
Pimlico Documentation
Release 0.9.25

Mark Granroth-Wilding

Dec 17, 2020

Contents

1 Contents 3

Python Module Index 303

Index 307

i

ii

Pimlico Documentation, Release 0.9.25

The Pimlico Processing Toolkit is a toolkit for building pipelines of tasks for processing large datasets (corpora).
It is especially focussed on processing linguistic corpora and provides wrappers around many existing, widely used
NLP (Natural Language Processing) tools.

It makes it easy to write large, potentially complex pipelines with the key goals of making is easy to:

• provide clear documentation of what has been done;

• incorporate standard NLP tasks and data-processing tasks with minimal effort;

• integrate non-standard code, specific to the task at hand, into the same pipeline; and

• distribute code for later reproduction or application to other datasets or experiments.

The toolkit takes care of managing data between the steps of a pipeline and checking that everything’s executed in the
right order.

The core toolkit is written in Python. Pimlico is open source, released under the GPLv3 license. It is available from
its Github repository.

• For a broad introduction to Pimlico’s key concepts, read Introduction to Pimlico.

• To get started with a Pimlico project, follow the getting-started guide.

Pimlico is written in Python and can be run using Python >=2.7 or >=3.6. This means you can write your own
processing modules using either Python 2 or 3.

Pimlico is short for PIpelined Modular LInguistic COrpus processing.

Contents 1

https://github.com/markgw/pimlico

Pimlico Documentation, Release 0.9.25

2 Contents

CHAPTER 1

Contents

1.1 Pimlico guides

Step-by-step guides through common tasks while using Pimlico.

1.1.1 Introduction to Pimlico

Motivation

It is becoming more and more common for conferences and journals in NLP and other computational areas to encour-
age, or even require, authors to make publicly available the code and data required to reproduce their reported results.
It is now widely acknowledged that such practices lie at the center of open science and are essential to ensuring that
research contributions are verifiable, extensible and useable in applications.

However, this requires extensive additional work. And, even when researchers do this, it is all too common for others to
have to spend large amounts of time and effort preparing data, downloading and installing tools, configuring execution
environments and picking through instructions and scripts before they can reproduce the original results, never mind
apply the code to new datasets or build upon it in novel research.

Introducing Pimlico

Pimlico (Pipelined Modular Linguistic Corpus processing) addresses these problems. It allows users to write and run
potentially complex processing pipelines, with the key goals of making it easy to:

• clearly document what was done;

• incorporate standard NLP and data-processing tasks with minimal effort;

• integrate non-standard code, specific to the task at hand, into the same pipeline; and

• distribute code for later reproduction or application to other datasets or experiments.

It comes with pre-defined module types to wrap a number of existing NLP toolkits (including non-Python code) and
carry out many other common pre-processing or data manipulation tasks.

3

Pimlico Documentation, Release 0.9.25

Building pipelines

Pimlico addresses the task of building of pipelines to process large datasets. It allows you to run one or several steps
of processing at a time, with high-level control over how each step is run, manages the data produced by each step,
and lets you observe these intermediate outputs. Pimlico provides simple, powerful tools to give this kind of control,
without needing to write any code.

Developing a pipeline with Pimlico involves defining the structure of the pipeline itself in terms of modules to be
executed, and connections between their inputs and outputs describing the flow of data.

Modules correspond to some data-processing code, with some parameters. They may be of a standard type, so-called
core module types, for which code is provided as part of Pimlico.

A pipeline may also incorporate custom module types, for which metadata and data-processing code must be provided
by the author.

Pipeline configuration

See Pipeline config for more on pipeline configuration.

At the heart of Pimlico is the concept of a pipeline configuration, defined by a configuration (or conf) file, which can
be loaded and executed.

This specifies some general parameters and metadata regarding the pipeline and then a sequence of modules to be
executed.

Each pipeline module is defined by a named section in the file, which specifies the module type, inputs to be read
from the outputs of other, previous modules, and parameters.

For example, the following configuration section defines a module called split. Its type is the core Pimlico module
type corpus split, which splits a corpus by documents into two randomly sampled subsets (as is typically done
to produce training and test sets).

[split]
type=pimlico.modules.corpora.split
input=tokenized_corpus
set1_size=0.8

The option input specifies where the module’s only input comes from and refers by name to a module defined earlier
in the pipeline whose output provides the data. The option set1_size tells the module to put 80% of documents
into the first set and 20% in the second. Two outputs are produced, which can be referred to later in the pipeline as
split.set1 and split.set2.

Input modules

The first module(s) of a pipeline have no inputs, but load datasets, with parameters to specify where the input data can
be found on the filesystem.

A number of standard input readers are among Pimlico’s core module types to support reading of simple
datasets, such as text files in a directory, and some standard input formats for data such as word embeddings. The
toolkit also provides a factory to make it easy to define custom routines for reading other types of input data.

Module type

The type of a module is given as a fully qualified Python path to a Python package.

4 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

The package provides separately the module type’s metadata, referred to as its module info – input datatypes, options,
etc. – and the code that is executed when it is run, the module executor. The example above uses one of Pimlico’s core
module types.

A pipeline will usually also include non-standard module types, distributed together with the conf file. These are
defined and used in exactly the same way as the core module types. Where custom module types are used, the pipeline
conf file specifies a directory where the source code can be found.

See also:

Full worked example

An example of a complete pipeline conf, using both core and custom module types

Datatypes

When a module is run, its output is stored ready for use by subsequent modules. Pimlico takes care of storing each
module’s output in separate locations and providing the correct data as input.

The module info for a module type defines a datatype for each input and each output. Pimlico includes a system of
datatypes for the datasets that are passed between modules.

When a pipeline is loaded, type-checking is performed on the connections between modules’ outputs and subsequent
modules’ inputs to ensure that appropriate datatypes are provided.

For example, a module may require as one of its inputs a vocabulary, for which Pimlico provides a standard
datatype. The pipeline will only be loaded if this input is connected to an output that supplies a compatible type.
The supplying module does not need to define how to store a vocabulary, since the datatype defines the necessary
routines for writing a vocabulary to disk. The subsequent module does not need to define how to read the data
either, since the datatype takes care of that too, providing the module executor with suitable Python data structures.

Corpora

Often modules read and write corpora, consisting of a large number of documents. Pimlico provides a datatype for
representing such corpora and a further type system for the types of the documents stored within a corpus (rather like
Java’s generic types).

For example, a module may specify that it requires as input a corpus whose documents contain tokenized text. All
tokenizer modules (of which there are several) provide output corpora with this document type. The corpus datatype
takes care of reading and writing large corpora, preserving the order of documents, storing corpus metadata, and much
more.

The datatype system is also extensible in custom code. As well as defining custom module types, a pipeline author
may wish to define new datatypes to represent the data required as input to the modules or provided as output.

See also:

IterableCorpus: datatype for corpora.

Running a pipeline

Pimlico provides a command-line interface for parsing and executing pipelines. The interface provides sub-commands
to perform different operations relating to a given pipeline. The conf file defining the pipeline is always given as an
argument and the first operation is therefore to parse the pipeline and check it for validity. We describe here a few of
the most important sub-commands.

See also:

1.1. Pimlico guides 5

Pimlico Documentation, Release 0.9.25

Command-line interface

A complete list of the available commands

status

The status subcommand

Outputs a list of all of the modules in the pipeline, reporting the execution status of each. This indicates whether the
module has been run; if so, whether it completed successfully or failed; if not, whether it is ready to be run (i.e. all of
its input data is available).

Each of the modules is numbered in the list, and this number can be used instead of the module’s full name in arguments
to all sub-commands.

Given the name of a module, the command outputs a detailed report on the status of that module and its input and
output datasets.

run

The run subcommand

Executes a module.

An option --dry runs all pre-execution checks for the module, without running it. These include checking that
required software is installed and performing automatic installation if not.

If all requirements are satisfied, the module will be executed, outputting its progress to the terminal and to module-
specific log files. Output datasets are written to module-specific directories, ready to be used by subsequent modules
later.

Multiple modules can be run in sequence, or even the entire pipeline. A switch --all-deps causes any unexecuted
modules upon whose output the specified module(s) depend to be run.

browse

The browse subcommand

Inspects the data output by a module, stored in its pipeline-internal storage. Inspecting output data by loading the
files output by the module would require knowledge of both the Pimlico data storage system and the specific storage
formats used by the output datatypes. Instead, this command lets the user inspect the data from a given module (and a
given output, if there are multiple).

Datatypes, as part of their definition, along with specification of storage format reading and writing, define how the
data can be formatted for display. Multiple formatters may be defined, giving alternative ways to inspect the same
data.

For some datatypes, browsing is as simple as outputting some statistics about the data, or a string representing its
contents. For corpora, a document-by-document browser is provided, using the Urwid library. Furthermore, the
definition of corpus document types determines how an individual document should be displayed in the corpus browser.
For example, the tokenized text type shows each sentence on a separate line, with spaces between tokens.

Where next?

For a practical quick-start guide to building pipelines, see Super-quick Pimlico setup.

6 Chapter 1. Contents

http://urwid.org/

Pimlico Documentation, Release 0.9.25

Or for a bit more detail, see Setting up a new project using Pimlico.

1.1.2 Super-quick Pimlico setup

This is a very quick walk-through of the process of starting a new project using Pimlico. For more details, explanations,
etc see the longer getting-started guide.

First, make sure Python is installed.

System-wide configuration

Choose a location on your file system where Pimlico will store all the output from pipeline modules. For example,
/home/me/.pimlico_store/.

Create a file in your home directory called .pimlico that looks like this:

store=/home/me/.pimlico_store

This is not specific to a pipeline: separate pipelines use separate subdirectories.

Set up new project

Create a new, empty directory to put your project in. E.g.:

cd ~
mkdir myproject

Download newproject.py into this directory and run it:

wget https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
python newproject.py myproject

This fetches the latest Pimlico codebase (in pimlico/) and creates a template pipeline (myproject.conf).

Customizing the pipeline

You’ve got a basic pipeline config file now (myproject.conf).

Add sections to it to configure modules that make up your pipeline.

For guides to doing that, see the the longer setup guide and individual module documentation.

Running Pimlico

Check the pipeline can be loaded and take a look at the list of modules you’ve configured:

./pimlico.sh myproject.conf status

Tell the modules to fetch all the dependencies you need:

./pimlico.sh myproject.conf install all

If there’s anything that can’t be installed automatically, this should output instructions for manual installation.

Check the pipeline’s ready to run a module that you want to run:

1.1. Pimlico guides 7

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py

Pimlico Documentation, Release 0.9.25

./pimlico.sh myproject.conf run MODULE --dry-run

To run the next unexecuted module in the list, use:

./pimlico.sh myproject.conf run

1.1.3 Setting up a new project using Pimlico

You’ve decided to use Pimlico to implement a data processing pipeline. So, where do you start?

This guide steps through the basic setup of your project. You don’t have to do everything exactly as suggested here,
but it’s a good starting point and follows Pimlico’s recommended procedures. It steps through the setup for a very
basic pipeline.

A shorter version of this guide that zooms through the essential setup steps is also available.

System-wide configuration

Note: If you’ve used Pimlico before, you can skip this step.

Pimlico needs you to specify certain parameters regarding your local system. Typically this is just a file in your home
directory called .pimlico. More details.

It needs to know where to put output files as it executes. These settings apply to all Pimlico pipelines you run. Pimlico
will make sure that different pipelines don’t interfere with each other’s output (provided you give them different
names).

Most of the time, you only need to specify one storage location, using the store parameter in your local config file.
(You can specify multiple: more details.)

Create a file ~/.pimlico that looks like this:

store=/path/to/storage/directory

All pipelines will use different subdirectories of this one.

Getting started with Pimlico

The procedure for starting a new Pimlico project, using the latest release, is very simple.

Create a new, empty directory to put your project in. Download newproject.py into the project directory.

Make sure you’ve got Python installed. Pimlico currently supports Python 2 and 3, but we strongly recommend using
Python 3 unless you have old Python 2 code you need to run.

Choose a name for your project (e.g. myproject) and run:

python newproject.py myproject

This fetches the latest version of Pimlico (now in the pimlico/ subdirectory) and creates a basic config file, which
will define your pipeline.

It also retrieves libraries that Pimlico needs to run. Other libraries required by specific pipeline modules will be
installed as necessary when you use the modules.

8 Chapter 1. Contents

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py

Pimlico Documentation, Release 0.9.25

Building the pipeline

You’ve now got a config file in myproject.conf. This already includes a pipeline section, which gives the
basic pipeline setup. It will look something like this:

[pipeline]
name=myproject
release=<release number>
python_path=%(project_root)s/src/python

The name needs to be distinct from any other pipelines that you run – it’s what distinguishes the storage locations.

release is the release of Pimlico that you’re using: it’s automatically set to the latest one, which has been down-
loaded.

If you later try running the same pipeline with an updated version of Pimlico, it will work fine as long as it’s the same
minor version (the second part). The minor-minor third part can be updated and may bring some improvements. If you
use a higher minor version (e.g. 0.10.x when you started with 0.9.24), there may be backwards incompatible changes,
so you’d need to update your config file, ensuring it plays nicely with the later Pimlico version.

Getting input

Now we add our first module to the pipeline. This reads input from a collection of text files. We use a small subset of
the Europarl corpus as an example here. This can be simply adapted to reading the real Europarl corpus or any other
corpus stored in this straightforward way.

Download and extract the small corpus from here

In the example below, we have extracted the files to a directory data/europarl_demo in the home directory.

[input_text]
type=pimlico.modules.input.text.raw_text_files
files=%(home)s/data/europarl_demo/*

Doing something: tokenization

Now, some actual linguistic processing, albeit somewhat uninteresting. Many NLP tools assume that their input has
been divided into sentences and tokenized. To keep things simple, we use a very basic, regular expression-based
tokenizer.

Notice that the output from the previous module feeds into the input for this one, which we specify simply by naming
the module.

[tokenize]
type=pimlico.modules.text.simple_tokenize
input=input_text

Doing something more interesting: POS tagging

Many NLP tools rely on part-of-speech (POS) tagging. Again, we use OpenNLP, and a standard Pimlico module
wraps the OpenNLP tool.

1.1. Pimlico guides 9

http://www.statmt.org/europarl/
https://github.com/markgw/pimlico-data/raw/master/europarl_en_small.tar.gz

Pimlico Documentation, Release 0.9.25

[pos-tag]
type=pimlico.modules.opennlp.pos
input=tokenize

Running Pimlico

Now we’ve got our basic config file ready to go. It’s a simple linear pipeline that goes like this:

read input docs -> group into batches -> tokenize -> POS tag

It’s now ready to load and inspect using Pimlico’s command-line interface.

Before we can run it, there’s one thing missing: the OpenNLP tokenizer module needs access to the OpenNLP tool.
We’ll see below how Pimlico sorts that out for you.

Checking everything’s dandy

Now you can run the status command to check that the pipeline can be loaded and see the list of modules.

./pimlico.sh myproject.conf status

To check that specific modules are ready to run, with all software dependencies installed, use the run command with
--dry-run (or --dry) switch:

./pimlico.sh myproject.conf run tokenize --dry

Fetching dependencies

All the standard modules provide easy ways to get hold of their dependencies automatically, or as close as possible.
Most of the time, all you need to do is tell Pimlico to install them.

You use the run command, with a module name and --dry-run, to check whether a module is ready to run.

./pimlico.sh myproject.conf run tokenize --dry

This will find that things aren’t quite ready yet, as the OpenNLP Java packages are not available. These are not
distributed with Pimlico, since they’re only needed if you use an OpenNLP module.

When you run the run command, Pimlico will offer to install the necessary software for you. In this case, this involves
downloading OpenNLP’s jar files from its web repository to somewhere where the OpenNLP tokenizer module can
find it.

Say yes and Pimlico will get everything ready. Simple as that!

There’s one more thing to do: the tools we’re using require statistical models. We can simply download the pre-trained
English models from the OpenNLP website.

At present, Pimlico doesn’t yet provide a built-in way for the modules to do this, as it does with software libraries, but
it does include a GNU Makefile to make it easy to do:

cd ~/myproject/pimlico/models
make opennlp

10 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Note that the modules we’re using default to these standard, pre-trained models, which you’re now in a position to use.
However, if you want to use different models, e.g. for other languages or domains, you can specify them using extra
options in the module definition in your config file.

If there are any other library problems shown up by the dry run, you’ll need to address them before going any further.

Running the pipeline

What modules to run?

Pimlico suggests an order in which to run your modules. In our case, this is pretty obvious, seeing as our pipeline is
entirely linear – it’s clear which ones need to be run before others.

./pimlico.sh myproject.conf status

The output also tells you the current status of each module. At the moment, all the modules are UNEXECUTED.

You might be surprised to see that input-text features in the list. This is because, although it just reads the data
out of a corpus on disk, there’s not quite enough information in the corpus, so we need to run the module to collect a
little bit of metadata from an initial pass over the corpus. Some input types need this, others not. In this case, all we’re
lacking is a count of the total number of documents in the corpus.

Note: To make running your pipeline even simpler, you can abbreviate the command by using a shebang in the config
file. Add a line at the top of myproject.conf like this:

#!./pimlico.sh

Then make the conf file executable by running (on Linux):

chmod ug+x myproject.conf

Now you can run Pimlico for your pipeline by using the config file as an executable command:

./myproject.conf status

Running the modules

The modules can be run using the run command and specifying the module by name. We do this manually for each
module.

./pimlico.sh myproject.conf run input-text

./pimlico.sh myproject.conf run tokenize

./pimlico.sh myproject.conf run pos-tag

Adding custom modules

Most likely, for your project you need to do some processing not covered by the built-in Pimlico modules. At this
point, you can start implementing your own modules, which you can distribute along with the config file so that people
can replicate what you did.

The newproject.py script has already created a directory where our custom source code will live: src/python,
with some subdirectories according to the standard code layout, with module types and datatypes in separate packages.

1.1. Pimlico guides 11

Pimlico Documentation, Release 0.9.25

The template pipeline also already has an option python_path pointing to this directory, so that Pimlico knows
where to find your code. Note that the code’s in a subdirectory of that containing the pipeline config and we specify
the custom code path relative to the config file, so it’s easy to distribute the two together.

Now you can create Python modules or packages in src/python, following the same conventions as the built-in
modules and overriding the standard base classes, as they do. The following articles tell you more about how to do
this:

• Writing Pimlico module types

• Writing document map modules

• Pimlico module structure

Your custom modules and datatypes can then simply be used in the config file as module types.

1.1.4 Running someone else’s pipeline

This guide takes you through what to do if you have received someone else’s code for a Pimlico project and would
like to run it.

This guide is written for Unix/Mac users. You’ll need to make some adjustments if using another OS.

What you’ve got

Hopefully got at least a pipeline config file. This will have the extension .conf. In the examples below, we’ll use the
name myproject.conf.

You’ve probably got a whole directory, with some subdirectories, containing this config file (or even several) together
with other related files – datasets, code, etc. This top-level directory is what we’ll refer to as the project root.

The project may include some code, probably defining some custom Pimlico module types and datatypes. If all is
well, you won’t need to delve into this, as its location will be given in the config file and Pimlico will take care of the
rest.

Getting Pimlico

You hopefully didn’t receive the whole Pimlico codebase together with the pipeline and code. It’s recommended not
to distribute Pimlico, as it can be fetched automatically for a given pipeline.

You’ll need Python installed.

Download the Pimlico bootstrap script from here and put it in the project root.

Now run it:

python bootstrap.py myproject.conf

The bootstrap script will look in the config file to work out what version of Pimlico to use and then download it.

If this works, you should now be able to run Pimlico.

Using the bleeding edge code

By default, the bootstrap script will fetch a release of Pimlico that the config file declares as being that which it was
built with.

12 Chapter 1. Contents

https://raw.githubusercontent.com/markgw/pimlico/master/admin/bootstrap.py

Pimlico Documentation, Release 0.9.25

If you want the very latest version of Pimlico, with all the dangers that entails and with the caveat that it might not
work with the pipeline you’re trying to run, you can tell the bootstrap script to checkout Pimlico from its Git repository.

python bootstrap.py --git myproject.conf

Running Pimlico

Perhaps the project root contains a (link to a) script called pimlico.sh.

If not, create one like this:

ln -s pimlico/bin/pimlico.sh .

Now run pimlico.sh with the config file as an argument, issuing the command_status command to see the contents
of the pipeline:

./pimlico.sh myproject.conf status

Pimlico will now run and set itself up, before proceeding with your command and showing the pipeline status. This
might take a bit of time. It will install a Python virtual environment and some basic packages needed for it to run.

1.1.5 Writing Pimlico module types

Pimlico comes with a fairly large number of module types that you can use to run many standard NLP, data
processing and ML tools over your datasets.

For some projects, this is all you need to do. However, often you’ll want to mix standard tools with your own code,
for example, using the output from the tools. And, of course, there are many more tools you might want to run that
aren’t built into Pimlico: you can still benefit from Pimlico’s framework for data handling, config files and so on.

For a detailed description of the structure of a Pimlico module, see Pimlico module structure. This guide takes you
through building a simple module.

Note: In any case where a module will process a corpus one document at a time, you should write a document map
module, which takes care of a lot of things for you, so you only need to say what to do with each document.

Todo: Module writing guide needs to be updated for new datatypes.

In particular, the executor example and datatypes in the module definition need to be updated.

Code layout

If you’ve followed the basic project setup guide, you’ll have a project with a directory structure like this:

myproject/
pipeline.conf
pimlico/

bin/
lib/
src/
...

(continues on next page)

1.1. Pimlico guides 13

Pimlico Documentation, Release 0.9.25

(continued from previous page)

src/
python/

If you’ve not already created the src/python directory, do that now.

This is where your custom Python code will live. You can put all of your custom module types and datatypes in there
and use them in the same way as you use the Pimlico core modules and datatypes.

Add this option to the [pipeline] section of your config file, so Pimlico knows where to find your code:

python_path=src/python

To follow the conventions used in Pimlico’s codebase, we’ll create the following package structure in src/python:

src/python/myproject/
__init__.py
modules/

__init__.py
datatypes/

__init__.py

Write a module

A Pimlico module consists of a Python package with a special layout. Every module has a file info.py. This
contains the definition of the module’s metadata: its inputs, outputs, options, etc.

Most modules also have a file execute.py, which defines the routine that’s called when it’s run. You should take
care when writing info.py not to import any non-standard Python libraries or have any time-consuming operations
that get run when it gets imported.

execute.py, on the other hand, will only get imported when the module is to be run, after dependency checks.

For the example below, let’s assume we’re writing a module called nmf and create the following directory structure
for it:

src/python/myproject/modules/
__init__.py
nmf/

__init__.py
info.py
execute.py

Easy start

To help you get started, Pimlico provides a wizard in the newmodule command.

This will ask you a series of questions, guiding you through the most common tasks in creating a new module. At the
end, it will generate a template to get you started with your module’s code. You then just need to fill in the gaps and
write the code for what the module actually does.

Read on to learn more about the structure of modules, including things not covered by the wizard.

14 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Metadata

Module metadata (everything apart from what happens when it’s actually run) is defined in info.py as a class called
ModuleInfo.

Here’s a sample basic ModuleInfo, which we’ll step through. (It’s based on the Scikit-learn
matrix_factorization module.)

from pimlico.core.dependencies.python import PythonPackageOnPip
from pimlico.core.modules.base import BaseModuleInfo
from pimlico.datatypes.arrays import ScipySparseMatrix, NumpyArray

class ModuleInfo(BaseModuleInfo):
module_type_name = "nmf"
module_readable_name = "Sklearn non-negative matrix factorization"
module_inputs = [("matrix", ScipySparseMatrix)]
module_outputs = [("w", NumpyArray), ("h", NumpyArray)]
module_options = {

"components": {
"help": "Number of components to use for hidden representation",
"type": int,
"default": 200,

},
}

def get_software_dependencies(self):
return super(ModuleInfo, self).get_software_dependencies() + \

[PythonPackageOnPip("sklearn", "Scikit-learn")]

The ModuleInfo should always be a subclass of BaseModuleInfo. There are some subclasses that you might
want to use instead (e.g., see Writing document map modules), but here we just use the basic one.

Certain class-level attributes should pretty much always be overridden:

• module_type_name: A name used to identify the module internally

• module_readable_name: A human-readable short description of the module

• module_inputs: Most modules need to take input from another module (though not all)

• module_outputs: Describes the outputs that the module will produce, which may then be used as inputs to
another module

Inputs are given as pairs (name, type), where name is a short name to identify the input and type is the datatype
that the input is expected to have. Here, and most commonly, this is a subclass of PimlicoDatatype and Pimlico
will check that a dataset supplied for this input is either of this type, or has a type that is a subclass of this.

Here we take just a single input: a sparse matrix.

Outputs are given in a similar way. It is up to the module’s executor (see below) to ensure that these outputs get
written, but here we describe the datatypes that will be produced, so that we can use them as input to other modules.

Here we produce two Numpy arrays, the factorization of the input matrix.

Dependencies: Since we require Scikit-learn to execute this module, we override
get_software_dependencies() to specify this. As Scikit-learn is available through Pip, this is very
easy: all we need to do is specify the Pip package name. Pimlico will check that Scikit-learn is installed before
executing the module and, if not, allow it to be installed automatically.

Finally, we also define some options. The values for these can be specified in the pipeline config file. When
the ModuleInfo is instantiated, the processed options will be available in its options attribute. So, for ex-

1.1. Pimlico guides 15

Pimlico Documentation, Release 0.9.25

ample, we can get the number of components (specified in the config file, or the default of 200) using info.
options["components"].

Executor

Here is a sample executor for the module info given above, placed in the file execute.py.

from pimlico.core.modules.base import BaseModuleExecutor
from pimlico.datatypes.arrays import NumpyArrayWriter
from sklearn.decomposition import NMF

class ModuleExecutor(BaseModuleExecutor):
def execute(self):

input_matrix = self.info.get_input("matrix").array
self.log.info("Loaded input matrix: %s" % str(input_matrix.shape))

Convert input matrix to CSR
input_matrix = input_matrix.tocsr()
Initialize the transformation
components = self.info.options["components"]
self.log.info("Initializing NMF with %d components" % components)
nmf = NMF(components)

Apply transformation to the matrix
self.log.info("Fitting NMF transformation on input matrix" % transform_type)
transformed_matrix = transformer.fit_transform(input_matrix)

self.log.info("Fitting complete: storing H and W matrices")
Use built-in Numpy array writers to output results in an appropriate format
with NumpyArrayWriter(self.info.get_absolute_output_dir("w")) as w_writer:

w_writer.set_array(transformed_matrix)
with NumpyArrayWriter(self.info.get_absolute_output_dir("h")) as h_writer:

h_writer.set_array(transformer.components_)

The executor is always defined as a class in execute.py called ModuleExecutor. It should always be a subclass
of BaseModuleExecutor (though, again, note that there are more specific subclasses and class factories that we
might want to use in other circumstances).

The execute() method defines what happens when the module is executed.

The instance of the module’s ModuleInfo, complete with options from the pipeline config, is available as self.
info. A standard Python logger is also available, as self.log, and should be used to keep the user updated on
what’s going on.

Getting hold of the input data is done through the module info’s get_input() method. In the case of a Scipy
matrix, here, it just provides us with the matrix as an attribute.

Then we do whatever our module is designed to do. At the end, we write the output data to the appropriate output
directory. This should always be obtained using the get_absolute_output_dir() method of the module info,
since Pimlico takes care of the exact location for you.

Most Pimlico datatypes provide a corresponding writer, ensuring that the output is written in the correct format for it
to be read by the datatype’s reader. When we leave the with block, in which we give the writer the data it needs, this
output is written to disk.

16 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Pipeline config

Our module is now ready to use and we can refer to it in a pipeline config file. We’ll assume we’ve prepared a suitable
Scipy sparse matrix earlier in the pipeline, available as the default output of a module called matrix. Then we can
add section like this to use our new module:

[matrix]
...(Produces sparse matrix output)...

[factorize]
type=myproject.modules.nmf
components=300
input=matrix

Note that, since there’s only one input, we don’t need to give its name. If we had defined multiple inputs, we’d need
to specify this one as input_matrix=matrix.

You can now run the module as part of your pipeline in the usual ways.

Skeleton new module

To make developing a new module a little quicker, here’s a skeleton module info and executor.

from pimlico.core.modules.base import BaseModuleInfo

class ModuleInfo(BaseModuleInfo):
module_type_name = "NAME"
module_readable_name = "READABLE NAME"
module_inputs = [("NAME", REQUIRED_TYPE)]
module_outputs = [("NAME", PRODUCED_TYPE)]
Delete module_options if you don't need any
module_options = {

"OPTION_NAME": {
"help": "DESCRIPTION",
"type": TYPE,
"default": VALUE,

},
}

def get_software_dependencies(self):
return super(ModuleInfo, self).get_software_dependencies() + [

Add your own dependencies to this list
Remove this method if you don't need to add any

]

from pimlico.core.modules.base import BaseModuleExecutor

class ModuleExecutor(BaseModuleExecutor):
def execute(self):

input_data = self.info.get_input("NAME")
self.log.info("MESSAGES")

DO STUFF

with SOME_WRITER(self.info.get_absolute_output_dir("NAME")) as writer:
Do what the writer requires

1.1. Pimlico guides 17

Pimlico Documentation, Release 0.9.25

1.1.6 Writing document map modules

Todo: Write a guide to building document map modules.

For now, the skeletons below are a useful starting point, but there should be a more fulsome explanation here of what
document map modules are all about and how to use them.

Todo: Document map module guides needs to be updated for new datatypes.

Skeleton new module

To make developing a new module a little quicker, here’s a skeleton module info and executor for a document map
module. It follows the most common method for defining the executor, which is to use the multiprocessing-based
executor factory.

from pimlico.core.modules.map import DocumentMapModuleInfo
from pimlico.datatypes.tar import TarredCorpusType

class ModuleInfo(DocumentMapModuleInfo):
module_type_name = "NAME"
module_readable_name = "READABLE NAME"
module_inputs = [("NAME", TarredCorpusType(DOCUMENT_TYPE))]
module_outputs = [("NAME", PRODUCED_TYPE)]
module_options = {

"OPTION_NAME": {
"help": "DESCRIPTION",
"type": TYPE,
"default": VALUE,

},
}

def get_software_dependencies(self):
return super(ModuleInfo, self).get_software_dependencies() + [

Add your own dependencies to this list
]

def get_writer(self, output_name, output_dir, append=False):
if output_name == "NAME":

Instantiate a writer for this output, using the given output dir
and passing append in as a kwarg
return WRITER_CLASS(output_dir, append=append)

A bare-bones executor:

from pimlico.core.modules.map.multiproc import multiprocessing_executor_factory

def process_document(worker, archive_name, doc_name, *data):
Do something to process the document...

Return an object to send to the writer
return output

(continues on next page)

18 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

ModuleExecutor = multiprocessing_executor_factory(process_document)

Or getting slightly more sophisticated:

from pimlico.core.modules.map.multiproc import multiprocessing_executor_factory

def process_document(worker, archive_name, doc_name, *data):
Do something to process the document

Return a tuple of objects to send to each writer
If you only defined a single output, you can just return a single object
return output1, output2, ...

You don't have to, but you can also define pre- and postprocessing
both at the executor level and worker level

def preprocess(executor):
pass

def postprocess(executor, error=None):
pass

def set_up_worker(worker):
pass

def tear_down_worker(worker, error=None):
pass

ModuleExecutor = multiprocessing_executor_factory(
process_document,
preprocess_fn=preprocess, postprocess_fn=postprocess,
worker_set_up_fn=set_up_worker, worker_tear_down_fn=tear_down_worker,

)

1.1.7 Filter modules

Filter modules appear in pipeline config, but never get executed directly, instead producing their output on the fly when
it is needed.

There are two types of filter modules in Pimlico:

• All document map modules can be used as filters.

• Other modules may be defined in such a way that they always function as filters.

Using document map modules as filters

See this guide for how to create document map modules, which process each document in an input iterable corpus,
producing one document in the output corpus for each. Many of the core Pimlico modules are document map modules.

1.1. Pimlico guides 19

Pimlico Documentation, Release 0.9.25

Any document map module can be used as a filter simply by specifying filter=True in its options. It will then not
appear in the module execution schedule (output by the status command), but will get executed on the fly by any
module that uses its output. It will be initialized when the downstream module starts accessing the output, and then
the single-document processing routine will be run on each document to produce the corresponding output document
as the downstream module iterates over the corpus.

It is possible to chain together filter modules in sequence.

Other filter modules

Todo: Filter module guide needs to be updated for new datatypes. This section is currently completely wrong –
ignore it! This is quite a substantial change.

The difficulty of describing what you need to do here suggests we might want to provide some utilities to make this
easier!

A module can be defined so that it always functions as a filter by setting module_executable=False on its
module-info class. Pimlico will assume that its outputs are ready as soon as its inputs are ready and will not try to
execute it. The module developer must ensure that the outputs get produced when necessary.

This form of filter is typically appropriate for very simple transformations of data. For example, it might perform
a simple conversion of one datatype into another to allow the output of a module to be used as if it had a different
datatype. However, it is possible to do more sophisticated processing in a filter module, though the implementation is
a little more tricky (tar_filter is an example of this).

Defining

Define a filter module something like this:

class ModuleInfo(BaseModuleInfo):
module_type_name = "my_module_name"
module_executable = False # This is the crucial instruction to treat this as a

→˓filter
module_inputs = [] # Define inputs
module_outputs = [] # Define at least one output, which we'll produce as

→˓needed
module_options = {} # Any options you need

def instantiate_output_datatype(self, output_name, output_datatype, **kwargs):
Here we produce the desired output datatype,
using the inputs acquired from self.get_input(name)
return MyOutputDatatype()

You don’t need to create an execute.py, since it’s not executable, so Pimlico will not try to load a module executor.
Any processing you need to do should be put inside the datatype, so that it’s performed when the datatype is used
(e.g. when iterating over it), but not when instatiate_output_datatype() is called or when the datatype is
instantiated, as these happen every time the pipeline is loaded.

A trick that can be useful to wrap up functionality in a filter datatype is to define a new datatype that does the necessary
processing on the fly and to set its class attribute emulated_datatype to point to a datatype class that should be
used instead for the purposes of type checking. The built-in tar_filter module uses this trick.

Either way, you should take care with imports. Remember that the execute.py of executable modules is only
imported when a module is to be run, meaning that we can load the pipeline config without importing any dependencies

20 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

needed to run the module. If you put processing in a specially defined datatype class that has dependencies, make sure
that they’re not imported at the top of info.py, but only when the datatype is used.

1.1.8 Multistage modules

Multistage modules are used to encapsulate a module than is executed in several consecutive runs. You can think
of each stage as being its own module, but where the whole sequence of modules is always executed together. The
multistage module simply chains together these individual modules so that you only include a single module instance
in your pipeline definition.

One common example of a use case for multistage modules is where some fairly time-consuming preprocessing needs
to be done on an input dataset. If you put all of the processing into a single module, you can end up in an irritating
situation where the lengthy data preprocessing succeeds, but something goes wrong in the main execution code. You
then fix the problem and have to run all the preprocessing again.

Most obvious solution to this is to separate the preprocessing and main execution into two separate modules. But then,
if you want to reuse you module sometime in the future, you have to remember to always put the preprocessing module
before the main one in your pipeline (or infer this from the datatypes!). And if you have more than these two modules
(say, a sequence of several, or preprocessing of several inputs) this starts to make pipeline development frustrating.

A multistage module groups these internal modules into one logical unit, allowing them to be used together by includ-
ing a single module instance and also to share parameters.

Defining a multistage module

Component stages

The first step in defining a multistage module is to define its individual stages. These are actually defined in exactly
the same way as normal modules. (This means that they can also be used separately.)

If you’re writing these modules specifically to provide the stages of your multistage module (rather than tying together
already existing modules for convenience), you probably want to put them all in subpackages.

For an ordinary module, we used the directory structure:

src/python/myproject/modules/
__init__.py
mymodule/

__init__.py
info.py
execute.py

Now, we’ll use something like this:

src/python/myproject/modules/
__init__.py
my_ms_module/

__init__.py
info.py
module1/

__init__.py
info.py
execute.py

module2/
__init__.py

(continues on next page)

1.1. Pimlico guides 21

Pimlico Documentation, Release 0.9.25

(continued from previous page)

info.py
execute.py

Note that module1 and module2 both have the typical structure of a module definition: an info.py to define the
module-info, and an execute.py to define the executor. At the top level, we’ve just got an info.py. It’s in here
that we’ll define the multistage module. We don’t need an execute.py for that, since it just ties together the other
modules, using their executors at execution time.

Multistage module-info

With our component modules that constitute the stages defined, we now just need to tie them together. We do this by
defining a module-info for the multistage module in its info.py. Instead of subclassing BaseModuleInfo, as
usual, we create the ModuleInfo class using the factory function multistage_module().

ModuleInfo = multistage_module("module_name",
[

Stages to be defined here...
]

)

In other respects, this module-info works in the same way as usual: it’s a class (return by the factory) called
ModuleInfo in the info.py.

multistage_module() takes two arguments: a module name (equivalent to the module_name attribute of a
normal module-info) and a list of instances of ModuleStage.

Connecting inputs and outputs

Connections between the outputs and inputs of the stages work in a very similar way to connections between module
instances in a pipeline. The same type checking system is employed and data is passed between the stages (i.e. between
consecutive executions) as if the stages were separate modules.

Each stage is defined as an instance of ModuleStage:

[
ModuleStage("stage_name", TheModuleInfoClass, connections=[...], output_

→˓connections=[...])
]

The parameter connections defines how the stage’s inputs are connected up to either the outputs of previous
stages or inputs to the multistage module. Just like in pipeline config files, if no explicit input connections are given,
the default input to a stage is connected to the default output from the previous one in the list.

There are two classes you can use to define input connections.

InternalModuleConnection This makes an explicit connection to the output of another stage.

You must specify the name of the input (to this stage) that you’re connecting. You may specify the name of the
output to connect it to (defaults to the default output). You may also give the name of the stage that the output
comes from (defaults to the previous one).

[
ModuleStage("stage1", FirstInfo),
FirstInfo has an output called "corpus", which we connect explicitly to the

→˓next stage
(continues on next page)

22 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

We could leave out the "corpus" here, if it's the default output from
→˓FirstInfo

ModuleStage("stage2", SecondInfo, connections=[InternalModuleConnection("data
→˓", "corpus")]),

We connect the same output from stage1 to stage3
ModuleStage("stage3", ThirdInfo, connections=[InternalModuleConnection("data",

→˓ "corpus", "stage1")]),
]

ModuleInputConnection: This makes a connection to an input to the whole multistage module.

Note that you don’t have to explicitly define the multistage module’s inputs anywhere: you just mark certain
inputs to certain stages as coming from outside the multistage module, using this class.

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data")]),
ModuleStage("stage2", SecondInfo, [InternalModuleConnection("data", "corpus

→˓")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

Here, the module type FirstInfo has an input called raw_data. We’ve specified that this needs to come
in directly as an input to the multistage module – when we use the multistage module in a pipeline, it must be
connected up with some earlier module.

The multistage module’s input created by doing this will also have the name raw_data (specified using a
parameter input_raw_data in the config file). You can override this, if you want to use a different name:

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "data

→˓")]),
ModuleStage("stage2", SecondInfo, [InternalModuleConnection("data", "corpus

→˓")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

This would be necessary if two stages both had inputs called raw_data, which you want to come from different
data sources. You would then simply connect them to different inputs to the multistage module:

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "first_

→˓data")]),
ModuleStage("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_

→˓data")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

Conversely, you might deliberately connect the inputs from two stages to the same input to the multistage
module, by using the same multistage input name twice. (Of course, the two stages are not required to have
overlapping input names for this to work.) This will result in the multistage just requiring one input, which get
used by both stages.

[
ModuleStage("stage1", FirstInfo,

(continues on next page)

1.1. Pimlico guides 23

Pimlico Documentation, Release 0.9.25

(continued from previous page)

[ModuleInputConnection("raw_data", "first_data"),
→˓ModuleInputConnection("dict", "vocab")]),

ModuleStage("stage2", SecondInfo,
[ModuleInputConnection("raw_data", "second_data"),

→˓ModuleInputConnection("vocabulary", "vocab")]),
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1")]),
]

By default, the multistage module has just a single output: the default output of the last stage in the list. You
can specify any of the outputs of any of the stages to be provided as an output to the multistage module. Use the
output_connections parameter when defining the stage.

This parameter should be a list of instances of ModuleOutputConnection. Just like with input connections, if
you don’t specify otherwise, the multistage module’s output will have the same name as the output from the stage
module. But you can override this when giving the output connection.

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "first_data

→˓")]),
ModuleStage("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_data

→˓")],
output_connections=[ModuleOutputConnection("model")]), # This

→˓output will just be called "model"
ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",

→˓"stage1"),
output_connections=[ModuleOutputConnection("model", "stage3_model")]),

]

Module options

The parameters of the multistage module that can be specified when it is used in a pipeline config (those usually
defined in the module_options attribute) include all of the options to all of the stages. The option names are
simply <stage_name>_<option_name>.

So, in the above example, if FirstInfo has an option called threshold, the multistage module will have an
option stage1_threshold, which gets passed through to stage1 when it is run.

Often you might wish to specify one parameter to the multistage module that gets used by several stages. Say stage2
had a cutoff parameter and we always wanted to use the same value as the threshold for stage1. Instead
of having to specify stage1_threshold and stage2_cutoff every time in your config file, you can assign
a single name to an option (say threshold) for the multistage module, whose value gets passed through to the
appropriate options of the stages.

Do this by specifying a dictionary as the option_connections parameter to ModuleStage, whose keys are
names of the stage module type’s options and whose values are the new option names for the multistage module that
you want to map to those stage options. You can use the same multistage module option name multiple times, which
will cause only a single option to be added to the multistage module (using the definition from the first stage), which
gets mapped to multiple stage options.

To implement that above example, you would give:

[
ModuleStage("stage1", FirstInfo, [ModuleInputConnection("raw_data", "first_data

→˓")],

(continues on next page)

24 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

option_connections={"threshold": "threshold"}),
ModuleStage("stage2", SecondInfo, [ModuleInputConnection("raw_data", "second_data

→˓")],
[ModuleOutputConnection("model")],
option_connections={"cutoff": "threshold"}),

ModuleStage("stage3", ThirdInfo, [InternalModuleConnection("data", "corpus",
→˓"stage1"),

[ModuleOutputConnection("model", "stage3_model")]),
]

If you know that the different stages have distinct option name, or that they should always tie their values together
where their option names overlap, you can set use_stage_option_names=True on the stages. This will cause
the stage-name prefix not to be added to the option name when connecting it to the multistage module’s option.

You can also force this behaviour for all stages by setting use_stage_option_names=True when you call
multistage_module(). Any explicit option name mappings you provide via option_connections will
override this.

Running

To run a multistage module once you’ve used it in your pipeline config, you run one stage at a time, as if they were
separate module instances.

Say we’ve used the above multistage module in a pipeline like so:

[model_train]
type=myproject.modules.my_ms_module
stage1_threshold=10
stage2_cutoff=10

The normal way to run this module would be to use the run command with the module name:

./pimlico.sh mypipeline.conf run model_train

If we do this, Pimlico will choose the next unexecuted stage that’s ready to run (presumably stage1 at this point).
Once that’s done, you can run the same command again to execute stage2.

You can also select a specific stage to execute by using the module name <ms_module_name>:<stage_name>,
e.g. model_train:stage2. (Note that stage2 doesn’t actually depend on stage1, so it’s perfectly plausible
that we might want to execute them in a different order.)

If you want to execute multiple stages at once, just use this scheme to specify each of them as a module name for the
run command. Remember, Pimlico can take any number of modules and execute them in sequence:

./pimlico.sh mypipeline.conf run model_train:stage1 model_train:stage2

Or, if you want to execute all of them, you can use the stage name * or all as a shorthand:

./pimlico.sh mypipeline.conf run model_train:all

Finally, if you’re not sure what stages a multistage module has, use the module name <ms_module_name>:?. The
run command will then just output a list of stages and exit.

1.1.9 Running on multiple computers

1.1. Pimlico guides 25

Pimlico Documentation, Release 0.9.25

Multiple servers

In most of the examples, we’ve been setting up a pipeline, with a config file, some source code and some data, all on
one machine. Then we run each module in turn, checking that it has all the software and data that it needs to run.

But it’s not unusual to find yourself needing to process a dataset across different computers. For example, you have
access to a server with lots of CPUs and one module in your pipeline would benefit greatly from parallelizing lots of
little tasks over them. However, you don’t have permission to install software on that server that you need for another
module.

This is not a problem: you can simply put your config file and code on both machines. After running one module on
one machine, you copy over its output to the place on the other machine where Pimlico expects to find it. Then you’re
ready to run the next module on the second machine.

Pimlico is designed to handle this situation nicely.

• It doesn’t expect software requirements for all modules to be satisfied before you can run any of them.
Software dependencies are checked only for modules about to be run and the code used to execute a module is
not even loaded until you actually run the module.

• It doesn’t require you to execute your pipeline in order. If the output from a module is available where it’s
expected to be, you can happily run any modules that take that data as input, even if the pipeline up to that point
doesn’t appear to have been executed (e.g. if it’s been run on another machine).

• It provides you with tools to make it easier to copy data between machines. You can easily copy the output
data from one module to the appropriate location on another server, so it’s ready to be used as input to another
module there.

Copying data between computers

Let’s assume you’ve got your pipeline set up, with identical config files, on two computers: server_a and
server_b. You’ve run the first module in your pipeline, module1, on server_a and want to run the next,
module2, which takes input from module1, on server_b.

The procedure is as follows:

• Dump the data from the pipeline on server_a. This packages up the output data for a module in a single file.

• Copy the dumped file from server_a to server_b, in whatever way is most convenient, e.g., using scp.

• Load the dumped file into the pipeline on server_b. This unpacks the data directory for the file and puts it in
Pimlico’s data directory for the module.

For example, on server_a:

$./pimlico.sh pipeline.conf dump module1
$ scp ~/module1.tar.gz server_b:~/

Note that the dump command created a .tar.gz file in your home directory. If you want to put it somewhere else,
use the --output option to specify a directory. The file is named after the module that you’re dumping.

Now, log into server_b and load the data.

$./pimlico.sh pipeline.conf load ~/module1.tar.gz

Now module1’s output data is in the right place and ready for use by module2.

The dump and load commands can also process data for multiple modules at once. For example:

26 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

$ mkdir ~/modules
$./pimlico.sh pipeline.conf dump module1 ... module10 --output ~/modules
$ scp -r ~/modules server_b:~/

Then on server_b:

$./pimlico.sh pipeline.conf load ~/modules/*

Other issues

Aside from getting data between the servers, there are certain issues that often arise when running a pipeline across
multiple servers.

• Shared Pimlico codebase. If you share the directory that contains Pimlico’s code across servers (e.g.
NFS or rsync), you can have problems resulting from sharing the libraries it installs. See instructions
for using multiple virtualenvs for the solution.

• Shared home directory. If you share your home directory across servers, using the same .pimlico local
config file might be a problem. See Local configuration for various possible solutions.

1.1.10 Documenting your own code

Pimlico’s documentation is produced using Sphinx. The Pimlico codebase includes a tool for generating documenta-
tion of Pimlico’s built-in modules, including things like a table of the module’s available config options and its input
and outputs.

You can also use this tool yourself to generate documentation of your own code that uses Pimlico. Typically, you will
use in your own project some of Pimlico’s built-in modules and some of your own.

Refer to Sphinx’s documentation for how to build normal Sphinx documentation – writing your own ReST documents
and using the apidoc tool to generate API docs. Here we describe how to create a basic Sphinx setup that will generate
a reference for your custom Pimlico modules.

It is assumed that you’ve got a working Pimlico setup and have already successfully written some modules.

Basic doc setup

Create a docs directory in your project root (the directory in which you have pimlico/ and your own src/, etc).

Put a Sphinx conf.py in there. You can start from the very basic skeleton here.

You’ll also want a Makefile to build your docs with. You can use the basic Sphinx one as a starting point. Here's
a version of that that already includes an extra target for building your module docs.

Finally, create a root document for your documentation, index.rst. This should include a table of contents which
includes the generated module docs. You can use this one as a template.

Building the module docs

Take a look in the Makefile (if you’ve used our one as a starting point) and set the variables at the top to point to
the Python package that contains the Pimlico modules you want to document.

The make target there runs the tool modulegen in the Pimlico codebase. Just run, in the docs/:

1.1. Pimlico guides 27

http://www.sphinx-doc.org/en/stable/

Pimlico Documentation, Release 0.9.25

make modules

You can also do this manually:

python -m pimlico.utils.docs.modulegen --path python.path.to.modules modules/

(The Pimlico codebase must, of course, be importable. The simplest way to ensure this is to use Pimlico’s python
alias in its bin/ directory.)

There is now a set of .rst files in the modules/ output directory, which can be built using Sphinx by running make
html.

Your beautiful docs are now in the _build/ directory!

1.2 Core docs

A set of articles on the core aspects and features of Pimlico.

1.2.1 Downloading Pimlico

To start a new project using Pimlico, download the newproject.py script. It will create a template pipeline config file
to get you started and download the latest version of Pimlico to accompany it.

See Setting up a new project using Pimlico for more detail.

Pimlico’s source code is available on on Github.

Manual setup

If for some reason you don’t want to use the newproject.py script, you can set up a project yourself. Download
Pimlico from Github.

Simply download the whole source code as a .zip or .tar.gz file and uncompress it. This will produce a directory
called pimlico, followed by a long incomprehensible string, which you can rename simply pimlico.

Pimlico has a few basic dependencies, but these will be automatically downloaded the first time you load it.

1.2.2 Pipeline config

A Pimlico pipeline, as read from a config file (pimlico.core.config.PipelineConfig) contains all the
information about the pipeline being processed and provides access to specific modules in it. A config file looks much
like a standard .ini file, with sections headed by [section_name] headings, containing key-value parameters of
the form key=value.

Each section, except for vars and pipeline, defines a module instance in the pipeline. Some of these can be
executed, others act as filters on the outputs of other modules, or input readers.

Module instances

The main components of a pipeline config file are sections defining module instances. They load a module of a
particular type, giving a set of options controlling what it does and specifying inputs, connecting it up to the outputs
from previous modules.

28 Chapter 1. Contents

https://raw.githubusercontent.com/markgw/pimlico/master/admin/newproject.py
https://github.com/markgw/pimlico
https://github.com/markgw/pimlico

Pimlico Documentation, Release 0.9.25

Each section that defines a module has a type parameter. Usually, this is a fully-qualified Python package name that
leads to the module type’s Python code (that package containing the info Python module).

A typical module instance section looks like this:

[mymodule]
type=pimlico.modules.corpora.subset
input_corpus=corpus_module.some_output
size=100

Here the subset module is instantiated, with the option size=100, specifying how big a subset to create. This
module takes a single input, called corpus, which is here connected to the output of a previous module instance.
Inputs are connected using parameters of the form input_<input-name>. They give the name of a previous
module instance and, optionally, the name of the output of that module that we will get input from. (If not specified,
the module’s default output will be used.)

The documentation for each module gives details of:

• what options it can take, including their types and default values

• what inputs it takes and their datatypes

• what outputs it produces and their datatypes.

A large set of module types for different tasks, ranging from simple dataset manipulation to advanced natual
language processing or machine learning tasks, comes built into Pimlico and each is fully documented.

Many of the core modules are associated with test pipelines, which serve both as unit tests for the module and examples
of how it can be used.

A special type of module is alias. This simply defines a module alias – an alternative name for an already defined
module. It should have exactly one other parameter, input, specifying the name of the module we’re aliasing.

Special sections

• vars: May contain any variable definitions, to be used later on in the pipeline. Further down, expressions like
%(varname)s will be expanded into the value assigned to varname in the vars section.

• pipeline: Main pipeline-wide configuration. The following options are required for every pipeline:

– name: a single-word name for the pipeline, used to determine where files are stored

– release: the release of Pimlico for which the config file was written. It is considered compatible
with later minor versions of the same major release, but not with later major releases. Typically, a
user receiving the pipeline config will get hold of an appropriate version of the Pimlico codebase to
run it with.

Other optional settings:

– python_path: a path or paths, relative to the directory containing the config file, in which Python
modules/packages used by the pipeline can be found. Typically, a config file is distributed with a
directory of Python code providing extra modules, datatypes, etc. Multiple paths are separated by
colons (:).

Special variable substitutions

Certain variable substitutions are always available, in addition to those defined in vars sections. Use them anywhere
in your config file with an expression like %(varname)s (note the s at the end).

• pimlico_root: Root directory of Pimlico, usually the directory pimlico/ within the project directory.

1.2. Core docs 29

Pimlico Documentation, Release 0.9.25

• project_root: Root directory of the whole project. Current assumed to always be the parent directory of
pimlico_root.

• output_dir: Path to output dir (usually output in Pimlico root).

• home: Running user’s home directory (on Unix and Windows, see Python’s os.path.expanduser()).

• test_data_dir: Directory in Pimlico distribution where test data is stored (test/data in Pimlico root).
Used in test pipelines, which take all their input data from this directory.

For example, to point a parameter to a file located within the project root:

param=%(project_root)s/data/myfile.txt

Directives

Certain special directives are processed when reading config files. They are lines that begin with %%, followed by the
directive name and any arguments.

• variant: Allows a line to be included only when loading a particular variant of a pipeline. For more detail
on pipeline variants, see Pipeline variants.

The variant name is specified as part of the directive in the form: variant:variant_name. You may
include the line in more than one variant by specifying multiple names, separated by commas (and no
spaces). You can use the default variant “main”, so that the line will be left out of other variants. The rest
of the line, after the directive and variant name(s) is the content that will be included in those variants.

[my_module]
type=path.to.module
%%variant:main size=52
%%variant:smaller size=7

An alternative notation for the variant directive is provided to make config files more readable. Instead of
variant:variant_name, you can write (variant_name). So the above example becomes:

[my_module]
type=path.to.module
%%(main) size=52
%%(smaller) size=7

• novariant: A line to be included only when not loading a variant of the pipeline. Equivalent to
variant:main.

[my_module]
type=path.to.module
%%novariant size=52
%%variant:smaller size=7

• include: Include the entire contents of another file. The filename, specified relative to the config file in which
the directive is found, is given after a space.

• abstract: Marks a config file as being abstract. This means that Pimlico will not allow it to be loaded as a
top-level config file, but only allow it to be included in another config file.

• copy: Copies all config settings from another module, whose name is given as the sole argument. May be used
multiple times in the same module and later copies will override earlier. Settings given explicitly in the
module’s config override any copied settings.

30 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

All parameters are copied, including things like type. Any parameter can be overridden in the copying
module instance. Any parameter can be excluded from the copy by naming it after the module name.
Separate multiple exclusions with spaces.

The directive even allows you to copy parameters from multiple modules by using the directive multiple
times, though this is not very often useful. In this case, the values are copied (and overridden) in the order
of the directives.

For example, to reuse all the parameters from module1 in module2, only specifying them once:

[module1]
type=some.module.type
input=moduleA
param1=56
param2=never
param3=0.75

[module2]
Copy all params from module1
%%copy module1
Override the input module
input=moduleB

Multiple parameter values

Sometimes you want to write a whole load of modules that are almost identical, varying in just one or two parameters.
You can give a parameter multiple values by writing them separated by vertical bars (|). The module definition will
be expanded to produce a separate module for each value, with all the other parameters being identical.

For example, this will produce three module instances, all having the same num_lines parameter, but each with a
different num_chars:

[my_module]
type=module.type.path
num_lines=10
num_chars=3|10|20

You can even do this with multiple parameters of the same module and the expanded modules will cover all combina-
tions of the parameter assignments.

For example:

[my_module]
type=module.type.path
num_lines=10|50|100
num_chars=3|10|20

Tying alternatives

You can change the behaviour of alternative values using the tie_alts option. tie_alts=Twill cause parameters
within the same module that have multiple alternatives to be expanded in parallel, rather than taking the product of
the alternative sets. So, if option_a has 5 values and option_b has 5 values, instead of producing 25 pipeline
modules, we’ll only produce 5, matching up each pair of values in their alternatives.

1.2. Core docs 31

Pimlico Documentation, Release 0.9.25

[my_module]
type=module.type.path
tie_alts=T
option_a=1|2|3|4|5
option_b=one|two|three|four|five

If you want to tie together the alternative values on some parameters, but not others, you can specify groups of
parameter names to tie using the tie_alts option. Each group is separated by spaces and the names of parameters
to tie within a group are separated by | s. Any parameters that have alternative values but are not specified in one of
the groups are not tied to anything else.

For example, the following module config will tie together option_a’s alternatives with
option_b’s, but produce all combinations of them with option_c ‘s alternatives, resulting
in 3*2=6 versions of the module (my_module[option_a=1~option_b=one~option_c=x],
my_module[option_a=1~option_b=one~option_c=y], my_module[option_a=2~option_b=two~option_c=x],
etc).

[my_module]
type=module.type.path
tie_alts=option_a|option_b
option_a=1|2|3
option_b=one|two|three
option_c=x|y

Using this method, you must give the parameter names in tie_alts exactly as you specify them in the config. For
example, although for a particular module you might be able to specify a certain input (the default) using the name
input or a specific name like input_data, these will not be recognised as being the same parameter in the process
of expanding out the combinations of alternatives.

Naming alternatives

Each module will be given a distinct name, based on the varied parameters. If just one is varied, the names will
be of the form module_name[param_value]. If multiple parameters are varied at once, the names will be
module_name[param_name0=param_value0~param_name1=param_value1~...]. So, the first ex-
ample above will produce: my_module[3], my_module[10] and my_module[20]. And the second will pro-
duce: my_module[num_lines=10~num_chars=3], my_module[num_lines=10~num_chars=10],
etc.

You can also specify your own identifier for the alternative parameter values, instead of using the values themselves
(say, for example, if it’s a long file path). Specify it surrounded by curly braces at the start of the value in the alternatives
list. For example:

[my_module]
type=module.type.path
file_path={small}/home/me/data/corpus/small_version|{big}/home/me/data/corpus/big_

→˓version

This will result in the modules my_module[small] and my_module[big], instead of using the whole file path
to distinguish them.

An alternative approach to naming the expanded alternatives can be selected using the alt_naming parameter. The
default behaviour described above corresponds to alt_naming=full. If you choose alt_naming=pos, the
alternative parameter settings (using names where available, as above) will be distinguished like positional arguments,
without making explicit what parameter each value corresponds to. This can make for nice concise names in cases
where it’s clear what parameters the values refer to.

32 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

If you specify alt_naming=full explicitly, you can also give a further option
alt_naming=full(inputnames). This has the effect of removing the input_ from the start of named
inputs. This often makes for intuitive module names, but is not the default behaviour, since there’s no guarantee that
the input name (without the initial input_) does not clash with an option name.

Another possibility, which is occasionally appropriate, is alt_naming=option(<name>), where <name> is the
name of an option that has alternatives. In this case, the names of the alternatives for the whole module will be taken
directly from the alternative names on that option only. (E.g. specified by {name} or inherited from a previous
module, see below). You may specify multiple option names, separated by commas, and the corresponding alt names
will be separated by ~. If there’s only one option with alternatives, this is equivalent to alt_naming=pos. If there
are multiple, it might often lead to name clashes. The circumstance in which this is most commonly appropriate is
where you use tie_alts=T, so it’s sufficient to distinguish the alternatives by the name associated with just one
option.

Expanding alternatives down the pipeline

If a module takes input from a module that has been expanded into multiple versions for alternative parameter values, it
too will automatically get expanded, as if all the multiple versions of the previous module had been given as alternative
values for the input parameter. For example, the following will result in 3 versions of my_module (my_module[1],
etc) and 3 corresponding versions of my_next_module (my_next_module[1], etc):

[my_module]
type=module.type.path
option_a=1|2|3

[my_next_module]
type=another.module.type.path
input=my_module

Where possible, names given to the alternative parameter values in the first module will be carried through to the next.

Structure: headed sections

By default, a pipeline is ultimately just a list of modules. The status command will show a long list of all the
modules. In some cases, this can get very long and difficult to navigate.

You can add structure to your pipeline by adding section headings. This is done by starting comments with multiple
‘‘#‘‘s. In other words, the headings are part of the comments that come in between modules.

Headings follow Markdown-style formatting (only the atx-style, not Setext). Since our comments begin with #``s,
the first ``# does not denote a heading. Subsequet ‘‘#‘‘s produce further nested levels of headings.

Data pre-processing
In this section, we will pre-process the data.
Note that the line with a ## at the start is a heading.
These subsequent ones are not - they are just comments.

Pre-processing step 1
This is a sub-section
[my_module]
type=module.type.path

When you run the status command now, you will see the section headings collapsed by default. You can expand
individual sections, or everything, using the command’s options.

1.2. Core docs 33

https://daringfireball.net/projects/markdown/syntax

Pimlico Documentation, Release 0.9.25

Use --expand-all (-xa) to expand the full tree of section headings and show all modules. Use --expand (-x)
with a section number (get this from the collapsed tree) to expand a given section. E.g. ./pimlico.sh myconf.
conf status -x 2.3.1. You can given multiple sections by repeating the -x option.

You can also expand a full subtree of a given section by ending the section number with a dot. ./pimlico.sh
myconf.conf status -x 2.3..

Module variables: passing information through the pipeline

When a pipeline is read in, each module instance has a set of module variables associated with it. In your config
file, you may specify assignments to the variables for a particular module. Each module inherits all of the variable
assignments from modules that it receives its inputs from.

The main reason for having module variables it to be able to do things in later modules that depend on what path
through the pipeline an input came from. Once you have defined the sequence of processing steps that pass module
variables through the pipeline, apply mappings to them, etc, you can use them in the parameters passed into modules.

Basic assignment

Module variables are set by including parameters in a module’s config of the form modvar_<name> = <value>.
This will assign value to the variable name for this module. The simplest form of assignment is just a string literal,
enclosed in double quotes:

[my_module]
type=module.type.path
modvar_myvar = "Value of my variable"

Names of alternatives

Say we have a simple pipeline that has a single source of data, with different versions of the dataset for different
languages (English and Swedish). A series of modules process each language in an identical way and, at the end,
outputs from all languages are collected by a single summary module. This final module may need to know what
language each of its incoming datasets represents, so that it can output something that we can understand.

The two languages are given as alternative values for a parameter path, and the whole pipeline gets automatically
expanded into two paths for the two alternatives:

34 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

The summary module gets its two inputs for the two different languages as a multiple-input: this means we could
expand this pipeline to as many languages as we want, just by adding to the input_src module’s path parameter.

However, as far as summary is concerned, this is just a list of datasets – it doesn’t know that one of them is English
and one is Swedish. But let’s say we want it to output a table of results. We’re going to need some labels to identify
the languages.

The solution is to add a module variable to the first module that takes different values when it gets expanded into two
modules. For this, we can use the altname function in a modvar assignment: this assigns the name of the expanded
module’s alternative for a given parameter that has alternatives in the config.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)

Now the expanded module input_src[en] will have the module variable lang="en" and the Swedish version
lang="sv". This value gets passed from module to module down the two paths in the pipeline.

Other assignment syntax

A further function map allows you to apply a mapping to a value, rather like a Python dictionary lookup. Its first
argument is the value to be mapped (or anything that expands to a value, using modvar assignment syntax). The
second is the mapping. This is simply a space-separated list of source-target mappings of the form source ->
target. Typically both the sources and targets will be string literals.

Now we can give our languages legible names. (Here we’re splitting the definition over multiple indented lines, as
permitted by config file syntax, which makes the mapping easier to read.)

