

 Navigation

 	
 next

 	pip 1.5.2 documentation

pip

User list [http://groups.google.com/group/python-virtualenv] |
Dev list [http://groups.google.com/group/pypa-dev] |
Github [https://github.com/pypa/pip] |
PyPI [https://pypi.python.org/pypi/pip/] |
User IRC: #pip |
Dev IRC: #pypa

PyPA推荐的安装和管理Python包的工具 [https://python-packaging-user-guide.readthedocs.org/en/latest/current.html]

	快速指南

	安装pip
	Python和系统版本支持列表

	使用脚本安装和升级pip

	使用软件管理器安装

	用户手册
	安装package

	Requirements 文件

	Installing from Wheels

	Uninstalling Packages

	Listing Packages

	Searching for Packages

	Configuration

	Fast & Local Installs

	Non-recursive upgrades

	User Installs

	Ensuring Repeatability

	Reference Guide
	pip

	pip install

	pip uninstall

	pip freeze

	pip list

	pip show

	pip search

	pip wheel

	Development
	Pull Requests

	Automated Testing

	Running tests

	Getting Involved

	Release Process

	Release Notes

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

快速指南

首先, 安装pip.

从 PyPI [http://pypi.python.org/pypi/] 安装:

$ pip install SomePackage
 [...]
 Successfully installed SomePackage

查看什么package被安装:

$ pip show --files SomePackage
 Name: SomePackage
 Version: 1.0
 Location: /my/env/lib/pythonx.x/site-packages
 Files:
 ../somepackage/__init__.py
 [...]

查看什么package有更新:

$ pip list --outdated
 SomePackage (Current: 1.0 Latest: 2.0)

更新新的package:

$ pip install --upgrade SomePackage
 [...]
 Found existing installation: SomePackage 1.0
 Uninstalling SomePackage:
 Successfully uninstalled SomePackage
 Running setup.py install for SomePackage
 Successfully installed SomePackage

卸载已有package:

$ pip uninstall SomePackage
 Uninstalling SomePackage:
 /my/env/lib/pythonx.x/site-packages/somepackage
 Proceed (y/n)? y
 Successfully uninstalled SomePackage

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

安装pip

Python和系统版本支持列表

pip可以在以下版本的CPython下运行：2.6, 2.7, 3.1, 3.2, 3.3, 3.4 和 pypy.

pip可以在Unix/Linux, OS X 和 Windows系统中运行.

Note

Python 2.5在 v1.3.1版本后支持, Python 2.4在v1.1版本后支持.

使用脚本安装和升级pip

要安装或升级pip，需要下载 get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py]. [1]

然后运行以下命令 (需要管理员权限):

$ python get-pip.py

如果 setuptools [https://pypi.python.org/pypi/setuptools] (或 distribute [https://pypi.python.org/pypi/distribute]) 未安装, get-pip.py 会
自动为你安装 setuptools [https://pypi.python.org/pypi/setuptools] . [2]

如果需要升级 setuptools [https://pypi.python.org/pypi/setuptools] (或 distribute [https://pypi.python.org/pypi/distribute]), 运行 pip install -U setuptools [3]

使用软件管理器安装

在Linux系统中，pip通常可以在系统的软件管理器中安装，不过通过此方法安装的
一般不会是最新版本的pip.

Debian 和 Ubuntu:

$ sudo apt-get install python-pip

Fedora:

$ sudo yum install python-pip

	[1]	“Secure” in this context means using a modern browser or a
tool like curl that verifies SSL certificates when downloading from
https URLs.

	[2]	从 pip v1.5.1开始, 使用 get-pip.py 安装pip不一定需要先安装setuptools.

	[3]	Although using pip install --upgrade setuptools to upgrade from
distribute to setuptools works in isolation, it’s possible to get
“ImportError: No module named setuptools” when using pip<1.4 to upgrade a
package that depends on setuptools or distribute. See here for
details.

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

用户手册

Contents

	用户手册
	安装package

	Requirements 文件

	Installing from Wheels

	Uninstalling Packages

	Listing Packages

	Searching for Packages

	Configuration
	Config file

	Environment Variables

	Config Precedence

	Command Completion

	Fast & Local Installs

	Non-recursive upgrades

	User Installs

	Ensuring Repeatability

安装package

pip支持从 PyPI [http://pypi.python.org/pypi/] 、版本控制系统、本地项目, 甚至直接通过distribution文件安装package.

最常见的是使用 Requirement Specifiers 从 PyPI [http://pypi.python.org/pypi/] 安装。

$ pip install SomePackage # 最新版本
$ pip install SomePackage==1.0.4 # 指定版本
$ pip install 'SomePackage>=1.0.4' # 最低版本

更多详情可以参考 pip install 一节.

Requirements 文件

“Requirements 文件”中列出了需要安装的package，并可以通过 pip install
来安装:

pip install -r requirements.txt

这个文件的格式详情可以参考: Requirements File Format.

理论上来说，Requirements只是一个包含了由 pip install 参数排成列表的文件.

实践中，Requirements文件通常有4种作用:

	pip freeze 输出的信息保存在Requirements文件中，
主要用于 repeatable installations. In
在这种情况下，requirement文件会包含你运行 pip freeze 命令时各个package的版本信息.

pip freeze > requirements.txt
pip install -r requirements.txt

	引导pip正确地安装满足需求的package.
由于现在pip 还不具备真正的依赖分析 [https://github.com/pypa/pip/issues/988],
只是简单地为项目匹配第一需求. 举个例子：假如 pkg1 需要 pkg3>=1.0,
pkg2 需要 pkg3>=1.0,<=2.0, 如果 pkg1 被先安装, 那么pip只会满足
pkg3>=1.0, 这样可能会导致所安装的 pkg3 版本和 pkg2 发生冲突.
如果要解决这个问题，需要把 pkg3>=1.0,<=2.0 (正确的指定) 写入
requirements 文件. 例如:

pkg1
pkg2
pkg3>=1.0,<=2.0

	Requirements files are used to force pip to install an alternate version of a
sub-dependency. For example, suppose ProjectA in your requirements file
requires ProjectB, but the latest version (v1.3) has a bug, you can force
pip to accept earlier versions like so:

ProjectA
ProjectB<1.3

	Requirements files are used to override a dependency with a local patch that
lives in version control. For example, suppose a dependency,
SomeDependency from PyPI has a bug, and you can’t wait for an upstream fix.
You could clone/copy the src, make the fix, and place it in vcs with the tag
sometag. You’d reference it in your requirements file with a line like so:

git+https://myvcs.com/some_dependency@sometag#egg=SomeDependency

If SomeDependency was previously a top-level requirement in your
requirements file, then replace that line with the new line. If
SomeDependency is a sub-dependency, then add the new line.

It’s important to be clear that pip determines package dependencies using
install_requires metadata [http://pythonhosted.org/setuptools/setuptools.html#declaring-dependencies],
not by discovering requirements.txt files embedded in projects.

See also:

	Requirements File Format

	pip freeze

	“setup.py vs requirements.txt” (an article by Donald Stufft) [https://caremad.io/blog/setup-vs-requirement/]

Installing from Wheels

“Wheel” is a built, archive format that can greatly speed installation compared
to building and installing from source archives. For more information, see the
Wheel docs [http://wheel.readthedocs.org] ,
PEP427 [http://www.python.org/dev/peps/pep-0427], and
PEP425 [http://www.python.org/dev/peps/pep-0425]

Pip prefers Wheels where they are available. To disable this, use the
–no-use-wheel flag for pip install.

If no satisfactory wheels are found, pip will default to finding source archives.

To install directly from a wheel archive:

pip install SomePackage-1.0-py2.py3-none-any.whl

For the cases where wheels are not available, pip offers pip wheel as a
convenience, to build wheels for all your requirements and dependencies.

pip wheel requires the wheel package [https://pypi.python.org/pypi/wheel] to be installed, which provides the
“bdist_wheel” setuptools extension that it uses.

To build wheels for your requirements and all their dependencies to a local directory:

pip install wheel
pip wheel --wheel-dir=/local/wheels -r requirements.txt

And then to install those requirements just using your local directory of wheels (and not from PyPI):

pip install --no-index --find-links=/local/wheels -r requirements.txt

Uninstalling Packages

pip is able to uninstall most packages like so:

$ pip uninstall SomePackage

pip also performs an automatic uninstall of an old version of a package
before upgrading to a newer version.

For more information and examples, see the pip uninstall reference.

Listing Packages

To list installed packages:

$ pip list
Pygments (1.5)
docutils (0.9.1)
Sphinx (1.1.2)
Jinja2 (2.6)

To list outdated packages, and show the latest version available:

$ pip list --outdated
docutils (Current: 0.9.1 Latest: 0.10)
Sphinx (Current: 1.1.2 Latest: 1.1.3)

To show details about an installed package:

$ pip show sphinx

Name: Sphinx
Version: 1.1.3
Location: /my/env/lib/pythonx.x/site-packages
Requires: Pygments, Jinja2, docutils

For more information and examples, see the pip list and pip show
reference pages.

Searching for Packages

pip can search PyPI [http://pypi.python.org/pypi/] for packages using the pip search
command:

$ pip search "query"

The query will be used to search the names and summaries of all
packages.

For more information and examples, see the pip search reference.

