
Pipeliner Documentation
Release 1

Anthony Federico, Stefano Monti

Apr 10, 2019

Contents

1 Requirements 1
1.1 Testing Nextflow . 1
1.2 Installing Anaconda . 2
1.3 Pre-Packaged Conda Environment . 2

1.3.1 Yaml File . 2
1.4 Setting up Pipeliner . 2

2 Basic Usage 5
2.1 Framework Stucture . 5
2.2 Pipeline Configuration . 6

2.2.1 Config Inheritance . 6
2.2.2 Data Input and Output . 6
2.2.3 Basic Options . 7
2.2.4 Providing an Index . 7
2.2.5 Starting from Bams . 7
2.2.6 Temporary Files . 7
2.2.7 Skipping Steps . 7

2.3 Process Configuration . 7
2.3.1 Descriptive Arguments . 8
2.3.2 Xargs . 8
2.3.3 Ainj . 9

2.4 Pipeline Execution . 9
2.5 Output and Results . 9

2.5.1 Sample Folders . 10
2.5.2 Expression Matrix . 10
2.5.3 Bam Files . 10
2.5.4 Alignment Index . 10
2.5.5 Reports . 10

3 Pipeline Structure 11
3.1 Configuration File . 11

3.1.1 File Paths . 11
3.1.2 Executor and Compute Resources . 12
3.1.3 Pipeline Options and Parameters . 12

3.2 Pipeline Script . 12
3.3 Template Processes . 12
3.4 Output . 14

i

4 Existing Pipelines 15
4.1 RNA-seq . 15

4.1.1 Check Reads check_reads . 15
4.1.2 Genome Indexing hisat_indexing/star_indexing 15
4.1.3 Pre-Quality Check pre_fastqc . 15
4.1.4 Pre-MultiQC pre_multiqc . 15
4.1.5 Read Trimming trim_galore . 16
4.1.6 Read Mapping hisat_mapping/star_mapping . 16
4.1.7 Reformat Reference gtftobed . 16
4.1.8 Mapping Quality rseqc . 16
4.1.9 Quantification counting . 16
4.1.10 Expression Matrix expression_matrix . 16
4.1.11 Expression Features expression_features . 17
4.1.12 Expression Set expression_set . 17
4.1.13 Summary Report multiqc . 17

4.2 scRNA-seq . 17
4.2.1 Check Reads check_reads . 17
4.2.2 Genome Indexing hisat_indexing/star_indexing 17
4.2.3 Quality Check fastqc . 17
4.2.4 Whitelist whitelist . 18
4.2.5 Extract extract . 18
4.2.6 Read Mapping hisat_mapping/star_mapping . 18
4.2.7 Reformat Reference gtftobed . 18
4.2.8 Mapping Quality rseqc . 18
4.2.9 Quantification counting . 18
4.2.10 Summary Report multiqc . 18

4.3 DGE . 19
4.3.1 Quantification counting . 19
4.3.2 Expression Matrix expression_matrix . 19
4.3.3 Sample Renaming rename_samples . 19
4.3.4 Summary Report multiqc . 19

5 Extending Pipelines 21
5.1 General Workflow . 21
5.2 Configuration Inheritance . 21
5.3 Template Process Injections . 22
5.4 Testing Module . 23

ii

CHAPTER 1

Requirements

The Pipeliner framework requires Nextflow and Anaconda. Nextflow can be used on any POSIX compatible system
(Linux, OS X, etc). It requires BASH and Java 8 (or higher) to be installed. Third-party software tools used by
individual pipelines will be installed and managed through a Conda virtual environment.

1.1 Testing Nextflow

Before continuuing, test to make sure your environment is compatible with a Nextflow executable.