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=map(

altname(path),
"en" -> "English"
"sv" -> "Svenska")

1.2. Core docs 35

Pimlico Documentation, Release 0.9.25

The assignments may also reference variable names, including those previously assigned to in the same module and
those received from the input modules.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
modvar_lang_name=map(

lang,
"en" -> "English"
"sv" -> "Svenska")

If a module gets two values for the same variable from multiple inputs, the first value will simply be overridden by the
second. Sometimes it’s useful to map module variables from specific inputs to different modvar names. For example,
if we’re combining two different languages, we might need to keep track of what the two languages we combined
were. We can do this using the notation input_name.var_name, which refers to the value of module variable
var_name that was received from input input_name.

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)

[combiner]
type=my.language.combiner
input_lang_a=lang_data
input_lang_b=lang_data
modvar_first_lang=lang_a.lang
modvar_second_lang=lang_b.lang

If a module inherits multiple values for the same variable from the same input (i.e. a multiple-input), they are all kept
and treated as a list. The most common way to then use the values is via the join function. Like Python’s string.
join, this turns a list into a single string by joining the values with a given separator string. Use join(sep,
list) to join the values coming from some list modvar list on the separator sep.

You can get the number of values in a list modvar using len(list), which works just like Python’s len().

Use in module parameters

To make something in a module’s execution dependent on its module variables, you can insert them into module
parameters.

For example, say we want one of the module’s parameters to make use of the lang variable we defined above:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
some_param=$(lang)

Note the difference to other variable substitutions, which use the %(varname)s notation. For modvars, we use the
notation $(varname).

We can also put the value in the middle of other text:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
some_param=myval-$(lang)-continues

36 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

The modvar processing to compute a particular module’s set of variable assignments is performed before the substitu-
tion. This means that you can do any modvar processing specific to the module instance, in the various ways defined
above, and use the resulting value in other parameters. For example:

[input_src]
path={en}/to/english | {sv}/to/swedish
modvar_lang=altname(path)
modvar_mapped_lang=map(lang,

"en" -> "eng"
"sv" -> "swe"

)
some_param=$(mapped_lang)

You can also place in the $(...) construct any of the variable processing operations shown above for assignments
to module variables. This is a little more concise than first assigning values to modvars, if you don’t need to use the
variables again anywhere else. For example:

[input_src]
path={en}/to/english | {sv}/to/swedish
some_param=$(map(altname(path)),

"en" -> "eng"
"sv" -> "swe"

))

Usage in module code

A module’s executor can also retrieve the values assigned to module variables from the module_variables at-
tribute of the module-info associated with the input dataset. Sometimes this can be useful when you are writing
your own module code, though the above usage to pass values from (or dependent on) module variables into module
parameters is more flexible, so should generally be preferred.

Code in executor
This is a MultipleInput-type input, so we get a list of datasets
datasets = self.info.get_input()
for d in datasets:

language = d.module.module_variables["lang"]

1.2.3 Pipeline variants

You can create several different versions of a pipeline, called pipeline variants in a single config file. The data
corresponding to each will be kept completely separate. This is useful when you want multiple versions of a pipeline
that are almost identical, but have some small differences.

The most common use of this, though by no means the only, is to create a variant that is faster to run than the main
pipeline for the purposes of quickly testing the whole pipeline during development.

Every pipeline has by default one variant, called main. You define other variants simply by using special directives
to mark particular lines as belonging to a particular variant. Lines with no variant marking will appear in all variants.

Loading variants

If you don’t specify otherwise when loading a pipeline, the main variant will be loaded. Use the --variant
parameter (or -v) to specify another variant by name:

1.2. Core docs 37

Pimlico Documentation, Release 0.9.25

./pimlico.sh mypipeline.conf -v smaller status

To see a list of all available variants of a particular pipeline, use the variants command:

./pimlico.sh mypipeline.conf variants

Variant directives

Directives are processed when a pipeline config file is read in, before the file is parsed to build a pipeline. They
are lines that begin with %%, followed by the directive name and any arguments. See Directives for details of other
directives.

• variant: This line will be included only when loading a particular variant of a pipeline.

The variant name is specified in the form: variant:variant_name. You may include the line in
more than one variant by specifying multiple names, separated by commas (and no spaces). You can use
the default variant “main”, so that the line will be left out of other variants. The rest of the line, after the
directive and variant name(s) is the content that will be included in those variants.

[my_module]
type=path.to.module
%%variant:main size=52
%%variant:smaller size=7

An alternative notation makes config files more readable. Instead of %%variant:variant_name,
write %%(variant_name). So the above example becomes:

[my_module]
type=path.to.module
%%(main) size=52
%%(smaller) size=7

• novariant: A line to be included only when not loading a variant of the pipeline. Equivalent to
variant:main.

[my_module]
type=path.to.module
%%novariant size=52
%%variant:smaller size=7

Example

The following example config file, defines one variant, small, aside from the default main variant.

[pipeline]
name=myvariants
release=0.8
python_path=%(project_root)s/src/python

Load a dataset
[input_data]
type=pimlico.modules.input.text.raw_text_files
files=%(home)s/data/*

(continues on next page)

38 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

For the small version, we cut down the dataset to just 10 documents
We don't need this module at all in the main variant
%%(small) [small_data]
%%(small) type=pimlico.modules.corpora.subset
%%(small) size=10

Tokenize the text
Control where the input data comes from in the different variants
The main variant simply uses the full, uncut corpus
[tokenize]
type=pimlico.modules.text.simple_tokenize
%%(small) input=small_data
%%(main) input=input_data

The main variant will be loaded if you don’t specify otherwise. In this version the module small_data doesn’t exist
at all and tokenize takes its input from input_data.

./pimlico.sh myvariants.conf status

You can load the small variant by giving its name on the command line. This includes the small_data module and
tokenize gets its input from there, making it much faster to test.

./pimlico.sh myvariants.conf -v small status

1.2.4 Pimlico module structure

This document describes the code structure for Pimlico module types in full.

For a basic guide to writing your own modules, see Writing Pimlico module types.

Todo: Finish the missing parts of this doc below

For many generic or common tasks, you can use one of Pimlico’s built-in module types, but often you will
want to write your own module code to do some of the processing in your pipeline.

The module-writing guide takes you through how to write your own module type and use it in your pipeline. This
document is a more comprehesive documentation of the structure of module definitions and execution code.

Code layout

A module is defined by a Python package containing at least two Python files (i.e. Python modules):

• info.py. This contains a class called ModuleInfo that provides all the structural information about a
module: its inputs, outputs, options, etc. This is instantiated for each module of this type in a pipeline when the
pipeline is loaded.

• execute.py. This contains a class called ModuleExecutor that has a method that is called when the
module is run. The execute Python module is only imported when a module is about to be run, so is free to
contain package imports that depend on having special software packages installed.

You should take care when writing info.py not to import any non-standard Python libraries or have any time-
consuming operations that get run when it gets imported, as it’s loaded whenever a pipeline containing that module
type is loaded up, when checking module status for example, before software dependencies are resolved.

1.2. Core docs 39

Pimlico Documentation, Release 0.9.25

execute.py, on the other hand, will only get imported when the module is to be run, after dependency checks.

Pimlico provides a wizard in the newmodule command that guides you through the most common tasks in creating a
new module. At the end, it will generate a template to get you started with your module’s code. You then just need to
fill in the gaps and write the code for what the module actually does. It does not, however, cover every type of module
definition that you might want – just the most common cases.

Metadata: info.py

The ModuleInfo

Module metadata (everything apart from what happens when it’s actually run) is defined in info.py as a class called
ModuleInfo. Let’s take the built-in module corpus_stats – which counts up tokens, sentences, etc in a corpus
– as an example. (It’s slightly modified here for the example.)

from pimlico.core.modules.base import BaseModuleInfo
from pimlico.datatypes import GroupedCorpus, NamedFile
from pimlico.datatypes.corpora.tokenized import TokenizedDocumentType

class ModuleInfo(BaseModuleInfo):
module_type_name = "corpus_stats"
module_readable_name = "Corpus statistics"
module_inputs = [("corpus", GroupedCorpus(TokenizedDocumentType()))]
module_outputs = [("stats", NamedFile("stats.json"))]
module_options = {

"min_sent_len": {
"type": int,
"help": "Filter out any sentences shorter than this length",

}
}

The ModuleInfo should always be a subclass of BaseModuleInfo. There are some subclasses that you might
want to use instead (e.g., see Writing document map modules), but here we just use the basic one.

Certain class-level attributes should pretty much always be overridden:

• module_type_name: A name used to identify the module internally

• module_readable_name: A human-readable short description of the module

• module_inputs: Most modules need to take input from another module (though not all)

• module_outputs: Describes the outputs that the module will produce, which may then be used as inputs to
another module

Inputs

Inputs are given as pairs (name, type), where name is a short name to identify the input and type is the datatype
that the input is expected to have. Here, and most commonly, this is an instance of a subclass of PimlicoDatatype.
Pimlico will check that any dataset supplied for this input is of a compatible datatype.

Here we take just a single input. It is a corpus of the standard type that Pimlico uses for sequential document corpora
GroupedCorpus. More specifically, it is a corpus with a document type of TokenizedDocumentType, or some
sub-type.

40 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Outputs

Outputs are given in a similar way. It is up to the module’s executor (see below) to ensure that these outputs get
written, but the ModuleInfo describes the datatypes that will be produced, so that we can use them as input to other
modules.

In the example, we produce a single file containing the output of the analysis.

Once a module has been instantiated, its output names and types are available in its available_outputs attribute,
which can be consulted by its executor and which is used for typechecking connections to later modules and loading
the output datasets produced by the module.

Output groups

A module’s outputs have no structure: each module just has a list of outputs identified by their names. The don’t
typically even have any particular order.

However, sometimes it can be useful to group together some of the outputs, so that they can easily be used later
collectively. Say, for example, a module produces three corpora, each as a separate output, and also a NamedFile
output containing some analysis. It is useful to be able to refer to the corpora as a group, rather than having to list
them each by name, if for instance you are using all three to feed into a multiple-input to a later module. This becomes
particularly important if the number of output corpora is not even statically defined: see below for how the number of
outputs might depend on inputs and options.

A module can define named groups of outputs. Every module, by default, has a single module group, called "all".

Once a module info has been instantiated, it has an attribute output_groups listing the groups. Each group is
specified as (group_name, [output_name1, ...]).

In a config file, an output group name can be used in the same way as a single output name to specify where inputs to
a module will come from: module_name.output_group_name. If a group name is given, instead of a single
output name, it will be expanded into a comma-separated list of output names corresponding to that group. Of course,
this will only work if the input in question is a multiple-input, allowing it to accept a comma-separated list of datasets
as input.

Alternatively, you may use an output group to provide alternative datasets for an input, just as you usually would us-
ing |``s. If you use ``altgroup(module_name.output_group_name) as an input to a module, it
will be expanded to module_name.output_name1|module_name.output_name2|:... to provide each
output in the group as an alternative input. (See Pipeline config for more on alternative inputs and parameters.)

Output groups are defined by the class attribute module_output_groups on the module info class and may be
extended by overriding build_output_groups() to add more output groups containing further outputs added
dependent on options and inputs.

Optional outputs

Todo: Document optional outputs.

Should include choose_optional_outputs_from_options(options, inputs) for deciding what optional outputs to include.

1.2. Core docs 41

Pimlico Documentation, Release 0.9.25

Outputs dependent on options

A module info can supply output names/types that are dependent on the module instance’s inputs and options. This
is done by overriding the method provide_further_outputs(). It is called once the ModuleInfo instance’s
inputs and options attributes have already been set and preprocessed.

It returns a list just like the statically defined module_outputs attribute: pairs of (output_name,
datatype_instance). Once the module info has been instantiated for a particular module in a pipeline, these
outputs will be available in the available_outputs attribute, just like any that were defined statically.

If you override provide_further_outputs(), you should also give it a docstring describing the further outputs
that may be added, how they are named and under what conditions they are added. This string will be included in the
generated documentation for the module, underneath the table of outputs.

Options

Most modules define some options that provided control over exactly what the module does when executed. The
values for these can be specified in the pipeline config file. When the ModuleInfo is instantiated, the processed
options will be available in its options attribute.

In the example, there is one option that can be specified in the config file, like this:

[mymod]
type=pimlico.modules.corpora.corpus_stats
input=some_previous_mod
min_sent_len=5

The option definition provides some help text explaining what the option does, which is included in the module’s
documentation, which can be automatically produced using Sphinx (see Documenting your own code).

Its value can be accessed from within the executor’s execute() method using: self.info.
options["min_sent_len"]. By this point, the value from the config file has been checked and preprocessed,
so it is an int.

Todo: Fully document module options, including: required, type checking/processing and other fancy features.

Software dependencies

Many modules rely on external Python packages or other software for their execution. The ModuleInfo specifies
exactly what software is required in such a way that Pimlico can:

• check whether the software is available and runable;

• if possible, install the software if it’s not available (e.g. Python packages installable via Pip);

• otherwise, provide instructions on how to install it;

• in some special cases, run initalization or other preparatory routines before the external software is loaded/run.

Todo: Further document specification of software dependencies

More extensive documentation of the Pimlico dependency system is provided in Module dependencies.

42 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Execution: execute.py

Todo: This section is copied from Pimlico module structure. It needs to be re-written to provide more technical and
comprehensive documentation of module execution.

Here is a sample executor for the module info given above, placed in the file execute.py.

from pimlico.core.modules.base import BaseModuleExecutor
from pimlico.datatypes.arrays import NumpyArrayWriter
from sklearn.decomposition import NMF

class ModuleExecutor(BaseModuleExecutor):
def execute(self):

input_matrix = self.info.get_input("matrix").array
self.log.info("Loaded input matrix: %s" % str(input_matrix.shape))

Convert input matrix to CSR
input_matrix = input_matrix.tocsr()
Initialize the transformation
components = self.info.options["components"]
self.log.info("Initializing NMF with %d components" % components)
nmf = NMF(components)

Apply transformation to the matrix
self.log.info("Fitting NMF transformation on input matrix" % transform_type)
transformed_matrix = transformer.fit_transform(input_matrix)

self.log.info("Fitting complete: storing H and W matrices")
Use built-in Numpy array writers to output results in an appropriate format
with NumpyArrayWriter(self.info.get_absolute_output_dir("w")) as w_writer:

w_writer.set_array(transformed_matrix)
with NumpyArrayWriter(self.info.get_absolute_output_dir("h")) as h_writer:

h_writer.set_array(transformer.components_)

The executor is always defined as a class in execute.py called ModuleExecutor. It should always be a subclass
of BaseModuleExecutor (though, again, note that there are more specific subclasses and class factories that we
might want to use in other circumstances).

The execute() method defines what happens when the module is executed.

The instance of the module’s ModuleInfo, complete with options from the pipeline config, is available as self.
info. A standard Python logger is also available, as self.log, and should be used to keep the user updated on
what’s going on.

Getting hold of the input data is done through the module info’s get_input() method. In the case of a Scipy
matrix, here, it just provides us with the matrix as an attribute.

Then we do whatever our module is designed to do. At the end, we write the output data to the appropriate output
directory. This should always be obtained using the get_absolute_output_dir() method of the module info,
since Pimlico takes care of the exact location for you.

Most Pimlico datatypes provide a corresponding writer, ensuring that the output is written in the correct format for it
to be read by the datatype’s reader. When we leave the with block, in which we give the writer the data it needs, this
output is written to disk.

1.2. Core docs 43

Pimlico Documentation, Release 0.9.25

Pipeline config

Pipeline config files are fully documented in Pipeline config. Refer to that for all the details of how modules can be
used in pipelines.

Todo: This section is copied from Pimlico module structure. It needs to be re-written to provide more technical and
comprehensive documentation of pipeline config. NB: config files are fully documented in Pipeline config, so this just
covers how ModuleInfo relates to the config.

Our module is now ready to use and we can refer to it in a pipeline config file. We’ll assume we’ve prepared a suitable
Scipy sparse matrix earlier in the pipeline, available as the default output of a module called matrix. Then we can
add section like this to use our new module:

[matrix]
...(Produces sparse matrix output)...

[factorize]
type=myproject.modules.nmf
components=300
input=matrix

Note that, since there’s only one input, we don’t need to give its name. If we had defined multiple inputs, we’d need
to specify this one as input_matrix=matrix.

You can now run the module as part of your pipeline in the usual ways.

1.2.5 Datatypes

A core concept in Pimlico is the datatype. All inputs and outputs to modules are associated with a datatype and
typechecking ensures that outputs from one module are correctly matched up with inputs to the next.

Datatypes also provide interfaces for reading and writing datasets. They provide different ways of reading in or
iterating over datasets and different ways to write out datasets, as appropriate to the datatype. They are used by
Pimlico to typecheck connections between modules to make sure that the output from one module provides a suitable
type of data for the input to another. They are then also used by the modules to read in their input data coming from
earlier in a pipeline and to write out their output data, to be passed to later modules.

As much as possible, Pimlico pipelines should use standard datatypes to connect up the output of modules
with the input of others. Most datatypes have a lot in common, which should be reflected in their sharing common
base classes. Input modules take care of reading in data from external sources and they provide access to that data in
a way that is identified by a Pimlico datatype.

Class structure

Instances of subclasses of PimlicoDatatype represent the type of datasets and are used for typechecking in
a pipeline. Each datatype has an associated Reader class, accessed by datatype_cls.Reader. These are
created automatically and can be instantiated via the datatype instance (by calling it). They are all subclasses of
PimlicoDatatype .Reader.

It is these readers that are used within a pipeline to read a dataset output by an earlier module. In some cases, other
readers may be used: for example, input modules provide standard datatypes at their outputs, but use special readers
to provide access to the external data via the same interface as if the data had been stored within the pipeline.

A similar reflection of the datatype hierarchy is used for dataset writers, which are used to write the outputs from
modules, to be passed to subsequent modules. These are created automatically, just like readers, and are all subclasses

44 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

of PimlicoDatatype .Writer. You can get a datatype’s standard writer class via datatype_cls.Writer.
Some datatypes might not provide a writer, but most do.

Note that you do not need to subclass or instantiate Reader, Writer or Setup classes yourself: subclasses are
created automatically to correspond to each reader type. You can, however, add functionality to any of them by
defining a nested class of the same name. It will automatically inherit from the parent datatype’s corresponding class.

Readers

Most of the time, you don’t need to worry about the process of getting hold of a reader, as it is done for you by the
module. From within a module executor, you will usually do this:

reader = self.info.get_input("input_name")

reader is an instance of the datatype’s Reader class, or some other reader class providing the same interface. You
can use it to access the data, for example, iterating over a corpus, or reading in a file, depending on the datatype.

The follow guides describe the process that goes on internally in more detail.

Reader creation

The process of instantiating a reader for a given datatype is as follows:

1. Instantiate the datatype. A datatype instance is always associated with a module input (or output), so you rarely
need to do this explicitly.

2. Use the datatype to instantiate a reader setup, by calling it.

3. Use the reader setup to check that the data is ready to reader by calling ready_to_read().

4. If the data is ready, use the reader setup to instantiate a reader, by calling it.

Reader setup

Reader setup classes provide any functionality relating to a reader needed before it is ready to read and instantiated.
Like readers and writers, they are created automatically, so every Reader class has a Setup nested class.

Most importantly, the setup instance provides the ready_to_read() method, which indicates whether the reader
is ready to be instantiated.

The standard implementation, which can be used in almost all cases, takes a list of possible paths to the dataset at
initialization and checks whether the dataset is ready to be read from any of them. You generally don’t need to
override ready_to_read() with this, but just data_ready(path), which checks whether the data is ready to
be read in a specific location. You can call the parent class’ data-ready checks using super: super(MyDatatype.
Reader.Setup, self).data_ready(path).

The whole Setup object will be passed to the corresponding Reader’s init, so that it has access to data locations,
etc. It can then be accessed as reader.setup.

Subclasses may take different init args/kwargs and store whatever attributes are relevant for preparing their corre-
sponding Reader. In such cases, you will usually override a ModuleInfo’s get_output_reader_setup()
method for a specific output’s reader preparation, to provide it with the appropriate arguments. Do this by calling
the Reader class’ get_setup(*args, **kwargs) class method, which passes args and kwargs through to the
Setup’s init.

1.2. Core docs 45

Pimlico Documentation, Release 0.9.25

You can add functionality to a reader’s setup by creating a nested Setup class. This will inherit from the parent
reader’s setup. This happens automatically – you don’t need to do it yourself and shouldn’t inherit from anything. For
example:

class MyDatatype(PimlicoDatatype):
class Reader:

Overide reader things here

class Setup:
Override setup things here
E.g.:
def data_ready(path):

Parent checks: usually you want to do this
if not super(MyDatatype.Reader.Setup, self).data_ready(path):

return False
Check whether the data's ready according to our own criteria
...
return True

Instantiate a reader setup of the relevant type by calling the datatype. Args and kwargs will be passed through to the
Setup class’ init. They may depend on the particular setup class, but typically one arg is required, which is a list of
paths where the data may be found.

Reader from setup

You can use the reader setup to get a reader, once the data is ready to read.

This is done by simply calling the setup, with the pipeline instance as the first argument and, optionally, the name of
the module that’s currently being run. (If given, this will be used in error output, debugging, etc.)

The procedure then looks something like this:

datatype = ThisDatatype(options...)
Most of the time, you will pass in a list of possible paths to the data
setup = datatype(possible_paths_list)
Now check whether the data is ready to read
if setup.ready_to_read():

reader = setup(pipeline, module="pipeline_module")

Creating a new datatype

This is the typical process for creating a new datatype. Of course, some datatypes do more, and some of the following
is not always necessary, but it’s a good guide for reference.

1. Create the datatype class, which may subclass PimlicoDatatype or some other existing datatype.

2. Specify a datatype_name as a class attribute.

3. Specify software dependencies for reading the data, if any, by overriding
get_software_dependencies() (calling the super method as well).

4. Specify software dependencies for writing the data, if any that are not among the reading dependencies, by
overriding get_writer_software_dependencies().

5. Define a nested Reader class to add any methods to the reader for this datatype. The data should be read from
the directory given by its data_dir. It should provide methods for getting different bits of the data, iterating
over it, or whatever is appropriate.

46 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

6. Define a nested Setup class within the reader with a data_ready(base_dir) method to check whether
the data in base_dir is ready to be read using the reader. If all that this does is check the exis-
tence of particular filenames or paths within the data dir, you can instead implement the Setup class’
get_required_paths() method to return the paths relative to the data dir.

7. Define a nested Writer class in the datatype to add any methods to the writer for this datatype. The data
should be written to the path given by its data_dir. Provide methods that the user can call to write things to
the dataset. Required elements of the dataset should be specified as a list of strings as the required_tasks
attribute and ticked off as written using task_complete()

8. You may want to specify:

• datatype_options: an OrderedDict of option definitions

• shell_commands: a list of shell commands associated with the datatype

Defining reader functionality

Naturally, different datatypes provide different ways to access their data. You do this by (implicitly) overriding the
datatype’s Reader class and adding methods to it.

As with Setup and Writer classes, you do not need to subclass the Reader explicitly yourself: subclasses are
created automatically to correspond to each datatype. You add functionality to a datatype’s reader by creating a nested
Reader class, which inherits from the parent datatype’s reader. This happens automatically – your nested class
shouldn’t inherit from anything:

class MyDatatype(PimlicoDatatype):
class Reader:

Override reader things here
def get_some_data(self):

Do whatever you need to do to provide access to the dataset
You probably want to use the attribute 'data_dir' to retrieve files
For example:
with open(os.path.join(self.data_dir, "my_file.txt")) as f:

some_data = f.read()
return some_data

1.2.6 Module dependencies

In a Pimlico pipeline, you typically use lots of different external software packages. Some are Python packages, others
system tools, Java libraries, whatever. Even the core modules that core with Pimlico between them depend on a huge
amount of software.

Naturally, we don’t want to have to install all of this software before you can run even a simple Pimlico pipeline that
doesn’t use all (or any) of it. So, we keep the core dependencies of Pimlico to an absolute minimum, and then check
whether the necessary software dependencies are installed each time a pipeline module is going to be run.

Core dependencies

Certain dependencies are required for Pimlico to run at all, or needed so often that you wouldn’t get far without
installing them. These are defined in pimlico.core.dependencies.core, and when you run the Pimlico
command-line interface, it checks they’re available and tries to install them if they’re not.

1.2. Core docs 47

Pimlico Documentation, Release 0.9.25

Module dependencies

Each module type defines its own set of software dependencies, if it has any. When you try to run the module, Pimlico
runs some checks to try to make sure that all of these are available.

If some of them are not, it may be possible to install them automatically, straight from Pimlico. In particular, many
Python packages can be very easily installed using Pip. If this is the case for one of the missing dependencies, Pimlico
will tell you in the error output, and you can install them using the install command (with the module name/number
as an argument).

Virtualenv

In order to simplify automatic installation, Pimlico is always run within a virtual environment, using Virtualenv. This
means that any Python packages installed by Pip will live in a local directory within the Pimlico codebase that you’re
running and won’t interfere with anything else on your system.

When you run Pimlico for the first time, it will create a new virtualenv for this purpose. Every time you run it after
that, it will use this same environment, so anything you install will continue to be available.

Custom virtualenv

Most of the time, you don’t even need to be aware of the virtualenv that Python’s running in1. Under certain circum-
stances, you might need to use a custom virtualenv.

For example, say you’re running your pipeline over different servers, but have the pipeline and Pimlico codebase on a
shared network drive. Then you can find that the software installed in the virtualenv on one machine is incompatible
with the system-wide software on the other.

You can specify a name for a custom virtualenv using the environment variable PIMENV. The first time you run
Pimlico with this set, it will automatically create the new virtualenv.

$ PIMENV=myenv ./pimlico.sh mypipeline.conf status

Replace myenv with a name that better reflects its use (e.g. name of the server).

Every time you run Pimlico on that server, set the PIMENV environment variable in the same way.

In case you want to get to the virtualenv itself, you can find it in pimlico/lib/virtualenv/myenv.

Note: Pimlico previously used another environment variable VIRTUALENV, which gave a path to the virtualenv. You
can still use this, but, unless you have a good reason to, it’s easier to use PIMENV.

Defining module dependencies

Todo: Describe how module dependencies are defined for different types of deps

1 If you’re interested, it lives in pimlico/lib/virtualenv/default

48 Chapter 1. Contents

https://pypi.python.org/pypi/pip
https://virtualenv.pypa.io/en/stable/

Pimlico Documentation, Release 0.9.25

Some examples

Todo: Include some examples from the core modules of how deps are defined and some special cases of software
fetching

1.2.7 Local configuration

As well as knowing about the pipeline you’re running, Pimlico also needs to know some things about the setup of the
system on which you’re running it. This is completely independent of the pipeline config: the same pipeline can be
run on different systems with different local setups.

A couple of settings must always be provided for Pimlico: the long-term and short-term stores (see Data stores
below). Other system settings may be specified as necessary. (At the time of writing, there aren’t any, but they will be
documented here as they arise.) See Other Pimlico settings below.

Specific modules may also have system-level settings. For example, a module that calls an external tool may need to
know the location of that tool, or how much memory it can use on this system. Any that apply to the built-in Pimlico
modules are listed below in Settings for built-in modules.

Local config file location

Pimlico looks in various places to find the local config settings. Settings are loaded in a particular order,
overriding earlier versions of the same setting as we go (see pimlico.core.config.PipelineConfig.
load_local_config()).

Settings are specified with the following order of precedence (those later override the earlier):

local config file < host-specific config file < cmd-line overrides

Most often, you’ll just specify all settings in the main local config file. This is a file in your home directory named
.pimlico. This must exist for Pimlico to be able to run at all.

Host-specific config

If you share your home directory between different computers (e.g. a networked filesystem), the above setup could
cause a problem, as you may need a different local config on the different computers. Pimlico allows you to have
special config files that only get read on machines will a particular hostname.

For example, say I have two computers, localbox and remotebox, which share a home directory. I’ve created my
.pimlico local config file on localbox, but need to specify a different storage location on remotebox. I simply
create another config file called .pimlico_remotebox``[#hostname]_. Pimlico will load first
the basic local config in ``.pimlico and then override those settings with what it reads from the
host-specific config file.

You can also specify a hostname prefix to match. Say I’ve got a whole load of computers I want to be able to run on,
with hostnames remotebox1, remotebox2, etc. If I create a config file called .pimlico_remotebox-, it will
be used on all of these hosts.

1.2. Core docs 49

Pimlico Documentation, Release 0.9.25

Command-line overrides

Occasionally, you might want to specify a local config setting just for one run of Pimlico. Use the
--override-local-config (or -l) to specify a value for an individual setting in the form setting=value.
For example:

./pimlico.sh mypipeline.conf -l somesetting=5 run mymodule

If you want to override multiple settings, simply use the option multiple times.

Custom location

If the above solutions don’t work for you, you can also explicitly specify on the command line an alternative location
from which to load the local config file that Pimlico typically expects to find in ~/.pimlico.

Use the --local-config parameter to give a filename to use instead of the ~/.pimlico.

For example, if your home directory is shared across servers and the above hostname-specific config solution doesn’t
work in your case, you can fall back to pointing Pimlico at your own host-specific config file.

Data stores

Pimlico needs to know where to put and find output files as it executes. Settings are given in the local config, since
they apply to all Pimlico pipelines you run and may vary from system to system. Note that Pimlico will make sure
that different pipelines don’t interfere with each other’s output (provided you give them different names): all pipelines
store their output and look for their input within these same base locations.

See Data storage for an explanation of Pimlico’s data store system.

At least one store must be given in the local config:

store=/path/to/storage/root

You may specify as many storage locations as you like, giving each a name:

store_fast=/path/to/fast/store
store_big=/path/to/big/store

If you specify named stores and an unnamed one, the unnamed one will be used as the default output store. Otherwise,
the first in the file will be the default.

store=/path/to/a/store # This will be the default output store
store_fast=/path/to/fast/store # These will be additional, named stores
store_big=/path/to/big/store

Other Pimlico settings

In future, there will no doubt be more settings that you can specify at the system level for Pimlico. These will be
documented here as they arise.

50 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Settings for built-in modules

Specific modules may consult the local config to allow you to specify settings for them. We cannot document them
here for all modules, as we don’t know what modules are being developed outside the core codebase. However, we
can provide a list here of the settings consulted by built-in Pimlico modules.

There aren’t any yet, but they will be listed here as they arise.

Footnotes:

1.2.8 Data storage

Pimlico needs to know where to put and find output files as it executes, in order to store data and pass it between
modules. On any particular system running Pimlico, multiple locations (stores) may be used as storage and Pimlico
will check all of them when it’s looking for a module’s data.

Single store

Let’s start with a simple setup with just one store. A setting store in the local config (see Local configuration)
specifies the root directory of this store. This applies to all Pimlico pipelines you run on this system and Pimlico will
make sure that different pipelines don’t interfere with each other’s output (provided you give them different names).

When you run a pipeline module, its output will be stored in a subdirectory specific to that pipeline and that module
with the store’s root directory. When Pimlico needs to use that data as input to another module, it will look in the
appropriate directory within the store.

Multiple stores

For various reasons, you may wish to store Pimlico data in multiple locations.

For example, one common scenario is that you have access to a disk that is fast to write to (call it fast-disk), but not
very big, and another disk (e.g. over a network filesystem) that has lots of space, but is slower (call it big-disk). You
therefore want Pimlico to output its data, much of which might only be used fleetingly and then no longer needed, to
fast-disk, so the processing runs quickly. Then, you want to move the output from certain modules over to big-disk, to
make space on fast-disk.

We can define two stores for Pimlico to use and give them names. The first (“fast”) will be used to output data to
(just like the sole store in the previous section). The second (“big”), however, will also be checked for module data,
meaning that we can move data from “fast” to “big” whenever we like.

Instead of using the store parameter in the local config, we use multiple store_<name> parameters. One of them
(the first one, or the one given by store with no name, if you include that) we be treated as the default output store.

Specific the locations in the local config like this:

store_fast=/path/to/fast/store
store_big=/path/to/big/store

Remember, these paths are not specific to a pipeline: all pipelines will use different subdirectories of these ones.

To check what stores you’ve got in your current configuration, use the stores command.

1.2. Core docs 51

Pimlico Documentation, Release 0.9.25

Moving data between stores

Say you’ve got a two-store setup like in the previous example. You’ve now run a module that produces a lot of output
and want to move it to your big disk and have Pimlico read it from there.

You don’t need to replicate the directory structure yourself and move module output between stores. Pimlico has a
command movestores to do this for you. Specify the name of the store you want to move data to (big in this case)
and the names or numbers of the modules whose data you want to move.

Once you’ve done that, Pimlico should continue to behave as it did before, just as if the data was still in its original
location.

Updating from the old storage system

Prior to v0.8, Pimlico used a different system of storage locations. If you have a local config file (~/.pimlico) from
an earlier version you will see deprecation warnings.

Change something like this:

long_term_store=/path/to/long/store
short_term_store=/path/to/short/store

to something like this:

store_long=/path/to/long/store
store_short=/path/to/short/store

Or, if you only ever needed one storage location, simply this:

store=/path/to/store

1.2.9 Python scripts

All the heavy work of your data-processing is implemented in Pimlico modules, either by loading core Pimlico mod-
ules from your pipeline config file or by writing your own modules. Sometimes, however, it can be handy to write a
quick Python script to get hold of the output of one of your pipeline’s modules and inspect it or do something with it.

This can be easily done writing a Python script and using the python shell command to run it. This command loads
your pipeline config (just like all others) and then either runs a script you’ve specified on the command line, or enters
an interactive Python shell. The advantages of this over just running the normal python command on the command
line are that the script is run in the same execution context used for your pipeline (e.g. using the Pimlico instance’s
virtualenv) and that the loaded pipeline is available to you, so you can easily can hold of its data locations, datatypes,
etc.

Accessing the pipeline

At the top of your Python script, you can get hold of the loaded pipeline config instance like this:

from pimlico.cli.pyshell import get_pipeline

pipeline = get_pipeline()

Now you can use this to get to, among other things, the pipeline’s modules and their input and output datasets. A
module called module1 can be accessed by treating the pipeline like a dict:

52 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

module = pipeline["module1"]

This gives you the ModuleInfo instance for that module, giving access to its inputs, outputs, options, etc:

data = module.get_output("output_name")

Writing and running scripts

All of the above code to access a pipeline can be put in a Python script somewhere in your codebase and run from the
command line. Let’s say I create a script src/python/scripts/myscript.py containing:

from pimlico.cli.pyshell import get_pipeline

pipeline = get_pipeline()
module = pipeline["module1"]
data = module.get_output("output_name")
Here we can start probing the data using whatever interface the datatype provides
print data

Now I can run this from the root directory of my project as follows:

./pimlico.sh mypipeline.conf python src/python/scripts/myscript.py

1.3 Core Pimlico modules

Pimlico comes with a substantial collection of module types that provide wrappers around existing NLP and machine
learning tools, as well as a number of general tools for processing datasets that are useful for many applications.

Some modules that used to be among the core modules have not yet been updated since a big change in the datatypes
system. They can be found in pimlico.old_datatypes.modules, but are not currently functional, until I get
round to updating them.

1.3.1 Corpus manipulation

Core modules for generic manipulation of mainly iterable corpora.

Corpus concatenation

Path pimlico.modules.corpora.concat
Executable no

Concatenate two (or more) corpora to produce a bigger corpus.

They must have the same data point type, or one must be a subtype of the other.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

1.3. Core Pimlico modules 53

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
corpora list of iterable_corpus

Outputs

Name Type(s)
corpus corpus with data-point from input

Example config

This is an example of how this module can be used in a pipeline config file.

[my_concat_module]
type=pimlico.modules.corpora.concat
input_corpora=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• concat

Corpus statistics

Path pimlico.modules.corpora.corpus_stats
Executable yes

Some basic statistics about tokenized corpora

Counts the number of tokens, sentences and distinct tokens in a corpus.

Inputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
stats named_file

54 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_corpus_stats_module]
type=pimlico.modules.corpora.corpus_stats
input_corpus=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• stats

Human-readable formatting

Path pimlico.modules.corpora.format
Executable yes

Corpus formatter

Pimlico provides a data browser to make it easy to view documents in a tarred document corpus. Some datatypes
provide a way to format the data for display in the browser, whilst others provide multiple formatters that display the
data in different ways.

This module allows you to use this formatting functionality to output the formatted data as a corpus. Since the
formatting operations are designed for display, this is generally only useful to output the data for human consumption.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
formatted grouped_corpus <RawTextDocumentType>

Options

Name Description Type
for-
mat-
ter

Fully qualified class name of a formatter to use to format the data. If not specified, the default
formatter is used, which uses the datatype’s browser_display attribute if available, or falls back to
just converting documents to unicode

string

1.3. Core Pimlico modules 55

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_format_module]
type=pimlico.modules.corpora.format
input_corpus=module_a.some_output

This example usage includes more options.

[my_format_module]
type=pimlico.modules.corpora.format
input_corpus=module_a.some_output
formatter=path.to.formatter.FormatterClass

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• interleave

• subset

• concat

• group

• tokenized_formatter

Archive grouper (filter)

Path pimlico.modules.corpora.group
Executable no

Group the data points (documents) of an iterable corpus into fixed-size archives. This is a standard thing to do at
the start of the pipeline, since it’s a handy way to store many (potentially small) files without running into filesystem
problems.

The documents are simply grouped linearly into a series of groups (archives) such that each (apart from the last)
contains the given number of documents.

After grouping documents in this way, document map modules can be called on the corpus and the grouping will be
preserved as the corpus passes through the pipeline.

Note: This module used to be called tar_filter, but has been renamed in keeping with other changes in the new
datatype system.

There also used to be a tar module that wrote the grouped corpus to disk. This has now been removed, since most
of the time it’s fine to use this filter module instead. If you really want to store the grouped corpus, you can use the
store module.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

56 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
documents iterable_corpus

Outputs

Name Type(s)
documents grouped corpus with input doc type

Options

Name Description Type
archive_basename Base name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_size Number of documents to include in each archive (default: 1k) int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_group_module]
type=pimlico.modules.corpora.group
input_documents=module_a.some_output

This example usage includes more options.

[my_group_module]
type=pimlico.modules.corpora.group
input_documents=module_a.some_output
archive_basename=archive
archive_size=1000

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• group

• store

Interleaved corpora

Path pimlico.modules.corpora.interleave
Executable no

1.3. Core Pimlico modules 57

Pimlico Documentation, Release 0.9.25

Interleave data points from two (or more) corpora to produce a bigger corpus.

Similar to concat, but interleaves the documents when iterating. Preserves the order of documents within corpora
and takes documents two each corpus in inverse proportion to its length, i.e. spreads out a smaller corpus so we don’t
finish iterating over it earlier than the longer one.

They must have the same data point type, or one must be a subtype of the other.

In theory, we could find the most specific common ancestor and use that as the output type, but this is not currently
implemented and may not be worth the trouble. Perhaps we will add this in future.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
corpora list of grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

Options

Name Description Type
archive_basenameDocuments are regrouped into new archives. Base name to use for archive tar files. The

archive number is appended to this. (Default: ‘archive’)
string

archive_size Documents are regrouped into new archives. Number of documents to include in each archive
(default: 1k)

string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_interleave_module]
type=pimlico.modules.corpora.interleave
input_corpora=module_a.some_output

This example usage includes more options.

[my_interleave_module]
type=pimlico.modules.corpora.interleave
input_corpora=module_a.some_output
archive_basename=archive
archive_size=1000

58 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• interleave

Corpus document list filter

Path pimlico.modules.corpora.list_filter
Executable yes

Similar to split, but instead of taking a random split of the dataset, splits it according to a given list of documents,
putting those in the list in one set and the rest in another.

Inputs

Name Type(s)
corpus grouped_corpus
list string_list

Outputs

Name Type(s)
set1 grouped corpus with input doc type
set2 grouped corpus with input doc type

Example config

This is an example of how this module can be used in a pipeline config file.

[my_list_filter_module]
type=pimlico.modules.corpora.list_filter
input_corpus=module_a.some_output
input_list=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• list_filter

Random shuffle

Path pimlico.modules.corpora.shuffle
Executable yes

1.3. Core Pimlico modules 59

Pimlico Documentation, Release 0.9.25

Randomly shuffles all the documents in a grouped corpus, outputting them to a new set of archives with the same sizes
as the input archives.

This was difficult to do this efficiently for a large corpus using the old tar storage format. There therefore used to be
a strategy implemented here where the input documents were read in linear order and placed into a temporary set of
small archives (“bins”) and these were concatenated into the larger archives, shuffling the documents in memory in
each during the process.

It is no longer necessary to do this, since the standard pipeline-internal storage format permits efficient random access.
However, it may sometimes be necessary to use the linear-reading strategy: for example, if the input comes from a
filter module, its documents cannot be randomly accessed.

Todo: Currently, this accepts any GroupedCorpus as input, but checks at runtime that the input is stored used the
pipeline-internal format. It would be much better if this check could be enforced at the level of datatypes, so that the
input datatype requirement explicitly rules out grouped corpora coming from input readers, filters or other dynamic
sources.

Since this requires some tricky changes to the datatype system, I’m not implementing it now, but it should be done in
future.

It will be implemented as part of the replacement of GroupedCorpus by StoredIterableCorpus:
‘https://github.com/markgw/pimlico/issues/24‘_

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

Options

Name Description Type
archive_basename Basename to use for archives in the output corpus. Default: ‘archive’ string
seed Seed for the random number generator. The RNG is always seeded, for reproducibility.

Default: 999
int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_shuffle_module]
type=pimlico.modules.corpora.shuffle
input_corpus=module_a.some_output

60 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

This example usage includes more options.

[my_shuffle_module]
type=pimlico.modules.corpora.shuffle
input_corpus=module_a.some_output
archive_basename=archive
seed=999

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• shuffle

Random shuffle (linear)

Path pimlico.modules.corpora.shuffle_linear
Executable yes

Randomly shuffles all the documents in a grouped corpus, outputting them to a new set of archives with the same sizes
as the input archives.

It is difficult to do this efficiently for a large corpus when we cannot randomly access the input documents. Under the
old, now deprecated, tar-based storage format, random access was costly. If a corpus is produced on the fly, e.g. from
a filter or input reader, random access is impossible.

We use a strategy where the input documents are read in linear order and placed into a temporary set of small archives
(“bins”). Then these are concatenated into the larger archives, shuffling the documents in memory in each during the
process.

The expected average size of the temporary bins can be set using the bin_size parameter. Alternatively, the exact
total number of bins to use can be set using the num_bins parameter.

It may be necessary to lower the bin size if, for example, your individual documents are very large files. You might
also find the process is noticeably faster with a higher bin size if your files are small.

See also:

Module type pimlico.modules.corpora.shuffle If the input corpus is not dynamically produced and is
therefore randomly accessible, it is more efficient to use the shuffle module type.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

1.3. Core Pimlico modules 61

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
archive_basenameBasename to use for archives in the output corpus. Default: ‘archive’ string
bin_size Target expected size of temporary bins into which documents are shuffled. The actual size may

vary, but they will on average have this size. Default: 100
int

keep_archive_namesBy default, it is assumed that all doc names are unique to the whole corpus, so the same doc names
are used once the documents are put into their new archives. If doc names are only unique within
the input archives, use this and the input archive names will be included in the output document
names. Default: False

bool

num_binsDirectly set the number of temporary bins to put document into. If set, bin_size is ignored int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_shuffle_module]
type=pimlico.modules.corpora.shuffle_linear
input_corpus=module_a.some_output

This example usage includes more options.

[my_shuffle_module]
type=pimlico.modules.corpora.shuffle_linear
input_corpus=module_a.some_output
archive_basename=archive
bin_size=100
keep_archive_names=F
num_bins=0

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• shuffle

Corpus split

Path pimlico.modules.corpora.split
Executable yes

Split a tarred corpus into two subsets. Useful for dividing a dataset into training and test subsets. The output datasets
have the same type as the input. The documents to put in each set are selected randomly. Running the module multiple
times will give different splits.

Note that you can use this multiple times successively to split more than two ways. For example, say you wanted a
training set with 80% of your data, a dev set with 10% and a test set with 10%, split it first into training and non-training
80-20, then split the non-training 50-50 into dev and test.

The module also outputs a list of the document names that were included in the first set. Optionally, it outputs the
same thing for the second input too. Note that you might prefer to only store this list for the smaller set: e.g. in a

62 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

training-test split, store only the test document list, as the training list will be much larger. In such a case, just put the
smaller set first and don’t request the optional output doc_list2.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
set1 grouped corpus with input doc type
set2 grouped corpus with input doc type
doc_list1 string_list

Optional

Name Type(s)
doc_list2 string_list

Output groups

The module defines some named output groups, which can be used to refer to collections of outputs at once, as multiple
inputs to another module or alternative inputs.

Group name Outputs
corpora set1, set2

Options

Name Description Type
set1_sizeProportion of the corpus to put in the first set, float between 0.0 and 1.0. If an integer >1 is given,

this is treated as the absolute number of documents to put in the first set, rather than a proportion.
Default: 0.2 (20%)

float

Example config

This is an example of how this module can be used in a pipeline config file.

[my_split_module]
type=pimlico.modules.corpora.split
input_corpus=module_a.some_output

This example usage includes more options.

1.3. Core Pimlico modules 63

Pimlico Documentation, Release 0.9.25

[my_split_module]
type=pimlico.modules.corpora.split
input_corpus=module_a.some_output
set1_size=0.20

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• split

Store a corpus

Path pimlico.modules.corpora.store
Executable yes

Store a corpus

Take documents from a corpus and write them to disk using the standard writer for the corpus’ data point type. This
is useful where documents are produced on the fly, for example from some filter module or from an input reader, but
where it is desirable to store the produced corpus for further use, rather than always running the filters/readers each
time the corpus’ documents are needed.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
corpus grouped corpus with input doc type

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_module]
type=pimlico.modules.corpora.store
input_corpus=module_a.some_output

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

64 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

• train_tms_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• store

• filter_tokenize

• europarl

• raw_text_files_test

• filter_map

Random subsample

Path pimlico.modules.corpora.subsample
Executable yes

Randomly subsample documents of a corpus at a given rate to create a smaller corpus.

Inputs

Name Type(s)
corpus grouped_corpus

Outputs

Name Type(s)
corpus corpus with data-point from input

Options

Name Description Type
p (required) Probability of including any given document. The resulting corpus will be roughly this

proportion of the size of the input. Alternatively, you can specify an integer, which will be interpreted
as the target size of the output. A p value will be calculated based on the size of the input corpus

float

seed Random seed. We always set a random seed before starting to ensure some level of reproducability int
skip_invalidSkip over any invalid documents so that the output subset contains just valid document and no invalid

ones. By default, invalid documents are passed through
bool

1.3. Core Pimlico modules 65

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_subsample_module]
type=pimlico.modules.corpora.subsample
input_corpus=module_a.some_output
p=0.1

This example usage includes more options.

[my_subsample_module]
type=pimlico.modules.corpora.subsample
input_corpus=module_a.some_output
p=0.1
seed=1234
skip_invalid=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• subsample

Corpus subset

Path pimlico.modules.corpora.subset
Executable no

Simple filter to truncate a dataset after a given number of documents, potentially offsetting by a number of documents.
Mainly useful for creating small subsets of a corpus for testing a pipeline before running on the full corpus.

Can be run on an iterable corpus or a tarred corpus. If the input is a tarred corpus, the filter will emulate a tarred corpus
with the appropriate datatype, passing through the archive names from the input.

When a number of valid documents is required (calculating corpus length when skipping invalid docs), if one is stored
in the metadata as valid_documents, that count is used instead of iterating over the data to count them up.

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
corpus iterable_corpus

Outputs

Name Type(s)
corpus corpus with data-point from input

66 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
off-
set

Number of documents to skip at the beginning of the corpus (default: 0, start at beginning) int

size (required) Number of documents to include int
skip_invalidSkip over any invalid documents so that the output subset contains the chosen number of (valid)

documents (or as many as possible) and no invalid ones. By default, invalid documents are passed
through and counted towards the subset size

bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_subset_module]
type=pimlico.modules.corpora.subset
input_corpus=module_a.some_output
size=100

This example usage includes more options.

[my_subset_module]
type=pimlico.modules.corpora.subset
input_corpus=module_a.some_output
offset=0
size=100
skip_invalid=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• subset

Corpus vocab builder

Path pimlico.modules.corpora.vocab_builder
Executable yes

Builds a dictionary (or vocabulary) for a tokenized corpus. This is a data structure that assigns an integer ID to every
distinct word seen in the corpus, optionally applying thresholds so that some words are left out.

Similar to pimlico.modules.features.vocab_builder, which builds two vocabs, one for terms and one
for features.

May specify a list of stopwords, which will be ignored, even if they’re found in the corpus. The filter to remove
frequent words (controlled by max_prop) will potentially add further stopwords, so the resulting list is output as
stopwords.

1.3. Core Pimlico modules 67

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
vocab dictionary
stopwords string_list

Options

NameDescription Type
in-
clude

Ensure that certain words are always included in the vocabulary, even if they don’t make it past
the various filters, or are never seen in the corpus. Give as a comma-separated list

comma-
separated
list of
strings

limit Limit vocab size to this number of most common entries (after other filters) int
max_propInclude terms that occur in max this proportion of documents float
oov Represent OOVs using the given string in the vocabulary. Used to represent chars that will be

out of vocabulary after applying threshold/limit filters. Included in the vocabulary even if the
count is 0

string

prune_atPrune the dictionary if it reaches this size. Setting a lower value avoids getting stuck with too
big a dictionary to be able to prune and slowing things down, but means that the final pruning
will less accurately reflect the true corpus stats. Should be considerably higher than limit (if
used). Set to 0 to disable. Default: 2M (Gensim’s default)

int

thresh-
old

Minimum number of occurrences required of a term to be included int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_builder_module]
type=pimlico.modules.corpora.vocab_builder
input_text=module_a.some_output

This example usage includes more options.

[my_vocab_builder_module]
type=pimlico.modules.corpora.vocab_builder
input_text=module_a.some_output
include=word1,word2,...
limit=10k
oov=text
prune_at=2000000
threshold=100

68 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

• custom_module_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• vocab_builder

Token frequency counter

Path pimlico.modules.corpora.vocab_counter
Executable yes

Count the frequency of each token of a vocabulary in a given corpus (most often the corpus on which the vocabulary
was built).

Note that this distribution is not otherwise available along with the vocabulary. It stores the document frequency counts
- how many documents each token appears in - which may sometimes be a close enough approximation to the actual
frequencies. But, for example, when working with character-level tokens, this estimate will be very poor.

The output will be a 1D array whose size is the length of the vocabulary, or the length plus one, if oov_excluded=T
(used if the corpus has been mapped so that OOVs are represented by the ID vocab_size+1, instead of having a
special token).

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
vocab dictionary

Outputs

Name Type(s)
distribution numpy_array

Options

Name Description Type
oov_excludedIndicates that the corpus has been mapped so that OOVs are represented by the ID vocab_size+1,

instead of having a special token in the vocab
bool

1.3. Core Pimlico modules 69

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_counter_module]
type=pimlico.modules.corpora.vocab_counter
input_corpus=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_vocab_counter_module]
type=pimlico.modules.corpora.vocab_counter
input_corpus=module_a.some_output
input_vocab=module_a.some_output
oov_excluded=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• vocab_counter

Tokenized corpus to ID mapper

Path pimlico.modules.corpora.vocab_mapper
Executable yes

Maps all the words in a tokenized textual corpus to integer IDs, storing just lists of integers in the output.

This is typically done before doing things like training models on textual corpora. It ensures that a consistent mapping
from words to IDs is used throughout the pipeline. The training modules use this pre-mapped form of input, instead
of performing the mapping as they read the data, because it is much more efficient if the corpus needs to be iterated
over many times, as is typical in model training.

First use the vocab_builder module to construct the word-ID mapping and filter the vocabulary as you wish, then
use this module to apply the mapping to the corpus.

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>
vocab dictionary

Outputs

Name Type(s)
ids grouped_corpus <IntegerListsDocumentType>

70 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
oov If given, special token to map all OOV tokens to. Otherwise, use vocab_size+1 as index.

Special value ‘skip’ simply skips over OOV tokens
string

row_length_bytesThe length of each row is stored, by default, using a 2-byte value. If your dataset contains very
long lines, you can increase this to allow larger row lengths to be stored

int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_mapper_module]
type=pimlico.modules.corpora.vocab_mapper
input_text=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_vocab_mapper_module]
type=pimlico.modules.corpora.vocab_mapper
input_text=module_a.some_output
input_vocab=module_a.some_output
oov=value
row_length_bytes=2

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• vocab_mapper

• vocab_mapper

ID to tokenized corpus mapper

Path pimlico.modules.corpora.vocab_unmapper
Executable yes

Maps all the IDs in an integer lists corpus to their corresponding words in a vocabulary, producing a tokenized textual
corpus.

This is the inverse of vocab_mapper, which maps words to IDs. Typically, the resulting integer IDs are used for
model training, but sometimes we need to map in the opposite direction.

1.3. Core Pimlico modules 71

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
ids grouped_corpus <IntegerListsDocumentType>
vocab dictionary

Outputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Options

NameDescription Type
oov If given, assume the vocab_size+1 was used to represent out-of-vocabulary words and map this index

to the given token. Special value ‘skip’ simply skips over vocab_size+1 indices
string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_vocab_unmapper_module]
type=pimlico.modules.corpora.vocab_unmapper
input_ids=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_vocab_unmapper_module]
type=pimlico.modules.corpora.vocab_unmapper
input_ids=module_a.some_output
input_vocab=module_a.some_output
oov=value

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• vocab_unmapper

1.3.2 Embeddings

Modules for extracting features from which to learn word embeddings from corpora, and for training embeddings.

Some of these don’t actually learn the embeddings, they just produce features which can then be fed into an embedding
learning module, such as a form of matrix factorization. Note that you can train embeddings not only using the
trainers here, but also using generic matrix manipulation techniques, for example the factorization methods provided
by sklearn.

72 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

fastText embedding trainer

Path pimlico.modules.embeddings.fasttext
Executable yes

Train fastText embeddings on a tokenized corpus.

Uses the fastText Python package <https://fasttext.cc/docs/en/python-module.html>.

FastText embeddings store more than just a vector for each word, since they also have sub-word representations. We
therefore store a standard embeddings output, with the word vectors in, and also a special fastText embeddings output.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
embeddings embeddings
model fasttext_embeddings

Options

Name Description Type
bucket number of buckets. Default: 2,000,000 int
dim size of word vectors. Default: 100 int
epoch number of epochs. Default: 5 int
loss loss function: ns, hs, softmax, ova. Default: ns ‘ns’, ‘hs’, ‘softmax’ or ‘ova’
lr learning rate. Default: 0.05 float
lr_update_rate change the rate of updates for the learning rate. Default: 100 int
maxn max length of char ngram. Default: 6 int
min_count minimal number of word occurences. Default: 5 int
minn min length of char ngram. Default: 3 int
model unsupervised fasttext model: cbow, skipgram. Default: skipgram ‘skipgram’ or ‘cbow’
neg number of negatives sampled. Default: 5 int
t sampling threshold. Default: 0.0001 float
verbose verbose. Default: 2 int
word_ngrams max length of word ngram. Default: 1 int
ws size of the context window. Default: 5 int

Example config

This is an example of how this module can be used in a pipeline config file.

1.3. Core Pimlico modules 73

Pimlico Documentation, Release 0.9.25

[my_fasttext_module]
type=pimlico.modules.embeddings.fasttext
input_text=module_a.some_output

This example usage includes more options.

[my_fasttext_module]
type=pimlico.modules.embeddings.fasttext
input_text=module_a.some_output
bucket=2000000
dim=100
epoch=5
loss=ns
lr=0.05
lr_update_rate=100
maxn=6
min_count=5
minn=3
model=skipgram
neg=5
t=0.00
verbose=2
word_ngrams=1
ws=5

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• fasttext_train

GloVe embedding trainer

Path pimlico.modules.embeddings.glove
Executable yes

Train GloVe embeddings on a tokenized corpus.

Uses the original GloVe code <https://github.com/stanfordnlp/GloVe>, called in a subprocess.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

74 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
embeddings embeddings
glove_output named_file_collection

Options

Name Description Type
alpha Parameter in exponent of weighting function; default 0.75 float
ar-
ray_size

Limit to length <array_size> the buffer which stores chunks of data to shuffle before writing to
disk. This value overrides that which is automatically produced by ‘memory’

int

dis-
tance_weighting

If False, do not weight cooccurrence count by distance between words; if True (default), weight
the cooccurrence count by inverse of distance between words

bool

eta Initial learning rate; default 0.05 float
grad_clip Gradient components clipping parameter. Values will be clipped to [-grad-clip, grad-clip] interval float
iter Number of training iterations; default 25 int
max_productLimit the size of dense cooccurrence array by specifying the max product of the frequency counts

of the two cooccurring words. This value overrides that which is automatically produced by
‘memory’. Typically only needs adjustment for use with very large corpora.

int

max_vocabUpper bound on vocabulary size, i.e. keep the <max_vocab> most frequent words. The minimum
frequency words are randomly sampled so as to obtain an even distribution over the alphabet.
Default: 0 (no limit)

int

mem-
ory

Soft limit for memory consumption, in GB – based on simple heuristic, so not extremely accurate;
default 4.0

float

min_countLower limit such that words which occur fewer than <min_count> times are discarded. Default: 0 int
over-
flow_length

Limit to length the sparse overflow array, which buffers cooccurrence data that does not fit in the
dense array, before writing to disk. This value overrides that which is automatically produced by
‘memory’. Typically only needs adjustment for use with very large corpora.

int

seed Random seed to use for shuffling. If not set, will be randomized using current time int
sym-
metric

If False, only use left context; if True (default), use left and right bool

threads Number of threads during training; default 8 int
vec-
tor_size

Dimension of word vector representations (excluding bias term); default 50 int

win-
dow_size

Number of context words to the left (and to the right, if symmetric = 1); default 15 int

x_max Parameter specifying cutoff in weighting function; default 100.0 float

Example config

This is an example of how this module can be used in a pipeline config file.

[my_glove_module]
type=pimlico.modules.embeddings.glove
input_text=module_a.some_output

This example usage includes more options.

1.3. Core Pimlico modules 75

Pimlico Documentation, Release 0.9.25

[my_glove_module]
type=pimlico.modules.embeddings.glove
input_text=module_a.some_output
alpha=0.75
array_size=0
distance_weighting=T
eta=0.05
grad_clip=0.1
iter=25
max_product=0
max_vocab=0
memory=4.00
min_count=0
overflow_length=0
seed=0
symmetric=T
threads=8
vector_size=50
window_size=15
x_max=100.00

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• glove_train

Doc embedding mappers

Produce datatypes that can map tokens in documents to their embeddings.

fastText to doc-embedding mapper

Path pimlico.modules.embeddings.mappers.fasttext
Executable yes

Use trained fastText embeddings to map words to their embeddings, including OOVs, using sub-word information.

First train a fastText model using the fastText training module. Then use this module to produce a doc-embeddings
mapper.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
embeddings fasttext_embeddings

76 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
mapper fasttext_doc_embeddings_mapper

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fasttext_doc_mapper_module]
type=pimlico.modules.embeddings.mappers.fasttext
input_embeddings=module_a.some_output

Fixed embeddings to doc-embedding mapper

Path pimlico.modules.embeddings.mappers.fixed
Executable yes

Use trained fixed word embeddings to map words to their embeddings. Does nothing with OOVs, which we don’t
have any way to map.

First train or load embeddings using another module. Then use this module to produce a doc-embeddings mapper.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
embeddings embeddings

Outputs

Name Type(s)
mapper fixed_embeddings_doc_embeddings_mapper

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fixed_embeddings_doc_mapper_module]
type=pimlico.modules.embeddings.mappers.fixed
input_embeddings=module_a.some_output

1.3. Core Pimlico modules 77

Pimlico Documentation, Release 0.9.25

Normalize embeddings

Path pimlico.modules.embeddings.normalize
Executable yes

Apply normalization to a set of word embeddings.

For now, only one type of normalization is provided: L2 normalization. Each vector is scaled so that its Euclidean
magnitude is 1.

Other normalizations (like L1 or variance normalization) may be added in future.

Inputs

Name Type(s)
embeddings embeddings

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
l2_norm Apply L2 normalization to scale each vector to unit length. Default: T bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_normalize_embeddings_module]
type=pimlico.modules.embeddings.normalize
input_embeddings=module_a.some_output

This example usage includes more options.

[my_normalize_embeddings_module]
type=pimlico.modules.embeddings.normalize
input_embeddings=module_a.some_output
l2_norm=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• embedding_norm

78 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Store embeddings (internal)

Path pimlico.modules.embeddings.store_embeddings
Executable yes

Simply stores embeddings in the Pimlico internal format.

This is not often needed, but can be useful if reading embeddings for an input reader that is slower than reading from
the internal format. Then you can use this module to do the reading and store the result before passing it to other
modules.

Inputs

Name Type(s)
embeddings embeddings

Outputs

Name Type(s)
embeddings embeddings

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_embeddings_module]
type=pimlico.modules.embeddings.store_embeddings
input_embeddings=module_a.some_output

Store in TSV format

Path pimlico.modules.embeddings.store_tsv
Executable yes

Takes embeddings stored in the default format used within Pimlico pipelines (see Embeddings) and stores them as
TSV files.

This is for using the vectors outside your pipeline, for example, for distributing them publicly or using as input to an
external visualization tool. For passing embeddings between Pimlico modules, the internal Embeddings datatype
should be used.

These are suitable as input to the Tensorflow Projector.

1.3. Core Pimlico modules 79

https://projector.tensorflow.org/

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
embeddings embeddings

Outputs

Name Type(s)
embeddings tsv_vec_files

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_tsv_module]
type=pimlico.modules.embeddings.store_tsv
input_embeddings=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• tsvvec_store

Store in word2vec format

Path pimlico.modules.embeddings.store_word2vec
Executable yes

Takes embeddings stored in the default format used within Pimlico pipelines (see Embeddings) and stores them
using the word2vec storage format.

This is for using the vectors outside your pipeline, for example, for distributing them publicly. For passing embeddings
between Pimlico modules, the internal Embeddings datatype should be used.

The output contains a bin file, containing the vectors in the binary format, and a vocab file, containing the vocabulary
and word counts.

Uses the Gensim implementation of the storage, so depends on Gensim.

Does not support Python 2, since we depend on Gensim.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
embeddings embeddings

80 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
embeddings word2vec_files

Example config

This is an example of how this module can be used in a pipeline config file.

[my_store_word2vec_module]
type=pimlico.modules.embeddings.store_word2vec
input_embeddings=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• word2vec_store

Word2vec embedding trainer

Path pimlico.modules.embeddings.word2vec
Executable yes

Word2vec embedding learning algorithm, using Gensim’s implementation.

Find out more about word2vec.

This module is simply a wrapper to call Gensim Python (+C)’s implementation of word2vec on a Pimlico corpus.

Does not support Python 2 since Gensim has dropped Python 2 support.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
model embeddings

1.3. Core Pimlico modules 81

https://radimrehurek.com/gensim/
https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
iters number of iterations over the data to perform. Default: 5 int
min_count word2vec’s min_count option: prunes the dictionary of words that appear fewer than this

number of times in the corpus. Default: 5
int

nega-
tive_samples

number of negative samples to include per positive. Default: 5 int

size number of dimensions in learned vectors. Default: 200 int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_word2vec_module]
type=pimlico.modules.embeddings.word2vec
input_text=module_a.some_output

This example usage includes more options.

