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piquant is a pipeline to help assess the accuracy of quantification of transcripts from RNA-sequencing data.
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CHAPTER 1

Introduction

piquant is a pipeline to help assess the accuracy of the quantification of transcripts from RNA-sequencing data.

RNA-sequencing has become an important technique in cellular biology for characterising and quantifying the tran-
scriptome, and many bioinformatics methods have been developed to reconstruct transcripts from RNA-seq data and
then estimate their abundances. Gene expression estimates calculated by these methods have been shown to be rela-
tively robust. However, at the level of transcripts, problems arising from the ambiguous origin of short RNA-seq reads
and from bias in their sequence composition are compounded, and thus estimates of isoform abundance may be less
accurate. It is therefore useful to be able to assess the conditions under which different transcriptome quantification
tools perform well or more poorly, and how the many optional parameter choices available for each tool may affect
their performance.

piquant is a pipeline of python scripts to help assess the accuracy of transcriptome quantification tools. In its first stage,
RNA-seq reads are simulated from a starting set of transcripts with known abundances, under specified combinations
of sequencing parameters: for example, different read lengths and sequencing depths, single- and paired-end reads,
reads with or without sequencing errors, and reads with or without sequence bias. In the second stage, a number
of transcriptome quantification tools (or the same tool with different optional parameter choices) estimate isoform
abundances for each set of simulated reads. Finally, the isoform expression estimates calculated by each tool for each
data set are compared to the known transcript abundances used to generate the reads. The comparative accuracy of
expression estimates calculated by each tool can then be assessed as sequencing parameters change, or for different
groups of transcripts segregated by particular transcript classification measures, via a range of automatically generated
statistics and graphs.

3
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CHAPTER 2

Overview

For a poster overview of piquant, see here.

The piquant pipeline consists of three main stages:

1. Simulate RNA-seq reads under specified combinations of sequencing parameters.

2. Run a number of transcriptome quantification tools (or the same tool with different optional parameter choices)
on each set of simulated reads to estimate isoform abundances.

3. Generate statistics and graphs to assess and compare the performance of each quantification tool.

All three stages of the pipeline can be run via different commands of the piquant script. They are described in more
detail below.

Simulate reads

Simulation of RNA-seq reads proceeds in two steps. In the first, run via the piquant command
prepare_read_dirs, directories are prepared in which reads will be simulated; each directory corresponds to
a particular combination of sequencing parameters:

• depth of sequencing

• length of reads

• single- or paired-end reads

• reads with or without errors

• reads with or without sequence bias

• strand-specific or unstranded reads

• presence or absence of background read “noise”

In the second step, RNA-seq reads are simulated. Each directory created in the first step contains a script which,
when run, will use the Flux Simulator RNA-seq experiment simulator [FluxSimulator] to generate an expression
profile for transcripts, then simulate reads for those transcripts according to the specified combination of sequencing

5
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parameters. This script can be run directly; however, using the piquant command create_reads, reads for
several combinations of sequencing parameters can be simulated at once as a batch.

The piquant command check_reads provides an easy way to check that the read simulation processes completed
correctly for specified combinations of sequencing parameters.

Quantify transcripts

Quantification of transcripts proceeds in three steps. In the first, run via the piquant command
prepare_quant_dirs, directories are prepared in which quantification results will be produced. For each combi-
nation of sequencing parameters for which reads were simulated, there will be such a directory for each quantification
tool (or, alternatively, for each different combination of quantification tool parameters that are being assessed).

In the second step, the piquant command prequantify runs, for each quantification tool, commands that only
need to be executed once, regardless of how many different sets of simulated reads are being used for quantification.
For example, such commands might include creating a Bowtie [Bowtie] index for the genome to which reads will be
mapped, or deriving FASTA sequences for the transcripts whose abundance is being measured.

Finally, transcript abundances are estimated using specified transcriptome quantification tools. Each directory created
by the command prepare_quant_dirs contains a script which, when run, will use a particular tool to estimate
isoform expression for a particular set of simulated reads. As for the case of creating reads, this script can be run
directly if necessary; however, the piquant command quantify allows a number of such scripts to be run simul-
taneously as a batch.

The piquant command check_quant provides an easy way to check that the transcript quantification processes
completed correctly for specified combinations of tools and read sequencing parameters.

Assess quantification accuracy

In the final stage of the pipeline, run via the piquant command analyse_runs, data describing quantification
accuracy for specified combinations of sequencing parameters and quantification tools are assembled, and statistics and
graphs are generated by which comparative performance can be assessed. In addition, by default, graphs are produced
comparing the time and memory resource usage of the different quantification tools during the prequantification and
quantification steps.

Requirements

The piquant pipeline is implemented as a set of Python scripts and modules; it has currently been tested against Python
versions 2.7.6 and 3.4.0 running under Ubuntu 12.04.4 LTS and 14.04.1 LTS.

In order to simulate reads, the Flux Simulator RNA-seq experiment simulator is required to be installed, and the
flux-simulator executable be added to the executable path (e.g. via the Unix PATH variable). piquant has been
tested with Flux Simulator version 1.2.2.

By default, piquant has the ability to run six different quantification tools:

• Cufflinks: [Cufflinks]

• RSEM: [RSEM]

• eXpress: [eXpress]

• Sailfish: [Sailfish]

6 Chapter 2. Overview
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• Salmon: [Salmon]

• Kallisto: [Kallisto]

and these tools are required to be installed, and their relevant executables added to the executable path, if they are to
be used within piquant. The pipeline has been tested with the following versions of these quantification tools:

• Cufflinks: version 2.2.1

• RSEM: version 1.2.19

• eXpress: version 1.5.1

• Sailfish: version 0.8.0

• Salmon: version 0.5.1

• Kallisto: version 0.42.4

In addition, the use of each quantification tool within the piquant pipeline has additional dependencies, which are
enumerated below:

• Cufflinks: Bowtie [Bowtie] and TopHat [TopHat] are required to map simulated reads to the genome.

• RSEM: Bowtie is required by RSEM to map simulated reads to the transcriptome.

• eXpress: Bowtie is required to map simulated reads to the transcriptome. In this case, piquant creates transcrip-
tome sequences for mapping using a tool from the RSEM package (rsem-prepare-reference).

• Sailfish, Salmon and Kallisto: piquant again uses rsem-prepare-reference from the RSEM package to
create reference transcriptome sequences.

piquant has been tested with Bowtie version 1.0.0 and TopHat version 2.0.10.

Attention: TopHat does not currently execute under Python 3. Hence, if piquant is being run in a virtual
environment in which the command python invokes Python 3, the main TopHat script must be altered so as to
invoke Python 2. This can be done by altering the first line of the TopHat script to read #!/usr/bin/env
python2.

Finally, the recording of time and memory usage by quantification tools requires that the GNU time command is
available at /usr/bin/time. Resource usage recording can be turned off by specifying the --nousage option to
the prepare_quant_dirs and analyse_runs piquant commands.

2.4. Requirements 7
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CHAPTER 3

Installation

Attention: As piquant has a number of dependencies on other Python packages, it is strongly recommended to
install in an isolated environment using the virtualenv tool. The virtualenvwrapper tool makes managing multiple
virtual environments easier.

Create and work in a virtual environment for piquant using the virtualenvwrapper tool:

mkproject piquant

Clone the piquant GitHub repository into this environment:

git clone https://github.com/lweasel/piquant.git .

Install the piquant package and scripts, and their Python package dependencies, into the virtual environment by run-
ning:

pip install .

in the tool’s top level directory. Note that it may take some time to install and build the dependencies.

Run unit tests for piquant using the command:

py.test test

9
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CHAPTER 4

piquant commands

Stages of the piquant pipeline are executed via the following commands of the piquant executable:

• Simulating reads

– prepare_read_dirs

– create_reads

– check_reads

• Quantifying transcript expression

– prepare_quant_dirs

– prequantify

– quantify

– check_quant

• Producing statistics and graphs

– analyse_runs

Further information on each command is given in the sections below. Note first, however, that the commands share a
number of common command line options.

Common options

The following command line options control which combinations of sequencing parameters and quantification tools
the particular piquant command will be executed for. The value of each option should be a comma-separated list:

• --read-length: A comma-separated list of integer read lengths for which to simulate reads or perform
quantification.

• --read-depth: A comma-separated list of integer read depths for which to simulate reads or perform quan-
tification.

11
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• --paired-end: A comma-separated list of “False” or “True” strings indicating whether read simulation or
quantification should be performed for single- or paired-end reads or both.

• --errors: A comma-separated list of “False” or “True” strings indicating whether read simulation or quan-
tification should be performed without or with sequencing errors introduced into the reads, or both.

• --bias: A comma-separated list of “False” or “True” strings indicating whether read simulation or quantifi-
cation should be performed without or with sequence bias introduced into the reads, or both.

• --stranded: A comma-separated list of “False” or “True” strings indicating whether reads should be simu-
lated as coming from an unstranded or strand-specific RNA-seq protocol, or both.

• --noise-perc: A comma-separated list of positive integers. Each indicates a percentage of the main se-
quencing depth; in each case a set “noise transcripts” will be sequenced to this depth. A value of zero indicates
that no noise reads will be simulated.

• --quant-method: A comma-separated list of quantification methods for which transcript quantification
should be performed. By default, piquant can quantify via the methods “Cufflinks”, “RSEM”, “Express”,
“Sailfish”, “Salmon” and “Kallisto”. (Note that this option is not relevant for the simulation of reads).

Except in the case of the --quant-method option when simulating reads, values for each of these options must be
specified; otherwise piquant will exit with an error. For ease of use, however, the options can also be specified in
an options file, via the common command line option --options-file (indeed, any command-line option can be
specified in this file). Such an options file should take the form of one option and its value per-line, with option and
value separated by whitespace, e.g.:

--quant-method Cufflinks,RSEM,Express,Sailfish
--read-length 35,50,75,100
--read-depth 10,30
--paired-end False,True
--errors False,True
--bias False
--stranded True
--noise-perc 0,5,10

As options can be specified both in an options file, and via individual command line options, in case of conflict the
values specified on the command line override those in the options file.

piquant commands also share the following additional common command line options:

• --log-level: One of the strings “debug”, “info”, “warning”, “error” or “critical” (default “info”), determin-
ing the maximum severity level at which log messages will be written to standard error.

• --options-file: Specifies the path to a file containing options as described above.