Note: You will download another one later when you clone the repository

Make sure your Java installation is version 8 or higher:

java -version

Create a new directory and install/test Nextflow:

mkdir nf-test
cd nf-test
curl -s https://get.nextflow.io | bash
./nextflow run hello

Output:

N E X T F L O W ~ version 0.31.0
Launching `nextflow-io/hello` [sad_curran] - revision: d4c9ea84de [master]
[warm up] executor > local
[4d/479eec] Submitted process > sayHello (4)
[a8/4bc038] Submitted process > sayHello (2)
[17/5be64e] Submitted process > sayHello (3)
[ee/0d879f] Submitted process > sayHello (1)

(continues on next page)

1

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Pipeliner Documentation, Release 1

(continued from previous page)

Hola world!
Ciao world!
Hello world!
Bonjour world!

1.2 Installing Anaconda

Pipeliner uses virtual environments managed by Conda, which is available through Anaconda. Download the distri-
bution pre-packaged with Python 2.7.

Make sure conda is installed and updated:

conda --version
conda update conda

Tip: If this is your first time working with Conda, you may need to edit your configuration paths to ensure Anaconda
is invoked when calling conda

1.3 Pre-Packaged Conda Environment

1.3.1 Yaml File

Clone Pipeliner:

git clone https://github.com/montilab/pipeliner

Environment for Linux:

conda env create -f pipeliner/envs/linux_env.yml

Environment for OS X:

conda env create -f pipeliner/envs/osx_env.yml

Note: Copies of pre-compiled binaries are hosted/maintained at https://anaconda.org/Pipeliner/repo

Warning: For those installing on the Shared Computing Cluster (SCC) at Boston University, instructions on how
to setup a private conda environment can be here.

1.4 Setting up Pipeliner

Tip: It is recommended to clone Pipeliner to a directory path that does not contain spaces

2 Chapter 1. Requirements

https://www.continuum.io/downloads
https://anaconda.org/Pipeliner/repo
https://github.com/montilab/pipeliner/blob/master/scripts/mkenv.sh

Pipeliner Documentation, Release 1

With all prerequisites, one can quickly setup Pipeliner by cloning the repository, configuring local paths to toy datasets,
activating the conda environment, and downloading the Nextflow executable:

Clone Pipeliner
git clone https://github.com/montilab/pipeliner

Activate conda environment
source activate pipeliner

Configure local paths to toy datasets
python pipeliner/scripts/paths.py

Move to pipelines directory
cd pipeliner/pipelines

Download nextflow executable
curl -s https://get.nextflow.io | bash

Run RNA-seq pipeline with toy data
./nextflow rnaseq.nf -c rnaseq.config

The output should look like this:

N E X T F L O W ~ version 0.31.1
Launching `rnaseq.nf` [nasty_pauling] - revision: cd3f572ab2
[warm up] executor > local
[31/1b2066] Submitted process > pre_fastqc (ggal_alpha)
[23/de6d60] Submitted process > pre_fastqc (ggal_theta)
[7c/28ee53] Submitted process > pre_fastqc (ggal_gamma)
[97/9ad6c1] Submitted process > check_reads (ggal_alpha)
[ab/c3eedf] Submitted process > check_reads (ggal_theta)
[2d/050633] Submitted process > check_reads (ggal_gamma)
[1d/f3af6d] Submitted process > pre_multiqc
[32/b1db1d] Submitted process > hisat_indexing (genome_reference.fa)
[3b/d93c6d] Submitted process > trim_galore (ggal_alpha)
[9c/3fa50b] Submitted process > trim_galore (ggal_theta)
[62/25fce0] Submitted process > trim_galore (ggal_gamma)
[66/ccc9db] Submitted process > hisat_mapping (ggal_alpha)
[28/69fff5] Submitted process > hisat_mapping (ggal_theta)
[5c/5ed2b6] Submitted process > hisat_mapping (ggal_gamma)
[b4/e559ab] Submitted process > gtftobed (genome_annotation.gtf)
[bc/6f490c] Submitted process > rseqc (ggal_alpha)
[71/80aa9e] Submitted process > rseqc (ggal_theta)
[17/ca0d9f] Submitted process > rseqc (ggal_gamma)
[d7/7d391b] Submitted process > counting (ggal_alpha)
[df/936854] Submitted process > counting (ggal_theta)
[11/143c2c] Submitted process > counting (ggal_gamma)
[31/4c11f9] Submitted process > expression_matrix
[1f/3af548] Submitted process > multiqc
Success: Pipeline Completed!