[my_word2vec_module]
type=pimlico.modules.embeddings.word2vec
input_text=module_a.some_output
iters=5
min_count=5
negative_samples=5
size=200

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• word2vec_train

1.3.3 Gensim topic modelling

Modules providing access to topic model training and other routines from Gensim.

Topic model topic coherence

Path pimlico.modules.gensim.coherence
Executable yes

Compute topic coherence.

Takes input as a list of the top words for each topic. This can be produced from various types of topic model, so they
can all be evaluated using this method.

Also requires a corpus from which to compute the PMI statistics. This should typically be a different corpus to that on
which the model was trained.

82 Chapter 1. Contents

https://radimrehurek.com/gensim/

Pimlico Documentation, Release 0.9.25

For now, this just computes statistics and outputs them to a text file, and also outputs a single number representing the
mean topic coherence across topics.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
topics_top_words topics_top_words
corpus grouped_corpus <TokenizedDocumentType>
vocab dictionary

Outputs

Name Type(s)
output named_file
mean_coherence numeric_result

Options

Name Description Type
co-
her-
ence

Coherence measure to use, selecting from one of Gensim’s pre-defined measures:
‘u_mass’, ‘c_v’, ‘c_uci’, ‘c_npmi’. Default: ‘u_mass’

‘u_mass’,
‘c_v’,
‘c_uci’
or ‘c_npmi’

win-
dow_size

Size of the window to be used for coherence measures using boolean sliding window as
their probability estimator. For ‘u_mass’ this doesn’t matter. If None, the default window
sizes are used which are: ‘c_v’ - 110, ‘c_uci’ - 10, ‘c_npmi’ - 10.

int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_topic_coherence_module]
type=pimlico.modules.gensim.coherence
input_topics_top_words=module_a.some_output
input_corpus=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_topic_coherence_module]
type=pimlico.modules.gensim.coherence
input_topics_top_words=module_a.some_output
input_corpus=module_a.some_output
input_vocab=module_a.some_output
coherence=u_mass
window_size=0

1.3. Core Pimlico modules 83

Pimlico Documentation, Release 0.9.25

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• lda_coherence

LDA trainer

Path pimlico.modules.gensim.lda
Executable yes

Trains LDA using Gensim’s basic LDA implementation, or the multicore version.

Does not support Python 2, since Gensim has dropped Python 2 support.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
vocab dictionary

Outputs

Name Type(s)
model lda_model

84 Chapter 1. Contents

https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamulticore.html

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
alpha Alpha prior over topic distribution. May be one of special values ‘symmetric’, ‘asym-

metric’ and ‘auto’, or a single float, or a list of floats. Default: symmetric
‘symmetric’,
‘asymmetric’,
‘auto’ or a float

chunk-
size

Model’s chunksize parameter. Chunk size to use for distributed/multicore computing.
Default: 2000

int

decay Decay parameter. Default: 0.5 float
dis-
tributed

Turn on distributed computing. Default: False. Ignored by multicore implementation bool

eta Eta prior of word distribution. May be one of special values ‘auto’ and ‘symmetric’,
or a float. Default: symmetric

‘symmetric’,
‘auto’ or a float

eval_every int
gamma_threshold float
ig-
nore_terms

Ignore any of these terms in the bags of words when iterating over the corpus to train
the model. Typically, you’ll want to include an OOV term here if your corpus has
one, and any other special terms that are not part of a document’s content

comma-
separated list
of strings

itera-
tions

Max number of iterations in each update. Default: 50 int

mini-
mum_phi_value

float

mini-
mum_probability

float

multi-
core

Use Gensim’s multicore implementation of LDA training (gen-
sim.models.ldamulticore). Default is to use gensim.models.ldamodel. Number
of cores used for training set by Pimlico’s processes parameter

bool

num_topicsNumber of topics for the trained model to have. Default: 100 int
offset Offset parameter. Default: 1.0 float
passes Passes parameter. Default: 1 int
tfidf Transform word counts using TF-IDF when presenting documents to the model for

training. Default: False
bool

up-
date_every

Model’s update_every parameter. Default: 1. Ignored by multicore implementation int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_lda_trainer_module]
type=pimlico.modules.gensim.lda
input_corpus=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_lda_trainer_module]
type=pimlico.modules.gensim.lda
input_corpus=module_a.some_output
input_vocab=module_a.some_output
alpha=symmetric

(continues on next page)

1.3. Core Pimlico modules 85

Pimlico Documentation, Release 0.9.25

(continued from previous page)

chunksize=2000
decay=0.50
distributed=F
eta=symmetric
eval_every=10
gamma_threshold=0.00
ignore_terms=
iterations=50
minimum_phi_value=0.01
minimum_probability=0.01
multicore=F
num_topics=100
offset=1.00
passes=1
tfidf=F
update_every=1

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• lda_train

LDA document topic analysis

Path pimlico.modules.gensim.lda_doc_topics
Executable yes

Takes a trained LDA model and produces the topic vector for every document in a corpus.

The corpus is given as integer lists documents, which are the integer IDs of the words in each sentence of each
document. It is assumed that the corpus uses the same vocabulary to map to integer IDs as the LDA model’s training
corpus, so no further mapping needs to be done.

Does not support Python 2 since Gensim has dropped Python 2 support.

Todo: Add test pipeline and test

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

86 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
model lda_model

Outputs

Name Type(s)
vectors grouped_corpus <VectorDocumentType>

Example config

This is an example of how this module can be used in a pipeline config file.

[my_lda_doc_topics_module]
type=pimlico.modules.gensim.lda_doc_topics
input_corpus=module_a.some_output
input_model=module_a.some_output

LDA top words

Path pimlico.modules.gensim.lda_top_words
Executable yes

Extract the top words for each topic from a Gensim LDA model.

Can be used as input to coherence evaluation.

Currently, this just outputs the highest probability words, but it could be extended in future to extract words according
to other measures, like relevance or lift.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
model lda_model

Outputs

Name Type(s)
top_words topics_top_words

1.3. Core Pimlico modules 87

https://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
num_words Number of words to show per topic. Default: 15 int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_lda_top_words_module]
type=pimlico.modules.gensim.lda_top_words
input_model=module_a.some_output

This example usage includes more options.

[my_lda_top_words_module]
type=pimlico.modules.gensim.lda_top_words
input_model=module_a.some_output
num_words=15

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• lda_top_words

LDA-seq (DTM) trainer

Path pimlico.modules.gensim.ldaseq
Executable yes

Trains DTM using Gensim’s DTM implementation.

Documents in the input corpus should be accompanied by an aligned corpus of string labels, where each time slice is
represented by a label. The slices should be ordered, so all instances of a given label should be in sequence.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
labels grouped_corpus <LabelDocumentType>
vocab dictionary

88 Chapter 1. Contents

https://radimrehurek.com/gensim/models/ldaseqmodel.html

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
model ldaseq_model

Options

Name Description Type
alphas The prior probability for the model float
chain_varianceGaussian parameter defined in the beta distribution to dictate how the beta values evolve

over time.
float

chunk-
size

Model’s chunksize parameter. Chunk size to use for distributed/multicore computing.
Default: 2000.

int

em_max_iterMaximum number of iterations until converge of the Expectation-Maximization algo-
rithm

int

em_min_iterMinimum number of iterations until converge of the Expectation-Maximization algo-
rithm

int

ig-
nore_terms

Ignore any of these terms in the bags of words when iterating over the corpus to train the
model. Typically, you’ll want to include an OOV term here if your corpus has one, and
any other special terms that are not part of a document’s content

comma-
separated
list of
strings

lda_inference_max_iterMaximum number of iterations in the inference step of the LDA training. Default: 25 int
num_topicsNumber of topics for the trained model to have. Default: 100 int
passes Number of passes over the corpus for the initial LDA model. Default: 10 int
tfidf Transform word counts using TF-IDF when presenting documents to the model for train-

ing. Default: False
bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_ldaseq_trainer_module]
type=pimlico.modules.gensim.ldaseq
input_corpus=module_a.some_output
input_labels=module_a.some_output
input_vocab=module_a.some_output

This example usage includes more options.

[my_ldaseq_trainer_module]
type=pimlico.modules.gensim.ldaseq
input_corpus=module_a.some_output
input_labels=module_a.some_output
input_vocab=module_a.some_output
alphas=0.01
chain_variance=0.01
chunksize=100
em_max_iter=20
em_min_iter=6
ignore_terms=

(continues on next page)

1.3. Core Pimlico modules 89

Pimlico Documentation, Release 0.9.25

(continued from previous page)

lda_inference_max_iter=25
num_topics=100
passes=10
tfidf=F

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• dtm_train

LDA-seq (DTM) document topic analysis

Path pimlico.modules.gensim.ldaseq_doc_topics
Executable yes

Takes a trained DTM model and produces the topic vector for every document in a corpus.

The corpus is given as integer lists documents, which are the integer IDs of the words in each sentence of each
document. It is assumed that the corpus uses the same vocabulary to map to integer IDs as the LDA model’s training
corpus, so no further mapping needs to be done.

We also require a corpus of labels to say what time slice each document is in. These should be from the same set of
labels that the DTM model was trained on, so that each document label can be mapped to a trained slice.

Does not support Python 2 since Gensim has dropped Python 2 support.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

Name Type(s)
corpus grouped_corpus <IntegerListsDocumentType>
labels grouped_corpus <LabelDocumentType>
model ldaseq_model

Outputs

Name Type(s)
vectors grouped_corpus <VectorDocumentType>

90 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_ldaseq_doc_topics_module]
type=pimlico.modules.gensim.ldaseq_doc_topics
input_corpus=module_a.some_output
input_labels=module_a.some_output
input_model=module_a.some_output

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• dtm_infer

1.3.4 Input readers

Various input readers for various datatypes. These are used to read in data from some external source, such as a corpus
in its distributed format (e.g. XML files or a collection of text files), and present it to the Pimlico pipeline as a Pimlico
dataset, which can be used as input to other modules.

They do not typically store the data as a Pimlico dataset, but produce it on the fly, although sometimes it could be
appropriate to do otherwise.

Note that there can be multiple input readers for a single datatype. For example, there are many ways to read in a
corpus of raw text documents, depending on the format they’re stored in. They might by in one big XML file, text
files collected into compressed archives, a big text file with document separators, etc. These all require their own input
reader and all of them produce the same output corpus type.

Embeddings

Read vector embeddings (e.g. word embeddings) from various storage formats.

There are several formats in common usage and we provide readers for most of these here: FastText, word2vec and
GloVe.

FastText embedding reader (bin)

Path pimlico.modules.input.embeddings.fasttext
Executable yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.

1.3. Core Pimlico modules 91

https://github.com/facebookresearch/fastText

Pimlico Documentation, Release 0.9.25

Loads the fastText .bin format using the fasttext library itself. Outputs both a fixed set of embeddings in Pimlico’s
standard format and a special fastText datatype that provides access to more features of the model.

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings
model fasttext_embeddings

Options

Name Description Type
path (required) Path to the FastText embedding file string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fasttext_bin_embedding_reader_module]
type=pimlico.modules.input.embeddings.fasttext
path=value

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• fasttext_input_test

FastText embedding reader (Gensim)

Path pimlico.modules.input.embeddings.fasttext_gensim
Executable yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.
This version uses Gensim’s implementation of the format reader, so depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Facebook AI.

Reads only the binary format (.bin), not the text format (.vec).

Does not support Python 2, since Gensim has dropped Python 2 support.

See also:

92 Chapter 1. Contents

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Pimlico Documentation, Release 0.9.25

pimlico.modules.input.embeddings.fasttext: An alternative reader that does not use Gensim. It per-
mits (only) reading the text format.

Todo: Add test pipeline. This is slightly difficult, as we need a small FastText binary file, which is harder to produce,
since you can’t easily just truncate a big file.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
path (required) Path to the FastText embedding file (.bin) string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fasttext_embedding_reader_gensim_module]
type=pimlico.modules.input.embeddings.fasttext_gensim
path=value

FastText embedding reader (vec)

Path pimlico.modules.input.embeddings.fasttext_vec
Executable yes

Reads in embeddings from the FastText format, storing them in the format used internally in Pimlico for embeddings.

Can be used, for example, to read the pre-trained embeddings offered by Facebook AI.

Currently only reads the text format (.vec), not the binary format (.bin).

See also:

pimlico.modules.input.embeddings.fasttext_gensim: An alternative reader that uses Gensim’s
FastText format reading code and permits reading from the binary format, which contains more information.

1.3. Core Pimlico modules 93

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Pimlico Documentation, Release 0.9.25

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
limit Limit to the first N words. Since the files are typically ordered from most to least frequent, this

limits to the N most common words
int

path (required) Path to the FastText embedding file string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_fasttext_vec_embedding_reader_module]
type=pimlico.modules.input.embeddings.fasttext_vec
path=value

This example usage includes more options.

[my_fasttext_vec_embedding_reader_module]
type=pimlico.modules.input.embeddings.fasttext_vec
limit=0
path=value

GloVe embedding reader (Gensim)

Path pimlico.modules.input.embeddings.glove
Executable yes

Reads in embeddings from the GloVe format, storing them in the format used internally in Pimlico for embeddings.
We use Gensim’s implementation of the format reader, so the module depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Stanford.

Note that the format is almost identical to word2vec’s text format.

Note that this requires a recent version of Gensim, since they changed their KeyedVectors data structure. This is not
enforced by the dependency check, since we’re not able to require a specific version yet.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

94 Chapter 1. Contents

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Pimlico Documentation, Release 0.9.25

Inputs

No inputs

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
path (required) Path to the GloVe embedding file string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_glove_embedding_reader_module]
type=pimlico.modules.input.embeddings.glove
path=value

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• glove_input_test

Word2vec embedding reader (Gensim)

Path pimlico.modules.input.embeddings.word2vec
Executable yes

Reads in embeddings from the word2vec format, storing them in the format used internally in Pimlico for embeddings.
We use Gensim’s implementation of the format reader, so the module depends on Gensim.

Can be used, for example, to read the pre-trained embeddings offered by Google.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

No inputs

1.3. Core Pimlico modules 95

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
embeddings embeddings

Options

Name Description Type
binary Assume input is in word2vec binary format. Default: True bool
limit Limit to the first N vectors in the file. Default: no limit int
path (required) Path to the word2vec embedding file (.bin) string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_word2vec_embedding_reader_module]
type=pimlico.modules.input.embeddings.word2vec
path=value

This example usage includes more options.

[my_word2vec_embedding_reader_module]
type=pimlico.modules.input.embeddings.word2vec
binary=T
limit=0
path=value

Text corpora

20 Newsgroups

20 Newsgroups fetcher (sklearn)

Path pimlico.modules.input.text.20newsgroups.sklearn_download
Executable yes

Input reader to fetch the 20 Newsgroups dataset from Sklearn. See: https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.fetch_20newsgroups.html

The original data can be downloaded from http://qwone.com/~jason/20Newsgroups/.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

No inputs

96 Chapter 1. Contents

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
http://qwone.com/~jason/20Newsgroups/

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
text grouped_corpus <RawTextDocumentType>
labels grouped_corpus <IntegerDocumentType>

Options

Name Description Type
limit Truncate corpus int
ran-
dom_state

Determines random number generation for dataset shuffling. Pass an int for reproducible
output across multiple runs

int

re-
move

May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of text
that will be detected and removed from the newsgroup posts, preventing classifiers from
overfitting on metadata

comma-
separated list
of strings

shuf-
fle

Whether or not to shuffle the data: might be important for models that make the assump-
tion that the samples are independent and identically distributed (i.i.d.), such as stochastic
gradient descent

bool

sub-
set

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering

‘train’, ‘test’
or ‘all’

Example config

This is an example of how this module can be used in a pipeline config file.

[my_20ng_fetcher_module]
type=pimlico.modules.input.text.20newsgroups.sklearn_download

This example usage includes more options.

[my_20ng_fetcher_module]
type=pimlico.modules.input.text.20newsgroups.sklearn_download
limit=0
random_state=0
remove=text,text,...
shuffle=T
subset=train

Europarl corpus reader

Path pimlico.modules.input.text.europarl
Executable no

Input reader for raw, unaligned text from Europarl corpus. This does not cover the automatically aligned versions of
the corpus that are typically used for Machine Translation.

The module takes care of a bit of extra processing specific to cleaning up the Europarl data.

See also:

1.3. Core Pimlico modules 97

Pimlico Documentation, Release 0.9.25

raw_text_files, which this extends with special postprocessing.

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you can
use globs here too)

comma-
separated
list of strings

files (required) Comma-separated list of absolute paths to files to include in the collection. Paths
may include globs. Place a ‘?’ at the start of a filename to indicate that it’s optional. You
can specify a line range for the file by adding ‘:X-Y’ to the end of the path, where X is the
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are
1-indexed.)

comma-
separated
list of (line
range-
limited) file
paths

Example config

This is an example of how this module can be used in a pipeline config file.

[my_europarl_reader_module]
type=pimlico.modules.input.text.europarl
files=path1,path2,...

This example usage includes more options.

[my_europarl_reader_module]
type=pimlico.modules.input.text.europarl
archive_basename=archive

(continues on next page)

98 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

archive_size=1000
encoding=utf8
encoding_errors=strict
exclude=text,text,...
files=path1,path2,...

Huggingface text corpus

Path pimlico.modules.input.text.huggingface
Executable yes

Input reader to fetch a text corpus from Huggingface’s datasets library. See: https://huggingface.co/datasets/.

Uses Huggingface’s load_dataset() function to download a dataset and then converts it to a Pimlico raw text
archive.

This module does not support Python 2, so can only be used when Pimlico is being run under Python 3

Inputs

No inputs

Outputs

Name Type(s)
default grouped_corpus <RawTextDocumentType>

Further conditional outputs

In addition to the default output default, if more than one column is specified, further outputs will be provided,
each containing a column and named after the column.

The first column name given is always provided as the first (default) output, called “default”.

1.3. Core Pimlico modules 99

https://huggingface.co/datasets/

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
columns(required) Name(s) of column(s) to store as Pimlico datasets. At least one must be given comma-

separated list
of strings

dataset (required) Name of the dataset to download string
doc_nameTake the doc names from the named column. The special value ‘enum’ (default) just

numbers the sequence of documents
string

name Name defining the dataset configuration. This corresponds to the second argument of
load_dataset()

string

split Restrict to a split of the data. Must be one of the splits that this dataset provides. The
default value of ‘train’ will work for many datasets, but is not guaranteed to be appro-
priate

string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_huggingface_text_module]
type=pimlico.modules.input.text.huggingface
columns=text,text,...
dataset=value

This example usage includes more options.

[my_huggingface_text_module]
type=pimlico.modules.input.text.huggingface
columns=text,text,...
dataset=value
doc_name=enum
name=value
split=train

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• huggingface_dataset

Raw text archives

Path pimlico.modules.input.text.raw_text_archives
Executable yes

Input reader for raw text file collections stored in archives. Reads archive files from arbitrary locations specified by a
list of and iterates over the files they contain.

The input paths must be absolute paths, but remember that you can make use of various special substitutions in the
config file to give paths relative to your project root, or other locations.

100 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Unlike raw_text_files, globs are not permitted. There’s no reason why they could not be, but they are not
allowed for now, to keep these modules simpler. This feature could be added, or if you need it, you could create your
own input reader module based on this one.

All paths given are assumed to be required for the dataset to be ready, unless they are preceded by a ?.

It can take a long time to count up the files in an archive, if there are a lot of them, as we need to iterate over the whole
archive. If a file is found with a path and name identical to the tar archive’s, with the suffix .count, a document
count will be read from there and used instead of counting. Make sure it is correct, as it will be blindly trusted, which
will cause difficulties in your pipeline if it’s wrong! The file is expected to contain a single integer as text.

All files in the archive are included. If you wish to filter files or preprocess them somehow, this can be easily done
by subclassing RawTextArchivesInputReader and overriding appropriate bits, e.g. RawTextArchivesInpu-
tReader.Setup.iter_archive_infos(). You can then use this reader to create an input reader module with the factory
function, as is done here.

See also:

raw_text_files for raw files not in archives

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
encoding Encoding to assume for input files. Default: utf8 string
encod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

files (required) Comma-separated list of absolute paths to files to include in the collection. Place
a ‘?’ at the start of a filename to indicate that it’s optional

absolute
file path

Example config

This is an example of how this module can be used in a pipeline config file.

[my_raw_text_archives_reader_module]
type=pimlico.modules.input.text.raw_text_archives
files=path1,path2,...

1.3. Core Pimlico modules 101

Pimlico Documentation, Release 0.9.25

This example usage includes more options.

[my_raw_text_archives_reader_module]
type=pimlico.modules.input.text.raw_text_archives
archive_basename=archive
archive_size=1000
encoding=utf8
encoding_errors=strict
files=path1,path2,...

Raw text files

Path pimlico.modules.input.text.raw_text_files
Executable no

Input reader for raw text file collections. Reads in files from arbitrary locations specified by a list of globs.

The input paths must be absolute paths (or globs), but remember that you can make use of various special substitutions
in the config file to give paths relative to your project root, or other locations.

The file paths may use globs to match multiple files. By default, it is assumed that every filename should exist and
every glob should match at least one file. If this does not hold, the dataset is assumed to be not ready. You can override
this by placing a ? at the start of a filename/glob, indicating that it will be included if it exists, but is not depended on
for considering the data ready to use.

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

102 Chapter 1. Contents

https://docs.python.org/2/library/glob.html

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you can
use globs here too)

absolute file
path

files (required) Comma-separated list of absolute paths to files to include in the collection. Paths
may include globs. Place a ‘?’ at the start of a filename to indicate that it’s optional. You
can specify a line range for the file by adding ‘:X-Y’ to the end of the path, where X is the
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are
1-indexed.)

comma-
separated
list of (line
range-
limited) file
paths

Example config

This is an example of how this module can be used in a pipeline config file.

[my_raw_text_files_reader_module]
type=pimlico.modules.input.text.raw_text_files
files=path1,path2,...

This example usage includes more options.

[my_raw_text_files_reader_module]
type=pimlico.modules.input.text.raw_text_files
archive_basename=archive
archive_size=1000
encoding=utf8
encoding_errors=strict
exclude=path1,path2,...
files=path1,path2,...

XML files

Path pimlico.modules.input.xml
Executable yes

Input reader for XML file collections. Gigaword, for example, is stored in this way. The data retrieved from the files
is plain unicode text.

1.3. Core Pimlico modules 103

Pimlico Documentation, Release 0.9.25

Todo: Add test pipeline

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
archive_basenameBase name to use for archive tar files. The archive number is appended to this. (Default:

‘archive’)
string

archive_sizeNumber of documents to include in each archive (default: 1k) int
docu-
ment_name_attr

Attribute of document nodes to get document name from. Use special value ‘filename’
to use the filename (without extensions) as a document name. In this case, if there’s
more than one doc in a file, an integer is appended to the doc name after the first doc.
(Default: ‘filename’)

string

docu-
ment_node_type

XML node type to extract documents from (default: ‘doc’) string

en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal
utf-8 chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for
details

string

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you
can use globs here too)

absolute file
path

files (required) Comma-separated list of absolute paths to files to include in the collection.
Paths may include globs. Place a ‘?’ at the start of a filename to indicate that it’s
optional

absolute file
path

fil-
ter_on_doc_attr

Comma-separated list of key=value constraints. If given, only docs with the attribute
‘key’ on their doc node and the attribute value ‘value’ will be included

comma-
separated list
of key=value
constraints

Example config

This is an example of how this module can be used in a pipeline config file.

104 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

[my_xml_files_reader_module]
type=pimlico.modules.input.xml
files=path1,path2,...

This example usage includes more options.

[my_xml_files_reader_module]
type=pimlico.modules.input.xml
archive_basename=archive
archive_size=1000
document_name_attr=filename
document_node_type=doc
encoding=utf8
encoding_errors=strict
exclude=path1,path2,...
files=path1,path2,...
filter_on_doc_attr=value

1.3.5 Malt dependency parser

Path pimlico.modules.malt
Executable yes

Runs the Malt dependency parser.

Malt is a Java tool, so we use a Py4J wrapper.

Input is supplied as word annotations (which are converted to CoNLL format for input to the parser). These must
include at least each word (field ‘word’) and its POS tag (field ‘pos’). If a ‘lemma’ field is supplied, that will also be
used.

The fields in the output contain all of the word features provided by the parser’s output. Some may be None if they are
empty in the parser output. All the fields in the input (which always include word and pos at least) are also output.

Inputs

Name Type(s)
documents grouped_corpus <WordAnnotationsDocumentType>

Outputs

Name Type(s)
parsed AddAnnotationField

1.3. Core Pimlico modules 105

Pimlico Documentation, Release 0.9.25

Options

NameDescription Type
model Filename of parsing model, or path to the file. If just a filename, assumed to be Malt models dir

(models/malt). Default: engmalt.linear-1.7.mco, which can be acquired by ‘make malt’ in the models
dir

string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_malt_module]
type=pimlico.modules.malt
input_documents=module_a.some_output

This example usage includes more options.

[my_malt_module]
type=pimlico.modules.malt
input_documents=module_a.some_output
model=engmalt.linear-1.7.mco

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• malt_parse

1.3.6 NLTK

Modules that wrap functionality in the Natural Language Toolkit (NLTK).

Currently, not much is provided here, but adding new modules is easy to do, so hopefully more modules will gradually
appear.

NIST tokenizer

Path pimlico.modules.nltk.nist_tokenize
Executable yes

Sentence splitting and tokenization using the NLTK NIST tokenizer.

Very simple tokenizer that’s fairly language-independent and doesn’t need a trained model. Use this if you just need a
rudimentary tokenization (though more sophisticated than simple_tokenize).

Inputs

Name Type(s)
text grouped_corpus <RawTextDocumentType>

106 Chapter 1. Contents

https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.nist

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
documents grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
lowercase Lowercase all output. Default: False bool
non_european Use the tokenizer’s international_tokenize() method instead of tokenize(). Default: False bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_nltk_nist_tokenizer_module]
type=pimlico.modules.nltk.nist_tokenize
input_text=module_a.some_output

This example usage includes more options.

[my_nltk_nist_tokenizer_module]
type=pimlico.modules.nltk.nist_tokenize
input_text=module_a.some_output
lowercase=F
non_european=F

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• nltk_nist_tokenize

• nltk_nist_tokenize

1.3.7 OpenNLP tools

A collection of module types to wrap individual OpenNLP tools.

At the moment, this includes several tool. A few other modules have been here previously, but have not yet been
updated to the new datatypes system. See pimlico.old_datatypes.modules.opennlp.

Other OpenNLP tools can be wrapped fairly straightforwardly following the same pattern, using Py4J.

Constituency parser

Path pimlico.modules.opennlp.parse
Executable yes

1.3. Core Pimlico modules 107

Pimlico Documentation, Release 0.9.25

Constituency parsing using OpenNLP’s tools.

We run OpenNLP in the background using a Py4J wrapper, just as with the other OpenNLP wrappers.

The output format is not yet ideal: currently we produce documents consisting of a list of strings, each giving the
OpenNLP tree output for a sentence. It would be better to use a standard constituency tree datatype that can be used
generically as input to any modules required tree input. For now, if you write a module taking input from the parser, it
will itself need to process the strings from the OpenNLP parser output.

Inputs

Name Type(s)
documents grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
trees grouped_corpus <OpenNLPTreeStringsDocumentType>

Options

Name Description Type
model Parser model, full path or directory name. If a filename is given, it is expected to be in the OpenNLP

model directory (models/opennlp/)
string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_opennlp_parser_module]
type=pimlico.modules.opennlp.parse
input_documents=module_a.some_output

This example usage includes more options.

[my_opennlp_parser_module]
type=pimlico.modules.opennlp.parse
input_documents=module_a.some_output
model=en-parser-chunking.bin

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• opennlp_parse

108 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

POS-tagger

Path pimlico.modules.opennlp.pos
Executable yes

Part-of-speech tagging using OpenNLP’s tools.

By default, uses the pre-trained English model distributed with OpenNLP. If you want to use other models (e.g. for
other languages), download them from the OpenNLP website to the models dir (models/opennlp) and specify the
model name as an option.

Inputs

Name Type(s)
text grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
pos grouped_corpus <WordAnnotationsDocumentType>

Options

Name Description Type
model POS tagger model, full path or filename. If a filename is given, it is expected to be in the opennlp

model directory (models/opennlp/)
string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_opennlp_pos_tagger_module]
type=pimlico.modules.opennlp.pos
input_text=module_a.some_output

This example usage includes more options.

[my_opennlp_pos_tagger_module]
type=pimlico.modules.opennlp.pos
input_text=module_a.some_output
model=en-pos-maxent.bin

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• opennlp_pos

1.3. Core Pimlico modules 109

Pimlico Documentation, Release 0.9.25

Tokenizer

Path pimlico.modules.opennlp.tokenize
Executable yes

Sentence splitting and tokenization using OpenNLP’s tools.

Sentence splitting may be skipped by setting the option tokenize_only=T. The tokenizer will then assume that each
line in the input file represents a sentence and tokenize within the lines.

Inputs

Name Type(s)
text grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
documents grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
sen-
tence_model

Sentence segmentation model. Specify a full path, or just a filename. If a filename is given it is
expected to be in the opennlp model directory (models/opennlp/)

string

to-
ken_model

Tokenization model. Specify a full path, or just a filename. If a filename is given it is expected
to be in the opennlp model directory (models/opennlp/)

string

tok-
enize_only

By default, sentence splitting is performed prior to tokenization. If tokenize_only is set, only
the tokenization step is executed

bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_opennlp_tokenizer_module]
type=pimlico.modules.opennlp.tokenize
input_text=module_a.some_output

This example usage includes more options.

[my_opennlp_tokenizer_module]
type=pimlico.modules.opennlp.tokenize
input_text=module_a.some_output
sentence_model=en-sent.bin
token_model=en-token.bin
tokenize_only=F

110 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• opennlp_tokenize

1.3.8 Output modules

Modules that only have inputs and write output to somewhere outside the Pimlico pipeline.

Text corpus directory

Path pimlico.modules.output.text_corpus
Executable yes

Output module for producing a directory containing a text corpus, with documents stored in separate files.

The input must be a raw text grouped corpus. Corpora with other document types can be converted to raw text using
the format module.

Inputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Outputs

No outputs

Options

Name Description Type
archive_dirsCreate a subdirectory for each archive of the grouped corpus to store that archive’s documents in.

Otherwise, all documents are stored in the same directory (or subdirectories where the document
names include directory separators)

bool

in-
valid

What to do with invalid documents (where there’s been a problem reading/processing the document
somewhere in the pipeline). ‘skip’ (default): don’t output the document at all. ‘empty’: output an
empty file

‘skip’
or
‘empty’

path (required) Directory to write the corpus to string
suf-
fix

Suffix to use for each document’s filename string

tar Add all files to a single tar archive, instead of just outputting to disk in the given directory. This
is a good choice for very large corpora, for which storing to files on disk can cause filesystem
problems. If given, the value is used as the basename for the tar archive. Default: do not output tar

string

1.3. Core Pimlico modules 111

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_text_corpus_module]
type=pimlico.modules.output.text_corpus
input_corpus=module_a.some_output
path=value

This example usage includes more options.

[my_text_corpus_module]
type=pimlico.modules.output.text_corpus
input_corpus=module_a.some_output
archive_dirs=T
invalid=skip
path=value
suffix=value
tar=value

1.3.9 Scikit-learn tools

Scikit-learn (‘sklearn’) provides easy-to-use implementations of a large number of machine-learning methods, based
on Numpy/Scipy.

You can build Numpy arrays from your corpus using the feature processing tools and then use them as
input to Scikit-learn’s tools using the modules in this package.

Sklearn logistic regression

Path pimlico.modules.sklearn.logistic_regression
Executable yes

Provides an interface to Scikit-Learn’s simple logistic regression trainer.

You may also want to consider using:

• LogisticRegressionCV: LR with cross-validation to choose regularization strength

• SGDClassifier: general gradient-descent training for classifiers, which includes logistic regression. A better
choice for training on a large dataset.

Inputs

Name Type(s)
features scored_real_feature_sets

Outputs

Name Type(s)
model sklearn_model

112 Chapter 1. Contents

http://scikit-learn.org/stable/
http://scipy.org/
http://scikit-learn.org/stable/
scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Pimlico Documentation, Release 0.9.25

Options

Name Description Type
op-
tions

Options to pass into the constructor of LogisticRegression, formatted as a JSON dictionary (po-
tentially without the {}s). E.g.: ‘“C”:1.5, “penalty”:”l2”’

JSON
dict

Example config

This is an example of how this module can be used in a pipeline config file.

[my_sklearn_log_reg_module]
type=pimlico.modules.sklearn.logistic_regression
input_features=module_a.some_output

This example usage includes more options.

[my_sklearn_log_reg_module]
type=pimlico.modules.sklearn.logistic_regression
input_features=module_a.some_output
options="C":1.5, "penalty":"l2"

1.3.10 spaCy

Run spaCy tools and pipelines on your datasets.

Currently only includes tokenization, but this could be expanded to include many more of spaCy’s tools.

Or, if you want a different tool/pipeline, you could create your own module type following the same approach.

NP chunk extractor

Path pimlico.modules.spacy.extract_nps
Executable yes

Extract NP chunks

Performs the full spaCy pipeline including tokenization, sentence segmentation, POS tagging and parsing and outputs
documents containing only a list of the noun phrase chunks that were found by the parser.

This functionality is provided very conveniently by spaCy’s Doc.noun_chunks after parsing, so this is a light
wrapper around spaCy.

The output is presented as a tokenized document. Each sentence in the document represents a single NP.

Inputs

Name Type(s)
text grouped_corpus <RawTextDocumentType>

1.3. Core Pimlico modules 113

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
nps grouped_corpus <TokenizedDocumentType>

Options

NameDescription Type
model spaCy model to use. This may be a name of a standard spaCy model or a path to the location of

a trained model on disk, if on_disk=T. If it’s not a path, the spaCy download command will be run
before execution

string

on_diskLoad the specified model from a location on disk (the model parameter gives the path) bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_spacy_extract_nps_module]
type=pimlico.modules.spacy.extract_nps
input_text=module_a.some_output

This example usage includes more options.

[my_spacy_extract_nps_module]
type=pimlico.modules.spacy.extract_nps
input_text=module_a.some_output
model=en_core_web_sm
on_disk=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• spacy_parse_text

Text parser

Path pimlico.modules.spacy.parse_text
Executable yes

Parsing using spaCy

Entire parsing pipeline from raw text using the same spaCy model.

The word annotations in the output contain the information from the spaCy parser and the documents are split into
sentences following the spaCy’s sentence segmentation.

The annotation fields follow those produced by the Malt parser: pos, head and deprel.

114 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
text grouped_corpus <RawTextDocumentType>

Outputs

Name Type(s)
parsed grouped_corpus <WordAnnotationsDocumentType>

Options

NameDescription Type
model spaCy model to use. This may be a name of a standard spaCy model or a path to the location of

a trained model on disk, if on_disk=T. If it’s not a path, the spaCy download command will be run
before execution

string

on_diskLoad the specified model from a location on disk (the model parameter gives the path) bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_spacy_text_parser_module]
type=pimlico.modules.spacy.parse_text
input_text=module_a.some_output

This example usage includes more options.

[my_spacy_text_parser_module]
type=pimlico.modules.spacy.parse_text
input_text=module_a.some_output
model=en_core_web_sm
on_disk=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• spacy_parse_text

Tokenizer

Path pimlico.modules.spacy.tokenize
Executable yes

Tokenization using spaCy.

1.3. Core Pimlico modules 115

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
text grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
documents grouped_corpus <TokenizedDocumentType>

Options

NameDescription Type
model spaCy model to use. This may be a name of a standard spaCy model or a path to the location of

a trained model on disk, if on_disk=T. If it’s not a path, the spaCy download command will be run
before execution

string

on_diskLoad the specified model from a location on disk (the model parameter gives the path) bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_spacy_tokenizer_module]
type=pimlico.modules.spacy.tokenize
input_text=module_a.some_output

This example usage includes more options.

[my_spacy_tokenizer_module]
type=pimlico.modules.spacy.tokenize
input_text=module_a.some_output
model=en_core_web_sm
on_disk=T

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

• custom_module_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• spacy_tokenize

116 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

1.3.11 Document-level text filters

Simple text filters that are applied at the document level, i.e. each document in a TarredCorpus is processed one at
a time. These perform relatively simple processing, not relying on external software or involving lengthy processing
times. They are therefore most often used using the filter=T option, so that the processing is performed on the fly.

Such filters are needed sometimes just to convert before different datapoint formats.

Probably a good deal of these will be added in due course.

Text to character level

Path pimlico.modules.text.char_tokenize
Executable yes

Filter to treat text data as character-level tokenized data. This makes it simple to train character-level models, since
the output appears exactly like a tokenized document, where each token is a single character. You can then feed it into
any module that expects tokenized text.

Inputs

Name Type(s)
corpus grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <CharacterTokenizedDocumentType>

Example config

This is an example of how this module can be used in a pipeline config file.

[my_char_tokenize_module]
type=pimlico.modules.text.char_tokenize
input_corpus=module_a.some_output

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• simple_tokenize

1.3. Core Pimlico modules 117

Pimlico Documentation, Release 0.9.25

Normalize tokenized text

Path pimlico.modules.text.normalize
Executable yes

Perform text normalization on tokenized documents.

Currently, this includes the following:

• case normalization (to upper or lower case)

• blank line removal

• empty sentence removal

• punctuation removal

• removal of words that contain only punctuation

• numerical character removal

• minimum word length filter

In the future, more normalization operations may be added.

Inputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
case Transform all text to upper or lower case. Choose from ‘upper’ or ‘lower’, or leave

blank to not perform transformation
‘upper’,
‘lower’ or ‘’

min_word_lengthRemove any words shorter than this. Default: 0 (don’t do anything) int
re-
move_empty

Skip over any empty sentences (i.e. blank lines). Applied after other processing, so
this will remove sentences that are left empty by other filters

bool

re-
move_nums

Remove numeric characters bool

re-
move_only_punct

Skip over any sentences that are empty if punctuation is ignored bool

re-
move_punct

Remove punctuation from all tokens and then remove the whole token if nothing’s
left

bool

118 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_normalize_module]
type=pimlico.modules.text.normalize
input_corpus=module_a.some_output

This example usage includes more options.

[my_normalize_module]
type=pimlico.modules.text.normalize
input_corpus=module_a.some_output
case=
min_word_length=0
remove_empty=F
remove_nums=F
remove_only_punct=F
remove_punct=F

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• train_tms_example

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• normalize

Simple tokenization

Path pimlico.modules.text.simple_tokenize
Executable yes

Tokenize raw text using simple splitting.

This is useful where either you don’t mind about the quality of the tokenization and just want to test something quickly,
or text is actually already tokenized, but stored as a raw text datatype.

If you want to do proper tokenization, consider either the CoreNLP or OpenNLP core modules.

Inputs

Name Type(s)
corpus grouped_corpus <TextDocumentType>

1.3. Core Pimlico modules 119

Pimlico Documentation, Release 0.9.25

Outputs

Name Type(s)
corpus grouped_corpus <TokenizedDocumentType>

Options

Name Description Type
splitter Character or string to split on. Default: space string

Example config

This is an example of how this module can be used in a pipeline config file.

[my_simple_tokenize_module]
type=pimlico.modules.text.simple_tokenize
input_corpus=module_a.some_output

This example usage includes more options.

[my_simple_tokenize_module]
type=pimlico.modules.text.simple_tokenize
input_corpus=module_a.some_output
splitter=

Example pipelines

This module is used by the following example pipelines. They are examples of how the module can be used together
with other modules in a larger pipeline.

• tokenize_example

• tokenize_example2

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• simple_tokenize

Normalize raw text

Path pimlico.modules.text.text_normalize
Executable yes

Text normalization for raw text documents.

Similar to normalize module, but operates on raw text, not pre-tokenized text, so provides a slightly different set
of tools.

120 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Inputs

Name Type(s)
corpus grouped_corpus <TextDocumentType>

Outputs

Name Type(s)
corpus grouped_corpus <RawTextDocumentType>

Options

Name Description Type
blank_linesRemove all blank lines (after whitespace stripping, if requested) bool
case Transform all text to upper or lower case. Choose from ‘upper’ or ‘lower’, or leave

blank to not perform transformation
‘upper’,
‘lower’ or ‘’

strip Strip whitespace from the start and end of lines bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_text_normalize_module]
type=pimlico.modules.text.text_normalize
input_corpus=module_a.some_output

This example usage includes more options.

[my_text_normalize_module]
type=pimlico.modules.text.text_normalize
input_corpus=module_a.some_output
blank_lines=T
case=
strip=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• normalize

1.3.12 General utilities

General utilities for things like filesystem manipulation.

1.3. Core Pimlico modules 121

Pimlico Documentation, Release 0.9.25

Module output alias

Path pimlico.modules.utility.alias
Executable no

Alias a datatype coming from the output of another module.

Used to assign a handy identifier to the output of a module, so that we can just refer to this alias module later in the
pipeline and use its default output. This can help make for a more readable pipeline config.

For example, say we use split to split a dataset into two random subsets. The two splits can be accessed by referring
to the two outputs of that module: split_module.set1 and split_module.set2. However, it’s easy to lose track of what
these splits are supposed to be used for, so we might want to give them names:

[split_module]
type=pimlico.modules.corpora.split
set1_size=0.2

[test_set]
type=pimlico.modules.utility.alias
input=split_module.set1

[training_set]
type=pimlico.modules.utility.alias
input=split_module.set2

[training_routine]
type=...
input_corpus=training_set

Note the difference between using this module and using the special alias module type. The alias type creates an alias
for a whole module, allowing you to refer to all of its outputs, inherit its settings, and anything else you could do with
the original module name. This module, however, provides an alias for exactly one output of a module and generates
a module instance of its own in the pipeline (albeit a filter module).

Todo: Add test pipeline

This is a filter module. It is not executable, so won’t appear in a pipeline’s list of modules that can be run. It produces
its output for the next module on the fly when the next module needs it.

Inputs

Name Type(s)
input base_datatype

Outputs

Name Type(s)
output same as input corpus

122 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_alias_module]
type=pimlico.modules.utility.alias
input_input=module_a.some_output

Collect files

Path pimlico.modules.utility.collect_files
Executable yes

Collect files output from different modules.

A simple convenience module to make it easier to inspect output by putting it all in one place.

Files are either collected into subdirectories or renamed to avoid clashes.

Inputs

Name Type(s)
files list of named_file_collection

Outputs

Name Type(s)
files collected_named_file_collection

Options

Name Description Type
names List of string identifiers to use to distinguish the files from different sources, either used as

subdirectory names or filename prefixes. If not given, integer ids will be used instead
absolute
file path

sub-
dirs

Use subdirectories to collect the files from different sources, rather than renaming each file. By
default, a prefix is added to the filenames

bool

Example config

This is an example of how this module can be used in a pipeline config file.

[my_collect_files_module]
type=pimlico.modules.utility.collect_files
input_files=module_a.some_output

This example usage includes more options.

1.3. Core Pimlico modules 123

Pimlico Documentation, Release 0.9.25

[my_collect_files_module]
type=pimlico.modules.utility.collect_files
input_files=module_a.some_output
names=path1,path2,...
subdirs=T

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• collect_files

1.3.13 Visualization tools

Modules for plotting and suchlike

Bar chart plotter

Path pimlico.modules.visualization.bar_chart
Executable yes

Simple plotting of a bar chart from numeric results data using Matplotlib.

Inputs

Name Type(s)
results list of numeric_result

Outputs

Name Type(s)
plot named_file_collection

Options

NameDescription Type
col-
ors

Pyplot colors to use for each series. If shorter than the number of inputs, cycles round. Specify
according to pyplot docs: https://matplotlib.org/2.0.2/api/colors_api.html. E.g. use single-letter
color names, HTML color codes or HTML color names

abso-
lute
file
path

la-
bels

If given, a list of labels corresponding to the inputs to use in plots. Otherwise, inputs are numbered
and the labels provided in their label fields are used

abso-
lute
file
path

124 Chapter 1. Contents

https://matplotlib.org/2.0.2/api/colors_api.html

Pimlico Documentation, Release 0.9.25

Example config

This is an example of how this module can be used in a pipeline config file.

[my_bar_chart_module]
type=pimlico.modules.visualization.bar_chart
input_results=module_a.some_output

This example usage includes more options.

[my_bar_chart_module]
type=pimlico.modules.visualization.bar_chart
input_results=module_a.some_output
colors=r,g,b,y,c,m,k
labels=path1,path2,...

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• bar_chart

Embedding space plotter

Path pimlico.modules.visualization.embeddings_plot
Executable yes

Plot vectors from embeddings, trained by some other module, in a 2D space using a MDS reduction and Matplotlib.

They might, for example, come from pimlico.modules.embeddings.word2vec. The embeddings are read
in using Pimlico’s generic word embedding storage type.

Uses scikit-learn to perform the MDS/TSNE reduction.

The module outputs a Python file for doing the plotting (plot.py) and a CSV file containing the vector data (data.
csv) that is used as input to the plotting. The Python file is then run to produce (if it succeeds) an output PDF
(plot.pdf).

The idea is that you can use these source files (plot.py and data.csv) as a template and adjust the plotting code
to produce a perfect plot for inclusion in your paper, website, desktop wallpaper, etc.

Inputs

Name Type(s)
vectors list of embeddings

Outputs

Name Type(s)
plot named_file_collection

1.3. Core Pimlico modules 125

Pimlico Documentation, Release 0.9.25

Options

NameDescription Type
cmap Mapping from word prefixes to matplotlib plotting colours. Every word beginning with the

given prefix has the prefix removed and is plotted in the corresponding colour. Specify as a
JSON dictionary mapping prefix strings to colour strings

JSON string

col-
ors

List of colours to use for different embedding sets. Should be a list of matplotlib colour
strings, one for each embedding set given in input_vectors

absolute file
path

met-
ric

Distance metric to use. Choose from ‘cosine’, ‘euclidean’, ‘manhattan’. Default: ‘cosine’ ‘cosine’, ‘eu-
clidean’ or
‘manhattan’

re-
duc-
tion

Dimensionality reduction technique to use to project to 2D. Available: mds (Multi-
dimensional Scaling), tsne (t-distributed Stochastic Neighbor Embedding). Default: mds

‘mds’ or
‘tsne’

skip Number of most frequent words to skip, taking the next most frequent after these. Default:
0

int

words Number of most frequent words to plot. Default: 50 int

Example config

This is an example of how this module can be used in a pipeline config file.

[my_embeddings_plot_module]
type=pimlico.modules.visualization.embeddings_plot
input_vectors=module_a.some_output

This example usage includes more options.

[my_embeddings_plot_module]
type=pimlico.modules.visualization.embeddings_plot
input_vectors=module_a.some_output
cmap={"key1":"value"}
colors=path1,path2,...
metric=cosine
reduction=mds
skip=0
words=50

Test pipelines

This module is used by the following test pipelines. They are a further source of examples of the module’s usage.

• embeddings_plot

1.4 Command-line interface

The main Pimlico command-line interface (usually accessed via pimlico.sh in your project root) provides subcom-
mands to perform different operations. Call it like so, using one of the subcommands documented below to access
particular functionality:

126 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

./pimlico.sh <config-file> [general options...] <subcommand> [subcommand args/options]

The commands you are likely to use most often are: status, run, reset and maybe browse.

For a reference for each command’s options, see the command-line documentation: ./pimlico.sh --help, for
a general reference and ./pimlico.sh <config_file> <command> --help for a specific subcommand’s
reference.

Below is a more detailed guide for each subcommand, including all of the documentation available via the command
line.

browse View the data output by a module
clean Remove all module output directories that do not correspond to a module in the pipeline
deps List information about software dependencies: whether they’re available, versions, etc
dump Dump the entire available output data from a given pipeline module to a tarball
email Test email settings and try sending an email using them
fixlength Check the length of written outputs and fix it if it’s wrong
inputs Show the (expected) locations of the inputs of a given module
install Install missing module library dependencies
jupyter Create and start a new Jupyter notebook for the pipeline
licenses List information about licsenses of software dependencies
load Load a module’s output data from a tarball previously created by the dump command
movestores Move data between stores
newmodule Create a new module type
output Show the location where the given module’s output data will be (or has been) stored
python Load the pipeline config and enter a Python interpreter with access to it in the environment
recover Examine and fix a partially executed map module’s output state after forcible termination
reset Delete any output from the given module and restore it to unexecuted state
run Execute an individual pipeline module, or a sequence
shell Open a shell to give access to the data output by a module
status Output a module execution schedule for the pipeline and execution status for every module
stores List named Pimlico stores
tar2pimarc Convert grouped corpora from the old tar-based storage format to pimarc
unlock Forcibly remove an execution lock from a module
variants List the available variants of a pipeline config
visualize Comming soon. . . visualize the pipeline in a pretty way

1.4.1 status

Command-line tool subcommand

Output a module execution schedule for the pipeline and execution status for every module.

Usage:

pimlico.sh [...] status [module_name] [-h] [--all] [--alias] [--short] [--history] [--
→˓deps-of DEPS_OF] [--no-color] [--no-sections] [--expand-all] [--expand [EXPAND
→˓[EXPAND ...]]]

1.4. Command-line interface 127

Pimlico Documentation, Release 0.9.25

Positional arguments

Arg Description
[module_name]Optionally specify a module name (or number). More detailed status information will be outut for

this module. Alternatively, use this arg to limit the modules whose status will be output to a range by
specifying ‘A. . . B’, where A and B are module names or numbers

Options

Option Description
--all, -a Show all modules defined in the pipeline, not just those that can be executed
--alias Include module aliases after modules in the output. By default, they are not shown
--short,
-s

Use a brief format when showing the full pipeline’s status. Only applies when module names are
not specified. This is useful with very large pipelines, where you just want a compact overview of
the status

--history,
-i

When a module name is given, even more detailed output is given, including the full execution
history of the module

--deps-of,
-d

Restrict to showing only the named/numbered module and any that are (transitive) dependencies of
it. That is, show the whole tree of modules that lead through the pipeline to the given module

--no-color,
--nc

Don’t include terminal color characters, even if the terminal appears to support them. This can be
useful if the automatic detection of color terminals doesn’t work and the status command displays
lots of horrible escape characters

--no-sections,
--ns

Don’t show section headings, but just a list of all the modules

--expand-all,
--xa

Show section headings, expanding all

--expand,
-x

Expand this section number. May be used multiple times. Give a section number like ‘1.2.3’. To
expand the full subtree, give ‘1.2.3.’

1.4.2 variants

Command-line tool subcommand

List the available variants of a pipeline config

See Pipeline variants for more details.

Usage:

pimlico.sh [...] variants [-h]

1.4.3 run

Command-line tool subcommand

Main command for executing Pimlico modules from the command line run command.

Usage:

pimlico.sh [...] run [modules [modules ...]] [-h] [--force-rerun] [--all-deps] [--
→˓all] [--dry-run] [--step] [--preliminary] [--exit-on-error] [--email {modend,end}]
→˓[--last-error]

(continues on next page)

128 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

Positional arguments

Arg Description
[modules
[modules
...]]

The name (or number) of the module to run. To run a stage from a multi-stage module, use ‘mod-
ule:stage’. Use ‘status’ command to see available modules. Use ‘module:?’ or ‘module:help’ to list
available stages. If not given, defaults to next incomplete module that has all its inputs ready. You may
give multiple modules, in which case they will be executed in the order specified

Options

Option Description
--force-rerun,
-f

Force running the module(s), even if it’s already been run to completion

--all-deps,
-a

If the given module(s) has dependent modules that have not been completed, executed them first.
This allows you to specify a module late in the pipeline and execute the full pipeline leading to that
point

--all Run all currently unexecuted modules that have their inputs ready, or will have by the time previous
modules are run. (List of modules will be ignored)

--dry-run,
--dry,
--check

Perform all pre-execution checks, but don’t actually run the module(s)

--step Enabled super-verbose debugging mode, which steps through a module’s processing outputting a lot
of information and allowing you to control the output as it goes. Useful for working out what’s going
on inside a module if it’s mysteriously not producing the output you expected

--preliminary,
--pre

Perform a preliminary run of any modules that take multiple datasets into one of their inputs. This
means that we will run the module even if not all the datasets are yet available (but at least one is)
and mark it as preliminarily completed

--exit-on-errorIf an error is encountered while executing a module that causes the whole module execution to fail,
output the error and exit. By default, Pimlico will send error output to a file (or print it in debug
mode) and continue to execute the next module that can be executed, if any

--email Send email notifications when processing is complete, including information about the outcome.
Choose from: ‘modend’ (send notification after module execution if it fails and a summary at the end
of everything), ‘end’ (send only the final summary). Email sending must be configured: see ‘email’
command to test

--last-error,
-e

Don’t execute, just output the error log from the last execution of the given module(s)

1.4.4 recover

Command-line tool subcommand

When a document map module gets killed forcibly, sometimes it doesn’t have time to save its execution state, meaning
that it can’t pick up from where it left off.

Todo: This has not been updated for the Pimarc internal storage format, so still assumes that tar files are used. It will

1.4. Command-line interface 129

Pimlico Documentation, Release 0.9.25

be updated in future, if there is a need for it.

This command tries to fix the state so that execution can be resumed. It counts the documents in the output corpora
and checks what the last written document was. It then updates the state to mark the module as partially executed, so
that it continues from this document when you next try to run it.

The last written document is always thrown away, since we don’t know whether it was fully written. To avoid partial,
broken output, we assume the last document was not completed and resume execution on that one.

Note that this will only work for modules that output something (which may be an invalid doc) to every output for
every input doc. Modules that only output to some outputs for each input cannot be recovered so easily.

Usage:

pimlico.sh [...] recover module [-h] [--dry] [--last-docs LAST_DOCS]

Positional arguments

Arg Description
module The name (or number) of the module to recover

Options

Option Description
--dry Dry run: just say what we’d do
--last-docs Number of last docs to look at in each corpus when synchronizing

1.4.5 fixlength

Command-line tool subcommand

Under some circumstances (e.g. some unpredictable combinations of failures and restarts), an output corpus can end
up with an incorrect length in its metadata. This command counts up the documents in the corpus and corrects the
stored length if it’s wrong.

Usage:

pimlico.sh [...] fixlength module [outputs [outputs ...]] [-h] [--dry]

Positional arguments

Arg Description
module The name (or number) of the module to recover
[outputs [outputs ...]] Names of module outputs to check. By default, checks all

130 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Options

Option Description
--dry Dry run: check the lengths, but don’t write anything

1.4.6 browse

Command-line tool subcommand

View the data output by a module.

Usage:

pimlico.sh [...] browse module_name [output_name] [-h] [--skip-invalid] [--formatter
→˓FORMATTER]

Positional arguments

Arg Description
module_name The name (or number) of the module whose output to look at. Use ‘module:stage’ for multi-

stage modules
[output_name] The name of the output from the module to browse. If blank, load the default output

Options

Option Description
--skip-invalidSkip over invalid documents, instead of showing the error that caused them to be invalid
--formatter,
-f

When browsing iterable corpora, fully qualified class name of a subclass of DocumentBrowserFormatter
to use to determine what to output for each document. You may also choose from the named standard
formatters for the datatype in question. Use ‘-f help’ to see a list of available formatters

1.4.7 shell

Command-line tool subcommand

Open a shell to give access to the data output by a module.

Usage:

pimlico.sh [...] shell module_name [output_name] [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module whose output to look at
[output_name] The name of the output from the module to browse. If blank, load the default output

1.4. Command-line interface 131

Pimlico Documentation, Release 0.9.25

1.4.8 python

Command-line tool subcommand

Load the pipeline config and enter a Python interpreter with access to it in the environment.

Usage:

pimlico.sh [...] python [script] [-h] [-i]

Positional arguments

Arg Description
[script] Script file to execute. Omit to enter interpreter

Options

Option Description
-i Enter interactive shell after running script

1.4.9 reset

Command-line tool subcommand

Delete any output from the given module and restore it to unexecuted state.

Usage:

pimlico.sh [...] reset [modules [modules ...]] [-h] [-n] [-f]

Positional arguments

Arg Description
[modules [modules ...
]]

The names (or numbers) of the modules to reset, or ‘all’ to reset the whole
pipeline

Options

Option Description
-n,
--no-deps

Only reset the state of this module, even if it has dependent modules in an executed state, which
could be invalidated by resetting and re-running this one

-f,
--force-deps

Reset the state of this module and any dependent modules in an executed state, which could be
invalidated by resetting and re-running this one. Do not ask for confirmation to do this

132 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

1.4.10 clean

Command-line tool subcommand

Cleans up module output directories that have got left behind.

Often, when developing a pipeline incrementally, you try out some modules, but then remove them, or rename them to
something else. The directory in the Pimlico output store that was created to contain their metadata, status and output
data is then left behind and no longer associated with any module.

Run this command to check all storage locations for such directories. If it finds any, it prompts you to confirm before
deleting them. (If there are things in the list that don’t look like they were left behind by the sort of things mentioned
above, don’t delete them! I don’t want you to lose your precious output data if I’ve made a mistake in this command.)

Note that the operation of this command is specific to the loaded pipeline variant. If you have multiple variants, make
sure to select the one you want to clean with the general –variant option.

Usage:

pimlico.sh [...] clean [-h]

1.4.11 stores

Command-line tool subcommand

List Pimlico stores in use and the corresponding storage locations.

Usage:

pimlico.sh [...] stores [-h]

1.4.12 movestores

Command-line tool subcommand

Move a particular module’s output from one storage location to another.

Usage:

pimlico.sh [...] movestores dest [modules [modules ...]] [-h]

Positional arguments

Arg Description
dest Name of destination store
[modules [modules ...]] The names (or numbers) of the module whose output to move

1.4.13 unlock

Command-line tool subcommand

Forcibly remove an execution lock from a module. If a lock has ended up getting left on when execution exited
prematurely, use this to remove it.

1.4. Command-line interface 133

Pimlico Documentation, Release 0.9.25

When a module starts running, it is locked to avoid making a mess of your output data by running the same module
from another terminal, or some other silly mistake (I know, for some of us this sort of behaviour is frustratingly
common).

Usually shouldn’t be necessary, even if there’s an error during execution, since the module should be unlocked when
Pimlico exits, but occasionally (e.g. if you have to forcibly kill Pimlico during execution) the lock gets left on.

Usage:

pimlico.sh [...] unlock module_name [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module to unlock

1.4.14 dump

Command-line tool subcommand

Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into the
same pipeline on another system. This is primarily to support spreading the execution of a pipeline between multiple
machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using this command, transfer the file between machines and then run the load command to import it
there.

See also:

Running on multiple computers: for a more detailed guide to transferring data across servers.

Usage:

pimlico.sh [...] dump [modules [modules ...]] [-h] [--output OUTPUT] [--inputs]

Positional arguments

Arg Description
[modules [modules
...]]

Names or numbers of modules whose data to dump. If multiple are given, a separate
file will be dumped for each

Options

Op-
tion

Description

--output,
-o

Path to directory to output to. Defaults to the current user’s home directory

--inputs,
-i

Dump data for the modules corresponding to the inputs of the named modules, instead of those modules
themselves. Useful for when you’re preparing to run a module on a different machine, for getting all the
necessary input data for a module

134 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

1.4.15 load

Command-line tool subcommand

Load the output data for a given pipeline module from a tarball previously created by the dump command (typically
on another machine). This is primarily to support spreading the execution of a pipeline between multiple machines, so
that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using the dump command, transfer the file between machines and then run this command to import
it there.

See also:

Running on multiple computers: for a more detailed guide to transferring data across servers.

Usage:

pimlico.sh [...] load [paths [paths ...]] [-h] [--force-overwrite]

Positional arguments

Arg Description
[paths [paths ...]] Paths to dump files (tarballs) to load into the pipeline

Options

Option Description
--force-overwrite,
-f

If data already exists for a module being imported, overwrite without asking. By default, the
user will be prompted to check whether they want to overwrite

1.4.16 deps

Command-line tool subcommand

Output information about module dependencies.

Usage:

pimlico.sh [...] deps [modules [modules ...]] [-h]

Positional arguments

Arg Description
[modules
[modules ...
]]

Check dependencies for named modules and install any that are automatically installable.
Use ‘all’ to install dependencies for all modules

1.4. Command-line interface 135

Pimlico Documentation, Release 0.9.25

1.4.17 install

Command-line tool subcommand

Install missing dependencies.

Usage:

pimlico.sh [...] install [modules [modules ...]] [-h] [--trust-downloaded]

Positional arguments

Arg Description
[modules
[modules ...
]]

Check dependencies for named modules and install any that are automatically installable.
Use ‘all’ to install dependencies for all modules

Options

Option Description
--trust-downloaded,
-t

If an archive file to be downloaded is found to be in the lib dir already, trust that it is the file we’re
after. By default, we only reuse archives we’ve just downloaded, so we know they came from the
right URL, avoiding accidental name clashes

1.4.18 inputs

Command-line tool subcommand

Show the locations of the inputs of a given module. If the input datasets are available, their actual location is shown.
Otherwise, all directories in which the data is being checked for are shown.

Usage:

pimlico.sh [...] inputs module_name [-h]

Positional arguments

Arg Description
module_name The name (or number) of the module to display input locations for

1.4.19 output

Command-line tool subcommand

Show the location where the given module’s output data will be (or has been) stored.

Usage:

pimlico.sh [...] output module_name [-h]

136 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Positional arguments

Arg Description
module_name The name (or number) of the module to display input locations for

1.4.20 newmodule

Command-line tool subcommand

Interactive tool to create a new module type, generating a skeleton for the module’s code. Currently only works for
certain module types. May be extended in future to help with creating a broader range of sorts of modules.

Usage:

pimlico.sh [...] newmodule [-h]

1.4.21 visualize

Command-line tool subcommand

(Not yet fully implemented!) Visualize the pipeline, with status information for modules.

Usage:

pimlico.sh [...] visualize [-h] [--all]

Options

Option Description
--all, -a Show all modules defined in the pipeline, not just those that can be executed

1.4.22 email

Command-line tool subcommand

Test email settings and try sending an email using them.

Usage:

pimlico.sh [...] email [-h]

1.4.23 jupyter

Command-line tool subcommand

Creates and runs a Jupyter notebook for the loaded pipeline. The pipeline is made easily available within the notebook,
providing a way to load the modules and get their outputs.

This is a useful way to explore the data or analyses coming out of your modules. Once a module has been run, you
can load it from a notebook and manipulate, explore, visualize, etc to results.

1.4. Command-line interface 137

Pimlico Documentation, Release 0.9.25

A new directory is automatically created in your project root to contain the pipeline’s notebooks. (You can override
the location of this using --notebook-dir). An example notebook is created there, to show you how to load the
pipeline.

From within a notebook, load a pipeline like so:

from pimlico import get_jupyter_pipeline
pipeline = get_jupyter_pipeline()

Now you can access the modules of the pipeline through this pipeline object:

mod = pipeline["my_module"]

And get data from its outputs (provided the module’s been run):

print(mod.status)
output = mod.get_output("output_name").

Usage:

pimlico.sh [...] jupyter [-h] [--notebook-dir NOTEBOOK_DIR]

Options

Option Description
--notebook-dirUse a custom directory as the notebook directory. By default, a directory will be created according

to: <pimlico_root>/../notebooks/<pipeline_name>/

1.4.24 tar2pimarc

Command-line tool subcommand

Convert grouped corpora from the old tar-based storage format to Pimarc archives.

Usage:

pimlico.sh [...] tar2pimarc [outputs [outputs ...]] [-h] [--run]

Positional arguments

Arg Description
[outputs
[outputs
...]]