Configuration

Config file

pip allows you to set all command line option defaults in a standard ini
style config file.

The names and locations of the configuration files vary slightly across
platforms.

	On Unix and Mac OS X the configuration file is: $HOME/.pip/pip.conf

	On Windows, the configuration file is: %HOME%\pip\pip.ini

You can set a custom path location for the config file using the environment variable PIP_CONFIG_FILE.

In a virtual environment, an additional config file will be read from the base
directory of the virtualenv (sys.prefix as reported by Python). The base
name of the file is the same as the user configuration file (pip.conf
on Unix and OSX, pip.ini on Windows). Values in the virtualenv-specific
configuration file take precedence over those in the user’s configuration file
(whether from the user home or specified via PIP_CONFIG_FILE).

The names of the settings are derived from the long command line option, e.g.
if you want to use a different package index (--index-url) and set the
HTTP timeout (--default-timeout) to 60 seconds your config file would
look like this:

[global]
timeout = 60
index-url = http://download.zope.org/ppix

Each subcommand can be configured optionally in its own section so that every
global setting with the same name will be overridden; e.g. decreasing the
timeout to 10 seconds when running the freeze
(Freezing Requirements) command and using
60 seconds for all other commands is possible with:

[global]
timeout = 60

[freeze]
timeout = 10

Boolean options like --ignore-installed or --no-dependencies can be
set like this:

[install]
ignore-installed = true
no-dependencies = yes

Appending options like --find-links can be written on multiple lines:

[global]
find-links =
 http://download.example.com

[install]
find-links =
 http://mirror1.example.com
 http://mirror2.example.com

Environment Variables

pip’s command line options can be set with environment variables using the
format PIP_<UPPER_LONG_NAME> . Dashes (-) have to be replaced with
underscores (_).

For example, to set the default timeout:

export PIP_DEFAULT_TIMEOUT=60

This is the same as passing the option to pip directly:

pip --default-timeout=60 [...]

To set options that can be set multiple times on the command line, just add
spaces in between values. For example:

export PIP_FIND_LINKS="http://mirror1.example.com http://mirror2.example.com"

is the same as calling:

pip install --find-links=http://mirror1.example.com --find-links=http://mirror2.example.com

Config Precedence

Command line options have precedence over environment variables, which have precedence over the config file.

Within the config file, command specific sections have precedence over the global section.

Examples:

	--host=foo overrides PIP_HOST=foo

	PIP_HOST=foo overrides a config file with [global] host = foo

	A command specific section in the config file [<command>] host = bar
overrides the option with same name in the [global] config file section

Command Completion

pip comes with support for command line completion in bash and zsh.

To setup for bash:

$ pip completion --bash >> ~/.profile

To setup for zsh:

$ pip completion --zsh >> ~/.zprofile

Alternatively, you can use the result of the completion command
directly with the eval function of you shell, e.g. by adding the following to your startup file:

eval "`pip completion --bash`"

Fast & Local Installs

Often, you will want a fast install from local archives, without probing PyPI.

First, download the archives that fulfill your requirements:

$ pip install --download <DIR> -r requirements.txt

Then, install using –find-links and –no-index:

$ pip install --no-index --find-links=[file://]<DIR> -r requirements.txt

Non-recursive upgrades

pip install --upgrade is currently written to perform a recursive upgrade.

E.g. supposing:

	SomePackage-1.0 requires AnotherPackage>=1.0

	SomePackage-2.0 requires AnotherPackage>=1.0 and OneMorePoject==1.0

	SomePackage-1.0 and AnotherPackage-1.0 are currently installed

	SomePackage-2.0 and AnotherPackage-2.0 are the latest versions available on PyPI.

Running pip install --upgrade SomePackage would upgrade SomePackage and AnotherPackage
despite AnotherPackage already being satisifed.

If you would like to perform a non-recursive upgrade perform these 2 steps:

pip install --upgrade --no-deps SomePackage
pip install SomePackage

The first line will upgrade SomePackage, but not dependencies like AnotherPackage. The 2nd line will fill in new dependencies like OneMorePackage.

User Installs

With Python 2.6 came the “user scheme” for installation [http://docs.python.org/install/index.html#alternate-installation-the-user-scheme],
which means that all Python distributions support an alternative install
location that is specific to a user. The default location for each OS is
explained in the python documentation for the site.USER_BASE [http://docs.python.org/library/site.html#site.USER_BASE] variable. This mode
of installation can be turned on by specifying the –user option to pip install.

Moreover, the “user scheme” can be customized by setting the
PYTHONUSERBASE environment variable, which updates the value of site.USER_BASE.

To install “SomePackage” into an environment with site.USER_BASE customized to ‘/myappenv’, do the following:

export PYTHONUSERBASE=/myappenv
pip install --user SomePackage

pip install --user follows four rules:

	When globally installed packages are on the python path, and they conflict
with the installation requirements, they are ignored, and not
uninstalled.

	When globally installed packages are on the python path, and they satisfy
the installation requirements, pip does nothing, and reports that
requirement is satisfied (similar to how global packages can satisfy
requirements when installing packages in a --system-site-packages
virtualenv).

	pip will not perform a --user install in a --no-site-packages
virtualenv (i.e. the default kind of virtualenv), due to the user site not
being on the python path. The installation would be pointless.

	In a --system-site-packages virtualenv, pip will not install a package
that conflicts with a package in the virtualenv site-packages. The –user
installation would lack sys.path precedence and be pointless.

To make the rules clearer, here are some examples:

From within a --no-site-packages virtualenv (i.e. the default kind):

$ pip install --user SomePackage
Can not perform a '--user' install. User site-packages are not visible in this virtualenv.

From within a --system-site-packages virtualenv where SomePackage==0.3 is already installed in the virtualenv:

$ pip install --user SomePackage==0.4
Will not install to the user site because it will lack sys.path precedence

From within a real python, where SomePackage is not installed globally:

$ pip install --user SomePackage
[...]
Successfully installed SomePackage

From within a real python, where SomePackage is installed globally, but is not the latest version:

$ pip install --user SomePackage
[...]
Requirement already satisfied (use --upgrade to upgrade)

$ pip install --user --upgrade SomePackage
[...]
Successfully installed SomePackage

From within a real python, where SomePackage is installed globally, and is the latest version:

$ pip install --user SomePackage
[...]
Requirement already satisfied (use --upgrade to upgrade)

$ pip install --user --upgrade SomePackage
[...]
Requirement already up-to-date: SomePackage

force the install
$ pip install --user --ignore-installed SomePackage
[...]
Successfully installed SomePackage

Ensuring Repeatability

Three things are required to fully guarantee a repeatable installation using requirements files.

	The requirements file was generated by pip freeze or you’re sure it only
contains requirements that specify a specific version.

	The installation is performed using –no-deps.
This guarantees that only what is explicitly listed in the requirements file is
installed.

	The installation is performed against an index or find-links location that is
guaranteed to not allow archives to be changed and updated without a
version increase. Unfortunately, this is not true on PyPI. It is possible
for the same pypi distribution to have a different hash over time. Project
authors are allowed to delete a distribution, and then upload a new one with
the same name and version, but a different hash. See Issue #1175 [https://github.com/pypa/pip/issues/1175] for plans to add hash
confirmation to pip, or a new “lock file” notion, but for now, know that the peep
project [https://pypi.python.org/pypi/peep] offers this feature on top of pip
using requirements file comments.

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

Reference Guide

	pip
	Usage

	Description

	General Options

	pip install
	Usage

	Description

	Options

	Examples

	pip uninstall
	Usage

	Description

	Options

	Examples

	pip freeze
	Usage

	Description

	Options

	Examples

	pip list
	Usage

	Description

	Options

	Examples

	pip show
	Usage

	Description

	Options

	Examples

	pip search
	Usage

	Description

	Options

	Examples

	pip wheel
	Usage

	Description

	Options

	Examples

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip

Contents

	pip
	Usage

	Description
	Logging
	Console logging

	File logging

	General Options

Usage

pip <command> [options]

Description

Logging

Console logging

pip offers -v, –verbose and -q, –quiet
to control the console log level. Each option can be used multiple times and
used together. One -v increases the verbosity by one, whereas one -q decreases it by
one.

The series of log levels, in order, are as follows:

VERBOSE_DEBUG, DEBUG, INFO, NOTIFY, WARN, ERROR, FATAL

NOTIFY is the default level.

A few examples on how the parameters work to affect the level:

	specifying nothing results in NOTIFY

	-v results in INFO

	-vv results in DEBUG

	-q results in WARN

	-vq results in NOTIFY

The most practical use case for users is either -v or -vv to see
additional logging to help troubleshoot an issue.

File logging

pip offers the –log option for specifying a file where a maximum
verbosity log will be kept. This option is empty by default. This log appends
to previous logging.

Additionally, when commands fail (i.e. return a non-zero exit code), pip writes
a “failure log” for the failed command. This log overwrites previous
logging. The default location is as follows:

	On Unix and Mac OS X: $HOME/.pip/pip.log

	On Windows, the configuration file is: %HOME%\pip\pip.log

The option for the failure log, is –log-file.

Both logs add a line per execution to specify the date and what pip executable wrote the log.

Like all pip options, --log and log-file, can also be set as an environment
variable, or placed into the pip config file. See the Configuration
section.