Prepare read directories (prepare_read_dirs)

The prepare_read_dirs command is used to prepare the directories in which RNA-seq reads will subsequently
be simulated - one such directory is created for each possible combination of sequencing parameters determined
by the options --read-length, --read-depth, --paired-end, --errors, --bias, --stranded and
--noise-perc, and each directory is named according to its particular set of sequencing parameters. For example,
with the following command line options specified:

• --read-length: 50

• --read-depth: 30

• --paired-end: False,True

• --errors: False,True

12 Chapter 4. piquant commands
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• --bias: False,True

• --stranded: False

• --noise_perc: 0

eight read simulation directories will be created:

• 30x_50b_se_no_errors_unstranded_no_bias_no_noise: i.e. 30x sequencing depth, 50 base-
pairs read length, unstranded protocol, no background noise, single-end reads, no read errors or sequence bias

• 30x_50b_se_errors_unstranded_no_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs
read length, unstranded protocol, no background noise, single-end reads, with read errors, no sequence bias

• 30x_50b_se_no_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs
read length, unstranded protocol, no background noise, single-end reads, no read errors, with sequence bias

• 30x_50b_se_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs read
length, unstranded protocol, no background noise, single-end reads, with read errors and sequence bias

• 30x_50b_pe_no_errors_no_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-
pairs read length, unstranded protocol, no background noise, paired-reads, no read errors or sequence bias

• 30x_50b_pe_errors_no_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs
read length, unstranded protocol, no background noise, paired-end reads, with read errors, no sequence bias

• 30x_50b_pe_no_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs
read length, unstranded protocol, no background noise, paired-end reads, no read errors, with sequence bias

• 30x_50b_pe_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs read
length, unstranded protocol, no background noise, paired-end reads, with read errors and sequence bias

Within each read simulation directory, three files are always written:

• flux_simulator_main_expression.par: A Flux Simulator [FluxSimulator] parameters file suitable
for creating a transcript expression profile.

• flux_simulator_main_simulation.par: A Flux Simulator parameters file suitable for simulating
RNA-seq reads according to the created transcript expression profile.

• run_simulation.sh: A Bash script which, when executed, will use Flux Simulator and the above two
parameters files to simulate reads for the appropriate combination of sequencing parameters.

In addition, if “background noise” reads are being simulated (i.e. the value of the --noise-perc option is greater
than zero), the following two additional files are written:

• flux_simulator_noise_expression.par: A Flux Simulator parameters file suitable for creating a
transcript expression profile for the set of transcripts that will be used to simulate background noise.

• flux_simulator_noise_simulation.par: A Flux Simulator parameters file suitable for simulating
RNA-seq reads according to the created noise transcript expression profile.

Note that it is possible to execute the run_simulation.sh script directly; however by using the piquant com-
mand create_reads, sets of reads for several combinations of sequencing parameters can be created simultane-
ously as a batch (see Create reads below).

In addition to the command line options common to all piquant commands (see Common options above), the
prepare_read_dirs command takes the following additional options:

• --reads-dir: The parent directory into which directories in which reads will be simulated will be written.
This directory will be created if it does not already exist (default: output).

• --transcript-gtf: The path to a GTF formatted file describing the main set of transcripts to be simulated
by Flux Simulator. This GTF file location must be supplied. Note that the GTF file should only contain features

4.2. Prepare read directories (prepare_read_dirs) 13
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of feature type “exon”, and that every exon feature should specify both “gene_id” and “transcript_id” among its
attributes.

• --noise-transcript-gtf: The path to a GTF formatted file describing a set of transcripts that will be
used to simulated background noise. This GTF file location needs only be specified if background noise is being
simulated (ie. for values of --noise-perc other than zero); however, in these cases it must be specified. The
same requirements as to GTF file format apply as above for the option --transcript-gtf.

• --genome-fasta: The path to a directory containing per-chromosome genome sequences in FASTA-
formatted files. This directory location must be supplied.

• --num-molecules: Flux Simulator parameters will be set so that the initial pool of main transcripts contains
this many molecules. Note that although it depends on this value, the number of fragments in the final library
from which reads will be sequenced is also a complicated function of the parameters at each stage of Flux
Simulator‘s sequencing process. This parameter should be set high enough that the number of fragments in the
final library exceeds the number of reads necessary to give any of the sequencing depths required. If the initial
number of molecules is not great enough to create the required number of reads, the run_simulation.sh
script will exit with an error (default: 30,000,000).

• --num-noise-molecules: Flux Simulator parameters will be set so that the initial pool of noise transcripts
contains this many molecules; this parameter should be set high enough that the number of fragments in the final
noise simulation library exceeds the number of reads necessary to give any required sequencing depth (default:
2,000,000).

• --nocleanup: When run, Flux Simulator creates a number of large intermediate files. Unless
--nocleanup is specified, the run_simulation.sh Bash script will be constructed so as to delete these
intermediate files once read simulation has finished.

Create reads (create_reads)

The create_reads command is used to simulate RNA-seq reads via the run_simulation.sh scripts
that have been written by the prepare_read_dirs command (see Prepare read directories above).
For each possible combination of sequencing parameters determined by the options --read-length,
--read-depth, --paired-end, --errors, --bias, --stranded and --noise-perc, the appropri-
ate run_simulation.sh script is launched as a background process, ignoring hangup signals (via the nohup
command). After launching the scripts, piquant exits.

In addition to the command line options common to all piquant commands (see Common options above), the
create_reads command takes the following additional options:

• --reads-dir: The parent directory in which directories in which reads will be simulated have been written
(default: output).

For details on the process of read simulation executed via run_simulation.sh, see Simulating reads.

Check reads were successfully created (check_reads)

The check_reads command is used to confirm that simulation of RNA-seq reads via run_simulation.
sh scripts successfully completed. For each possible combination of sequencing parameters determined by
the options --read-length, --read-depth, --paired-end, --error, --bias, --stranded and
--noise-perc, the relevant read simulation directory is checked for the existence of the appropriate FASTA or
FASTQ files containing simulated reads. A message is printed to standard error for those combinations of sequencing
parameters for which read simulation has not yet finished, or for which simulation terminated unsuccessfully.

14 Chapter 4. piquant commands
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In the case of unsuccessful termination, the file nohup.out in the relevant simulation directory contains the messages
output by both Flux Simulator and the piquant scripts that were executed, and this file can be examined for the source
of error.

In addition to the command line options common to all piquant commands (see Common options above), the
check_reads command takes the following additional options:

• --reads-dir: The parent directory in which directories in which reads were simulated are located (default:
output).

Prepare quantification directories (prepare_quant_dirs)

The prepare_quant_dirs command is used to prepare the directories in which transcript quantification will take
place - one such directory is created for each possible combination of sequencing and quantification parameters deter-
mined by the options --read-length, --read-depth, --paired-end, --error, --bias, --stranded,
--noise-perc and --quant-method, and each directory is named according to its particular set of parameters.
For example with the following command line options specified:

• --quant-method: Cufflinks, RSEM, Express, Sailfish

• --read-length: 50

• --read-depth: 30

• --paired-end: False,True

• --error: True

• --bias: True

• --stranded: False

• --noise-perc 10

eight quantification directories will be created:

• Cufflinks_30x_50b_se_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs
read length, unstranded protocol, noise transcripts at 10% of the main read depth (i.e. at 0.1 * 30 = 3x sequencing
depth), single-end reads with both errors and bias, with transcripts quantified by Cufflinks.

• Cufflinks_30x_50b_pe_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs
read length, unstranded protocol, noise transcripts at 10% of the main read depth, paired-end reads with both
errors and bias, with transcripts quantified by Cufflinks.

• RSEM_30x_50b_se_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs read
length, unstranded protocol, noise transcripts at 10% of the main read depth, single-end reads with both errors
and bias, with transcripts quantified by RSEM.

• RSEM_30x_50b_pe_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs read
length, unstranded protocol, noise transcripts at 10% of the main read depth, paired-end reads with both errors
and bias, with transcripts quantified by RSEM.

• Express_30x_50b_se_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs
read length, unstranded protocol, noise transcripts at 10% of the main read depth, single-end reads with both
errors and bias, with transcripts quantified by eXpress.

• Express_30x_50b_pe_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs
read length, unstranded protocol, noise transcripts at 10% of the main read depth, paired-end reads with both
errors and bias, with transcripts quantified by eXpress.
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• Sailfish_30x_50b_se_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs
read length, unstranded protocol, noise transcripts at 10% of the main read depth, single-end reads with both
errors and bias, with transcripts quantified by Sailfish.

• Sailfish_30x_50b_pe_errors_stranded_bias_noise-10x: i.e. 30x read depth, 50 base-pairs
read length, unstranded protocol, noise transcripts at 10% of the main read depth, paired-end reads with both
errors and bias, with transcripts quantified by Sailfish.

Within each quantification directory, a single file is written:

• run_quantification.sh: A Bash script which, when executed, will use the appropriate tool and simu-
lated RNA-seq reads to quantify transcript expression.

As is the case when simulating reads, it is possible to execute the run_quantification.sh script directly; how-
ever, by using the piquant command quantify, quantification for several combinations for sequencing parameters
and quantification tools can be executed simultaneously as a batch (see Perform quantification below).

In addition to the command line options common to all piquant commands (see Common options above), the
prepare_quant_dirs command takes the following additional options:

• --reads-dir: The parent directory in which directories in which reads were simulated are located (default:
output).

• --quant-dir: The parent directory into which directories in which quantification will be performed will be
written. This directory will be created if it does not already exist (default: output).

• --transcript-gtf: The path to a GTF formatted file describing the transcripts from which reads were
simulated by Flux Simulator. This GTF file location must be supplied. The transcripts GTF file should be the
same as was supplied to the prepare_read_dirs command (see Prepare read directories above).

• --genome-fasta: The path to a directory containing per-chromosome genome sequences in FASTA-
formatted files. This directory location must be supplied. The genome sequences should be the same as were
supplied to the prepare_read_dirs command.

• --num-threads: Multi-threaded quantification methods will use this number of threads (default: 1).

• --nocleanup: When run, quantification tools may create a number of output files. Unless --nocleanup is
specified, the run_quantification.sh Bash script will be constructed so as to delete all of these, except
those essential for piquant to calculate the accuracy with which quantification has been performed.

• --nousage: By default, piquant will collect time and memory resource usage statistics for the execution of
quantification tools. This is done via the GNU time command, which is assumed to reside at /usr/bin/
time. If the GNU time command is not available at this location, or resource usage statistics are not desired,
specifying this option will disable their collection.

• --plot-format: The file format in which graphs produced during the analysis of this quantification run will
be written to - one of “pdf”, “svg” or “png” (default “pdf”).

• --grouped-threshold: When producing graphs of statistics plotted against groups of transcripts deter-
mined by a transcript classifier (see Transcript classifiers), only groups with greater than this number of tran-
scripts will contribute to the plot.

• --error-fraction-threshold: When producing graphs, transcripts whose estimated TPM (transcripts
per million) is greater than this percentage higher or lower than their real TPM are considered above threshold
for the “error fraction” statistic (default: 10).