Specification of module outputs to convert. Specific datasets can be given as ‘mod-
ule_name.output_name’. All grouped corpus outputs of a module can be converted by just giving
‘module_name’. Or, if nothing’s given, all outputs of all modules are converted

Options

Option Description
--run Run conversion. Without this option, just checks what format the corpora use

138 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

1.4.25 licenses

Command-line tool subcommand

Output a list of the licenses for all software depended on.

Usage:

pimlico.sh [...] licenses [modules [modules ...]] [-h]

Positional arguments

Arg Description
[modules [modules
...]]

Check dependencies of modules and their datatypes. Use ‘all’ to list licenses for
dependencies for all modules

1.5 API Documentation

API documentation for the main Pimlico codebase, excluding the built-in Pimlico module types.

1.5.1 pimlico

Subpackages

cli

Subpackages

browser

Subpackages

tools

Submodules

corpus

Browser tool for iterable corpora.

browse_data(reader, formatter, skip_invalid=False)

class CorpusState(corpus)
Bases: object

Keep track of which document we’re on.

next_document()

skip(n)

1.5. API Documentation 139

Pimlico Documentation, Release 0.9.25

class InputDialog(text, input_edit)
Bases: urwid.widget.WidgetWrap

A dialog that appears with an input

signals = ['close', 'cancel']

keypress(size, k)

class MessageDialog(text, default=None)
Bases: urwid.widget.WidgetWrap

A dialog that appears with a message

class InputPopupLauncher(original_widget, text, input_edit, callback=None)
Bases: urwid.wimp.PopUpLauncher

create_pop_up()
Subclass must override this method and return a widget to be used for the pop-up. This method is called
once each time the pop-up is opened.

get_pop_up_parameters()
Subclass must override this method and have it return a dict, eg:

{‘left’:0, ‘top’:1, ‘overlay_width’:30, ‘overlay_height’:4}

This method is called each time this widget is rendered.

skip_popup_launcher(original_widget, text, default=None, callback=None)

save_popup_launcher(original_widget, text, default=None, callback=None)

class MessagePopupLauncher(original_widget, text)
Bases: urwid.wimp.PopUpLauncher

create_pop_up()
Subclass must override this method and return a widget to be used for the pop-up. This method is called
once each time the pop-up is opened.

get_pop_up_parameters()
Subclass must override this method and have it return a dict, eg:

{‘left’:0, ‘top’:1, ‘overlay_width’:30, ‘overlay_height’:4}

This method is called each time this widget is rendered.

files

browse_files(reader)
Browser tool for NamedFileCollections.

is_binary_string(bytes)

is_binary_file(path)
Try reading a bit of a file to work out whether it’s a binary file or text

formatter

The command-line iterable corpus browser displays one document at a time. It can display the raw data from the
corpus files, which sometimes is sufficiently human-readable to not need any special formatting. It can also parse the

140 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

data using its datatype and output text either from the datatype’s standard unicode representation or, if the document
datatype provides it, a special browser formatting of the data.

When viewing output data, particularly during debugging of modules, it can be useful to provide special formatting
routines to the browser, rather than using or overriding the datatype’s standard formatting methods. For example, you
might want to pull out specific attributes for each document to get an overview of what’s coming out.

The browser command accepts a command-line option that specifies a Python class to format the data. This class
should be a subclass of :class:~pimlico.cli.browser.formatter.DocumentBrowserFormatter that accepts a datatype com-
patible with the datatype being browsed and provides a method to format each document. You can write these in your
custom code and refer to them by their fully qualified class name.

class DocumentBrowserFormatter(corpus_datatype)
Bases: object

Base class for formatters used to post-process documents for display in the iterable corpus browser.

DATATYPE = DataPointType()

format_document(doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

filter_document(doc)
Each doc is passed through this function directly after being read from the corpus. If None is returned,
the doc is skipped. Otherwise, the result is used instead of the doc data. The default implementation does
nothing.

class DefaultFormatter(corpus_datatype)
Bases: pimlico.cli.browser.tools.formatter.DocumentBrowserFormatter

Generic implementation of a browser formatter that’s used if no other formatter is given.

DATATYPE = DataPointType()

format_document(doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

class InvalidDocumentFormatter(corpus_datatype)
Bases: pimlico.cli.browser.tools.formatter.DocumentBrowserFormatter

Formatter that skips over all docs other than invalid results. Uses standard formatting for InvalidDocument
information.

format_document(doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

filter_document(doc)
Each doc is passed through this function directly after being read from the corpus. If None is returned,
the doc is skipped. Otherwise, the result is used instead of the doc data. The default implementation does
nothing.

typecheck_formatter(formatted_doc_type, formatter_cls)
Check that a document type is compatible with a particular formatter.

1.5. API Documentation 141

Pimlico Documentation, Release 0.9.25

load_formatter(datatype, formatter_name=None)
Load a formatter specified by its fully qualified Python class name. If None, loads the default formatter. You
may also specify a formatter by name, choosing from one of the standard ones that the formatted datatype gives.

Parameters

• datatype – datatype instance representing the datatype that will be formatted

• formatter_name – class name, or class

Returns instantiated formatter

Module contents

Submodules

tool

Tool for browsing datasets, reading from the data output by pipeline modules.

browse_cmd(pipeline, opts)
Command for main Pimlico CLI

Module contents

data_editor

Submodules

pimlico.cli.data_editor.run module

run_editor(dataset_root, datatype_name)

Module contents

A separate command-line tool used to edit datasets on disk.

This is a new addition and not very mature yet. Its main purpose is to make it easy to create test datasets manually
without having to write special pipelines.

debug

Submodules

stepper

class Stepper
Bases: object

142 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Type that stores the state of the stepping process. This allows information and parameters to be passed around
through the process and updated as we go. For example, if particular type of output is disabled by the user, a
parameter can be updated here so we know not to output it later.

enable_step_for_pipeline(pipeline)
Prepares a pipeline to run in step mode, modifying modules and wrapping methods to supply the extra function-
ality.

This approach means that we don’t have to consume extra computation time checking whether step mode is
enabled during normal runs.

Parameters pipeline – instance of PipelineConfig

instantiate_output_reader_decorator(instantiate_output_reader, module_name, output_names,
stepper)

wrap_grouped_corpus(dtype, module_name, output_name, stepper)

archive_iter_decorator(archive_iter, module_name, output_name, stepper)

get_input_decorator(get_input, module_name, stepper)
Decorator to wrap a module info’s get_input() method so when know where inputs are being used.

option_message(message_lines, stepper, options=None, stack_trace_option=True, category=None)

Module contents

Extra-verbose debugging facility

Tools for very slowly and verbosely stepping through the processing that a given module does to debug it.

Enabled using the –step switch to the run command.

fmt_frame_info(info)

output_stack_trace(frame=None)

shell

Submodules

base

class ShellCommand
Bases: object

Base class used to provide commands for exploring a particular datatype. A basic set of commands is pro-
vided for all datatypes, but specific datatype classes may provide their own, by overriding the shell_commands
attribute.

commands = []

help_text = None

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

1.5. API Documentation 143

Pimlico Documentation, Release 0.9.25

• args – Args given by the user

• kwargs – Named args given by the user as key=val

class DataShell(data, commands, *args, **kwargs)
Bases: cmd.Cmd

Terminal shell for querying datatypes.

prompt = '>>> '

get_names()

do_EOF(line)
Exits the shell

preloop()
Hook method executed once when the cmdloop() method is called.

postloop()
Hook method executed once when the cmdloop() method is about to return.

emptyline()
Don’t repeat the last command (default): ignore empty lines

default(line)
We use this to handle commands that can’t be handled using the do_ pattern. Also handles the default
fallback, which is to execute Python.

cmdloop(intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

exception ShellError
Bases: Exception

commands

Basic set of shell commands that are always available.

class MetadataCmd
Bases: pimlico.cli.shell.base.ShellCommand

commands = ['metadata']

help_text = "Display the loaded dataset's metadata"

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

• args – Args given by the user

• kwargs – Named args given by the user as key=val

class PythonCmd
Bases: pimlico.cli.shell.base.ShellCommand

commands = ['python', 'py']

help_text = "Run a Python interpreter using the current environment, including import availability of all the project code, as well as the dataset in the 'data' variable"

144 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

• args – Args given by the user

• kwargs – Named args given by the user as key=val

runner

class ShellCLICmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'shell'

command_help = 'Open a shell to give access to the data output by a module'

add_arguments(parser)

run_command(pipeline, opts)

launch_shell(data)
Starts a shell to view and query the given datatype instance.

Module contents

Submodules

check

class InstallCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Install missing dependencies.

command_name = 'install'

command_help = 'Install missing module library dependencies'

add_arguments(parser)

run_command(pipeline, opts)

class DepsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Output information about module dependencies.

command_name = 'deps'

command_help = "List information about software dependencies: whether they're available, versions, etc"

add_arguments(parser)

run_command(pipeline, opts)

1.5. API Documentation 145

Pimlico Documentation, Release 0.9.25

class LicensesCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Output a list of the licenses for all software depended on.

command_name = 'licenses'

command_help = 'List information about licsenses of software dependencies'

add_arguments(parser)

run_command(pipeline, opts)

clean

class CleanCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Cleans up module output directories that have got left behind.

Often, when developing a pipeline incrementally, you try out some modules, but then remove them, or rename
them to something else. The directory in the Pimlico output store that was created to contain their metadata,
status and output data is then left behind and no longer associated with any module.

Run this command to check all storage locations for such directories. If it finds any, it prompts you to confirm
before deleting them. (If there are things in the list that don’t look like they were left behind by the sort of things
mentioned above, don’t delete them! I don’t want you to lose your precious output data if I’ve made a mistake
in this command.)

Note that the operation of this command is specific to the loaded pipeline variant. If you have multiple variants,
make sure to select the one you want to clean with the general –variant option.

command_name = 'clean'

command_help = 'Remove all module directories that do not correspond to a module in the pipeline in all storage locations. This is useful when modules have been renamed or removed and output directories have got left behind. Note that it is specific to the selected variant'

command_desc = 'Remove all module output directories that do not correspond to a module in the pipeline'

run_command(pipeline, opts)

fixlength

class FixLengthCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Under some circumstances (e.g. some unpredictable combinations of failures and restarts), an output corpus
can end up with an incorrect length in its metadata. This command counts up the documents in the corpus and
corrects the stored length if it’s wrong.

command_name = 'fixlength'

command_help = "Check the length of written outputs and fix it if it's wrong"

add_arguments(parser)

run_command(pipeline, opts)

count_pimarcs(output)

146 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

jupyter

A command to start a Jupyter notebook for a given pipeline, providing access to its modules and their outputs.

class JupyterCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Creates and runs a Jupyter notebook for the loaded pipeline. The pipeline is made easily available within the
notebook, providing a way to load the modules and get their outputs.

This is a useful way to explore the data or analyses coming out of your modules. Once a module has been run,
you can load it from a notebook and manipulate, explore, visualize, etc to results.

A new directory is automatically created in your project root to contain the pipeline’s notebooks. (You can
override the location of this using --notebook-dir). An example notebook is created there, to show you
how to load the pipeline.

From within a notebook, load a pipeline like so:

from pimlico import get_jupyter_pipeline
pipeline = get_jupyter_pipeline()

Now you can access the modules of the pipeline through this pipeline object:

mod = pipeline["my_module"]

And get data from its outputs (provided the module’s been run):

print(mod.status)
output = mod.get_output("output_name")

command_name = 'jupyter'

command_help = 'Create and start a new Jupyter notebook for the pipeline'

add_arguments(parser)

run_command(pipeline, opts)

make_notebook(code_text)

loaddump

class DumpCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into
the same pipeline on another system. This is primarily to support spreading the execution of a pipeline between
multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using this command, transfer the file between machines and then run the load command to
import it there.

See also:

Running on multiple computers: for a more detailed guide to transferring data across servers

command_name = 'dump'

command_help = 'Dump the entire available output data from a given pipeline module to a tarball, so that it can easily be loaded into the same pipeline on another system. This is primarily to support spreading the execution of a pipeline between multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline'

command_desc = 'Dump the entire available output data from a given pipeline module to a tarball'

1.5. API Documentation 147

Pimlico Documentation, Release 0.9.25

add_arguments(parser)

run_command(pipeline, opts)

class LoadCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Load the output data for a given pipeline module from a tarball previously created by the dump command
(typically on another machine). This is primarily to support spreading the execution of a pipeline between
multiple machines, so that the output from a module can easily be transferred and loaded into a pipeline.

Dump to a tarball using the dump command, transfer the file between machines and then run this command to
import it there.

See also:

Running on multiple computers: for a more detailed guide to transferring data across servers

command_name = 'load'

command_help = "Load a module's output data from a tarball previously created by the dump command, usually on a different system. This will overwrite any output data the module already has completely, including metadata, run history, etc. You may load multiple modules' data at once"

command_desc = "Load a module's output data from a tarball previously created by the dump command"

add_arguments(parser)

run_command(pipeline, opts)

locations

class InputsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'inputs'

command_help = 'Show the locations of the inputs of a given module. If the input datasets are available, their actual location is shown. Otherwise, all directories in which the data is being checked for are shown'

command_desc = 'Show the (expected) locations of the inputs of a given module'

add_arguments(parser)

run_command(pipeline, opts)

class OutputCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'output'

command_help = "Show the location where the given module's output data will be (or has been) stored"

add_arguments(parser)

run_command(pipeline, opts)

class ListStoresCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'stores'

command_help = 'List Pimlico stores in use and the corresponding storage locations'

command_desc = 'List named Pimlico stores'

run_command(pipeline, opts)

148 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class MoveStoresCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'movestores'

command_help = "Move a particular module's output from one storage location to another"

command_desc = 'Move data between stores'

add_arguments(parser)

run_command(pipeline, opts)

main

Main command-line script for running Pimlico, typically called from pimlico.sh.

Provides access to many subcommands, acting as the primary interface to Pimlico’s functionality.

class VariantsCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

List the available variants of a pipeline config

See Pipeline variants for more details.

command_name = 'variants'

command_help = 'List the available variants of a pipeline config'

add_arguments(parser)

run_command(pipeline, opts)

class UnlockCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Forcibly remove an execution lock from a module. If a lock has ended up getting left on when execution exited
prematurely, use this to remove it.

When a module starts running, it is locked to avoid making a mess of your output data by running the same
module from another terminal, or some other silly mistake (I know, for some of us this sort of behaviour is
frustratingly common).

Usually shouldn’t be necessary, even if there’s an error during execution, since the module should be unlocked
when Pimlico exits, but occasionally (e.g. if you have to forcibly kill Pimlico during execution) the lock gets
left on.

command_name = 'unlock'

command_help = "Forcibly remove an execution lock from a module. If a lock has ended up getting left on when execution exited prematurely, use this to remove it. Usually shouldn't be necessary, even if there's an error during execution"

command_desc = 'Forcibly remove an execution lock from a module'

add_arguments(parser)

run_command(pipeline, opts)

class BrowseCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'browse'

command_help = 'View the data output by a module'

add_arguments(parser)

1.5. API Documentation 149

Pimlico Documentation, Release 0.9.25

run_command(pipeline, opts)

class VisualizeCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'visualize'

command_help = '(Not yet fully implemented!) Visualize the pipeline, with status information for modules'

command_desc = 'Comming soon...visualize the pipeline in a pretty way'

add_arguments(parser)

run_command(pipeline, opts)

newmodule

class NewModuleCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'newmodule'

command_help = "Interactive tool to create a new module type, generating a skeleton for the module's code. Currently only works for certain module types. May be extended in future to help with creating a broader range of sorts of modules"

command_desc = 'Create a new module type'

run_command(pipeline, opts)

ask(prompt, strip_space=True)

pimarc

class Tar2PimarcCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Convert grouped corpora from the old tar-based storage format to Pimarc archives.

command_name = 'tar2pimarc'

command_help = 'Convert grouped corpora from the old tar-based storage format to pimarc'

add_arguments(parser)

run_command(pipeline, opts)

tar_to_pimarc(in_tar_paths)

pyshell

class PimlicoPythonShellContext
Bases: object

A class used as a static global data structure to provide access to the loaded pipeline when running the Pimlico
Python shell command.

This should never be used in any other context to pass around loaded pipelines or other global data. We don’t
do that sort of thing.

class PythonShellCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

150 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

command_name = 'python'

command_help = 'Load the pipeline config and enter a Python interpreter with access to it in the environment'

add_arguments(parser)

run_command(pipeline, opts)

get_pipeline()
This function may be used in scripts that are expected to be run exclusively from the Pimlico Python shell
command (python) to get hold of the pipeline that was specified on the command line and loaded when the
shell was started.

exception ShellContextError
Bases: Exception

recover

class RecoverCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

When a document map module gets killed forcibly, sometimes it doesn’t have time to save its execution state,
meaning that it can’t pick up from where it left off.

Todo: This has not been updated for the Pimarc internal storage format, so still assumes that tar files are used.
It will be updated in future, if there is a need for it.

This command tries to fix the state so that execution can be resumed. It counts the documents in the output
corpora and checks what the last written document was. It then updates the state to mark the module as partially
executed, so that it continues from this document when you next try to run it.

The last written document is always thrown away, since we don’t know whether it was fully written. To avoid
partial, broken output, we assume the last document was not completed and resume execution on that one.

Note that this will only work for modules that output something (which may be an invalid doc) to every output
for every input doc. Modules that only output to some outputs for each input cannot be recovered so easily.

command_name = 'recover'

command_help = "Examine and fix a partially executed map module's output state after forcible termination"

add_arguments(parser)

run_command(pipeline, opts)

count_docs(corpus, last_buffer_size=10)

truncate_tar_after(path, last_filename, gzipped=False)
Read through the given tar file to find the specified filename. Truncate the archive after the end of that file’s
contents.

Creates a backup of the tar archive first, since this is a risky operation.

Returns False if the filename wasn’t found

reset

class ResetCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

1.5. API Documentation 151

Pimlico Documentation, Release 0.9.25

command_name = 'reset'

command_help = 'Delete any output from the given module and restore it to unexecuted state'

add_arguments(parser)

run_command(pipeline, opts)

run

class RunCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

Main command for executing Pimlico modules from the command line run command.

command_name = 'run'

command_help = 'Execute an individual pipeline module, or a sequence'

add_arguments(parser)

run_command(pipeline, opts)

status

class StatusCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'status'

command_help = 'Output a module execution schedule for the pipeline and execution status for every module'

add_arguments(parser)

run_command(pipeline, opts)

print_section_tree(tree, mod_name_bullets, pipeline, depth=0, expand=’all’, aliases=None)

print_module_status(module_name, bullet, pipeline, aliases=None)

module_status_color(module)

status_colored(module, text=None)
Colour the text according to the status of the given module. If text is not given, the module’s name is returned.

mix_bg_colors(text, colors)
Format a string with mixed colors, by alternating by character.

module_status(module)
Detailed module status, shown when a specific module’s status is requested.

subcommands

class PimlicoCLISubcommand
Bases: object

Base class for defining subcommands to the main command line tool.

This allows us to split up subcommands, together with all their arguments/options and their functionality, since
there are quite a lot of them.

Documentation of subcommands should be supplied in the following ways:

152 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

• Include help texts for positional args and options in the add_arguments() method. They will all be included
in the doc page for the command.

• Write a very short description of what the command is for (a few words) in command_desc. This will be
used in the summary table / TOC in the docs.

• Write a short description of what the command does in command_help. This will be available in
command-line help and used as a fallback if you don’t do the next point.

• Write a good guide to using the command (or at least say what it does) in the class’ docstring (i.e. overrid-
ing this). This will form the bulk of the command’s doc page.

command_name = None

command_help = None

command_desc = None

add_arguments(parser)

run_command(pipeline, opts)

testemail

class EmailCmd
Bases: pimlico.cli.subcommands.PimlicoCLISubcommand

command_name = 'email'

command_help = 'Test email settings and try sending an email using them'

run_command(pipeline, opts)

util

module_number_to_name(pipeline, name)

module_numbers_to_names(pipeline, names)
Convert module numbers to names, also handling ranges of numbers (and names) specified with “. . . ”. Any
“. . . ” will be filled in by the sequence of intervening modules.

Also, if an unexpanded module name is specified for a module that’s been expanded into multiple corresponding
to alternative parameters, all of the expanded module names are inserted in place of the unexpanded name.

format_execution_error(error)
Produce a string with lots of error output to help debug a module execution error.

Parameters error – the exception raised (ModuleExecutionError or ModuleInfoLoadError)

Returns formatted output

print_execution_error(error)

Module contents

core

Subpackages

1.5. API Documentation 153

Pimlico Documentation, Release 0.9.25

dependencies

Submodules

base

Base classes for defining software dependencies for module types and routines for fetching them.

class SoftwareDependency(name, homepage_url=None, dependencies=None, license=None)
Bases: object

Base class for all Pimlico module software dependencies.

Every dependency has a name and list of sub-dependencies.

A URL may be provided by the kwarg homepage_url. This will be used in documentation to link to the
software’s homepage.

A license may also be specified, for inclusion in the documentation. It should be an instance of
SoftwareLicense. See the literals in pimlico.core.dependences.licenses for many com-
monly used licenses.

available(local_config)
Return True if the dependency is satisfied, meaning that the software/library is installed and ready to use.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

installation_instructions()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

installation_notes()
If this returns a non-empty string, the message will be output together with the information that the depen-
dency is not available, before the user is given the option of installing it automatically (or told that it can’t
be). This is useful where information about a dependency should always be displayed, not just in cases
where automatic installation isn’t possible.

For example, you might need to include warnings about potential installation difficulties, license informa-
tion, sources of additional information about the software, and so on.

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-

154 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

all_dependencies()
Recursively fetch all dependencies of this dependency (not including itself).

get_installed_version(local_config)
If available() returns True, this method should return a SoftwareVersion object (or subclass) representing
the software’s version.

The base implementation returns an object representing an unknown version number.

If available() returns False, the behaviour is undefined and may raise an error.

class Any(name, dependency_options, *args, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

A collection of dependency requirements of which at least one must be available. The first in the list that is
installable is treated as the default and used for automatic installation.

available(local_config)
Return True if the dependency is satisfied, meaning that the software/library is installed and ready to use.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

get_installation_candidate()
Returns the first dependency of the multiple possibilities that is automatically installable, or None if none
of them are.

get_available_option(local_config)
If one of the options is available, return that one. Otherwise return None.

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

install(local_config, trust_downloaded_archives=False)
Installs the dependency given by get_installation_candidate(), if any. Ideally, we should
provide a way to select which of the options should be installed. However, until we’ve worked out the best
way to do this, the default option is always installed. The user may install another option manually and
that will be used.

1.5. API Documentation 155

Pimlico Documentation, Release 0.9.25

installation_notes()
If this returns a non-empty string, the message will be output together with the information that the depen-
dency is not available, before the user is given the option of installing it automatically (or told that it can’t
be). This is useful where information about a dependency should always be displayed, not just in cases
where automatic installation isn’t possible.

For example, you might need to include warnings about potential installation difficulties, license informa-
tion, sources of additional information about the software, and so on.

class SystemCommandDependency(name, test_command, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Dependency that tests whether a command is available on the command line. Generally requires system-wide
installation.

installable()
Usually not automatically installable

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

exception InstallationError
Bases: Exception

check_and_install(deps, local_config, trust_downloaded_archives=False)
Check whether dependencies are available and try to install those that aren’t. Returns a list of dependencies that
can’t be installed.

install(dep, local_config, trust_downloaded_archives=False)

install_dependencies(pipeline, modules=None, trust_downloaded_archives=True)
Install depedencies for pipeline modules

Parameters

• pipeline –

• modules – list of module names, or None to install for all

Returns

recursive_deps(dep)
Collect all recursive dependencies of this dependency. Does a depth-first search so that everything comes later
in the list than things it depends on.

core

Basic Pimlico core dependencies

CORE_PIMLICO_DEPENDENCIES = [PythonPackageOnPip<virtualenv>, PythonPackageOnPip<colorama>, PythonPackageOnPip<termcolor>, PythonPackageOnPip<tabulate>, PythonPackageOnPip<Progressbar (progressbar)>, PythonPackageOnPip<backports.csv>, PythonPackageOnPip<tblib>]
Core dependencies required by the basic Pimlico installation, regardless of what pipeline is being processed.
These will be checked when Pimlico is run, using the same dependency-checking mechanism that Pimlico
modules use, and installed automatically if they’re not found.

156 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

java

class JavaDependency(name, classes=[], jars=[], class_dirs=[], **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Base class for Java library dependencies.

In addition to the usual functionality provided by dependencies, subclasses of this provide contributions to the
Java classpath in the form of directories of jar files.

The instance has a set of representative Java classes that the checker will try to load to check whether the library
is available and functional. It will also check that all jar files exist.

Jar paths and class directory paths are assumed to be relative to the Java lib dir (lib/java), unless they are absolute
paths.

Subclasses should provide install() and override installable() if it’s possible to install them automatically.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

jar_paths(local_config)
Absolute paths to the jars

all_jars(local_config)
Get all jars, including from dependencies

get_classpath_components()

class JavaJarsDependency(name, jar_urls, **kwargs)
Bases: pimlico.core.dependencies.java.JavaDependency

Simple way to define a Java dependency where the library is packaged up in a jar, or a series of jars. The jars
should be given as a list of (name, url) pairs, where name is the filename the jar should have and url is a url from
which it can be downloaded.

URLs may also be given in the form “url->member”, where url is a URL to a tar.gz or zip archive and member
is a member to extract from the archive. If the type of the file isn’t clear from the URL (i.e. if it doesn’t have
“.zip” or “.tar.gz” in it), specify the intended extension in the form “[ext]url->member”, where ext is “tar.gz” or
“zip”.

If multiple jars come from the same URL (i.e. the same archive), it will only be downloaded once.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

1.5. API Documentation 157

Pimlico Documentation, Release 0.9.25

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

class PimlicoJavaLibrary(name, classes=[], additional_jars=[])
Bases: pimlico.core.dependencies.java.JavaDependency

Special type of Java dependency for the Java libraries provided with Pimlico. These are packages up in jars and
stored in the build dir.

check_java_dependency(class_name, classpath=None)
Utility to check that a java class is able to be loaded.

check_java()
Check that the JVM executable can be found. Raises a DependencyError if it can’t be found or can’t be run.

get_classpath(deps, as_list=False)
Given a list of JavaDependency subclass instances, returns all the components of the classpath that will make
sure that the dependencies are available.

If as_list=True, returned as a list. Get the full classpath by “:”.join(x) on the list. If as_list=False, returns
classpath string.

get_module_classpath(module)
Builds a classpath that includes all of the classpath elements specified by Java dependencies of the given module.
These include the dependencies from get_software_dependencies() and also any dependencies of the datatype.

Used to ensure that Java modules that depend on particular jars or classes get all of those files included on their
classpath when Java is run.

class Py4JSoftwareDependency
Bases: pimlico.core.dependencies.java.JavaDependency

Java component of Py4J. Use this one as the main dependency, as it depends on the Python component and will
install that first if necessary.

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

jars

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

158 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

licenses

Software licenses, for referring to in software dependency documentation.

Literals here are used to refer to the licenses that software uses.

See https://choosealicense.com/licenses/ for more details and comparison.

class SoftwareLicense(name, description=None, url=None)
Bases: object

python

Tools for Python library dependencies.

Provides superclasses for Python library dependencies and a selection of commonly used dependency instances.

class PythonPackageDependency(package, name, **kwargs)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Base class for Python dependencies. Provides import checks, but no installation routines. Subclasses should
either provide install() or installation_instructions().

The import checks do not (as of 0.6rc) actually import the package, as this may have side-effects that are difficult
to account for, causing odd things to happen when you check multiple times, or try to import later. Instead, it
just checks whether the package finder is about to locate the package. This doesn’t guarantee that the import
will succeed.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

import_package()
Try importing package_name. By default, just uses __import__. Allows subclasses to allow for special
import behaviour.

Should raise an ImportError if import fails.

get_installed_version(local_config)
Tries to import a __version__ variable from the package, which is a standard way to define the package
version.

class PythonPackageSystemwideInstall(package_name, name, pip_package=None,
apt_package=None, yum_package=None, **kwargs)

Bases: pimlico.core.dependencies.python.PythonPackageDependency

Dependency on a Python package that needs to be installed system-wide.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

1.5. API Documentation 159

https://choosealicense.com/licenses/

Pimlico Documentation, Release 0.9.25

installation_instructions()
Where a dependency can’t be installed programmatically, we typically want to be able to output instruc-
tions for the user to tell them how to go about doing it themselves. Any subclass that doesn’t provide an
automatic installation routine should override this to provide instructions.

You may also provide this even if the class does provide automatic installation. For example, you might
want to provide instructions for other ways to install the software, like a system-wide install. This instruc-
tions will be shown together with missing dependency information.

class PythonPackageOnPip(package, name=None, pip_package=None, up-
grade_only_if_needed=False, min_version=None, editable=False,
**kwargs)

Bases: pimlico.core.dependencies.python.PythonPackageDependency

Python package that can be installed via pip. Will be installed in the virtualenv if not available.

Allows specification of a minimum version. If an earlier version is installed, it will be upgraded.

Name is the readable software name. Package is a the package that is imported in Python.

Parameters editable (boolean) – Pass the –editable option to pip when installing. Use with
e.g. Git urls as packages.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

get_installed_version(local_config)
Tries to import a __version__ variable from the package, which is a standard way to define the package
version.

safe_import_bs4()
BS can go very slowly if it tries to use chardet to detect input encoding Remove chardet and cchardet from the
Python modules, so that import fails and it doesn’t try to use them This prevents it getting stuck on reading long
input files

class BeautifulSoupDependency
Bases: pimlico.core.dependencies.python.PythonPackageOnPip

Test import with special BS import behaviour.

import_package()
Try importing package_name. By default, just uses __import__. Allows subclasses to allow for special
import behaviour.

Should raise an ImportError if import fails.

160 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class NLTKResource(name, homepage_url=None, dependencies=None, license=None)
Bases: pimlico.core.dependencies.base.SoftwareDependency

Check for and install NLTK resources, using NLTK’s own downloader.

problems(local_config)
Returns a list of problems standing in the way of the dependency being available. If the list is empty, the
dependency is taken to be installed and ready to use.

Overriding methods should call super method.

installable()
Return True if it’s possible to install this library automatically. If False, the user will have to install it
themselves. Instructions for doing this may be provided by installation_instructions(), which will only
generally be called if installable() returns False.

This might be the case, for example, if the software is not available to download freely, or if it requires a
system-wide installation.

install(local_config, trust_downloaded_archives=False)
Should be overridden by any subclasses whose library is automatically installable. Carries out the actual
installation.

You may assume that all dependencies returned by :method:dependencies have been satisfied prior to
calling this.

dependencies()
Returns a list of instances of SoftwareDependency subclasses representing this library’s own depen-
dencies. If the library is already available, these will never be consulted, but if it is to be installed, we will
check first that all of these are available (and try to install them if not).

versions

class SoftwareVersion(string_id)
Bases: object

Base class for representing version numbers / IDs of software. Different software may use different conventions
to represent its versions, so it may be necessary to subclass this class to provide the appropriate parsing and
comparison of versions.

compare_dotted_versions(version0, version1)
Comparison function for reasonably standard version numbers, with subversions to any level of nesting specified
by dots.

Module contents

external

Submodules

java

call_java(class_name, args=[], classpath=None)

java_call_command(class_name, classpath=None)
List of components for a subprocess call to Java, used by call_java

1.5. API Documentation 161

Pimlico Documentation, Release 0.9.25

start_java_process(class_name, args=[], java_args=[], wait=0.1, classpath=None)

class Py4JInterface(gateway_class, port=None, python_port=None, gateway_args=[],
pipeline=None, print_stdout=True, print_stderr=True, env={}, sys-
tem_properties={}, java_opts=[], timeout=10.0, prefix_classpath=None)

Bases: object

If pipeline is given, configuration is looked for there. If found, this overrides config given in other kwargs.

If print_stdout=True (default), stdout from processes will be printed out to the console in addition to any other
processing that’s done to it. Same with stderr. By default, both are output to the console.

env adds extra variables to the environment for running the Java process.

system_properties adds Java system property settings to the Java command.

start(timeout=None, port_output_prefix=None)
Start a Py4J gateway server in the background on the given port, which will then be used for communicat-
ing with the Java app.

If a port has been given, it is assumed that the gateway accepts a –port option. Likewise with python_port
and a –python-port option.

If timeout is given, it overrides any timeout given in the constructor or specified in local config.

new_client()

stop()

clear_output_queues()

no_retry_gateway(**kwargs)
A wrapper around the constructor of JavaGateway that produces a version of it that doesn’t retry on errors. The
default gateway keeps retying and outputting millions of errors if the server goes down, which makes responding
to interrupts horrible (as the server might die before the Python process gets the interrupt).

TODO This isn’t working: it just gets worse when I use my version!

gateway_client_to_running_server(port)

launch_gateway(gateway_class=’py4j.GatewayServer’, args=[], javaopts=[], redirect_stdout=None,
redirect_stderr=None, daemonize_redirect=True, env={}, port_output_prefix=None,
startup_timeout=10.0, prefix_classpath=None)

Our own more flexble version of Py4J’s launch_gateway.

get_redirect_func(redirect)

class OutputConsumer(redirects, stream, *args, **kwargs)
Bases: threading.Thread

Thread that consumes output Modification of Py4J’s OutputConsumer to allow multiple redirects.

remove_temporary_redirects()

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

output_p4j_error_info(command, returncode, stdout, stderr)

make_py4j_errors_safe(fn)
Decorator for functions/methods that call Py4J. Py4J’s exceptions include information that gets retrieved from

162 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

the Py4J server when they’re displayed. This is a problem if the server is not longer running and raises another
exception, making the whole situation very confusing.

If you wrap your function with this, Py4JJavaErrors will be replaced by our own exception type
Py4JSafeJavaError, containing some of the information about the Java exception if possible.

exception Py4JSafeJavaError(java_exception=None, str=None)
Bases: Exception

exception DependencyCheckerError
Bases: Exception

exception JavaProcessError
Bases: Exception

Module contents

Tools for calling external (non-Python) tools.

modules

Subpackages

map

Submodules

benchmark

filter

multiproc

singleproc

threaded

Module contents

Submodules

base

This module provides base classes for Pimlico modules.

The procedure for creating a new module is the same whether you’re contributing a module to the core set in the
Pimlico codebase or a standalone module in your own codebase, or for a specific pipeline.

A Pimlico module is identified by the full Python-path to the Python package that contains it. This package should be
laid out as follows:

1.5. API Documentation 163

Pimlico Documentation, Release 0.9.25

• The module’s metadata is defined by a class in info.py called ModuleInfo, which should inherit from BaseMod-
uleInfo or one of its subclasses.

• The module’s functionality is provided by a class in execute.py called ModuleExecutor, which should inherit
from BaseModuleExecutor.

The exec Python module will not be imported until an instance of the module is to be run. This means that you
can import dependencies and do any necessary initialization at the point where it’s executed, without worrying about
incurring the associated costs (and dependencies) every time a pipeline using the module is loaded.

class BaseModuleInfo(module_name, pipeline, inputs={}, options={}, optional_outputs=[],
docstring=”, include_outputs=[], alt_expanded_from=None,
alt_param_settings=[], module_variables={})

Bases: object

Abstract base class for all pipeline modules’ metadata.

module_type_name = None

module_readable_name = None

module_options = {}

module_inputs = []
Specifies a list of (name, datatype instance) pairs for inputs that are always required

module_optional_inputs = []
Specifies a list of (name, datatype instance) pairs for optional inputs. The module’s execution may vary
depending on what is provided. If these are not given, None is returned from get_input()

module_optional_outputs = []
Specifies a list of (name, datatype instance) pairs for outputs that are written only if they’re specified in the
“output” option or used by another module

module_output_groups = []
List of output groups: (group_name, [output_name1, . . .]). Further groups may be added by
build_output_groups().

module_executable = True
Whether the module should be executed Typically True for almost all modules, except input modules
(though some of them may also require execution) and filters

module_executor_override = None
If specified, this ModuleExecutor class will be used instead of looking one up in the exec Python module

main_module = None
Usually None. In the case of stages of a multi-stage module, stores a pointer to the main module.

module_supports_python2 = False
Most core Pimlico modules support use in Python 2 and 3. Modules that do should set this to True. If it is
False, the module is assumed to work only in Python 3.

Since Python 2 compatibility requires extra work from the programmer, this is False by default.

To check whether a module can be used in Python 2, call supports_python2(), which will check
this and also input and output datatypes.

module_outputs = []
Specifies a list of (name, datatype instance) pairs for outputs that are always written

classmethod supports_python2()

Returns True if the module can be run in Python 2 and 3, False if it only supports Python 3.

164 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

load_executor()
Loads a ModuleExecutor for this Pimlico module. Usually, this just involves calling
load_module_executor(), but the default executor loading may be overridden for a particu-
lar module type by overriding this function. It should always return a subclass of ModuleExecutor, unless
there’s an error.

classmethod get_key_info_table()
When generating module docs, the table at the top of the page is produced by calling this method. It should
return a list of two-item lists (title + value). Make sure to include the super-class call if you override this
to add in extra module-specific info.

metadata_filename

get_metadata()

set_metadata_value(attr, val)

set_metadata_values(val_dict)

status

execution_history_path

add_execution_history_record(line)
Output a single line to the file that stores the history of module execution, so we can trace what we’ve
done.

execution_history
Get the entire recorded execution history for this module. Returns an empty string if no history has been
recorded.

input_names
All required inputs, first, then all supplied optional inputs

output_names

classmethod process_module_options(opt_dict)
Parse the options in a dictionary (probably from a config file), checking that they’re valid for this model
type.

Parameters opt_dict – dict of options, keyed by option name

Returns dict of options

classmethod extract_input_options(opt_dict, module_name=None, previ-
ous_module_name=None, module_expansions={})

Given the config options for a module instance, pull out the ones that specify where the inputs come from
and match them up with the appropriate input names.

The inputs returned are just names as they come from the config file. They are split into module name and
output name, but they are not in any way matched up with the modules they connect to or type checked.

Parameters

• module_name – name of the module being processed, for error output. If not given, the
name isn’t included in the error.

• previous_module_name – name of the previous module in the order given in the
config file, allowing a single-input module to default to connecting to this if the input
connection wasn’t given

• module_expansions – dictionary mapping module names to a list of expanded mod-
ule names, where expansion has been performed as a result of alternatives in the parame-

1.5. API Documentation 165

Pimlico Documentation, Release 0.9.25

ters. Provided here so that the unexpanded names may be used to refer to the whole list of
module names, where a module takes multiple inputs on one input parameter

Returns dictionary of inputs

static choose_optional_outputs_from_options(options, inputs)
Normally, which optional outputs get produced by a module depend on the ‘output’ option given in the
config file, plus any outputs that get used by subsequent modules. By overriding this method, module types
can add extra outputs into the list of those to be included, conditional on other options.

It also receives the processed dictionary of inputs, so that the additional outputs can depend on what is fed
into the input.

E.g. the corenlp module include the ‘annotations’ output if annotators are specified, so that the user doesn’t
need to give both options.

Note that this does not provide additional output definitions, just a list of the optional outputs (already
defined) that should be included among the outputs produced.

static get_extra_outputs_from_options(options, inputs)
Normally, which optional outputs get produced by a module depend on the ‘output’ option given in the
config file, plus any outputs that get used by subsequent modules. By overriding this method, module types
can add extra outputs into the list of those to be included, conditional on other options.

It also receives the processed dictionary of inputs, so that the additional outputs can depend on what is fed
into the input.

E.g. the corenlp module include the ‘annotations’ output if annotators are specified, so that the user doesn’t
need to give both options.

Note that this does not provide additional output definitions, just a list of the optional outputs (already
defined) that should be included among the outputs produced.

provide_further_outputs()
Called during instantiation, once inputs and options are available, to add a further list of module outputs
that are dependent on inputs or options.

When overriding this, you can provide a new docstring, which will be used in the module docs to describe
the extra conditional outputs that are added.

build_output_groups()
Called during instantiation to produce a list of named groups of outputs. The list extends the statically
define output groups in module_output_groups. You should use the static list unless you need to
override this for conditionally added outputs.

Called after all input, options and output processing has been done, so the outputs in the attribute
available_outputs are the final list of outputs that this module instance has.

Returns a list of groups, each specified as: (group_name, [output_name1, ...]).

May contain as many groups as necessary. They are not required to cover all the outputs and outputs may
feature in multiple groups.

Should not include group “all”, which is always included by default.

If you override this, use the docstring to specify what output groups will get added and how they are
named. The text will be used in the generated module docs.

is_output_group_name(group_name)

get_output_group(group_name)
Get the list of output names corresponding to the given output group name.

Raises a KeyError if the output group does not exist.

166 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

get_module_output_dir(absolute=False, short_term_store=None)
Gets the path to the base output dir to be used by this module, relative to the storage base dir. When
outputting data, the storage base dir will always be the short term store path, but when looking for the
output data other base paths might be explored, including the long term store.

Kwarg short_term_store is included for backward compatibility, but outputs a deprecation warning.

Parameters absolute – if True, return absolute path to output dir in output store

Returns path, relative to store base path, or if absolute=True absolute path to output dir

get_absolute_output_dir(output_name)
The simplest way to get hold of the directory to use to output data to for a given output. This is the usual
way to get an output directory for an output writer.

The directory is an absolute path to a location in the Pimlico output storage location.

Parameters output_name – the name of an output

Returns the absolute path to the output directory to use for the named output

get_output_dir(output_name, absolute=False, short_term_store=None)
Kwarg short_term_store is included for backward compatibility, but outputs a deprecation warning.

Parameters

• absolute – return an absolute path in the storage location used for output. If False
(default), return a relative path, specified relative to the root of the Pimlico store used.
This allows multiple stores to be searched for output

• output_name – the name of an output

Returns the path to the output directory to use for the named output, which may be relative to
the root of the Pimlico store in use (default) or an absolute path in the output store, depending
on absolute

get_output_datatype(output_name=None)
Get the datatype of a named output, or the default output. Returns an instance of the relevant Pimlico-
Datatype subclass. This can be used for typechecking and also for getting a reader for the output data,
once it’s ready, by supplying it with the path to the data.

To get a reader for the output data, use get_output().

Parameters output_name – output whose datatype to retrieve. Default output if not specified

Returns

output_ready(output_name=None)
Check whether the named output is ready to be read from one of its possible storage locations.

Parameters output_name – output to check, or default output if not given

Returns False if data is not ready to be read

instantiate_output_reader_setup(output_name, datatype)
Produce a reader setup instance that will be used to prepare this reader. This provides functionality like
checking that the data is ready to be read before the reader is instantiated.

The standard implementation uses the datatype’s methods to get its standard reader setup and reader, but
some modules may need to override this to provide other readers.

output_name is provided so that overriding methods’ behaviour can be conditioned on which output is
being fetched.

1.5. API Documentation 167

Pimlico Documentation, Release 0.9.25

instantiate_output_reader(output_name, datatype, pipeline, module=None)
Prepare a reader for a particular output. The default implementation is very simple, but subclasses may
override this for cases where the normal process of creating readers has to be modified.

Parameters

• output_name – output to produce a reader for

• datatype – the datatype for this output, already inferred

get_output_reader_setup(output_name=None)

get_output(output_name=None)
Get a reader corresponding to one of the outputs of the module. The reader will be that which corresponds
to the output’s declared datatype and will read the data from any of the possible locations where it can be
found.

If the data is not available in any location, raises a DataNotReadyError.

To check whether the data is ready without calling this, call output_ready().

get_output_writer(output_name=None, **kwargs)
Get a writer instance for the given output. Kwargs will be passed through to the writer and used to specify
metadata and writer params.

Parameters

• output_name – output to get writer for, or default output if left

• kwargs –

Returns

is_multiple_input(input_name=None)
Returns True if the named input (or default input if no name is given) is a MultipleInputs input, False
otherwise. If it is, get_input() will return a list, otherwise it will return a single datatype.

get_input_module_connection(input_name=None, always_list=False)
Get the ModuleInfo instance and output name for the output that connects up with a named input (or the
first input) on this module instance. Used by get_input() – most of the time you probably want to use that
to get the instantiated datatype for an input.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded number
of inputs, this is a list. Otherwise, it’s a single (module, output_name) pair. If always_list=True, in this
latter case we return a single-item list.

get_input_datatype(input_name=None, always_list=False)
Get a list of datatype instances corresponding to one of the inputs to the module. If an input name is not
given, the first input is returned.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded number
of inputs, this is a list. Otherwise, it’s a single datatype.

get_input_reader_setup(input_name=None, always_list=False)
Get reader setup for one of the inputs to the module. Looks up the corresponding output from another
module and uses that module’s metadata to get that output’s instance. If an input name is not given, the
first input is returned.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded number
of inputs, this is a list. Otherwise, it’s a single datatype instance. If always_list=True, in this latter case we
return a single-item list.

If the requested input name is an optional input and it has not been supplied, returns None.

168 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

You can get a reader for the input, once the data is ready to be read, by calling get_reader() on the setup
object. Or use get_input() on the module.

get_input(input_name=None, always_list=False)
Get a reader for one of the inputs to the module. Should only be called once the input data is ready to read.
It’s therefore fine to call this from a module executor, since data availability has already been checked by
this point.

If the input type was specified with MultipleInputs, meaning that we’re expecting an unbounded
number of inputs, this is a list. Otherwise, it’s a single datatype instance. If always_list=True, in
this latter case we return a single-item list.

If the requested input name is an optional input and it has not been supplied, returns None.

Similarly, if you run in preliminary mode, multiple inputs might produce None for some of their inputs if
the data is not ready.

input_ready(input_name=None)
Check whether the data is ready to go corresponding to the named input.

Parameters input_name – input to check

Returns True if input is ready

all_inputs_ready()
Check input_ready() on all inputs.

Returns True if all input datatypes are ready to be used

classmethod is_filter()

missing_module_data()
Reports missing data not associated with an input dataset.

Calling missing_data() reports any problems with input data associated with a particular input to this
module. However, modules may also rely on data that does not come from one of their inputs. This
happens primarily (perhaps solely) when a module option points to a data source. This might be the case
with any module, but is particularly common among input reader modules, which have no inputs, but read
data according to their options.

Returns list of problems

missing_data(input_names=None, assume_executed=[], assume_failed=[], al-
low_preliminary=False)

Check whether all the input data for this module is available. If not, return a list strings indicating which
outputs of which modules are not available. If it’s all ready, returns an empty list.

To check specific inputs, give a list of input names. To check all inputs, don’t specify input_names. To
check the default input, give input_names=[None]. If not checking a specific input, also checks non-input
data (see missing_module_data()).

If assume_executed is given, it should be a list of module names which may be assumed to have been
executed at the point when this module is executed. Any outputs from those modules will be excluded
from the input checks for this module, on the assumption that they will have become available, even if
they’re not currently available, by the time they’re needed.

If assume_executed is given, it should be a list of module names which should be assumed to have failed.
If we rely on data from the output of one of them, instead of checking whether it’s available we simply
assume it’s not.

Why do this? When running multiple modules in sequence, if one fails it is possible that its output datasets
look like complete datasets. For example, a partially written iterable corpus may look like a perfectly valid
corpus, which happens to be smaller than it should be. After the execution failure, we may check other

1.5. API Documentation 169

Pimlico Documentation, Release 0.9.25

modules to see whether it’s possible to run them. Then we need to know not to trust the output data from
the failed module, even if it looks valid.

If allow_preliminary=True, for any inputs that are multiple inputs and have multiple connections to previ-
ous modules, consider them to be satisfied if at least one of their inputs is ready. The normal behaviour is
to require all of them to be ready, but in a preliminary run this requirement is relaxed.

classmethod is_input()

dependencies

Returns list of names of modules that this one depends on for its inputs.

get_transitive_dependencies()
Transitive closure of dependencies.

Returns list of names of modules that this one recursively (transitively) depends on for its inputs.

typecheck_inputs()

typecheck_input(input_name)
Typecheck a single input. typecheck_inputs() calls this and is used for typechecking of a pipeline.
This method returns the (or the first) satisfied input requirement, or raises an exception if typechecking
failed, so can be handy separately to establish which requirement was met.

The result is always a list, but will contain only one item unless the input is a multiple input.

get_software_dependencies()
Check that all software required to execute this module is installed and locatable. This is separate to
metadata config checks, so that you don’t need to satisfy the dependencies for all modules in order to be
able to run one of them. You might, for example, want to run different modules on different machines.
This is called when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

get_input_software_dependencies()
Collects library dependencies from the input datatypes to this module, which will need to be satisfied for
the module to be run.

Unlike get_software_dependencies(), it shouldn’t need to be overridden by subclasses, since it
just collects the results of getting dependencies from the datatypes.

get_output_software_dependencies()
Collects library dependencies from the output datatypes to this module, which will need to be satisfied for
the module to be run.

Unlike get_input_software_dependencies(), it may not be the case that all of these depen-
dencies strictly need to be satisfied before the module can be run. It could be that a datatype can be written
without satisfying all the dependencies needed to read it. However, we assume that dependencies of all
output datatypes must be satisfied in order to run the module that writes them, since this is usually the case,
and these are checked before running the module.

Unlike get_software_dependencies(), it shouldn’t need to be overridden by subclasses, since it
just collects the results of getting dependencies from the datatypes.

170 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

check_ready_to_run()
Called before a module is run, or if the ‘check’ command is called. This will only be called after all library
dependencies have been confirmed ready (see :method:get_software_dependencies).

Essentially, this covers any module-specific checks that used to be in check_runtime_dependencies() other
than library installation (e.g. checking models exist).

Always call the super class’ method if you override.

Returns a list of (name, description) pairs, where the name identifies the problem briefly and the description
explains what’s missing and (ideally) how to fix it.

reset_execution()
Remove all output data and metadata from this module to make a fresh start, as if it’s never been executed.

May be overridden if a module has some side effect other than creating/modifying things in its output di-
rectory(/ies), but overridden methods should always call the super method. Occasionally this is necessary,
but most of the time the base implementation is enough.

get_detailed_status()
Returns a list of strings, containing detailed information about the module’s status that is specific to the
module type. This may include module-specific information about execution status, for example.

Subclasses may override this to supply useful (human-readable) information specific to the module type.
They should called the super method.

classmethod module_package_name()
The package name for the module, which is used to identify it in config files. This is the package containing
the info.py in which the ModuleInfo is defined.

get_execution_dependency_tree()
Tree of modules that will be executed when this one is executed. Where this module depends on filters,
the tree goes back through them to find what they depend on (since they will be executed simultaneously)

get_all_executed_modules()
Returns a list of all the modules that will be executed when this one is (including itself). This is the current
module (if executable), plus any filters used to produce its inputs.

lock_path

lock()
Mark the module as locked, so that it cannot be executed. Called when execution begins, to ensure that
you don’t end up executing the same module twice simultaneously.

unlock()
Remove the execution lock on this module.

is_locked()

Returns True is the module is currently locked from execution

get_log_filenames(name=’error’)
Get a list of all the log filenames of the given prefix that exist in the module’s output dir. They will be
ordered according to their numerical suffixes (i.e. the order in which they were created).

Returns a list of (filename, num) tuples, where num is the numerical suffix as an int.

get_new_log_filename(name=’error’)
Returns an absolute path that can be used to output a log file for this module. This is used for outputting
error logs. It will always return a filename that doesn’t currently exist, so can be used multiple times to
output multiple logs.

1.5. API Documentation 171

Pimlico Documentation, Release 0.9.25

get_last_log_filename(name=’error’)
Get the most recent error log that was created by a call to get_new_log_filename(). Returns an absolute
path, or None if no matching files are found.

collect_unexecuted_dependencies(modules)
Given a list of modules, checks through all the modules that they depend on to put together a list of modules
that need to be executed so that the given list will be left in an executed state. The list includes the modules
themselves, if they’re not fully executed, and unexecuted dependencies of any unexecuted modules (recursively).

Parameters modules – list of ModuleInfo instances

Returns list of ModuleInfo instances that need to be executed

collect_runnable_modules(pipeline, preliminary=False)
Look for all unexecuted modules in the pipeline to find any that are ready to be executed. Keep collecting
runnable modules, including those that will become runnable once we’ve run earlier ones in the list, to produce
a list of a sequence of modules that could be set running now.

Parameters pipeline – pipeline config

Returns ordered list of runable modules. Note that it must be run in this order, as some might
depend on earlier ones in the list

satisfies_typecheck(provided_type, type_requirements)
Interface to Pimlico’s standard type checking (see check_type) that returns a boolean to say whether type check-
ing succeeded or not.

check_type(provided_type, type_requirements)
Type-checking algorithm for making sure outputs from modules connect up with inputs that they satisfy the
requirements for.

type_checking_name(typ)

class BaseModuleExecutor(module_instance_info, stage=None, debug=False, force_rerun=False)
Bases: object

Abstract base class for executors for Pimlico modules. These are classes that actually do the work of executing
the module on given inputs, writing to given output locations.

execute()
Run the actual module execution.

May return None, in which case it’s assumed to have fully completed. If a string is returned, it’s used as an
alternative module execution status. Used, e.g., by multi-stage modules that need to be run multiple times.

exception ModuleInfoLoadError(*args, **kwargs)
Bases: Exception

exception ModuleExecutorLoadError
Bases: Exception

exception ModuleTypeError
Bases: Exception

exception TypeCheckError(*args, **kwargs)
Bases: Exception

Pipeline type-check mismatch.

Full description of problem provided in error message. May optionally provide more detailed information about
the input and output (source) that failed to match, the expected type and the received type, all as strings. Specify
using kwargs input, source, required_type and provided_type.

172 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

format()
Provide a nice visual format of the mismatch to help the user.

exception DependencyError(message, stderr=None, stdout=None)
Bases: Exception

Raised when a module’s dependencies are not satisfied. Generally, this means a dependency library needs to be
installed, either on the local system or (more often) by calling the appropriate make target in the lib directory.

load_module_executor(path_or_info)
Utility for loading the executor class for a module from its full path. More or less just a wrapper around an
import, with some error checking. Locates the executor by a standard procedure that involves checking for an
“execute” python module alongside the info’s module.

Note that you shouldn’t generally use this directly, but instead call the load_executor() method on a module info
(which will call this, unless special behaviour has been defined).

Parameters path – path to Python package containing the module

Returns class

load_module_info(path)
Utility to load the metadata for a Pimlico pipeline module from its package Python path.

Parameters path –

Returns

execute

Runtime execution of modules

This module provides the functionality to check that Pimlico modules are ready to execute and execute them. It is used
by the run command.

check_and_execute_modules(pipeline, module_names, force_rerun=False, debug=False, log=None,
all_deps=False, check_only=False, exit_on_error=False, prelimi-
nary=False, email=None)

Main method called by the run command that first checks a pipeline, checks all pre-execution requirements
of the modules to be executed and then executes each of them. The most common case is to execute just one
module, but a sequence may be given.

Parameters

• exit_on_error – drop out if a ModuleExecutionError occurs in any individual module,
instead of continuing to the next module that can be run

• pipeline – loaded PipelineConfig

• module_names – list of names of modules to execute in the order they should be run

• force_rerun – execute modules, even if they’re already marked as complete

• debug – output debugging info

• log – logger, if you have one you want to reuse

• all_deps – also include unexecuted dependencies of the given modules

• check_only – run all checks, but stop before executing. Used for check command

Returns

1.5. API Documentation 173

Pimlico Documentation, Release 0.9.25

check_modules_ready(pipeline, modules, log, preliminary=False)
Check that a module is ready to be executed. Always called before execution begins.

Parameters

• pipeline – loaded PipelineConfig

• modules – loaded ModuleInfo instances, given in the order they’re going to be executed.
For each module, it’s assumed that those before it in the list have already been run when it
is run.

• log – logger to output to

Returns If preliminary=True, list of problems that were ignored by allowing preliminary run. Oth-
erwise, None – we raise an exception when we first encounter a problem

execute_modules(pipeline, modules, log, force_rerun=False, debug=False, exit_on_error=False, prelim-
inary=False, email=None)

format_execution_dependency_tree(tree)
Takes a tree structure of modules and their inputs, tracing where inputs to a module come from, and formats it
recursively for output to the logs.

Parameters tree – pair (module name, inputs list), where each input is a tuple (input name, previ-
ous module output name, previous module subtree)

Returns list of lines of formatted string

send_final_report_email(pipeline, error_modules, success_modules, skipped_modules,
all_modules)

send_module_report_email(pipeline, module, short_error, long_error)

exception ModuleExecutionError(*args, **kwargs)
Bases: Exception

Base for any errors encountered during execution of a module.

Note that the cause attribute is used to trace the cause of an exception, so a chain can be built.

This is now provided as standard using the raise ... from ... syntax in Python 3, which can be accessed
in Python 2 using future’s raise_from(). The cause attribute should gradually be replaced by this, which
works better.

exception ModuleNotReadyError(*args, **kwargs)
Bases: pimlico.core.modules.execute.ModuleExecutionError

exception ModuleAlreadyCompletedError(*args, **kwargs)
Bases: pimlico.core.modules.execute.ModuleExecutionError

exception StopProcessing
Bases: Exception

inputs

multistage

class MultistageModuleInfo(module_name, pipeline, **kwargs)
Bases: pimlico.core.modules.base.BaseModuleInfo

Base class for multi-stage modules. You almost certainly don’t want to override this yourself, but use the factory
method instead. It exists mainly for providing a way of identifying multi-stage modules.

174 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

module_executable = True

stages = None

typecheck_inputs()
Overridden to check internal output-input connections as well as the main module’s inputs.

get_software_dependencies()
Check that all software required to execute this module is installed and locatable. This is separate to
metadata config checks, so that you don’t need to satisfy the dependencies for all modules in order to be
able to run one of them. You might, for example, want to run different modules on different machines.
This is called when a module is about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

get_input_software_dependencies()
Collects library dependencies from the input datatypes to this module, which will need to be satisfied for
the module to be run.

Unlike get_software_dependencies(), it shouldn’t need to be overridden by subclasses, since it
just collects the results of getting dependencies from the datatypes.

check_ready_to_run()
Called before a module is run, or if the ‘check’ command is called. This will only be called after all library
dependencies have been confirmed ready (see :method:get_software_dependencies).

Essentially, this covers any module-specific checks that used to be in check_runtime_dependencies() other
than library installation (e.g. checking models exist).

Always call the super class’ method if you override.

Returns a list of (name, description) pairs, where the name identifies the problem briefly and the description
explains what’s missing and (ideally) how to fix it.

get_detailed_status()
Returns a list of strings, containing detailed information about the module’s status that is specific to the
module type. This may include module-specific information about execution status, for example.

Subclasses may override this to supply useful (human-readable) information specific to the module type.
They should called the super method.

reset_execution()
Remove all output data and metadata from this module to make a fresh start, as if it’s never been executed.

May be overridden if a module has some side effect other than creating/modifying things in its output di-
rectory(/ies), but overridden methods should always call the super method. Occasionally this is necessary,
but most of the time the base implementation is enough.

classmethod get_key_info_table()
Add the stages into the key info table.

get_next_stage()
If there are more stages to be executed, returns a pair of the module info and stage definition. Otherwise,
returns (None, None)

status

1.5. API Documentation 175

Pimlico Documentation, Release 0.9.25

is_locked()

Returns True is the module is currently locked from execution

multistage_module(multistage_module_type_name, module_stages, use_stage_option_names=False,
module_readable_name=None)

Factory to build a multi-stage module type out of a series of stages, each of which specifies a module type for
the stage. The stages should be a list of ModuleStage objects.

class ModuleStage(name, module_info_cls, connections=None, output_connections=None,
option_connections=None, use_stage_option_names=False, ex-
tra_connections_from_options=None)

Bases: object

A single stage in a multi-stage module.

If no explicit input connections are given, the default input to this module is connected to the default output
from the previous.

Connections can be given as a list of ModuleConnection s.

Output connections specify that one of this module’s outputs should be used as an output from the multi-stage
module. Optional outputs for the multi-stage module are not currently supported (though could in theory be
added later). This should be a list of ModuleOutputConnection s. If none are given for any of the stages,
the module will have a single output, which is the default output from the last stage.

Option connections allow you to specify the names that are used for the multistage module’s options that get
passed through to this stage’s module options. Simply specify a dict for option_connections where the
keys are names module options for this stage and the values are the names that should be used for the multistage
module’s options.

You may map multiple options from different stages to the same option name for the multistage module. This
will result in the same option value being passed through to both stages. Note that help text, option type, option
processing, etc will be taken from the first stage’s option (in case the two options aren’t identical).

Options not explicitly mapped to a name will use the name <stage_name>_<option_name>. If
use_stage_option_names=True, this prefix will not be added: the stage’s option names will be used
directly as the option name of the multistage module. Note that there is a danger of clashing option names with
this behaviour, so only do it if you know the stages have distinct option names (or should share their values
where the names overlap).

Further connections may be produced once processed options are available (when the main module’s module
info is instantiated), by specifying a one-argument function as extra_connections_from_options.
The argument is the processed option dictionary, which will contain the full set of options given the to the main
module.

class ModuleConnection
Bases: object

class InternalModuleConnection(input_name, output_name=None, previous_module=None)
Bases: pimlico.core.modules.multistage.ModuleConnection

Connection between the output of one module in the multi-stage module and the input to another.

May specify the name of the previous module that a connection should be made to. If this is not given, the
previous module in the sequence will be assumed.

If output_name=None, connects to the default output of the previous module.

class InternalModuleMultipleConnection(input_name, outputs)
Bases: pimlico.core.modules.multistage.ModuleConnection

Connection between the outputs of multiple modules and the input to another (which must be a multiple input).

176 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

outputs should be a list of (module_name, output_name) pairs, or just strings giving the output name,
assumed to be from the previous module.

class ModuleInputConnection(stage_input_name=None, main_input_name=None)
Bases: pimlico.core.modules.multistage.ModuleConnection

Connection of a sub-module’s input to an input to the multi-stage module.

If main_input_name is not given, the name for the input to the multistage module will be identical to the stage
input name. This might lead to unintended behaviour if multiple inputs end up with the same name, so you can
specify a different name if necessary to avoid clashes.

If multiple inputs (e.g. from different stages) are connected to the same main input name, they will take input
from the same previous module output. Nothing clever is done to unify the type requirements, however: the first
stage’s type requirement is used for the main module’s input.

If stage_input_name is not given, the module’s default input will be connected.

class ModuleOutputConnection(stage_output_name=None, main_output_name=None)
Bases: object

Specifies the connection of a sub-module’s output to the multi-stage module’s output. Works in a similar way to
ModuleInputConnection.

exception MultistageModulePreparationError
Bases: Exception

options

Utilities and type processors for module options.

opt_type_help(help_text)
Decorator to add help text to functions that are designed to be used as module option processors. The help text
will be used to describe the type in documentation.

opt_type_example(example_text)
Decorate to add an example value to function that are designed to be used as module option processors. The
given text will be used in module docs as an example of how to specify the option in a config file.

format_option_type(t)

str_to_bool(string)
Convert a string value to a boolean in a sensible way. Suitable for specifying booleans as options.

Parameters string – input string

Returns boolean value

choose_from_list(options, name=None)
Utility for option processors to limit the valid values to a list of possibilities.

comma_separated_list(item_type=<class ’str’>, length=None)
Option processor type that accepts comma-separated lists of strings. Each value is then parsed according to the
given item_type (default: string).

comma_separated_strings(string)

json_string(string)

json_dict(string)
JSON dicts, with or without {}s

1.5. API Documentation 177

Pimlico Documentation, Release 0.9.25

process_module_options(opt_def, opt_dict, module_type_name)
Utility for processing runtime module options. Called from module base class.

Also used when loading a dataset’s datatype from datatype options specified in a config file.