1.4. Setting up Pipeliner 3

Pipeliner Documentation, Release 1

4 Chapter 1. Requirements

CHAPTER 2

Basic Usage

2.1 Framework Stucture

Pipeline is a framework with various moving parts to support the development of multiple sequencing pipelines. The
following is a simplified example of its directory structure:

/pipeliner
/docs
/envs
/scripts
/tests
/pipelines

/configs
/scripts
/templates
/toy_data
/rnaseq.nf
/rnaseq.config

docs Markdown and Restructured Text documentaion files associated with Pipeliner and existing pipelines

envs Yaml files and scripts required to reproduce Conda environments

scripts Various helper scripts for framework setup and maintenance

tests Python testing module for multi-pipeline automatic test execution and reporting

pipelines/configs Base config files inherited by pipeline configurations

pipelines/scripts Various helper scripts for pipeline processes

pipelines/templates Template processes inherited by pipeline workflows

pipelines/toy_data Small datasets for rapid development and testing of pipelines. These datasets are modifications
from original RNA-seq and scRNA-seq datasets.

pipelines/rnaseq.nf Nextflow script for the RNA-seq pipeline

5

https://github.com/nextflow-io/rnatoy/tree/master/data/ggal
http://cf.10xgenomics.com/samples/cell-exp/1.3.0/hgmm_100/hgmm_100_fastqs.tar

Pipeliner Documentation, Release 1

pipelines/rnaseq.config Configuration file for the RNA-seq pipeline

2.2 Pipeline Configuration

Note: These examples are applicable to all pipelines

In the previous section, we gave instructions for processing the RNA-seq toy dataset. In that example, the configuration
options were all preset, however with real data, these settings must be reconfigured. Therefore the configuration file is
typically the first thing a user will have to modify to suit their needs. The following is a screenshot of the first half of
the RNA-seq configuration file.

2.2.1 Config Inheritance

Line 1: Configuration files can inherit basic properties that are reused across many pipelines. We have defined
several inheritable configuration files that are reused repeatedly. These include configs for running pipelines on local
machines, Sun Grid Engine clusters, in Docker environments, and on AWS cloud computing.

2.2.2 Data Input and Output

Lines 9-15 All data paths are defined in the configuration file. This includes specifying where incoming data resides
as well as defining where to output all data produced by the pipeline.

6 Chapter 2. Basic Usage

Pipeliner Documentation, Release 1

2.2.3 Basic Options

Lines 17-19 These are pipeline specific parameters that make large changes to how the data is processed.

2.2.4 Providing an Index

Lines 25-27 A useful feature of a pipeline is the ability to use an existing alignment index.

2.2.5 Starting from Bams

Lines 29-30 Another useful feature of a pipeline is the ability to skip pre-processing steps and start directly from the
bam files. This allows users to start their pipeline from the counting step.

2.2.6 Temporary Files

Lines 33-34 By default, bam files are saved after alignment for future use. This can be useful, however these files are
quite large and serve only as an intermediate step. Therefore, users can opt-out of storing them.

2.2.7 Skipping Steps

Lines 36-41 Users can skip entire pipeline steps and mix and match options that suit their need. Note that not all
combination of steps are compatible.

2.3 Process Configuration

While the first half of the configuration is dedicated to controlling the pipeline, the second half is dedicated to modi-
fying specific steps. We call these process-specific settings or parameters.

2.3. Process Configuration 7

Pipeliner Documentation, Release 1

2.3.1 Descriptive Arguments

Variables for common parameters used in each process are explicitly typed out. For example, trim_galore.
quality refers to the quality threshold used by Trim Galore and feature_counts.id refers to the gene id that
Feature Counts refers to in the gtf file header. These variable names match the same variable names given in the
original documentation of each tool. Therefore, one can refer to their individual documentation for more information.