• --not-present-cutoff: Prior to any statistics being calculated, all real and estimated TPM values below
this cut-off value are truncated to zero, to avoid biasing analyses with differences between very low real and
estimated TPM values that are likely of little biological interest (default 0.1).
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Prepare for quantification (prequantify)

Some quantification tools may require some action to be taken prior to quantifying transcript expression which, how-
ever, only needs to be executed once for a particular set of transcripts and genome sequences - for example, prepar-
ing a Bowtie [Bowtie] index for the genome, or creating transcript FASTA sequences. The piquant command
prequantify will execute these pre-quantification actions for any quantification tools specified by the command
line option --quant-method.

Note that prequantification can, if necessary, be run manually for any particular quantification tool by executing the
appropriate run_simulation.sh script with the -p command line option.

Perform quantification (quantify)

The quantify command is used to quantify transcript expression via the run_quantification.sh scripts
that have been written by the prepare_quant_dirs command (see Prepare quantification directories above).
For each possible combination of parameters determined by the options --read-length, --read-depth,
--paired-end, --error, --bias, --stranded, noise-perc, and --quant-method, the appropriate
run_quantification.sh script is launched as a background process, ignoring hangup signals (via the nohup
command). After launching the scripts, piquant exits.

For details on the process of quantification executed via run_quantification.sh, see Quantifying expression.

Check quantification was successfully completed (check_quant)

The check_quant command is used to confirm that quantification of transcript expression via
run_quantification.sh scripts successfully completed. For each possible combination of parameters
determined by the options --read-length, --read-depth, --paired-end, --error, --bias,
--stranded, --noise-perc and --quant-method, the relevant quantification directory is checked for
the existence of the appropriate output files of the quantification tool that will subsequently be used for assessing
quantification accuracy. A message is printed to standard error for those combinations of parameters for which
quantification has not yet finished, or for which quantification terminated unsuccessfully.

In the case of unsuccessful termination, the file nohup.out in the relevant quantification directory contains the
messages output by both the quantification tool and the piquant scripts that were executed, and this file can be examined
for the source of error.

Analyse quantification results (analyse_runs)

The analyse_runs command is used to gather data and calculate statistics, and to draw graphs, pertaining to the
accuracy of quantification of transcript expression. Statistics are calculated, and graphs drawn, for those combinations
of quantification tools and sequencing parameters determined by the options --read-length, --read-depth,
--paired-end, --error, --bias, --stranded, --noise-perc and --quant-method. In addition, by
default, graphs are produced comparing the time and memory usage of the different quantification tools during the
prequantification and quantification steps.

For more details on the statistics calculated and the graphs drawn, see Assessing quantification performance.

In addition to the command line options common to all piquant commands (see Common options above), the
analyse_runs command takes the following additional options:
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• --quant-dir: The parent directory into which directories in which quantification was performed were writ-
ten.

• --stats-dir: The path to a directory into which statistics and graph files will be written. The directory will
be created if it does not already exist.

• --plot-format: The file format in which graphs produced during analysis will be written to - one of “pdf”,
“svg” or “png” (default “pdf”).

• --grouped-threshold: When producing graphs of statistics plotted against groups of transcripts deter-
mined by a transcript classifier, only groups with greater than this number of transcripts will contribute to the
plot.

• --nousage: Specify this option if graphs of resource usage are not desired to be produced. Note that if this
option was specified when preparing quantification directories, it should also be specified here.
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Simulating reads

For each particular combination of sequencing parameters - sequencing depth, read length, single- or paired-
end reads, lack or presence of errors and bias, strandedness and noise depth - reads are simulated by running
the run_simulation.sh script in the relevant directory that has been created by the piquant command
prepare_read_dirs.

Running run_simulation.sh results in the following main steps being executed:

Create expression profiles

Flux Simulator [FluxSimulator] is used to create an expression profile (a .pro file) for the supplied set of main
transcripts. This profile defines the set of expressed transcripts, and the relative abundances of those transcripts, from
which reads will subsequently be simulated. If the noise depth is greater than zero, then an expression profile for the
supplied set of noise transcripts is also created.

For more information on the model and algorithm used by Flux Simulator to create expression profiles, see the Flux
Simulator website.

Calculate required number of reads

Given a particular read length and (approximate) desired sequencing depths, a certain number of reads will
need to be simulated for both the main and noise transcript sets. These numbers are calculated by the sup-
port script calculate_reads_for_depth (see Calculate reads required for sequencing depth for more de-
tails) and the Flux Simulator simulation parameters files, flux_simulator_main_simulation.par and
flux_simulator_noise_expression.par, are updated accordingly.
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Simulate reads

Next, Flux Simulator is used to simulate the required number of reads for the desired sequencing depths, according to
the previously created transcript expression profiles. Note that depending on the number of reads being simulated, this
step can take considerable time.

Note that:

• Reads are not simulated from the poly-A tails of transcripts (this behaviour is controlled by the Flux Simulator
parameters POLYA_SHAPE and POLYA_SCALE), as the multi-mapping of such reads was found to cause prob-
lems for certain quantification tools (for more details on Flux Simulator‘s transcript modifications, see here).

• If sequencing errors have been specified, such errors are simulated with Flux Simulator‘s 76bp error model; the
simulator scales this error model appropriately for the length of reads being produced (for more details on Flux
Simulator‘s error models, see here).

• PCR amplification of fragments, controlled by the Flux Simulator parameter PCR_DISTRIBUTION, is disabled
(for more details on Flux Simulator‘s simulation of PCR, see here).

• The Flux Simulator parameter UNIQUE_IDS is set to ensure that, in the case of paired-end reads, read names
match for the reads of each pair, excluding the ‘/1’ and ‘/2’ suffix identifiers - this behaviour is required for some
quantification tools. Note that with this option set, the reads are effectively stranded, since the first read of each
pair (‘/1’) always originates from the sense strand, and the second (‘/2’) from the anti-sense strand. For more
details on the UNIQUE_IDS parameter, see here. (n.b. in the case of single-end reads, the reads produced are
unstranded).

Check reads

The FASTA or FASTQ files produced by read simulation are checked to ensure that the required number of
main and noise reads have been created. If, in either case, the required number of reads are not present, the
run_simulation.sh exits with an error.

Join and shuffle reads

If both main and noise reads have been simulated (i.e. if the noise depth is greater than zero), then the two FASTA or
FASTQ files produced are concatenated.

Note that some transcript quantification tools require reads to be presented in a random sequence. However the reads
output by Flux Simulator have an inherent order, and hence reads are also randomly shuffled at this stage.

Fix strandedness

For single-end reads, the reads produced by FluxSimulator come from either the sense or antisense strand. Hence,
if a stranded protocol is being simulated, the support script fix_antisense_reads (see Fix antisense reads for
more details) is used to reverse complement any reads derived from the antisense strand.

For paired-end reads, reads are already effectively stranded, originating from the forward transcript strand.
Hence, if an unstranded protocol is being simulated, the support script randomise_read_strands (see ran-
domise_read_strands for more details) is used to randomly reassign pairs of paired-end reads such that the first read
now corresponds to the antisense strand.
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Apply sequence bias

In a real RNA-seq experiment, there are many sources of potential bias, some only poorly understood, that may lead to
non-uniform coverage of expressed transcripts by sequenced reads; for example the biases in nucleotide composition
at the beginning of reads sequenced in certain Illumina protocols, as described by Hansen et al. [Hansen].

If sequencing bias has been specified, then the support script simulate_read_bias (see Simulate sequence bias
in reads for more details) is executed to approximate one form of such bias. A position weight matrix is used to
preferentially select reads with a nucleotide composition at their beginning similar to that observed by Hansen et al.

Finalise output files

Finally, the reads output by Flux Simulator are put into a form suitable for downstream transcript quantification. The
result of running run_simulation.sh is one or two FASTA or FASTQ files containing the simulated reads:

• For single-end reads, with no read errors specified, one FASTA file is output (reads_final.fasta).

• For single-end reads, with read errors, one FASTQ file is output (reads_final.fastq).

• For paired-end reads, with no read errors specified, two FASTA files are output (reads_final.1.fasta
and reads_final.2.fasta).

• For paired-end reads, with read errors, two FASTQ files are output (reads_final.1.fastq and
reads_final.2.fastq).

5.7. Apply sequence bias 21
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CHAPTER 6

Quantifying expression

For each particular combination of sequencing parameters - sequencing depth, read length, single- or paired-end reads,
lack or presence of errors and bias, strandedness and noise sequencing depth - and each quantification tool, transcript
quantification is performed by running the run_quantification.sh script in the relevant directory that has been
created by the piquant command prepare_quant_dirs.

The run_quantification script takes a number of command line flags which control its operation:

• -p: If specified, any preparatory action is taken that is necessary for the particular quantification tool before
transcript abundances can be calculated.

• -q: If specified, transcript abundances are calculated for the relevant set of simulated reads.

• -a: If specified, data necessary for the assessment of the accuracy of transcript expression estimation is assem-
bled, and measures of accuracy calculated.

These three modes of operation are discussed below. Note that when performing batch quantification, the piquant
command prequantify executes run_quantification.sh scripts with the -p flag, while the command
quantify executes scripts with the -q and -a flags.

Preparing for quantification

Running run_quantification.sh with the -p flag results in the following steps being executed. Note that
for any particular quantification tool, running a run_quantification.sh script for this tool with the -p flag a
second (or subsequent) time will be a no-op.

Tool-specific preparation

Any actions particular to the quantification tool to be used that must be taken prior to quantifying transcripts, but which
only need to be executed once for a particular set of input transcripts and genome sequences, are performed here (for
example, preparing a Bowtie [Bowtie] index for the genome). Any data created by these actions will be written
to a directory quantifier_scratch that is created alongside the read simulation and transcript quantification
directories.
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For more details on the prequantification actions performed for each particular quantification tool, see Quantification
tools.

Calculate number of transcripts per gene

Next, the support script count_transcripts_for_genes (see Count transcripts for genes) is used to calculate
the number of transcripts shared by each gene in the set determined by the main transcript GTF file specified when the
run_quantification.sh script was created. This data is stored in the file transcript_counts.csv in the
directory quantifier_scratch, as described above.

Note that this action will only be performed once, regardless of how many run_quantification.sh scripts are
run. The per-gene transcript counts thus calculated will be used when assessing the accuracy of transcript abundance
estimation (see Assessing quantification performance).

Calculate unique sequence per transcript

Finally, the support script calculate_unique_transcript_sequence (see Calculate unique transcript se-
quence) is used to calculate the length of sequence in base pairs that is unique to each transcript enumerated in the
transcript GTF file specified when the run_quantification.sh script was created. This data is stored in the file
unique_sequence.csv in the directory quantifier_scratch, as described above (see Assessing quantifi-
cation performance).

Again, this action will only be performed once for any particular set of input transcripts. The unique sequence lengths
thus calculated will be used when assessing abundance estimation accuracy.