Parameters

• opt_def – dictionary defining available options

• opt_dict – dictionary of option values

• module_type_name – name for error output

Returns dictionary of processed options

exception ModuleOptionParseError
Bases: Exception

Module contents

Core functionality for loading and executing different types of pipeline module.

Submodules

config

Reading of pipeline config from a file into the data structure used to run and manipulate the pipeline’s data.

class PipelineConfig(name, pipeline_config, local_config, filename=None, variant=’main’, avail-
able_variants=[], log=None, all_filenames=None, module_aliases={}, lo-
cal_config_sources=None, section_headings=None)

Bases: object

Main configuration for a pipeline, read in from a config file.

For details on how to write config files that get read by this class, see Pipeline config.

modules
List of module names, in the order they were specified in the config file.

module_dependencies
Dictionary mapping a module name to a list of the names of modules that it depends on for its inputs.

module_dependents
Opposite of module_dependencies. Returns a mapping from module names to a list of modules the depend
on the module.

get_dependent_modules(module_name, recurse=False, exclude=[])
Return a list of the names of modules that depend on the named module for their inputs.

If exclude is given, we don’t perform a recursive call on any of the modules in the list. For each item
we recurse on, we extend the exclude list in the recursive call to include everything found so far (in other
recursive calls). This avoids unnecessary recursion in complex pipelines.

If exclude=None, it is also passed through to recursive calls as None. Its default value of [] avoids excessive
recursion from the top-level call, by allowing things to be added to the exclusion list for recursive calls.

Parameters recurse – include all transitive dependents, not just those that immediately de-
pend on the module.

178 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

append_module(module_info)
Add a moduleinfo to the end of the pipeline. This is mainly for use while loaded a pipeline from a config
file.

get_module_schedule()
Work out the order in which modules should be executed. This is an ordering that respects dependencies,
so that modules are executed after their dependencies, but otherwise follows the order in which modules
were specified in the config.

Returns list of module names

reset_all_modules()
Resets the execution states of all modules, restoring the output dirs as if nothing’s been run.

path_relative_to_config(path)
Get an absolute path to a file/directory that’s been specified relative to a config file (usually within the
config file).

If the path is already an absolute path, doesn’t do anything.

Parameters path – relative path

Returns absolute path

short_term_store
For backwards compatibility: returns output path

long_term_store
For backwards compatibility: return storage location ‘long’ if it exists, else first storage location

named_storage_locations

store_names

output_path

static load(filename, local_config=None, variant=’main’, override_local_config={},
only_override_config=False)

Main function that loads a pipeline from a config file.

Parameters

• filename – file to read config from

• local_config – location of local config file, where we’ll read system-wide config.
Usually not specified, in which case standard locations are searched. When loading pro-
grammatically, you might want to give this

• variant – pipeline variant to load

• override_local_config – extra configuration values to override the system-wide
config

• only_override_config – don’t load local config from files, just use that given in
override_local_config. Used for loading test pipelines

Returns

static load_local_config(filename=None, override={}, only_override=False)
Load local config parameters. These are usually specified in a .pimlico file, but may be overridden by other
config locations, on the command line, or elsewhere programmatically.

If only_override=True, don’t load any files, just use the values given in override. The various locations for
local config files will not be checked (which usually happens when filename=None). This is not useful for
normal pipeline loading, but is used for loading test pipelines.

1.5. API Documentation 179

Pimlico Documentation, Release 0.9.25

static trace_load_local_config(filename=None, override={}, only_override=False)
Trace the process of loading local config file(s). Follows exactly the same logic as load_local_config(), but
documents what it finds/doesn’t find.

static empty(local_config=None, override_local_config={}, override_pipeline_config={},
only_override_config=False)

Used to programmatically create an empty pipeline. It will contain no modules, but provides a gateway to
system info, etc and can be used in place of a real Pimlico pipeline.

Parameters

• local_config – filename to load local config from. If not given, the default locations
are searched

• override_local_config – manually override certain local config parameters. Dict
of parameter values

• only_override_config – don’t load any files, just use the values given in override.
The various locations for local config files will not be checked (which usually happens
when filename=None). This is not useful for normal pipeline loading, but is used for
loading test pipelines.

Returns the PipelineConfig instance

find_data_path(path, default=None)
Given a path to a data dir/file relative to a data store, tries taking it relative to various store base dirs. If it
exists in a store, that absolute path is returned. If it exists in no store, return None. If the path is already an
absolute path, nothing is done to it.

Searches all the specified storage locations.

Parameters

• path – path to data, relative to store base

• default – usually, return None if no data is found. If default is given, return the path
relative to the named storage location if no data is found. Special value “output” returns
path relative to output location, whichever of the storage locations that might be

Returns absolute path to data, or None if not found in any store

find_data_store(path, default=None)
Like find_data_path(), searches through storage locations to see if any of them include the data that lives
at this relative path. This method returns the name of the store in which it was found.

Parameters

• path – path to data, relative to store base

• default – usually, return None if no data is found. If default is given, return the path
relative to the named storage location if no data is found. Special value “output” returns
path relative to output location, whichever of the storage locations that might be

Returns name of store

find_data(path, default=None)
Given a path to a data dir/file relative to a data store, tries taking it relative to various store base dirs. If it
exists in a store, that absolute path is returned. If it exists in no store, return None. If the path is already an
absolute path, nothing is done to it.

Searches all the specified storage locations.

Parameters

• path – path to data, relative to store base

180 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

• default – usually, return None if no data is found. If default is given, return the path
relative to the named storage location if no data is found. Special value “output” returns
path relative to output location, whichever of the storage locations that might be

Returns (store, path), where store is the name of the store used and path is absolute path to data,
or None for both if not found in any store

get_data_search_paths(path)
Like find_all_data_paths(), but returns a list of all absolute paths which this data path could correspond
to, whether or not they exist.

Parameters path – relative path within Pimlico directory structures

Returns list of string

step

enable_step()
Enable super-verbose, interactive step mode.

::seealso:

Module :mod:pimlico.cli.debug
The debug module defines the behaviour of step mode.

exception PipelineConfigParseError(*args, **kwargs)
Bases: Exception

General problems interpreting pipeline config

exception PipelineStructureError(*args, **kwargs)
Bases: Exception

Fundamental structural problems in a pipeline.

exception PipelineCheckError(cause, *args, **kwargs)
Bases: Exception

Error in the process of explicitly checking a pipeline for problems.

preprocess_config_file(filename, variant=’main’, initial_vars={})
Workhorse of the initial part of config file reading. Deals with all of our custom stuff for pipeline configs, such
as preprocessing directives and includes.

Parameters

• filename – file from which to read main config

• variant – name of a variant to load. The default (main) loads the main variant, which
always exists

• initial_vars – variable assignments to make available for substitution. This will be
added to by any vars sections that are read.

Returns tuple: raw config dict; list of variants that could be loaded; final vars dict; list of filenames
that were read, including included files; dict of docstrings for each config section

check_for_cycles(pipeline)
Basic cyclical dependency check, always run on pipeline before use.

check_release(release_str)
Check a release name against the current version of Pimlico to determine whether we meet the requirement.

1.5. API Documentation 181

Pimlico Documentation, Release 0.9.25

check_pipeline(pipeline)
Checks a pipeline over for metadata errors, cycles, module typing errors and other problems. Called every time
a pipeline is loaded, to check the whole pipeline’s metadata is in order.

Raises a PipelineCheckError if anything’s wrong.

get_dependencies(pipeline, modules, recursive=False, sources=False)
Get a list of software dependencies required by the subset of modules given.

If recursive=True, dependencies’ dependencies are added to the list too.

Parameters

• pipeline –

• modules – list of modules to check. If None, checks all modules

print_missing_dependencies(pipeline, modules)
Check runtime dependencies for a subset of modules and output a table of missing dependencies.

Parameters

• pipeline –

• modules – list of modules to check. If None, checks all modules

Returns True if no missing dependencies, False otherwise

print_dependency_leaf_problems(dep, local_config)

logs

get_log_file(name)
Returns the path to a log file that may be used to output helpful logging info. Typically used to output verbose
error information if something goes wrong. The file can be found in the Pimlico log dir.

Parameters name – identifier to distinguish from other logs

Returns path

paths

abs_path_or_model_dir_path(path, model_type)

Module contents

datatypes

Subpackages

corpora

Subpackages

parse

182 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Submodules

trees

Datatypes for storing parse trees from constitutency parsers.

Note: Parse tress are temporary implementations that don’t actually parse the data, but just split it into sentences. That
is, they store the raw output from the OpenNLP parser. In future, this should be replaced by a generic tree structure
storage.

class OpenNLPTreeStringsDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

The attribute trees provides a list of strings representing each of the trees in the document, usually one per
sentence.

Todo: In future, this should be replaced by a doc type that reads in the parse trees and returns a tree data
structure. For now, you need to load and process the tree strings yourself.

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for OpenNLPTreeStringsDocumentType

keys = ['trees']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictionary
containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

Module contents

Submodules

base

class CountInvalidCmd
Bases: pimlico.cli.shell.base.ShellCommand

Data shell command to count up the number of invalid docs in a tarred corpus. Applies to any iterable corpus.

commands = ['invalid']

help_text = 'Count the number of invalid documents in this dataset'

1.5. API Documentation 183

Pimlico Documentation, Release 0.9.25

execute(shell, *args, **kwargs)
Execute the command. Get the dataset reader as shell.data.

Parameters

• shell – DataShell instance. Reader available as shell.data

• args – Args given by the user

• kwargs – Named args given by the user as key=val

data_point_type_opt(text)

class IterableCorpus(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Superclass of all datatypes which represent a dataset that can be iterated over document by document (or data-
point by datapoint - what exactly we’re iterating over may vary, though documents are most common).

This is an abstract base class and doesn’t provide any mechanisms for storing documents or organising them
on disk in any way. Many input modules will override this to provide a reader that iterates over the documents
directly, according to IterableCorpus’ interface. The main subclass of this used within pipelines is GroupedCor-
pus, which provides an interface for iterating over groups of documents and a storage mechanism for grouping
together documents in archives on disk.

May be used as a type requirement, but remember that it is not possible to create a reader from this type directly:
use a subtype, like GroupedCorpus, instead.

The actual type of the data depends on the type given as the first argument, which should be an instance of
DataPointType or a subclass: it could be, e.g. coref output, etc. Information about the type of individual
documents is provided by data_point_type and this is used in type checking.

Note that the data point type is the first datatype option, so can be given as the first positional arg when instanti-
ating an iterable corpus subtype:

corpus_type = GroupedCorpus(RawTextDocumentType())
corpus_reader = corpus_type("... base dir path ...")

At creation time, length should be provided in the metadata, denoting how many documents are in the dataset.

datatype_name = 'iterable_corpus'

shell_commands = [<pimlico.datatypes.corpora.base.CountInvalidCmd object>]

datatype_options = {'data_point_type': {'default': DataPointType(), 'help': 'Data point type for the iterable corpus. This is used to process each document in the corpus in an appropriate way. Should be a subclass of DataPointType. This should almost always be given, typically as the first positional arg when instantiating the datatype. Defaults to the generic data point type at the top of the hierarchy. When specifying as a string (e.g. loading from a config file), you can specify data-point type options in brackets after the class name, separated by semicolons (;). These are processed in the same way as other options. E.g. WordAnnotationsDocumentType(fields=xyz,abc; some_key=52)', 'type': <function data_point_type_opt>}}

datatype_supports_python2 = True

supports_python2()
Whether a corpus type supports Python 2, depends on its document type. The corpus datatype introduces
no reason not to, but specific document types might.

run_browser(reader, opts)
Launches a browser interface for reading this datatype, browsing the data provided by the given reader.

Not all datatypes provide a browser. For those that don’t, this method should raise a NotImplementedError.

opts provides the argparser options from the command line.

This tool used to be only available for iterable corpora, but now it’s possible for any datatype to provide
a browser. IterableCorpus provides its own browser, as before, which uses one of the data point type’s
formatters to format documents.

184 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class Reader(*args, **kwargs)
Bases: pimlico.datatypes.base.Reader

Reader class for IterableCorpus

get_detailed_status()
Returns a list of strings, containing detailed information about the data.

Subclasses may override this to supply useful (human-readable) information specific to the datatype.
They should called the super method.

list_iter()
Iterate over the list of document names, without yielding the doc contents.

Whilst this could be considerably faster than iterating over all the docs, the default implementation, if
not overridden by subclasses of IterableCorpus, simply calls the doc iter and throws away the docs.

data_to_document(data, metadata=None)
Applies the corpus’ datatype’s processing to the raw data, given as a bytes object, and produces a
document instance.

Parameters
• metadata – dict containing doc metadata (optional)
• data – bytes raw data

Returns document instance

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for IterableCorpus.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any of
them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read. Raises

an exception if none is ready. Typically used to get the path from the reader, once we’ve
already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

1.5. API Documentation 185

Pimlico Documentation, Release 0.9.25

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed
outside them. It may sometimes be necessary to call this from data_ready() to check that required
metadata is available.

reader_type
alias of IterableCorpus.Reader

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a reader
is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.
Returns True if the reader’s ready to be instantiated, False otherwise

class Writer(datatype, *args, **kwargs)
Bases: pimlico.datatypes.base.Writer

Stores the length of the corpus.

NB: IterableCorpus itself has no particular way of storing files, so this is only here to ensure that all
subclasses (e.g. GroupedCorpus) store a length in the same way.

metadata_defaults = {'length': (None, 'Number of documents in the corpus. Must be set by the writer, otherwise an exception will be raised at the end of writing')}

writer_param_defaults = {}

check_type(supplied_type)
Override type checking to require that the supplied type have a document type that is compatible with (i.e.
a subclass of) the document type of this class.

The data point types can also introduce their own checks, other than simple isinstance checks.

type_checking_name()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation
just provides the class name. Classes that override check_supplied_type() may want to override this too.

full_datatype_name()
Returns a string/unicode name for the datatype that includes relevant sub-type information. The default
implementation just uses the attribute datatype_name, but subclasses may have more detailed information
to add. For example, iterable corpus types also supply information about the data-point type.

data_points

Document types used to represent datatypes of individual documents in an IterableCorpus or subtype.

class DataPointType(*args, **kwargs)
Bases: object

Base data-point type for iterable corpora. All iterable corpora should have data-point types that are subclasses
of this.

Every data point type has a corresponding document class, which can be accessed as MyDataPoint-
Type.Document. When overriding data point types, you can define a nested Document class, with no base
class, to override parts of the document class’ functionality or add new methods, etc. This will be used to
automatically create the Document class for the data point type.

Some data-point types may specify some options, using the data_point_type_options field. This works
in the same way as PimlicoDatatype’s datatype_options. Values for the options can be specified on
initialization as args or kwargs of the data-point type.

186 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Note: I have now implemented the data-point type options, just like datatype options. However, you cannot
yet specify these in a config file when loading a stored corpus. An additional datatype option should be added
to iterable corpora that allows you to specify data point type options for when a datatype is being loaded using
a config file.

formatters = []
List of (name, cls_path) pairs specifying a standard set of formatters that the user might want to choose
from to view a dataset of this type. The user is not restricted to this set, but can easily choose these by
name, instead of specifying a class path themselves. The first in the list is the default used if no formatter
is specified. Falls back to DefaultFormatter if empty

metadata_defaults = {}
Metadata keys that should be written for this data point type, with default values and strings documenting
the meaning of the parameter. Used for writers for this data point type. See Writer.

data_point_type_options = {}
Options specified in the same way as module options that control the nature of the document type. These
are not things to do with reading of specific datasets, for which the dataset’s metadata should be used.
These are things that have an impact on typechecking, such that options on the two checked datatypes are
required to match for the datatypes to be considered compatible.

This corresponds exactly to a PimlicoDatatype’s datatype_options and is processed in the same way.

They should always be an ordered dict, so that they can be specified using positional arguments as well as
kwargs and config parameters.

data_point_type_supports_python2 = True
Most core Pimlico datatypes support use in Python 2 and 3. Datatypes that do should set this to True. If
it is False, the datatype is assumed to work only in Python 3.

Python 2 compatibility requires extra work from the programmer. Datatypes should generally declare
whether or not they provide this support by overriding this explicitly.

Use supports_python2() to check whether a data-point type instance supports Python 2. (There
may be reasons for a datatype’s instance to override this class-level setting.)

supports_python2()
Just returns data_point_type_supports_python2.

name

check_type(supplied_type)
Type checking for an iterable corpus calls this to check that the supplied data point type matches the
required one (i.e. this instance). By default, the supplied type is simply required to be an instance of the
required type (or one of its subclasses).

This may be overridden to introduce other type checks.

is_type_for_doc(doc)
Check whether the given document is of this type, or a subclass of this one.

If the object is not a document instance (or, more precisely, doesn’t have a data_point_type attr), this will
always return False.

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

1.5. API Documentation 187

Pimlico Documentation, Release 0.9.25

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

classmethod full_class_name()
The fully qualified name of the class for this data point type, by which it is referenced in config files. Used
in docs

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: object

The abstract superclass of all documents.

You do not need to subclass or instantiate these yourself: subclasses are created automatically to cor-
respond to each document type. You can add functionality to a datapoint type’s document by creating
a nested Document class. This will inherit from the parent datapoint type’s document. This happens
automatically - you don’t need to do it yourself and shouldn’t inherit from anything:

class MyDataPointType(DataPointType):
class Document:

Overide document things here
Add your own methods, properties, etc for getting data from the

→˓document

A data point type’s constructed document class is available as MyDataPointType.Document.

Each document type should provide a method to convert from raw data (a bytes object in Py3, or
future’s backport of bytes in Py2) to the internal representation (an arbitrary dictionary) called
raw_to_internal(), and another to convert the other way called internal_to_raw(). Both forms of the data
are available using the properties raw_data and internal_data, and these methods are called as necessary
to convert back and forth.

This is to avoid unnecessary conversions. For example, if the raw data is supplied and then only the raw
data is ever used (e.g. passing the document straight through and writing out to disk), we want to avoid
converting back and forth.

A subtype should then supply methods or properties (typically using the cached_property decorator) to
provide access to different parts of the data. See the many built-in document types for examples of doing
this.

You should not generally need to override the __init__ method. You may, however, wish to override inter-
nal_available() or raw_available(). These are called as soon as the internal data or raw data, respectively,
become available, which may be at instantiation or after conversion. This can be useful if there are bits of
computation that you want to do on the basis of one of these and then store to avoid repeated computation.

keys = []
Specifies the keys that a document has in its internal data Subclasses should specify their keys The
internal data fields corresponding to these can be accessed as attributes of the document

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

188 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

raw_available()
Called as soon as the raw data becomes available, either at instantiation or conversion.

internal_available()
Called as soon as the internal data becomes available, either at instantiation or conversion.

raw_data

internal_data

class InvalidDocument(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.DataPointType

Widely used in Pimlico to represent an empty document that is empty not because the original input document
was empty, but because a module along the way had an error processing it. Document readers/writers should
generally be robust to this and simply pass through the whole thing where possible, so that it’s always possible
to work out, where one of these pops up, where the error occurred.

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for InvalidDocument

keys = ['module_name', 'error_info']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

module_name

error_info

class RawDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.DataPointType

Base document type. All document types for grouped corpora should be subclasses of this.

It may be used itself as well, where documents are just treated as raw data, though most of the time it will be
appropriate to use subclasses to provide more information and processing operations specific to the datatype.

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for RawDocumentType

keys = ['raw_data']

1.5. API Documentation 189

Pimlico Documentation, Release 0.9.25

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class TextDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Documents that contain text, most often human-readable documents from a textual corpus. Most often used as
a superclass for other, more specific, document types.

This type does not special processing, since the storage format is already a unicode string, which is fine for raw
text. However, it serves to indicate that the document represents text (not just any old raw data).

The property text provides the text, which is, for this base type, just the raw data. However, subclasses will
override this, since their raw data will contain information other than the raw text.

data_point_type_supports_python2 = True

formatters = [('text', 'pimlico.datatypes.corpora.formatters.text.TextDocumentFormatter')]

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for TextDocumentType

keys = ['text']

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

class RawTextDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.TextDocumentType

Subclass of TextDocumentType used to indicate that the text hasn’t been processed (tokenized, etc). Note that
text that has been tokenized, parsed, etc does not use subclasses of this type, so they will not be considered
compatible if this type is used as a requirement.

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for RawTextDocumentType

exception DataPointError
Bases: Exception

190 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

floats

Corpora consisting of lists of ints. These data point types are useful, for example, for encoding text or other sequence
data as integer IDs. They are designed to be fast to read.

class FloatListsDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Corpus of float list data: each doc contains lists of float. Unlike IntegerTableDocumentCorpus, they are
not all constrained to have the same length. The downside is that the storage format (and probably I/O speed)
isn’t quite as efficient. It’s still better than just storing ints as strings or JSON objects.

The floats are stored as C double, which use 8 bytes. At the moment, we don’t provide any way to change this.
An alternative would be to use C floats, losing precision but (almost) halving storage size.

metadata_defaults = {'bytes': (8, 'Number of bytes to use to represent each int. Default: 8'), 'signed': (False, 'Stored signed integers. Default: False')}

data_point_type_supports_python2 = True

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for FloatListsDocumentType

keys = ['lists']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

lists

read_rows(reader)

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class FloatListDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Corpus of float data: each doc contains a single sequence of floats.

The floats are stored as C doubles, using 8 bytes each.

data_point_type_supports_python2 = True

1.5. API Documentation 191

Pimlico Documentation, Release 0.9.25

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for FloatListDocumentType

keys = ['list']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

list

read_rows(reader)

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class FloatListsFormatter(corpus_datatype)
Bases: pimlico.cli.browser.tools.formatter.DocumentBrowserFormatter

DATATYPE
alias of FloatListsDocumentType

format_document(doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

class VectorDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Like FloatListDocumentType, but each document has the same number of float values.

Each document contains a single list of floats and each one has the same length. That is, each document is one
vector.

The floats are stored as C doubles, using 8 bytes each.

formatters = [('vector', 'pimlico.datatypes.corpora.floats.VectorFormatter')]

metadata_defaults = {'dimensions': (10, 'Number of dimensions in each vector (default: 10)')}

data_point_type_supports_python2 = True

192 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for VectorDocumentType

keys = ['vector']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class VectorFormatter(corpus_datatype)
Bases: pimlico.cli.browser.tools.formatter.DocumentBrowserFormatter

DATATYPE = VectorDocumentType()

format_document(doc)
Format a single document and return the result as a string (or unicode, but it will be converted to ASCII
for display).

Must be overridden by subclasses.

grouped

class GroupedCorpus(*args, **kwargs)
Bases: pimlico.datatypes.corpora.base.IterableCorpus

datatype_name = 'grouped_corpus'

document_preprocessors = []

class Reader(*args, **kwargs)
Bases: pimlico.datatypes.corpora.base.Reader

Reader class for GroupedCorpus

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.corpora.base.Setup

Setup class for GroupedCorpus.Reader

1.5. API Documentation 193

Pimlico Documentation, Release 0.9.25

data_ready(base_dir)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

reader_type
alias of GroupedCorpus.Reader

get_archive(archive_name)
Return a PimarcReader for the named archive, or, if using the tar backend, a PimarcTarBackend.

extract_file(archive_name, filename)
Extract an individual file by archive name and filename.

With the old use of tar to store file, this was not an efficient way of extracting a lot of files. The
typical use case of a grouped corpus is to iterate over its files, which is much faster.

Now we’re using Pimarc, this is faster. However, jumping a lot between different archives is still
slow, as you have to load the index for each archive. A better approach is to load an archive and
extract all the files from it you need before loading another.

The reader will cache the most recently used archive, so if you use this method multiple times with
the same archive name, it won’t reload the index in between.

doc_iter(start_after=None, skip=None, name_filter=None)

archive_iter(start_after=None, skip=None, name_filter=None)
Iterate over corpus archive by archive, yielding for each document the archive name, the document
name and the document itself.

Parameters

• name_filter – if given, should be a callable that takes two args, an archive name
and document name, and returns True if the document should be yielded and False
if it should be skipped. This can be preferable to filtering the yielded documents,
as it skips all document pre-processing for skipped documents, so speeds up things
like random subsampling of a corpus, where the document content never needs to
be read in skipped cases

• start_after – skip over the first portion of the corpus, until the given document
is reached. Should be specified as a pair (archive name, doc name)

• skip – skips over the first portion of the corpus, until this number of documents
have been seen

list_archive_iter()

list_iter()
Iterate over the list of document names, without processing the doc contents.

In some cases, this could be considerably faster than iterating over all the docs.

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.corpora.base.Writer

Writes a large corpus of documents out to disk, grouping them together in Pimarc archives.

194 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

A subtlety is that, as soon as the writer has been initialized, it must be legitimate to initialize a datatype
to read the corpus. Naturally, at this point there will be no documents in the corpus, but it allows us to
do document processing on the fly by initializing writers and readers to be sure the pre/post-processing is
identical to if we were writing the docs to disk and reading them in again.

The reader above allows reading from tar archives for backwards compatibility. However, it is no longer
possible to write corpora to tar archives. This has been completely replaced by the new Pimarc archives,
which are more efficient to use and allow random access when necessary without huge speed penalties.

metadata_defaults = {'gzip': (False, 'Gzip each document before adding it to the archive. Not the same as creating a tarball, since the docs are gzipped *before* adding them, not the whole archive together, but means we can easily iterate over the documents, unzipping them as required'), 'length': (None, 'Number of documents in the corpus. Must be set by the writer, otherwise an exception will be raised at the end of writing')}

writer_param_defaults = {'append': (False, 'If True, existing archives and their files are not overwritten, the new files are just added to the end. This is useful where we want to restart processing that was broken off in the middle')}

add_document(archive_name, doc_name, doc, metadata=None)
Add a document to the named archive. All docs should be added to a single archive before moving
onto the next. If the archive name is the same as the previous doc added, the doc’s data will be
appended. Otherwise, the archive is finalized and we move onto the new archive.

Parameters

• metadata – dict of metadata values to write with the document. If doc is a docu-
ment instance, the metadata is taken from there first, but these values will override
anything in the doc object’s metadata. If doc is a bytes object, the metadata kwarg
is used

• archive_name – archive name

• doc_name – name of document

• doc – document instance or bytes object containing document’s raw data

flush()
Flush disk write of the archive currently being written.

This used to be called after adding each new file, but slows down the writing massively. Not doing
this brings a risk that the written archives are very out of date if a process gets forcibly stopped.
However, document map processes are better now than they used to be at recovering from this
situation when restarting, so I’m removing this flushing to speed things up.

delete_all_archives()
Check for any already written archives and delete them all to make a fresh start at writing this corpus.

class AlignedGroupedCorpora(readers)
Bases: object

Iterator for iterating over multiple corpora simultaneously that contain the same files, grouped into archives in
the same way. This is the standard utility for taking multiple inputs to a Pimlico module that contain different
data but for the same corpus (e.g. output of different tools).

archive_iter(start_after=None, skip=None, name_filter=None)

class GroupedCorpusWithTypeFromInput(input_name=None)
Bases: pimlico.datatypes.base.DynamicOutputDatatype

Dynamic datatype that produces a GroupedCorpus with a document datatype that is the same as the input’s
document/data-point type.

If the input name is not given, uses the first input.

Unlike CorpusWithTypeFromInput, this does not infer whether the result should be a grouped corpus or
not: it always is. The input should be an iterable corpus (or subtype, including grouped corpus), and that’s where
the datatype will come from.

datatype_name = 'grouped corpus with input doc type'

1.5. API Documentation 195

Pimlico Documentation, Release 0.9.25

get_base_datatype()
If it’s possible to say before the instance of a ModuleInfo is available what base datatype will be produced,
implement this to return a datatype instance. By default, it returns None.

If this information is available, it will be used in documentation.

get_datatype(module_info)

class CorpusWithTypeFromInput(input_name=None)
Bases: pimlico.datatypes.base.DynamicOutputDatatype

Infer output corpus’ data-point type from the type of an input. Passes the data point type through. Similar to
GroupedCorpusWithTypeFromInput, but more flexible.

If the input is a grouped corpus, so is the output. Otherwise, it’s just an IterableCorpus.

Handles the case where the input is a multiple input. Tries to find a common data point type among the inputs.
They must have the same data point type, or all must be subtypes of one of them. (In theory, we could find
the most specific common ancestor and use that as the output type, but this is not currently implemented and is
probably not worth the trouble.)

Input name may be given. Otherwise, the default input is used.

datatype_name = 'corpus with data-point from input'

get_datatype(module_info)

exception CorpusAlignmentError
Bases: Exception

exception GroupedCorpusIterationError
Bases: Exception

ints

Corpora consisting of lists of ints. These data point types are useful, for example, for encoding text or other sequence
data as integer IDs. They are designed to be fast to read.

class IntegerListsDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Corpus of integer list data: each doc contains lists of ints. Unlike IntegerTableDocumentType, they are
not all constrained to have the same length. The downside is that the storage format (and I/O speed) isn’t quite
as good. It’s still better than just storing ints as strings or JSON objects.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

metadata_defaults = {'bytes': (8, 'Number of bytes to use to represent each int. Default: 8'), 'row_length_bytes': (2, 'Number of bytes to use to encode the length of each row. Default: 2. Increase if you need to store very long lists'), 'signed': (False, 'Stored signed integers. Default: False')}

data_point_type_supports_python2 = True

bytes

signed

row_length_bytes

int_size

length_size

196 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

struct

length_struct

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for IntegerListsDocumentType

keys = ['lists']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

lists

read_rows(reader)

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class IntegerListDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Corpus of integer data: each doc contains a single sequence of ints.

Like IntegerListsDocumentType, but each document is treated as a single list of integers.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

metadata_defaults = {'bytes': (8, 'Number of bytes to use to represent each int. Default: 8'), 'signed': (False, 'Stored signed integers. Default: False')}

data_point_type_supports_python2 = True

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

struct

1.5. API Documentation 197

Pimlico Documentation, Release 0.9.25

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for IntegerListDocumentType

keys = ['list']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

list

read_rows(reader)

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class IntegerDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Corpus of integer data: each doc contains a single int.

This may be useful, for example, for storing predicted or gold standard class labels for documents.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

metadata_defaults = {'bytes': (8, 'Number of bytes to use to represent each int. Default: 8'), 'signed': (False, 'Stored signed integers. Default: False')}

data_point_type_supports_python2 = True

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

struct

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for IntegerDocumentType

keys = ['val']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

198 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

list

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

json

class JsonDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Very simple document corpus in which each document is a JSON object.

formatters = [('json', 'pimlico.datatypes.corpora.formatters.json.JsonFormatter')]

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for JsonDocumentType

keys = ['data']

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

strings

Documents consisting of strings.

See also:

TextDocumentType and RawTextDocumentType: basic text (i.e. unicode string) document types for normal
textual documents.

class LabelDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Simple document type for storing a short label associated with a document.

Identical to TextDocumentType, but distinguished for typechecking, so that only corpora designed to be
used as short labels can be used as input where a label corpus is required.

The string label is stored in the label attribute.

1.5. API Documentation 199

Pimlico Documentation, Release 0.9.25

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for LabelDocumentType

keys = ['label']

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

table

Corpora where each document is a table, i.e. a list of lists, where each row has the same length and each column has a
single datatype. This is designed to be fast to read, but is not a very flexible datatype.

get_struct(bytes, signed, row_length)

class IntegerTableDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.RawDocumentType

Corpus of tabular integer data: each doc contains rows of ints, where each row contains the same number
of values. This allows a more compact representation, which doesn’t require converting the ints to strings or
scanning for line ends, so is quite a bit quicker and results in much smaller file sizes. The downside is that the
files are not human-readable.

By default, the ints are stored as C longs, which use 4 bytes. If you know you don’t need ints this big, you can
choose 1 or 2 bytes, or even 8 (long long). By default, the ints are unsigned, but they may be signed.

metadata_defaults = {'bytes': (8, 'Number of bytes to use to represent each int. Default: 8'), 'row_length': (1, 'Row length - number of integers in each row. Default: 1'), 'signed': (False, 'Stored signed integers. Default: False')}

data_point_type_supports_python2 = True

reader_init(reader)
Called when a reader is initialized. May be overridden to perform any tasks specific to the data point type
that need to be done before the reader starts producing data points.

The super reader_init() should be called. This takes care of making reader metadata available in the
metadata attribute of the data point type instance.

writer_init(writer)
Called when a writer is initialized. May be overridden to perform any tasks specific to the data point type
that should be done before documents start getting written.

The super writer_init() should be called. This takes care of updating the writer’s metadata from anything
in the instance’s metadata attribute, for any keys given in the data point type’s metadata_defaults.

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for IntegerTableDocumentType

keys = ['table']

200 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

table

row_size

read_rows(reader)

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

tokenized

class TokenizedDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.data_points.TextDocumentType

Specialized data point type for documents that have had tokenization applied. It does very little processing - the
main reason for its existence is to allow modules to require that a corpus has been tokenized before it’s given as
input.

Each document is a list of sentences. Each sentence is a list of words.

formatters = [('tokenized_doc', 'pimlico.datatypes.corpora.tokenized.TokenizedDocumentFormatter')]

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.data_points.Document

Document class for TokenizedDocumentType

keys = ['sentences']

text

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class CharacterTokenizedDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.tokenized.TokenizedDocumentType

Simple character-level tokenized corpus. The text isn’t stored in any special way, but is represented when read
internally just as a sequence of characters in each sentence.

If you need a more sophisticated way to handle character-type (or any non-word) units within each sequence,
see SegmentedLinesDocumentType.

1.5. API Documentation 201

Pimlico Documentation, Release 0.9.25

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.tokenized.Document

Document class for CharacterTokenizedDocumentType

sentences

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class SegmentedLinesDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.tokenized.TokenizedDocumentType

Document consisting of lines, each split into elements, which may be characters, words, or whatever. Rather
like a tokenized corpus, but doesn’t make the assumption that the elements (words in the case of a tokenized
corpus) don’t include spaces.

You might use this, for example, if you want to train character-level models on a text corpus, but don’t use
strictly single-character units, perhaps grouping together certain short character sequences.

Uses the character / to separate elements in the raw data. If a / is found in an element, it is stored as @slash@,
so this string is assumed not to be used in any element (which seems reasonable enough, generally).

data_point_type_supports_python2 = True

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.tokenized.Document

Document class for SegmentedLinesDocumentType

text

sentences

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

word_annotations

Textual corpus type where each word is accompanied by some annotations.

202 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class WordAnnotationsDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.tokenized.TokenizedDocumentType

List of sentences, each consisting of a list of word, each consisting of a tuple of the token and its annotations.

The document type needs to know what fields will be provided, so that it’s possible for a module to require a
particular set of fields. The field list also tells the reader in which position to find each field.

E.g. the field list “word,lemma,pos” will store values like “walks|walk|VB” for each token. You could also
provide “word,pos,lemma” with “walks|VB|walk” and the reader would know where to find the fields it needs.

When a WordAnnotationsDocumentType is used as an input type requirement, it will accept any input corpus
that also has a WordAnnotationsDocumentType as its data-point type and includes at least all of the fields
specified for the requirement.

So, a requirement of GroupedCorpus(WordAnnotationsDocumentType(["word", "pos"]))
will match a supplied type of GroupedCorpus(WordAnnotationsDocumentType(["word",
"pos"])), or GroupedCorpus(WordAnnotationsDocumentType(["word", "pos",
"lemma])), but not GroupedCorpus(WordAnnotationsDocumentType(["word",
"lemma"])).

Annotations are given as strings, not other types (like ints). If you want to store e.g. int or float annotations, you
need to do the conversion separately, as the encoding and decoding assumes only strings are used.

Annotations may, however, be None. This, as well as any linebreaks and tabs in the strings, will be en-
coded/decoded by the writer/reader.

data_point_type_options = {'fields': {'help': "Names of the annotation fields. These include the word itself. Typically the first field is therefore called 'word', but this is not required. However, there must be a field called 'word', since this datatype overrides tokenized documents, so need to be able to provide the original text. When used as a module type requirement, the field list gives all the fields that must (at least) be provided by the supplied type. Specified as a comma-separated list. Required", 'required': True, 'type': <function comma_separated_list.<locals>._fn>}}

data_point_type_supports_python2 = True

check_type(supplied_type)
Type checking for an iterable corpus calls this to check that the supplied data point type matches the
required one (i.e. this instance). By default, the supplied type is simply required to be an instance of the
required type (or one of its subclasses).

This may be overridden to introduce other type checks.

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.tokenized.Document

Document class for WordAnnotationsDocumentType

keys = ['word_annotations']

text

sentences

get_field(field)
Get the given field for every word in every sentence.

Must be one of the fields available in this datatype.

raw_to_internal(raw_data)
Take a bytes object containing the raw data for a document, read in from disk, and produce a dictio-
nary containing all the processed data in the document’s internal format.

You will often want to call the super method and replace values or add to the dictionary. Whatever
you do, make sure that all the internal data that the super type provides is also provided here, so that
all of its properties and methods work.

1.5. API Documentation 203

Pimlico Documentation, Release 0.9.25

internal_to_raw(internal_data)
Take a dictionary containing all the document’s data in its internal format and produce a bytes object
containing all that data, which can be written out to disk.

class AddAnnotationField(input_name, add_fields)
Bases: pimlico.datatypes.base.DynamicOutputDatatype

Dynamic type constructor that can be used in place of a module’s output type. When called (when the output
type is needed), dynamically creates a new type that is a corpus with WordAnnotationsDocumentType with the
same fields as the named input to the module, with the addition of one or more new ones.

Parameters

• input_name – input to the module whose fields we extend

• add_fields – field or fields to add, string names

get_datatype(module_info)

get_base_datatype()
If it’s possible to say before the instance of a ModuleInfo is available what base datatype will be produced,
implement this to return a datatype instance. By default, it returns None.

If this information is available, it will be used in documentation.

AddAnnotationFields
alias of pimlico.datatypes.corpora.word_annotations.AddAnnotationField

class DependencyParsedDocumentType(*args, **kwargs)
Bases: pimlico.datatypes.corpora.word_annotations.WordAnnotationsDocumentType

WordAnnotationsDocumentType with fields word, pos, head, deprel for each token.

Convenience wrapper for use as an input requirement where parsed text is needed.

class Document(data_point_type, raw_data=None, internal_data=None, metadata=None)
Bases: pimlico.datatypes.corpora.word_annotations.Document

Document class for DependencyParsedDocumentType

Module contents

Submodules

arrays

Wrappers around Numpy arrays and Scipy sparse matrices.

class NumpyArray(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

datatype_name = 'numpy_array'

datatype_supports_python2 = True

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

204 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for NumpyArray

array

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for NumpyArray.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of NumpyArray.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for NumpyArray

write_array(array)

metadata_defaults = {}

writer_param_defaults = {}

class ScipySparseMatrix(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

Wrapper around Scipy sparse matrices. The matrix loaded is always in COO format – you probably want to
convert to something else before using it. See scipy docs on sparse matrix conversions.

datatype_name = 'scipy_sparse_array'

datatype_supports_python2 = True

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

1.5. API Documentation 205

Pimlico Documentation, Release 0.9.25

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for ScipySparseMatrix

array

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for ScipySparseMatrix.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of ScipySparseMatrix.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for ScipySparseMatrix

write_matrix(mat)

metadata_defaults = {}

writer_param_defaults = {}

base

Datatypes provide interfaces for reading and writing datasets. They provide different ways of reading in or iterating
over datasets and different ways to write out datasets, as appropriate to the datatype. They are used by Pimlico to
typecheck connections between modules to make sure that the output from one module provides a suitable type of
data for the input to another. They are then also used by the modules to read in their input data coming from earlier in
a pipeline and to write out their output data, to be passed to later modules.

See Datatypes for a guide to how Pimlico datatypes work.

This module defines the base classes for all datatypes.

class PimlicoDatatype(*args, **kwargs)
Bases: object

The abstract superclass of all datatypes. Provides basic functionality for identifying where data should be stored
and such.

Datatypes are used to specify the routines for reading the output from modules, via their reader class.

module is the ModuleInfo instance for the pipeline module that this datatype was produced by. It may be None,
if the datatype wasn’t instantiated by a module. It is not required to be set if you’re instantiating a datatype in
some context other than module output. It should generally be set for input datatypes, though, since they are
treated as being created by a special input module.

If you’re creating a new datatype, refer to the datatype documentation.

206 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

datatype_options = {}
Options specified in the same way as module options that control the nature of the datatype. These are not
things to do with reading of specific datasets, for which the dataset’s metadata should be used. These are
things that have an impact on typechecking, such that options on the two checked datatypes are required
to match for the datatypes to be considered compatible.

They should always be an ordered dict, so that they can be specified using positional arguments as well as
kwargs and config parameters.

shell_commands = []
Override to provide shell commands specific to this datatype. Should include the superclass’ list.

datatype_supports_python2 = True
Most core Pimlico datatypes support use in Python 2 and 3. Datatypes that do should set this to True. If
it is False, the datatype is assumed to work only in Python 3.

Python 2 compatibility requires extra work from the programmer. Datatypes should generally declare
whether or not they provide this support by overriding this explicitly.

Use supports_python2() to check whether a datatype instance supports Python 2. (There may be
reasons for a datatype’s instance to override this class-level setting.)

datatype_name = 'base_datatype'
Identifier (without spaces) to distinguish this datatype

supports_python2()
By default, just returns cls.datatype_supports_python2. Subclasses might override this.

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

get_writer_software_dependencies()
Get a list of all software required to write this datatype using its Writer. This works in a similar way
to get_software_dependencies() (for the Reader) and the dependencies will be check before the writer is
instantiated.

It is assumed that all the reader’s dependencies also apply to the writer, so this method only needs to
specify any additional dependencies the writer has.

You should call the super method for checking superclass dependencies.

get_writer(base_dir, pipeline, module=None, **kwargs)
Instantiate a writer to write data to the given base dir.

Kwargs are passed through to the writer and used to specify initial metadata and writer params.

Parameters

1.5. API Documentation 207

Pimlico Documentation, Release 0.9.25

• base_dir – output dir to write dataset to

• pipeline – current pipeline

• module – module name (optional, for debugging only)

Returns instance of the writer subclass corresponding to this datatype

classmethod instantiate_from_options(options={})
Given string options e.g. from a config file, perform option processing and instantiate datatype

classmethod datatype_full_class_name()
The fully qualified name of the class for this datatype, by which it is reference in config files. Generally,
datatypes don’t need to override this, but type requirements that take the place of datatypes for type
checking need to provide it.

check_type(supplied_type)
Method used by datatype type-checking algorithm to determine whether a supplied datatype (given as an
instance of a subclass of PimlicoDatatype) is compatible with the present datatype, which is being treated
as a type requirement.

Typically, the present class is a type requirement on a module input and supplied_type is the type provided
by a previous module’s output.

The default implementation simply checks whether supplied_type is a subclass of the present class. Sub-
classes may wish to impose different or additional checks.

Parameters supplied_type – type provided where the present class is required, or
datatype instance

Returns True if the check is successful, False otherwise

type_checking_name()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation
just provides the class name. Classes that override check_supplied_type() may want to override this too.

full_datatype_name()
Returns a string/unicode name for the datatype that includes relevant sub-type information. The default
implementation just uses the attribute datatype_name, but subclasses may have more detailed information
to add. For example, iterable corpus types also supply information about the data-point type.

run_browser(reader, opts)
Launches a browser interface for reading this datatype, browsing the data provided by the given reader.

Not all datatypes provide a browser. For those that don’t, this method should raise a NotImplementedError.

opts provides the argparser options from the command line.

This tool used to be only available for iterable corpora, but now it’s possible for any datatype to provide
a browser. IterableCorpus provides its own browser, as before, which uses one of the data point type’s
formatters to format documents.

class Reader(datatype, setup, pipeline, module=None)
Bases: object

The abstract superclass of all dataset readers.

You do not need to subclass or instantiate these yourself: subclasses are created automatically to corre-
spond to each datatype. You can add functionality to a datatype’s reader by creating a nested Reader class.
This will inherit from the parent datatype’s reader. This happens automatically - you don’t need to do it
yourself and shouldn’t inherit from anything:

208 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class MyDatatype(PimlicoDatatype):
class Reader:

Override reader things here

process_setup()
Do any processing of the setup object (e.g. retrieving values and setting attributes on the reader) that
should be done when the reader is instantiated.

get_detailed_status()
Returns a list of strings, containing detailed information about the data.

Subclasses may override this to supply useful (human-readable) information specific to the datatype.
They should called the super method.

class Setup(datatype, data_paths)
Bases: object

Abstract superclass of all dataset reader setup classes.

See Datatypes for a information about how this class is used.

These classes provide any functionality relating to a reader needed before it is ready to read and
instantiated. Most importantly, it provides the ready_to_read() method, which indicates whether the
reader is ready to be instantiated.

The standard implementation, which can be used in almost all cases, takes a list of possible paths
to the dataset at initialization and checks whether the dataset is ready to be read from any of them.
You generally don’t need to override ready_to_read() with this, but just data_ready(), which checks
whether the data is ready to be read in a specific location. You can call the parent class’ data-ready
checks using super: super(MyDatatype.Reader.Setup, self).data_ready().

The whole Setup object will be passed to the corresponding Reader’s init, so that it has access to
data locations, etc.

Subclasses may take different init args/kwargs and store whatever attributes are relevant for
preparing their corresponding Reader. In such cases, you will usually override a ModuleInfo’s
get_output_reader_setup() method for a specific output’s reader preparation, to provide it with
the appropriate arguments. Do this by calling the Reader class’ get_setup(*args, **kwargs) class
method, which passes args and kwargs through to the Setup’s init.

You do not need to subclass or instantiate these yourself: subclasses are created automatically to
correspond to each reader type. You can add functionality to a reader’s setup by creating a nested
Setup class. This will inherit from the parent reader’s setup. This happens automatically - you don’t
need to do it yourself and shouldn’t inherit from anything:

class MyDatatype(PimlicoDatatype):
class Reader:

Overide reader things here

class Setup:
Override setup things here
E.g.:
def data_ready(path):

Parent checks: usually you want to do this
if not super(MyDatatype.Reader.Setup, self).data_

→˓ready(path):
return False

Check whether the data's ready according to our own
→˓criteria

(continues on next page)

1.5. API Documentation 209

Pimlico Documentation, Release 0.9.25

(continued from previous page)

...
return True

The first arg to the init should always be the datatype instance.

reader_type
alias of PimlicoDatatype.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a
reader is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.
Returns True if the reader’s ready to be instantiated, False otherwise

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read.

Raises an exception if none is ready. Typically used to get the path from the reader,
once we’ve already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed
outside them. It may sometimes be necessary to call this from data_ready() to check that
required metadata is available.

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

classmethod get_setup(datatype, *args, **kwargs)
Instantiate a reader setup object for this reader. The args and kwargs are those of the reader’s
corresponding setup class and will be passed straight through to the init.

metadata
Read in metadata from a file in the corpus directory.

Note that this is no longer cached in memory. We need to be sure that the metadata values returned
are always up to date with what is on disk, so always re-read the file when we need to get a value

210 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

from the metadata. Since the file is typically small, this is unlikely to cause a problem. If we decide
to return to cacheing the metadata dictionary in future, we will need to make sure that we can never
run into problems with out-of-date metadata being returned.

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: object

The abstract superclass of all dataset writers.

You do not need to subclass or instantiate these yourself: subclasses are created automatically to corre-
spond to each datatype. You can add functionality to a datatype’s writer by creating a nested Writer class.
This will inherit from the parent datatype’s writer. This happens automatically - you don’t need to do it
yourself and shouldn’t inherit from anything:

class MyDatatype(PimlicoDatatype):
class Writer:

Overide writer things here

Writers should be used as context managers. Typically, you will get hold of a writer for a module’s output
directly from the module-info instance:

with module.get_output_writer("output_name") as writer:
Call the writer's methods, set its attributes, etc
writer.do_something(my_data)
writer.some_attr = "This data"

Any additional kwargs passed into the writer (which you can do by passing kwargs to
get_output_writer() on the module) will set values in the dataset’s metadata. Available param-
eters are given, along with their default values, in the dictionary metadata_defaults on a Writer
class. They also include all values from ancestor writers.

It is important to pass in parameters as kwargs that affect the writing of the data, to ensure that the correct
values are available as soon as the writing process starts.

All metadata values, including those passed in as kwargs, should be serializable as simple JSON types.

Another set of parameters, writer params, is used to specify things that affect the writing process, but do
not need to be stored in the metadata. This could be, for example, the number of CPUs to use for some
part of the writing process. Unlike, for example, the format of the stored data, this is not needed later
when the data is read.

Available writer params are given, along with their default values, in the dictionary
writer_param_defaults on a Writer class. (They do not need to be JSON serializable.)
Their values are also specified as kwargs in the same way as metadata.

metadata_defaults = {}

writer_param_defaults = {}

required_tasks = []
This can be overriden on writer classes to add this list of tasks to the required tasks when the writer
is initialized

require_tasks(*tasks)
Add a name or multiple names to the list of output tasks that must be completed before writing is
finished

task_complete(task)
Mark the named task as completed

1.5. API Documentation 211

Pimlico Documentation, Release 0.9.25

incomplete_tasks
List of required tasks that have not yet been completed

write_metadata()

class DynamicOutputDatatype
Bases: object

Types of module outputs may be specified as an instance of a subclass of PimlicoDatatype, or alternatively
as an instance of DynamicOutputType. In this case, get_datatype() is called when the output datatype is needed,
passing in the module info instance for the module, so that a specialized datatype can be produced on the basis
of options, input types, etc.

The dynamic type must provide certain pieces of information needed for typechecking.

If a base datatype is available (i.e. indication of the datatype before the module is instantiated), we take the
information regarding whether the datatype supports Python 2 from there. If not, we assume it does. This
may seems the opposite to other places: for example, the base datatype says it does not support Python 2 and
subclasses must declare if they do. However, dynamic output datatypes are often used with modules that work
with a broad range of input datatypes. It is therefore wrong to say that they do not support Python 2, since they
will provided the input module does.

datatype_name = None

get_datatype(module_info)

get_base_datatype()
If it’s possible to say before the instance of a ModuleInfo is available what base datatype will be produced,
implement this to return a datatype instance. By default, it returns None.

If this information is available, it will be used in documentation.

supports_python2()

class DynamicInputDatatypeRequirement
Bases: object

Types of module inputs may be given as an instance of a subclass of PimlicoDatatype, a tuple of datatypes,
or an instance a DynamicInputDatatypeRequirement subclass. In this case, check_type(supplied_type) is called
during typechecking to check whether the type that we’ve got conforms to the input type requirements.

Additionally, if datatype_doc_info is provided, it is used to represent the input type constraints in documentation.

datatype_doc_info = None

check_type(supplied_type)

type_checking_name()
Supplies a name for this datatype to be used in type-checking error messages. Default implementation
just provides the class name. Subclasses may want to override this too.

class MultipleInputs(datatype_requirements)
Bases: object

A wrapper around an input datatype that can be used as an item in a module’s inputs, which lets the module
accept an unbounded number of inputs, all satisfying the same datatype requirements.

When writing the inputs in a config file, they can be specified as a comma-separated list of the usual type of
specification (module name, with optional output name). Each item in the list must point to a dataset (module
output) that satisfies the type-checking for the wrapped datatype.

212 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

[module3]
type=pimlico.modules.some_module
input_datasets=module1.the_output,module2.the_output

Here module1’s output the_output and module2’s output the_output must both be of valid types for
the multiple-input datasets to this module.

The list may also include (or entirely consist of) a base module name from the pipeline that has been expanded
into multiple modules according to alternative parameters (the type separated by vertical bars, see Multiple
parameter values). You can use the notation *name, where name is the base module name, to denote all of the
expanded module names as inputs. These are treated as if you’d written out all of the expanded module names
separated by commas.

[module1]
type=pimlico.modules.any_module
param={case1}first value for param|{case2}second value

[module3]
type=pimlico.modules.some_module
input_datasets=*module1.the_output

Here module1 will be expanded into module1[case1] and module1[case2], each having a different
value for option param. The *-notation is a shorthand to say that the input datasets should get the output
the_output from both of these alternatives, as if you had written module1[case1].the_output,
module1[case2].the_output.

If a module provides multiple outputs, all of a suitable type, that you want to feed into the same (multiple-input)
input, you can specify a list of all of the module’s outputs using the notation module_name.*.

This module provides two outputs, output1 and output2
[module2]
type=pimlico.modules.multi_output_module

[module3]
type=pimlico.modules.some_module
input_datasets=module2.*

is equivalent to:

[module3]
type=pimlico.modules.some_module
input_datasets=module2.output1,module2.output2

If you need the same input specification to be repeated multiple times in a list, instead of writing it out
explicitly you can use a multiplier to repeat it N times by putting *N after it. This is particularly useful when
N is the result of expanding module variables, allowing the number of times an input is repeated to depend on
some modvar expression.

[module3]
type=pimlico.modules.some_module
input_datasets=module1.the_output*3

is equivalent to:

[module3]
type=pimlico.modules.some_module
input_datasets=module1.the_output,module1.the_output,module1.the_output

1.5. API Documentation 213

Pimlico Documentation, Release 0.9.25

When get_input() is called on the module info, if multiple inputs have been provided, instead of re-
turning a single dataset reader, a list of readers is returned. You can use get_input(input_name,
always_list=True) to always return a list of readers, even if only a single dataset was given as input.
This is usually the best way to handle multiple inputs in module code.

supports_python2()

exception DatatypeLoadError
Bases: Exception

exception DatatypeWriteError
Bases: Exception

core

Some basic core datatypes that are commonly used for passing simple data, like strings and dicts, through pipelines.

class Dict(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Simply stores a Python dict, pickled to disk. All content in the dict should be pickleable.

datatype_name = 'dict'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for Dict

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for Dict.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of Dict.Reader

get_dict()

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for Dict

required_tasks = ['dict']

write_dict(d)

metadata_defaults = {}

writer_param_defaults = {}

class StringList(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Simply stores a Python list of strings, written out to disk in a readable form. Not the most efficient format, but
if the list isn’t humungous it’s OK (e.g. storing vocabularies).

214 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

datatype_name = 'string_list'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for StringList

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for StringList.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of StringList.Reader

get_list()

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for StringList

required_tasks = ['list']

write_list(l)

metadata_defaults = {}

writer_param_defaults = {}

dictionary

This module implements the concept of a Dictionary – a mapping between words and their integer ids.

The implementation is based on Gensim, because Gensim is wonderful and there’s no need to reinvent the wheel. We
don’t use Gensim’s data structure directly, because it’s unnecessary to depend on the whole of Gensim just for one
data structure.

However, it is possible to retrieve a Gensim dictionary directly from the Pimlico data structure if you need to use it
with Gensim.

class Dictionary(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Dictionary encapsulates the mapping between normalized words and their integer ids. This class is responsible
for reading and writing dictionaries.

DictionaryData is the data structure itself, which is very closely related to Gensim’s dictionary.

datatype_name = 'dictionary'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for Dictionary

1.5. API Documentation 215

Pimlico Documentation, Release 0.9.25

get_data()
Load the dictionary and return a DictionaryData object.

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for Dictionary.Reader

get_required_paths()
Require the dictionary file to be written

reader_type
alias of Dictionary.Reader

get_detailed_status()
Returns a list of strings, containing detailed information about the data.

Subclasses may override this to supply useful (human-readable) information specific to the datatype.
They should called the super method.

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.base.Writer

When the context manager is created, a new, empty DictionaryData instance is created. You can
build your dictionary by calling add_documents() on the writer, or accessing the dictionary data structure
directly (via the data attribute), or simply replace it with a fully formed DictionaryData instance of
your own, using the same instance.

You can specify a list/set of stopwords when instantiating the writer. These will be excluded from the
dictionary if seen in the corpus.

add_documents(documents, prune_at=2000000)

filter(threshold=None, no_above=None, limit=None)

filter_high_low(threshold=None, no_above=None, limit=None)

metadata_defaults = {}

writer_param_defaults = {}

run_browser(reader, opts)
Browse the vocab simply by printing out all the words

class DictionaryData
Bases: object

Dictionary encapsulates the mapping between normalized words and their integer ids. This is taken almost
directly from Gensim.

We also store a set of stopwords. These can be set explicitly (see add_stopwords()), and will also include any
words that are removed as a result of filters on the basis that they’re too common. This means that we can tell
which words are OOV because we’ve never seen them (or not seen them often) and which are common but
filtered.

id2token

keys()
Return a list of all token ids.

refresh_id2token()

add_stopwords(new_stopwords)
Add some stopwords to the list.

216 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Raises an error if a stopword is in the dictionary. We don’t remove the term here, because that would
end up changing IDs of other words unexpectedly. Instead, we leave it to the user to ensure a stopword is
removed before being added to the list.

Terms already in the stopword list will not be added to the dictionary later.

add_term(term)
Add a term to the dictionary, without any occurrence count. Note that if you run threshold-based filters
after adding a term like this, it will get removed.

add_documents(documents, prune_at=2000000)
Update dictionary from a collection of documents. Each document is a list of tokens = tokenized and
normalized strings (either utf8 or unicode).

This is a convenience wrapper for calling doc2bow on each document with allow_update=True, which
also prunes infrequent words, keeping the total number of unique words <= prune_at. This is to save
memory on very large inputs. To disable this pruning, set prune_at=None.

Keeps track of total documents added, rather than just those added in this call, to decide when to prune.
Otherwise, making many calls with a small number of docs in each results in pruning on every call.

doc2bow(document, allow_update=False, return_missing=False)
Convert document (a list of words) into the bag-of-words format = list of (token_id, token_count) 2-
tuples. Each word is assumed to be a tokenized and normalized string (either unicode or utf8-encoded).
No further preprocessing is done on the words in document; apply tokenization, stemming etc. before
calling this method.

If allow_update is set, then also update dictionary in the process: create ids for new words. At the same
time, update document frequencies – for each word appearing in this document, increase its document
frequency (self.dfs) by one.

If allow_update is not set, this function is const, aka read-only.

filter_extremes(no_below=5, no_above=0.5, keep_n=100000)
Filter out tokens that appear in

1. fewer than no_below documents (absolute number) or

2. more than no_above documents (fraction of total corpus size, not absolute number).

3. after (1) and (2), keep only the first keep_n most frequent tokens (or keep all if None).

After the pruning, shrink resulting gaps in word ids.

Note: Due to the gap shrinking, the same word may have a different word id before and after the call to
this function!

filter_high_low_extremes(no_below=5, no_above=0.5, keep_n=100000,
add_stopwords=True)

Filter out tokens that appear in

1. fewer than no_below documents (absolute number) or

2. more than no_above documents (fraction of total corpus size, not absolute number).

3. after (1) and (2), keep only the first keep_n most frequent tokens (or keep all if None).

This is the same as filter_extremes(), but returns a separate list of terms removed because they’re too
frequent and those removed because they’re not frequent enough.

If add_stopwords=True (default), any frequent words filtered out will be added to the stopwords list.

filter_tokens(bad_ids=None, good_ids=None)
Remove the selected bad_ids tokens from all dictionary mappings, or, keep selected good_ids in the
mapping and remove the rest.

1.5. API Documentation 217

Pimlico Documentation, Release 0.9.25

bad_ids and good_ids are collections of word ids to be removed.

compactify()
Assign new word ids to all words.

This is done to make the ids more compact, e.g. after some tokens have been removed via
filter_tokens() and there are gaps in the id series. Calling this method will remove the gaps.

as_gensim_dictionary()
Convert to Gensim’s dictionary type, which this type is based on. If you call this, Gensim will be imported,
so your code becomes dependent on having Gensim installed.

Returns gensim dictionary

embeddings

Datatypes to store embedding vectors, together with their words.

The main datatype here, Embeddings, is the main datatype that should be used for passing embeddings between
modules.

We also provide a simple file collection datatype that stores the files used by Tensorflow, for example, as input to the
Tensorflow Projector. Modules that need data in this format can use this datatype, which makes it easy to convert from
other formats.

class Vocab(word, index, count=0)
Bases: object

A single vocabulary item, used internally for collecting per-word frequency info. A simplified version of Gen-
sim’s Vocab.

class Embeddings(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Datatype to store embedding vectors, together with their words. Based on Gensim’s KeyedVectors object,
but adapted for use in Pimlico and so as not to depend on Gensim. (This means that this can be used more
generally for storing embeddings, even when we’re not depending on Gensim.)

Provides a method to map to Gensim’s KeyedVectors type for compatibility.

Doesn’t provide all of the functionality of KeyedVectors, since the main purpose of this is for storage of
vectors and other functionality, like similarity computations, can be provided by utilities or by direct use of
Gensim.

Since we don’t depend on Gensim, this datatype supports Python 2. However, if you try to use the mapping to
Gensim’s type, this will only work with Gensim installed and therefore also depends on Python 3.

datatype_name = 'embeddings'

datatype_supports_python2 = True

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

218 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

get_writer_software_dependencies()
Get a list of all software required to write this datatype using its Writer. This works in a similar way
to get_software_dependencies() (for the Reader) and the dependencies will be check before the writer is
instantiated.

It is assumed that all the reader’s dependencies also apply to the writer, so this method only needs to
specify any additional dependencies the writer has.

You should call the super method for checking superclass dependencies.

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for Embeddings

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for Embeddings.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of Embeddings.Reader

vectors

normed_vectors

vector_size

word_counts

index2vocab

index2word

vocab

word_vec(word, norm=False)
Accept a single word as input. Returns the word’s representation in vector space, as a 1D numpy
array.

word_vecs(words, norm=False)
Accept multiple words as input. Returns the words’ representations in vector space, as a 1D numpy
array.

to_keyed_vectors()

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for Embeddings

required_tasks = ['vocab', 'vectors']

1.5. API Documentation 219

Pimlico Documentation, Release 0.9.25

write_vectors(arr)
Write out vectors from a Numpy array

write_word_counts(word_counts)
Write out vocab from a list of words with counts.

Parameters word_counts – list of (unicode, int) pairs giving each word and its count.
Vocab indices are determined by the order of words

write_vocab_list(vocab_items)
Write out vocab from a list of vocab items (see Vocab).

Parameters vocab_items – list of Vocab s

write_keyed_vectors(*kvecs)
Write both vectors and vocabulary straight from Gensim’s KeyedVectors data structure. Can
accept multiple objects, which will then be concatenated in the output.

metadata_defaults = {}

writer_param_defaults = {}

run_browser(reader, opts)
Just output some info about the embeddings.

We could also iterate through some of the words or provide other inspection tools, but for now we don’t
do that.

class TSVVecFiles(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

Embeddings stored in TSV files. This format is used by Tensorflow and can be used, for example, as input to
the Tensorflow Projector.

It’s just a TSV file with each vector on a row, and another metadata TSV file with the names associated with the
points and the counts. The counts are not necessary, so the metadata can be written without them if necessary.

datatype_name = 'tsv_vec_files'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for TSVVecFiles

get_embeddings_data()

get_embeddings_metadata()

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for TSVVecFiles.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of TSVVecFiles.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for TSVVecFiles

220 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

write_vectors(array)

write_vocab_with_counts(word_counts)

write_vocab_without_counts(words)

metadata_defaults = {}

writer_param_defaults = {}

class Word2VecFiles(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

datatype_name = 'word2vec_files'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for NamedFileCollection

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for NamedFileCollection.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of NamedFileCollection.Reader

absolute_filenames
For backwards compatibility: use absolute_paths by preference

absolute_paths

get_absolute_path(filename)

open_file(filename=None, mode=’r’)

process_setup()
Do any processing of the setup object (e.g. retrieving values and setting attributes on the reader) that
should be done when the reader is instantiated.

read_file(filename=None, mode=’r’, text=False)
Read a file from the collection.

