh (unused code)

	bug fix: Bug fix for getGeneTrees.sh (unused code)

	bug fix: Bug fix for BEASTRunner.sh

PIrANHA v0.1.4 (modified minor version release - several changes after official v0.1.4 release)

The current, modified PIrANHA v0.1.4 release contains several goodies listed below, in addition to minor improvements in the code!!

	August 2017: Updated BEAST_PSPrepper.sh script automating editing existing BEAST v2+ (e.g. v2.4.5) input XML files for path sampling analysis, so that users don’t have to do this by hand!

	May 2017: Added SNAPPRunner.sh script for conducting multiple runs of SNAPP (“SNP and AFLP Phylogenies”) model in BEAST.

	May 2017: Added options to MrBayesPostProc.sh script for specifying relative burnin fraction (during sump and sumt), as well as calling stepping-stone sampling estimation of the log-marginal likelihood of the model.

	May 2017: Added new MrBayesPostProc.sh script that summarizes the posterior distribution of trees and parameters from a single MrBayes run. Script picks up filenames from contents of run dir, and uses default burnin fraction of 0.25 during analyses.

	May 2017: Build now contains new BEASTRunner.sh script and ‘beast_runner.cfg’ configuration file. BEASTRunner now has options to allow specifying 1) number of runs, 2) walltime, and 3) Java memory allocation per run, as well as calling reg or verbose help documentation from the command line.

	April 2017: Build now contains new pyRADLocusVarSites.sh script (with example run folder) that calculates numbers of variable sites (i.e. segregating sites, S) and parsimony-informative sites (PIS; i.e. hence with utility for phylogenetic analysis) in each SNP locus contained in .loci file from a pyRAD assembly run.

	April 2017: I added new ‘dadiRunner.sh’ script that automates transferring and queuing multiple runs of dadi input files on a remote supercomputer (similar to BEASTRunner and RAxMLRunner scripts already in the repo).

I have also added a new MrBayesPostProc.sh script and corresponding ‘mrbayes_post_proc.cfg’ configuration file, which together automate summarizing the posterior distribution of trees and parameters from a single MrBayes run. I intend to extend these scripts to provide options for several other anlayses of individual MrBayes runs/input files, as well as extend them to pulling down results from multiple MrBayes runs.

PIrANHA v0.1.4 (official minor version release), May 3, 2017

	May 2017: Build now contains new BEASTRunner.sh script and ‘beast_runner.cfg’ configuration file. BEASTRunner now has options to allow specifying 1) number of runs, 2) walltime, and 3) Java memory allocation per run, as well as calling reg or verbose help documentation from the command line.

	April 2017: Build now contains new pyRADLocusVarSites.sh script (with example run folder) that calculates numbers of variable sites (i.e. segregating sites, S) and parsimony-informative sites (PIS; i.e. hence with utility for phylogenetic analysis) in each SNP locus contained in .loci file from a pyRAD assembly run.

	April 2017: I added new dadiRunner.sh script that automates transferring and queuing multiple runs of dadi input files on a remote supercomputer (similar to BEASTRunner and RAxMLRunner scripts already in the repo). n.b.: A dadiPostProc.sh script is also in the works (but unreleased) that conducts post-processing and graphical plotting of results from multiple dadi runs.

	January 2017: I added a new script called BEAST_PSPrepper.sh that, while not quite polished, automates editing any existing BEAST v2+ (e.g. v2.4.4) input XML files for path sampling analysis, so that users don’t have to do this by hand!

PIrANHA v0.1.3 (official minor version release), November 11, 2016

This version of PIrANHA introduces the BEASTRunner.sh script for automating independent runs of BEAST1 or BEAST2 on a remote supercomputing cluster. See README for details.

PIrANHA v0.1.2 (official minor version release), November 10, 2016

PIrANHA v0.1.1 (official minor version, patch release), November 10, 2016

PIrANHA v0.1.0 (pre-release version zero), September 6, 2016

 Bug report

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

Bug report

Describe the bug

A clear and concise description of what the bug is.

Steps to reproduce

Steps to reproduce the behavior:

	Go to ...

	Enter commands ...

	Scroll down to ...

	See error

Expected behavior

A clear and concise description of what you expected to happen.

Screenshots

If applicable, add screenshots to help explain your problem.

Machine

Desktop

Please complete the following information.

	Machine type

	OS (e.g. macOS)

	Terminal program (e.g. Terminal)

	Default shell (e.g. bash, zsh)

	Bash version (e.g. echo $BASH_VERSION)

	Other relevant info

Remote machine/cluster

Please complete the following information.

	Linux distribution (e.g. CentOS, redhat)

	Resource management system (e.g. SLURM, PBS)

	Default shell (e.g. bash, zsh)

	Bash version (e.g. echo $BASH_VERSION)

	Other relevant info

Additional context

Add any other context about the problem here.

 Feature request

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

Feature request

Problem

Is your feature request related to a problem? Please describe.

A clear and concise description of what the problem is.

	Ex. “I’m always frustrated when …”

	Ex. “When I call piranha function y with the following options…”

	Ex. “Updating x broke function z and the call ... now gives the following error… “

Solution

Describe the solution you’d like

A clear and concise description of what you want to happen.

Alternatives

Describe alternatives you’ve considered

A clear and concise description of any alternative solutions or features you’ve considered.

Other

Additional context

Add any other context or screenshots about the feature request here.

 bin

bin

As is typical of UNIX/Linux distributions and software, this bin/ directory contains the binary and executable files needed to run the main script and all functions within this repository.