2.3.2 Xargs

Because some software tools have hundreds of arguments, they cannot all be listed in the configuration file. Therefore,
another variable called xargs can be used to extend the flexibility of each tool. Users can add additional arguments

8 Chapter 2. Basic Usage

Pipeliner Documentation, Release 1

as a string that will be injected into the shell command.

2.3.3 Ainj

Sometimes, users may want to add additional processing steps to a process without modifying the pipeline script or
template directly. This can be done with the variable called ainj that injects a secondary shell command after the
original template process.

2.4 Pipeline Execution

When the configuration file is set, run the pipeline with:

./nextflow rnaseq.nf -c rnaseq.config

If the pipeline encounters an error, start from where it left off with:

./nextflow rnaseq.nf -resume -c rnaseq.config

Warning: If running Pipeliner on a high performance cluster environment such as Sun Grid Engine, ensure that
Nextflow is initially executed on a node that allows for long-running processes.

2.5 Output and Results

One the pipeline has finished, all results will be directed to a single output folder specified in the configuration file.

2.4. Pipeline Execution 9

Pipeliner Documentation, Release 1

2.5.1 Sample Folders

Each sample contains its own individual folder that holds temporary and processed data that was created by each
process. In the screenshot, one can see the gene counts file specific to sample ggal_gamma that was generated by
HTSeq.

2.5.2 Expression Matrix

The expression matrix folder contains the final count matrix as well as other normalized gene by sample matrices.

2.5.3 Bam Files

If the configuration file is set to store bam files, they will show up in the results directory.

2.5.4 Alignment Index

If an alignment index is built from scratch, it will be saved to the results directory so that it can be reused during future
pipeline runs.

2.5.5 Reports

After a successful run, two reports are generated. A report conducted using the original data before any pre-processing
steps as well as a final report run after the entire pipeline has finished. This allows one to see any potential issues that
existed in the data before the pipeline as well as if those issues were resolved after the pipeline.

10 Chapter 2. Basic Usage

CHAPTER 3

Pipeline Structure

The file paths for all data fed to a pipeline are specified in the configuration file. To ease the development process,
Pipeline includeds toy datasets for each of the pipelines. This example will cover the RNA-seq pipeline.

Note: Data for this pipeline is located in pipelines/toy_data/rna-seq

Users must provide the following files:

• Sequencing files or alignment files

• Comma-delimited file containing file paths to reads/bams

• Genome reference file

• Genome annotation file

3.1 Configuration File

The configuration file is where all file paths are specified and pipeline processes are paramaterized. The configuration
can be broken into three sections, including file paths, executor and compute resources, and pipeline options and
parameters.

3.1.1 File Paths

The configuration file specifies where to find all of the input data. Additionally, it provides a path to an output directory
where the pipeline will output results. The following is a typical example for the RNA-seq configuration file:

indir = "/Users/anthonyfederico/pipeliner/pipelines/toy_data/rna-seq"
outdir = "/Users/anthonyfederico/pipeliner/pipelines/rna-seq-results"
fasta = "${params.indir}/genome_reference.fa"
gtf = "${params.indir}/genome_annotation.gtf"
reads = "${params.indir}/ggal_reads.csv"

11

Pipeliner Documentation, Release 1

3.1.2 Executor and Compute Resources

An abstraction layer between Nextflow and Pipeliner logic enables platform independence and seamless compatibility
with high performance computing executors. This allows users to execute pipelines on their local machine or through
a computing cluster by simply specifying in the configuration file.

Pipeliner provides two base configuration files that can be inherited depending if a pipeline is being executing using
local resources or a Sun Grid Engine (SGE) queuing system.

If the latter is chosen, pipeline processes will be automatically parallelized. Additionally, each individual process can
be allocated specific computing resource instructions when nodes are requested.