Parameters

• filename – string filename, which should be one of the filenames specified for
this collection; or an integer, in which case the ith file in the collection is read. If
not given, the first file is read

• mode –

• text – if True, the file is treated as utf-8-encoded text and a unicode object is
returned. Otherwise, a bytes object is returned.

Returns

read_files(mode=’r’, text=False)

1.5. API Documentation 221

Pimlico Documentation, Release 0.9.25

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for NamedFileCollection

absolute_paths

file_written(filename)
Mark the given file as having been written, if write_file() was not used to write it.

get_absolute_path(filename=None)

metadata_defaults = {}

open_file(filename=None)

write_file(filename, data, text=False)
If text=True, the data is expected to be unicode and is encoded as utf-8. Otherwise, data should be a
bytes object.

writer_param_defaults = {}

class DocEmbeddingsMapper(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Abstract datatype.

An embedding loader provides a method to take a list of tokens (e.g. a tokenized document) and produce an
embedding for each token. It will not necessarily be able to produce an embedding for any given term, so might
return None for some tokens.

This is more general than the Embeddings datatype, as it allows this method to potentially produce embed-
dings for an infinite set of terms. Conversely, it is not able to say which set of terms it can produce embeddings
for.

It provides a unified interface to composed embeddings, like fastText, which can use sub-word information to
produce embeddings of OOVs; context-sensitive embeddings, like BERT, which taken into account the context
of a token; and fixed embeddings, which just return a fixed embedding for in-vocab terms.

Some subtypes are just wrappers for fixed sets of embeddings.

datatype_name = 'doc_embeddings_mapper'

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

run_browser(reader, opts)
Simple tool to display embeddings for the words of user-entered sentences.

222 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for DocEmbeddingsMapper

get_embeddings(tokens)
Subclasses should produce a list, with an item for each token. The item may be None, or a numpy
array containing a vector for the token.

Parameters tokens – list of strings

Returns list of embeddings

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for DocEmbeddingsMapper.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read.

Raises an exception if none is ready. Typically used to get the path from the reader,
once we’ve already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed
outside them. It may sometimes be necessary to call this from data_ready() to check that
required metadata is available.

reader_type
alias of DocEmbeddingsMapper.Reader

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a
reader is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.

1.5. API Documentation 223

Pimlico Documentation, Release 0.9.25

Returns True if the reader’s ready to be instantiated, False otherwise

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: object

The abstract superclass of all dataset writers.

You do not need to subclass or instantiate these yourself: subclasses are created automatically to corre-
spond to each datatype. You can add functionality to a datatype’s writer by creating a nested Writer class.
This will inherit from the parent datatype’s writer. This happens automatically - you don’t need to do it
yourself and shouldn’t inherit from anything:

class MyDatatype(PimlicoDatatype):
class Writer:

Overide writer things here

Writers should be used as context managers. Typically, you will get hold of a writer for a module’s output
directly from the module-info instance:

with module.get_output_writer("output_name") as writer:
Call the writer's methods, set its attributes, etc
writer.do_something(my_data)
writer.some_attr = "This data"

Any additional kwargs passed into the writer (which you can do by passing kwargs to
get_output_writer() on the module) will set values in the dataset’s metadata. Available param-
eters are given, along with their default values, in the dictionary metadata_defaults on a Writer
class. They also include all values from ancestor writers.

It is important to pass in parameters as kwargs that affect the writing of the data, to ensure that the correct
values are available as soon as the writing process starts.

All metadata values, including those passed in as kwargs, should be serializable as simple JSON types.

Another set of parameters, writer params, is used to specify things that affect the writing process, but do
not need to be stored in the metadata. This could be, for example, the number of CPUs to use for some
part of the writing process. Unlike, for example, the format of the stored data, this is not needed later
when the data is read.

Available writer params are given, along with their default values, in the dictionary
writer_param_defaults on a Writer class. (They do not need to be JSON serializable.)
Their values are also specified as kwargs in the same way as metadata.

incomplete_tasks
List of required tasks that have not yet been completed

metadata_defaults = {}

require_tasks(*tasks)
Add a name or multiple names to the list of output tasks that must be completed before writing is
finished

required_tasks = []

task_complete(task)
Mark the named task as completed

write_metadata()

writer_param_defaults = {}

224 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class FastTextDocMapper(*args, **kwargs)
Bases: pimlico.datatypes.embeddings.DocEmbeddingsMapper

datatype_name = 'fasttext_doc_embeddings_mapper'

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.embeddings.Reader

Reader class for FastTextDocMapper

model

get_embeddings(tokens)
Subclasses should produce a list, with an item for each token. The item may be None, or a numpy
array containing a vector for the token.

Parameters tokens – list of strings

Returns list of embeddings

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.embeddings.Setup

Setup class for FastTextDocMapper.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read.

Raises an exception if none is ready. Typically used to get the path from the reader,
once we’ve already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

1.5. API Documentation 225

Pimlico Documentation, Release 0.9.25

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed
outside them. It may sometimes be necessary to call this from data_ready() to check that
required metadata is available.

reader_type
alias of FastTextDocMapper.Reader

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a
reader is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.
Returns True if the reader’s ready to be instantiated, False otherwise

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for FastTextDocMapper

required_tasks = ['model']

save_model(model)

metadata_defaults = {}

writer_param_defaults = {}

class FixedEmbeddingsDocMapper(*args, **kwargs)
Bases: pimlico.datatypes.embeddings.DocEmbeddingsMapper

datatype_name = 'fixed_embeddings_doc_embeddings_mapper'

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.embeddings.Reader

Reader class for FixedEmbeddingsDocMapper

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.embeddings.Setup

Setup class for FixedEmbeddingsDocMapper.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of FixedEmbeddingsDocMapper.Reader

vectors

vector_size

226 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

word_counts

index2vocab

index2word

vocab

word_vec(word)
Accept a single word as input. Returns the word’s representation in vector space, as a 1D numpy
array.

get_embeddings(tokens)
Subclasses should produce a list, with an item for each token. The item may be None, or a numpy
array containing a vector for the token.

Parameters tokens – list of strings

Returns list of embeddings

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for FixedEmbeddingsDocMapper

required_tasks = ['vocab', 'vectors']

write_vectors(arr)
Write out vectors from a Numpy array

write_word_counts(word_counts)
Write out vocab from a list of words with counts.

Parameters word_counts – list of (unicode, int) pairs giving each word and its count.
Vocab indices are determined by the order of words

write_vocab_list(vocab_items)
Write out vocab from a list of vocab items (see Vocab).

Parameters vocab_items – list of Vocab s

write_keyed_vectors(*kvecs)
Write both vectors and vocabulary straight from Gensim’s KeyedVectors data structure. Can
accept multiple objects, which will then be concatenated in the output.

metadata_defaults = {}

writer_param_defaults = {}

features

class ScoredRealFeatureSets(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

Sets of features, where each feature has an associated real number value, and each set (i.e. data point) has a
score.

This is suitable as training data for a multidimensional regression.

Stores a dictionary of feature types and uses integer IDs to refer to them in the data storage.

Todo: Add unit test for ScoredReadFeatureSets

1.5. API Documentation 227

Pimlico Documentation, Release 0.9.25

datatype_name = 'scored_real_feature_sets'

datatype_supports_python2 = True

browse_file(reader, filename)
Return text for a particular file in the collection to show in the browser. By default, just reads in the file’s
data and returns it, but subclasses might want to override this (perhaps conditioned on the filename) to
format the data readably.

Parameters

• reader –

• filename –

Returns file data to show

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for ScoredRealFeatureSets

read_samples()
Read all samples in from the data file.

Note that __iter__() iterates over the file without loading everything into memory, which may be
preferable if dealing with big datasets.

iter_ids()
Iterate over the raw ID data from the data file, without translating feature type IDs into feature
names.

feature_types

num_samples

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for ScoredRealFeatureSets.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of ScoredRealFeatureSets.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for ScoredRealFeatureSets

set_feature_types(feature_types)
Explicitly set the list of feature types that will be written out. All feature types given will be included,
plus possibly others that are used in the written samples, which will be added to the set.

This can be useful if you want your feature vocabulary to include the whole of a given set, even if
some feature types are never used in the data. It can also be useful to ensure particular IDs are used
for particular feature types, if you care about that.

write_samples(samples)
Writes a list of samples, each given as a (features, score) pair. See write_sample()

228 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

write_sample(features, score)
Write out a single sample to the end of the data file. Features should be given by name in a dictionary
mapping the feature type to its value.

Parameters

• features – dict(feature name -> feature value)

• score – score associated with this data point

metadata_defaults = {}

writer_param_defaults = {}

files

File collections and files.

There used to be an UnnamedFileCollection, which has been removed in the move to the new datatype system. It used
to be used mostly for input datatypes, which don’t exist any more. There may still be a use for this, though, so I may
be added in future.

class NamedFileCollection(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Datatypes that stores a fixed collection of files, which have fixed names (or at least names that can be determined
from the class). Very many datatypes fall into this category. Overriding this base class provides them with some
common functionality, including the possibility of creating a union of multiple datatypes.

The datatype option filenames should specify a list of filenames contained by the datatype. For typechecking,
the provided type must have at least all the filenames of the type requirement, though it may include more.

All files are contained in the datatypes data directory. If files are stored in subdirectories, this may be specified
in the list of filenames using / s. (Always use forward slashes, regardless of the operating system.)

datatype_name = 'named_file_collection'

datatype_options = {'filenames': {'default': [], 'help': 'Filenames contained in the collection', 'type': <function comma_separated_list.<locals>._fn>}}

datatype_supports_python2 = True

check_type(supplied_type)
Method used by datatype type-checking algorithm to determine whether a supplied datatype (given as an
instance of a subclass of PimlicoDatatype) is compatible with the present datatype, which is being treated
as a type requirement.

Typically, the present class is a type requirement on a module input and supplied_type is the type provided
by a previous module’s output.

The default implementation simply checks whether supplied_type is a subclass of the present class. Sub-
classes may wish to impose different or additional checks.

Parameters supplied_type – type provided where the present class is required, or
datatype instance

Returns True if the check is successful, False otherwise

browse_file(reader, filename)
Return text for a particular file in the collection to show in the browser. By default, just reads in the file’s
data and returns it, but subclasses might want to override this (perhaps conditioned on the filename) to
format the data readably.

Parameters

1.5. API Documentation 229

Pimlico Documentation, Release 0.9.25

• reader –

• filename –

Returns file data to show

run_browser(reader, opts)
All NamedFileCollections provide a browser that just lets you see a list of the files and view them, in the
case of text files.

Subclasses may override the way individual files are shown by overriding browse_file().

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for NamedFileCollection

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for NamedFileCollection.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of NamedFileCollection.Reader

process_setup()
Do any processing of the setup object (e.g. retrieving values and setting attributes on the reader) that
should be done when the reader is instantiated.

get_absolute_path(filename)

absolute_paths

absolute_filenames
For backwards compatibility: use absolute_paths by preference

read_file(filename=None, mode=’r’, text=False)
Read a file from the collection.

Parameters

• filename – string filename, which should be one of the filenames specified for
this collection; or an integer, in which case the ith file in the collection is read. If
not given, the first file is read

• mode –

• text – if True, the file is treated as utf-8-encoded text and a unicode object is
returned. Otherwise, a bytes object is returned.

Returns

read_files(mode=’r’, text=False)

open_file(filename=None, mode=’r’)

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for NamedFileCollection

230 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

write_file(filename, data, text=False)
If text=True, the data is expected to be unicode and is encoded as utf-8. Otherwise, data should be a
bytes object.

file_written(filename)
Mark the given file as having been written, if write_file() was not used to write it.

open_file(filename=None)

get_absolute_path(filename=None)

absolute_paths

metadata_defaults = {}

writer_param_defaults = {}

class NamedFile(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

Like NamedFileCollection, but always has exactly one file.

The filename is given as the filename datatype option, which can also be given as the first init arg: Named-
File(“myfile.txt”).

Since NamedFile is a subtype of NamedFileCollection, it also has a “filenames” option. It is ignored if the
filename option is given, and otherwise must have exactly one item.

datatype_name = 'named_file'

datatype_options = {'filename': {'help': "The file's name"}, 'filenames': {'default': [], 'help': 'Filenames contained in the collection', 'type': <function comma_separated_list.<locals>._fn>}}

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for NamedFile

process_setup()
Do any processing of the setup object (e.g. retrieving values and setting attributes on the reader) that
should be done when the reader is instantiated.

absolute_path

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for NamedFile.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of NamedFile.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for NamedFile

write_file(data, text=False)
If text=True, the data is expected to be unicode and is encoded as utf-8. Otherwise, data should be a
bytes object.

1.5. API Documentation 231

Pimlico Documentation, Release 0.9.25

absolute_path

metadata_defaults = {}

writer_param_defaults = {}

class FilesInput(min_files=1)
Bases: pimlico.datatypes.base.DynamicInputDatatypeRequirement

datatype_doc_info = 'A file collection containing at least one file (or a given specific number). No constraint is put on the name of the file(s). Typically, the module will just use whatever the first file(s) in the collection is'

check_type(supplied_type)

FileInput
alias of pimlico.datatypes.files.FilesInput

class TextFile(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFile

Simple dataset containing just a single utf-8 encoded text file.

datatype_name = 'text_document'

datatype_options = {'filename': {'default': 'data.txt', 'help': "The file's name. Typically left as the default. Default: data.txt"}, 'filenames': {'default': [], 'help': 'Filenames contained in the collection', 'type': <function comma_separated_list.<locals>._fn>}}

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for TextFile

read_file(filename=None, mode=’r’, text=False)
Read a file from the collection.

Parameters

• filename – string filename, which should be one of the filenames specified for
this collection; or an integer, in which case the ith file in the collection is read. If
not given, the first file is read

• mode –

• text – if True, the file is treated as utf-8-encoded text and a unicode object is
returned. Otherwise, a bytes object is returned.

Returns

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for TextFile.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of TextFile.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for TextFile

metadata_defaults = {}

232 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

writer_param_defaults = {}

write_file(data, text=False)
If text=True, the data is expected to be unicode and is encoded as utf-8. Otherwise, data should be a
bytes object.

gensim

class GensimLdaModel(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Storage of trained Gensim LDA models.

Depends on Gensim (and thereby also in Python 3), since we use Gensim to store and load the models.

datatype_name = 'lda_model'

datatype_supports_python2 = False

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

run_browser(reader, opts)
Browse the LDA model simply by printing out all its topics.

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for GensimLdaModel

load_model()

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for GensimLdaModel.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

1.5. API Documentation 233

Pimlico Documentation, Release 0.9.25

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read.

Raises an exception if none is ready. Typically used to get the path from the reader,
once we’ve already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed
outside them. It may sometimes be necessary to call this from data_ready() to check that
required metadata is available.

reader_type
alias of GensimLdaModel.Reader

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a
reader is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.
Returns True if the reader’s ready to be instantiated, False otherwise

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for GensimLdaModel

required_tasks = ['model']

write_model(model)

metadata_defaults = {}

writer_param_defaults = {}

class TopicsTopWords(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Stores a list of the top words for each topic of a topic model.

For some evaluations (like coherence), this is all the information that is needed about a model. This datatype
can be extracted from various topic model types, so that they can all be evaluated using the same evaluation
modules.

datatype_name = 'topics_top_words'

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

234 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Reader class for TopicsTopWords

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for TopicsTopWords.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of TopicsTopWords.Reader

topics_words

num_topics

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for TopicsTopWords

required_tasks = ['topics.tsv']

write_topics_words(topics_words)

Parameters topics_words – list of topic, where each topic is a list of words, with the
top weighted word first

metadata_defaults = {}

writer_param_defaults = {}

run_browser(reader, opts)
Launches a browser interface for reading this datatype, browsing the data provided by the given reader.

Not all datatypes provide a browser. For those that don’t, this method should raise a NotImplementedError.

opts provides the argparser options from the command line.

This tool used to be only available for iterable corpora, but now it’s possible for any datatype to provide
a browser. IterableCorpus provides its own browser, as before, which uses one of the data point type’s
formatters to format documents.

keras

Datatypes for storing and loading Keras models.

class KerasModel(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Datatype for both types of Keras models, stored using Keras’ own storage mechanisms. This uses Keras’ method
of storing the model architecture as JSON and stores the weights using hdf5.

datatype_name = 'keras_model'

custom_objects = {}

datatype_supports_python2 = True

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You

1.5. API Documentation 235

Pimlico Documentation, Release 0.9.25

might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for KerasModel

get_custom_objects()

load_model()

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for KerasModel.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read.

Raises an exception if none is ready. Typically used to get the path from the reader,
once we’ve already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed

236 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

outside them. It may sometimes be necessary to call this from data_ready() to check that
required metadata is available.

reader_type
alias of KerasModel.Reader

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a
reader is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.
Returns True if the reader’s ready to be instantiated, False otherwise

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for KerasModel

required_tasks = ['architecture', 'weights']

weights_filename

write_model(model)

write_architecture(model)

write_weights(model)

metadata_defaults = {}

writer_param_defaults = {}

class KerasModelBuilderClass(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

An alternative way to store Keras models.

Create a class whose init method build the model architecture. It should take a kwarg called build_params, which
is a JSON-encodable dictionary of parameters that determine how the model gets build (hyperparameters). When
you initialize your model for training, create this hyperparameter dictionary and use it to instantiate the model
class.

Use the KerasModelBuilderClassWriter to store the model during training. Create a writer, then start model
training, storing the weights to the filename given by the weights_filename attribute of the writer. The hyperpa-
rameter dictionary will also be stored.

The writer also stores the fully-qualified path of the model-builder class. When we read the datatype and want
to rebuild the model, we import the class, instantiate it and then set its weights to those we’ve stored.

The model builder class must have the model stored in an attribute model.

datatype_name = 'keras_model_builder_class'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for KerasModelBuilderClass

weights_filename

load_build_params()

create_builder_class(override_params=None)

1.5. API Documentation 237

Pimlico Documentation, Release 0.9.25

load_model(override_params=None)
Instantiate the model builder class with the stored parameters and set the weights on the model to
those stored.

Returns model builder instance (keras model in attribute model

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for KerasModelBuilderClass.Reader

data_ready(path)
Check whether the data at the given path is ready to be read using this type of reader. It may be
called several times with different possible base dirs to check whether data is available at any
of them.

Often you will override this for particular datatypes to provide special checks. You may
(but don’t have to) check the setup’s parent implementation of data_ready() by calling su-
per(MyDatatype.Reader.Setup, self).data_ready(path).

The base implementation just checks whether the data dir exists. Subclasses will typically want
to add their own checks.

get_base_dir()
Returns the first of the possible base dir paths at which the data is ready to read.

Raises an exception if none is ready. Typically used to get the path from the reader,
once we’ve already confirmed that at least one is available.

get_data_dir()
Returns the path to the data dir within the base dir (typically a dir called “data”)

get_reader(pipeline, module=None)
Instantiate a reader using this setup.

Parameters
• pipeline – currently loaded pipeline
• module – (optional) module name of the module by which the datatype has been

loaded. Used for producing intelligible error output

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

read_metadata(base_dir)
Read in metadata for a dataset stored at the given path. Used by readers and rarely needed
outside them. It may sometimes be necessary to call this from data_ready() to check that
required metadata is available.

reader_type
alias of KerasModelBuilderClass.Reader

ready_to_read()
Check whether we’re ready to instantiate a reader using this setup. Always called before a
reader is instantiated.

Subclasses may override this, but most of the time you won’t need to. See data_ready() instead.
Returns True if the reader’s ready to be instantiated, False otherwise

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for KerasModelBuilderClass

238 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

required_tasks = ['architecture', 'weights']

write_weights(model)

metadata_defaults = {}

writer_param_defaults = {}

plotting

class PlotOutput(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFileCollection

Output from matplotlib plotting.

Contains the dataset being plotted, a script to build the plot, and the output PDF.

datatype_supports_python2 = True

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writes out source data, a Python script for the plotting using Matplotlib and a PDF of the resulting plot,
if the script completes successfully.

This approach means that a plot is produced immediately, but can easily be tweaked and customized for
later use elsewhere by copying and editing the Python plotting script.

Use writer.write_file("data.csv", text=True) to write the source data and writer.
write_file("plot.py", text=True) to write the plotting script, which should output a file
plot.pdf. Then call writer.plot() to execute the script. If this fails, at least the other files are
there so the user can correct the errors and use them if they want.

plot()
Runs the plotting script. Errors are not caught, so if there’s a problem in the script they’ll be raised.

data_path

code_path

plot_path

metadata_defaults = {}

writer_param_defaults = {}

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for NamedFileCollection

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for NamedFileCollection.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of NamedFileCollection.Reader

1.5. API Documentation 239

Pimlico Documentation, Release 0.9.25

absolute_filenames
For backwards compatibility: use absolute_paths by preference

absolute_paths

get_absolute_path(filename)

open_file(filename=None, mode=’r’)

process_setup()
Do any processing of the setup object (e.g. retrieving values and setting attributes on the reader) that
should be done when the reader is instantiated.

read_file(filename=None, mode=’r’, text=False)
Read a file from the collection.

Parameters

• filename – string filename, which should be one of the filenames specified for
this collection; or an integer, in which case the ith file in the collection is read. If
not given, the first file is read

• mode –

• text – if True, the file is treated as utf-8-encoded text and a unicode object is
returned. Otherwise, a bytes object is returned.

Returns

read_files(mode=’r’, text=False)

results

class NumericResult(*args, **kwargs)
Bases: pimlico.datatypes.base.PimlicoDatatype

Simple datatype to contain a numeric value and a label, representing the result of some process, such as evalua-
tion of a model on a task.

Write using writer.write(label, value). The label must be a string, identifying what the result is,
e.g. “f-score”. The value can be any JSON-serializable type, e.g. int or float.

For example, allows results to be plotted by passing them into a graph plotting module.

datatype_name = 'numeric_result'

datatype_supports_python2 = True

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.base.Reader

Reader class for NumericResult

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.base.Setup

Setup class for NumericResult.Reader

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of NumericResult.Reader

240 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

data

label

value

class Writer(datatype, base_dir, pipeline, module=None, **kwargs)
Bases: pimlico.datatypes.base.Writer

Writer class for NumericResult

required_tasks = ['data']

write(label, value)

metadata_defaults = {}

writer_param_defaults = {}

sklearn

class SklearnModel(*args, **kwargs)
Bases: pimlico.datatypes.files.NamedFile

Saves and loads scikit-learn models using the library’s joblib functions.

See the sklearn docs for more details

datatype_name = 'sklearn_model'

datatype_supports_python2 = True

get_software_dependencies()
Get a list of all software required to read this datatype. This is separate to metadata config checks, so that
you don’t need to satisfy the dependencies for all modules in order to be able to run one of them. You
might, for example, want to run different modules on different machines. This is called when a module is
about to be executed and each of the dependencies is checked.

Returns a list of instances of subclasses of :class:~pimlico.core.dependencies.base.SoftwareDependency,
representing the libraries that this module depends on.

Take care when providing dependency classes that you don’t put any import statements at the top of the
Python module that will make loading the dependency type itself dependent on runtime dependencies.
You’ll want to run import checks by putting import statements within this method.

You should call the super method for checking superclass dependencies.

Note that there may be different software dependencies for writing a datatype using its Writer. These
should be specified using get_writer_software_dependencies().

class Reader(datatype, setup, pipeline, module=None)
Bases: pimlico.datatypes.files.Reader

Reader class for SklearnModel

load_model()

class Setup(datatype, data_paths)
Bases: pimlico.datatypes.files.Setup

Setup class for SklearnModel.Reader

1.5. API Documentation 241

http://scikit-learn.org/stable/modules/model_persistence.html

Pimlico Documentation, Release 0.9.25

get_required_paths()
May be overridden by subclasses to provide a list of paths (absolute, or relative to the data dir)
that must exist for the data to be considered ready.

reader_type
alias of SklearnModel.Reader

class Writer(*args, **kwargs)
Bases: pimlico.datatypes.files.Writer

Writer class for SklearnModel

save_model(model)

metadata_defaults = {}

writer_param_defaults = {}

Module contents

load_datatype(path, options={})
Try loading a datatype class for a given path. Raises a DatatypeLoadError if it’s not a valid datatype path. Also
looks up class names of builtin datatypes and datatype names.

Options are unprocessed strings that will be processed using the datatype’s option definitions.

test

Submodules

pipeline

suite

Module contents

utils

Subpackages

docs

Submodules

apiheaders

Tiny script to replace the headers in the API docs after they’ve been built using sphinx-apidoc.

See: https://stackoverflow.com/questions/25276164/sphinx-apidoc-dont-print-full-path-to-packages-and-modules

Only works in Python 3: it’s assume docs are built in Python 3.

242 Chapter 1. Contents

https://stackoverflow.com/questions/25276164/sphinx-apidoc-dont-print-full-path-to-packages-and-modules

Pimlico Documentation, Release 0.9.25

commandgen

Tool to generate Pimlico command docs. Based on Sphinx’s apidoc tool.

generate_docs(output_dir)
Generate RST docs for Pimlico commands and output to a directory.

generate_docs_for_command(command_cls, output_dir)

generate_contents_page(commands, command_descs, output_dir)

cap_first(txt)

strip_common_indent(code)

examplegen

Tool to generate Pimlico docs for example config files.

Each example config file is (for now) just shown in full in the docs.

build_example_config_doc(base_path, rel_path)

build_index(generated, output_dir)

build_example_config_docs(example_config_dir, output_dir)

modulegen

Tool to generate Pimlico module docs. Based on Sphinx’s apidoc tool.

It is assumed that this script will be run using Python 3. Although it has a basic Python 2 compatibility, it’s not really
intended for Python 2 use. Modules that are marked as still awaiting update to the new datatypes system will now not
be imported at all, since they are typically not Python 3 compatible (due to their use of old_datatypes, which has
not been updated to Python 3).

generate_docs_for_pymod(module, output_dir, test_refs={}, example_refs={})
Generate RST docs for Pimlico modules on a given Python path and output to a directory.

generate_docs_for_pimlico_mod(module_path, output_dir, submodules=[], test_refs={}, exam-
ple_refs={})

input_datatype_list(types, context=None, no_warn=False)

input_datatype_text(datatype, context=None, no_warn=False)

output_datatype_text(datatype, context=None, no_warn=False)

datatype_to_link(datatype_inst)

generate_contents_page(modules, output_dir, index_name, title, content)

generate_example_config(info, input_types, module_path, minimal=False)
Generate a string containing an example of how to configure the given module in a pipeline config file. Where
possible, uses default values for options, or values appropriate to the type, and dummy input names.

indent(spaces, text)

1.5. API Documentation 243

Pimlico Documentation, Release 0.9.25

rest

make_table(grid, header=None)

table_div(col_widths, header_flag=False)

normalize_cell(string, length)

format_heading(level, text, escape=True)
Create a heading of <level> [1, 2 or 3 supported].

testgen

Module contents

trim_docstring(docstring)

pimarc

Submodules

index

class PimarcIndex
Bases: object

Simple index to accompany a Pimarc, stored along with the .prc file as a .prci file. Provides a list of the filenames
in the archive, along with the starting byte of the file’s metadata and data.

filenames is an OrderedDict mapping filename -> (metadata start byte, data start byte).

get_metadata_start_byte(filename)

get_data_start_byte(filename)

keys()

append(filename, metadata_start, data_start)

static load(filename)

save(path)

class PimarcIndexAppender(store_path, mode=’w’)
Bases: object

Class for writing out a Pimarc index as each file is added to the archive. This is used by the Pimarc writer,
instead of creating a PimarcIndex and calling save(), so that the index is always kept up to date with what’s in
the archive.

Mode may be “w” to write a new index or “a” to append to an existing one.

append(filename, metadata_start, data_start)

close()

flush()

244 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

reindex(pimarc_path)
Rebuild the index of a Pimarc archive from its data file (.prc).

Stores the new index in the correct location (.prci), overwriting any existing index.

Parameters pimarc_path – path to the .prc file

Returns the PimarcIndex

check_index(pimarc_path)
Check through a Pimarc file together with its index to identify any places where the index does not match the
archive contents.

Useful for debugging writing/reading code.

exception IndexCheckFailed
Bases: Exception

exception FilenameNotInArchive(filename)
Bases: Exception

exception DuplicateFilename(filename)
Bases: Exception

exception IndexWriteError
Bases: Exception

reader

class PimarcReader(archive_filename)
Bases: object

The Pimlico Archive format: read-only archive.

close()

read_file(filename)
Load a file. Same as reader[filename]

iter_filenames()
Iterate over just the filenames in the archive, without further metadata or file data. Fast for Pimarc, as the
index is fully loaded into memory.

iter_metadata()
Iterate over all files in the archive, yielding just the metadata, skipping over the data.

iter_files(skip=None, start_after=None)
Iterate over files, together with their JSON metadata, which includes their name (as “name”).

Parameters

• start_after – skips all files before that with the given name, which is expected
to be in the archive

• skip – skips over the first portion of the archive, until this number of documents
have been seen. Ignored is start_after is given.

read_doc_from_pimarc(archive_filename, metadata_start_byte)
Read a single file’s metadata and file data from a given start point in the archive. This can be useful if you know
the start point and don’t want to read in the whole index for an archive.

Parameters

1.5. API Documentation 245

Pimlico Documentation, Release 0.9.25

• archive_filename – path to archive file

• metadata_start_byte – byte from which metadata starts

Returns tuple (metadata, raw file data)

read_doc_from_pimarc_file(archive_file, metadata_start_byte)
Same as read_doc_from_pimarc, but operates on an already-opened archive file.

Parameters

• archive_file – file-like object

• metadata_start_byte – byte from which metadata starts

Returns tuple (metadata, raw file data)

metadata_decode_decorator(fn)

class PimarcFileMetadata(raw_data)
Bases: dict

Simple wrapper around the JSON-encoded metadata associated with a file in a Pimarc archive. When the
metadata is loaded, the raw bytes data is wrapped in an instance of PimarcFileMetadata, so that it can be easily
decoded when needed, but avoiding decoding all metadata, which might not ever be needed.

You can simply use the object as if it is a dict and it will decode the JSON data the first time you try accessing
it. You can also call dict(obj) to get a plain dict instead.

decode()

keys(*args, **kwargs)

values(*args, **kwargs)

items(*args, **kwargs)

exception StartAfterFilenameNotFound
Bases: KeyError

tar

Wrapper around tar reader, to provide the same interface as Pimarc.

This means we can deprecate the use of tar files, but keep backwards compatibility for a time, whilst moving over to
direct use of Pimarc objects.

class PimarcTarBackend(archive_filename)
Bases: object

open()

close()

iter_filenames()
Just iterate over the filenames (decoded if necessary). Used to create metadata, check for file existence,
etc.

Not as fast as with Pimarc, as we need to pass over the whole archive file to read all the names.

iter_metadata()
Iterate over all files in the archive, yielding just the metadata, skipping over the data.

iter_files(skip=None, start_after=None)
Iterate over files, together with their JSON metadata, which includes their name (as “name”).

246 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Parameters

• start_after – skips all files before that with the given name, which is expected
to be in the archive

• skip – skips over the first portion of the archive, until this number of documents
have been seen. Ignored is start_after is given.

tools

Command-line tools for manipulating Pimarcs.

list_files(opts)

extract_file(opts)

append_file(opts)

from_tar(opts)

reindex_pimarcs(opts)

check_pimarcs(opts)

remove(opts)

no_subcommand(opts)

run()

utils

writer

class PimarcWriter(archive_filename, mode=’w’)
Bases: object

The Pimlico Archive format: writing new archives or appending existing ones.

static delete(archive_filename)
Delete all files associated with the given archive. At the moment, this is just the archive file itself and the
associated index.

close()

write_file(data, name=None, metadata=None)
Append a write to the end of the archive. The metadata should be a dictionary that can be encoded as
JSON (which is how it will be stored). The data should be a bytes object.

If you want to write text files, you should encode the text as UTF-8 to get a bytes object and write that.

Setting name=X is simply a shorthand for setting metadata[“name”]=X. Either name or a metadata dict
including the name key is required.

flush()
Flush the archive’s data out to disk, archive and index.

exception MetadataError
Bases: Exception

1.5. API Documentation 247

Pimlico Documentation, Release 0.9.25

Module contents

The Pimlico Archive format

Implementation of a simple multi-file archive format, somewhat like tar.

Pimlico multi-file datasets currently use tar to store many files in one archive. This was attractive because of its
simplicity and the fact that the files can be iterated over in order efficiently. However, tar is an old format and has
certain quirks. The biggest downside is that random access (reading files not in the order stored or jumping into the
middle of an archive) is very slow.

The Pimlico Archive format (prc) aims to be a very simple generic archive format. It has the same property as tars
that it is fast to iterate over files in order. But it also stores an index that can be loaded into memory to make it quick
to jump into the archive and potentially access the files in a random order.

It stores very little information about the files. In this sense, it is simpler than tar. It does not store, for example, file
timestamps or permissions, since we do not need these things for documents in a Pimlico corpus. It does, however,
have a generic JSON metadata dictionary for each file, so metadata like this can be stored as necessary.

Pimarcs do not store any directory structures, just a flat collection of files. This is all that is needed for storing Pimlico
datasets, so it’s best for this purpose to keep the format as simple as possible.

Iterating over files in order is still likely to be substantially faster than random access (depending on the underlying
storage), so it is recommended to add files to the archive in the sequential order that they are used in. This is the typical
use case in Pimlico: a dataset is created in order, one document at a time, and stored iteratively. Then another module
reads and processes those documents in the same order.

In keeping with this typical use case in Pimlico, a Pimarc can be opened for reading only, writing only (new archive)
or appending, just like normal files. You cannot, for example, open an archive and move files around, or delete a file.
To do these things, you must read in an archive using a reader and write out a new, modified one using a writer.

Restrictions on filenames: Filenames may use any unicode characters, excluding EOF, newline and tab.

The standard filename for a Pimarc file is .prc. This file contains the archive’s data. A second file is always stored in
the same location, with an identical filename, except the extension .prci.

Some basic command-line utilities for working with Pimarc archives are provided. Run pimlico.utils.pimarc with one
of the various sub-commands.

open_archive(path, mode=’r’)

Submodules

communicate

timeout_process(proc, timeout)
Context manager for use in a with statement. If the with block hasn’t completed after the given number of
seconds, the process is killed.

Parameters proc – process to kill if timeout is reached before end of block

Returns

terminate_process(proc, kill_time=None)
Ends a process started with subprocess. Tries killing, then falls back on terminating if it doesn’t work.

Parameters

• kill_time – time to allow the process to be killed before falling back on terminating

• proc – Popen instance

248 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Returns

class StreamCommunicationPacket(data)
Bases: object

length

encode()

static read(stream)

exception StreamCommunicationError
Bases: Exception

core

multiwith(*managers)
Taken from contextlib’s nested(). We need the variable number of context managers that this function allows.

is_identifier(ident)
Determines if string is valid Python identifier.

remove_duplicates(lst, key=<function <lambda>>)
Remove duplicate values from a list, keeping just the first one, using a particular key function to compare them.

infinite_cycle(iterable)
Iterate infinitely over the given iterable.

Watch out for calling this on a generator or iter: they can only be iterated over once, so you’ll get stuck in an
infinite loop with no more items yielded once you’ve gone over it once.

You may also specify a callable, in which case it will be called each time to get a new iterable/iterator. This is
useful in the case of generator functions.

Parameters iterable – iterable or generator to loop over indefinitely

import_member(path)
Import a class, function, or other module member by its fully-qualified Python name.

Parameters path – path to member, including full package path and class/function/etc name

Returns cls

split_seq(seq, separator, ignore_empty_final=False)
Iterate over a sequence and group its values into lists, separated in the original sequence by the given value. If
on is callable, it is called on each element to test whether it is a separator. Otherwise, elements that are equal to
on a treated as separators.

Parameters

• seq – sequence to divide up

• separator – separator or separator test function

• ignore_empty_final – by default, if there’s a separator at the end, the last sequence
yielded is empty. If ignore_empty_final=True, in this case the last empty sequence is
dropped

Returns iterator over subsequences

split_seq_after(seq, separator)
Somewhat like split_seq, but starts a new subsequence after each separator, without removing the separators.
Each subsequence therefore ends with a separator, except the last one if there’s no separator at the end.

1.5. API Documentation 249

Pimlico Documentation, Release 0.9.25

Parameters

• seq – sequence to divide up

• separator – separator or separator test function

Returns iterator over subsequences

chunk_list(lst, length)
Divides a list into chunks of max length length.

class cached_property(func)
Bases: object

A property that is only computed once per instance and then replaces itself with an ordinary attribute. Deleting
the attribute resets the property.

Often useful in Pimlico datatypes, where it can be time-consuming to load data, but we can’t do it once when
the datatype is first loaded, since the data might not be ready at that point. Instead, we can access the data, or
particular parts of it, using properties and easily cache the result.

Taken from: https://github.com/bottlepy/bottle

email

Email sending utilities

Configure email sending functionality by adding the following fields to your Pimlico local config file:

email_sender From-address for all sent emails

email_recipients To-addresses, separated by commas. All notification emails will be sent to all recipients

email_host (optional) Hostname of your SMTP server. Defaults to localhost

email_username (optional) Username to authenticate with your SMTP server. If not given, it is assumed that no
authentication is required

email_password (optional) Password to authenticate with your SMTP server. Must be supplied if username is given

class EmailConfig(sender=None, recipients=None, host=None, username=None, password=None)
Bases: object

classmethod from_local_config(local_config)

send_pimlico_email(subject, content, local_config, log)
Primary method for sending emails from Pimlico. Tries to send an email with the given content, using the email
details found in the local config. If something goes wrong, an error is logged on the given log.

Parameters

• subject – email subject

• content – email text (may be unicode)

• local_config – local config dictionary

• log – logger to log errors to (and info if the sending works)

send_text_email(email_config, subject, content=None)

exception EmailError
Bases: Exception

250 Chapter 1. Contents

https://github.com/bottlepy/bottle

Pimlico Documentation, Release 0.9.25

filesystem

dirsize(path)
Recursively compute the size of the contents of a directory.

Parameters path –

Returns size in bytes

format_file_size(bytes)

copy_dir_with_progress(source_dir, target_dir, move=False)
Utility for moving/copying a large directory and displaying a progress bar showing how much is copied.

Note that the directory is first copied, then the old directory is removed, if move=True.

Parameters

• source_dir –

• target_dir –

Returns

move_dir_with_progress(source_dir, target_dir)

new_filename(directory, initial_filename=’tmp_file’)
Generate a filename that doesn’t already exist.

retry_open(filename, errnos=[13], retry_schedule=[2, 10, 30, 120, 300], **kwargs)
Try opening a file, using the builtin open() function (Py3, or io.open on Py2). If an IOError is raised and its
errno is in the given list, wait a moment then retry. Keeps doing this, waiting a bit longer each time, hoping that
the problem will go away.

Once too many attempts have been made, outputs a message and waits for user input. This means the user can
fix the problem (e.g. renew credentials) and pick up where execution left off. If they choose not to, the original
error will be raised

Default list of errnos is just [13] – permission denied.

Use retry_schedule to customize the lengths of time waited between retries. Default: 2s, 10s, 30s, 2m, 5m, then
give up.

Additional kwargs are pass on to open().

extract_from_archive(archive_filename, members, target_dir, preserve_dirs=True)
Extract a file or files from an archive, which may be a tarball or a zip file (determined by the file extension).

extract_archive(archive_filename, target_dir, preserve_dirs=True)
Extract all files from an archive, which may be a tarball or a zip file (determined by the file extension).

format

multiline_tablate(table, widths, **kwargs)

title_box(title_text)
Make a nice big pretty title surrounded by a box.

jupyter

get_pipeline()

1.5. API Documentation 251

Pimlico Documentation, Release 0.9.25

linguistic

strip_punctuation(s, split_words=True)

logging

get_console_logger(name, debug=False)
Convenience function to make it easier to create new loggers.

Parameters

• name – logging system logger name

• debug – whether to use DEBUG level. By default, uses INFO

Returns

network

get_unused_local_port()
Find a local port that’s not currently being used, which we’ll be able to bind a service to once this function
returns.

get_unused_local_ports(n)
Find a number of local ports not currently in use. Binds each port found before looking for the next one. If you
just called get_unused_local_port() multiple times, you’d get to same answer coming back.

pipes

qget(queue, *args, **kwargs)
Wrapper that calls the get() method of a queue, catching EINTR interrupts and retrying. Recent versions of
Python have this built in, but with earlier versions you can end up having processes die while waiting on queue
output because an EINTR has received (which isn’t necessarily a problem).

Parameters

• queue –

• args – args to pass to queue’s get()

• kwargs – kwargs to pass to queue’s get()

Returns

class OutputQueue(out)
Bases: object

Direct a readable output (e.g. pipe from a subprocess) to a queue. Returns the queue. Output is added to the
queue one line at a time. To perform a non-blocking read call get_nowait() or get(timeout=T)

get_nowait()

get(timeout=None)

get_available()
Don’t block. Just return everything that’s available in the queue.

252 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

pos

pos_tag_to_ptb(tag)
see :doc:pos_pos_tags_to_ptb

pos_tags_to_ptb(tags)
Takes a list of POS tags and checks they’re all in the PTB tagset. If they’re not, tries mapping them according
to CCGBank’s special version of the tagset. If that doesn’t work, raises a NonPTBTagError.

exception NonPTBTagError
Bases: Exception

probability

limited_shuffle(iterable, buffer_size, rand_generator=None)
Some algorithms require the order of data to be randomized. An obvious solution is to put it all in a list and
shuffle, but if you don’t want to load it all into memory that’s not an option. This method iterates over the data,
keeping a buffer and choosing at random from the buffer what to put next. It’s less shuffled than the simpler
solution, but limits the amount of memory used at any one time to the buffer size.

limited_shuffle_numpy(iterable, buffer_size, randint_buffer_size=1000)
Identical behaviour to limited_shuffle(), but uses Numpy’s random sampling routines to generate a large
number of random integers at once. This can make execution a bit bursty, but overall tends to speed things up,
as we get the random sampling over in one big call to Numpy.

batched_randint(low, high=None, batch_size=1000)
Infinite iterable that produces random numbers in the given range by calling Numpy now and then to generate
lots of random numbers at once and then yielding them one by one. Faster than sampling one at a time.

Parameters

• a – lowest number in range

• b – highest number in range

• batch_size – number of ints to generate in one go

sequential_document_sample(corpus, start=None, shuffle=None, sample_rate=None)
Wrapper around a pimlico.datatypes.tar.TarredCorpus to draw infinite samples of documents
from the corpus, by iterating over the corpus (looping infinitely), yielding documents at random. If sample_rate
is given, it should be a float between 0 and 1, specifying the rough proportion of documents to sample. A lower
value spreads out the documents more on average.

Optionally, the samples are shuffled within a limited scope. Set shuffle to the size of this scope (higher will
shuffle more, but need to buffer more samples in memory). Otherwise (shuffle=0), they will appear in the order
they were in the original corpus.

If start is given, that number of documents will be skipped before drawing any samples. Set start=0 to start at
the beginning of the corpus. By default (start=None) a random point in the corpus will be skipped to before
beginning.

sequential_sample(iterable, start=0, shuffle=None, sample_rate=None)
Draw infinite samples from an iterable, by iterating over it (looping infinitely), yielding items at random. If
sample_rate is given, it should be a float between 0 and 1, specifying the rough proportion of documents to
sample. A lower value spreads out the documents more on average.

Optionally, the samples are shuffled within a limited scope. Set shuffle to the size of this scope (higher will
shuffle more, but need to buffer more samples in memory). Otherwise (shuffle=0), they will appear in the order
they were in the original corpus.

1.5. API Documentation 253

Pimlico Documentation, Release 0.9.25

If start is given, that number of documents will be skipped before drawing any samples. Set start=0 to start at
the beginning of the corpus. Note that setting this to a high number can result in a slow start-up, if iterating over
the items is slow.

Note: If you’re sampling documents from a TarredCorpus, it’s better to use
sequential_document_sample(), since it makes use of TarredCorpus’s built-in features to do
the skipping and sampling more efficiently.

subsample(iterable, sample_rate)
Subsample the given iterable at a given rate, between 0 and 1.

progress

get_progress_bar(maxval, counter=False, title=None, start=True)
Simple utility to build a standard progress bar, so I don’t have to think about this each time I need one. Starts
the progress bar immediately.

start is no longer used, included only for backwards compatibility.

get_open_progress_bar(title=None)
Builds a standard progress bar for the case where the total length (max value) is not known, i.e. an open-ended
progress bar.

class SafeProgressBar(maxval=None, widgets=None, term_width=None, poll=1, left_justify=True,
fd=None)

Bases: progressbar.progressbar.ProgressBar

Override basic progress bar to wrap update() method with a couple of extra features.

1. You don’t need to call start() – it will be called when the first update is received. This is good for processes
that have a bit of a start-up lag, or where starting to iterate might generate some other output.

2. An error is not raised if you update with a value higher than maxval. It’s the most annoying thing ever if
you run a long process and the whole thing fails near the end because you slightly miscalculated maxval.

Initializes a progress bar with sane defaults.

update(value=None)
Updates the ProgressBar to a new value.

increment()

class DummyFileDescriptor
Bases: object

Passed in to ProgressBar instead of a file descriptor (e.g. stderr) to ensure that nothing gets output.

read(size=None)

readLine(size=None)

write(s)

close()

class NonOutputtingProgressBar(*args, **kwargs)
Bases: pimlico.utils.progress.SafeProgressBar

Behaves like ProgressBar, but doesn’t output anything.

254 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

class LittleOutputtingProgressBar(*args, **kwargs)
Bases: pimlico.utils.progress.SafeProgressBar

Behaves like ProgressBar, but doesn’t output much. Instead of constantly redrawing the progress bar line, it
outputs a simple progress message every time it hits the next 10% mark.

If running on a terminal, this will update the line, as with a normal progress bar. If piping to a file, this will just
print a new line occasionally, so won’t fill up your file with thousands of progress updates.

start()
Starts measuring time, and prints the bar at 0%.

It returns self so you can use it like this: >>> pbar = ProgressBar().start() >>> for i in range(100): . . . #
do something . . . pbar.update(i+1) . . . >>> pbar.finish()

finish()
Puts the ProgressBar bar in the finished state.

slice_progress(iterable, num_items, title=None)

class ProgressBarIter(iterable, title=None)
Bases: object

strings

truncate(s, length, ellipsis=’...’)

similarities(targets, reference)
Compute string similarity of each of a list of targets to a given reference string. Uses difflib.SequenceMatcher
to compute similarity.

Parameters

• reference – compare all strings to this one

• targets – list of targets to measure similarity of

Returns list of similarity values

sorted_by_similarity(targets, reference)
Return target list sorted by similarity to the reference string. See :func:similarities for similarity measurement.

system

Lowish-level system operations

set_proc_title(title)
Tries to set the current process title. This is very system-dependent and may not always work.

If it’s available, we use the setproctitle package, which is the most reliable way to do this. If not, we try doing
it by loading libc and calling prctl ourselves. This is not reliable and only works on Unix systems. If neither of
these works, we give up and return False.

If you want to increase the chances of this working (e.g. your process titles don’t seem to be getting set by
Pimlico and you’d like them to), try installing setproctitle, either system-wide or in Pimlico’s virtualenv.

@return: True if the process succeeds, False if there’s an error

1.5. API Documentation 255

Pimlico Documentation, Release 0.9.25

timeout

timeout(func, args=(), kwargs={}, timeout_duration=1, default=None)

urwid

Some handy Urwid utilities.

Take care only to import this where we already have a dependency on Urwid, e.g. in the browser implementation
modules.

Some of these are taken pretty exactly from Urwid examples.

Todo: Not got these things working yet, but they’ll be useful in the long run

exception DialogExit
Bases: Exception

class DialogDisplay(original_widget, text, height=0, width=0, body=None)
Bases: urwid.wimp.PopUpLauncher

palette = [('body', 'black', 'light gray', 'standout'), ('border', 'black', 'dark blue'), ('shadow', 'white', 'black'), ('selectable', 'black', 'dark cyan'), ('focus', 'white', 'dark blue', 'bold'), ('focustext', 'light gray', 'dark blue')]

add_buttons(buttons)

button_press(button)

on_exit(exitcode)

class ListDialogDisplay(original_widget, text, height, width, constr, items, has_default)
Bases: pimlico.utils.urwid.DialogDisplay

unhandled_key(size, k)

on_exit(exitcode)
Print the tag of the item selected.

msgbox(original_widget, text, height=0, width=0)

options_dialog(original_widget, text, options, height=0, width=0, *items)

yesno_dialog(original_widget, text, height=0, width=0, *items)

varint

Varint encoder/decoder

Implementation of a variable-length integer encoding scheme.

Based on implementation by Peter Ruibal: https://github.com/fmoo/python-varint

It’s copied here so we can use it stably without adding a dependency.

License: Since this is copied from someone else’s code, its license is that of the original code, the MIT license. See
LICENSE below for details.

Varints are a common encoding for variable-length integer data, used in libraries such as sqlite, protobuf, v8, and more.

Here’s a quick and dirty module to help avoid reimplementing the same thing over and over again.

256 Chapter 1. Contents

https://github.com/fmoo/python-varint

Pimlico Documentation, Release 0.9.25

encode(number)
Pack number into varint bytes

decode_stream(stream)
Read a varint from stream

decode_bytes(buf)
Read a varint from from buf bytes

web

download_file(url, target_file, headers=None)
Now just an alias for urllib.urlretrieve()

Module contents

Submodules

cfg

Global config

Various global variables. Access as follows:

from pimlico import cfg

Set global config parameter cfg.parameter = “Value” # Use parameter print cfg.parameter

There are some global variables in pimlico (in the __init__.py) that probably should be moved here, but I’m leaving
them for now. At the moment, none of those are ever written from outside that file (i.e. think of them as constants,
rather than config), so the only reason to move them is to keep everything in one place.

Module contents

The Pimlico Processing Toolkit (PIpelined Modular LInguistic COrpus processing) is a toolkit for building pipelines
made up of linguistic processing tasks to run on large datasets (corpora). It provides a wrappers around many existing,
widely used NLP (Natural Language Processing) tools.

install_core_dependencies()

get_jupyter_pipeline()
Special function to get access to a currently loaded pipeline from a Jupyter notebook.

1.6 Module test pipelines

Test pipelines provide a special sort of unit testing for Pimlico.

Pimlico is distributed with a set of test pipeline config files, each just a small pipeline with a couple of modules in it.
Each is designed to test the use of a particular one of Pimlico’s builtin module types, or some combination of a smaller
number of them.

1.6. Module test pipelines 257

Pimlico Documentation, Release 0.9.25

1.6.1 Available pipelines

lda_train

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Train an LDA model on a pre-prepared word-ID corpus
#
For a fuller example (on which this test is based), see
:doc:`the topic model training example </example_config/topic_modelling.train_tms>`.

[pipeline]
name=lda_train
release=latest

Load word IDs
[ids]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=IntegerListsDocumentType
dir=%(test_data_dir)s/datasets/corpora/ids_ubuntu

Load vocabulary
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab_ubuntu

First train a plain LDA model using Gensim
[lda]
type=pimlico.modules.gensim.lda
input_vocab=vocab
input_corpus=ids
tfidf=T
Small number of topics: you probably want more in practice
num_topics=5
passes=10

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.gensim.lda

lda_coherence

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

258 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Compute coherence of trained topics over a reference dataset
#
The topic model was trained by the LDA training test pipeline and
its topics' top words have been extracted by the top words test pipeline.
#
The "reference set" is the small test tokenized dataset.

[pipeline]
name=lda_coherence
release=latest

Load top words for the topics
[top_words]
type=pimlico.datatypes.gensim.TopicsTopWords
dir=%(test_data_dir)s/datasets/gensim/lda_top_words

Load vocabulary (same as used to train the model)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab_ubuntu

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Run coherence evaluation
[coherence]
type=pimlico.modules.gensim.coherence
input_topics_top_words=top_words
input_corpus=europarl
input_vocab=vocab
coherence=c_npmi

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.gensim.coherence

dtm_train

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Train a DTM model on a pre-prepared word-ID corpus and document labels
#
For a fuller example (on which this test is based), see
:doc:`the topic model training example </example_config/topic_modelling.train_tms>`.

(continues on next page)

1.6. Module test pipelines 259

Pimlico Documentation, Release 0.9.25

(continued from previous page)

[pipeline]
name=dtm_train
release=latest

Load word IDs
[ids]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=IntegerListsDocumentType
dir=%(test_data_dir)s/datasets/corpora/ids_ubuntu

Load slice labels
[labels]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=LabelDocumentType
dir=%(test_data_dir)s/datasets/corpora/labels_ubuntu

Load vocabulary
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab_ubuntu

[dtm]
type=pimlico.modules.gensim.ldaseq
input_corpus=ids
input_labels=labels
input_vocab=vocab
Small number of topics: you probably want more in practice
num_topics=2
Speed up training for this test by reducing all passes/iterations to very small
→˓values
em_min_iter=1
em_max_iter=1
passes=2
lda_inference_max_iter=2

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.gensim.ldaseq

lda_top_words

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Extract lists of words from an LDA model
#
These can be used for coherence evaluation.

(continues on next page)

260 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

[pipeline]
name=lda_top_words
release=latest

Load trained model
[lda]
type=pimlico.datatypes.gensim.GensimLdaModel
dir=%(test_data_dir)s/datasets/gensim/lda

Extract the top words for each topic
[top_words]
type=pimlico.modules.gensim.lda_top_words
input_model=lda
num_words=10

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.gensim.lda_top_words

dtm_infer

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Take a trained DTM model and perform inference on other docs
#
For a fuller example (on which this test is based), see
:doc:`the topic model training example </example_config/topic_modelling.train_tms>`.

[pipeline]
name=dtm_infer
release=latest

Load word IDs
[ids]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=IntegerListsDocumentType
dir=%(test_data_dir)s/datasets/corpora/ids_ubuntu

Load slice labels
[labels]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=LabelDocumentType
dir=%(test_data_dir)s/datasets/corpora/labels_ubuntu

Load a trained DTM model
[dtm]

(continues on next page)

1.6. Module test pipelines 261

Pimlico Documentation, Release 0.9.25

(continued from previous page)

type=pimlico.datatypes.gensim.GensimLdaSeqModel
dir=%(test_data_dir)s/datasets/dtm_model

Apply stationary DTM inference to all of the documents
This doesn't need to be run on the same document set we trained on:
we do that here just as an example
[dtm_infer]
type=pimlico.modules.gensim.ldaseq_doc_topics
input_corpus=ids
input_labels=labels
input_model=dtm

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.gensim.ldaseq_doc_topics

opennlp_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=opennlp_tokenize
release=latest

Prepared tarred corpus
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

There's a problem with the tests here
Pimlico still has a clunky old Makefile-based system for installing model data for
→˓modules
The tests don't know that this needs to be done before the pipeline can be run
This is why this test is not in the main suite, but a special OpenNLP one
[tokenize]
type=pimlico.modules.opennlp.tokenize
token_model=en-token.bin
sentence_model=en-sent.bin

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.opennlp.tokenize

262 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

opennlp_parse

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

The input data from Europarl has very long sentences, which makes the parser slow.
It would be better to run the tests on input that would not take so long
[pipeline]
name=opennlp_parse
release=latest

Prepared tarred corpus
[tokens]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

There's a problem with the tests here
Pimlico still has a clunky old Makefile-based system for installing model data for
→˓modules
The tests don't know that this needs to be done before the pipeline can be run
This is why this test is not in the main suite, but a special OpenNLP one
[parse]
type=pimlico.modules.opennlp.parse
model=en-parser-chunking.bin

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.opennlp.parse

opennlp_pos

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=opennlp_pos
release=latest

Prepared tarred corpus
[tokens]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

(continues on next page)

1.6. Module test pipelines 263

Pimlico Documentation, Release 0.9.25

(continued from previous page)

There's a problem with the tests here
Pimlico still has a clunky old Makefile-based system for installing model data for
→˓modules
The tests don't know that this needs to be done before the pipeline can be run
This is why this test is not in the main suite, but a special OpenNLP one
[pos]
type=pimlico.modules.opennlp.pos
model=en-pos-maxent.bin

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.opennlp.pos

embedding_norm

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Output trained embeddings in the word2vec format for external use
[pipeline]
name=embedding_norm
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]
type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

Apply L2 normalization: scale all vectors to unit length
[norm]
type=pimlico.modules.embeddings.normalize
l2_norm=T

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.embeddings.normalize

word2vec_train

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

264 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=word2vec_train
release=latest

Take tokenized text input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[word2vec]
type=pimlico.modules.embeddings.word2vec
Set low, since we're training on a tiny corpus
min_count=1
Very small vectors: usually this will be more like 100 or 200
size=10

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.embeddings.word2vec

word2vec_store

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Output trained embeddings in the word2vec format for external use
[pipeline]
name=word2vec_store
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]
type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

[store]
type=pimlico.modules.embeddings.store_word2vec

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.embeddings.store_word2vec

1.6. Module test pipelines 265

Pimlico Documentation, Release 0.9.25

glove_train

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Train GloVe embeddings on a tiny corpus
[pipeline]
name=glove_train
release=latest

Take tokenized text input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[glove]
type=pimlico.modules.embeddings.glove
Set low, since we're training on a tiny corpus
min_count=1
TODO Set more options

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.embeddings.glove

tsvvec_store

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Output trained embeddings in the TSV format for external use
[pipeline]
name=tsvvec_store
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]
type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

[store]
type=pimlico.modules.embeddings.store_tsv

266 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.embeddings.store_tsv

fasttext_train

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Train fastText embeddings on a tiny corpus
[pipeline]
name=fasttext_train
release=latest

Take tokenized text input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[fasttext]
type=pimlico.modules.embeddings.fasttext
Set low, since we're training on a tiny corpus
min_count=1
Very small vectors: usually this will be more like 100 or 200
dim=10

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.embeddings.fasttext

interleave

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=interleave
release=latest

Take input from some prepared Pimlico datasets

(continues on next page)

1.6. Module test pipelines 267

Pimlico Documentation, Release 0.9.25

(continued from previous page)

[europarl1]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[europarl2]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl2

[interleave]
type=pimlico.modules.corpora.interleave
input_corpora=europarl1,europarl2

[output]
type=pimlico.modules.corpora.format

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.interleave

• pimlico.modules.corpora.format

list_filter

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=list_filter
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[filename_list]
type=StringList
dir=%(test_data_dir)s/datasets/europarl_filename_list

Use the filename list to filter the documents
This should leave 3 documents (of original 5)
[europarl_filtered]
type=pimlico.modules.corpora.list_filter

(continues on next page)

268 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

input_corpus=europarl
input_list=filename_list

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.list_filter

vocab_unmapper

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_unmapper
release=latest

Load the prepared vocabulary
(created by the vocab_builder test pipeline)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab

Load the prepared word IDs
[ids]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=IntegerListsDocumentType
dir=%(test_data_dir)s/datasets/corpora/ids

Perform the mapping from IDs to words
[tokens]
type=pimlico.modules.corpora.vocab_unmapper
input_vocab=vocab
input_ids=ids
oov=OOV

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.vocab_unmapper

shuffle

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

1.6. Module test pipelines 269

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=shuffle
release=latest

Read in some Europarl raw files
Instead of using the pre-prepared corpus stored in the pipeline-internal format,
we use an input reader here. This means it wouldn't be possible to use
the shuffle module type, so we're forced to use shuffle_linear.
Another solution is to use a store module and then shuffle, which may be preferable
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*

[shuffle]
type=pimlico.modules.corpora.shuffle_linear

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.shuffle_linear

subset

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=subset
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[subset]
type=pimlico.modules.corpora.subset
size=1
offset=2

[output]
type=pimlico.modules.corpora.format

270 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.subset

• pimlico.modules.corpora.format

concat

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=concat
release=latest

Take input from some prepared Pimlico datasets
[europarl1]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[europarl2]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl2

[concat]
type=pimlico.modules.corpora.concat
input_corpora=europarl1,europarl2

[output]
type=pimlico.modules.corpora.format

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.concat

• pimlico.modules.corpora.format

subsample

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

1.6. Module test pipelines 271

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=subsample
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[subsample]
type=pimlico.modules.corpora.subsample
p=0.8
seed=1

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.subsample

vocab_builder

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_builder
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[vocab]
type=pimlico.modules.corpora.vocab_builder
threshold=2
limit=500

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.vocab_builder

272 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

group

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=group
release=latest

Read in some Europarl raw files
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*
encoding=utf8

[group]
type=pimlico.modules.corpora.group

[output]
type=pimlico.modules.corpora.format

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.group

• pimlico.modules.corpora.format

split

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=split
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[split]
type=pimlico.modules.corpora.split
set1_size=2

1.6. Module test pipelines 273

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.split

vocab_mapper

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_mapper
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Load the prepared vocabulary
(created by the vocab_builder test pipeline)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab

Perform the mapping from words to IDs
[ids]
type=pimlico.modules.corpora.vocab_mapper
input_vocab=vocab
input_text=europarl

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.vocab_mapper

store

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

274 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

[pipeline]
name=store
release=latest

Read in some Europarl raw files
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*
encoding=utf8

Group works as a filter module, so its output is not stored.
This pipeline shows how you can store the output from such a
module for static use by later modules.
In this exact case, you don't gain anything by doing that, since
the grouping filter is fast, but sometimes it could be desirable
with other filters
[group]
type=pimlico.modules.corpora.group

[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.group

• pimlico.modules.corpora.store

stats

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=stats
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[stats]
type=pimlico.modules.corpora.corpus_stats

1.6. Module test pipelines 275

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.corpus_stats

filter_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Essentially the same as the simple_tokenize test pipeline,
but uses the filter=T parameter on the tokenizer.
This can be applied to any document map module, so this
is intended as a test for that feature, rather than for
simple_tokenize

[pipeline]
name=filter_tokenize
release=latest

[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
This corpus is actually tokenized text, but we treat it as raw text and apply the
→˓simple tokenizer
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Tokenize as a filter: this module is not executable
[tokenize]
type=pimlico.modules.text.simple_tokenize
filter=T

Then store the output
You wouldn't really want to do this, as it's equivalent to not using
the tokenizer as a filter! But we're testing the filter feature
[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.store

vocab_mapper

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

276 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_mapper
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized_longer

Load the prepared vocabulary
(created by the vocab_builder test pipeline)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab

Perform the mapping from words to IDs
[ids]
type=pimlico.modules.corpora.vocab_mapper
input_vocab=vocab
input_text=europarl

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.vocab_mapper

vocab_counter

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=vocab_counter
release=latest

Load the prepared vocabulary
(created by the vocab_builder test pipeline)
[vocab]
type=pimlico.datatypes.dictionary.Dictionary
dir=%(test_data_dir)s/datasets/vocab

Load the prepared token IDs
(created by the vocab_mapper test pipeline)
[ids]

(continues on next page)

1.6. Module test pipelines 277

Pimlico Documentation, Release 0.9.25

(continued from previous page)

type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=IntegerListsDocumentType
dir=%(test_data_dir)s/datasets/corpora/ids

Count the frequency of each word in the corpus
[counts]
type=pimlico.modules.corpora.vocab_counter
input_corpus=ids
input_vocab=vocab

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.vocab_counter

shuffle

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=shuffle
release=latest

Take input from a prepared Pimlico dataset
This works fine with shuffle, since it's already stored in the pipeline-internal
→˓format
However, it wouldn't work with an input reader, since
the interface doesn't provide random access to docs
Then you'd need to use shuffle_linear
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[shuffle]
type=pimlico.modules.corpora.shuffle

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.shuffle

tokenized_formatter

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

278 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

Test the tokenized text formatter
[pipeline]
name=tokenized_formatter
release=latest

Take input from a prepared tokenized dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Format the tokenized data using the default formatter,
which is declared for the tokenized datatype
[format]
type=pimlico.modules.corpora.format

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.format

simple_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=simple_tokenize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
This corpus is actually tokenized text, but we treat it as raw text and apply the
→˓simple tokenizer
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[tokenize]
type=pimlico.modules.text.simple_tokenize

Modules

The following Pimlico module types are used in this pipeline:

1.6. Module test pipelines 279

Pimlico Documentation, Release 0.9.25

• pimlico.modules.text.simple_tokenize

normalize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=normalize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[norm]
type=pimlico.modules.text.normalize
case=lower
remove_empty=T

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.text.normalize

normalize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=normalize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[norm]
type=pimlico.modules.text.text_normalize

(continues on next page)

280 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

case=lower
strip=T
blank_lines=T

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.text.text_normalize

simple_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=simple_tokenize
release=latest

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
This corpus is actually tokenized text, but we treat it as raw text and apply the
→˓char tokenizer
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

[tokenize]
type=pimlico.modules.text.char_tokenize

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.text.char_tokenize

europarl

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

1.6. Module test pipelines 281

Pimlico Documentation, Release 0.9.25

[pipeline]
name=europarl
release=latest

Read in some Europarl raw files, using the special Europarl reader
[europarl]
type=pimlico.modules.input.text.europarl
files=%(test_data_dir)s/datasets/europarl_en_raw/*

[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.store

huggingface_dataset

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=huggingface_dataset
release=latest

Load an example dataset from Huggingface
[hf_dataset]
type=pimlico.modules.input.text.huggingface
dataset=glue
name=mrpc
split=train
doc_name=idx
columns=sentence1,sentence2

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.input.text.huggingface

raw_text_files_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

282 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=raw_text_files_test
release=latest

Read in some Europarl raw files
[europarl]
type=pimlico.modules.input.text.raw_text_files
files=%(test_data_dir)s/datasets/europarl_en_raw/*

[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.store

xml_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Test for the XML input module
#
Read in raw text data from the Estonian Reference Corpus:
https://www.cl.ut.ee/korpused/segakorpus/
We have a tiny subset of the corpus here. It can be read using
the standard XML input module.

