

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/pinax/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/pinax/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 Each of these will eventually link to a separate page for each app with:

	Description

	Maturity rating

	What starter projects use it

	What starter projects particularly showcase it

	How to add it to a project

List of Apps

Apps that need to be assessed and triaged:

django-user-accounts [https://github.com/pinax/django-user-accounts]

django-user-accounts provides a Django project with a very extensible infrastructure for dealing with user accounts.

django-mailer [https://github.com/pinax/django-mailer]

django-mailer is a reusable Django app for queuing the sending of email.

django-waitinglist [https://github.com/pinax/django-waitinglist]

django-waitinglist is a Django waiting list app for running a private beta with cohorts support.

pinax-points [https://github.com/pinax/pinax-points]

pinax-points is a points, positions, and levels app for Django.

pinax-points, formerly agon, provides the ability to track points on arbitrary objects in your system. The common case being user instances. It can additionally keep track of positions for these objects to produce leaderboards.

This code has mostly been pulled out of typewar and made slightly more generic to work well.

pinax-referrals [https://github.com/pinax/pinax-referrals]

pinax-referrals provides a Django site with referrals functionality.

pinax-ratings [https://github.com/pinax/pinax-ratings]

pinax-ratings is a ratings app for Django.

pinax-testimonials [https://github.com/pinax/pinax-testimonials]

pinax-testimonials is a testimonials app for Django.

pinax-blog [https://github.com/pinax/pinax-blog]

pinax-blog is a blog app for Django.

pinax-teams [https://github.com/pinax/pinax-teams]

pinax-teams is an app for Django sites that supports open, by invitation, and by application teams.

django-stripe-payments [https://github.com/pinax/django-stripe-payments]

django-stripe-payments is a payments Django app for Stripe.

This app allows you to process one off charges as well as signup users for recurring subscriptions managed by Stripe.

django-announcements [https://github.com/pinax/django-announcements]

django-announcements is a site-wide announcement reusable app for Django.

Some sites need the ability to broadcast an announcement to all of their users. django-announcements was created precisely for this reason. How you present the announcement is up to you as the site developer. When working with announcements that are presented on the website one feature is that they are only viewed once. A session variable will hold which announcements a user has viewed and exclude that from their display. Announcements supports two different types of filtering of announcements:

site-wide (this can be presented to anonymous users)

non site-wide (these can be used a strictly a mailing if so desired)

members only (announcements are filtered based on the value of

 request.user)

pinax-notifications [https://github.com/pinax/pinax-notifications]

pinax-notifications is a user notification management app for the Django web framework. Many sites need to notify users when certain events have occurred and to allow configurable options as to how those notifications are to be received.

pinax-lms-activities [https://github.com/pinax/pinax-lms-activities]

pinax-lms-activities provides a framework and base learning activities for Pinax LMS.

pinax-forums [https://github.com/pinax/pinax-forums]

pinax-forums is an extensible forums app for Django and Pinax. It is focused on core forum functionality and hence is expected to be combined with other Pinax apps for broader features.

See pinax-project-forums for a full Django project incorporating numerous apps with the goal of providing an out of the box forums solution.

pinax-types [https://github.com/pinax/pinax-types]

django-email-confirmation (deprecated) [https://github.com/pinax/django-email-confirmation]

simple email confirmation for the Django web framework

NOTE: this project has been superceded by https://github.com/pinax/django-user-accounts/ and is no longer active.

symposion [https://github.com/pinax/symposion]

symposion is a conference management solution from Eldarion. It was built with the generous support of the Python Software Foundation. See http://eldarion.com/symposion/ for commercial support, customization and hosting.

metron [https://github.com/pinax/metron]

metron provides analytics and metrics integration for Django.

Current analytics services supported:

Google Analytics
Mixpanel
gaug.es
Google AdWords Conversion Tracking

phileo (soon to be pinax-likes) [https://github.com/pinax/phileo]

phileo is a liking app for Django.

django-forms-bootstrap (deprecated?) [https://github.com/pinax/django-forms-bootstrap]

django-forms-bootstrap is a simple bootstrap filter for Django forms. Extracted from the bootstrap theme for Pinax.

pinax-phone-confirmation [https://github.com/pinax/pinax-phone-confirmation]

pinax-phone-confirmation is an app to provide phone confirmation via Twilio.

django-bookmarks [https://github.com/pinax/django-bookmarks]

django-bookmarks provides bookmark management for the Django web framework.

django-friends [https://github.com/pinax/django-friends]

django-friends provides friendship, contact, and invitation management for the Django web framework.

django-flag [https://github.com/pinax/django-flag]

django-flag provides flagging of inappropriate spam/content.

pinax-wiki [https://github.com/pinax/pinax-wiki]

pinax-wiki lets you easily add a wiki to your Django site.