General Options

	
-h, --help

	Show help.

	
-v, --verbose

	Give more output. Option is additive, and can be used up to 3 times.

	
-V, --version

	Show version and exit.

	
-q, --quiet

	Give less output.

	
--log-file <path>

	Path to a verbose non-appending log, that only logs failures. This log is active by default at <see File logging>.

	
--log <path>

	Path to a verbose appending log. This log is inactive by default.

	
--proxy <proxy>

	Specify a proxy in the form [user:passwd@]proxy.server:port.

	
--timeout <sec>

	Set the socket timeout (default 15 seconds).

	
--exists-action <action>

	Default action when a path already exists: (s)witch, (i)gnore, (w)ipe, (b)ackup.

	
--cert <path>

	Path to alternate CA bundle.

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip install

Contents

	pip install
	Usage

	Description
	Requirements File Format

	Requirement Specifiers

	Pre-release Versions

	Externally Hosted Files

	VCS Support
	Git

	Mercurial

	Subversion

	Bazaar

	Finding Packages

	SSL Certificate Verification

	Hash Verification

	Download Cache

	“Editable” Installs

	Controlling setup_requires

	Options

	Examples

Usage

pip install [options] <requirement specifier> ...
pip install [options] -r <requirements file> ...
pip install [options] [-e] <vcs project url> ...
pip install [options] [-e] <local project path> ...
pip install [options] <archive url/path> ...

Description

Install packages from:

	PyPI (and other indexes) using requirement specifiers.

	VCS project urls.

	Local project directories.

	Local or remote source archives.

pip also supports installing from “requirements files”, which provide
an easy way to specify a whole environment to be installed.

Requirements File Format

Each line of the requirements file indicates something to be installed,
and like arguments to pip install, the following forms are supported:

<requirement specifier>
<archive url/path>
[-e] <local project path>
[-e] <vcs project url>

See the pip install Examples for examples of all these forms.

A line beginning with # is treated as a comment and ignored.

Additionally, the following Package Index Options are supported:

	-i, –index-url

	–extra-index-url

	–no-index

	-f, –find-links

	–allow-external

	–allow-all-external

	–allow-unverified

For example, to specify –no-index and 2 –find-links locations:

--no-index
--find-links /my/local/archives
--find-links http://some.archives.com/archives

Lastly, if you wish, you can refer to other requirements files, like this:

-r more_requirements.txt

Requirement Specifiers

pip supports installing from “requirement specifiers” as implemented in
pkg_resources Requirements [http://packages.python.org/setuptools/pkg_resources.html#requirement-objects]

Some Examples:

'FooProject >= 1.2'
Fizzy [foo, bar]
'PickyThing<1.6,>1.9,!=1.9.6,<2.0a0,==2.4c1'
SomethingWhoseVersionIDontCareAbout

Note

Use single or double quotes around specifiers to avoid > and < being
interpreted as shell redirects. e.g. pip install 'FooProject>=1.2'.

Pre-release Versions

Starting with v1.4, pip will only install stable versions as specified by
PEP426 [http://www.python.org/dev/peps/pep-0426] by default. If a version cannot be parsed as a compliant PEP426 [http://www.python.org/dev/peps/pep-0426]
version then it is assumed to be a pre-release.

If a Requirement specifier includes a pre-release or development version
(e.g. >=0.0.dev0) then pip will allow pre-release and development versions
for that requirement. This does not include the != flag.

The pip install command also supports a –pre flag
that will enable installing pre-releases and development releases.

Externally Hosted Files

Starting with v1.4, pip will warn about installing any file that does not come
from the primary index. As of version 1.5, pip defaults to ignoring these files
unless asked to consider them.

The pip install command supports a
–allow-external PROJECT option that will enable
installing links that are linked directly from the simple index but to an
external host that also have a supported hash fragment. Externally hosted
files for all projects may be enabled using the
–allow-all-external flag to the pip install
command.

The pip install command also supports a
–allow-unverified PROJECT option that will enable
installing insecurely linked files. These are either directly linked (as above)
files without a hash, or files that are linked from either the home page or the
download url of a package.

These options can be used in a requirements file. Assuming some fictional
ExternalPackage that is hosted external and unverified, then your requirements
file would be like so:

--allow-external ExternalPackage
--allow-unverified ExternalPackage
ExternalPackage

VCS Support

pip supports installing from Git, Mercurial, Subversion and Bazaar, and detects
the type of VCS using url prefixes: “git+”, “hg+”, “bzr+”, “svn+”.

pip requires a working VCS command on your path: git, hg, svn, or bzr.

VCS projects can be installed in editable mode (using
the –editable option) or not.

	For editable installs, the clone location by default is “<venv
path>/src/SomeProject” in virtual environments, and “<cwd>/src/SomeProject”
for global installs. The –src option can be used to
modify this location.

	For non-editable installs, the project is built locally in a temp dir and then
installed normally.

The url suffix “egg=<project name>” is used by pip in it’s dependency logic to
identify the project prior to pip downloading and analyzing the metadata.

Git

pip currently supports cloning over git, git+https and git+ssh:

Here are the supported forms:

[-e] git+git://git.myproject.org/MyProject#egg=MyProject
[-e] git+https://git.myproject.org/MyProject#egg=MyProject
[-e] git+ssh://git.myproject.org/MyProject#egg=MyProject
-e git+git@git.myproject.org:MyProject#egg=MyProject

Passing branch names, a commit hash or a tag name is possible like so:

[-e] git://git.myproject.org/MyProject.git@master#egg=MyProject
[-e] git://git.myproject.org/MyProject.git@v1.0#egg=MyProject
[-e] git://git.myproject.org/MyProject.git@da39a3ee5e6b4b0d3255bfef95601890afd80709#egg=MyProject

Mercurial

The supported schemes are: hg+http, hg+https,
hg+static-http and hg+ssh.

Here are the supported forms:

[-e] hg+http://hg.myproject.org/MyProject#egg=MyProject
[-e] hg+https://hg.myproject.org/MyProject#egg=MyProject
[-e] hg+ssh://hg.myproject.org/MyProject#egg=MyProject

You can also specify a revision number, a revision hash, a tag name or a local
branch name like so:

[-e] hg+http://hg.myproject.org/MyProject@da39a3ee5e6b#egg=MyProject
[-e] hg+http://hg.myproject.org/MyProject@2019#egg=MyProject
[-e] hg+http://hg.myproject.org/MyProject@v1.0#egg=MyProject
[-e] hg+http://hg.myproject.org/MyProject@special_feature#egg=MyProject

Subversion

pip supports the URL schemes svn, svn+svn, svn+http, svn+https, svn+ssh.

You can also give specific revisions to an SVN URL, like so:

[-e] svn+svn://svn.myproject.org/svn/MyProject#egg=MyProject
[-e] svn+http://svn.myproject.org/svn/MyProject/trunk@2019#egg=MyProject

which will check out revision 2019. @{20080101} would also check
out the revision from 2008-01-01. You can only check out specific
revisions using -e svn+....

Bazaar

pip supports Bazaar using the bzr+http, bzr+https, bzr+ssh,
bzr+sftp, bzr+ftp and bzr+lp schemes.

Here are the supported forms:

[-e] bzr+http://bzr.myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+sftp://user@myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+ssh://user@myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+ftp://user@myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+lp:MyProject#egg=MyProject

Tags or revisions can be installed like so:

[-e] bzr+https://bzr.myproject.org/MyProject/trunk@2019#egg=MyProject
[-e] bzr+http://bzr.myproject.org/MyProject/trunk@v1.0#egg=MyProject

Finding Packages

pip searches for packages on PyPI [http://pypi.python.org/pypi/] using the
http simple interface [http://pypi.python.org/simple],
which is documented here [http://packages.python.org/setuptools/easy_install.html#package-index-api]
and there [http://www.python.org/dev/peps/pep-0301/]

pip offers a number of Package Index Options for modifying how packages are found.

See the pip install Examples.

SSL Certificate Verification

Starting with v1.3, pip provides SSL certificate verification over https, for the purpose
of providing secure, certified downloads from PyPI.

Hash Verification

PyPI provides md5 hashes in the hash fragment of package download urls.

pip supports checking this, as well as any of the
guaranteed hashlib algorithms (sha1, sha224, sha384, sha256, sha512, md5).

The hash fragment is case sensitive (i.e. sha1 not SHA1).

This check is only intended to provide basic download corruption protection.
It is not intended to provide security against tampering. For that,
see SSL Certificate Verification

Download Cache

pip offers a –download-cache option for
installs to prevent redundant downloads of archives from PyPI.

The point of this cache is not to circumvent the index crawling process, but
to just prevent redundant downloads.

Items are stored in this cache based on the url the archive was found at, not
simply the archive name.

If you want a fast/local install solution that circumvents crawling PyPI, see
the Fast & Local Installs.

Like all options, –download-cache, can also
be set as an environment variable, or placed into the pip config file. See the
Configuration section.

“Editable” Installs

“Editable” installs are fundamentally “setuptools develop mode” [http://packages.python.org/setuptools/setuptools.html#development-mode]
installs.

You can install local projects or VCS projects in “editable” mode:

$ pip install -e path/to/SomeProject
$ pip install -e git+http://repo/my_project.git#egg=SomeProject

For local projects, the “SomeProject.egg-info” directory is created relative to
the project path. This is one advantage over just using setup.py develop,
which creates the “egg-info” directly relative the current working directory.