Local config example:

process {
executor = 'local'

}

Cloud computing config example:

process {
executor = 'sge'
scratch = true

$trim_galore.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
$star_mapping.clusterOptions = "-P montilab -l h_rt=24:00:00 -l mem_total=94G -

→˓pe omp 16"
$counting.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
$expression_matrix.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
$multiqc.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"

}

3.1.3 Pipeline Options and Parameters

The rest of the configuration file is dedicated to the different pipeline options and process parameters that can be
specified. Some important examples include the following:

General pipeline parameters
aligner = "hisat"
quantifier = "htseq"

Process-specific parameters
htseq.type = "exon"
htseq.mode = "union"
htseq.idattr = "gene_id"
htseq.order = "pos"

3.2 Pipeline Script

3.3 Template Processes

Pipelines written in Nextflow consist of a series of processes. Processes specify data I/O and typically wrap around
third-party software tools to process this data. Processes are connected through channels – asynchronous FIFO queues
– which manage the flow of data throughout the pipeline.

12 Chapter 3. Pipeline Structure

Pipeliner Documentation, Release 1

Processes have the following basic structure:

process <name> {

input:
<process inputs>

output:
<process outputs>

script:
<user script to be executed>

}

Often, the script portion of the processes are reused by various sequencing pipelines. To help standardize pipeline
development and ensure good practices are propogated to all pipelines, template processes are defined and inherited
by pipeline processes.

Note: Templates are located in pipelines/templates

For example, these two processes execute the same code:

Without inheritance
process htseq {

input:
<process inputs>

output:
<process outputs>

script:
'''
samtools view ${bamfiles} | htseq-count - ${gtf} \\
--type ${params.htseq.type} \\
--mode ${params.htseq.mode} \\
--idattr ${params.htseq.idattr} \\
--order ${params.htseq.order} \\
> counts.txt
'''

}

With inheritance
process htseq {

input:
<process inputs>

output:
<process outputs>

script:
template 'htseq.sh'

}

3.3. Template Processes 13

Pipeliner Documentation, Release 1

3.4 Output

The RNA-seq pipeline output has the following basic structure:

/pipeliner/RNA-seq
/results

/sample_1
/trimgalore | Trimmed Reads (.fq.gz) for sample_1
/fastqc
/rseqc
/htseq

/alignments | Where (.bams) are saved
/aligner

/index | Index created and used during mapping

/expression_matrix | Aggregated count matrix
/expression_set | An expression set (.rds) object
/reports | Aggregated report across all samples pre/post pipeliner
/logs | Process-related logs

Each sample will have its own directory with sample-specific data and results for each process. Additionally, se-
quencing alignment files and the indexed reference genome will be saved for future use if specified. Summary reports
pre/post-workflow can be found inside the reports directory.

14 Chapter 3. Pipeline Structure

CHAPTER 4

Existing Pipelines

4.1 RNA-seq

4.1.1 Check Reads check_reads

input List of read files (.fastq)

output None

script Ensures correct format of sequencing read files

4.1.2 Genome Indexing hisat_indexing/star_indexing

input Genome reference file (.fa) | Genome annotation file (.gtf)

output Directory containing indexed genome files

script Uses either STAR or HISAT2 to build an indexed genome

4.1.3 Pre-Quality Check pre_fastqc

input List of read files (.fastq)

output Report files (.html)

script Uses FastQC to check quality of read files

4.1.4 Pre-MultiQC pre_multiqc

input Log files (.log)

output Summary report file (.html)