Apps often follow the following template:

pinax-starter-app [https://github.com/pinax/pinax-starter-app]

pinax-starter-app is a starter app template for Pinax apps.

Release Process

Script https://github.com/pinax/pinax/blob/master/check.py can help identify which apps need releases. Be sure to install requirements as specified.

	make sure all issues are triaged

	make sure all pull-requests are triaged

	establish new version number based on semver

	update docs/changelog.md

	make sure AUTHORS is up-to-date for new contributions

	update setup.py

	confirm Travis CI passed

	do a release on GitHub with tag of form v1.2.3 and release name of 1.2.3, using the changelog entry for the release notes

	do git clean -fdx

	publish to pypi with python setup.py sdist bdist_wheel upload

Note: if this command fails with error: invalid command 'bdist_wheel'
you need to install “wheel” in your virtualenv:

 `$ pip install wheel`

see also https://github.com/pinax/pinax/issues/113

Quick Start Manual

Make sure you’ve read What is Pinax? to get a conceptual overview of Pinax.

We strongly recommend running Pinax (or indeed, any Django) projects in a virtual environment:

pip install virtualenv
virtualenv mysiteenv
source mysiteenv/bin/activate

Once your virtual environment has been activated, install Django and use django-admin to create a new project based on the Account Pinax starter project:

pip install Django==1.8.4
django-admin startproject --template=https://github.com/pinax/pinax-starter-projects/zipball/account mysite -n webpack.config.js

Now install the requirements, initialize your database, load the default sites fixtures, and run the dev server:

cd mysite
pip install -r requirements.txt
chmod +x manage.py
./manage.py migrate
./manage.py loaddata sites
./manage.py runserver

You now have a running Django site complete with account management and bootstrap-based templates.

To add one more app you will first have to modify the requirements.txt file by adding the new app:

myapp

Make sure to install the requirements once again.

pip install -r requirements.txt

Next, you will modify the settings.py, by adding your app to the INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 "myapp"
]

This will also be a good time to make any additional changes to settings.py if needed for the new app.

Be sure to migrate the new app:

./manage.py migrate

Next, you will modify the urls.py to contain a new url for the new app:

url(r"^myapp/", include("myapp.url")),

This will be a good time to make any adjustments to any templates if needed for the new app.

How to Contribute

There are many ways you can help contribute to Pinax and the various apps,
themes, and starter projects that it is made up of. Contributing code, writing
documentation, reporting bugs, as well as reading and providing feedback on
issues and pull requests, all are valid and necessary ways to
help.

Watch the Videos

Each month we do a Pinax Hangout, where we talk about a Pinax app or starter project, and demo how it works. Watching the videos of our previous Pinax Hangouts [https://www.youtube.com/channel/UCAPpNG85GLzUBwzYCjd4raQ] might be helpful to you and might make contributing to Pinax easier. Click on the Youtube description of each video and you will find an agenda of what was discussed during a particular Hangout.

Questions/Help

When you have questions or need help it’s best to join our Pinax project Slack channel [http://slack.pinaxproject.com] and ping us there. It is also valid to create an issue and add the question label to it but it will usually take us longer to answer a question that has been filed as an issue than to help you in Slack.

If you provide us with an example of a bug you ran into, something that isn’t working, something you don’t understand, we will be able to help you much faster. It is totally sufficient to take a screenshot and post it in Slack or add it to your GitHub issue.

Reporting Bugs/ Requesting Features/ Making Pull Requests

If you’re not sure how to create an issue or make a pull request on GitHub, please read this blog post [http://blog.pinaxproject.com/2015/11/10/guide-how-contribute-pinax/] for help. If things are still unclear or you run into any problems, please don’t hesitate to ping us in Slack.

When you create an issue, please make sure to assign the correct labels to it. See this blog post [http://blog.pinaxproject.com/2016/01/11/first-timers-only-and-new-labels/] for help.

Committing Code

The great thing about using a distributed versioning control system like git
is that everyone becomes a committer. When other people write good patches
it makes it very easy to include their fixes/features and give them proper
credit for the work.

We recommend that you do all your work in a separate branch. When you
are ready to work on a bug or a new feature create yourself a new branch. The
reason why this is important is you can commit as often you like. When you are
ready you can merge in the change. Let’s take a look at a common workflow:

git checkout -b task-566
... fix and git commit often ...
git push origin task-566

The reason we have created two new branches is to stay off of master.
Keeping master clean of only upstream changes makes yours and ours lives
easier. You can then send us a pull request for the fix/feature. Then we can
easily review it and merge it when ready.

Writing Commit Messages

Writing a good commit message makes it simple for us to identify what your
commit does from a high-level. There are some basic guidelines we’d like to
ask you to follow.