Controlling setup_requires

Setuptools offers the setup_requires setup() keyword [http://pythonhosted.org/setuptools/setuptools.html#new-and-changed-setup-keywords]
for specifying dependencies that need to be present in order for the setup.py
script to run. Internally, Setuptools uses easy_install to fulfill these
dependencies.

pip has no way to control how these dependencies are located. None of the
Package Index Options have an effect.

The solution is to configure a “system” or “personal” Distutils configuration
file [http://docs.python.org/2/install/index.html#distutils-configuration-files] to
manage the fulfillment.

For example, to have the dependency located at an alternate index, add this:

[easy_install]
index_url = https://my.index-mirror.com

To have the dependency located from a local directory and not crawl PyPI, add this:

[easy_install]
allow_hosts = ''
find_links = file:///path/to/local/archives

Options

	
-e, --editable <path/url>

	Install a project in editable mode (i.e. setuptools “develop mode”) from a local project path or a VCS url.

	
-r, --requirement <file>

	Install from the given requirements file. This option can be used multiple times.

	
-b, --build <dir>

	Directory to unpack packages into and build in. The default in a virtualenv is “<venv path>/build”. The default for global installs is “<OS temp dir>/pip_build_<username>”.

	
-t, --target <dir>

	Install packages into <dir>.

	
-d, --download <dir>

	Download packages into <dir> instead of installing them, regardless of what’s already installed.

	
--download-cache <dir>

	Cache downloaded packages in <dir>.

	
--src <dir>

	Directory to check out editable projects into. The default in a virtualenv is “<venv path>/src”. The default for global installs is “<current dir>/src”.

	
-U, --upgrade

	Upgrade all packages to the newest available version. This process is recursive regardless of whether a dependency is already satisfied.

	
--force-reinstall

	When upgrading, reinstall all packages even if they are already up-to-date.

	
-I, --ignore-installed

	Ignore the installed packages (reinstalling instead).

	
--no-deps

	Don’t install package dependencies.

	
--no-install

	DEPRECATED. Download and unpack all packages, but don’t actually install them.

	
--no-download

	DEPRECATED. Don’t download any packages, just install the ones already downloaded (completes an install run with –no-install).

	
--install-option <options>

	Extra arguments to be supplied to the setup.py install command (use like –install-option=”–install-scripts=/usr/local/bin”). Use multiple –install-option options to pass multiple options to setup.py install. If you are using an option with a directory path, be sure to use absolute path.

	
--global-option <options>

	Extra global options to be supplied to the setup.py call before the install command.

	
--user

	Install using the user scheme.

	
--egg

	Install packages as eggs, not ‘flat’, like pip normally does. This option is not about installing from eggs. (WARNING: Because this option overrides pip’s normal install logic, requirements files may not behave as expected.)

	
--root <dir>

	Install everything relative to this alternate root directory.

	
--compile

	Compile py files to pyc

	
--no-compile

	Do not compile py files to pyc

	
--no-use-wheel

	Do not Find and prefer wheel archives when searching indexes and find-links locations.

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
--no-clean

	Don’t clean up build directories.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple/).

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to –index-url.

	
--no-index

	Ignore package index (only looking at –find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that’s a directory, then look for archives in the directory listing.

	
--allow-external <package>

	Allow the installation of externally hosted files

	
--allow-all-external

	Allow the installation of all externally hosted files

	
--allow-unverified <package>

	Allow the installation of insecure and unverifiable files

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	Install SomePackage and it’s dependencies from PyPI [http://pypi.python.org/pypi/] using Requirement Specifiers

$ pip install SomePackage # latest version
$ pip install SomePackage==1.0.4 # specific version
$ pip install 'SomePackage>=1.0.4' # minimum version

	Install a list of requirements specified in a file. See the Requirements files.

$ pip install -r requirements.txt

	Upgrade an already installed SomePackage to the latest from PyPI.

$ pip install --upgrade SomePackage

	Install a local project in “editable” mode. See the section on Editable Installs.

$ pip install -e . # project in current directory
$ pip install -e path/to/project # project in another directory

	Install a project from VCS in “editable” mode. See the sections on VCS Support and Editable Installs.

$ pip install -e git+https://git.repo/some_pkg.git#egg=SomePackage # from git
$ pip install -e hg+https://hg.repo/some_pkg.git#egg=SomePackage # from mercurial
$ pip install -e svn+svn://svn.repo/some_pkg/trunk/#egg=SomePackage # from svn
$ pip install -e git+https://git.repo/some_pkg.git@feature#egg=SomePackage # from 'feature' branch
$ pip install -e git+https://git.repo/some_repo.git@egg=subdir&subdirectory=subdir_path # install a python package from a repo subdirectory

	Install a package with setuptools extras [http://packages.python.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies].

$ pip install SomePackage[PDF]
$ pip install SomePackage[PDF]==3.0
$ pip install -e .[PDF]==3.0 # editable project in current directory

	Install a particular source archive file.

$ pip install ./downloads/SomePackage-1.0.4.tar.gz
$ pip install http://my.package.repo/SomePackage-1.0.4.zip

	Install from alternative package repositories.

Install from a different index, and not PyPI [http://pypi.python.org/pypi/]

$ pip install --index-url http://my.package.repo/simple/ SomePackage

Search an additional index during install, in addition to PyPI [http://pypi.python.org/pypi/]

$ pip install --extra-index-url http://my.package.repo/simple SomePackage

Install from a local flat directory containing archives (and don’t scan indexes):

$ pip install --no-index --find-links=file:///local/dir/ SomePackage
$ pip install --no-index --find-links=/local/dir/ SomePackage
$ pip install --no-index --find-links=relative/dir/ SomePackage

	Find pre-release and development versions, in addition to stable versions. By default, pip only finds stable versions.

$ pip install --pre SomePackage

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip uninstall

Contents

	pip uninstall
	Usage

	Description

	Options

	Examples

Usage

pip uninstall [options] <package> ...
pip uninstall [options] -r <requirements file> ...

Description

Uninstall packages.

pip is able to uninstall most installed packages. Known exceptions are:

	Pure distutils packages installed with python setup.py install, which
leave behind no metadata to determine what files were installed.

	Script wrappers installed by python setup.py develop.

Options

	
-r, --requirement <file>

	Uninstall all the packages listed in the given requirements file. This option can be used multiple times.

	
-y, --yes

	Don’t ask for confirmation of uninstall deletions.

Examples

	Uninstall a package.

$ pip uninstall simplejson
Uninstalling simplejson:
 /home/me/env/lib/python2.7/site-packages/simplejson
 /home/me/env/lib/python2.7/site-packages/simplejson-2.2.1-py2.7.egg-info
Proceed (y/n)? y
 Successfully uninstalled simplejson

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip freeze

Contents

	pip freeze
	Usage

	Description

	Options

	Examples

Usage

pip freeze [options]

Description

Output installed packages in requirements format.

Options

	
-r, --requirement <file>

	Use the order in the given requirements file and it’s comments when generating output.

	
-f, --find-links <url>

	URL for finding packages, which will be added to the output.

	
-l, --local

	If in a virtualenv that has global access, do not output globally-installed packages.

Examples

	Generate output suitable for a requirements file.

$ pip freeze
Jinja2==2.6
Pygments==1.5
Sphinx==1.1.3
docutils==0.9.1

	Generate a requirements file and then install from it in another environment.

$ env1/bin/pip freeze > requirements.txt
$ env2/bin/pip install -r requirements.txt

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip list

Contents

	pip list
	Usage

	Description

	Options

	Examples

Usage

pip list [options]

Description

List installed packages, including editables.

Options

	
-o, --outdated

	List outdated packages (excluding editables)

	
-u, --uptodate

	List uptodate packages (excluding editables)

	
-e, --editable

	List editable projects.

	
-l, --local

	If in a virtualenv that has global access, do not list globally-installed packages.

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple/).

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to –index-url.

	
--no-index

	Ignore package index (only looking at –find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that’s a directory, then look for archives in the directory listing.

	
--allow-external <package>

	Allow the installation of externally hosted files

	
--allow-all-external

	Allow the installation of all externally hosted files

	
--allow-unverified <package>

	Allow the installation of insecure and unverifiable files

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	List installed packages.

$ pip list
Pygments (1.5)
docutils (0.9.1)
Sphinx (1.1.2)
Jinja2 (2.6)

	List outdated packages (excluding editables), and the latest version available

$ pip list --outdated
docutils (Current: 0.9.1 Latest: 0.10)
Sphinx (Current: 1.1.2 Latest: 1.1.3)

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip show

Contents

	pip show
	Usage

	Description

	Options

	Examples

Usage

pip show [options] <package> ...

Description

Show information about one or more installed packages.

Options

	
-f, --files

	Show the full list of installed files for each package.

Examples

	Show information about a package:

$ pip show sphinx

Name: Sphinx
Version: 1.1.3
Location: /my/env/lib/pythonx.x/site-packages
Requires: Pygments, Jinja2, docutils

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip search

Contents

	pip search
	Usage

	Description

	Options

	Examples

Usage

pip search [options] <query>

Description

Search for PyPI packages whose name or summary contains <query>.