Performing quantification

Running run_quantification.sh with the -q flag causes the relevant quantification tool to be run on the ap-
propriate set of simulated RNA-seq reads, to estimate transcript abundance (depending on the particular quantification
tool, this can be time, memory and/or CPU intensive). Note that in contrast to the case of pre-quantification tasks,
re-running run-quantification.sh with this flag will cause transcript abundance estimates to be recalculated.

For more details on the particular commmands executed for each quantification tool, see Quantification tools.

Assessing quantification accuracy

Running run_quantification.sh with the -a flag results in the following two steps being executed. As above,
for performing quantification itself, re-running run_quantification.shwith this flag will repeat the assessment
of quantification accuracy.

Assemble data

The support script assemble_quantification_data (see Assemble data for a single quantification run) as-
sembles the data required to assess the accuracy of transcript abundance estimation from the following sources:

• The FluxSimulator [FluxSimulator] main transcript expression profile file created during read simulation, con-
taining the ‘ground truth’ relative transcript abundances.

• A quantification tool-specific output file containing estimated transcript abundances.
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• The file transcript_counts.csv containing per-gene transcript counts, created by the step Calculate
number of transcripts per gene above.

• The file unique_sequence.csv containing lengths of sequence unique to each transcript, created by the
step Calculate unique sequence per transcript above.

Assembled data is written to a CSV file tpms.csv in the quantification directory. This contains, for each transcript
in the input set:

• the transcript identifier

• the transcript sequence length in bases

• the number of bases that are unique to the transcript

• the number of isoforms of the transcript’s gene of origin

• the “real” transcript abundance used by FluxSimulator to simulate reads (measured in transcripts per million or
TPMs)

• the transcript abundance estimated by the quantification tool (measured in transcripts per million)

Perform accuracy analysis

Finally, the support script analyse_quantification_run reads the CSV file tpms.csv produced by the
assembly step above, and calculates statistics and plots graphs that can be used to assess the accuracy of transcript
abundance estimation by the particular quantification tool. The statistics calculated, transcript classification measures
used, and graphs drawn are described in full in Assessing quantification performance.
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CHAPTER 7

Quantification tools

By default, the piquant pipeline has the ability to run the following six transcript quantification tools. The pipeline can,
however, be easily extended to run additional quantification tools by editing the quantifiers.py Python module,
as described in Adding a new quantifier.

Attention: It is important to clarify that rather than testing the performance of quantification tools alone, piquant is
actually testing the performance, as regards the accuracy of transcript quantification, of mapping plus quantification
tool pipelines (at least in the case of quantification tools which require mapping of reads prior to quantification).
It can easily be understood, for example, how difficulties encountered when mapping reads to the genome might
adversely affect quantification performance, through factors beyond a quantification tool’s control.

Cufflinks

Note: piquant has been tested with Cufflinks [Cufflinks] version 2.2.1 and TopHat [TopHat] version 2.0.10.

In preparation for quantifying transcripts with Cufflinks, the following prequantification tasks are executed (these steps
are a necessary preliminary for mapping simulated reads to the genome with TopHat):

• A Bowtie [Bowtie] index is built for the genome using the bowtie-build command.

• A FASTA file for the genome, corresponding to the Bowtie index, is constructed using the bowtie-inspect
command.

When quantifying transcripts with Cufflinks for a set of simulated RNA-seq reads, reads are first mapped to the genome
using the splice-aware mapper TopHat, with the following command line options (see the TopHat manual for further
details on these options):

• --library-type <type>: The library type is set to fr-secondstrand if reads from a stranded proto-
col are being quantified, and to fr-unstranded for unstranded reads.

• --no-coverage-search: Coverage-based search for junctions is disabled.
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Cufflinks is then run to estimate transcript abundances with the following command line options (see the Cufflinks
manual for further details on these options):

• --library-type <type>: The library type is set to fr-unstranded or fr-secondstrand as for
TopHat above.

• -u: Reads mapping to multiple locations in the genome are more accurately weighted.

• -b <genome FASTA file>: Cufflinks‘ bias detection and correction algorithm is run.

After transcript abundance estimation has completed, of the files output by Cufflinks, only isoforms.
fpkm_tracking is retained (unless the --nocleanup option was specified when the run_quantification.
sh script was created). Relative transcript abundances are extracted from this file in units of FPKM (fragments per
kilobase of exon per million reads mapped) and then converted to relative abundances measured in TPM (transcripts
per million).

(Note: for an excellent discussion of RNA-seq expression units, see this blog post).

RSEM

Note: piquant has been tested with RSEM [RSEM] version 1.2.19 and Bowtie version 1.0.0.

In preparation for quantifying transcripts with RSEM, the rsem-prepare-reference tool from the RSEM pack-
age is used to construct sequences in FASTA format for the input set of transcripts (see here for more details on the
rsem-prepare-reference tool).

Then, when quantifying transcripts with RSEM for a set of simulated RNA-seq reads, the tool
rsem-calculate-expression is executed with the --strand-specific command line option
in the case that reads have been simulated for a stranded protocol. See here for more details on the
rsem-calculate-expression tool.

After transcript abundance estimation has completed, of the files output by RSEM, only <sample_name>.
isoforms.results is retained (unless the --nocleanup option was specified when the
run_quantification.sh script was created). Relative transcript abundances are extracted from this file
in units of TPM (transcripts per million).

eXpress

Note: piquant has been tested with eXpress [eXpress] version 1.5.1 and Bowtie [Bowtie] version 1.0.0.

In preparation for quantifying transcripts with eXpress, the rsem-prepare-reference tool from the RSEM
package is used to construct transcript sequences, as described above.

When quantifying transcripts with eXpress for a set of simulated RNA-seq reads, reads are first mapped to the transcript
sequences using Bowtie, with the following command line options, which have, in general, been chosen to provide
similar alignment behaviour as is implemented within the RSEM pipeline (see the Bowtie manual for further details
on these options):

• -e 99999999: The maximum permitted total of quality values at all mismatched read positions throughout
the entire alignment.

• -l 25: A seed length for alignments of 25 base pairs.

28 Chapter 7. Quantification tools

http://cufflinks.cbcb.umd.edu/manual.html
http://cufflinks.cbcb.umd.edu/manual.html
http://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
http://deweylab.biostat.wisc.edu/rsem/rsem-prepare-reference.html
http://deweylab.biostat.wisc.edu/rsem/rsem-calculate-expression.html
http://bowtie-bio.sourceforge.net/manual.shtml


piquant Documentation, Release 1.0

• -I 1: A minimum insert size of 1 base pair for valid paired-end alignments.

• -X 1000: A maximum insert size of 1000 base pairs for valid paired-end alignments.

• -a: All valid alignments are reported per read or read pair.

• -m 200: All alignments are suppressed for a particular read or read pair if more than 200 alignments exist for
it.

• -S: Alignments are printed in SAM [SAM] format.

• --norc: Only specified if stranded reads are being quantified, this option causes only paired-end read config-
urations corresponding to fragments from the forward strand to be considered.

The alignments produced by Bowtie are piped to the view command of the SAMtools package to convert them to
BAM format, for subsequent input to eXpress. eXpress is executed with the --f-stranded (for single-end reads)
or --fr-stranded (for paired-end reads) command line options in the case that reads have been simulated for a
stranded protocol. See the eXpress manual for further details on the options available.

After transcript abundance estimation has completed, of the files output by eXpress, only results.xprs is re-
tained (unless the --nocleanup option was specified when the run_quantification.sh script was created).
Relative transcript abundances are extracted from this file in units of TPM (transcripts per million).

Sailfish

Note: piquant has been tested with Sailfish [Sailfish] version 0.8.0.

In preparation for quantifying transcripts with Sailfish, the Sailfish index command is executed to create a kmer
index for the input transcript set (for more information on Sailfish commands, see the Sailfish manual).

Then, when quantifying transcripts with Sailfish for a set of simulated RNA-seq reads, the Sailfish quant command
is executed with the following settings for the library type (-l) option, depending on whether single- or paired-end,
and stranded or unstranded reads are being quantified:

• U for single-end reads of unknown strandedness

• SF for single-end stranded reads

• IU for paired-end reads of unknown strandedness

• ISF for paired-end stranded reads.

After transcript abundance estimation has completed, of the files output by Sailfish, only quant.sf is retained (un-
less the --nocleanup option was specified when the run_quantification.sh script was created). Relative
transcript abundances are extracted from this file in units of TPM (transcripts per million).

Salmon

Note: piquant has been tested with Salmon [Salmon] version 0.5.1.

In preparation for quantifying transcripts with Salmon, the Salmon index command is executed to create a Salmon
index for the input transcript set. The --type argument is set to quasi to use Salmon’s quasi-mapping method of
lightweight alignment (for more information on Salmon commands, see the Salmon manual).
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Then, when quantifying transcripts with Salmon for a set of simulated RNA-seq reads, the Salmon quant command
is executed with the same settings for the library type (-l) option as shown for Sailfish above.

After transcript abundance estimation has completed, of the files output by Salmon only quant.sf is retained (un-
less the --nocleanup option was specified when the run_quantification.sh script was created). Relative
transcript abundances are extracted from this file in units of TPM (transcripts per million).

Kallisto

Note: piquant has been tested with Kallisto [Kallisto] version 0.42.4.

In preparation for quantifying transcripts with Kallisto, the Kallisto index command is executed to create a Kallisto
index for the input transcript set (for more information on Kallisto commands, see the Kallisto manual).

Then, when quantifying transcripts with Kallisto for a set of simulated RNA-seq reads, the Kallisto quant command
is executed, with the --single option specified and a value of 200 for the --fragment-length option (esti-
mated average fragment length) when single-end reads are being quantified. The --bias option is specified in all
cases, indicating that Kallisto should performed sequence-based bias correction.

After transcriptome abundance estimation has completed, of the files output by Kallisto only abundance.tsv is re-
tained (unless the --nocleanup option was specified when the run_quantification.sh script was created).
Relative transcript abundances are extracted from this file in units of TPM (transcripts per million).
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CHAPTER 8

Assessing quantification performance

After reads have been simulated for a set of input transcripts, and quantification tools have been executed to estimate
transcript abundance, the final stage of the piquant pipeline is to calculate statistics and draw graphs to aid the as-
sessment of transcript quantification performance and resource usage. Note that performance is assessed both at the
level of individual quantification runs (i.e. a particular transcript quantification tool executed once for reads simulated
according to a certain set of sequencing parameters), and also across multiple quantification runs for comparison of
performance. The data and plots generated in each case are detailed below (see Assessment of a single quantifica-
tion run and Assessment of multiple quantification runs); however, we first describe the statistics calculated, and the
classifiers used to split transcripts into groups sharing similar properties.

Statistics

For each execution of a particular transcript quantification tool for reads simulated according to a certain set of se-
quencing parameters, a number of statistics are calculated from the real and estimated transcript abundances. Those
calculated by default are listed below; however it is easy to extend piquant to calculate additional statistics (see Adding
a new statistic).