A critical part is that you keep the first line as short and sweet
as possible. This line is important because when git shows commits and it has
limited space or a different formatting option is used the first line becomes
all someone might see. If your change isn’t something non-trivial or there
reasoning behind the change is not obvious, then please write up an extended
message explaining the fix, your rationale, and anything else relevant for
someone else that might be reviewing the change. Lastly, if there is a
corresponding issue in Github issues for it, use the final line to provide
a message that will link the commit message to the issue and auto-close it
if appropriate.

Add ability to travel back in time

You need to be driving 88 miles per hour to generate 1.21 gigawatts of
power to properly use this feature.

Fixes #88

Coding style

When writing code to be included in Pinax keep our style in mind:

	Follow PEP8 [http://www.python.org/dev/peps/pep-0008/] there are some
cases where we do not follow PEP8. It is an excellent starting point.

	Follow Django’s coding style [http://docs.djangoproject.com/en/dev/internals/contributing/#coding-style]
we’re pretty much in agreement on Django style outlined there.

We would like to enforce a few more strict guides not outlined by PEP8 or
Django’s coding style:

	PEP8 tries to keep line length at 80 characters. We follow it when we can,
but not when it makes a line harder to read. It is okay to go a little bit
over 80 characters if not breaking the line improves readability.

	Use double quotes not single quotes. Single quotes are allowed in cases
where a double quote is needed in the string. This makes the code read
cleaner in those cases.

	Docstrings always use three double quotes on a line of their own, so, for
example, a single line docstring should take up three lines not one.

	Imports are grouped specifically and ordered alphabetically. This is shown
in the example below.

	Always use reverse and never @models.permalink.

	Tuples should be reserved for positional data structures and not used
where a list is more appropriate.

	URL patterns should use the url() function rather than a tuple.

	When callable arguments require multiple lines, place each argument
on a new line, indented four spaces as usual.

Here is an example of these rules applied:

first set of imports are stdlib imports
non-from imports go first then from style import in their own group
import csv

second set of imports are Django imports with contrib in their own
group.
from django.core.urlresolvers import reverse
from django.db import models
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

from django.contrib.auth.models import User

third set of imports are external apps (if applicable)
from tagging.fields import TagField

fourth set of imports are local apps
from .fields import MarkupField

class Task(models.Model):
 """
 A model for storing a task.
 """

 creator = models.ForeignKey(User)
 created = models.DateTimeField(default=timezone.now)
 modified = models.DateTimeField(default=timezone.now)

 objects = models.Manager()

 class Meta:
 verbose_name = _("task")
 verbose_name_plural = _("tasks")

 def __unicode__(self):
 return self.summary

 def save(self, **kwargs):
 self.modified = datetime.now()
 super(Task, self).save(**kwargs)

 def get_absolute_url(self):
 return reverse(
 "task_detail_with_a_super_long_url_name",
 kwargs={"task_id": self.pk}
)

 # custom methods

class TaskComment(models.Model):
 # ... you get the point ...
 pass

Testing your code

Pinax apps typically support several different versions of Python and several
different versions of Django. The supported combinations are specified in tox.ini
at the root of every Pinax app. Here is a sample tox.ini file:

[flake8]
ignore = E265,E501
max-line-length = 100
max-complexity = 10
exclude = migrations/*,docs/*

[tox]
envlist =
 py27-{1.8,1.9,master},
 py33-{1.8},
 py34-{1.8,1.9,master},
 py35-{1.8,1.9,master}

[testenv]
deps =
 coverage == 4.0.2
 flake8 == 2.5.0
 1.8: Django>=1.8,<1.9
 1.9: Django>=1.9,<1.10
 master: https://github.com/django/django/tarball/master
usedevelop = True
setenv =
 LANG=en_US.UTF-8
 LANGUAGE=en_US:en
 LC_ALL=en_US.UTF-8
commands =
 flake8 pinax
 coverage run setup.py test

The supported Python - Django combinations are specified in the [tox] envlist= section.

In order to test all supported Python/Django combinations we use pyenv and detox.

Installing pyenv and detox

First install pyenv according to the directions at https://github.com/yyuu/pyenv.
(Note you may need to install to a different shell profile configuration file, as
outlined in the installation directions.)

$ brew install pyenv
$ echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile
$ echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bash_profile
$ echo 'if which pyenv > /dev/null; then eval "$(pyenv init -)"; fi' >> ~/.bash_profile
$ exec $SHELL

Next install detox:

$ pip install detox

Installing Python versions

Using the Pinax app tox.ini file, determine what versions of Python are required for testing.
In our example above we support Python 2.7.x, 3.3.x, 3.4.x, and 3.5.x. Install the latest version
of each required Python . release using pyenv:

 Pinax Theme Bootstrap

Pinax Theme Bootstrap

In all our projects we’ve been maintaining a theme based on Bootstrap, Font Awesome, and jQuery. We previously vendored these packages and had an undocumented build process pre-configured in our starter projects that use this theme. We are now using proper packaging in the starter projects.