Options

	
--index <url>

	Base URL of Python Package Index (default https://pypi.python.org/pypi)

Examples

	Search for “peppercorn”

$ pip search peppercorn
pepperedform - Helpers for using peppercorn with formprocess.
peppercorn - A library for converting a token stream into [...]

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

 	Reference Guide

pip wheel

Contents

	pip wheel
	Usage

	Description

	Options

	Examples

Usage

pip wheel [options] <requirement specifier> ...
pip wheel [options] -r <requirements file> ...
pip wheel [options] <vcs project url> ...
pip wheel [options] <local project path> ...
pip wheel [options] <archive url/path> ...

Description

Build Wheel archives for your requirements and dependencies.

Wheel is a built-package format, and offers the advantage of not recompiling your software during every install.
For more details, see the wheel docs: http://wheel.readthedocs.org/en/latest.

Requirements: setuptools>=0.8, and wheel.

‘pip wheel’ uses the bdist_wheel setuptools extension from the wheel package to build individual wheels.

Options

	
-w, --wheel-dir <dir>

	Build wheels into <dir>, where the default is ‘<cwd>/wheelhouse’.

	
--no-use-wheel

	Do not Find and prefer wheel archives when searching indexes and find-links locations.

	
--build-option <options>

	Extra arguments to be supplied to ‘setup.py bdist_wheel’.

	
-r, --requirement <file>

	Install from the given requirements file. This option can be used multiple times.

	
--download-cache <dir>

	Cache downloaded packages in <dir>.

	
--no-deps

	Don’t install package dependencies.

	
-b, --build <dir>

	Directory to unpack packages into and build in. The default in a virtualenv is “<venv path>/build”. The default for global installs is “<OS temp dir>/pip_build_<username>”.

	
--global-option <options>

	Extra global options to be supplied to the setup.py call before the ‘bdist_wheel’ command.

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
--no-clean

	Don’t clean up build directories.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple/).

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to –index-url.

	
--no-index

	Ignore package index (only looking at –find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that’s a directory, then look for archives in the directory listing.

	
--allow-external <package>

	Allow the installation of externally hosted files

	
--allow-all-external

	Allow the installation of all externally hosted files

	
--allow-unverified <package>

	Allow the installation of insecure and unverifiable files

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	Build wheels for a requirement (and all its dependencies), and then install

$ pip wheel --wheel-dir=/tmp/wheelhouse SomePackage
$ pip install --no-index --find-links=/tmp/wheelhouse SomePackage

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	pip 1.5.2 documentation

Development

Pull Requests

Submit Pull Requests against the develop branch.

Provide a good description of what you’re doing and why.

Provide tests that cover your changes and try to run the tests locally first.

Automated Testing

All pull requests and merges to ‘develop’ branch are tested in Travis [https://travis-ci.org/]
based on our .travis.yml file [https://github.com/pypa/pip/blob/develop/.travis.yml].

Usually, a link to your specific travis build appears in pull requests, but if not,
you can find it on our travis pull requests page [https://travis-ci.org/pypa/pip/pull_requests]

The only way to trigger Travis to run again for a pull request, is to submit another change to the pull branch.

We also have Jenkins CI that runs regularly for certain python versions on windows and centos.

Running tests

OS Requirements: subversion, bazaar, git, and mercurial.

Python Requirements: tox or pytest, virtualenv, scripttest, and mock

Ways to run the tests locally:

$ tox -e py33 # The preferred way to run the tests, can use pyNN to
 # run for a particular version or leave off the -e to
 # run for all versions.
$ python setup.py test # Using the setuptools test plugin
$ py.test # Using py.test directly
$ tox # Using tox against pip's tox.ini

Getting Involved

The pip project welcomes help in the following ways:

	Making Pull Requests for code, tests, or docs.

	Commenting on open issues and pull requests.

	Helping to answer questions on the mailing list.

If you want to become an official maintainer, start by helping out.

Later, when you think you’re ready, get in touch with one of the maintainers,
and they will initiate a vote.

Release Process

This process includes virtualenv, since pip releases necessitate a virtualenv release.

As an example, the instructions assume we’re releasing pip-1.4, and virtualenv-1.10.

	Upgrade setuptools, if needed:

	Upgrade setuptools in virtualenv/develop using the Refresh virtualenv process.

	Create a pull request against pip/develop with a modified .travis.yml file that installs virtualenv from virtualenv/develop, to confirm the travis builds are still passing.

	Create Release branches:

	Create pip/release-1.4 branch.

	In pip/develop, change pip.version to ‘1.5.dev1’.

	Create virtualenv/release-1.10 branch.

	In virtualenv/develop, change virtualenv.version to ‘1.11.dev1’.

	Prepare “rcX”:

	In pip/release-1.4, change pip.version to ‘1.4rcX’, and tag with ‘1.4rcX’.

	Build a pip sdist from pip/release-1.4, and build it into virtualenv/release-1.10 using the Refresh virtualenv process.

	In virtualenv/release-1.10, change virtualenv.version to ‘1.10rcX’, and tag with ‘1.10rcX’.

	Announce pip-1.4rcX and virtualenv-1.10rcX with the RC Install Instructions and elicit feedback.

	Apply fixes to ‘rcX’:

	Apply fixes to pip/release-1.4 and virtualenv/release-1.10

	Periodically merge fixes to pip/develop and virtualenv/develop

	Repeat #4 thru #6 if needed.

	Final Release:

	In pip/release-1.4, change pip.version to ‘1.4’, and tag with ‘1.4’.

	Merge pip/release-1.4 to pip/master.

	Build a pip sdist from pip/release-1.4, and load it into virtualenv/release-1.10 using the Refresh virtualenv process.

	Merge vitualenv/release-1.10 to virtualenv/develop.

	In virtualenv/release-1.10, change virtualenv.version to ‘1.10’, and tag with ‘1.10’.

	Merge virtualenv/release-1.10 to virtualenv/master

	Build and upload pip and virtualenv sdists to PyPI.

Refresh virtualenv

	Update the embedded versions of pip and setuptools in virtualenv_support.

	Run bin/rebuild-script.py to rebuild virtualenv based on the latest versions.

RC Install Instructions

$ curl -L -O https://github.com/pypa/virtualenv/archive/1.10rc1.tar.gz
$ echo "<md5sum value> 1.10rc1.tar.gz" | md5sum -c
1.10rc1.tar.gz: OK
$ tar zxf 1.10rc1.tar.gz
$ python virtualenv-1.10rc1/virtualenv.py myVE
$ myVE/bin/pip install SomePackage

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 previous

 	pip 1.5.2 documentation

Release Notes

1.5.2 (2014-01-26)

	Upgraded the vendored pkg_resources and _markerlib to setuptools 2.1.

	Fixed an error that prevented accessing PyPI when pyopenssl, ndg-httpsclient,
and pyasn1 are installed

	Fixed an issue that caused trailing comments to be incorrectly included as
part of the URL in a requirements file

1.5.1 (2014-01-20)

	pip now only requires setuptools (any setuptools, not a certain version) when
installing distributions from src (i.e. not from wheel). (Pull #1434).

	get-pip.py now installs setuptools, when it’s not already installed (Pull
#1475)

	Don’t decode downloaded files that have a Content-Encoding header. (Pull
#1435)

	Fix to correctly parse wheel filenames with single digit versions. (Pull
#1445)

	If –allow-unverified is used assume it also means –allow-external. (Pull
#1457)

1.5 (2014-01-01)

	BACKWARD INCOMPATIBLE pip no longer supports the --use-mirrors,
-M, and --mirrors flags. The mirroring support has been removed. In
order to use a mirror specify it as the primary index with -i or
--index-url, or as an additional index with --extra-index-url. (Pull #1098, CVE-2013-5123)

	BACKWARD INCOMPATIBLE pip no longer will scrape insecure external urls by
default nor will it install externally hosted files by default. Users may opt
into installing externally hosted or insecure files or urls using
--allow-external PROJECT and --allow-unverified PROJECT. (Pull #1055)

	BACKWARD INCOMPATIBLE pip no longer respects dependency links by default.
Users may opt into respecting them again using --process-dependency-links.

	DEPRECATION pip install --no-install and pip install
--no-download are now formally deprecated. See Issue #906 for discussion on
possible alternatives, or lack thereof, in future releases.

	DEPRECATION pip zip and pip unzip are now formally deprecated.

	pip will now install Mac OSX platform wheels from PyPI. (Pull #1278)

	pip now generates the appropriate platform-specific console scripts when
installing wheels. (Pull #1251)

	Pip now confirms a wheel is supported when installing directly from a path or
url. (Pull #1315)

	Fixed #1097, --ignore-installed now behaves again as designed, after it was
unintentionally broke in v0.8.3 when fixing Issue #14 (Pull #1352).

	Fixed a bug where global scripts were being removed when uninstalling –user
installed packages (Pull #1353).

	Fixed #1163, –user wasn’t being respected when installing scripts from wheels (Pull #1176).

	Fixed #1150, we now assume ‘_’ means ‘-‘ in versions from wheel filenames (Pull #1158).

	Fixed #219, error when using –log with a failed install (Pull #1205).

	Fixed #1131, logging was buffered and choppy in Python 3.

	Fixed #70, –timeout was being ignored (Pull #1202).