Note that each statistic is calculated both for the set of estimated transcript abundances as a whole, and for each group
of transcripts determined to share similar properties by each transcript classifier (see Transcript classifiers).

Note also that each statistic can be marked as being suitable for producing interesting graphs or not; all statistics
described below are suitable for graphing unless stated otherwise.

Number of ‘expressed’ transcripts

This is simply the number of transcripts in the RNA-seq data set with non-zero “ground truth” TPM. Note,
however, that all real and estimated TPM values below the threshold defined by the command line option
--not-present-cutoff are truncated to zero, before this or any other statistics are calculated. Estimating the
abundance of very rare transcripts is difficult, and truncation is performed to avoid biasing analyses with differences
between very low real and estimated TPM values that are likely of little biological interest.

This statistic is marked as being not suitable for producing graphs.
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Spearman correlation

The Spearman rank correlation coefficient between real and estimated TPMs for transcripts considered to be expressed
after truncation of TPM values below the low abundance threshold. When assessing quantification performance, a
higher correlation coefficient is considered to be better.

Error fraction

The fraction of expressed transcripts for which the estimated TPM is greater than a certain threshold percentage
higher or lower than the real TPM; when assessing quantification performance, a lower error fraction is considered
to be better. The threshold percentage is defined by the command line option --error-fraction-threshold,
which must be specified when executing the piquant command prepare_quant_dirs. The default value is set at
10%.

Median percent error

For expressed transcripts, the median value of the percentage errors of estimated compared to real TPMs; when
assessing quantification performance, a median percent error closer to zero is considered to be better. This statistic
can also indicate whether a particular quantification tool tends to over- or under-estimate transcript abundances, for
transcripts as a whole, or for certain classes of transcript.

Sensitivity

The sensitivity (or true positive rate) of a transcript quantification method is calculated to be the fraction of expressed
transcripts (that is, both “true positives” and “false negatives”) which were correctly identified by the quantification
tool as being present (just the “true positives”):

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity

The specificity (or true negative rate) of a transcript quantification method is calculated to be the fraction of transcripts
considered to be not expressed (that is, their real TPM value lies below the truncation threshold - both “true negatives”
and “false positives”), which were correctly identified as not being present (just the “true negatives”):

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Transcript classifiers

Transcript classifiers split the whole set of input transcripts into discrete groups, these groups sharing some similar
property; such a division of transcripts then allows the performance of quantification tools to be assessed across
different types of transcripts. The transcript classifiers provided by default are listed below; however it is easy to
extend piquant to add additional classifiers (see Adding a new transcript classifier).

Note, however, that transcript classifiers fall into one of two distinct types, and these types are described first.
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“Grouped” classifiers

The first type of transcript classifiers generally split the set of input transcripts into fixed groups dependent on some
property inherent in the transcripts (or their simulated abundances) themselves. For example, one could consider
“short”, “medium” or “long” transcripts, or those expressed at “low”, “medium” or “high” simulated abundance.

The following “grouped” classifiers are provided:

• Number of transcripts of originating gene

• Real transcript abundance

• Transcript length

• Transcript unique sequence percentage

• Transcript unique sequence length

“Distribution” classifiers

The second type of transcript classifiers split the set of input transcripts into two groups, those above and below
some threshold, where that threshold is generally the value of some property of quantification. For example, one
could consider transcripts whose estimated abundance is more or less than a certain percentage different from the real
abundance. By varying the threshold value, these classifiers can be used to produce graphs of the distribution of the
property in question.

The following “distribution” classifier is provided:

• Absolute percent error

Number of transcripts of originating gene

This classifier simply groups transcripts according to the number of isoforms of their originating gene.

Real transcript abundance

This classifier groups transcripts by a measure of their real abundance. Five categories of prevalence are defined
according to the log (base 10) of their real abundance in transcripts per million:

• Log real TPM <= 0 (<=1 transcript per million)

• Log real TPM <= 0.5 (>1 and <=3.16 transcripts per million)

• Log real TPM <= 1: (>3.16 and <=10 transcripts per million)

• Log real TPM <= 1.5: (>10 and <=31.6 transcripts per million)

• Log real TPM > 1.5: (>31.6 transcripts per million)

Transcript length

This classifier groups transcripts by their length in bases. Four categories are defined:

• very short: length <= 500 bases

• short: > 500 and <= 1000 bases

• medium: > 1000 and <= 3000 bases
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• long: > 3000 bases

Transcript unique sequence percentage

This classifier groups transcripts by the percentage of their sequence which they do not share with any other transcript
within their gene of origin. Five categories of transcripts are defined:

• > 0 and <=20% unique sequence

• > 20 and <=40% unique sequence

• > 40 and <=60% unique sequence

• > 60 and <=80% unique sequence

• > 80 and <=100% unique sequence

Transcript unique sequence length

This classifier groups transcripts by the absolute length of sequence which they do not share with any other transcript
within their gene of origin. Five categories are defined according to the length of unique sequence:

• 0 unique bases

• > 0 and <= 100 unique bases

• > 100 and <= 300 unique bases

• > 300 and <= 1000 unique bases

• > 1000 unique bases

Absolute percent error

This “distribution” classifier splits transcripts into two groups according to whether the absolute percentage difference
between each transcripts estimated and real abundances is greater or less than a given amount.

Resource usage statistics

For each execution of a particular transcript quantification tool for reads simulated according to a certain set of se-
quencing parameters (and also for the single execution of the prequantification steps for each quantification tool), the
following resource usage statistics are recorded:

• Real time: The total elapsed real time of all quantification (or prequantification) commands in seconds, log base
10 (via the %e format option of the GNU time command)

• User time: The total number of CPU-seconds (log base 10) that all quantification (or prequantification) com-
mands spent in user mode (via the %U format option of GNU time).

• System time: The total number of CPU-seconds (log base 10) that all quantification (or prequantification) com-
mands spent in kernel mode (via the %S format option of GNU time).

• Maximum memory: The maximum resident memory size of any quantification (or prequantification) command
during its execution, in gigabytes (via the %M format option of GNU time).
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Assessment of a single quantification run

Statistics and plots for a single execution of a quantification tool are produced by the support
script analyse_quantification_run (see Perform accuracy analysis) that is run by invoking
run_quantification with the -a command line option (see Quantifying expression). The following
CSV files and plots (written as PDF files by default) are produced:

CSV files

• <run-id>_transcript_stats.csv: A CSV file containing a single row, with a field for each defined
statistic (see Statistics above) which has been calculated over the whole set of input transcripts. CSV fields
are also present describing the quantification tool and sequencing parameters used (i.e. read length, sequencing
depth etc.).

• <run-id>_gene_stats.csv: A corresponding CSV file, also containing a single row, with a field for
each defined statistic which has been calculated over the whole set of input genes. Both real and estimated gene
“TPMs” are calculated by summing the respective TPM values for that gene’s transcripts. As above, CSV fields
are also present describing the quantification tool and sequencing parameters used.

• <run-id>_transcript_stats_by_<classifier>.csv: A CSV file is created for each “grouped”
transcript classifier (see “Grouped” classifiers). Each CSV file contains the same fields as
<run-id>_transcript_stats.csv; however, statistics are now calculated for distinct subsets of tran-
scripts as determined by the transcript classifier, and the CSV file contains one row for each such group. For
example, the CSV file <run-id>_by_gene_trancript_number.csv contains statistics calculated over
those transcripts whose originating gene has only one isoform, those for which the gene has two isoforms, and
so on.

• <run-id>_transcript_distribution_stats_<asc|desc>_by_<classifier>.csv: Two
CSV files (“ascending” and “descending”) are created for each “distribution” transcript classifier (see “Dis-
tribution” classifiers). For a range of values of the classifier’s threshold variable (such range being appropriate
to the classifier), the “ascending” file contains a row for each threshold value, indicating the fraction of expressed
transcripts lying below the threshold. Similarly, for the same range of values, the “descending” file indicates the
fraction of transcripts lying above the threshold.

• <run-id>_quant_usage.csv: A CSV file containing a single row, with a field for each resource usage
statistic (see Resource usage statistics above) calculated over the commands used during quantification. CSV
fields are also present describing the quantification tool and sequencing parameters used.

• <run-id>_prequant_usage.csv: A corresponding CSV file containing resource usage statistics calcu-
lated over the commands used during prequantification. Note that this file will only exist if prequantification
commands (which are executed only once per quantifier) happened to be run in this directory.

Note that neither of the resource usage CSV files will exist if the piquant command prepare_quant_dirs was
run with the --nousage option.

Plots

• <run-id>_transcript_TPMs_log10_scatter.pdf: A scatter plot of log-transformed (base 10) es-
timated against real transcript abundances measured in transcripts per million, for transcripts with non-zero real
and estimated abundances.

• <run-id>_gene__TPMs_log10_scatter.pdf: A scatter plot of log-transformed (base 10) estimated
against real gene abundances measured in transcripts per million, for genes with non-zero real and estimated
abundances.
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• <run-id>_<statistic>_by_<classifier>.pdf: For each “grouped” transcript classifier, and each
statistic marked as being suitable for producing graphs (see Statistics above), a plot is created showing the value
of that statistic for each group of transcripts determined by the classifier.

• <run-id>_<classifier>_expressed_TPMs_boxplot.pdf: A boxplot is created for each
“grouped” transcript classifier showing, for each group of transcripts determined by the classifier, the char-
acteristics of the distribution of log (base 10) ratios of estimated to real transcript abundances for transcripts
within that group with non-zero real and estimated abundances.

• <run-id>_<classifier>_expressed_TPMs_<asc|desc>_distribution.pdf: Two plots are
drawn for each “distribution” transcript classifier. These correspond to the data in the CSV files described above
for these classifiers, and show, for expressed transcripts, the cumulative distribution of the fraction of transcripts
lying below or above the threshold determined by the classifier.

Assessment of multiple quantification runs

Statistics and plots comparing multiple quantification runs are produced by executing the piquant command
analyse_runs (see Analyse quantification results). Note that depending on the number of combination of quan-
tification and read simulation parameters that analyse_runs is executed for, a very large number of graphs may be
produced; it may, therefore, be useful to concentrate attention on those parameter values which are of greatest interest.

The following CSV files and plots (written as PDF files by default) are produced:

CSV files

• overall_transcript_stats.csv: A CSV file with a field for each defined statistic which has been
calculated over the whole set of input transcripts for each quantification run. This data is concatenated from the
individual per-quantification run <run-id>_transcript_stats.csv files described above.

• overall_gene_stats.csv: A corresponding CSV file with a field for each defined statistic which has
been calculated over the whole set of input genes for each quantification run. This data is concatenated from the
individual per-quantification run <run-id>_gene_stats.csv files described above.