Starting with version 6.0.0 [http://blog.pinaxproject.com/2015/08/02/pinax-theme-bootstrap-6-0-0-released/], pinax-theme-bootstrap [https://github.com/pinax/pinax-theme-bootstrap] ships with templates and it’s own small javascript file.

Dependencies

The templates in this project are currently tested with the following versions:

	Bootstrap 3.3.5

	Font Awesome 4.4.0

	jQuery 2.1.4

Upgrade Notes

Upgrading to 6.0, you should be aware of a few changes:

	style_base and extra_style blocks have been merged into styles

	script_base and extra_script blocks have been merged into scripts and the theme.js script is now loaded within a theme_script block after the scripts block. It now expects that you’ll load the necessary jQuery library at the project level in the scripts block.

	No vendored assets ship with the theme anymore. You are responsible for setting up your own static assets at the project level. We have made it easy by just using one of our starter projects.

If you are not using one of our starter projects, you will need to go about setting up a build environment to use these libraries. We recommend using webpack [http://webpack.github.io] and installing these libraries with npm [https://www.npmjs.com].

Reference Implementation

We have provided a reference implementation of using npm and webpack in our most popular starter project, the pinax-project-account project [https://github.com/pinax/pinax-project-account]. To build the package.json (npm‘s version of requirements.txt) simply follow these steps:

npm init # taking all defaults
npm install bootstrap font-awesome jquery --save # the core libraries we need
npm install webpack --save # the builder
npm install extract-text-webpack-plugin --save # plugin to break apart files
npm install css-loader style-loader file-loader less-loader babel-loader --save

Subsequent developers (or if you are using this starter project), can simply issue:

npm install

to install everything in the package.json to a local node_modules/ directory that webpack can then use to build static files.

We also provided a working webpack.config.js in the starter project, which provides not only a build script but also the ability to run a watcher so static assets are built as you edit them.

Asset Changes

The starter project comes with assets prebuilt and ready to go. If you make changes to any assets you simply need to run:

npm install
npm run build

If you want to have your assets automatically rebuild whenever you save changes, you can run:

npm run watch

Adding Libraries

If you need to add some other library, a datepicker for instance, you simply need to run the npm install <package> --save command, hook it up in your static/src/js/main.js (or elsewhere in your modules), and run npm run build if you were not already running npm run watch.

For more on our move to webpackand away from vendoring, please read this blog post [http://blog.pinaxproject.com/2015/08/06/move-webpack-and-away-vendoring/].

 Companies Working with and Contributing to Pinax

Companies Working with and Contributing to Pinax

There are quite a few companies which work with and/or contribute to Pinax. If your
company does so and would like to be added to this list, please either
create an issue [https://github.com/pinax/pinax/issues/new] and tell us about it or
fork this repo [https://github.com/pinax/pinax/issues#fork-destination-box],
update this document, and send a pull request.

Companies Working with Pinax

	Eldarion [http://eldarion.com]

Companies Contributing to Pinax

	Eldarion [http://eldarion.com]

 Quick Start

Quick Start

Make sure you’ve read What is Pinax? to get a conceptual overview of Pinax.

We strongly recommend running Pinax (or indeed, any Django) projects in a virtual environment:

pip install virtualenv
virtualenv mysiteenv
source mysiteenv/bin/activate

Once your virtual environment has been activated, install Django and use django-admin to create a new project based on the Account Pinax starter project:

pip install pinax-cli
pinax start account mysite

NOTE: The CLI method for starting a Pinax project has been added for convenience.
The more manual method, using Django’s command-line utility, is also still supported.
Please refer to the Quick Start Manual page for details.

Now install the requirements, initialize your database, load the default sites fixtures, and run the dev server:

cd mysite
pip install -r requirements.txt
chmod +x manage.py
./manage.py migrate
./manage.py loaddata sites
./manage.py runserver

You now have a running Django site complete with account management and bootstrap-based templates.

To add one more app you will first have to modify the requirements.txt file by adding the new app:

myapp

Make sure to install the requirements once again.

pip install -r requirements.txt

Next, you will modify the settings.py, by adding your app to the INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 "myapp"
]

This will also be a good time to make any additional changes to settings.py if needed for the new app.

Be sure to migrate the new app:

./manage.py migrate

Next, you will modify the urls.py to contain a new url for the new app:

url(r"^myapp/", include("myapp.url")),

This will be a good time to make any adjustments to any templates if needed for the new app.

 History

History

From Origins To DjangoCon 2008

The idea for Pinax was seeded in 2007 when James Tauber was developing a number of websites (including Quisition [https://quisition.com/] and Habitualist [https://habitualist.com/]) using Django and realized how much of the code he was writing or intending to write was similar across websites.