15

Pipeliner Documentation, Release 1

script Uses MultiQC to generate a summary report

4.1.5 Read Trimming trim_galore

input List of read files (.fastq)

output Trimmed read files (.fastq) | Report files (.html)

script Trims low quality reads with TrimGalore and checks quality with FastQC

4.1.6 Read Mapping hisat_mapping/star_mapping

input List of read files (.fastq) | Genome annotation file (.gtf) | Directory containing indexed reference
genome files

output A list of alignment files (.bam) | Log files (.log)

script Uses either STAR or HISAT2 to align reads to a reference genome

4.1.7 Reformat Reference gtftobed

input Genome annotation file (.gtf)

output Genome annotation file (.bed)

script Converts genome annotation file from GTF to BED format

4.1.8 Mapping Quality rseqc

input A list of alignment files (.bam)

output Report files (.txt)

script Uses RSeQC to check quality of alignment files

4.1.9 Quantification counting

input A list of alignment files (.bam) | Genome annotation file (.gtf)

output Read counts (.txt) | Log files (.txt)

script Uses either StringTie, HTSeQ, or featureCounts to quantify reads

4.1.10 Expression Matrix expression_matrix

input A list of count files (.txt)

output An expression matrix (.txt)

script Reformats a list of count files into a genes x samples matrix

16 Chapter 4. Existing Pipelines

Pipeliner Documentation, Release 1

4.1.11 Expression Features expression_features

input Genome annotation file (.gtf) | An expression matrix (.txt)

output Gene feature data (.txt)

script Parses the genome annotation file for gene feature data

4.1.12 Expression Set expression_set

input An expression matrix (.txt) | Gene feature data (.txt) | Sample phenotypic data (.txt)

output An expression set object (.rds)

script Creates an expression set object with eData, fData, and pData attributes

4.1.13 Summary Report multiqc

input Log files and summary reports from all processes

output A summary report (.html)

script Uses MultiQC to generate a summary report

4.2 scRNA-seq

4.2.1 Check Reads check_reads

input List of read files (.fastq)

output None

script Ensures correct format of sequencing read files

4.2.2 Genome Indexing hisat_indexing/star_indexing

input Genome reference file (.fa) | Genome annotation file (.gtf)

output Directory containing indexed genome files

script Uses either STAR or HISAT2 to build an indexed genome

4.2.3 Quality Check fastqc

input List of read files (.fastq)

output Report files (.html)

script Uses FastQC to check quality of read files

4.2. scRNA-seq 17

Pipeliner Documentation, Release 1

4.2.4 Whitelist whitelist

input List of read files (.fastq)

output A table of white listed barcodes (.txt)

script Uses UMI-tools to extract and identify true cell barcodes

4.2.5 Extract extract

input List of read files (.fastq) | A table of white listed barcodes (.txt)

output Extracted read files (.fastq)

script Uses UMI-tools to extract barcode from reads and append to read name

4.2.6 Read Mapping hisat_mapping/star_mapping

input List of read files (.fastq) | Genome annotation file (.gtf) | Directory containing indexed reference
genome files

output A list of alignment files (.bam) | Log files (.log)

script Uses either STAR or HISAT2 to align reads to a reference genome

4.2.7 Reformat Reference gtftobed

input Genome annotation file (.gtf)

output Genome annotation file (.bed)

script Converts genome annotation file from GTF to BED format

4.2.8 Mapping Quality rseqc

input A list of alignment files (.bam)

output Report files (.txt)

script Uses RSeQC to check quality of alignment files

4.2.9 Quantification counting

input A list of alignment files (.bam) | Genome annotation file (.gtf)

output Read counts (.txt) | Log files (.txt)

script Uses featureCounts to quantify reads

4.2.10 Summary Report multiqc

input Log files and summary reports from all processes

output A summary report (.html)

script Uses MultiQC to generate a summary report

18 Chapter 4. Existing Pipelines

Pipeliner Documentation, Release 1

4.3 DGE

4.3.1 Quantification counting

input A list of alignment files (.bam) | Genome annotation file (.gtf)

output Read counts (.txt) | Log files (.txt)

script Uses featureCounts to quantify reads

4.3.2 Expression Matrix expression_matrix

input A list of count files (.txt)

output An expression matrix (.txt)

script Reformats a list of count files into a genes x samples matrix

4.3.3 Sample Renaming rename_samples

input An expression matrix (.txt)

output An expression matrix (.txt)