• overall_transcript_stats_by_<classifier>.csv: A CSV file for each “grouped” transcript
classifier, containing the same fields as overall_transcript_stats.csv, with statistics calculated for
distinct subsets of transcripts as determined by the classifier, for each quantification run. This data is concate-
nated from the individual per-quantification run <run-id>_transcript_stats_by_<classifier>.
csv files described above.

• overall_transcript_distribution_stats_<asc|desc>_by_<classifier>.csv:
Two CSV files (“ascending” and “descending”) for each “distribution” transcript classifier, indi-
cating the fraction of transcripts lying above or below values of the classifier threshold variable,
for each quantification run. This data is concatenated from the individual per-quantification run
<run-id>_transcript_distribution_stats_<asc|desc>_by_<classifier>.csv files.

• overall_quant_usage.csv: A CSV file with a field for each resource usage statistic which has been
calculated for each quantification run. This data is concatenated from the individual per-quantification run
<run-id>_quant_usage.csv files described above.

• overall_prequant_usage.csv: A CSV file with a field for each resource usage statistic which has
been calculated when prequantification steps were run for each quantifier. This data is concatenated from the
individual per-quantifier <run-id>_prequant_usage.csv files described above.

Note that neither of the resource usage CSV files will exist if the piquant command analyse_runs was run with
the --nousage option.
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Plots

Plots produced by the analyse_runs commands fall into four categories: “Overall statistics” graphs

In the sub-directory overall_transcript_stats_graphs, a sub-directory per_<parameter_1> is cre-
ated for each quantification and simulation parameter for which quantification runs were performed for more than one
value of that parameter (for example, for read lengths of 35, 50 and 100 base pairs, or for single- and paired-end reads).
A boxplot is produced in this directory for each graphable statistic, showing the distribution of values of that statistic
over all quantification runs which share each different value of parameter 1:

overall_<statistic>_per_<parameter_1>.pdf

Also within each per_<parameter_1> directory, a further by_<parameter_2> directory is created for each
quantification and simulation parameter for which quantification runs were performed for more than one value of that
second parameter (excluding parameter 1 itself). Within each by_<parameter_2> directory, a <statistic>
directory is created for each statistic marked as capable of producing graphs.

Within each statistic directory, a boxplot is produced showing the distribution of values of that statistic over all quan-
tification runs which share each different value of parameter 1, but further grouped into those quantification runs
which share each different value of parameter 2:

overall_<statistic>_per_<parameter_2>_per_<parameter_1>.pdf

Furthermore, in the case that parameter 2 takes numerical values (for example, read length or read depth) graphs are
written which plot statistics on the y-axis against values of parameter 2 on the x-axis; a separate coloured line is
shown on these graphs for each value of parameter 1. A plot will be produced for every combination of values of
quantification and read simulation parameters, excluding parameter 1 and parameter 2:

overall_<statistic>_vs_<numerical_parameter_2>_per_<parameter_1>_<other_parameter_
→˓values>.pdf

So, for example, the directory overall_transcript_stats_graphs/quant_method will contain a
boxplot for each graphable statistic, showing the distribution of values of that statistic over all quan-
tification runs sharing the same quantification method. Then, each statistic’s directory below, say,
overall_transcript_stats_graphs/quant_method/by_read_depth/ will contain, firstly, a box-
plot of the distribution of values of that statistic over all quantification runs which share the same quantification
method, further grouped into those runs which share the same read depth. Secondly, the directory will contain a plot
of that statistic on the y-axis, against read depth on the x-axis, with a line for each quantification method, for each
combination of read length, single- or paired-end reads, etc. as specified by the analyse_runs command that was
executed.

The sub-directory overall_gene_stats_graphs is structured in the same way as the
overall_transcript_stats_graphs directory, but contains graphs of statistics plotted at the level of
gene, rather than transcript, TPMs.

“Grouped statistics” graphs

In the sub-directory grouped_stats_graphs, a sub-directory grouped_by_<classifier> is created for
each “grouped” transcript classifier. Graphs written below this directory will plot statistics calculated for groups
of transcripts determined by that classifier. Firstly, a boxplot is produced for each graphable statistic, showing the
distribution of values of that statistic for each group of transcripts determined by the classifier over all quantification
runs:

grouped_<statistic>_per_<classifier>.pdf

Also within each grouped_by_<classifier> directory, a sub-directory per_<parameter> is created for
each quantification and simulation parameter for which quantification runs were performed for more than one value of

8.5. Assessment of multiple quantification runs 37



piquant Documentation, Release 1.0

that parameter. Within each per_<parameter> directory, a <statistic> directory is created for each statistic
marked as capable of producing graphs.

Within each statistic directory, a boxplot is produced showing the distribution of values of that statistic for each group
of transcripts determined by the classifier over all quantification runs, but further grouped into those runs which share
each different value of parameter:

grouped_<statistic>_per_<parameter>_per_<classifier>.pdf

In addition, a complementary boxplot shows the distribution of values of the statistic grouped into those runs which
share each different value of parameter, and then secondarily grouped according to the transcript classifier:

grouped_<statistic>_per_<classifier>_per_<parameter>.pdf

Furthermore, a set of graphs are written which plot statistics with a separate, coloured line for each value of parameter:

grouped_<statistic>_vs_<classifier>_per_<parameter>_<other_parameter_values>.pdf

A plot will be produced for every combination of values of quantification and read simulation parameters, excluding the
“per” parameter described above. For example, the sensitivity directory below grouped_stats_graphs/
grouped_by_transcript_length/per_read_length will contain a plot of sensitivity on the y-axis,
against transcript length on the x-axis, with a line for each simulated read length, for each combination of quan-
tification method, read depth, etc. as specified by the analyse_runs command that was executed.

“Distribution statistics” graphs

In the sub-directory distribution_stats_graphs, a sub-directory <classifier>_distribution is
created for each “distribution” transcript classifier. Graphs written below this directory will plot the cumulative distri-
bution of the fraction of transcript lying below or above values of the threshold determined by the classifier.

Within each <classifier>_distribution directory, a sub-directory per_<parameter> is created for each
quantification and simulation parameter for which quantification runs were performed for more than one value of that
parameter. Graphs written into this directory will plot statistics with a separate, coloured line for each value of that
parameter, and will be named:

distribution_<classifier>_per_<parameter>_<asc|desc>_<other_parameter_values>.pdf

As before, a plot will be produced for every combination of values of quantification and read simulation parameters,
excluding the “per” parameter.

“Resource usage statistic” graphs

In the sub-directory resource_usage_graphs, a directory structure is created in exactly the same way as for
“Overall statistics” graphs (see above). However, in this case, the graphs plotted measure resource usage statistics
rather the than accuracy statistics calculated over sets of transcripts or genes.

The resource_usage_graphs directory also contains, at the top level, two graphs pertaining to prequantification:
prequant_time_usage.pdf is a bar plot comparing the real, user and kernel mode time taken by prequantifica-
tion for each quantification method, and prequant_memory_usage.pdf is a bar plot comparing the maximum
resident memory occupied by any process during prequantification.
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CHAPTER 9

Typical pipeline usage

To illustrate usage of the piquant pipeline, we’ll compare the accuracy of transcript quantification of the eXpress
[eXpress] and Sailfish [Sailfish] tools:

• for two read lengths, 50 and 100 base pairs

• for two sequencing depths, 10x and 30x coverage

• for both single- and paired-end reads

• unstranded reads will be simulated with errors and sequencing bias, and with no reads arising from “noise”
transcripts

The input genome sequence and transcript definitions will be for the human genome, as defined in Ensembl release 75
[Ensembl].

1. Create output directory and write parameters file

We write an options file containing command line options common to the piquant commands we will subsequently
execute:

--quant-method Express,Sailfish
--read-length 50,100
--read-depth 10,30
--paired-end False,True
--errors True
--bias True
--stranded False
--noise-perc 0
--transcript-gtf ~/data/genome/human/ensembl-75/Homo_sapiens.GRCh37.75.gtf
--genome-fasta ~/data/genome/human/ensembl-75/genome-fa-per-chromosome/

Note: The indicated genome FASTA and transcript GTF files have here been downloaded from Ensembl. The
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transcript GTF file has been filtered to only contain features of feature type “exon”.

2. Prepare read directories

Prepare the directories in which RNA-seq reads will subsequently be simulated:

piquant prepare_read_dirs --options-file=piquant_options.txt

The default parent output directory for read simulation directories (output) is created, and eight read directories are
written into it:

• 10x_50b_se_errors_unstranded_bias_no_noise: i.e. 10x sequencing depth, 50 base-pairs read
length, single-end reads

• 10x_50b_pe_errors_unstranded_bias_no_noise: i.e. 10x sequencing depth, 50 base-pairs read
length, paired-end reads

• 10x_100b_se_errors_unstranded_bias_no_noise: i.e. 10x sequencing depth, 100 base-pairs
read length, single-end reads

• 10x_100b_pe_errors_unstranded_bias_no_noise: i.e. 10x sequencing depth, 100 base-pairs
read length, paired-end reads

• 30x_50b_se_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs read
length, single-end reads

• 30x_50b_pe_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 50 base-pairs read
length, paired-end reads

• 30x_100b_se_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 100 base-pairs
read length, single-end reads

• 30x_100b_pe_errors_unstranded_bias_no_noise: i.e. 30x sequencing depth, 100 base-pairs
read length, paired-end reads

3. Create reads

We’re now ready to simulate RNA-seq reads for our chosen sets of sequencing parameters. Note that the number of
experiments that can be simulated at the same time will depend on the memory and processing capabilities of the
hardware on which piquant is run. Here we’ll assume we only have enough memory and processing power available
to simulate four experiments at a time; hence we’ll execute the following pair of commands to simulate reads for each
sequencing depth, allowing all FluxSimulator processes to terminate in the first case before initiating the next batch of
simulations:

piquant create_reads --options-file=piquant_options.txt --read-depth=10
piquant create_reads --options-file=piquant_options.txt --read-depth=30

4. Check reads

The piquant commmand check_reads can be used to confirm that read simulation completed successfully:
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piquant check_reads --options-file=piquant_options.txt

A message is output to standard error for each RNA-seq experiment simulation which failed to successfully complete;
success in all cases is indicated by no output from the check_reads command.

5. Prepare quantification directories

Prepare the directories in which transcript quantification will be performed:

piquant prepare_quant_dirs --options-file=piquant_options.txt

In this case, sixteen quantification directories are written into the default parent output directory output - one for
each combination of the eight RNA-seq experiments simulated and the two quantification tools.

6. Perform prequantification steps

Prequantification steps appropriate to the eXpress and Sailfish tools (and for subsequent analysis of quantification
accuracy) are performed using the piquant command prequantify:

piquant prequantify --options-file=piquant_options.txt

In this case, the tasks performed are:

• Construction of sequences for transcripts from the input transcript reference GTF file and genome sequence
FASTA files.