James became interested in developing a set of reusable Django apps and developing conventions around what such reusable apps should look like. A group called the “Hotclub of France” (or django-hotclub) was formed after PyCon 2007, the name coming from the name of Django Reinhart’s band. Not much work (or even discussion) took place the rest of the 2007. There was some discussion and a little bit of sprinting on individual reusable apps at PyCon 2008.

In early May 2008, James suggested to the django-hotclub mailing list the need for a project that could be “an out-of-the-box Django-based website with everything but the domain-specific functionality”. James also suggested it could be a useful scaffolding for writing and trying out reusable apps. He started what he initially called “Tabula Rasa”, shortly after renamed to “Pinax”, a suggestion by Orestis Markou.

On Memorial Day weekend 2008, James decided to spend the weekend hacking on this new Pinax project and was joined by other “hotclub” members Brian Rosner, Jannis Leidel, and Eric Florenzano. By the end of the weekend, with help from others, Pinax had user profile pages, gravatars, user-to-user messages, announcements, OpenID support, join invitations, a basic Twitter clone with OEmbed support, groups and localizations into German, Spanish, and Swedish.

By July, Pinax added wikis, threaded discussions, bookmarks with voting, contact import, blogs with tagging and localization into Brazilian Portuguese and Hebrew.

TODO: THE BREAK OUT OF CLOUD27

TODO: DJANGOCON 2008

TODO: THE 0.7.X ERA

TODO: THE 0.9.X ERA

Some Historical Blog Posts

	Reusable Django Apps And Introducing Tabula Rasa [http://jtauber.com/blog/2008/05/06/reusable_django_apps_and_introducing_tabula_rasa/] May 6, 2008

	Introducing Pinax [http://jtauber.com/blog/2008/05/10/introducing_pinax/] May 10, 2008

	Pinax Progress [http://jtauber.com/blog/2008/05/25/pinax_progress/] May 25, 2008

	Pinax Progress II [http://jtauber.com/blog/2008/05/26/pinax_progress_ii/] May 26, 2008

	Pinax Progress III [http://jtauber.com/blog/2008/07/02/pinax_progress_iii/] July 2, 2008

	Pinax Project and Cloud27 [http://jtauber.com/blog/2008/07/30/pinax_project_and_cloud27/] July 30, 2008

	DjangoCon, Pinax and Cloud27 [http://jtauber.com/blog/2008/09/08/djangocon_pinax_and_cloud27/] September 8, 2008

 <no title>

 apps | zero | account | blog | documents | wiki | team-wiki
—–|—|— |— |— |— | —
django | 1.8.4| 1.8.4 | 1.8.4 | 1.8.4 | 1.8.4 | 1.8.4
django-announcements | | | | | |
django-bookmarks | | | | | |
django-email-confirmation (deprecated) | | | | | |
django-flag | | | | | |
django-forms-bootstrap (deprecated?) | | | | | |
django-friends | | | | | |
django-mailer | | | | | |
django-stripe-payments | | | | |
django-user-accounts | | [x] | | [x] | [x] | [x]
django-waitinglist | | | | | |
metron | | [x] | | [x] | [x] | [x]
phileo (soon to be pinax-likes) | | | | | |
pinax-blog | | | [x] | | |
pinax-forums | | | | | |
pinax-lms-activities | | | | | |
pinax-notifications | | | | | |
pinax-phone-confirmation | | | | | |
pinax-points | | | | | |
pinax-ratings | | | | | |
pinax-referrals | | | | | |
pinax-teams | | | | | |
pinax-testimonials | | | | | |
pinax-types | | | | | |
pinax-wiki | | | | | [x] | [x]
symposion | | | | | |
django-bootstrap-form | | | [x] | | |
django-jsonfield | | [x] | | [x] | [x] | [x]
django-reversion | | | | | | [x]
easy-thumbnails | | | | | | [x]
Markdown | | | [x] | | |
Pillow | | | [x] | | | [x]
pinax-documents | | | | [x] | |
pinax-event-log | | [x] | | [x] | [x] | [x]
pinax-theme-bootstrap | [x] | [x] | [x] | [x] | [x] | [x]
pytz | | | [x] | | |
apps | zero | account | blog | documents | wiki | team-wiki

 Contributor Code of Conduct

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion, or nationality.

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery

	Personal attacks

	Trolling or insulting/derogatory comments

	Public or private harassment

	Publishing other’s private information, such as physical or electronic addresses, without explicit permission

	Other unethical or unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant, version 1.2.0, available from http://contributor-covenant.org/version/1/2/0/

 Pinax in the Wild

Pinax in the Wild

Pinax is used to build all sorts of things. This is just a small sampling of
some of the things that can be built with Pinax. If you have built something
please either create an issue [https://github.com/pinax/pinax/issues/new]
and tell us about it or fork this repo [https://github.com/pinax/pinax/issues#fork-destination-box],
update this document, and send a pull request.