script Renames samples in expression matrix based on a user-supplied table

4.3.4 Summary Report multiqc

input Log files and summary reports from all processes

output A summary report (.html)

script Uses MultiQC to generate a summary report

4.3. DGE 19

Pipeliner Documentation, Release 1

20 Chapter 4. Existing Pipelines

CHAPTER 5

Extending Pipelines

5.1 General Workflow

The framework provides multiple resources for the user to extend and create sequencing pipelines. The first is toy
datasets for all available pipelines including sequencing files, alignment files, genome reference and annotation files,
as well as phenotypic data. Additionally, there are pre-defined scripts, processes, and configuration files that can be
inherited and easily modified for various pipelines. Together, users can rapidly develop flexible and scalable pilelines.
Lastly, there is a testing module enabling users to frequently test a series of different configurations with each change
to the codebase.

5.2 Configuration Inheritance

An important property of configuration files is that they are inheritable. This allows developers to focus soley on the
configuration components that are changing with each pipeline execution. Typically there are four components of a
configuration file including the following.

Executor parameters:

process {
executor = "local"

}

Input data file paths:

indir = "/Users/anthonyfederico/pipeliner/pipelines/toy_data/rna-seq"
outdir = "/Users/anthonyfederico/pipeliner/pipelines/rna-seq-results"

Pipeline parameters:

aligner = "hisat"
quantifier = "htseq"

21

Pipeliner Documentation, Release 1

Process-specific parameters:

htseq.type = "exon"
htseq.mode = "union"
htseq.idattr = "gene_id"
htseq.order = "pos"

When developing, typically the only parameters that will be changing are pipeline parameters when testing the full
scope of flexibility. Therefore, the development configuration file will look something like the following:

// paired / hisat / featurecounts

includeConfig "local.config"
includeConfig "dataio.config"

paired = true
aligner = "hisat"
quantifier = "featurecounts"
skip.counting = false
skip.rseqc = false
skip.multiqc = false
skip.eset = false

includeConfig "parameters.config"

5.3 Template Process Injections

Note: Sometimes it’s better to create a new template rather than heavily modify an existing one

Each pipeline is essentially a series of modules - connected through minimal Nextflow scripting - that execute pre-
defined template processes. While templates are generally defined to be applicable to multiple pipelines and are
parameterized in a configuration file, they have two additional components contributing to their flexibility.

The following is an example of a template process for the third-party software tool featureCounts:

1 featureCounts \\
2

3 # Common flags directly defined by the user
4 -T ${params.feature_counts.cpus} \\
5 -t ${params.feature_counts.type} \\
6 -g ${params.feature_counts.id} \\
7

8 # Flags handled by the pipeline
9 -a ${gtf} \\

10 -o "counts.raw.txt" \\
11

12 # Arguments indirectly defined by the user
13 ${feature_counts_sargs} \\
14

15 # Extra arguments
16 ${params.feature_counts.xargs} \\
17

18 # Input data
19 ${bamfiles};

(continues on next page)

22 Chapter 5. Extending Pipelines

Pipeliner Documentation, Release 1

(continued from previous page)

20

21 # After injection
22 ${params.feature_counts.ainj}

Lines 4-6 These are common keyword arguments that can be set to string/int/float types by the user and passed directly
from the configuration file to the template. The params prefix in the variable means it is initialized in the
configuration file.

Lines 9-10 These are flags that are typically non-dynamic and handled interally by the pipeline.

Line 13 These are common flags that must be indirectly defined by the user. For example, featurCounts requires a -p
flag for paired reads. Because params.paired is a boolean, it makes more sense for the pipeline to create a
string of supplemental arguments indirectly defined by the configuration file.

feature_counts_sargs = ""
if (params.paired) {

feature_counts_sargs = feature_counts_sargs.concat("-p ")
}

Line 16 These are uncommmon keyword arguments or flags that can be pass directly from the configuration file to
the template. Because some software tools can include hundreds of arguments, we explicitly state common
arguments, but allow the user to additionally insert any unlimited number of additional arguments to maximize
flexibility.