	Fixed #772, error when setting PIP_EXISTS_ACTION (Pull #1201).

	Added colors to the logging output in order to draw attention to important
warnings and errors. (Pull #1109)

	Added warnings when using an insecure index, find-link, or dependency link. (Pull #1121)

	Added support for installing packages from a subdirectory using the subdirectory
editable option. (Pull #1082)

	Fixed #1192. “TypeError: bad operand type for unary” in some cases when
installing wheels using –find-links (Pull #1218).

	Fixed #1133 and #317. Archive contents are now written based on system
defaults and umask (i.e. permissions are not preserved), except that regular
files with any execute permissions have the equivalent of “chmod +x” applied
after being written (Pull #1146).

	PreviousBuildDirError now returns a non-zero exit code and prevents the
previous build dir from being cleaned in all cases (Pull #1162).

	Renamed –allow-insecure to –allow-unverified, however the old name will
continue to work for a period of time (Pull #1257).

	Fixed #1006, error when installing local projects with symlinks in
Python 3. (Pull #1311)

	The previously hidden --log-file otion, is now shown as a general option.
(Pull #1316)

1.4.1 (2013-08-07)

	New Signing Key Release 1.4.1 is using a different key than normal with
fingerprint: 7C6B 7C5D 5E2B 6356 A926 F04F 6E3C BCE9 3372 DCFA

	Fixed issues with installing from pybundle files (Pull #1116).

	Fixed error when sysconfig module throws an exception (Pull #1095).

	Don’t ignore already installed pre-releases (Pull #1076).

	Fixes related to upgrading setuptools (Pull #1092).

	Fixes so that –download works with wheel archives (Pull #1113).

	Fixes related to recognizing and cleaning global build dirs (Pull #1080).

1.4 (2013-07-23)

	BACKWARD INCOMPATIBLE pip now only installs stable versions by default,
and offers a new --pre option to also find pre-release and development
versions. (Pull #834)

	BACKWARD INCOMPATIBLE Dropped support for Python 2.5. The minimum
supported Python version for pip 1.4 is Python 2.6.

	Added support for installing and building wheel archives.
Thanks Daniel Holth, Marcus Smith, Paul Moore, and Michele Lacchia
(Pull #845)

	Applied security patch to pip’s ssl support related to certificate DNS
wildcard matching (http://bugs.python.org/issue17980).

	To satisfy pip’s setuptools requirement, pip now recommends setuptools>=0.8,
not distribute. setuptools and distribute are now merged into one project
called ‘setuptools’. (Pull #1003)

	pip will now warn when installing a file that is either hosted externally to
the index or cannot be verified with a hash. In the future pip will default
to not installing them and will require the flags –allow-external NAME, and
–allow-insecure NAME respectively. (Pull #985)

	If an already-downloaded or cached file has a bad hash, re-download it rather
than erroring out. (Issue #963).

	pip bundle and support for installing from pybundle files is now
considered deprecated and will be removed in pip v1.5.

	Fixed a number of issues (#413, #709, #634, #602, and #939) related to
cleaning up and not reusing build directories. (Pull #865, #948)

	Added a User Agent so that pip is identifiable in logs. (Pull #901)

	Added ssl and –user support to get-pip.py. Thanks Gabriel de Perthuis.
(Pull #895)

	Fixed the proxy support, which was broken in pip 1.3.x (Pull #840)

	Fixed issue #32 - pip fails when server does not send content-type header.
Thanks Hugo Lopes Tavares and Kelsey Hightower (Pull #872).

	“Vendorized” distlib as pip.vendor.distlib (https://distlib.readthedocs.org/).

	Fixed git VCS backend with git 1.8.3. (Pull #967)

1.3.1 (2013-03-08)

	Fixed a major backward incompatible change of parsing URLs to externally
hosted packages that got accidentily included in 1.3.

1.3 (2013-03-07)

	SSL Cert Verification; Make https the default for PyPI access.
Thanks James Cleveland, Giovanni Bajo, Marcus Smith and many others (Pull #791, CVE-2013-1629).

	Added “pip list” for listing installed packages and the latest version
available. Thanks Rafael Caricio, Miguel Araujo, Dmitry Gladkov (Pull #752)

	Fixed security issues with pip’s use of temp build directories.
Thanks David (d1b) and Thomas Guttler. (Pull #780, CVE-2013-1888)

	Improvements to sphinx docs and cli help. (Pull #773)

	Fixed issue #707, dealing with OS X temp dir handling, which was causing
global NumPy installs to fail. (Pull #768)

	Split help output into general vs command-specific option groups.
Thanks Georgi Valkov. (Pull #744; Pull #721 contains preceding refactor)

	Fixed dependency resolution when installing from archives with uppercase
project names. (Pull #724)

	Fixed problem where re-installs always occurred when using file:// find-links.
(Pulls #683/#702)

	“pip install -v” now shows the full download url, not just the archive name.
Thanks Marc Abramowitz (Pull #687)

	Fix to prevent unnecessary PyPI redirects. Thanks Alex Gronholm (Pull #695)

	Fixed issue #670 - install failure under Python 3 when the same version
of a package is found under 2 different URLs. Thanks Paul Moore (Pull #671)

	Fix git submodule recursive updates. Thanks Roey Berman. (Pulls #674)

	Explicitly ignore rel=’download’ links while looking for html pages.
Thanks Maxime R. (Pull #677)

	–user/–upgrade install options now work together. Thanks ‘eevee’ for
discovering the problem. (Pull #705)

	Added check in install --download to prevent re-downloading if the target
file already exists. Thanks Andrey Bulgakov. (Pull #669)

	Added support for bare paths (including relative paths) as argument to
–find-links. Thanks Paul Moore for draft patch.

	Added support for –no-index in requirements files.

	Added “pip show” command to get information about an installed package.
Fixes #131. Thanks Kelsey Hightower and Rafael Caricio.

	Added –root option for “pip install” to specify root directory. Behaves
like the same option in distutils but also plays nice with pip’s egg-info.
Thanks Przemek Wrzos. (Issue #253 / Pull #693)

1.2.1 (2012-09-06)

	Fixed a regression introduced in 1.2 about raising an exception when
not finding any files to uninstall in the current environment. Thanks for
the fix, Marcus Smith.

1.2 (2012-09-01)

	Dropped support for Python 2.4 The minimum supported Python version is
now Python 2.5.

	Fixed issue #605 - pypi mirror support broken on some DNS responses. Thanks
philwhin.

	Fixed issue #355 - pip uninstall removes files it didn’t install. Thanks
pjdelport.

	Fixed issues #493, #494, #440, and #573 related to improving support for the
user installation scheme. Thanks Marcus Smith.

	Write failure log to temp file if default location is not writable. Thanks
andreigc.

	Pull in submodules for git editable checkouts. Fixes #289 and #421. Thanks
Hsiaoming Yang and Markus Hametner.

	Use a temporary directory as the default build location outside of a
virtualenv. Fixes issues #339 and #381. Thanks Ben Rosser.

	Added support for specifying extras with local editables. Thanks Nick
Stenning.

	Added --egg flag to request egg-style rather than flat installation. Refs
issue #3. Thanks Kamal Bin Mustafa.

	Fixed issue #510 - prevent e.g. gmpy2-2.0.tar.gz from matching a request
to pip install gmpy; sdist filename must begin with full project name
followed by a dash. Thanks casevh for the report.

	Fixed issue #504 - allow package URLS to have querystrings. Thanks W.
Trevor King.

	Fixed issue #58 - pip freeze now falls back to non-editable format rather
than blowing up if it can’t determine the origin repository of an editable.
Thanks Rory McCann.

	Added a __main__.py file to enable python -m pip on Python versions
that support it. Thanks Alexey Luchko.

	Fixed issue #487 - upgrade from VCS url of project that does exist on
index. Thanks Andrew Knapp for the report.

	Fixed issue #486 - fix upgrade from VCS url of project with no distribution
on index. Thanks Andrew Knapp for the report.

	Fixed issue #427 - clearer error message on a malformed VCS url. Thanks
Thomas Fenzl.

	Added support for using any of the built in guaranteed algorithms in
hashlib as a checksum hash.

	Fixed issue #321 - Raise an exception if current working directory can’t be
found or accessed.

	Fixed issue #82 - Removed special casing of the user directory and use the
Python default instead.

	Fixed #436 - Only warn about version conflicts if there is actually one.
This re-enables using ==dev in requirements files.

	Moved tests to be run on Travis CI: http://travis-ci.org/pypa/pip

	Added a better help formatter.

1.1 (2012-02-16)

	Fixed issue #326 - don’t crash when a package’s setup.py emits UTF-8 and
then fails. Thanks Marc Abramowitz.

	Added --target option for installing directly to arbitrary directory.
Thanks Stavros Korokithakis.

	Added support for authentication with Subversion repositories. Thanks
Qiangning Hong.

	Fixed issue #315 - --download now downloads dependencies as well.
Thanks Qiangning Hong.

	Errors from subprocesses will display the current working directory.
Thanks Antti Kaihola.

	Fixed issue #369 - compatibility with Subversion 1.7. Thanks Qiangning
Hong. Note that setuptools remains incompatible with Subversion 1.7; to
get the benefits of pip’s support you must use Distribute rather than
setuptools.

	Fixed issue #57 - ignore py2app-generated OS X mpkg zip files in finder.
Thanks Rene Dudfield.