Pinax Blog

http://blog.pinaxproject.com/

	Blog starter project [https://github.com/pinax/pinax-starter-projects#pinax-project-blog]
	pinax-blog [https://github.com/pinax/pinax-blog] for the blog application

	pinax-pages [https://github.com/pinax/pinax-pages] to add some basic CMS functionality

Django CMS Light

http://django-cms-light.com

KISS multi-site CMS project optimized for hackers based on git and markdown like django and pelican had a baby with the purpose of hacking on local economy growth for the greater good.

	Based on social auth starter project (https://github.com/pinax/pinax-starter-projects/tree/social-auth)

	Uses Pinax Theme Bootstrap [https://github.com/pinax/pinax-theme-bootstrap]

	Uses Pinax Web Analytics [https://github.com/pinax/pinax-webanalytics]

	Uses Pinax Eventlog [https://github.com/pinax/pinax-eventlog]

 Ways To Contribute/ What We Need Help With

Ways To Contribute/ What We Need Help With

Help Others!

If you would like to help others who are just starting to contribute to Pinax, you can do the following:

	Hang out in Slack [http://slack.pinaxproject.com] and help answer questions!

	Watch the Pinax repositories [https://github.com/pinax] for issues or pull request you could help with!

	When you encounter a bug/have an idea for a feature/encounter missing documentation that could easily be fixed, create first-timers-only issues like this one [https://github.com/pinax/pinax/issues/102] for people wanting to make their first OSS contribution! If you need help creating this sort of issue, please ping @KatherineMichel on GitHub or @katherinemichel in Slack.

Contribute To The Community!

	Write blog posts like these [http://blog.pinaxproject.com/section/how-tos/]!

	Host a Pinax Hangout [https://www.youtube.com/channel/UCAPpNG85GLzUBwzYCjd4raQ]!

	Help us contribute to our existing documentation and write new documentation! You can find links to each app’s/starter project’s documentation in the README of the app/starter project.

	Write tutorials! If there’s an app or starter project you know well, write a tutorial and show others how to use it, what features it has, etc.

Contribute Code!

	Write tests!

	If you have time to fix any of our GitHub issues (especially those labelled up-for-grabs) we would greatly appreciate your help!

	Create a new starter project which showcases how to use any of our Pinax apps (or a combination of them). This doesn’t have to be anything new or original. You could for example pick an existing website like Facebook and try to rebuild it with Pinax components.

	Write new Pinax apps! If while building your starter project you notice that an app is missing we would love for you to let us know about your idea or build the app yourself.

 Code Conventions

Code Conventions

TODO: For now see CONTRIBUTING.md [https://github.com/pinax/pinax/blob/master/CONTRIBUTING.md]

 Frequently Asked Questions

Frequently Asked Questions

If you have any questions, please join our Pinax Slack channel [http://slack.pinaxproject.com]. Everyone is welcome!

Which starter project should I start with?

If you’re wanting to build a new site with a combination of project-specific functionality and a few Pinax apps then you probably want to start with either the Zero starter project (if you don’t have users logging in to your site) or the Account starter project (if you do have users logging in to your site).

I’ve done the Quick Start and set up a project based on the Account starter project. Now what?

You can now start adding your own apps or existing Django apps (whether from Pinax or anywhere else).

I already have an existing Django project. Can I still use Pinax?

A large component of Pinax is just re-usable Django apps. Most make very few assumptions about what else is in your project (although some assume you’re using django-user-accounts for user account management). In most cases you can just use an app in the Pinax ecosystem like you would any other Django app.

How do we upgrade a site to a newer Pinax release?

Individual apps generally follow semantic versioning [http://semver.org/] and often have an upgrade path. So they should be upgradable.

If you want to use a starter project, or other collection of Pinax apps, and be able to follow a documented upgrade path, something like Proposal for Pinax Distribution Versioning - pinax issue #84 [https://github.com/pinax/pinax/issues/84] is needed. It would provide coordinated releases, and make Pinax even more like a Linux distribution, in the way that e.g. Ubuntu creates a coordinated release of an infrastructure along with a variety of applications.

What editor/IDE/etc. do Pinax developers like to use?

Some use Sublime Text [https://www.sublimetext.com], some Atom [https://atom.io], some Emacs [https://www.gnu.org/software/emacs/], some WingIDE [https://wingware.com]. There is nothing Pinax-specific about these editor choices and we recommend that you use the text editor or IDE you are most comfortable using and you enjoy the most.

 What is Pinax?

What is Pinax?

Pinax is an open source ecosystem of reusable Django apps, themes, and starter project templates.

It takes care of the things that many sites have in common so you can focus on what makes your site different.

Pinax provides:

	Standard project layout for consistency and easy deployment

	Starter projects that can be used as the basis for any Django website as well as some tailored-to-community sites, company sites, intranets and sites in closed beta

	Reusable apps providing both back-end functionality and user-facing components

	Default templates to enable quick prototyping

Pinax has been used for everything from social networks to conference websites, and from intranets to online games.