For example, the user might want to perform a one-off test of the pipeline where they remove duplicate reads and
only count fragments that have a length between 50-600 base pairs. These options can be injected into the tem-
plate by simply defining params.feature_counts.xargs = "--ignoreDup -d 50 -D 600" in
the configuration file.

Line 19 These are required arguments such as input data handled interally by the pipeline.

Line 22 These are code injections - typically one-liner cleanup commands - that can be injected after the main script
of a template. For example, the output of featureCounts is a genes x samples matrix and the user may want to try
sorting rows by gene names. Setting params.feature_counts.ainj to "sort -n -k1,1 counts.
raw.txt > counts.raw.txt;" would accomplish such a task.

After parameterization, the final result would look something like this:

1 featureCounts -T 1 -t "exon" -g "gene_id" \
2 -a "path/to/reference_annotation.gtf" \
3 -o "counts.raw.txt" \
4 -p --ignoreDup -d 50 -D 600 \
5 s1.bam s2.bam s3 bam;
6 sort -n -k1,1 counts.raw.txt > counts.raw.txt;

5.4 Testing Module

Each major change to a pipeline should be followed with a series of tests. Because pipelines are so flexible, it’s
infeasible to manually test even a limited set of typical configurations. To solve this problem we include an automated
testing module.

Users can automatically test a series of configuration files by specifying a directory of user-defined tests:

/pipeliner
/tests

(continues on next page)

5.4. Testing Module 23

Pipeliner Documentation, Release 1

(continued from previous page)

/configs
/rnaseq

/t1.config
/t2.config
/t3.config

To run these series of tests, users can execute python pipeliner/tests/test.py rnaseq which will
search for the directory pipeliner/tests/configs/rnaseq and automatically pair and run each configu-
ration file with a pipeline script named rnaseq.nf.

Note: The directory name of tests must be the same as the pipeline script they are paired with

Warning: You must execute test.py from the /pipelines directory because Nextflow requires its executable
to be in the working directory. Therefore the testing command will look like python ../tests/test.py
rnaseq

24 Chapter 5. Extending Pipelines

	Requirements
	Testing Nextflow
	Installing Anaconda
	Pre-Packaged Conda Environment
	Yaml File

	Setting up Pipeliner

	Basic Usage
	Framework Stucture
	Pipeline Configuration
	Config Inheritance
	Data Input and Output
	Basic Options
	Providing an Index
	Starting from Bams
	Temporary Files
	Skipping Steps

	Process Configuration
	Descriptive Arguments
	Xargs
	Ainj

	Pipeline Execution
	Output and Results
	Sample Folders
	Expression Matrix
	Bam Files
	Alignment Index
	Reports

	Pipeline Structure
	Configuration File
	File Paths
	Executor and Compute Resources
	Pipeline Options and Parameters

	Pipeline Script
	Template Processes
	Output

	Existing Pipelines
	RNA-seq
	Check Reads check_reads
	Genome Indexing hisat_indexing/star_indexing
	Pre-Quality Check pre_fastqc
	Pre-MultiQC pre_multiqc
	Read Trimming trim_galore
	Read Mapping hisat_mapping/star_mapping
	Reformat Reference gtftobed
	Mapping Quality rseqc
	Quantification counting
	Expression Matrix expression_matrix
	Expression Features expression_features
	Expression Set expression_set
	Summary Report multiqc

	scRNA-seq
	Check Reads check_reads
	Genome Indexing hisat_indexing/star_indexing
	Quality Check fastqc
	Whitelist whitelist
	Extract extract
	Read Mapping hisat_mapping/star_mapping
	Reformat Reference gtftobed
	Mapping Quality rseqc
	Quantification counting
	Summary Report multiqc

	DGE
	Quantification counting
	Expression Matrix expression_matrix
	Sample Renaming rename_samples
	Summary Report multiqc

	Extending Pipelines
	General Workflow
	Configuration Inheritance
	Template Process Injections
	Testing Module