[pipeline]
name=xml_test
release=latest

Read in some XML files from Est Ref
[input]
type=pimlico.modules.input.xml
files=%(test_data_dir)s/datasets/est_ref/*.tei
document_node_type=text

glove_input_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

1.6. Module test pipelines 283

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=glove_input_test
release=latest

Read in some vectors
[vectors]
type=pimlico.modules.input.embeddings.glove
path=%(test_data_dir)s/input_data/glove/glove.small.300d.txt

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.input.embeddings.glove

fasttext_input_test

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=fasttext_input_test
release=latest

Read in some vectors
[vectors]
type=pimlico.modules.input.embeddings.fasttext
path=%(test_data_dir)s/input_data/fasttext/wiki.en_top50.vec

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.input.embeddings.fasttext

spacy_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

284 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

[pipeline]
name=spacy_tokenize
release=latest

Prepared tarred corpus
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[tokenize]
type=pimlico.modules.spacy.tokenize
model=en_core_web_sm

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.spacy.tokenize

spacy_parse_text

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=spacy_parse_text
release=latest

Prepared tarred corpus
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[extract_nps]
type=pimlico.modules.spacy.extract_nps
model=en_core_web_sm

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.spacy.extract_nps

spacy_parse_text

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

1.6. Module test pipelines 285

Pimlico Documentation, Release 0.9.25

Config file

The complete config file for this test pipeline:

[pipeline]
name=spacy_parse_text
release=latest

Prepared tarred corpus
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

[tokenize]
type=pimlico.modules.spacy.parse_text
model=en_core_web_sm

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.spacy.parse_text

collect_files

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=collect_files
release=latest

Read in some named file datasets
This could be, for example, the output of the stats module
[named_files1]
type=NamedFileCollection
filenames=text_file.txt
dir=%(test_data_dir)s/datasets/named_files1

[named_files2]
type=NamedFileCollection
filenames=data.bin,text_file.txt
dir=%(test_data_dir)s/datasets/named_files2

[collect]
type=pimlico.modules.utility.collect_files
input=named_files1,named_files2

286 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.utility.collect_files

nltk_nist_tokenize

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

[pipeline]
name=nltk_nist_tokenize
release=latest

Prepared grouped corpus of raw text data
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=RawTextDocumentType
dir=%(test_data_dir)s/datasets/text_corpora/europarl

Tokenize the data using NLTK's simple NIST tokenizer
[tokenize_euro]
type=pimlico.modules.nltk.nist_tokenize

Another tokenization, using the non_european option
[tokenize_non_euro]
type=pimlico.modules.nltk.nist_tokenize
input=europarl
non_european=T

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.nltk.nist_tokenize

• pimlico.modules.nltk.nist_tokenize

malt_parse

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

1.6. Module test pipelines 287

Pimlico Documentation, Release 0.9.25

The input data from Europarl has very long sentences, which makes the parser slow.
It would be better to run the tests on input that would not take so long
[pipeline]
name=malt_parse
release=latest

Load pre-tagged data
This is in word-annotation format and was produced by the OpenNLP tagger test
→˓pipeline
[pos]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=WordAnnotationsDocumentType(fields=word,pos)
dir=%(test_data_dir)s/datasets/corpora/pos

[parse]
type=pimlico.modules.malt

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.malt

embeddings_plot

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Plot trained embeddings
[pipeline]
name=embeddings_plot
release=latest

Take trained embeddings from a prepared Pimlico dataset
[embeddings]
type=pimlico.datatypes.embeddings.Embeddings
dir=%(test_data_dir)s/datasets/embeddings

[plot]
type=pimlico.modules.visualization.embeddings_plot

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.visualization.embeddings_plot

288 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

bar_chart

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Plot several numbers on a bar chart
[pipeline]
name=bar_chart
release=latest

[a]
type=NumericResult
dir=%(test_data_dir)s/datasets/results/A

[b]
type=NumericResult
dir=%(test_data_dir)s/datasets/results/C

[c]
type=NumericResult
dir=%(test_data_dir)s/datasets/results/C

[plot]
type=pimlico.modules.visualization.bar_chart
input=a,b,c

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.visualization.bar_chart

filter_map

This is one of the test pipelines included in Pimlico’s repository. See Module test pipelines for more details.

Config file

The complete config file for this test pipeline:

Pipeline designed to test the use of a document
map module as a filter. It uses the text normalization
module and will therefore fail if that module's
test is also failing, but since the module is so
simple, this is unlikely

[pipeline]
name=filter_map
release=latest

(continues on next page)

1.6. Module test pipelines 289

Pimlico Documentation, Release 0.9.25

(continued from previous page)

Take input from a prepared Pimlico dataset
[europarl]
type=pimlico.datatypes.corpora.GroupedCorpus
data_point_type=TokenizedDocumentType
dir=%(test_data_dir)s/datasets/corpora/tokenized

Apply text normalization
Unlike the test text/normalize.conf, we apply this
as a filter, so its result is not stored, but computed
on the fly and passed straight through to the
next module
[norm_filter]
type=pimlico.modules.text.normalize
Use the general filter option, which can be applied
to any document map module
filter=T
case=lower

Store the result of the previous, filter, module.
This is a stupid thing to do, since we could have
just not used the module as a filter and had the
same effect, but we do it here to test the use
of a module as a filter
[store]
type=pimlico.modules.corpora.store

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.store

1.6.2 Input data

Pimlico also comes with all the data necessary to run the pipelines. They all use very small datasets, so that they don’t
take long to run and can be easily distributed.

Some of the datasets are raw data, of the sort you might find in a distributed corpus, and these are used to test input
readers for that type of data. Most, however, are stored in one of Pimlico’s datatype formats, exactly as they were
output from some other module (most often from another test pipeline), so that they can be read in to test one module
in isolation.

1.6.3 Usage examples

In addition to providing unit testing for core Pimlico modules, test pipelines also function as a source of examples of
each module’s usage. They are for that reason linked to from the module’s documentation, so that example usages can
be easily found where available.

1.6.4 Running

To run test pipelines, you can use the script test_pipeline.sh in Pimlico’s bin directory, e.g.:

290 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

./test_pipeline.sh ../test/data/pipelines/corpora/concat.conf output

This will load a single test pipeline from the given config file and execute the module named output.

There are also some suites of tests, specified as CSV files giving a number of config files and module names to execute
for each. To run the main suite of test pipelines for Pimlico’s core modules, run:

./all_test_pipelines.sh

1.7 Example pipelines

Pimlico comes with a number of example pipelines to demonstrate how to use it.

A more extensive set of examples is also provided in the form of test pipelines, which give a small example of the
usage of individual core modules and are used as unit tests for the modules.

1.7.1 Available pipelines

empty_test

This is an example Pimlico pipeline.

The complete config file for this example pipeline is below. Source file

A basic, empty pipeline. Includes no modules at all.

Used to test basic loading of pipelines in one of the unit tests.

Pipeline config

[pipeline]
name=empty_test
Always test with the latest version
release=latest

[vars]
var_name=testing a variable

train_tms_example

This is an example Pimlico pipeline.

The complete config file for this example pipeline is below. Source file

An example pipeline that loads some textual data and trains topic models on it using Gensim.

See the src/ subdirectory for the module’s code.

1.7. Example pipelines 291

https://github.com/markgw/pimlico/blob/master/examples/empty.conf
https://github.com/markgw/pimlico/blob/master/examples/topic_modelling/train_tms.conf

Pimlico Documentation, Release 0.9.25

Pipeline config

[pipeline]
name=train_tms_example
release=latest
We need a path to Python code here, since we use a custom module type
python_path=src/

[vars]
Here we define where the example input corpus can be found
corpus_path=%(pimlico_root)s/examples/data/input/ubuntu_dialogue/dialogues_small.json

Read in the raw text from the JSON files
[input_text]
type=tm_example.modules.input.ubuntu_dialogue
path=%(corpus_path)s
Just use a small number of documents so we can train fast
You should use a much bigger corpus for a real model
limit=600

Also read in a label for each document consisting of the year+month from
the timestamp
[input_labels]
type=tm_example.modules.input.ubuntu_dialogue_months
path=%(corpus_path)s
limit=600

[store_labels]
type=pimlico.modules.corpora.store
input=input_labels

Tokenize the text using a simple tokenizer from NLTK
[tokenize]
type=pimlico.modules.spacy.tokenize
input=input_text

Apply simple text normalization
In a real topic modelling application, you might want to do lemmatization
or other types of more sophisticated normalization here
[normalize]
type=pimlico.modules.text.normalize
case=lower
min_word_length=3
remove_empty=T
remove_only_punct=T

Build a vocabulary from the words used in the corpus
This is used to map words in the corpus to IDs
[vocab]
type=pimlico.modules.corpora.vocab_builder
input=normalize
Only include words that occur at least 5 times
threshold=5

[ids]
type=pimlico.modules.corpora.vocab_mapper
input_vocab=vocab

(continues on next page)

292 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

(continued from previous page)

input_text=normalize
Skip any OOV words (below the threshold)
oov=ignore

First train a plain LDA model using Gensim
[lda]
type=pimlico.modules.gensim.lda
input_vocab=vocab
input_corpus=ids
tfidf=T
Small number of topics: you probably want more in practice
num_topics=5
passes=10

Also train a dynamic topic model (DTM), with a separate model
for each month
[dtm]
type=pimlico.modules.gensim.ldaseq
input_corpus=ids
input_labels=input_labels
input_vocab=vocab
Small number of topics: you probably want more in practice
num_topics=5
Apply TF-IDF transformation to bags of words before training
tfidf=T
Speed up training for this demo by reducing iterations
em_min_iter=3
em_max_iter=8

Apply stationary DTM inference to all of the documents
This doesn't need to be run on the same document set we trained on:
we do that here just as an example
[dtm_infer]
type=pimlico.modules.gensim.ldaseq_doc_topics
input_corpus=ids
input_labels=input_labels
input_model=dtm

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.corpora.store

• pimlico.modules.spacy.tokenize

• pimlico.modules.text.normalize

• pimlico.modules.corpora.vocab_builder

• pimlico.modules.corpora.vocab_mapper

• pimlico.modules.gensim.lda

• pimlico.modules.gensim.ldaseq

• pimlico.modules.gensim.ldaseq_doc_topics

1.7. Example pipelines 293

Pimlico Documentation, Release 0.9.25

custom_module_example

This is an example Pimlico pipeline.

The complete config file for this example pipeline is below. Source file

A simple example pipeline that loads some textual data and tokenizes it, then performs some custom processing.

This is intended as an example of how to use your own code in a pipeline module. The pipeline contains some core
modules, but also one the is defined especially for this pipeline: filter_prop_nns.

See the src/ subdirectory for the module’s code.

Pipeline config

Options for the whole pipeline
[pipeline]
name=custom_module_example
Specify the version of Pimlico this config is designed to work with
release=latest
Here you can add path(s) to Python source directories the pipeline needs
We need to do this here, since we use a custom module type
The path is relative to this config file
python_path=src/

Specify some things in variables at the top of the file, so they're easy to find
[vars]
The main pipeline input dir is given here
It's good to put all paths to input data here, so that it's easy for people to point
them to other locations
Here we define where the example input text data can be found
text_path=%(pimlico_root)s/examples/data/input/bbc/data

Read in the raw text files
[input_text]
type=pimlico.modules.input.text.raw_text_files
files=%(text_path)s/*

Tokenize the text using a simple tokenizer from NLTK
[tokenize]
type=pimlico.modules.spacy.tokenize
input=input_text

A rough simple filter to remove words that look like proper nouns
This is here to demonstrate how to use a custom module that is not
part of Pimlico's core modules
[filter_prop_nns]
type=pim_example.modules.filter_prop_nns
input=tokenize

Build a vocabulary from the words used in the resulting corpus
This can later be used to map words in the corpus to IDs
[vocab]
type=pimlico.modules.corpora.vocab_builder
input=filter_prop_nns
Only include words that occur at least 5 times
threshold=5

294 Chapter 1. Contents

https://github.com/markgw/pimlico/blob/master/examples/simple/custom_module.conf

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.spacy.tokenize

• pimlico.modules.corpora.vocab_builder

tokenize_example

This is an example Pimlico pipeline.

The complete config file for this example pipeline is below. Source file

A simple example pipeline that loads some textual data and tokenizes it, using an extremely simple tokenizer.

This is an example of a simple pipeline, but not a good example of how to do tokenization. For real applications, you
should use a proper, language-specific tokenizer, like the OpenNLP one, or at least NLTK's NIST tokenizer.

Pipeline config

Options for the whole pipeline
[pipeline]
name=tokenize_example
Specify the version of Pimlico this config is designed to work with
It will run with any release that's the same major version and the same or a later
→˓minor version
Here we use "latest" so we're always running the example against the latest version,
but you should specify the version you wrote the pipeline for
release=latest
Here you can add path(s) to Python source directories the pipeline needs
Typically, you'll just add a single path, specified relative to the config file's
→˓location
python_path=

Specify some things in variables at the top of the file, so they're easy to find
[vars]
The main pipeline input dir is given here
It's good to put all paths to input data here, so that it's easy for people to point
them to other locations
Here we define where the example input text data can be found
text_path=%(pimlico_root)s/examples/data/input/bbc/data

Read in the raw text files
[input_text]
type=pimlico.modules.input.text.raw_text_files
files=%(text_path)s/*

Tokenize the text using a very simple tokenizer
For real applications, you should use a proper, language-specific tokenizer,
like the OpenNLP one, or at least NLTK's NIST tokenizer
[tokenize]
type=pimlico.modules.text.simple_tokenize
input=input_text

1.7. Example pipelines 295

https://github.com/markgw/pimlico/blob/master/examples/simple/tokenize.conf

Pimlico Documentation, Release 0.9.25

Modules

The following Pimlico module types are used in this pipeline:

• pimlico.modules.text.simple_tokenize

tokenize_example2

This is an example Pimlico pipeline.

The complete config file for this example pipeline is below. Source file

A simple example pipeline that loads some textual data and tokenizes it, using an extremely simple tokenizer.

This is an example of a simple pipeline, but not a good example of how to do tokenization. For real applications, you
should use a proper, language-specific tokenizer, like the OpenNLP one, or at least NLTK's NIST tokenizer.

Pipeline config

Options for the whole pipeline
[pipeline]
name=tokenize_example2
Specify the version of Pimlico this config is designed to work with
It will run with any release that's the same major version and the same or a later
→˓minor version
Here we use "latest" so we're always running the example against the latest version,
but you should specify the version you wrote the pipeline for
release=latest
We need to load the input reader type, which is the same one used for the topic
modelling example
python_path=../topic_modelling/src/

Specify some things in variables at the top of the file, so they're easy to find
[vars]
The main pipeline input dir is given here
It's good to put all paths to input data here, so that it's easy for people to point
them to other locations
Here we define where the example input text data can be found
text_path=%(pimlico_root)s/examples/data/input/ubuntu_dialogue/dialogues_bigger.json

Read in the raw text from the JSON files
[input_text]
type=tm_example.modules.input.ubuntu_dialogue
path=%(text_path)s

Tokenize the text using a very simple tokenizer
For real applications, you should use a proper, language-specific tokenizer,
like the OpenNLP one, or at least NLTK's NIST tokenizer
[tokenize]
type=pimlico.modules.text.simple_tokenize
input=input_text

Modules

The following Pimlico module types are used in this pipeline:

296 Chapter 1. Contents

https://github.com/markgw/pimlico/blob/master/examples/simple/tokenize2.conf

Pimlico Documentation, Release 0.9.25

• pimlico.modules.text.simple_tokenize

1.7.2 Running

To run example pipelines, you can use the script run_example.sh in Pimlico’s example directory, e.g.:

./example_pipeline.sh simple/tokenize.conf status

This will load a single example pipeline from the given config file and show the execution status of the modules.

1.8 Future plans

Development of Pimlico is constantly ongoing. A lot of this involves adding new core module types. There are
also planned feature enhancements.

1.8.1 Wishlist

Things I plan to add to Pimlico.

• Pipeline graph visualizations. Maybe an interactive GUI to help with viewing large pipelines

• Model fetching: system like software dependency checking and installation to download models on demand

• See issue list on Github for other specific plans

Module types to be updated, implemented in the old datatypes system (using backwards incompatible library fea-
tures). These do not take long to update and include in the main library.

• C&C parser

• CoreNLP tools (switch to using Stanza wrappers, see below)

• Compiling term-feature matrices (for count-based embeddings among other things)

• Building count-based embeddings from dependency features

• OpenNLP tools. Some already updated. To do:

– Coreference resolution

– Coreference pipeline (from raw text)

– NER

• R-script: simple module to run an arbitrary R script

• Scikit-learn matrix factorization. (Lots of Scikit-learn modules could be added, but this one already exists in an
old form.)

• Copy file utility: output a file to a given location outside the pipeline-internal storage

• Bar chart visualization

New module types

• Stanza tools: Stanford’s new toolkit, includes Python bindings and CoreNLP wrappers

• More spaCy tools: currently only have tokenizer

More details on some of these plans

1.8. Future plans 297

https://github.com/markgw/pimlico/issues

Pimlico Documentation, Release 0.9.25

Berkeley Parser

https://github.com/slavpetrov/berkeleyparser

Java constituency parser. Pre-trained models are also provided in the Github repo.

Probably no need for a Java wrapper here. The parser itself accepts input on stdin and outputs to stdout, so just use a
subprocess with pipes.

Cherry Picker

Coreference resolver

http://www.hlt.utdallas.edu/~altaf/cherrypicker/

Requires NER, POS tagging and constituency parsing to be done first. Tools for all of these are included in the Cherry
Picker codebase, but we just need a wrapper around the Cherry Picker tool itself to be able to feed these annotations
in from other modules and perform coref.

Write a Java wrapper and interface with it using Py4J, as with OpenNLP.

Outputting pipeline diagrams

Once pipeline config files get big, it can be difficult to follow what’s going on in them, especially if the structure is
more complex than just a linear pipeline. A useful feature would be the ability to display/output a visualization of the
pipeline as a flow graph.

It looks like the easiest way to do this will be to construct a DOT graph using Graphviz/Pydot and then output the
diagram using Graphviz.

http://www.graphviz.org

https://pypi.python.org/pypi/pydot

Building the graph should be pretty straightforward, since the mapping from modules to nodes is fairly direct.

We could also add extra information to the nodes, like current execution status.

1.8.2 Todos

The following to-dos appear elsewhere in the docs. They are generally bits of the documentation I’ve not written yet,
but am aware are needed.

Todo: This has not been updated for the Pimarc internal storage format, so still assumes that tar files are used. It will
be updated in future, if there is a need for it.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/src/python/pimlico/cli/recover.py:docstring
of pimlico.cli.recover.RecoverCmd, line 4.)

Todo: In future, this should be replaced by a doc type that reads in the parse trees and returns a tree data structure.
For now, you need to load and process the tree strings yourself.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/src/python/pimlico/datatypes/corpora/parse/trees.py:docstring
of pimlico.datatypes.corpora.parse.trees.OpenNLPTreeStringsDocumentType, line 4.)

298 Chapter 1. Contents

https://github.com/slavpetrov/berkeleyparser
http://www.hlt.utdallas.edu/~altaf/cherrypicker/
http://www.graphviz.org
https://pypi.python.org/pypi/pydot

Pimlico Documentation, Release 0.9.25

Todo: Add unit test for ScoredReadFeatureSets

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/src/python/pimlico/datatypes/features.py:docstring
of pimlico.datatypes.features.ScoredRealFeatureSets, line 9.)

Todo: Not got these things working yet, but they’ll be useful in the long run

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/src/python/pimlico/utils/urwid.py:docstring
of pimlico.utils.urwid, line 8.)

Todo: This has not been updated for the Pimarc internal storage format, so still assumes that tar files are used. It will
be updated in future, if there is a need for it.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/commands/recover.rst,
line 13.)

Todo: Describe how module dependencies are defined for different types of deps

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/dependencies.rst,
line 73.)

Todo: Include some examples from the core modules of how deps are defined and some special cases of software
fetching

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/dependencies.rst,
line 80.)

Todo: Finish the missing parts of this doc below

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/module_structure.rst,
line 9.)

Todo: Document optional outputs.

Should include choose_optional_outputs_from_options(options, inputs) for deciding what optional outputs to include.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/module_structure.rst,
line 170.)

Todo: Fully document module options, including: required, type checking/processing and other fancy features.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/module_structure.rst,
line 221.)

1.8. Future plans 299

Pimlico Documentation, Release 0.9.25

Todo: Further document specification of software dependencies

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/module_structure.rst,
line 239.)

Todo: This section is copied from Pimlico module structure. It needs to be re-written to provide more technical and
comprehensive documentation of module execution.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/module_structure.rst,
line 249.)

Todo: This section is copied from Pimlico module structure. It needs to be re-written to provide more technical and
comprehensive documentation of pipeline config. NB: config files are fully documented in Pipeline config, so this just
covers how ModuleInfo relates to the config.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/core/module_structure.rst,
line 313.)

Todo: Filter module guide needs to be updated for new datatypes. This section is currently completely wrong –
ignore it! This is quite a substantial change.

The difficulty of describing what you need to do here suggests we might want to provide some utilities to make this
easier!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/guides/filters.rst,
line 31.)

Todo: Write a guide to building document map modules.

For now, the skeletons below are a useful starting point, but there should be a more fulsome explanation here of what
document map modules are all about and how to use them.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/guides/map_module.rst,
line 5.)

Todo: Document map module guides needs to be updated for new datatypes.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/guides/map_module.rst,
line 12.)

Todo: Module writing guide needs to be updated for new datatypes.

In particular, the executor example and datatypes in the module definition need to be updated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/guides/module.rst,
line 23.)

300 Chapter 1. Contents

Pimlico Documentation, Release 0.9.25

Todo: Currently, this accepts any GroupedCorpus as input, but checks at runtime that the input is stored used the
pipeline-internal format. It would be much better if this check could be enforced at the level of datatypes, so that the
input datatype requirement explicitly rules out grouped corpora coming from input readers, filters or other dynamic
sources.

Since this requires some tricky changes to the datatype system, I’m not implementing it now, but it should be done in
future.

It will be implemented as part of the replacement of GroupedCorpus by StoredIterableCorpus:
‘https://github.com/markgw/pimlico/issues/24‘_

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/modules/pimlico.modules.corpora.shuffle.rst,
line 27.)

Todo: Add test pipeline and test

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/modules/pimlico.modules.gensim.lda_doc_topics.rst,
line 21.)

Todo: Add test pipeline. This is slightly difficult, as we need a small FastText binary file, which is harder to produce,
since you can’t easily just truncate a big file.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/modules/pimlico.modules.input.embeddings.fasttext_gensim.rst,
line 29.)

Todo: Add test pipeline

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/modules/pimlico.modules.input.xml.rst,
line 15.)

Todo: Add test pipeline

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pimlico/checkouts/latest/docs/modules/pimlico.modules.utility.alias.rst,
line 47.)

Note: New datatypes system

Some time ago, we changed how datatypes work internally, requiring all datatypes and modules to be updated. More
info. . .

This has been done for many of the core modules, but some are waiting to be updated and don’t work. They do not
appear in the documentation and can be found in pimlico.old_datatypes.modules.

These issues will be resolved before v1.0 is released.

• genindex

• search

1.8. Future plans 301

https://github.com/markgw/pimlico/projects/1
https://github.com/markgw/pimlico/projects/1

Pimlico Documentation, Release 0.9.25

302 Chapter 1. Contents

Python Module Index

c
pimlico.cfg, 257
pimlico.cli, 153
pimlico.cli.browser, 142
pimlico.cli.browser.tool, 142
pimlico.cli.browser.tools, 142
pimlico.cli.browser.tools.corpus, 139
pimlico.cli.browser.tools.files, 140
pimlico.cli.browser.tools.formatter, 140
pimlico.cli.check, 145
pimlico.cli.clean, 146
pimlico.cli.data_editor, 142
pimlico.cli.data_editor.run, 142
pimlico.cli.debug, 143
pimlico.cli.debug.stepper, 142
pimlico.cli.fixlength, 146
pimlico.cli.jupyter, 147
pimlico.cli.loaddump, 147
pimlico.cli.locations, 148
pimlico.cli.main, 149
pimlico.cli.newmodule, 150
pimlico.cli.pimarc, 150
pimlico.cli.pyshell, 150
pimlico.cli.recover, 151
pimlico.cli.reset, 151
pimlico.cli.run, 152
pimlico.cli.shell, 145
pimlico.cli.shell.base, 143
pimlico.cli.shell.commands, 144
pimlico.cli.shell.runner, 145
pimlico.cli.status, 152
pimlico.cli.subcommands, 152
pimlico.cli.testemail, 153
pimlico.cli.util, 153
pimlico.core, 182
pimlico.core.config, 178
pimlico.core.dependencies, 161
pimlico.core.dependencies.base, 154
pimlico.core.dependencies.core, 156

pimlico.core.dependencies.java, 157
pimlico.core.dependencies.licenses, 159
pimlico.core.dependencies.python, 159
pimlico.core.dependencies.versions, 161
pimlico.core.external, 163
pimlico.core.external.java, 161
pimlico.core.logs, 182
pimlico.core.modules, 178
pimlico.core.modules.base, 163
pimlico.core.modules.execute, 173
pimlico.core.modules.multistage, 174
pimlico.core.modules.options, 177
pimlico.core.paths, 182

d
pimlico.datatypes, 242
pimlico.datatypes.arrays, 204
pimlico.datatypes.base, 206
pimlico.datatypes.core, 214
pimlico.datatypes.corpora, 204
pimlico.datatypes.corpora.base, 183
pimlico.datatypes.corpora.data_points,

186
pimlico.datatypes.corpora.floats, 191
pimlico.datatypes.corpora.grouped, 193
pimlico.datatypes.corpora.ints, 196
pimlico.datatypes.corpora.json, 199
pimlico.datatypes.corpora.parse, 183
pimlico.datatypes.corpora.parse.trees,

183
pimlico.datatypes.corpora.strings, 199
pimlico.datatypes.corpora.table, 200
pimlico.datatypes.corpora.tokenized, 201
pimlico.datatypes.corpora.word_annotations,

202
pimlico.datatypes.dictionary, 215
pimlico.datatypes.embeddings, 218
pimlico.datatypes.features, 227
pimlico.datatypes.files, 229
pimlico.datatypes.gensim, 233

303

Pimlico Documentation, Release 0.9.25

pimlico.datatypes.keras, 235
pimlico.datatypes.plotting, 239
pimlico.datatypes.results, 240
pimlico.datatypes.sklearn, 241

m
pimlico.modules, 53
pimlico.modules.corpora, 53
pimlico.modules.corpora.concat, 53
pimlico.modules.corpora.corpus_stats,

54
pimlico.modules.corpora.format, 55
pimlico.modules.corpora.group, 56
pimlico.modules.corpora.interleave, 57
pimlico.modules.corpora.list_filter, 59
pimlico.modules.corpora.shuffle, 59
pimlico.modules.corpora.shuffle_linear,

61
pimlico.modules.corpora.split, 62
pimlico.modules.corpora.store, 64
pimlico.modules.corpora.subsample, 65
pimlico.modules.corpora.subset, 66
pimlico.modules.corpora.vocab_builder,

67
pimlico.modules.corpora.vocab_counter,

69
pimlico.modules.corpora.vocab_mapper,

70
pimlico.modules.corpora.vocab_unmapper,

71
pimlico.modules.embeddings, 72
pimlico.modules.embeddings.fasttext, 73
pimlico.modules.embeddings.glove, 74
pimlico.modules.embeddings.mappers, 76
pimlico.modules.embeddings.mappers.fasttext,

76
pimlico.modules.embeddings.mappers.fixed,

77
pimlico.modules.embeddings.normalize,

78
pimlico.modules.embeddings.store_embeddings,

79
pimlico.modules.embeddings.store_tsv,

79
pimlico.modules.embeddings.store_word2vec,

80
pimlico.modules.embeddings.word2vec, 81
pimlico.modules.gensim, 82
pimlico.modules.gensim.coherence, 82
pimlico.modules.gensim.lda, 84
pimlico.modules.gensim.lda_doc_topics,

86
pimlico.modules.gensim.lda_top_words,

87

pimlico.modules.gensim.ldaseq, 88
pimlico.modules.gensim.ldaseq_doc_topics,

90
pimlico.modules.input, 91
pimlico.modules.input.embeddings, 91
pimlico.modules.input.embeddings.fasttext,

91
pimlico.modules.input.embeddings.fasttext_gensim,

92
pimlico.modules.input.embeddings.fasttext_vec,

93
pimlico.modules.input.embeddings.glove,

94
pimlico.modules.input.embeddings.word2vec,

95
pimlico.modules.input.text, 96
pimlico.modules.input.text.20newsgroups,

96
pimlico.modules.input.text.20newsgroups.sklearn_download,

96
pimlico.modules.input.text.europarl, 97
pimlico.modules.input.text.huggingface,

99
pimlico.modules.input.text.raw_text_archives,

100
pimlico.modules.input.text.raw_text_files,

102
pimlico.modules.input.xml, 103
pimlico.modules.malt, 105
pimlico.modules.nltk, 106
pimlico.modules.nltk.nist_tokenize, 106
pimlico.modules.opennlp, 107
pimlico.modules.opennlp.parse, 107
pimlico.modules.opennlp.pos, 109
pimlico.modules.opennlp.tokenize, 110
pimlico.modules.output, 111
pimlico.modules.output.text_corpus, 111
pimlico.modules.sklearn, 112
pimlico.modules.sklearn.logistic_regression,

112
pimlico.modules.spacy, 113
pimlico.modules.spacy.extract_nps, 113
pimlico.modules.spacy.parse_text, 114
pimlico.modules.spacy.tokenize, 115
pimlico.modules.text, 117
pimlico.modules.text.char_tokenize, 117
pimlico.modules.text.normalize, 118
pimlico.modules.text.simple_tokenize,

119
pimlico.modules.text.text_normalize, 120
pimlico.modules.utility, 121
pimlico.modules.utility.alias, 122
pimlico.modules.utility.collect_files,

123

304 Python Module Index

Pimlico Documentation, Release 0.9.25

pimlico.modules.visualization, 124
pimlico.modules.visualization.bar_chart,

124
pimlico.modules.visualization.embeddings_plot,

125

p
pimlico, 257

t
pimlico.test, 242

u
pimlico.utils, 257
pimlico.utils.communicate, 248
pimlico.utils.core, 249
pimlico.utils.docs, 244
pimlico.utils.docs.apiheaders, 242
pimlico.utils.docs.commandgen, 243
pimlico.utils.docs.examplegen, 243
pimlico.utils.docs.modulegen, 243
pimlico.utils.docs.rest, 244
pimlico.utils.email, 250
pimlico.utils.filesystem, 251
pimlico.utils.format, 251
pimlico.utils.jupyter, 251
pimlico.utils.linguistic, 252
pimlico.utils.logging, 252
pimlico.utils.network, 252
pimlico.utils.pimarc, 248
pimlico.utils.pimarc.index, 244
pimlico.utils.pimarc.reader, 245
pimlico.utils.pimarc.tar, 246
pimlico.utils.pimarc.tools, 247
pimlico.utils.pimarc.utils, 247
pimlico.utils.pimarc.writer, 247
pimlico.utils.pipes, 252
pimlico.utils.pos, 253
pimlico.utils.probability, 253
pimlico.utils.progress, 254
pimlico.utils.strings, 255
pimlico.utils.system, 255
pimlico.utils.timeout, 256
pimlico.utils.urwid, 256
pimlico.utils.varint, 256
pimlico.utils.web, 257

Python Module Index 305

Pimlico Documentation, Release 0.9.25

306 Python Module Index

Index

A
abs_path_or_model_dir_path() (in module

pimlico.core.paths), 182
absolute_filenames (NamedFileCollec-

tion.Reader attribute), 230
absolute_filenames (PlotOutput.Reader at-

tribute), 239
absolute_filenames (Word2VecFiles.Reader at-

tribute), 221
absolute_path (NamedFile.Reader attribute), 231
absolute_path (NamedFile.Writer attribute), 231
absolute_paths (NamedFileCollection.Reader at-

tribute), 230
absolute_paths (NamedFileCollection.Writer at-

tribute), 231
absolute_paths (PlotOutput.Reader attribute), 240
absolute_paths (Word2VecFiles.Reader attribute),

221
absolute_paths (Word2VecFiles.Writer attribute),

222
add_arguments() (BrowseCmd method), 149
add_arguments() (DepsCmd method), 145
add_arguments() (DumpCmd method), 148
add_arguments() (FixLengthCmd method), 146
add_arguments() (InputsCmd method), 148
add_arguments() (InstallCmd method), 145
add_arguments() (JupyterCmd method), 147
add_arguments() (LicensesCmd method), 146
add_arguments() (LoadCmd method), 148
add_arguments() (MoveStoresCmd method), 149
add_arguments() (OutputCmd method), 148
add_arguments() (PimlicoCLISubcommand

method), 153
add_arguments() (PythonShellCmd method), 151
add_arguments() (RecoverCmd method), 151
add_arguments() (ResetCmd method), 152
add_arguments() (RunCmd method), 152
add_arguments() (ShellCLICmd method), 145
add_arguments() (StatusCmd method), 152

add_arguments() (Tar2PimarcCmd method), 150
add_arguments() (UnlockCmd method), 149
add_arguments() (VariantsCmd method), 149
add_arguments() (VisualizeCmd method), 150
add_buttons() (DialogDisplay method), 256
add_document() (GroupedCorpus.Writer method),

195
add_documents() (Dictionary.Writer method), 216
add_documents() (DictionaryData method), 217
add_execution_history_record() (BaseMod-

uleInfo method), 165
add_stopwords() (DictionaryData method), 216
add_term() (DictionaryData method), 217
AddAnnotationField (class in pim-

lico.datatypes.corpora.word_annotations),
204

AddAnnotationFields (in module pim-
lico.datatypes.corpora.word_annotations),
204

AlignedGroupedCorpora (class in pim-
lico.datatypes.corpora.grouped), 195

all_dependencies() (SoftwareDependency
method), 155

all_inputs_ready() (BaseModuleInfo method),
169

all_jars() (JavaDependency method), 157
Any (class in pimlico.core.dependencies.base), 155
append() (PimarcIndex method), 244
append() (PimarcIndexAppender method), 244
append_file() (in module pim-

lico.utils.pimarc.tools), 247
append_module() (PipelineConfig method), 178
archive_iter() (AlignedGroupedCorpora method),

195
archive_iter() (GroupedCorpus.Reader method),

194
archive_iter_decorator() (in module pim-

lico.cli.debug.stepper), 143
array (NumpyArray.Reader attribute), 205
array (ScipySparseMatrix.Reader attribute), 206

307

Pimlico Documentation, Release 0.9.25

as_gensim_dictionary() (DictionaryData
method), 218

ask() (in module pimlico.cli.newmodule), 150
available() (Any method), 155
available() (SoftwareDependency method), 154

B
BaseModuleExecutor (class in pim-

lico.core.modules.base), 172
BaseModuleInfo (class in pim-

lico.core.modules.base), 164
batched_randint() (in module pim-

lico.utils.probability), 253
BeautifulSoupDependency (class in pim-

lico.core.dependencies.python), 160
browse_cmd() (in module pimlico.cli.browser.tool),

142
browse_data() (in module pim-

lico.cli.browser.tools.corpus), 139
browse_file() (NamedFileCollection method), 229
browse_file() (ScoredRealFeatureSets method),

228
browse_files() (in module pim-

lico.cli.browser.tools.files), 140
BrowseCmd (class in pimlico.cli.main), 149
build_example_config_doc() (in module pim-

lico.utils.docs.examplegen), 243
build_example_config_docs() (in module pim-

lico.utils.docs.examplegen), 243
build_index() (in module pim-

lico.utils.docs.examplegen), 243
build_output_groups() (BaseModuleInfo

method), 166
button_press() (DialogDisplay method), 256
bytes (IntegerListsDocumentType attribute), 196

C
cached_property (class in pimlico.utils.core), 250
call_java() (in module pimlico.core.external.java),

161
cap_first() (in module pim-

lico.utils.docs.commandgen), 243
CharacterTokenizedDocumentType (class in

pimlico.datatypes.corpora.tokenized), 201
CharacterTokenizedDocumentType.Document

(class in pimlico.datatypes.corpora.tokenized),
202

check_and_execute_modules() (in module pim-
lico.core.modules.execute), 173

check_and_install() (in module pim-
lico.core.dependencies.base), 156

check_for_cycles() (in module pim-
lico.core.config), 181

check_index() (in module pim-
lico.utils.pimarc.index), 245

check_java() (in module pim-
lico.core.dependencies.java), 158

check_java_dependency() (in module pim-
lico.core.dependencies.java), 158

check_modules_ready() (in module pim-
lico.core.modules.execute), 173

check_pimarcs() (in module pim-
lico.utils.pimarc.tools), 247

check_pipeline() (in module pimlico.core.config),
181

check_ready_to_run() (BaseModuleInfo method),
170

check_ready_to_run() (MultistageModuleInfo
method), 175

check_release() (in module pimlico.core.config),
181

check_type() (DataPointType method), 187
check_type() (DynamicInputDatatypeRequirement

method), 212
check_type() (FilesInput method), 232
check_type() (in module pim-

lico.core.modules.base), 172
check_type() (IterableCorpus method), 186
check_type() (NamedFileCollection method), 229
check_type() (PimlicoDatatype method), 208
check_type() (WordAnnotationsDocumentType

method), 203
choose_from_list() (in module pim-

lico.core.modules.options), 177
choose_optional_outputs_from_options()

(BaseModuleInfo static method), 166
chunk_list() (in module pimlico.utils.core), 250
CleanCmd (class in pimlico.cli.clean), 146
clear_output_queues() (Py4JInterface method),

162
close() (DummyFileDescriptor method), 254
close() (PimarcIndexAppender method), 244
close() (PimarcReader method), 245
close() (PimarcTarBackend method), 246
close() (PimarcWriter method), 247
cmdloop() (DataShell method), 144
code_path (PlotOutput.Writer attribute), 239
collect_runnable_modules() (in module pim-

lico.core.modules.base), 172
collect_unexecuted_dependencies() (in

module pimlico.core.modules.base), 172
comma_separated_list() (in module pim-

lico.core.modules.options), 177
comma_separated_strings() (in module pim-

lico.core.modules.options), 177
command_desc (CleanCmd attribute), 146
command_desc (DumpCmd attribute), 147

308 Index

Pimlico Documentation, Release 0.9.25

command_desc (InputsCmd attribute), 148
command_desc (ListStoresCmd attribute), 148
command_desc (LoadCmd attribute), 148
command_desc (MoveStoresCmd attribute), 149
command_desc (NewModuleCmd attribute), 150
command_desc (PimlicoCLISubcommand attribute),

153
command_desc (UnlockCmd attribute), 149
command_desc (VisualizeCmd attribute), 150
command_help (BrowseCmd attribute), 149
command_help (CleanCmd attribute), 146
command_help (DepsCmd attribute), 145
command_help (DumpCmd attribute), 147
command_help (EmailCmd attribute), 153
command_help (FixLengthCmd attribute), 146
command_help (InputsCmd attribute), 148
command_help (InstallCmd attribute), 145
command_help (JupyterCmd attribute), 147
command_help (LicensesCmd attribute), 146
command_help (ListStoresCmd attribute), 148
command_help (LoadCmd attribute), 148
command_help (MoveStoresCmd attribute), 149
command_help (NewModuleCmd attribute), 150
command_help (OutputCmd attribute), 148
command_help (PimlicoCLISubcommand attribute),

153
command_help (PythonShellCmd attribute), 151
command_help (RecoverCmd attribute), 151
command_help (ResetCmd attribute), 152
command_help (RunCmd attribute), 152
command_help (ShellCLICmd attribute), 145
command_help (StatusCmd attribute), 152
command_help (Tar2PimarcCmd attribute), 150
command_help (UnlockCmd attribute), 149
command_help (VariantsCmd attribute), 149
command_help (VisualizeCmd attribute), 150
command_name (BrowseCmd attribute), 149
command_name (CleanCmd attribute), 146
command_name (DepsCmd attribute), 145
command_name (DumpCmd attribute), 147
command_name (EmailCmd attribute), 153
command_name (FixLengthCmd attribute), 146
command_name (InputsCmd attribute), 148
command_name (InstallCmd attribute), 145
command_name (JupyterCmd attribute), 147
command_name (LicensesCmd attribute), 146
command_name (ListStoresCmd attribute), 148
command_name (LoadCmd attribute), 148
command_name (MoveStoresCmd attribute), 149
command_name (NewModuleCmd attribute), 150
command_name (OutputCmd attribute), 148
command_name (PimlicoCLISubcommand attribute),

153
command_name (PythonShellCmd attribute), 150

command_name (RecoverCmd attribute), 151
command_name (ResetCmd attribute), 151
command_name (RunCmd attribute), 152
command_name (ShellCLICmd attribute), 145
command_name (StatusCmd attribute), 152
command_name (Tar2PimarcCmd attribute), 150
command_name (UnlockCmd attribute), 149
command_name (VariantsCmd attribute), 149
command_name (VisualizeCmd attribute), 150
commands (CountInvalidCmd attribute), 183
commands (MetadataCmd attribute), 144
commands (PythonCmd attribute), 144
commands (ShellCommand attribute), 143
compactify() (DictionaryData method), 218
compare_dotted_versions() (in module pim-

lico.core.dependencies.versions), 161
copy_dir_with_progress() (in module pim-

lico.utils.filesystem), 251
CORE_PIMLICO_DEPENDENCIES (in module pim-

lico.core.dependencies.core), 156
CorpusAlignmentError, 196
CorpusState (class in pim-

lico.cli.browser.tools.corpus), 139
CorpusWithTypeFromInput (class in pim-

lico.datatypes.corpora.grouped), 196
count_docs() (in module pimlico.cli.recover), 151
count_pimarcs() (in module pimlico.cli.fixlength),

146
CountInvalidCmd (class in pim-

lico.datatypes.corpora.base), 183
create_builder_class() (KerasModelBuilder-

Class.Reader method), 237
create_pop_up() (InputPopupLauncher method),

140
create_pop_up() (MessagePopupLauncher

method), 140
custom_objects (KerasModel attribute), 235

D
data (NumericResult.Reader attribute), 240
data_path (PlotOutput.Writer attribute), 239
data_point_type_opt() (in module pim-

lico.datatypes.corpora.base), 184
data_point_type_options (DataPointType at-

tribute), 187
data_point_type_options (WordAnnotations-

DocumentType attribute), 203
data_point_type_supports_python2 (Char-

acterTokenizedDocumentType attribute), 201
data_point_type_supports_python2 (Data-

PointType attribute), 187
data_point_type_supports_python2

(FloatListDocumentType attribute), 191

Index 309

Pimlico Documentation, Release 0.9.25

data_point_type_supports_python2
(FloatListsDocumentType attribute), 191

data_point_type_supports_python2 (Inte-
gerDocumentType attribute), 198

data_point_type_supports_python2 (Inte-
gerListDocumentType attribute), 197

data_point_type_supports_python2 (Inte-
gerListsDocumentType attribute), 196

data_point_type_supports_python2 (Inte-
gerTableDocumentType attribute), 200

data_point_type_supports_python2 (Invalid-
Document attribute), 189

data_point_type_supports_python2 (Json-
DocumentType attribute), 199

data_point_type_supports_python2
(OpenNLPTreeStringsDocumentType at-
tribute), 183

data_point_type_supports_python2 (Raw-
DocumentType attribute), 189

data_point_type_supports_python2 (Raw-
TextDocumentType attribute), 190

data_point_type_supports_python2 (Seg-
mentedLinesDocumentType attribute), 202

data_point_type_supports_python2
(TextDocumentType attribute), 190

data_point_type_supports_python2 (Tok-
enizedDocumentType attribute), 201

data_point_type_supports_python2 (Vector-
DocumentType attribute), 192

data_point_type_supports_python2 (Wor-
dAnnotationsDocumentType attribute), 203

data_ready() (DocEmbeddingsMapper.Reader.Setup
method), 223

data_ready() (FastTextDocMapper.Reader.Setup
method), 225

data_ready() (GensimLdaModel.Reader.Setup
method), 233

data_ready() (GroupedCorpus.Reader.Setup
method), 193

data_ready() (IterableCorpus.Reader.Setup
method), 185

data_ready() (KerasModel.Reader.Setup method),
236

data_ready() (KerasModelBuilder-
Class.Reader.Setup method), 238

data_ready() (PimlicoDatatype.Reader.Setup
method), 210

data_to_document() (IterableCorpus.Reader
method), 185

DataPointError, 190
DataPointType (class in pim-

lico.datatypes.corpora.data_points), 186
DataPointType.Document (class in pim-

lico.datatypes.corpora.data_points), 188

DataShell (class in pimlico.cli.shell.base), 144
DATATYPE (DefaultFormatter attribute), 141
DATATYPE (DocumentBrowserFormatter attribute), 141
DATATYPE (FloatListsFormatter attribute), 192
DATATYPE (VectorFormatter attribute), 193
datatype_doc_info (DynamicInputDatatypeR-

equirement attribute), 212
datatype_doc_info (FilesInput attribute), 232
datatype_full_class_name() (pim-

lico.datatypes.base.PimlicoDatatype class
method), 208

datatype_name (CorpusWithTypeFromInput at-
tribute), 196

datatype_name (Dict attribute), 214
datatype_name (Dictionary attribute), 215
datatype_name (DocEmbeddingsMapper attribute),

222
datatype_name (DynamicOutputDatatype attribute),

212
datatype_name (Embeddings attribute), 218
datatype_name (FastTextDocMapper attribute), 225
datatype_name (FixedEmbeddingsDocMapper at-

tribute), 226
datatype_name (GensimLdaModel attribute), 233
datatype_name (GroupedCorpus attribute), 193
datatype_name (GroupedCorpusWithTypeFromInput

attribute), 195
datatype_name (IterableCorpus attribute), 184
datatype_name (KerasModel attribute), 235
datatype_name (KerasModelBuilderClass attribute),

237
datatype_name (NamedFile attribute), 231
datatype_name (NamedFileCollection attribute), 229
datatype_name (NumericResult attribute), 240
datatype_name (NumpyArray attribute), 204
datatype_name (PimlicoDatatype attribute), 207
datatype_name (ScipySparseMatrix attribute), 205
datatype_name (ScoredRealFeatureSets attribute),

227
datatype_name (SklearnModel attribute), 241
datatype_name (StringList attribute), 214
datatype_name (TextFile attribute), 232
datatype_name (TopicsTopWords attribute), 234
datatype_name (TSVVecFiles attribute), 220
datatype_name (Word2VecFiles attribute), 221
datatype_options (IterableCorpus attribute), 184
datatype_options (NamedFile attribute), 231
datatype_options (NamedFileCollection attribute),

229
datatype_options (PimlicoDatatype attribute), 206
datatype_options (TextFile attribute), 232
datatype_supports_python2 (Dict attribute),

214

310 Index

Pimlico Documentation, Release 0.9.25

datatype_supports_python2 (Dictionary at-
tribute), 215

datatype_supports_python2 (Embeddings at-
tribute), 218

datatype_supports_python2 (GensimLdaModel
attribute), 233

datatype_supports_python2 (IterableCorpus at-
tribute), 184

datatype_supports_python2 (KerasModel at-
tribute), 235

datatype_supports_python2 (KerasModel-
BuilderClass attribute), 237

datatype_supports_python2 (NamedFile at-
tribute), 231

datatype_supports_python2 (NamedFileCollec-
tion attribute), 229

datatype_supports_python2 (NumericResult at-
tribute), 240

datatype_supports_python2 (NumpyArray at-
tribute), 204

datatype_supports_python2 (PimlicoDatatype
attribute), 207

datatype_supports_python2 (PlotOutput at-
tribute), 239

datatype_supports_python2 (ScipySparseMa-
trix attribute), 205

datatype_supports_python2 (ScoredRealFea-
tureSets attribute), 228

datatype_supports_python2 (SklearnModel at-
tribute), 241

datatype_supports_python2 (StringList at-
tribute), 215

datatype_supports_python2 (TextFile attribute),
232

datatype_supports_python2 (TSVVecFiles at-
tribute), 220

datatype_supports_python2 (Word2VecFiles at-
tribute), 221

datatype_to_link() (in module pim-
lico.utils.docs.modulegen), 243

DatatypeLoadError, 214
DatatypeWriteError, 214
decode() (PimarcFileMetadata method), 246
decode_bytes() (in module pimlico.utils.varint), 257
decode_stream() (in module pimlico.utils.varint),

257
default() (DataShell method), 144
DefaultFormatter (class in pim-

lico.cli.browser.tools.formatter), 141
delete() (PimarcWriter static method), 247
delete_all_archives() (GroupedCorpus.Writer

method), 195
dependencies (BaseModuleInfo attribute), 170
dependencies() (Any method), 155

dependencies() (NLTKResource method), 161
dependencies() (Py4JSoftwareDependency

method), 158
dependencies() (SoftwareDependency method), 154
DependencyCheckerError, 163
DependencyError, 173
DependencyParsedDocumentType (class in pim-

lico.datatypes.corpora.word_annotations), 204
DependencyParsedDocumentType.Document

(class in pim-
lico.datatypes.corpora.word_annotations),
204

DepsCmd (class in pimlico.cli.check), 145
DialogDisplay (class in pimlico.utils.urwid), 256
DialogExit, 256
Dict (class in pimlico.datatypes.core), 214
Dict.Reader (class in pimlico.datatypes.core), 214
Dict.Reader.Setup (class in pim-

lico.datatypes.core), 214
Dict.Writer (class in pimlico.datatypes.core), 214
Dictionary (class in pimlico.datatypes.dictionary),

215
Dictionary.Reader (class in pim-

lico.datatypes.dictionary), 215
Dictionary.Reader.Setup (class in pim-

lico.datatypes.dictionary), 216
Dictionary.Writer (class in pim-

lico.datatypes.dictionary), 216
DictionaryData (class in pim-

lico.datatypes.dictionary), 216
dirsize() (in module pimlico.utils.filesystem), 251
do_EOF() (DataShell method), 144
doc2bow() (DictionaryData method), 217
doc_iter() (GroupedCorpus.Reader method), 194
DocEmbeddingsMapper (class in pim-

lico.datatypes.embeddings), 222
DocEmbeddingsMapper.Reader (class in pim-

lico.datatypes.embeddings), 222
DocEmbeddingsMapper.Reader.Setup (class in

pimlico.datatypes.embeddings), 223
DocEmbeddingsMapper.Writer (class in pim-

lico.datatypes.embeddings), 224
document_preprocessors (GroupedCorpus

attribute), 193
DocumentBrowserFormatter (class in pim-

lico.cli.browser.tools.formatter), 141
download_file() (in module pimlico.utils.web), 257
DummyFileDescriptor (class in pim-

lico.utils.progress), 254
DumpCmd (class in pimlico.cli.loaddump), 147
DuplicateFilename, 245
DynamicInputDatatypeRequirement (class in

pimlico.datatypes.base), 212
DynamicOutputDatatype (class in pim-

Index 311

Pimlico Documentation, Release 0.9.25

lico.datatypes.base), 212

E
EmailCmd (class in pimlico.cli.testemail), 153
EmailConfig (class in pimlico.utils.email), 250
EmailError, 250
Embeddings (class in pimlico.datatypes.embeddings),

218
Embeddings.Reader (class in pim-

lico.datatypes.embeddings), 219
Embeddings.Reader.Setup (class in pim-

lico.datatypes.embeddings), 219
Embeddings.Writer (class in pim-

lico.datatypes.embeddings), 219
empty() (PipelineConfig static method), 180
emptyline() (DataShell method), 144
enable_step() (PipelineConfig method), 181
enable_step_for_pipeline() (in module pim-

lico.cli.debug.stepper), 143
encode() (in module pimlico.utils.varint), 256
encode() (StreamCommunicationPacket method), 249
error_info (InvalidDocument.Document attribute),

189
execute() (BaseModuleExecutor method), 172
execute() (CountInvalidCmd method), 183
execute() (MetadataCmd method), 144
execute() (PythonCmd method), 144
execute() (ShellCommand method), 143
execute_modules() (in module pim-

lico.core.modules.execute), 174
execution_history (BaseModuleInfo attribute),

165
execution_history_path (BaseModuleInfo at-

tribute), 165
extract_archive() (in module pim-

lico.utils.filesystem), 251
extract_file() (GroupedCorpus.Reader method),

194
extract_file() (in module pim-

lico.utils.pimarc.tools), 247
extract_from_archive() (in module pim-

lico.utils.filesystem), 251
extract_input_options() (pim-

lico.core.modules.base.BaseModuleInfo class
method), 165

F
FastTextDocMapper (class in pim-

lico.datatypes.embeddings), 224
FastTextDocMapper.Reader (class in pim-

lico.datatypes.embeddings), 225
FastTextDocMapper.Reader.Setup (class in

pimlico.datatypes.embeddings), 225

FastTextDocMapper.Writer (class in pim-
lico.datatypes.embeddings), 226

feature_types (ScoredRealFeatureSets.Reader at-
tribute), 228

file_written() (NamedFileCollection.Writer
method), 231

file_written() (Word2VecFiles.Writer method),
222

FileInput (in module pimlico.datatypes.files), 232
FilenameNotInArchive, 245
FilesInput (class in pimlico.datatypes.files), 232
filter() (Dictionary.Writer method), 216
filter_document() (DocumentBrowserFormatter

method), 141
filter_document() (InvalidDocumentFormatter

method), 141
filter_extremes() (DictionaryData method), 217
filter_high_low() (Dictionary.Writer method),

216
filter_high_low_extremes() (DictionaryData

method), 217
filter_tokens() (DictionaryData method), 217
find_data() (PipelineConfig method), 180
find_data_path() (PipelineConfig method), 180
find_data_store() (PipelineConfig method), 180
finish() (LittleOutputtingProgressBar method), 255
FixedEmbeddingsDocMapper (class in pim-

lico.datatypes.embeddings), 226
FixedEmbeddingsDocMapper.Reader (class in

pimlico.datatypes.embeddings), 226
FixedEmbeddingsDocMapper.Reader.Setup

(class in pimlico.datatypes.embeddings), 226
FixedEmbeddingsDocMapper.Writer (class in

pimlico.datatypes.embeddings), 227
FixLengthCmd (class in pimlico.cli.fixlength), 146
FloatListDocumentType (class in pim-

lico.datatypes.corpora.floats), 191
FloatListDocumentType.Document (class in

pimlico.datatypes.corpora.floats), 192
FloatListsDocumentType (class in pim-

lico.datatypes.corpora.floats), 191
FloatListsDocumentType.Document (class in

pimlico.datatypes.corpora.floats), 191
FloatListsFormatter (class in pim-

lico.datatypes.corpora.floats), 192
flush() (GroupedCorpus.Writer method), 195
flush() (PimarcIndexAppender method), 244
flush() (PimarcWriter method), 247
fmt_frame_info() (in module pimlico.cli.debug),

143
format() (TypeCheckError method), 172
format_document() (DefaultFormatter method),

141
format_document() (DocumentBrowserFormatter

312 Index

Pimlico Documentation, Release 0.9.25

method), 141
format_document() (FloatListsFormatter method),

192
format_document() (InvalidDocumentFormatter

method), 141
format_document() (VectorFormatter method), 193
format_execution_dependency_tree() (in

module pimlico.core.modules.execute), 174
format_execution_error() (in module pim-

lico.cli.util), 153
format_file_size() (in module pim-

lico.utils.filesystem), 251
format_heading() (in module pim-

lico.utils.docs.rest), 244
format_option_type() (in module pim-

lico.core.modules.options), 177
formatters (DataPointType attribute), 187
formatters (JsonDocumentType attribute), 199
formatters (TextDocumentType attribute), 190
formatters (TokenizedDocumentType attribute), 201
formatters (VectorDocumentType attribute), 192
from_local_config() (pim-

lico.utils.email.EmailConfig class method),
250

from_tar() (in module pimlico.utils.pimarc.tools),
247

full_class_name() (pim-
lico.datatypes.corpora.data_points.DataPointType
class method), 188

full_datatype_name() (IterableCorpus method),
186

full_datatype_name() (PimlicoDatatype
method), 208

G
gateway_client_to_running_server() (in

module pimlico.core.external.java), 162
generate_contents_page() (in module pim-

lico.utils.docs.commandgen), 243
generate_contents_page() (in module pim-

lico.utils.docs.modulegen), 243
generate_docs() (in module pim-

lico.utils.docs.commandgen), 243
generate_docs_for_command() (in module pim-

lico.utils.docs.commandgen), 243
generate_docs_for_pimlico_mod() (in mod-

ule pimlico.utils.docs.modulegen), 243
generate_docs_for_pymod() (in module pim-

lico.utils.docs.modulegen), 243
generate_example_config() (in module pim-

lico.utils.docs.modulegen), 243
GensimLdaModel (class in pimlico.datatypes.gensim),

233

GensimLdaModel.Reader (class in pim-
lico.datatypes.gensim), 233

GensimLdaModel.Reader.Setup (class in pim-
lico.datatypes.gensim), 233

GensimLdaModel.Writer (class in pim-
lico.datatypes.gensim), 234

get() (OutputQueue method), 252
get_absolute_output_dir() (BaseModuleInfo

method), 167
get_absolute_path() (NamedFileCollec-

tion.Reader method), 230
get_absolute_path() (NamedFileCollec-

tion.Writer method), 231
get_absolute_path() (PlotOutput.Reader

method), 240
get_absolute_path() (Word2VecFiles.Reader

method), 221
get_absolute_path() (Word2VecFiles.Writer

method), 222
get_all_executed_modules() (BaseModuleInfo

method), 171
get_archive() (GroupedCorpus.Reader method),

194
get_available() (OutputQueue method), 252
get_available_option() (Any method), 155
get_base_datatype() (AddAnnotationField

method), 204
get_base_datatype() (DynamicOutputDatatype

method), 212
get_base_datatype() (GroupedCorpusWithType-

FromInput method), 195
get_base_dir() (DocEmbeddingsMap-

per.Reader.Setup method), 223
get_base_dir() (FastTextDocMapper.Reader.Setup

method), 225
get_base_dir() (GensimLdaModel.Reader.Setup

method), 234
get_base_dir() (IterableCorpus.Reader.Setup

method), 185
get_base_dir() (KerasModel.Reader.Setup

method), 236
get_base_dir() (KerasModelBuilder-

Class.Reader.Setup method), 238
get_base_dir() (PimlicoDatatype.Reader.Setup

method), 210
get_classpath() (in module pim-

lico.core.dependencies.java), 158
get_classpath_components() (JavaDependency

method), 157
get_console_logger() (in module pim-

lico.utils.logging), 252
get_custom_objects() (KerasModel.Reader

method), 236
get_data() (Dictionary.Reader method), 215

Index 313

Pimlico Documentation, Release 0.9.25

get_data_dir() (DocEmbeddingsMap-
per.Reader.Setup method), 223

get_data_dir() (FastTextDocMapper.Reader.Setup
method), 225

get_data_dir() (GensimLdaModel.Reader.Setup
method), 234

get_data_dir() (IterableCorpus.Reader.Setup
method), 185

get_data_dir() (KerasModel.Reader.Setup
method), 236

get_data_dir() (KerasModelBuilder-
Class.Reader.Setup method), 238

get_data_dir() (PimlicoDatatype.Reader.Setup
method), 210

get_data_search_paths() (PipelineConfig
method), 181

get_data_start_byte() (PimarcIndex method),
244

get_datatype() (AddAnnotationField method), 204
get_datatype() (CorpusWithTypeFromInput

method), 196
get_datatype() (DynamicOutputDatatype method),

212
get_datatype() (GroupedCorpusWithTypeFromIn-

put method), 196
get_dependencies() (in module pim-

lico.core.config), 182
get_dependent_modules() (PipelineConfig

method), 178
get_detailed_status() (BaseModuleInfo

method), 171
get_detailed_status() (Dictionary.Reader

method), 216
get_detailed_status() (IterableCorpus.Reader

method), 185
get_detailed_status() (MultistageModuleInfo

method), 175
get_detailed_status() (Pimlico-

Datatype.Reader method), 209
get_dict() (Dict.Reader method), 214
get_embeddings() (DocEmbeddingsMapper.Reader

method), 223
get_embeddings() (FastTextDocMapper.Reader

method), 225
get_embeddings() (FixedEmbeddingsDocMap-

per.Reader method), 227
get_embeddings_data() (TSVVecFiles.Reader

method), 220
get_embeddings_metadata() (TSVVec-

Files.Reader method), 220
get_execution_dependency_tree() (Base-

ModuleInfo method), 171
get_extra_outputs_from_options() (Base-

ModuleInfo static method), 166

get_field() (WordAnnotationsDocument-
Type.Document method), 203

get_input() (BaseModuleInfo method), 169
get_input_datatype() (BaseModuleInfo method),

168
get_input_decorator() (in module pim-

lico.cli.debug.stepper), 143
get_input_module_connection() (BaseMod-

uleInfo method), 168
get_input_reader_setup() (BaseModuleInfo

method), 168
get_input_software_dependencies() (Base-

ModuleInfo method), 170
get_input_software_dependencies() (Multi-

stageModuleInfo method), 175
get_installation_candidate() (Any method),

155
get_installed_version() (PythonPackageDe-

pendency method), 159
get_installed_version() (PythonPackageOn-

Pip method), 160
get_installed_version() (SoftwareDependency

method), 155
get_jupyter_pipeline() (in module pimlico),

257
get_key_info_table() (pim-

lico.core.modules.base.BaseModuleInfo class
method), 165

get_key_info_table() (pim-
lico.core.modules.multistage.MultistageModuleInfo
class method), 175

get_last_log_filename() (BaseModuleInfo
method), 171

get_list() (StringList.Reader method), 215
get_log_file() (in module pimlico.core.logs), 182
get_log_filenames() (BaseModuleInfo method),