	Fixed issue #182 - log to ~/Library/Logs/ by default on OS X framework
installs. Thanks Dan Callahan for report and patch.

	Fixed issue #310 - understand version tags without minor version (“py3”)
in sdist filenames. Thanks Stuart Andrews for report and Olivier Girardot for
patch.

	Fixed issue #7 - Pip now supports optionally installing setuptools
“extras” dependencies; e.g. “pip install Paste[openid]”. Thanks Matt Maker
and Olivier Girardot.

	Fixed issue #391 - freeze no longer borks on requirements files with
–index-url or –find-links. Thanks Herbert Pfennig.

	Fixed issue #288 - handle symlinks properly. Thanks lebedov for the patch.

	Fixed issue #49 - pip install -U no longer reinstalls the same versions of
packages. Thanks iguananaut for the pull request.

	Removed -E/--environment option and PIP_RESPECT_VIRTUALENV;
both use a restart-in-venv mechanism that’s broken, and neither one is
useful since every virtualenv now has pip inside it. Replace pip -E
path/to/venv install Foo with virtualenv path/to/venv &&
path/to/venv/pip install Foo.

	Fixed issue #366 - pip throws IndexError when it calls scraped_rel_links

	Fixed issue #22 - pip search should set and return a userful shell status code

	Fixed issue #351 and #365 - added global --exists-action command line
option to easier script file exists conflicts, e.g. from editable
requirements from VCS that have a changed repo URL.

1.0.2 (2011-07-16)

	Fixed docs issues.

	Fixed issue #295 - Reinstall a package when using the install -I option

	Fixed issue #283 - Finds a Git tag pointing to same commit as origin/master

	Fixed issue #279 - Use absolute path for path to docs in setup.py

	Fixed issue #314 - Correctly handle exceptions on Python3.

	Fixed issue #320 - Correctly parse --editable lines in requirements files

1.0.1 (2011-04-30)

	Start to use git-flow.

	Fixed issue #274 - find_command should not raise AttributeError

	Fixed issue #273 - respect Content-Disposition header. Thanks Bradley Ayers.

	Fixed issue #233 - pathext handling on Windows.

	Fixed issue #252 - svn+svn protocol.

	Fixed issue #44 - multiple CLI searches.

	Fixed issue #266 - current working directory when running setup.py clean.

1.0 (2011-04-04)

	Added Python 3 support! Huge thanks to Vinay Sajip, Vitaly Babiy, Kelsey
Hightower, and Alex Gronholm, among others.

	Download progress only shown on a real TTY. Thanks Alex Morega.

	Fixed finding of VCS binaries to not be fooled by same-named directories.
Thanks Alex Morega.

	Fixed uninstall of packages from system Python for users of Debian/Ubuntu
python-setuptools package (workaround until fixed in Debian and Ubuntu).

	Added get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py]
installer. Simply download and execute it, using the Python interpreter of
your choice:

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ python get-pip.py

This may have to be run as root.

Note

Make sure you have distribute [http://pypi.python.org/pypi/distribute]
installed before using the installer!

0.8.3

	Moved main repository to Github: https://github.com/pypa/pip

	Transferred primary maintenance from Ian to Jannis Leidel, Carl Meyer, Brian Rosner

	Fixed issue #14 - No uninstall-on-upgrade with URL package. Thanks Oliver Tonnhofer

	Fixed issue #163 - Egg name not properly resolved. Thanks Igor Sobreira

	Fixed issue #178 - Non-alphabetical installation of requirements. Thanks Igor Sobreira

	Fixed issue #199 - Documentation mentions –index instead of –index-url. Thanks Kelsey Hightower

	Fixed issue #204 - rmtree undefined in mercurial.py. Thanks Kelsey Hightower

	Fixed bug in Git vcs backend that would break during reinstallation.

	Fixed bug in Mercurial vcs backend related to pip freeze and branch/tag resolution.

	Fixed bug in version string parsing related to the suffix “-dev”.

0.8.2

	Avoid redundant unpacking of bundles (from pwaller)

	Fixed issue #32, #150, #161 - Fixed checking out the correct
tag/branch/commit when updating an editable Git requirement.

	Fixed issue #49 - Added ability to install version control requirements
without making them editable, e.g.:

pip install git+https://github.com/pypa/pip/

	Fixed issue #175 - Correctly locate build and source directory on Mac OS X.

	Added git+https:// scheme to Git VCS backend.

0.8.1

	Added global –user flag as shortcut for –install-option=”–user”. From
Ronny Pfannschmidt.

	Added support for PyPI mirrors [http://pypi.python.org/mirrors] as
defined in PEP 381 [http://www.python.org/dev/peps/pep-0381/], from
Jannis Leidel.

	Fixed issue #138 - Git revisions ignored. Thanks John-Scott Atlakson.

	Fixed issue #95 - Initial editable install of github package from a tag fails. Thanks John-Scott Atlakson.

	Fixed issue #107 - Can’t install if a directory in cwd has the same name as the package you’re installing.

	Fixed issue #39 - –install-option=”–prefix=~/.local” ignored with -e.
Thanks Ronny Pfannschmidt and Wil Tan.

0.8

	Track which build/ directories pip creates, never remove directories
it doesn’t create. From Hugo Lopes Tavares.

	Pip now accepts file:// index URLs. Thanks Dave Abrahams.

	Various cleanup to make test-running more consistent and less fragile.
Thanks Dave Abrahams.

	Real Windows support (with passing tests). Thanks Dave Abrahams.

	pip-2.7 etc. scripts are created (Python-version specific scripts)

	contrib/build-standalone script creates a runnable .zip form of
pip, from Jannis Leidel

	Editable git repos are updated when reinstalled

	Fix problem with --editable when multiple .egg-info/ directories
are found.

	A number of VCS-related fixes for pip freeze, from Hugo Lopes Tavares.

	Significant test framework changes, from Hugo Lopes Tavares.

0.7.2

	Set zip_safe=False to avoid problems some people are encountering where
pip is installed as a zip file.

0.7.1

	Fixed opening of logfile with no directory name. Thanks Alexandre Conrad.

	Temporary files are consistently cleaned up, especially after
installing bundles, also from Alex Conrad.

	Tests now require at least ScriptTest 1.0.3.

0.7

	Fixed uninstallation on Windows

	Added pip search command.

	Tab-complete names of installed distributions for pip uninstall.

	Support tab-completion when there is a global-option before the
subcommand.

	Install header files in standard (scheme-default) location when installing
outside a virtualenv. Install them to a slightly more consistent
non-standard location inside a virtualenv (since the standard location is
a non-writable symlink to the global location).

	pip now logs to a central location by default (instead of creating
pip-log.txt all over the place) and constantly overwrites the
file in question. On Unix and Mac OS X this is '$HOME/.pip/pip.log'
and on Windows it’s '%HOME%\\pip\\pip.log'. You are still able to
override this location with the $PIP_LOG_FILE environment variable.
For a complete (appended) logfile use the separate '--log' command line
option.

	Fixed an issue with Git that left an editable packge as a checkout of a
remote branch, even if the default behaviour would have been fine, too.

	Fixed installing from a Git tag with older versions of Git.

	Expand “~” in logfile and download cache paths.

	Speed up installing from Mercurial repositories by cloning without
updating the working copy multiple times.

	Fixed installing directly from directories (e.g.
pip install path/to/dir/).

	Fixed installing editable packages with svn+ssh URLs.

	Don’t print unwanted debug information when running the freeze command.

	Create log file directory automatically. Thanks Alexandre Conrad.

	Make test suite easier to run successfully. Thanks Dave Abrahams.

	Fixed “pip install .” and “pip install ..”; better error for directory
without setup.py. Thanks Alexandre Conrad.

	Support Debian/Ubuntu “dist-packages” in zip command. Thanks duckx.

	Fix relative –src folder. Thanks Simon Cross.

	Handle missing VCS with an error message. Thanks Alexandre Conrad.

	Added –no-download option to install; pairs with –no-install to separate
download and installation into two steps. Thanks Simon Cross.

	Fix uninstalling from requirements file containing -f, -i, or
–extra-index-url.

	Leftover build directories are now removed. Thanks Alexandre Conrad.

0.6.3

	Fixed import error on Windows with regard to the backwards compatibility
package

0.6.2

	Fixed uninstall when /tmp is on a different filesystem.

	Fixed uninstallation of distributions with namespace packages.

0.6.1

	Added support for the https and http-static schemes to the
Mercurial and ftp scheme to the Bazaar backend.

	Fixed uninstallation of scripts installed with easy_install.

	Fixed an issue in the package finder that could result in an
infinite loop while looking for links.

	Fixed issue with pip bundle and local files (which weren’t being
copied into the bundle), from Whit Morriss.

0.6

	Add pip uninstall and uninstall-before upgrade (from Carl
Meyer).

	Extended configurability with config files and environment variables.

	Allow packages to be upgraded, e.g., pip install Package==0.1
then pip install Package==0.2.

	Allow installing/upgrading to Package==dev (fix “Source version does not
match target version” errors).

	Added command and option completion for bash and zsh.

	Extended integration with virtualenv by providing an option to
automatically use an active virtualenv and an option to warn if no active
virtualenv is found.