• Creation of a Sailfish kmer index for the transcripts

• Calculation of the number of isoforms for each gene defined in the input transcript reference (see Count tran-
scripts for genes).

• Calculation of the unique sequence percentage for each transcript (see Calculate unique transcript sequence).

7. Quantify transcripts

We can now run our chosen transcriptome quantification tools on each set of simulated RNA-seq data. As in the case
when simulating reads, the number of tool instances that can be run simultaneously will depend on the memory and
processing capabilities of the hardware on which piquant is run. We’ll assume that we only have enough resource
available to run four quantification tool instances at a time; hence we’ll execute the following four commands to run
eXpress and Sailfish on our single-end and paired-end RNA-seq data sets, allowing all processes to terminate in each
case before initiating the next batch of quantifications:

piquant quantify --options-file=piquant_options.txt --quant-method=Express --paired-
→˓end=False
piquant quantify --options-file=piquant_options.txt --quant-method=Express --paired-
→˓end=True
piquant quantify --options-file=piquant_options.txt --quant-method=Sailfish --paired-
→˓end=False
piquant quantify --options-file=piquant_options.txt --quant-method=Sailfish --paired-
→˓end=True
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8. Check quantification

The piquant command check_quant can be used to confirm that quantification completed successfully:

piquant check_quant --options-file=piquant_options.txt

A message is output to standard error for each quantification run which failed to successfully complete; success in all
cases is indicated by no output from the check_quant command.

9. Analyse quantification runs

Finally, statistics and graphs describing the accuracy of transcript quantification can be produced via the piquant
command analyse_runs:

piquant analyse_runs --options-file=piquant_options.txt

In this case statistics and graphs are written into the default analysis output directory output/analysis (which is
also created, if it does not exist).
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CHAPTER 10

Support scripts

RNA-seq read simulation, transcript quantification, and abundance estimate accuracy analysis performed via com-
mands of the piquant script are supported by a number of supplementary Python scripts. These are normally exe-
cuted when running a run_simulation.sh or run_quantification.sh shell script; however, if necessary,
they can also be run independently.

Further information on each script and their command line options is given in the sections below. Note first, that all
scripts share the following common command line option:

• --log-level: One of the strings “debug”, “info”, “warning”, “error” or “critical” (default “info”), determin-
ing the maximum severity level at which log messages will be written to standard error.

Analyse a single quantification run

analyse_quantification_run is executed when a run_quantification.sh script is run with the -a
flag. It reads the tpms.csv file produced by assemble_quantification_data (see below), and then calcu-
lates statistics and plots graphs to assess the accuracy of transcript abundance estimates produced in a single quantifi-
cation run.

For full details of the analyses produced, see here.

Usage:

analyse_quantification_run
[--log-level=<log-level> --plot-format=<plot-format>]
[--grouped-threshold=<grouped-threshold>]
[--error-fraction-threshold=<ef-threshold>]
[--not-present-cutoff=<cutoff>]
[--prequant-usage-file=<prequant-usage-file>]
[--quant-usage-file=<quant-usage-file>]
--quant-method=<quant-method> --read-length=<read-length>
--read-depth=<read-depth> --paired-end=<paired-end>
--errors=<errors> --bias=<bias> --stranded=<stranded>
--noise-perc=<noise-depth-percentage>
<tpm-file> <out-file>
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The following command-line options and positional arguments are required:

• --quant-method: The quantification method by which transcript abundance estimates were produced.

• --read-length: An integer, the length of reads in the simulated RNA-seq data.

• --read-depth: An integer, the depth of sequencing in the simulated RNA-seq data.

• --paired-end: A boolean, True if the simulated RNA-seq data consists of paired-end reads, or False if
it consists of single-end reads.

• --errors: A boolean, True if the simulated RNA-seq data contains sequencing errors.

• --bias: A boolean, True if sequence bias has been applied to the simulated RNA-seq data.

• --stranded: A boolean, True if the simulated reads were stranded.

• --noise-perc: An integer, the depth of sequencing of “noise” transcripts in the simulated RNA-seq data, as
a percentage of the depth of sequencing of the main transcript set.

• <tpm-file>: A CSV file describing the per-transcript abundance estimates produced by a quantification run.

• <out-file>: A prefix for output CSV and graph files written by this script.

while these command-line parameters are optional:

• --plot-format: Output format for graphs, one of “pdf”, “svg” or “png” (default “pdf”).

• --grouped-threshold: The minimum number of transcripts required, in a group determined by a tran-
script classifier, for a statistic calculated for that group to be shown on a plot (default: 300).

• --error-fraction-threshold: Transcripts whose estimated TPM is greater than this percentage higher
or lower than their real TPM are considered above threshold for the “error fraction” statistic.

• --not-present-cutoff: This cut-off value for a transcript’s TPM is used to determined whether the
transcript is considered to be present or not.

• --prequant-usage-file: A CSV file containing per-prequantification command resource usage statistics
recorded using the GNU time command.

• --quant-usage-file: A CSV file containing per-quantification command resource usage statistics
recorded using the GNU time command.

Assemble data for a single quantification run

assemble_quantification_data is also executed when a run_quantification.sh script is run with
the -a flag. It assembles data required to assess the accuracy of transcript abundance estimates produced in a single
quantification run, and writes these data to an output CSV file. See here for full details of the data sources and output
file contents.

Usage:

assemble_quantification_data
[--log-level=<log-level>]
--method=<quantification-method> --out=<output-file>
<pro-file> <transcript-count-file> <unique-sequence-file>

The following command-line options and positional arguments are required:

• --method: The quantification method by which transcript abundance estimates were produced.
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• --out: The output CSV file name.

• <pro-file>: Full path of the FluxSimulator [FluxSimulator] expression profile file which contains ‘ground
truth’ transcript abundances.

• <transcript-count-file>: Full path of a file containing per-gene transcript counts, as produced by the
script count_transcripts_for_genes.

• <unique-sequence-file>: Full path of a file containing lengths of sequence unique to each transcript, as
produced by the script calculate_unique_transcript_sequence.

Calculate reads required for sequencing depth

calculate_reads_for_depth is run when a run_simulation.sh script is executed. It calculates the ap-
proximate number of reads required to be simulated for a set of transcripts in order to provide the specified sequencing
depth, given a particular length of read.

Usage:

calculate_reads_for_depth
[--log-level=<log-level>]
<pro-file> <read-length> <read-depth>

The following positional arguments are required:

• <pro-file>: The FluxSimulator expression profile file from which reads will be simulated.

• <read-length>: An integer, the length of reads in base pairs.

• <read-depth>: An integer, the mean sequencing depth desired.

Calculate unique transcript sequence

calculate_unique_transcript_sequence is executed when a run_quantification.sh script is run
with the -p flag. It calculates the length of sequence in base pairs that is unique to each transcript from which reads
will be simulated.

Usage:

calculate_unique_transcript_sequence
[--log-level=<log-level>]
<gtf-file>

The following positional argument is required:

• <gtf-file>: Full path to the GTF file defining transcripts and genes.

Count transcripts for genes

count_transcripts_for_genes is also executed when a run_quantification.sh script is run with the
-p flag. It calculates the number of transcripts shared by the gene of origin for each transcript from which reads will
be simulated.

Usage:
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count_transcripts_for_genes
[--log-level=<log-level>]
<gtf-file>

The following positional argument is required:

• <gtf-file>: Full path to the GTF file defining transcripts and genes.

Fix antisense reads

fix_antisense_reads is run when a run_simulation.sh script is executed and stranded single-end reads
are being simulated. In this case, the reads produced by FluxSimulator correspond to both the sense and antisense
strands. Those reads in the input FASTA or FASTQ file corresponding to the antisense strand are reverse comple-
mented.

Usage:

fix_antisense_reads
[--log-level=<log-level> --out-prefix=<out-prefix>]
<reads-file>

The following positional argument is required:

• <reads-file>: A FASTA or FASTQ file containing single-end reads for which antisense reads are to be
switched to the sense strand.

while the following command-line option is optional:

• --out-prefix: String to be prepended to the input file name to form the output file name [default: “sense”].

Randomise read strands

randomise_read_strands is run when a run_simulation.sh script is executed and unstranded paired-end
reads are being simulated. In this case, the reads produced by FluxSimulator effectively originate from the sense
strand. The script randomly reassigns pairs of paired-end reads in the input FASTA or FASTQ file such that the first
read no corresponds to the antisense strand.

Usage:

randomise_read_strands
[--log-level=<log-level> --out-prefix=<out-prefix>]
<reads-file>

The following positional argument is required:

• <reads-file>: A FASTA or FASTQ file containing paired-end reads for which read pairs strands are to be
randomly reassigned.

while the following command-line option is optional:

• --out-prefix: String to be prepended to the input file name to form the output file name [default: “un-
stranded”].
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Simulate sequence bias in reads

simulate_read_bias is run when a run_simulation.sh script is executed. It approximates a particular
type of sequence bias by preferentially selecting reads from an input FASTA or FASTQ file the beginning of whose
sequence is closer to having a specified nucleotide composition.

Usage:

simulate_read_bias
[--log-level=<log-level> --out-prefix=<out-prefix> --paired-end]
--num-reads=<num-reads>
<pwm-file> <reads_file>

The following command-line options and positional arguments are required:

• --num-reads: Number of reads to output.

• <pwm-file>: Full path to a file containing a position weight matrix; this PWM defines a preferential nu-
cleotide composition for bases at the start of reads. Reads whose starting sequence composition scores higher
against this PWM are more likely to be selected for output.

• <reads-file>: FASTA or FASTQ file containing reads upon which bias is to be imposed.

while these command-line parameters are optional:

• --out-prefix: Prefix for FASTA or FASTQ file to which biased reads are written (default “bias”).

• --paired-end: Indicates the reads file contains paired-end reads.
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CHAPTER 11

Extending piquant

piquant is extensible in three principal ways:

• Adding a new quantifier: Adding an additional quantification tool or pipeline whose comparative performance
against other quantifiers can then be assessed.

• Adding a new statistic: Adding an additional statistic to be calculated for each quantification run.

• Adding a new transcript classifier: Adding an additional classifier to split transcripts into discrete groups, so
that the performance of quantification tools can be assessed across these sets of transcripts.

All three methods of extension currently require some coding in Python.

Note: It is also possible to extend piquant to add a new sequencing parameter (e.g. read depth, read length, errors,
bias etc), over different values of which reads can be simulated. Doing this, however, is more involved - please contact
the author for further information if you wish to do this.

Adding a new quantifier

To enable piquant to run a particular quantification tool or pipeline, a new class should be added to the Python module
quantifiers.py, marked with the decorator @_quantifier, and fulfilling the API requirements detailed below.
Any such tool will then be automatically available to be included in quantification runs from the piquant command
line.