Because it’s an entire ecosystem you can’t just download Pinax and try it out, but there are starter projects you can do this with (see Quick Start).

A starter project is a Django project template that comes with a bunch of apps already integrated with templates, etc.

Some starter projects are intended to just lay a foundation for your site. For example the “account starter project” or pinax-project-account, gives you user signup (optionally closed), login, password change and reset, basic user preferences all with an easy-to-customize Bootstrap-based UI.

Hundreds of sites have been built on pinax-project-account even if they otherwise have nothing else in common or even use any other Pinax apps.

Some starter projects are more designed to be demos of how to use a particular reusable app or set of apps.

Yet other starter projects are designed to be out-of-the-box, fully-functional sites, ready to deploy (although we don’t have many of these yet).

After you’ve started your Django project with a Pinax starter project, it is quite common to add other apps from the Pinax ecosystem. But the apps in Pinax are just regular Django apps. Django apps don’t have to be “Pinax” apps to be added to a Pinax starter project.

Furthermore, you can use the apps in the Pinax ecosystem even if you didn’t start with a Pinax starter project.

In short, you can use as little or as much of Pinax as you want. Pinax is opinionated but it’s just Django. It’s not designed to shield you from Django. With Pinax, you’re always just doing regular Django development. You just have a lot of existing code to help you.

 Getting Started

Getting Started

The pinax/pinax-starter-projects repo is available here [https://github.com/pinax/pinax-starter-projects/].

Many of the starter projects are derivatives of each other (zero is the parent of account among many
others). We leverage git and branching to manage the hierarchy. Each project template lives in it’s
own branch and will branch from its natural parent.

All starter projects share a common method for getting started. It involves creating a virtual environment, installing Django, and running the startproject command with a URL to the template, followed by a few commands within your new project. Or even easier, you can use the pinax
command line utility.

Getting Started

pip install virtualenv
virtualenv mysiteenv
source mysiteenv/bin/activate

You might use pyenv to manage the version of Python used in your virtualenv. See the pyenv repository [https://github.com/yyuu/pyenv] for usage.

Using the pinax command line utility

pip install pinax-cli
pinax projects # list available project releases
pinax start <kind> <project_name>

If you are feeling adventurous you can install off latest development by passing
the --dev flag:

pinax start --dev <kind> <project_name>

Manually

pip install Django
django-admin.py startproject --template=https://github.com/pinax/pinax-starter-projects/zipball/<PROJECT_BRANCH> mysite -n webpack.config.js -n PROJECT_README.md

Get Going With Your New Project

cd mysite
chmod +x manage.py
pip install -r requirements.txt
./manage.py migrate
./manage.py loaddata sites
./manage.py runserver

See each section below for the startproject url as well as any deviation from
these common notes.

Projects

	zero
	account
	documents

	social-auth

	wiki
	team-wiki

	blog

	static

	waiting-list

	social

	lms

	forums

	private-beta

	symposion

Development

If you want to develop your own starter projects here is the workflow you should
follow:

	Start with the branch you want to base your new project on.

	git co -b <name>

	Do the work on your project template

	Test your project template by running django-admin.py startproject --template=pinax-starter-projects test1 -n webpack.config.js -n PROJECT_README.md

	Once you are satisified with your testing, commit.

	git co master and then update this README.md file with details about your new project

	Update all descendent branches:

./update.sh
git push

 List of Starter Projects

 Each of these will eventually link to a separate page for each starter project with:

	Description

	What starter project it’s built on

	What apps it uses (and perhaps particularly showcases)

List of Starter Projects

Pinax-Project-Zero

This project lays the foundation for all other Pinax starter projects. It provides the project directory layout and Bootstrap-based theme.

pinax start zero mysite

Pinax-Project-Account

In addition to what is provided by the “zero” project, this project provides thorough integration with django-user-accounts, adding comprehensive account management functionality. It is a foundation suitable for most sites that have user accounts.

pinax start account mysite

Pinax-Project-SocialAuth

In addition to what is provided by the “account” project, this project
integrates with python-social-auth for Twitter, Facebook, and Google
authentication.

pinax start --dev social-auth mysite

Pinax-Project-Blog

This project gets you off and running with a blog.

pinax start blog mysite

Pinax-Project-Static

The purpose of this starter project is to provide a robust mocking and design tool.

pinax start static mysite

Pinax-Project-Documents

Builds on the Accounts starter project to get you off and running with a document library built around pinax-documents [https://github.com/pinax/pinax-documents].

pinax start documents mysite

Pinax-Project-Wiki

This project is a demo starter project that provides a wiki for authenticated users.

pinax start wiki mysite

Pinax-Project-Team-Wiki

This project is a starter project that has account management with profiles and teams and basic collaborative content.

pinax start team-wiki mysite

Additional starter projects:

	pinax-project-social

	pinax-project-waitinglist

	pinax-project-symposion

	pinax-project-lms

	pinax-project-forums

	pinax-project-teams

Some starter projects just demo an app or collection of apps. Some provide scaffolding during the development and testing of an app. Some are full-featured, out-of-the-box sites. Some lay the foundation for almost any custom Django site.