171
get_metadata() (BaseModuleInfo method), 165
get_metadata_start_byte() (PimarcIndex

method), 244
get_module_classpath() (in module pim-

lico.core.dependencies.java), 158
get_module_output_dir() (BaseModuleInfo

method), 166
get_module_schedule() (PipelineConfig method),

179
get_names() (DataShell method), 144
get_new_log_filename() (BaseModuleInfo

method), 171
get_next_stage() (MultistageModuleInfo method),

175
get_nowait() (OutputQueue method), 252
get_open_progress_bar() (in module pim-

lico.utils.progress), 254

314 Index

Pimlico Documentation, Release 0.9.25

get_output() (BaseModuleInfo method), 168
get_output_datatype() (BaseModuleInfo

method), 167
get_output_dir() (BaseModuleInfo method), 167
get_output_group() (BaseModuleInfo method),

166
get_output_reader_setup() (BaseModuleInfo

method), 168
get_output_software_dependencies()

(BaseModuleInfo method), 170
get_output_writer() (BaseModuleInfo method),

168
get_pipeline() (in module pimlico.cli.pyshell), 151
get_pipeline() (in module pimlico.utils.jupyter),

251
get_pop_up_parameters() (InputPopupLauncher

method), 140
get_pop_up_parameters() (MessagePopu-

pLauncher method), 140
get_progress_bar() (in module pim-

lico.utils.progress), 254
get_reader() (DocEmbeddingsMapper.Reader.Setup

method), 223
get_reader() (FastTextDocMapper.Reader.Setup

method), 225
get_reader() (GensimLdaModel.Reader.Setup

method), 234
get_reader() (IterableCorpus.Reader.Setup

method), 185
get_reader() (KerasModel.Reader.Setup method),

236
get_reader() (KerasModelBuilder-

Class.Reader.Setup method), 238
get_reader() (PimlicoDatatype.Reader.Setup

method), 210
get_redirect_func() (in module pim-

lico.core.external.java), 162
get_required_paths() (Dict.Reader.Setup

method), 214
get_required_paths() (Dictionary.Reader.Setup

method), 216
get_required_paths() (DocEmbeddingsMap-

per.Reader.Setup method), 223
get_required_paths() (Embeddings.Reader.Setup

method), 219
get_required_paths() (FastTextDocMap-

per.Reader.Setup method), 226
get_required_paths() (FixedEmbeddings-

DocMapper.Reader.Setup method), 226
get_required_paths() (GensimL-

daModel.Reader.Setup method), 234
get_required_paths() (IterableCor-

pus.Reader.Setup method), 185
get_required_paths() (KerasModel.Reader.Setup

method), 236
get_required_paths() (KerasModelBuilder-

Class.Reader.Setup method), 238
get_required_paths() (NamedFile.Reader.Setup

method), 231
get_required_paths() (NamedFileCollec-

tion.Reader.Setup method), 230
get_required_paths() (NumericRe-

sult.Reader.Setup method), 240
get_required_paths() (Nump-

yArray.Reader.Setup method), 205
get_required_paths() (Pimlico-

Datatype.Reader.Setup method), 210
get_required_paths() (PlotOutput.Reader.Setup

method), 239
get_required_paths() (ScipySparseMa-

trix.Reader.Setup method), 206
get_required_paths() (ScoredRealFeature-

Sets.Reader.Setup method), 228
get_required_paths() (Sklearn-

Model.Reader.Setup method), 241
get_required_paths() (StringList.Reader.Setup

method), 215
get_required_paths() (TextFile.Reader.Setup

method), 232
get_required_paths() (TopicsTop-

Words.Reader.Setup method), 235
get_required_paths() (TSVVec-

Files.Reader.Setup method), 220
get_required_paths()

(Word2VecFiles.Reader.Setup method), 221
get_setup() (pimlico.datatypes.base.PimlicoDatatype.Reader

class method), 210
get_software_dependencies() (BaseModule-

Info method), 170
get_software_dependencies() (DocEmbed-

dingsMapper method), 222
get_software_dependencies() (Embeddings

method), 218
get_software_dependencies() (Fast-

TextDocMapper method), 225
get_software_dependencies() (GensimL-

daModel method), 233
get_software_dependencies() (KerasModel

method), 235
get_software_dependencies() (Multistage-

ModuleInfo method), 175
get_software_dependencies() (NumpyArray

method), 204
get_software_dependencies() (Pimlico-

Datatype method), 207
get_software_dependencies() (ScipySparse-

Matrix method), 205
get_software_dependencies() (SklearnModel

Index 315

Pimlico Documentation, Release 0.9.25

method), 241
get_struct() (in module pim-

lico.datatypes.corpora.table), 200
get_transitive_dependencies() (BaseMod-

uleInfo method), 170
get_unused_local_port() (in module pim-

lico.utils.network), 252
get_unused_local_ports() (in module pim-

lico.utils.network), 252
get_writer() (PimlicoDatatype method), 207
get_writer_software_dependencies() (Em-

beddings method), 219
get_writer_software_dependencies() (Pim-

licoDatatype method), 207
GroupedCorpus (class in pim-

lico.datatypes.corpora.grouped), 193
GroupedCorpus.Reader (class in pim-

lico.datatypes.corpora.grouped), 193
GroupedCorpus.Reader.Setup (class in pim-

lico.datatypes.corpora.grouped), 193
GroupedCorpus.Writer (class in pim-

lico.datatypes.corpora.grouped), 194
GroupedCorpusIterationError, 196
GroupedCorpusWithTypeFromInput (class in

pimlico.datatypes.corpora.grouped), 195

H
help_text (CountInvalidCmd attribute), 183
help_text (MetadataCmd attribute), 144
help_text (PythonCmd attribute), 144
help_text (ShellCommand attribute), 143

I
id2token (DictionaryData attribute), 216
import_member() (in module pimlico.utils.core), 249
import_package() (BeautifulSoupDependency

method), 160
import_package() (PythonPackageDependency

method), 159
incomplete_tasks (DocEmbeddingsMapper.Writer

attribute), 224
incomplete_tasks (PimlicoDatatype.Writer at-

tribute), 211
increment() (SafeProgressBar method), 254
indent() (in module pimlico.utils.docs.modulegen),

243
index2vocab (Embeddings.Reader attribute), 219
index2vocab (FixedEmbeddingsDocMapper.Reader

attribute), 227
index2word (Embeddings.Reader attribute), 219
index2word (FixedEmbeddingsDocMapper.Reader at-

tribute), 227
IndexCheckFailed, 245
IndexWriteError, 245

infinite_cycle() (in module pimlico.utils.core),
249

input_datatype_list() (in module pim-
lico.utils.docs.modulegen), 243

input_datatype_text() (in module pim-
lico.utils.docs.modulegen), 243

input_names (BaseModuleInfo attribute), 165
input_ready() (BaseModuleInfo method), 169
InputDialog (class in pim-

lico.cli.browser.tools.corpus), 139
InputPopupLauncher (class in pim-

lico.cli.browser.tools.corpus), 140
InputsCmd (class in pimlico.cli.locations), 148
install() (Any method), 155
install() (in module pim-

lico.core.dependencies.base), 156
install() (JavaJarsDependency method), 157
install() (NLTKResource method), 161
install() (Py4JSoftwareDependency method), 158
install() (PythonPackageOnPip method), 160
install() (SoftwareDependency method), 155
install_core_dependencies() (in module pim-

lico), 257
install_dependencies() (in module pim-

lico.core.dependencies.base), 156
installable() (Any method), 155
installable() (JavaDependency method), 157
installable() (JavaJarsDependency method), 157
installable() (NLTKResource method), 161
installable() (Py4JSoftwareDependency method),

158
installable() (PythonPackageOnPip method), 160
installable() (PythonPackageSystemwideInstall

method), 159
installable() (SoftwareDependency method), 154
installable() (SystemCommandDependency

method), 156
installation_instructions() (PythonPack-

ageSystemwideInstall method), 159
installation_instructions() (SoftwareDe-

pendency method), 154
installation_notes() (Any method), 155
installation_notes() (SoftwareDependency

method), 154
InstallationError, 156
InstallCmd (class in pimlico.cli.check), 145
instantiate_from_options() (pim-

lico.datatypes.base.PimlicoDatatype class
method), 208

instantiate_output_reader() (BaseModule-
Info method), 167

instantiate_output_reader_decorator()
(in module pimlico.cli.debug.stepper), 143

instantiate_output_reader_setup() (Base-

316 Index

Pimlico Documentation, Release 0.9.25

ModuleInfo method), 167
int_size (IntegerListsDocumentType attribute), 196
IntegerDocumentType (class in pim-

lico.datatypes.corpora.ints), 198
IntegerDocumentType.Document (class in pim-

lico.datatypes.corpora.ints), 198
IntegerListDocumentType (class in pim-

lico.datatypes.corpora.ints), 197
IntegerListDocumentType.Document (class in

pimlico.datatypes.corpora.ints), 197
IntegerListsDocumentType (class in pim-

lico.datatypes.corpora.ints), 196
IntegerListsDocumentType.Document (class

in pimlico.datatypes.corpora.ints), 197
IntegerTableDocumentType (class in pim-

lico.datatypes.corpora.table), 200
IntegerTableDocumentType.Document (class

in pimlico.datatypes.corpora.table), 200
internal_available() (DataPointType.Document

method), 189
internal_data (DataPointType.Document attribute),

189
internal_to_raw() (CharacterTokenizedDocu-

mentType.Document method), 202
internal_to_raw() (DataPointType.Document

method), 188
internal_to_raw() (FloatListDocument-

Type.Document method), 192
internal_to_raw() (FloatListsDocument-

Type.Document method), 191
internal_to_raw() (IntegerDocument-

Type.Document method), 199
internal_to_raw() (IntegerListDocument-

Type.Document method), 198
internal_to_raw() (IntegerListsDocument-

Type.Document method), 197
internal_to_raw() (IntegerTableDocument-

Type.Document method), 201
internal_to_raw() (InvalidDocument.Document

method), 189
internal_to_raw() (JsonDocumentType.Document

method), 199
internal_to_raw() (LabelDocument-

Type.Document method), 200
internal_to_raw() (OpenNLPTreeStringsDocu-

mentType.Document method), 183
internal_to_raw() (RawDocumentType.Document

method), 190
internal_to_raw() (SegmentedLinesDocument-

Type.Document method), 202
internal_to_raw() (TextDocumentType.Document

method), 190
internal_to_raw() (TokenizedDocument-

Type.Document method), 201

internal_to_raw() (VectorDocument-
Type.Document method), 193

internal_to_raw() (WordAnnotationsDocument-
Type.Document method), 203

InternalModuleConnection (class in pim-
lico.core.modules.multistage), 176

InternalModuleMultipleConnection (class in
pimlico.core.modules.multistage), 176

InvalidDocument (class in pim-
lico.datatypes.corpora.data_points), 189

InvalidDocument.Document (class in pim-
lico.datatypes.corpora.data_points), 189

InvalidDocumentFormatter (class in pim-
lico.cli.browser.tools.formatter), 141

is_binary_file() (in module pim-
lico.cli.browser.tools.files), 140

is_binary_string() (in module pim-
lico.cli.browser.tools.files), 140

is_filter() (pimlico.core.modules.base.BaseModuleInfo
class method), 169

is_identifier() (in module pimlico.utils.core), 249
is_input() (pimlico.core.modules.base.BaseModuleInfo

class method), 170
is_locked() (BaseModuleInfo method), 171
is_locked() (MultistageModuleInfo method), 175
is_multiple_input() (BaseModuleInfo method),

168
is_output_group_name() (BaseModuleInfo

method), 166
is_type_for_doc() (DataPointType method), 187
items() (PimarcFileMetadata method), 246
iter_filenames() (PimarcReader method), 245
iter_filenames() (PimarcTarBackend method),

246
iter_files() (PimarcReader method), 245
iter_files() (PimarcTarBackend method), 246
iter_ids() (ScoredRealFeatureSets.Reader method),

228
iter_metadata() (PimarcReader method), 245
iter_metadata() (PimarcTarBackend method), 246
IterableCorpus (class in pim-

lico.datatypes.corpora.base), 184
IterableCorpus.Reader (class in pim-

lico.datatypes.corpora.base), 184
IterableCorpus.Reader.Setup (class in pim-

lico.datatypes.corpora.base), 185
IterableCorpus.Writer (class in pim-

lico.datatypes.corpora.base), 186

J
jar_paths() (JavaDependency method), 157
jars (Py4JSoftwareDependency attribute), 158
java_call_command() (in module pim-

lico.core.external.java), 161

Index 317

Pimlico Documentation, Release 0.9.25

JavaDependency (class in pim-
lico.core.dependencies.java), 157

JavaJarsDependency (class in pim-
lico.core.dependencies.java), 157

JavaProcessError, 163
json_dict() (in module pim-

lico.core.modules.options), 177
json_string() (in module pim-

lico.core.modules.options), 177
JsonDocumentType (class in pim-

lico.datatypes.corpora.json), 199
JsonDocumentType.Document (class in pim-

lico.datatypes.corpora.json), 199
JupyterCmd (class in pimlico.cli.jupyter), 147

K
KerasModel (class in pimlico.datatypes.keras), 235
KerasModel.Reader (class in pim-

lico.datatypes.keras), 236
KerasModel.Reader.Setup (class in pim-

lico.datatypes.keras), 236
KerasModel.Writer (class in pim-

lico.datatypes.keras), 237
KerasModelBuilderClass (class in pim-

lico.datatypes.keras), 237
KerasModelBuilderClass.Reader (class in pim-

lico.datatypes.keras), 237
KerasModelBuilderClass.Reader.Setup

(class in pimlico.datatypes.keras), 238
KerasModelBuilderClass.Writer (class in pim-

lico.datatypes.keras), 238
keypress() (InputDialog method), 140
keys (DataPointType.Document attribute), 188
keys (FloatListDocumentType.Document attribute), 192
keys (FloatListsDocumentType.Document attribute),

191
keys (IntegerDocumentType.Document attribute), 198
keys (IntegerListDocumentType.Document attribute),

198
keys (IntegerListsDocumentType.Document attribute),

197
keys (IntegerTableDocumentType.Document attribute),

200
keys (InvalidDocument.Document attribute), 189
keys (JsonDocumentType.Document attribute), 199
keys (LabelDocumentType.Document attribute), 200
keys (OpenNLPTreeStringsDocumentType.Document

attribute), 183
keys (RawDocumentType.Document attribute), 189
keys (TextDocumentType.Document attribute), 190
keys (TokenizedDocumentType.Document attribute),

201
keys (VectorDocumentType.Document attribute), 193

keys (WordAnnotationsDocumentType.Document
attribute), 203

keys() (DictionaryData method), 216
keys() (PimarcFileMetadata method), 246
keys() (PimarcIndex method), 244

L
label (NumericResult.Reader attribute), 241
LabelDocumentType (class in pim-

lico.datatypes.corpora.strings), 199
LabelDocumentType.Document (class in pim-

lico.datatypes.corpora.strings), 199
launch_gateway() (in module pim-

lico.core.external.java), 162
launch_shell() (in module pim-

lico.cli.shell.runner), 145
length (StreamCommunicationPacket attribute), 249
length_size (IntegerListsDocumentType attribute),

196
length_struct (IntegerListsDocumentType at-

tribute), 197
LicensesCmd (class in pimlico.cli.check), 145
limited_shuffle() (in module pim-

lico.utils.probability), 253
limited_shuffle_numpy() (in module pim-

lico.utils.probability), 253
list (FloatListDocumentType.Document attribute), 192
list (IntegerDocumentType.Document attribute), 199
list (IntegerListDocumentType.Document attribute),

198
list_archive_iter() (GroupedCorpus.Reader

method), 194
list_files() (in module pimlico.utils.pimarc.tools),

247
list_iter() (GroupedCorpus.Reader method), 194
list_iter() (IterableCorpus.Reader method), 185
ListDialogDisplay (class in pimlico.utils.urwid),

256
lists (FloatListsDocumentType.Document attribute),

191
lists (IntegerListsDocumentType.Document attribute),

197
ListStoresCmd (class in pimlico.cli.locations), 148
LittleOutputtingProgressBar (class in pim-

lico.utils.progress), 254
load() (PimarcIndex static method), 244
load() (PipelineConfig static method), 179
load_build_params() (KerasModelBuilder-

Class.Reader method), 237
load_datatype() (in module pimlico.datatypes),

242
load_executor() (BaseModuleInfo method), 164
load_formatter() (in module pim-

lico.cli.browser.tools.formatter), 141

318 Index

Pimlico Documentation, Release 0.9.25

load_local_config() (PipelineConfig static
method), 179

load_model() (GensimLdaModel.Reader method),
233

load_model() (KerasModel.Reader method), 236
load_model() (KerasModelBuilderClass.Reader

method), 237
load_model() (SklearnModel.Reader method), 241
load_module_executor() (in module pim-

lico.core.modules.base), 173
load_module_info() (in module pim-

lico.core.modules.base), 173
LoadCmd (class in pimlico.cli.loaddump), 148
lock() (BaseModuleInfo method), 171
lock_path (BaseModuleInfo attribute), 171
long_term_store (PipelineConfig attribute), 179

M
main_module (BaseModuleInfo attribute), 164
make_notebook() (in module pimlico.cli.jupyter),

147
make_py4j_errors_safe() (in module pim-

lico.core.external.java), 162
make_table() (in module pimlico.utils.docs.rest), 244
MessageDialog (class in pim-

lico.cli.browser.tools.corpus), 140
MessagePopupLauncher (class in pim-

lico.cli.browser.tools.corpus), 140
metadata (PimlicoDatatype.Reader attribute), 210
metadata_decode_decorator() (in module pim-

lico.utils.pimarc.reader), 246
metadata_defaults (DataPointType attribute), 187
metadata_defaults (Dict.Writer attribute), 214
metadata_defaults (Dictionary.Writer attribute),

216
metadata_defaults (DocEmbeddingsMap-

per.Writer attribute), 224
metadata_defaults (Embeddings.Writer attribute),

220
metadata_defaults (FastTextDocMapper.Writer at-

tribute), 226
metadata_defaults (FixedEmbeddingsDocMap-

per.Writer attribute), 227
metadata_defaults (FloatListsDocumentType at-

tribute), 191
metadata_defaults (GensimLdaModel.Writer at-

tribute), 234
metadata_defaults (GroupedCorpus.Writer

attribute), 195
metadata_defaults (IntegerDocumentType at-

tribute), 198
metadata_defaults (IntegerListDocumentType at-

tribute), 197

metadata_defaults (IntegerListsDocumentType at-
tribute), 196

metadata_defaults (IntegerTableDocumentType
attribute), 200

metadata_defaults (IterableCorpus.Writer at-
tribute), 186

metadata_defaults (KerasModel.Writer attribute),
237

metadata_defaults (KerasModelBuilder-
Class.Writer attribute), 239

metadata_defaults (NamedFile.Writer attribute),
232

metadata_defaults (NamedFileCollection.Writer
attribute), 231

metadata_defaults (NumericResult.Writer at-
tribute), 241

metadata_defaults (NumpyArray.Writer attribute),
205

metadata_defaults (PimlicoDatatype.Writer at-
tribute), 211

metadata_defaults (PlotOutput.Writer attribute),
239

metadata_defaults (ScipySparseMatrix.Writer at-
tribute), 206

metadata_defaults (ScoredRealFeatureSets.Writer
attribute), 229

metadata_defaults (SklearnModel.Writer at-
tribute), 242

metadata_defaults (StringList.Writer attribute),
215

metadata_defaults (TextFile.Writer attribute), 232
metadata_defaults (TopicsTopWords.Writer

attribute), 235
metadata_defaults (TSVVecFiles.Writer attribute),

221
metadata_defaults (VectorDocumentType at-

tribute), 192
metadata_defaults (Word2VecFiles.Writer at-

tribute), 222
metadata_filename (BaseModuleInfo attribute),

165
MetadataCmd (class in pimlico.cli.shell.commands),

144
MetadataError, 247
missing_data() (BaseModuleInfo method), 169
missing_module_data() (BaseModuleInfo

method), 169
mix_bg_colors() (in module pimlico.cli.status), 152
model (FastTextDocMapper.Reader attribute), 225
module_dependencies (PipelineConfig attribute),

178
module_dependents (PipelineConfig attribute), 178
module_executable (BaseModuleInfo attribute),

164

Index 319

Pimlico Documentation, Release 0.9.25

module_executable (MultistageModuleInfo at-
tribute), 174

module_executor_override (BaseModuleInfo at-
tribute), 164

module_inputs (BaseModuleInfo attribute), 164
module_name (InvalidDocument.Document attribute),

189
module_number_to_name() (in module pim-

lico.cli.util), 153
module_numbers_to_names() (in module pim-

lico.cli.util), 153
module_optional_inputs (BaseModuleInfo at-

tribute), 164
module_optional_outputs (BaseModuleInfo at-

tribute), 164
module_options (BaseModuleInfo attribute), 164
module_output_groups (BaseModuleInfo at-

tribute), 164
module_outputs (BaseModuleInfo attribute), 164
module_package_name() (pim-

lico.core.modules.base.BaseModuleInfo class
method), 171

module_readable_name (BaseModuleInfo at-
tribute), 164

module_status() (in module pimlico.cli.status), 152
module_status_color() (in module pim-

lico.cli.status), 152
module_supports_python2 (BaseModuleInfo at-

tribute), 164
module_type_name (BaseModuleInfo attribute), 164
ModuleAlreadyCompletedError, 174
ModuleConnection (class in pim-

lico.core.modules.multistage), 176
ModuleExecutionError, 174
ModuleExecutorLoadError, 172
ModuleInfoLoadError, 172
ModuleInputConnection (class in pim-

lico.core.modules.multistage), 177
ModuleNotReadyError, 174
ModuleOptionParseError, 178
ModuleOutputConnection (class in pim-

lico.core.modules.multistage), 177
modules (PipelineConfig attribute), 178
ModuleStage (class in pim-

lico.core.modules.multistage), 176
ModuleTypeError, 172
move_dir_with_progress() (in module pim-

lico.utils.filesystem), 251
MoveStoresCmd (class in pimlico.cli.locations), 148
msgbox() (in module pimlico.utils.urwid), 256
multiline_tablate() (in module pim-

lico.utils.format), 251
MultipleInputs (class in pimlico.datatypes.base),

212

multistage_module() (in module pim-
lico.core.modules.multistage), 176

MultistageModuleInfo (class in pim-
lico.core.modules.multistage), 174

MultistageModulePreparationError, 177
multiwith() (in module pimlico.utils.core), 249

N
name (DataPointType attribute), 187
named_storage_locations (PipelineConfig at-

tribute), 179
NamedFile (class in pimlico.datatypes.files), 231
NamedFile.Reader (class in pimlico.datatypes.files),

231
NamedFile.Reader.Setup (class in pim-

lico.datatypes.files), 231
NamedFile.Writer (class in pimlico.datatypes.files),

231
NamedFileCollection (class in pim-

lico.datatypes.files), 229
NamedFileCollection.Reader (class in pim-

lico.datatypes.files), 230
NamedFileCollection.Reader.Setup (class in

pimlico.datatypes.files), 230
NamedFileCollection.Writer (class in pim-

lico.datatypes.files), 230
new_client() (Py4JInterface method), 162
new_filename() (in module pimlico.utils.filesystem),

251
NewModuleCmd (class in pimlico.cli.newmodule), 150
next_document() (CorpusState method), 139
NLTKResource (class in pim-

lico.core.dependencies.python), 160
no_retry_gateway() (in module pim-

lico.core.external.java), 162
no_subcommand() (in module pim-

lico.utils.pimarc.tools), 247
NonOutputtingProgressBar (class in pim-

lico.utils.progress), 254
NonPTBTagError, 253
normalize_cell() (in module pim-

lico.utils.docs.rest), 244
normed_vectors (Embeddings.Reader attribute), 219
num_samples (ScoredRealFeatureSets.Reader at-

tribute), 228
num_topics (TopicsTopWords.Reader attribute), 235
NumericResult (class in pimlico.datatypes.results),

240
NumericResult.Reader (class in pim-

lico.datatypes.results), 240
NumericResult.Reader.Setup (class in pim-

lico.datatypes.results), 240
NumericResult.Writer (class in pim-

lico.datatypes.results), 241

320 Index

Pimlico Documentation, Release 0.9.25

NumpyArray (class in pimlico.datatypes.arrays), 204
NumpyArray.Reader (class in pim-

lico.datatypes.arrays), 205
NumpyArray.Reader.Setup (class in pim-

lico.datatypes.arrays), 205
NumpyArray.Writer (class in pim-

lico.datatypes.arrays), 205

O
on_exit() (DialogDisplay method), 256
on_exit() (ListDialogDisplay method), 256
open() (PimarcTarBackend method), 246
open_archive() (in module pimlico.utils.pimarc),

248
open_file() (NamedFileCollection.Reader method),

230
open_file() (NamedFileCollection.Writer method),

231
open_file() (PlotOutput.Reader method), 240
open_file() (Word2VecFiles.Reader method), 221
open_file() (Word2VecFiles.Writer method), 222
OpenNLPTreeStringsDocumentType (class in

pimlico.datatypes.corpora.parse.trees), 183
OpenNLPTreeStringsDocumentType.Document

(class in pim-
lico.datatypes.corpora.parse.trees), 183

opt_type_example() (in module pim-
lico.core.modules.options), 177

opt_type_help() (in module pim-
lico.core.modules.options), 177

option_message() (in module pim-
lico.cli.debug.stepper), 143

options_dialog() (in module pimlico.utils.urwid),
256

output_datatype_text() (in module pim-
lico.utils.docs.modulegen), 243

output_names (BaseModuleInfo attribute), 165
output_p4j_error_info() (in module pim-

lico.core.external.java), 162
output_path (PipelineConfig attribute), 179
output_ready() (BaseModuleInfo method), 167
output_stack_trace() (in module pim-

lico.cli.debug), 143
OutputCmd (class in pimlico.cli.locations), 148
OutputConsumer (class in pim-

lico.core.external.java), 162
OutputQueue (class in pimlico.utils.pipes), 252

P
palette (DialogDisplay attribute), 256
path_relative_to_config() (PipelineConfig

method), 179
PimarcFileMetadata (class in pim-

lico.utils.pimarc.reader), 246

PimarcIndex (class in pimlico.utils.pimarc.index), 244
PimarcIndexAppender (class in pim-

lico.utils.pimarc.index), 244
PimarcReader (class in pimlico.utils.pimarc.reader),

245
PimarcTarBackend (class in pim-

lico.utils.pimarc.tar), 246
PimarcWriter (class in pimlico.utils.pimarc.writer),

247
pimlico (module), 257
pimlico.cfg (module), 257
pimlico.cli (module), 153
pimlico.cli.browser (module), 142
pimlico.cli.browser.tool (module), 142
pimlico.cli.browser.tools (module), 142
pimlico.cli.browser.tools.corpus (mod-

ule), 139
pimlico.cli.browser.tools.files (module),

140
pimlico.cli.browser.tools.formatter

(module), 140
pimlico.cli.check (module), 145
pimlico.cli.clean (module), 146
pimlico.cli.data_editor (module), 142
pimlico.cli.data_editor.run (module), 142
pimlico.cli.debug (module), 143
pimlico.cli.debug.stepper (module), 142
pimlico.cli.fixlength (module), 146
pimlico.cli.jupyter (module), 147
pimlico.cli.loaddump (module), 147
pimlico.cli.locations (module), 148
pimlico.cli.main (module), 149
pimlico.cli.newmodule (module), 150
pimlico.cli.pimarc (module), 150
pimlico.cli.pyshell (module), 150
pimlico.cli.recover (module), 151
pimlico.cli.reset (module), 151
pimlico.cli.run (module), 152
pimlico.cli.shell (module), 145
pimlico.cli.shell.base (module), 143
pimlico.cli.shell.commands (module), 144
pimlico.cli.shell.runner (module), 145
pimlico.cli.status (module), 152
pimlico.cli.subcommands (module), 152
pimlico.cli.testemail (module), 153
pimlico.cli.util (module), 153
pimlico.core (module), 182
pimlico.core.config (module), 178
pimlico.core.dependencies (module), 161
pimlico.core.dependencies.base (module),

154
pimlico.core.dependencies.core (module),

156

Index 321

Pimlico Documentation, Release 0.9.25

pimlico.core.dependencies.java (module),
157

pimlico.core.dependencies.licenses (mod-
ule), 159

pimlico.core.dependencies.python (mod-
ule), 159

pimlico.core.dependencies.versions (mod-
ule), 161

pimlico.core.external (module), 163
pimlico.core.external.java (module), 161
pimlico.core.logs (module), 182
pimlico.core.modules (module), 178
pimlico.core.modules.base (module), 163
pimlico.core.modules.execute (module), 173
pimlico.core.modules.multistage (module),

174
pimlico.core.modules.options (module), 177
pimlico.core.paths (module), 182
pimlico.datatypes (module), 242
pimlico.datatypes.arrays (module), 204
pimlico.datatypes.base (module), 206
pimlico.datatypes.core (module), 214
pimlico.datatypes.corpora (module), 204
pimlico.datatypes.corpora.base (module),

183
pimlico.datatypes.corpora.data_points

(module), 186
pimlico.datatypes.corpora.floats (mod-

ule), 191
pimlico.datatypes.corpora.grouped (mod-

ule), 193
pimlico.datatypes.corpora.ints (module),

196
pimlico.datatypes.corpora.json (module),

199
pimlico.datatypes.corpora.parse (module),

183
pimlico.datatypes.corpora.parse.trees

(module), 183
pimlico.datatypes.corpora.strings (mod-

ule), 199
pimlico.datatypes.corpora.table (module),

200
pimlico.datatypes.corpora.tokenized

(module), 201
pimlico.datatypes.corpora.word_annotations

(module), 202
pimlico.datatypes.dictionary (module), 215
pimlico.datatypes.embeddings (module), 218
pimlico.datatypes.features (module), 227
pimlico.datatypes.files (module), 229
pimlico.datatypes.gensim (module), 233
pimlico.datatypes.keras (module), 235
pimlico.datatypes.plotting (module), 239

pimlico.datatypes.results (module), 240
pimlico.datatypes.sklearn (module), 241
pimlico.modules (module), 53
pimlico.modules.corpora (module), 53
pimlico.modules.corpora.concat (module),

53
pimlico.modules.corpora.corpus_stats

(module), 54
pimlico.modules.corpora.format (module),

55
pimlico.modules.corpora.group (module), 56
pimlico.modules.corpora.interleave (mod-

ule), 57
pimlico.modules.corpora.list_filter

(module), 59
pimlico.modules.corpora.shuffle (module),

59
pimlico.modules.corpora.shuffle_linear

(module), 61
pimlico.modules.corpora.split (module), 62
pimlico.modules.corpora.store (module), 64
pimlico.modules.corpora.subsample (mod-

ule), 65
pimlico.modules.corpora.subset (module),

66
pimlico.modules.corpora.vocab_builder

(module), 67
pimlico.modules.corpora.vocab_counter

(module), 69
pimlico.modules.corpora.vocab_mapper

(module), 70
pimlico.modules.corpora.vocab_unmapper

(module), 71
pimlico.modules.embeddings (module), 72
pimlico.modules.embeddings.fasttext

(module), 73
pimlico.modules.embeddings.glove (mod-

ule), 74
pimlico.modules.embeddings.mappers (mod-

ule), 76
pimlico.modules.embeddings.mappers.fasttext

(module), 76
pimlico.modules.embeddings.mappers.fixed

(module), 77
pimlico.modules.embeddings.normalize

(module), 78
pimlico.modules.embeddings.store_embeddings

(module), 79
pimlico.modules.embeddings.store_tsv

(module), 79
pimlico.modules.embeddings.store_word2vec

(module), 80
pimlico.modules.embeddings.word2vec

(module), 81

322 Index

Pimlico Documentation, Release 0.9.25

pimlico.modules.gensim (module), 82
pimlico.modules.gensim.coherence (mod-

ule), 82
pimlico.modules.gensim.lda (module), 84
pimlico.modules.gensim.lda_doc_topics

(module), 86
pimlico.modules.gensim.lda_top_words

(module), 87
pimlico.modules.gensim.ldaseq (module), 88
pimlico.modules.gensim.ldaseq_doc_topics

(module), 90
pimlico.modules.input (module), 91
pimlico.modules.input.embeddings (mod-

ule), 91
pimlico.modules.input.embeddings.fasttext

(module), 91
pimlico.modules.input.embeddings.fasttext_gensim

(module), 92
pimlico.modules.input.embeddings.fasttext_vec

(module), 93
pimlico.modules.input.embeddings.glove

(module), 94
pimlico.modules.input.embeddings.word2vec

(module), 95
pimlico.modules.input.text (module), 96
pimlico.modules.input.text.20newsgroups

(module), 96
pimlico.modules.input.text.20newsgroups.sklearn_download

(module), 96
pimlico.modules.input.text.europarl

(module), 97
pimlico.modules.input.text.huggingface

(module), 99
pimlico.modules.input.text.raw_text_archives

(module), 100
pimlico.modules.input.text.raw_text_files

(module), 102
pimlico.modules.input.xml (module), 103
pimlico.modules.malt (module), 105
pimlico.modules.nltk (module), 106
pimlico.modules.nltk.nist_tokenize (mod-

ule), 106
pimlico.modules.opennlp (module), 107
pimlico.modules.opennlp.parse (module),

107
pimlico.modules.opennlp.pos (module), 109
pimlico.modules.opennlp.tokenize (mod-

ule), 110
pimlico.modules.output (module), 111
pimlico.modules.output.text_corpus (mod-

ule), 111
pimlico.modules.sklearn (module), 112
pimlico.modules.sklearn.logistic_regression

(module), 112

pimlico.modules.spacy (module), 113
pimlico.modules.spacy.extract_nps (mod-

ule), 113
pimlico.modules.spacy.parse_text (mod-

ule), 114
pimlico.modules.spacy.tokenize (module),

115
pimlico.modules.text (module), 117
pimlico.modules.text.char_tokenize (mod-

ule), 117
pimlico.modules.text.normalize (module),

118
pimlico.modules.text.simple_tokenize

(module), 119
pimlico.modules.text.text_normalize

(module), 120
pimlico.modules.utility (module), 121
pimlico.modules.utility.alias (module),

122
pimlico.modules.utility.collect_files

(module), 123
pimlico.modules.visualization (module),

124
pimlico.modules.visualization.bar_chart

(module), 124
pimlico.modules.visualization.embeddings_plot

(module), 125
pimlico.test (module), 242
pimlico.utils (module), 257
pimlico.utils.communicate (module), 248
pimlico.utils.core (module), 249
pimlico.utils.docs (module), 244
pimlico.utils.docs.apiheaders (module),

242
pimlico.utils.docs.commandgen (module),

243
pimlico.utils.docs.examplegen (module),

243
pimlico.utils.docs.modulegen (module), 243
pimlico.utils.docs.rest (module), 244
pimlico.utils.email (module), 250
pimlico.utils.filesystem (module), 251
pimlico.utils.format (module), 251
pimlico.utils.jupyter (module), 251
pimlico.utils.linguistic (module), 252
pimlico.utils.logging (module), 252
pimlico.utils.network (module), 252
pimlico.utils.pimarc (module), 248
pimlico.utils.pimarc.index (module), 244
pimlico.utils.pimarc.reader (module), 245
pimlico.utils.pimarc.tar (module), 246
pimlico.utils.pimarc.tools (module), 247
pimlico.utils.pimarc.utils (module), 247
pimlico.utils.pimarc.writer (module), 247

Index 323

Pimlico Documentation, Release 0.9.25

pimlico.utils.pipes (module), 252
pimlico.utils.pos (module), 253
pimlico.utils.probability (module), 253
pimlico.utils.progress (module), 254
pimlico.utils.strings (module), 255
pimlico.utils.system (module), 255
pimlico.utils.timeout (module), 256
pimlico.utils.urwid (module), 256
pimlico.utils.varint (module), 256
pimlico.utils.web (module), 257
PimlicoCLISubcommand (class in pim-

lico.cli.subcommands), 152
PimlicoDatatype (class in pimlico.datatypes.base),

206
PimlicoDatatype.Reader (class in pim-

lico.datatypes.base), 208
PimlicoDatatype.Reader.Setup (class in pim-

lico.datatypes.base), 209
PimlicoDatatype.Writer (class in pim-

lico.datatypes.base), 211
PimlicoJavaLibrary (class in pim-

lico.core.dependencies.java), 158
PimlicoPythonShellContext (class in pim-

lico.cli.pyshell), 150
PipelineCheckError, 181
PipelineConfig (class in pimlico.core.config), 178
PipelineConfigParseError, 181
PipelineStructureError, 181
plot() (PlotOutput.Writer method), 239
plot_path (PlotOutput.Writer attribute), 239
PlotOutput (class in pimlico.datatypes.plotting), 239
PlotOutput.Reader (class in pim-

lico.datatypes.plotting), 239
PlotOutput.Reader.Setup (class in pim-

lico.datatypes.plotting), 239
PlotOutput.Writer (class in pim-

lico.datatypes.plotting), 239
pos_tag_to_ptb() (in module pimlico.utils.pos),

253
pos_tags_to_ptb() (in module pimlico.utils.pos),

253
postloop() (DataShell method), 144
preloop() (DataShell method), 144
preprocess_config_file() (in module pim-

lico.core.config), 181
print_dependency_leaf_problems() (in mod-

ule pimlico.core.config), 182
print_execution_error() (in module pim-

lico.cli.util), 153
print_missing_dependencies() (in module

pimlico.core.config), 182
print_module_status() (in module pim-

lico.cli.status), 152

print_section_tree() (in module pim-
lico.cli.status), 152

problems() (Any method), 155
problems() (JavaDependency method), 157
problems() (NLTKResource method), 161
problems() (PythonPackageDependency method),

159
problems() (PythonPackageOnPip method), 160
problems() (SoftwareDependency method), 154
problems() (SystemCommandDependency method),

156
process_module_options() (in module pim-

lico.core.modules.options), 177
process_module_options() (pim-

lico.core.modules.base.BaseModuleInfo class
method), 165

process_setup() (NamedFile.Reader method), 231
process_setup() (NamedFileCollection.Reader

method), 230
process_setup() (PimlicoDatatype.Reader

method), 209
process_setup() (PlotOutput.Reader method), 240
process_setup() (Word2VecFiles.Reader method),

221
ProgressBarIter (class in pimlico.utils.progress),

255
prompt (DataShell attribute), 144
provide_further_outputs() (BaseModuleInfo

method), 166
Py4JInterface (class in pimlico.core.external.java),

162
Py4JSafeJavaError, 163
Py4JSoftwareDependency (class in pim-

lico.core.dependencies.java), 158
PythonCmd (class in pimlico.cli.shell.commands), 144
PythonPackageDependency (class in pim-

lico.core.dependencies.python), 159
PythonPackageOnPip (class in pim-

lico.core.dependencies.python), 160
PythonPackageSystemwideInstall (class in

pimlico.core.dependencies.python), 159
PythonShellCmd (class in pimlico.cli.pyshell), 150

Q
qget() (in module pimlico.utils.pipes), 252

R
raw_available() (DataPointType.Document

method), 189
raw_data (DataPointType.Document attribute), 189
raw_to_internal() (CharacterTokenizedDocu-

mentType.Document method), 202
raw_to_internal() (DataPointType.Document

method), 188

324 Index

Pimlico Documentation, Release 0.9.25

raw_to_internal() (FloatListDocument-
Type.Document method), 192

raw_to_internal() (FloatListsDocument-
Type.Document method), 191

raw_to_internal() (IntegerDocument-
Type.Document method), 198

raw_to_internal() (IntegerListDocument-
Type.Document method), 198

raw_to_internal() (IntegerListsDocument-
Type.Document method), 197

raw_to_internal() (IntegerTableDocument-
Type.Document method), 200

raw_to_internal() (InvalidDocument.Document
method), 189

raw_to_internal() (JsonDocumentType.Document
method), 199

raw_to_internal() (LabelDocument-
Type.Document method), 200

raw_to_internal() (OpenNLPTreeStringsDocu-
mentType.Document method), 183

raw_to_internal() (RawDocumentType.Document
method), 189

raw_to_internal() (SegmentedLinesDocument-
Type.Document method), 202

raw_to_internal() (TextDocumentType.Document
method), 190

raw_to_internal() (TokenizedDocument-
Type.Document method), 201

raw_to_internal() (VectorDocument-
Type.Document method), 193

raw_to_internal() (WordAnnotationsDocument-
Type.Document method), 203

RawDocumentType (class in pim-
lico.datatypes.corpora.data_points), 189

RawDocumentType.Document (class in pim-
lico.datatypes.corpora.data_points), 189

RawTextDocumentType (class in pim-
lico.datatypes.corpora.data_points), 190

RawTextDocumentType.Document (class in pim-
lico.datatypes.corpora.data_points), 190

read() (DummyFileDescriptor method), 254
read() (StreamCommunicationPacket static method),

249
read_doc_from_pimarc() (in module pim-

lico.utils.pimarc.reader), 245
read_doc_from_pimarc_file() (in module pim-

lico.utils.pimarc.reader), 246
read_file() (NamedFileCollection.Reader method),

230
read_file() (PimarcReader method), 245
read_file() (PlotOutput.Reader method), 240
read_file() (TextFile.Reader method), 232
read_file() (Word2VecFiles.Reader method), 221
read_files() (NamedFileCollection.Reader

method), 230
read_files() (PlotOutput.Reader method), 240
read_files() (Word2VecFiles.Reader method), 221
read_metadata() (DocEmbeddingsMap-

per.Reader.Setup method), 223
read_metadata() (FastTextDocMap-

per.Reader.Setup method), 226
read_metadata() (GensimLdaModel.Reader.Setup

method), 234
read_metadata() (IterableCorpus.Reader.Setup

method), 185
read_metadata() (KerasModel.Reader.Setup

method), 236
read_metadata() (KerasModelBuilder-

Class.Reader.Setup method), 238
read_metadata() (PimlicoDatatype.Reader.Setup

method), 210
read_rows() (FloatListDocumentType.Document

method), 192
read_rows() (FloatListsDocumentType.Document

method), 191
read_rows() (IntegerListDocumentType.Document

method), 198
read_rows() (IntegerListsDocumentType.Document

method), 197
read_rows() (IntegerTableDocumentType.Document

method), 201
read_samples() (ScoredRealFeatureSets.Reader

method), 228
reader_init() (DataPointType method), 187
reader_init() (FloatListDocumentType method),

191
reader_init() (FloatListsDocumentType method),

191
reader_init() (IntegerDocumentType method), 198
reader_init() (IntegerListDocumentType method),

197
reader_init() (IntegerTableDocumentType

method), 200
reader_init() (VectorDocumentType method), 192
reader_type (Dict.Reader.Setup attribute), 214
reader_type (Dictionary.Reader.Setup attribute), 216
reader_type (DocEmbeddingsMapper.Reader.Setup

attribute), 223
reader_type (Embeddings.Reader.Setup attribute),

219
reader_type (FastTextDocMapper.Reader.Setup at-

tribute), 226
reader_type (FixedEmbeddingsDocMap-

per.Reader.Setup attribute), 226
reader_type (GensimLdaModel.Reader.Setup at-

tribute), 234
reader_type (GroupedCorpus.Reader.Setup at-

tribute), 194

Index 325

Pimlico Documentation, Release 0.9.25

reader_type (IterableCorpus.Reader.Setup attribute),
186

reader_type (KerasModel.Reader.Setup attribute),
237

reader_type (KerasModelBuilderClass.Reader.Setup
attribute), 238

reader_type (NamedFile.Reader.Setup attribute), 231
reader_type (NamedFileCollection.Reader.Setup at-

tribute), 230
reader_type (NumericResult.Reader.Setup attribute),

240
reader_type (NumpyArray.Reader.Setup attribute),

205
reader_type (PimlicoDatatype.Reader.Setup at-

tribute), 210
reader_type (PlotOutput.Reader.Setup attribute), 239
reader_type (ScipySparseMatrix.Reader.Setup

attribute), 206
reader_type (ScoredRealFeatureSets.Reader.Setup

attribute), 228
reader_type (SklearnModel.Reader.Setup attribute),

242
reader_type (StringList.Reader.Setup attribute), 215
reader_type (TextFile.Reader.Setup attribute), 232
reader_type (TopicsTopWords.Reader.Setup at-

tribute), 235
reader_type (TSVVecFiles.Reader.Setup attribute),

220
reader_type (Word2VecFiles.Reader.Setup attribute),

221
readLine() (DummyFileDescriptor method), 254
ready_to_read() (DocEmbeddingsMap-

per.Reader.Setup method), 223
ready_to_read() (FastTextDocMap-

per.Reader.Setup method), 226
ready_to_read() (GensimLdaModel.Reader.Setup

method), 234
ready_to_read() (IterableCorpus.Reader.Setup

method), 186
ready_to_read() (KerasModel.Reader.Setup

method), 237
ready_to_read() (KerasModelBuilder-

Class.Reader.Setup method), 238
ready_to_read() (PimlicoDatatype.Reader.Setup

method), 210
RecoverCmd (class in pimlico.cli.recover), 151
recursive_deps() (in module pim-

lico.core.dependencies.base), 156
refresh_id2token() (DictionaryData method),

216
reindex() (in module pimlico.utils.pimarc.index), 244
reindex_pimarcs() (in module pim-

lico.utils.pimarc.tools), 247
remove() (in module pimlico.utils.pimarc.tools), 247

remove_duplicates() (in module pim-
lico.utils.core), 249

remove_temporary_redirects() (OutputCon-
sumer method), 162

require_tasks() (DocEmbeddingsMapper.Writer
method), 224

require_tasks() (PimlicoDatatype.Writer method),
211

required_tasks (Dict.Writer attribute), 214
required_tasks (DocEmbeddingsMapper.Writer at-

tribute), 224
required_tasks (Embeddings.Writer attribute), 219
required_tasks (FastTextDocMapper.Writer at-

tribute), 226
required_tasks (FixedEmbeddingsDocMap-

per.Writer attribute), 227
required_tasks (GensimLdaModel.Writer at-

tribute), 234
required_tasks (KerasModel.Writer attribute), 237
required_tasks (KerasModelBuilderClass.Writer

attribute), 238
required_tasks (NumericResult.Writer attribute),

241
required_tasks (PimlicoDatatype.Writer attribute),

211
required_tasks (StringList.Writer attribute), 215
required_tasks (TopicsTopWords.Writer attribute),

235
reset_all_modules() (PipelineConfig method),

179
reset_execution() (BaseModuleInfo method), 171
reset_execution() (MultistageModuleInfo

method), 175
ResetCmd (class in pimlico.cli.reset), 151
retry_open() (in module pimlico.utils.filesystem),

251
row_length_bytes (IntegerListsDocumentType at-

tribute), 196
row_size (IntegerTableDocumentType.Document at-

tribute), 201
run() (in module pimlico.utils.pimarc.tools), 247
run() (OutputConsumer method), 162
run_browser() (Dictionary method), 216
run_browser() (DocEmbeddingsMapper method),

222
run_browser() (Embeddings method), 220
run_browser() (GensimLdaModel method), 233
run_browser() (IterableCorpus method), 184
run_browser() (NamedFileCollection method), 230
run_browser() (PimlicoDatatype method), 208
run_browser() (TopicsTopWords method), 235
run_command() (BrowseCmd method), 149
run_command() (CleanCmd method), 146
run_command() (DepsCmd method), 145

326 Index

Pimlico Documentation, Release 0.9.25

run_command() (DumpCmd method), 148
run_command() (EmailCmd method), 153
run_command() (FixLengthCmd method), 146
run_command() (InputsCmd method), 148
run_command() (InstallCmd method), 145
run_command() (JupyterCmd method), 147
run_command() (LicensesCmd method), 146
run_command() (ListStoresCmd method), 148
run_command() (LoadCmd method), 148
run_command() (MoveStoresCmd method), 149
run_command() (NewModuleCmd method), 150
run_command() (OutputCmd method), 148
run_command() (PimlicoCLISubcommand method),

153
run_command() (PythonShellCmd method), 151
run_command() (RecoverCmd method), 151
run_command() (ResetCmd method), 152
run_command() (RunCmd method), 152
run_command() (ShellCLICmd method), 145
run_command() (StatusCmd method), 152
run_command() (Tar2PimarcCmd method), 150
run_command() (UnlockCmd method), 149
run_command() (VariantsCmd method), 149
run_command() (VisualizeCmd method), 150
run_editor() (in module pim-

lico.cli.data_editor.run), 142
RunCmd (class in pimlico.cli.run), 152

S
safe_import_bs4() (in module pim-

lico.core.dependencies.python), 160
SafeProgressBar (class in pimlico.utils.progress),

254
satisfies_typecheck() (in module pim-

lico.core.modules.base), 172
save() (PimarcIndex method), 244
save_model() (FastTextDocMapper.Writer method),

226
save_model() (SklearnModel.Writer method), 242
save_popup_launcher() (in module pim-

lico.cli.browser.tools.corpus), 140
ScipySparseMatrix (class in pim-

lico.datatypes.arrays), 205
ScipySparseMatrix.Reader (class in pim-

lico.datatypes.arrays), 206
ScipySparseMatrix.Reader.Setup (class in

pimlico.datatypes.arrays), 206
ScipySparseMatrix.Writer (class in pim-

lico.datatypes.arrays), 206
ScoredRealFeatureSets (class in pim-

lico.datatypes.features), 227
ScoredRealFeatureSets.Reader (class in pim-

lico.datatypes.features), 228

ScoredRealFeatureSets.Reader.Setup (class
in pimlico.datatypes.features), 228

ScoredRealFeatureSets.Writer (class in pim-
lico.datatypes.features), 228

SegmentedLinesDocumentType (class in pim-
lico.datatypes.corpora.tokenized), 202

SegmentedLinesDocumentType.Document
(class in pimlico.datatypes.corpora.tokenized),
202

send_final_report_email() (in module pim-
lico.core.modules.execute), 174

send_module_report_email() (in module pim-
lico.core.modules.execute), 174

send_pimlico_email() (in module pim-
lico.utils.email), 250

send_text_email() (in module pimlico.utils.email),
250

sentences (CharacterTokenizedDocument-
Type.Document attribute), 202

sentences (SegmentedLinesDocumentType.Document
attribute), 202

sentences (WordAnnotationsDocument-
Type.Document attribute), 203

sequential_document_sample() (in module
pimlico.utils.probability), 253

sequential_sample() (in module pim-
lico.utils.probability), 253

set_feature_types() (ScoredRealFeature-
Sets.Writer method), 228

set_metadata_value() (BaseModuleInfo method),
165

set_metadata_values() (BaseModuleInfo
method), 165

set_proc_title() (in module pimlico.utils.system),
255

shell_commands (IterableCorpus attribute), 184
shell_commands (PimlicoDatatype attribute), 207
ShellCLICmd (class in pimlico.cli.shell.runner), 145
ShellCommand (class in pimlico.cli.shell.base), 143
ShellContextError, 151
ShellError, 144
short_term_store (PipelineConfig attribute), 179
signals (InputDialog attribute), 140
signed (IntegerListsDocumentType attribute), 196
similarities() (in module pimlico.utils.strings),

255
skip() (CorpusState method), 139
skip_popup_launcher() (in module pim-

lico.cli.browser.tools.corpus), 140
SklearnModel (class in pimlico.datatypes.sklearn),

241
SklearnModel.Reader (class in pim-

lico.datatypes.sklearn), 241
SklearnModel.Reader.Setup (class in pim-

Index 327

Pimlico Documentation, Release 0.9.25

lico.datatypes.sklearn), 241
SklearnModel.Writer (class in pim-

lico.datatypes.sklearn), 242
slice_progress() (in module pim-

lico.utils.progress), 255
SoftwareDependency (class in pim-

lico.core.dependencies.base), 154
SoftwareLicense (class in pim-

lico.core.dependencies.licenses), 159
SoftwareVersion (class in pim-

lico.core.dependencies.versions), 161
sorted_by_similarity() (in module pim-

lico.utils.strings), 255
split_seq() (in module pimlico.utils.core), 249
split_seq_after() (in module pimlico.utils.core),

249
stages (MultistageModuleInfo attribute), 175
start() (LittleOutputtingProgressBar method), 255
start() (Py4JInterface method), 162
start_java_process() (in module pim-

lico.core.external.java), 161
StartAfterFilenameNotFound, 246
status (BaseModuleInfo attribute), 165
status (MultistageModuleInfo attribute), 175
status_colored() (in module pimlico.cli.status),

152
StatusCmd (class in pimlico.cli.status), 152
step (PipelineConfig attribute), 181
Stepper (class in pimlico.cli.debug.stepper), 142
stop() (Py4JInterface method), 162
StopProcessing, 174
store_names (PipelineConfig attribute), 179
str_to_bool() (in module pim-

lico.core.modules.options), 177
StreamCommunicationError, 249
StreamCommunicationPacket (class in pim-

lico.utils.communicate), 249
StringList (class in pimlico.datatypes.core), 214
StringList.Reader (class in pim-

lico.datatypes.core), 215
StringList.Reader.Setup (class in pim-

lico.datatypes.core), 215
StringList.Writer (class in pim-

lico.datatypes.core), 215
strip_common_indent() (in module pim-

lico.utils.docs.commandgen), 243
strip_punctuation() (in module pim-

lico.utils.linguistic), 252
struct (IntegerDocumentType attribute), 198
struct (IntegerListDocumentType attribute), 197
struct (IntegerListsDocumentType attribute), 197
subsample() (in module pimlico.utils.probability),

254
supports_python2() (DataPointType method), 187

supports_python2() (DynamicOutputDatatype
method), 212

supports_python2() (IterableCorpus method), 184
supports_python2() (MultipleInputs method), 214
supports_python2() (pim-

lico.core.modules.base.BaseModuleInfo class
method), 164

supports_python2() (PimlicoDatatype method),
207

SystemCommandDependency (class in pim-
lico.core.dependencies.base), 156

T
table (IntegerTableDocumentType.Document at-

tribute), 201
table_div() (in module pimlico.utils.docs.rest), 244
Tar2PimarcCmd (class in pimlico.cli.pimarc), 150
tar_to_pimarc() (in module pimlico.cli.pimarc),

150
task_complete() (DocEmbeddingsMapper.Writer

method), 224
task_complete() (PimlicoDatatype.Writer method),

211
terminate_process() (in module pim-

lico.utils.communicate), 248
text (SegmentedLinesDocumentType.Document at-

tribute), 202
text (TokenizedDocumentType.Document attribute),

201
text (WordAnnotationsDocumentType.Document

attribute), 203
TextDocumentType (class in pim-

lico.datatypes.corpora.data_points), 190
TextDocumentType.Document (class in pim-

lico.datatypes.corpora.data_points), 190
TextFile (class in pimlico.datatypes.files), 232
TextFile.Reader (class in pimlico.datatypes.files),

232
TextFile.Reader.Setup (class in pim-

lico.datatypes.files), 232
TextFile.Writer (class in pimlico.datatypes.files),

232
timeout() (in module pimlico.utils.timeout), 256
timeout_process() (in module pim-

lico.utils.communicate), 248
title_box() (in module pimlico.utils.format), 251
to_keyed_vectors() (Embeddings.Reader

method), 219
TokenizedDocumentType (class in pim-

lico.datatypes.corpora.tokenized), 201
TokenizedDocumentType.Document (class in

pimlico.datatypes.corpora.tokenized), 201
topics_words (TopicsTopWords.Reader attribute),

235

328 Index

Pimlico Documentation, Release 0.9.25

TopicsTopWords (class in pimlico.datatypes.gensim),
234

TopicsTopWords.Reader (class in pim-
lico.datatypes.gensim), 234

TopicsTopWords.Reader.Setup (class in pim-
lico.datatypes.gensim), 235

TopicsTopWords.Writer (class in pim-
lico.datatypes.gensim), 235

trace_load_local_config() (PipelineConfig
static method), 179

trim_docstring() (in module pimlico.utils.docs),
244

truncate() (in module pimlico.utils.strings), 255
truncate_tar_after() (in module pim-

lico.cli.recover), 151
TSVVecFiles (class in pimlico.datatypes.embeddings),

220
TSVVecFiles.Reader (class in pim-

lico.datatypes.embeddings), 220
TSVVecFiles.Reader.Setup (class in pim-

lico.datatypes.embeddings), 220
TSVVecFiles.Writer (class in pim-

lico.datatypes.embeddings), 220
type_checking_name() (DynamicInputDatatypeR-

equirement method), 212
type_checking_name() (in module pim-

lico.core.modules.base), 172
type_checking_name() (IterableCorpus method),

186
type_checking_name() (PimlicoDatatype

method), 208
typecheck_formatter() (in module pim-

lico.cli.browser.tools.formatter), 141
typecheck_input() (BaseModuleInfo method), 170
typecheck_inputs() (BaseModuleInfo method),

170
typecheck_inputs() (MultistageModuleInfo

method), 175
TypeCheckError, 172

U
unhandled_key() (ListDialogDisplay method), 256
unlock() (BaseModuleInfo method), 171
UnlockCmd (class in pimlico.cli.main), 149
update() (SafeProgressBar method), 254

V
value (NumericResult.Reader attribute), 241
values() (PimarcFileMetadata method), 246
VariantsCmd (class in pimlico.cli.main), 149
vector_size (Embeddings.Reader attribute), 219
vector_size (FixedEmbeddingsDocMapper.Reader

attribute), 226

VectorDocumentType (class in pim-
lico.datatypes.corpora.floats), 192

VectorDocumentType.Document (class in pim-
lico.datatypes.corpora.floats), 193

VectorFormatter (class in pim-
lico.datatypes.corpora.floats), 193

vectors (Embeddings.Reader attribute), 219
vectors (FixedEmbeddingsDocMapper.Reader at-

tribute), 226
VisualizeCmd (class in pimlico.cli.main), 150
Vocab (class in pimlico.datatypes.embeddings), 218
vocab (Embeddings.Reader attribute), 219
vocab (FixedEmbeddingsDocMapper.Reader attribute),

227

W
weights_filename (KerasModel.Writer attribute),

237
weights_filename (KerasModelBuilder-

Class.Reader attribute), 237
Word2VecFiles (class in pim-

lico.datatypes.embeddings), 221
Word2VecFiles.Reader (class in pim-

lico.datatypes.embeddings), 221
Word2VecFiles.Reader.Setup (class in pim-

lico.datatypes.embeddings), 221
Word2VecFiles.Writer (class in pim-

lico.datatypes.embeddings), 221
word_counts (Embeddings.Reader attribute), 219
word_counts (FixedEmbeddingsDocMapper.Reader

attribute), 226
word_vec() (Embeddings.Reader method), 219
word_vec() (FixedEmbeddingsDocMapper.Reader

method), 227
word_vecs() (Embeddings.Reader method), 219
WordAnnotationsDocumentType (class in pim-

lico.datatypes.corpora.word_annotations), 202
WordAnnotationsDocumentType.Document

(class in pim-
lico.datatypes.corpora.word_annotations),
203

wrap_grouped_corpus() (in module pim-
lico.cli.debug.stepper), 143

write() (DummyFileDescriptor method), 254
write() (NumericResult.Writer method), 241
write_architecture() (KerasModel.Writer

method), 237
write_array() (NumpyArray.Writer method), 205
write_dict() (Dict.Writer method), 214
write_file() (NamedFile.Writer method), 231
write_file() (NamedFileCollection.Writer method),

230
write_file() (PimarcWriter method), 247
write_file() (TextFile.Writer method), 233

Index 329

Pimlico Documentation, Release 0.9.25

write_file() (Word2VecFiles.Writer method), 222
write_keyed_vectors() (Embeddings.Writer

method), 220
write_keyed_vectors() (FixedEmbeddings-

DocMapper.Writer method), 227
write_list() (StringList.Writer method), 215
write_matrix() (ScipySparseMatrix.Writer

method), 206
write_metadata() (DocEmbeddingsMapper.Writer

method), 224
write_metadata() (PimlicoDatatype.Writer

method), 212
write_model() (GensimLdaModel.Writer method),

234
write_model() (KerasModel.Writer method), 237
write_sample() (ScoredRealFeatureSets.Writer

method), 228
write_samples() (ScoredRealFeatureSets.Writer

method), 228
write_topics_words() (TopicsTopWords.Writer

method), 235
write_vectors() (Embeddings.Writer method), 219
write_vectors() (FixedEmbeddingsDocMap-

per.Writer method), 227
write_vectors() (TSVVecFiles.Writer method), 220
write_vocab_list() (Embeddings.Writer method),

220
write_vocab_list() (FixedEmbeddingsDocMap-

per.Writer method), 227
write_vocab_with_counts() (TSVVec-

Files.Writer method), 221
write_vocab_without_counts() (TSVVec-

Files.Writer method), 221
write_weights() (KerasModel.Writer method), 237
write_weights() (KerasModelBuilderClass.Writer

method), 239
write_word_counts() (Embeddings.Writer

method), 220
write_word_counts() (FixedEmbeddingsDocMap-

per.Writer method), 227
writer_init() (DataPointType method), 187
writer_init() (FloatListDocumentType method),

192
writer_init() (FloatListsDocumentType method),

191
writer_init() (IntegerDocumentType method), 198
writer_init() (IntegerListDocumentType method),

197
writer_init() (IntegerListsDocumentType method),

196
writer_init() (IntegerTableDocumentType

method), 200
writer_init() (VectorDocumentType method), 193
writer_param_defaults (Dict.Writer attribute),

214
writer_param_defaults (Dictionary.Writer

attribute), 216
writer_param_defaults (DocEmbeddingsMap-

per.Writer attribute), 224
writer_param_defaults (Embeddings.Writer at-

tribute), 220
writer_param_defaults (FastTextDocMap-

per.Writer attribute), 226
writer_param_defaults (FixedEmbeddings-

DocMapper.Writer attribute), 227
writer_param_defaults (GensimL-

daModel.Writer attribute), 234
writer_param_defaults (GroupedCorpus.Writer

attribute), 195
writer_param_defaults (IterableCorpus.Writer

attribute), 186
writer_param_defaults (KerasModel.Writer at-

tribute), 237
writer_param_defaults (KerasModelBuilder-

Class.Writer attribute), 239
writer_param_defaults (NamedFile.Writer at-

tribute), 232
writer_param_defaults (NamedFileCollec-

tion.Writer attribute), 231
writer_param_defaults (NumericResult.Writer

attribute), 241
writer_param_defaults (NumpyArray.Writer at-

tribute), 205
writer_param_defaults (PimlicoDatatype.Writer

attribute), 211
writer_param_defaults (PlotOutput.Writer at-

tribute), 239
writer_param_defaults (ScipySparseMa-

trix.Writer attribute), 206
writer_param_defaults (ScoredRealFeature-

Sets.Writer attribute), 229
writer_param_defaults (SklearnModel.Writer at-

tribute), 242
writer_param_defaults (StringList.Writer at-

tribute), 215
writer_param_defaults (TextFile.Writer at-

tribute), 232
writer_param_defaults (TopicsTopWords.Writer

attribute), 235
writer_param_defaults (TSVVecFiles.Writer at-

tribute), 221
writer_param_defaults (Word2VecFiles.Writer

attribute), 222

Y
yesno_dialog() (in module pimlico.utils.urwid), 256

330 Index

	Contents
	Python Module Index
	Index