A quantifier class has three main responsibilities:

• It must supply commands to be written to run_quantification.sh scripts that will be executed when
the scripts are run with the command line flag -p; that is, preparatory actions that must be taken prior to
quantifying transcripts with this quantification tool, but that only need to be executed once for a particular set of
input transcripts and genome sequences.

• It must supply commands to be written to run_quantification.sh scripts that will be executed when
the scripts are run with the command line flag -q; that is, actions that must be taken to calculate transcript
abundances with this quantification tool for a particular set of simulated reads.
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• It must be able to return the abundance calculated by the quantification tool for a specified transcript.

In detail, in addition to being marked with the decorator @_quantifier, a quantifier class must implement the
following methods:

get_name()

get_name should return the string to be given when specifying a list of quantifiers to be used by piquant via the
command-line or parameters file option --quant-method.

write_preparatory_commands(writer, params)

write_preparatory_commands writes commands to a run_quantification.sh script that should be
executed prior to quantifying transcripts with the particular quantification tool, but that only need to be executed once
for a particular set of input transcripts and genome sequences - for example, preparing a Bowtie index for the genome,
or constructing transcript sequences.

Commands are written via the writer parameter, an instance of the BashScriptWriter class (see below), which
facilitates writing to a Bash script.

params is a dictionary of key-value pairs containing items that may be of use to the quantifier during preparation or
subsequent quantification:

• TRANSCRIPT_GTF_FILE: Full path to the GTF file containing transcript definitions.

• GENOME_FASTA_DIR: Full path to the directory containing genome sequence FASTA files.

• QUANTIFIER_DIRECTORY: Full path to a directory quantifier_scratch, created within the piquant
output directory, that quantifiers can write files to necessary for their operation which only need to be created
once (for example, a Bowtie or Sailfish index).

• NUM_THREADS: The maximum number of threads to be used by any multithreaded program that is to be
executed.

• FASTQ_READS: A boolean, True if reads have been simulated with errors (and hence quality values), and are
thus written in a FASTQ file.

• STRANDED_READS: A boolean, True if reads have been simulated as coming from a stranded protocol.

• SIMULATED_READS: If single-end reads are being quantified, the full path to the file containing simulated
reads. This key is not present in the dictionary if paired-end reads are being quantified.

• LEFT_SIMULATED_READS: If paired-end reads are being quantified, the full path to the file containing the
first read for each pair of simulated reads. This key is not present in the dictionary if single-end reads are being
quantified.

• RIGHT_SIMULATED_READS: If paired-end reads are being quantified, the full path to the file containing the
second read for each pair of simulated reads. This key is not present in the dictionary if single-end reads are
being quantified.

write_quantification_commands(writer, params)

write_quantification_commands writes commands to a run_quantification.sh that will be exe-
cuted to calculate transcript abundances with this quantification tool for a particular set of simulated reads.

Commands are again written via the writer parameter, an instance of the BashScriptWriter class. params
is a dictionary of key-value pairs containing the same items as described for write_preparatory_commands
above.

write_cleanup(writer)

Running a quantification tool may produce many files in addition to that needed to assess the tool’s performance
(i.e. the file containing estimated transcript abundances), and if multiple quantification runs are performed, these may
occupy significant disk space. write_cleanup allows an opportunity for commands to be writen to remove these
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files once quantification has been performed. As before, such commands can be written via the writer parameter,
an instance of the BashScriptWriter class.

get_transcript_abundance(transcript_id)

get_transcript_abundance should return the transcript abundance estimated by the quantification tool for
the transcript specified by the parameter transcript_id; as this method will be called for each transcript in the
input set, it should generally read transcript abundances from the output files of the quantification tool only once.
Transcript abundances should be returned in units of TPM (transcripts per million). If the quantification tool does not
supply abundance estimates in TPM, a transformation to these units may require to be perfomed (for example, see
_Cufflinks.get_transcript_abundance(), which transforms the FPKM values output by Cufflinks into
TPM).

The BashScriptWriter class

BashScriptWriter is a simple utility class to facilitate the writing of commands by quantifier classes to piquant‘s
run_simulation.sh and run_quantification.sh scripts. The most common methods are:

add_line(line_string)

The command specified by the parameter line_string will be written to the script at the appropriate indendation
level.

section()

To be used in a Python with statement. Commands, comments etc. added within this context will be grouped together
in the Bash script, followed by a blank line.

if_block(test_command)

To be used in a Python with statement. Commands, comments etc. added within this context will be grouped together
within a Bash if/then/fi block. The parameter test_command specifies the condition to be tested within the
if statement.

add_echo(text)

An echo statement will be written to the Bash script to print the string specified by the parameter text.

add_pipe([pipe_commands])
The commands specified by the function’s parameters will be joined together by pipes and written to the Bash script.

add_comment(comment)

The text specified by the parameter comment will be written to the Bash script as an appropriately-formatted com-
ment.

Note: An exception to the use of BashScriptWriter is in the case where commands are being written that should
contribute to the resource usage statistics recorded during prequantification or quantification. In this case, the methods
_add_timed_{pre}quantification_<command|pipe> of the _BaseQuantifier class should be used
instead.

Adding a new statistic

To add a new statistic, a class should be added to the Python module statistics.py, marked with the decorator
@_statistic, and fulfilling the API requirements detailed below. Any such statistic will be automatically included
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in the post-quantification analysis performed by piquant: graphs will be produced showing the variation of the statistic
as measured for different quantification tools as sequencing parameters and transcript classification measures change.

A statistics class must have the following attributes and methods (note that the attributes can most easily be provided
by extending the class _BaseStatistic):

name

A short name for the statistic, to be used in filenames and CSV column headers.

title

A human-readable description for the statistic, to appear in graph titles and axis labels.

graphable

A boolean, True if graphs of the statistic should be plotted as part of piquant‘s analysis.

calculate(tpms, expressed_tpms)

calculate should compute the statistic for a set of transcript abundances estimated by a particular quantifi-
cation tool. The parameter tpms is a pandas DataFrame describing the results of a quantification run, while
expressed_tpms is a DataFrame describing those results of the quantification run for which real transcript abun-
dances were above the threshold value indicating “presence” of the transcript.

The tpms and expressed_tpms DataFrame objects have a row for each estimated transcript abundance, and the
following columns:

• transcript: Transcript identifier as specified in the input transcripts GTF file.

• length: Transcript length in base pairs.

• unique-length: Length in base pairs of transcript sequence which does not overlap with the exons of any
other transcript.

• num-transcripts: Number of isoforms for this transcript’s originating gene.

• real-tpm: Ground-truth transcript abundance used to produce the simulated RNA-seq data set, measured in
transcripts per million.

• calc-tpm: Transcript abundance estimated by the quantification tool, measured in transcripts per million.

calculate should return a single number, the computed statistic.

calculate_grouped(grouped, grp_summary, expressed_grouped, expressed_grp_summary)

calculate_grouped should compute a set of statistic values for the results of a quantification run which have
been grouped according to a certain method of classifying transcripts. The parameter grouped is a pandas GroupBy
instance, describing the results of a quantification run grouped by the transcript classifier; group_summary
is a DataFrame containing basic summary statistics calculated for each group of transcripts. The parameters
expressed_grouped and expressed_grp_summary are analogous to the first two parameters, but describe
only results of the quantification run for which real transcript abundances were above the threshold value indiciated
“presence” of the transcript.

calculate_grouped should return a pandas Series instance, enumerating the statistic as calculated for each tran-
script group. When adding a new statistic, it may be easiest to adapt one of the existing calcualate_grouped
methods to your needs.

stat_range(vals_range):

The stat_range method controls the y-axis bounds in graphs created for this statistic. The vals_range parame-
ter is a tuple of two values, the minimum and maximum values of the statistic that will be plotted in a particular graph.
stat_range should return either a tuple of two values or None.
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If a tuple is returned, each value should either be a number or None. The first value will be the minimum bound of
the y-axis in the graph to be drawn; a value of None indicates that no special bound is to be imposed and the y-axis
minimum will be chosen automatically according to the minimum value of the statistic. Likewise, the second value
controls the maximum bound of the y-axis. Returning None instead of a tuple means that both y-axis bounds will be
chosen automatically.

Adding a new transcript classifier

Adding a new classifier of transcripts is perhaps simpler than adding a new quantification tool or analysis statis-
tic; in the Python module classifiers.py, an instance of the class _Classifier should be added to the list
_CLASSIFIERS. Any such classifier will automatically be included in the post-quantification analysis performed by
piquant, and graphs will be produced showing the variation of statistics as measured across groups of transcripts as
defined by the classifier.

Parameters to be supplied to the _Classifier constructor are as follows:

• column_name: A short name for the classifier, to be used in filenames and CSV column headers.

• value_extractor: A function which takes a row of a pandas DataFrame containing the results of a quantifi-
cation run (as described above - such a row describes quantification for a single transcript) and returns a numeric
classification value for the transcript indicated by the row.

• grouped_stats [Optional - default: True]: A boolean. If True, the instance is a “grouped” classifier,
which splits transcripts into fixed groups dependent on some property inherent in the transcripts (or their esti-
mated abundances) themselves. If False, the instance is a “distribution” classifier, which splits transcripts
into two groups, those above and below some threshold (where that threshold is generally the value of some
property of quantification).

• distribution_plot_range [Optional - default: None]: If grouped_stats is False, this parameter
should either be a tuple of two numbers or None. If a tuple is supplied, these should be the minimum and
maximum values of the “distribution” classifier threshold to be used in plots produced by this classifier.

• plot_title [Optional - default: None]: A human-readable description for the classifier, to appear in graph
titles and axis labels. If not supplied, the value of the column_name parameter will be used.

Note that a subclass, _LevelsClassifier, of _Classifier is supplied, which aids the construction of clas-
sifiers which group transcripts based on ranges of some parameter that takes many possible values (for exam-
ple, transcript length in base pairs, or transcript abundance measured in TPM). Parameters to be supplied to the
_LevelsClassifier constructor are as follows:

• column_name: As for _Classifier.

• value_extractor: A function which takes a row of a pandas DataFrame (as described for _Classifier
above) and extracts a numeric classification value for the transcript indicated by the row. Note, however, that
transcripts are classified into groups based on the particular range this values falls into, as determined by the
levels and closed parameters below.

• levels: A list of numbers defining the ranges of values (as determined by the value_extractor function)
for which transcripts are considered to belong to the same group. The first group consists of all transcripts whose
value is less than or equal to the first item in levels; the second group those transcripts whose value is greater
than the first item in levels and less than or equal to the second item, and so on. The nature of the final group
is determined by the parameter closed below.

• closed [Optional - default: False]: A boolean. If False, the final group for the classifier consists of all
transcripts whose value (as determined by the value_extractor function) is greater than or equal to the
last item in levels. If True, there is no such open range: the final group consists of all transcripts whose
value is greater than or equal to the last but one item in levels, and less than or equal to the last item.
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• plot_title [Optional - default: None]: As for _Classifier.
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