The full file tree for this directory is as follows:

..
└─ bin
 ├── README.md
 ├── 2logeB10.r
 ├── alignAlleles
 ├── AnouraNEXUSPrepper
 ├── batchRunFolders
 ├── BEAST_logThinner
 ├── BEAST_PSPrepper
 ├── BEASTPostProc
 ├── BEASTReset
 ├── BEASTRunner
 ├── calcAlignmentPIS
 ├── calcAlignmentPIS.r
 ├── completeConcatSeqs
 ├── completeSeqs
 ├── concatenateSeqs
 ├── dadiPostProc
 ├── dadiRunner
 ├── dadiUncertainty
 ├── dropRandomHap
 ├── dropTaxa
 ├── ExaBayesPostProc
 ├── FASTA2PHYLIP
 ├── FASTAsummary
 ├── fastSTRUCTURE
 ├── geneCounter
 ├── getBootTrees
 ├── getTaxonNames
 ├── MAGNET-1.1.1
 │ ├── README.md
 │ ├── MAGNET
 │ ├── perl
 │ │ ├── fasta2phylip.pl
 │ │ ├── phylip2fasta.pl
 │ │ └── selectSites.pl
 │ ├── shell
 │ │ ├── getBootTrees
 │ │ ├── getBootTrees.sh
 │ │ ├── NEXUS2gphocs
 │ │ ├── NEXUS2gphocs.sh
 │ │ ├── phyNcharSumm
 │ │ ├── phyNcharSumm.sh
 │ │ ├── RAxMLRunChecker
 │ │ └── RAxMLRunChecker.sh
 │ └── R
 │ └── rmGapSites.r
 ├── makePartitions
 ├── Mega2PHYLIP
 ├── MLEResultsProc
 ├── MrBayesPostProc
 ├── NEXUS2MultiPHYLIP
 ├── NEXUS2PHYLIP
 ├── nQuireRunner
 ├── PFSubsetSum
 ├── phaseAlleles
 ├── PHYLIP2FASTA
 ├── phylip2fasta.pl
 ├── PHYLIP2Mega
 ├── PHYLIP2NEXUS
 ├── PHYLIP2PFSubsets
 ├── PHYLIPsubsampler
 ├── PHYLIPsummary
 ├── PhyloMapperNullProc
 ├── phyNcharSumm
 ├── pyRAD2PartitionFinder
 ├── pyRADLocusVarSites
 ├── RAxMLRunChecker
 ├── RAxMLRunner
 ├── renameForStarBeast2
 ├── RogueNaRokRunner
 ├── RYcoder
 ├── SNAPPRunner
 ├── SpeciesIdentifier
 ├── splitFASTA
 ├── splitFile
 ├── splitPHYLIP
 ├── taxonCompFilter
 ├── test
 ├── treeThinner
 ├── trimSeqs
 ├── vcfSubsampler
 └── virtualenv.txt

 LICENSE

 LICENSE

 etc

etc

As is typical of UNIX/Linux distributions and software, this etc/ directory contains the configuration files needed for the main script and all functions within this repository.

snapp_runner.cfg

This is the default configuration file for the SNAPPRunner function, with six variables.

beast_runner_default.cfg

This is the default configuration file for the BEASTRunner function, with seven variables.

dadi_runner_default.cfg

This is the default configuration file for the dadiRunner function, with six variables.

raxml_runner.cfg

This is the default configuration file for the RAxMLRunner function, with four variables.

pushover.cfg.sample

To use the Pushover [https://pushover.net] notification function in your scripts, take the following steps:

	If you haven’t done so already, create a Pushover [https://pushover.net] account and create a Pushover application.

	Rename pushover.cfg.sample to pushover.cfg

	Add your user API key and your application API key to this file.

If you don’t want to pay for the Pushover service, then consider using the Pullover [https://github.com/cgrossde/Pullover] client for Linux or Mac.

 README

README

PIrANHA installers

Justin C. Bagley

Jacksonville State University
Virginia Commonwealth University

December 18, 2020

AUTOMATED INSTALLER

Grant privileges and run installer script:

This script will check for Homebrew (and try and install it, if not present), attempt a Homebrew
install of the latest PIrANHA update (cutting-edge development version, including commits after
last stable release). If a Homebrew install is not possible, then the script will run a routine
for local git install and setup.

cd piranha-master/ ;
cd install/ ;
chmod u+x ./* ;
local_piranha ;
#
cp local_piranha ~/bin/ ; # makes installer available from command line, for future use (assuming ~/bin/ is in $PATH, as usual)

For more information on options for installing ‘by-hand’, please see the Quick Guide for the Impatient [https://github.com/justincbagley/piranha/wiki#quick-guide-for-the-impatient]
in the PIrANHA GitHub Wiki pages [https://github.com/justincbagley/piranha/wiki].

 lib

lib

As is typical of UNIX/Linux distributions and software, the lib/ directory contains support static files (libraries and functions) that are required for running the main script and all functions within this repository.

utils.sh

This script must be sourced from all additional scripts in PIrANHA. Contained within this are two important functions.

	Logging: All scripts use the logging functions. There are nine different levels of logs. All log levels are called from within a script in the format info "some message". The levels of logging are:

	die - Prints an error and exits the script.

	error - Prints an error and continues to run the script.

	warning - Prints a warning.

	notice - Prints a notice to the user.

	info - Prints information to the user.

	debug - Prints debug information. This output hidden unless scripts are run with the verbose (-v) flag.

	success - Prints success to a user.

	input - Asks the user for input.

	header - Prints a header to help format logs.

	Sourcing Additional Files: This script reads a list of additional files and sources them.

setupScriptFunctions.sh

This script contains different functions used to install software and configure Mac computers from the scripts contained in the setupScripts directory.

sharedVariables.sh

This script contains environmental variables that can be called from any other script.

sharedFunctions.sh

This script contains many different functio