 Tutorials

Tutorials

TODO: Site projects: a series of apps put together to build a site

 LDAP Integration

LDAP Integration

In your requirements.txt, add:

django-auth-ldap==1.2.6

In your settings.py, add:

AUTHENTICATION_BACKENDS = [
 "django_auth_ldap.backend.LDAPBackend", # ldap will authenticate before your local database
 "account.auth_backends.UsernameAuthenticationBackend",
]

import ldap
from django_auth_ldap.config import LDAPSearch

AUTH_LDAP_SERVER_URI = "ldap://127.0.0.1"
AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "ou=users,dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(uid=%(user)s)"
)

The AUTH_LDAP_* settings will vary based on how LDAP is configured. For more
information, see the django-auth-ldap documentation [https://pythonhosted.org/django-auth-ldap/].

 Deploying to Heroku

Deploying to Heroku

This document assumes you have followed our Quick Start guide.

First, create a Heroku app:

heroku create

Set the buildpack for the app to use Python:

heroku buildpacks:set git://github.com/heroku/heroku-buildpack-python.git

Setting the buildpack explicitly is required due to the buildpack detection ordering.
Our projects include a package.json file which will trick Heroku in thinking
your project is a Node.js app. It should identify it as a Python app.

Setting up your project

In your project add the following to your requirements.txt:

django-toolbelt

Create a file named Procfile in your project with the following content:

web: gunicorn --log-file - mysite.wsgi

In your settings.py change:

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.sqlite3",
 "NAME": "dev.db",
 }
}

to:

import dj_database_url
DATABASES = {
 "default": dj_database_url.config()
}

In your mysite/wsgi.py change:

application = get_wsgi_application()

to:

from dj_static import Cling, MediaCling
application = Cling(MediaCling(get_wsgi_application()))

Commit to git

Add everything to git and commit:

git add .
git commit -m "added Heroku support"

Deploy to Heroku

To deploy to Heroku you use git:

git push heroku master

Run migrations:

heroku run python manage.py migrate

 Style Tweaks

Style Tweaks

How to edit LESS and rebuild CSS

To edit LESS you will need to go to the less file you wish to change. The LESS
files are located in static/src/less/. In this example, we will use
custom.less.

In custom.less add the CSS changes you want to make to your site:

...
p{
 font-size: 18;
 color: red;
}

Save custom.less.

Before rebuilding the CSS, make sure you have npm installed by running the
following command:

npm install

To rebuild the CSS, be sure to open two command windows for the following commands:

In one window, you will run:

npm run build

This will rebuild your CSS changes.

In the second window, you will run:

npm run watch.

This will ensure that the changes will be rebuilt on save.

You can refresh your browser at this point to review your changes.

To make a production build, you will run:

npm run build

before committing.

How to edit the footer

If you want to make changes to the footer, you will first locate _footer.html
located under the templates directory. Once you open _footer.html, you can
customize the footer anyway you like:

{% load i18n %}

My own footer.

{% trans "© 2015 <your company here>" %}

Be sure to save _footer.html.

How to change the site name in the top left

To change the site name, you will go to fixtures/sites.json. In sites.json,
you will modify the file as shown:

[
 {
 "pk": 1,
 "model": "sites.site",
 "fields": {
 "domain": "localhost:8000",
 "name": "MySite [localhost]"
 }
 },
 {
 "pk": 2,
 "model": "sites.site",
 "fields": {
 "domain": "MySite.com",
 "name": "MySite"
 }
 }
]

After the modification, save sites.json and type the following command:

./manage.py loaddata sites

How to change the top left to be a logo

To change the top left to be a logo, you can modify site_base.html under
{% block topbar_base %}:

{# remove to bring back topbar #}
{% block topbar_base %}

 ...
{% endblock %}

Be sure to save site_base.html

How to add a left nav bar

To add a left nav bar, you can modify site_base.html under {% topbar_base %},
just like we did in the example above for the logo:

{# remove to bring back topbar #}
{% block topbar_base %}
 <nav class="navbar navbar-inverse">
 Page1 |
 Page2
 </nav>
{% endblock %}

Be sure to save site_base.html.

 Releasing a Starter Project

Releasing a Starter Project

In an effort to communicate completeness and bring some stability to our starter
projects, we tag releases. Semantic versioning applies less to starter projects
than it does to apps as things like backwards-incompatibility are a non-issue.
However, for t