	Fixed a bug with pip install –download and editable packages, where
directories were being set with 0000 permissions, now defaults to 755.

	Fixed uninstallation of easy_installed console_scripts.

	Fixed uninstallation on Mac OS X Framework layout installs

	Fixed bug preventing uninstall of editables with source outside venv.

	Creates download cache directory if not existing.

0.5.1

	Fixed a couple little bugs, with git and with extensions.

0.5

	Added ability to override the default log file name (pip-log.txt)
with the environmental variable $PIP_LOG_FILE.

	Made the freeze command print installed packages to stdout instead of
writing them to a file. Use simple redirection (e.g.
pip freeze > stable-req.txt) to get a file with requirements.

	Fixed problem with freezing editable packages from a Git repository.

	Added support for base URLs using <base href='...'> when parsing
HTML pages.

	Fixed installing of non-editable packages from version control systems.

	Fixed issue with Bazaar’s bzr+ssh scheme.

	Added –download-dir option to the install command to retrieve package
archives. If given an editable package it will create an archive of it.

	Added ability to pass local file and directory paths to --find-links,
e.g. --find-links=file:///path/to/my/private/archive

	Reduced the amount of console log messages when fetching a page to find a
distribution was problematic. The full messages can be found in pip-log.txt.

	Added --no-deps option to install ignore package dependencies

	Added --no-index option to ignore the package index (PyPI) temporarily

	Fixed installing editable packages from Git branches.

	Fixes freezing of editable packages from Mercurial repositories.

	Fixed handling read-only attributes of build files, e.g. of Subversion and
Bazaar on Windows.

	When downloading a file from a redirect, use the redirected
location’s extension to guess the compression (happens specifically
when redirecting to a bitbucket.org tip.gz file).

	Editable freeze URLs now always use revision hash/id rather than tip or
branch names which could move.

	Fixed comparison of repo URLs so incidental differences such as
presence/absence of final slashes or quoted/unquoted special
characters don’t trigger “ignore/switch/wipe/backup” choice.

	Fixed handling of attempt to checkout editable install to a
non-empty, non-repo directory.

0.4

	Make -e work better with local hg repositories

	Construct PyPI URLs the exact way easy_install constructs URLs (you
might notice this if you use a custom index that is
slash-sensitive).

	Improvements on Windows (from Ionel Maries Cristian [http://ionelmc.wordpress.com/]).

	Fixed problem with not being able to install private git repositories.

	Make pip zip zip all its arguments, not just the first.

	Fix some filename issues on Windows.

	Allow the -i and --extra-index-url options in requirements
files.

	Fix the way bundle components are unpacked and moved around, to make
bundles work.

	Adds -s option to allow the access to the global site-packages if a
virtualenv is to be created.

	Fixed support for Subversion 1.6.

0.3.1

	Improved virtualenv restart and various path/cleanup problems on win32.

	Fixed a regression with installing from svn repositories (when not
using -e).

	Fixes when installing editable packages that put their source in a
subdirectory (like src/).

	Improve pip -h

0.3

	Added support for editable packages created from Git, Mercurial and Bazaar
repositories and ability to freeze them. Refactored support for version
control systems.

	Do not use sys.exit() from inside the code, instead use a
return. This will make it easier to invoke programmatically.

	Put the install record in Package.egg-info/installed-files.txt
(previously they went in
site-packages/install-record-Package.txt).

	Fix a problem with pip freeze not including -e svn+ when an
svn structure is peculiar.

	Allow pip -E to work with a virtualenv that uses a different
version of Python than the parent environment.

	Fixed Win32 virtualenv (-E) option.

	Search the links passed in with -f for packages.

	Detect zip files, even when the file doesn’t have a .zip
extension and it is served with the wrong Content-Type.

	Installing editable from existing source now works, like pip
install -e some/path/ will install the package in some/path/.
Most importantly, anything that package requires will also be
installed by pip.

	Add a --path option to pip un/zip, so you can avoid zipping
files that are outside of where you expect.

	Add --simulate option to pip zip.

0.2.1

	Fixed small problem that prevented using pip.py without actually
installing pip.

	Fixed --upgrade, which would download and appear to install
upgraded packages, but actually just reinstall the existing package.

	Fixed Windows problem with putting the install record in the right
place, and generating the pip script with Setuptools.

	Download links that include embedded spaces or other unsafe
characters (those characters get %-encoded).

	Fixed use of URLs in requirement files, and problems with some blank
lines.

	Turn some tar file errors into warnings.

0.2

	Renamed to pip, and to install you now do pip install
PACKAGE

	Added command pip zip PACKAGE and pip unzip PACKAGE. This
is particularly intended for Google App Engine to manage libraries
to stay under the 1000-file limit.

	Some fixes to bundles, especially editable packages and when
creating a bundle using unnamed packages (like just an svn
repository without #egg=Package).

0.1.4

	Added an option --install-option to pass options to pass
arguments to setup.py install

	.svn/ directories are no longer included in bundles, as these
directories are specific to a version of svn – if you build a
bundle on a system with svn 1.5, you can’t use the checkout on a
system with svn 1.4. Instead a file svn-checkout.txt is
included that notes the original location and revision, and the
command you can use to turn it back into an svn checkout. (Probably
unpacking the bundle should, maybe optionally, recreate this
information – but that is not currently implemented, and it would
require network access.)

	Avoid ambiguities over project name case, where for instance
MyPackage and mypackage would be considered different packages.
This in particular caused problems on Macs, where MyPackage/ and
mypackage/ are the same directory.

	Added support for an environmental variable
$PIP_DOWNLOAD_CACHE which will cache package downloads, so
future installations won’t require large downloads. Network access
is still required, but just some downloads will be avoided when
using this.

0.1.3

	Always use svn checkout (not export) so that
tag_svn_revision settings give the revision of the package.

	Don’t update checkouts that came from .pybundle files.

0.1.2

	Improve error text when there are errors fetching HTML pages when
seeking packages.

	Improve bundles: include empty directories, make them work with
editable packages.

	If you use -E env and the environment env/ doesn’t exist, a
new virtual environment will be created.

	Fix dependency_links for finding packages.

0.1.1

	Fixed a NameError exception when running pip outside of a
virtualenv environment.

	Added HTTP proxy support (from Prabhu Ramachandran)

	Fixed use of hashlib.md5 on python2.5+ (also from Prabhu
Ramachandran)

0.1

	Initial release

 Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

configuration.html

 Navigation

 		pip 1.5.2 documentation »

Configuration

This content is now covered in the User Guide

 © Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

_static/up.png

cookbook.html

 Navigation

 		pip 1.5.2 documentation »

Cookbook

This content is now covered in the User Guide

 © Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

_static/down.png

distribute_setuptools.html

 Navigation

 		pip 1.5.2 documentation »

“ImportError: No module named setuptools”

Although using pip install --upgrade setuptools to upgrade from distribute
to setuptools works in isolation, it’s possible to get “ImportError: No module
named setuptools” when using pip<1.4 to upgrade a package that depends on
setuptools or distribute.

e.g. when running a command like this: pip install –upgrade pyramid

Solution

To prevent the problem in new environments (that aren’t broken yet):

		Option 1:

		First run pip install -U setuptools,

		Then run the command to upgrade your package (e.g. pip install –upgrade pyramid)

		Option 2:

		Upgrade pip using get-pip

		Then run the command to upgrade your package (e.g. pip install –upgrade pyramid)

To fix the problem once it’s occurred, you’ll need to manually install the new
setuptools, then rerun the upgrade that failed.

		Download ez_setup.py (https://bitbucket.org/pypa/setuptools/downloads/ez_setup.py)

		Run python ez_setup.py

		Then rerun your upgrade (e.g. pip install –upgrade pyramid)

Cause

distribute-0.7.3 is just an empty wrapper that only serves to require the new
setuptools (setuptools>=0.7) so that it will be installed. (If you don’t know
yet, the “new setuptools” is a merge of distribute and setuptools back into one
project).

distribute-0.7.3 does its job well, when the upgrade is done in isolation.
E.g. if you’re currently on distribute-0.6.X, then running pip install -U
setuptools works fine to upgrade you to setuptools>=0.7.

The problem occurs when:

		you are currently using an older distribute (i.e. 0.6.X)

		and you try to use pip to upgrade a package that depends on setuptools or
distribute.

As part of the upgrade process, pip builds an install list that ends up
including distribute-0.7.3 and setuptools>=0.7 , but they can end up being
separated by other dependencies in the list, so what can happen is this:

		pip uninstalls the existing distribute

		pip installs distribute-0.7.3 (which has no importable setuptools, that pip
needs internally to function)

		pip moves on to install another dependency (before setuptools>=0.7) and is
unable to proceed without the setuptools package

Note that pip v1.4 has fixes to prevent this. distribute-0.7.3 (or
setuptools>=0.7) by themselves cannot prevent this kind of problem.

 © Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

logic.html

 Navigation

 		pip 1.5.2 documentation »

Internal Details

This content is now covered in the Reference Guide

 © Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

usage.html

 Navigation

 		pip 1.5.2 documentation »

Usage

The “Usage” section is now covered in the Reference Guide

 © Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

_static/minus.png

search.html

 Navigation

 		pip 1.5.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2014, PyPA.
 Last updated on Jun 18, 2015.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/comment.png

_static/comment-bright.png

