
Pillow (PIL Fork) Documentation
3.2.0

Alex Clark

2016 08 11

Contents

1 Installation 3
1.1 Warnings . 3
1.2 Notes . 3
1.3 Basic Installation . 3
1.4 Building From Source . 4
1.5 Platform Support . 7
1.6 Old Versions . 8

2 Handbook 9
2.1 Overview . 9
2.2 Tutorial . 10
2.3 Concepts . 17
2.4 Appendices . 19

3 Reference 37
3.1 Image Module . 37
3.2 ImageChops (“Channel Operations”) Module . 49
3.3 ImageColor Module . 52
3.4 ImageCms Module . 53
3.5 ImageDraw Module . 66
3.6 ImageEnhance Module . 71
3.7 ImageFile Module . 72
3.8 ImageFilter Module . 73
3.9 ImageFont Module . 75
3.10 ImageGrab Module (OS X and Windows only) . 76
3.11 ImageMath Module . 77
3.12 ImageMorph Module . 79
3.13 ImageOps Module . 80
3.14 ImagePalette Module . 83
3.15 ImagePath Module . 84
3.16 ImageQt Module . 84
3.17 ImageSequence Module . 85
3.18 ImageStat Module . 85
3.19 ImageTk Module . 86
3.20 ImageWin Module (Windows-only) . 87
3.21 ExifTags Module . 88
3.22 TiffTags Module . 89
3.23 OleFileIO Module . 89

i

3.24 PSDraw Module . 99
3.25 PixelAccess Class . 99
3.26 PyAccess Module . 101
3.27 PIL Package (autodoc of remaining modules) . 101
3.28 Plugin reference . 107

4 Porting 123

5 About 125
5.1 Goals . 125
5.2 License . 125
5.3 Why a fork? . 125
5.4 What about PIL? . 125

6 Release Notes 127
6.1 3.2.0 . 127
6.2 New DDS and FTEX Image Plugins . 127
6.3 Updates to the GbrImagePlugin . 127
6.4 Passthrough Parameters for ImageDraw.text . 127
6.5 ImageSequence.Iterator changes . 127
6.6 3.1.2 . 128
6.7 3.1.1 . 128
6.8 3.1.0 . 129
6.9 3.0.0 . 130
6.10 2.8.0 . 131
6.11 2.7.0 . 132

7 Indices and tables 135

Python 137

ii

Pillow (PIL Fork) Documentation, 3.2.0

Pillow is the friendly PIL fork by Alex Clark and Contributors. PIL is the Python Imaging Library by Fredrik Lundh
and Contributors.

Contents 1

https://github.com/python-pillow/Pillow/graphs/contributors

Pillow (PIL Fork) Documentation, 3.2.0

2 Contents

CHAPTER 1

Installation

1.1 Warnings

: Pillow and PIL cannot co-exist in the same environment. Before installing Pillow, please uninstall PIL.

: Pillow >= 1.0 no longer supports “import Image”. Please use “from PIL import Image” instead.

: Pillow >= 2.1.0 no longer supports “import _imaging”. Please use “from PIL.Image import core as _imaging”
instead.

1.2 Notes

: Pillow < 2.0.0 supports Python versions 2.4, 2.5, 2.6, 2.7.

: Pillow >= 2.0.0 supports Python versions 2.6, 2.7, 3.2, 3.3, 3.4, 3.5

1.3 Basic Installation

: The following instructions will install Pillow with support for most common image formats. See External Libraries
for a full list of external libraries supported.

: The basic installation works on Windows and OS X using the binaries from PyPI. Other installations require building
from source as detailed below.

Install Pillow with pip:

3

Pillow (PIL Fork) Documentation, 3.2.0

$ pip install Pillow

Or use easy_install for installing Python Eggs as pip does not support them:

$ easy_install Pillow

1.3.1 Windows Installation

We provide Pillow binaries for Windows compiled for the matrix of supported Pythons in both 32 and 64-bit versions
in wheel, egg, and executable installers. These binaries have all of the optional libraries included:

$ pip install Pillow

or:

$ easy_install Pillow

1.3.2 OS X Installation

We provide binaries for OS X for each of the supported Python versions in the wheel format. These include support
for all optional libraries except OpenJPEG:

$ pip install Pillow

1.3.3 Linux Installation

We do not provide binaries for Linux. Most major Linux distributions, including Fedora, Debian/Ubuntu and Arch-
Linux include Pillow in packages that previously contained PIL e.g. python-imaging. Please consider using
native operating system packages first to avoid installation problems and/or missing library support later.

1.3.4 FreeBSD Installation

Pillow can be installed on FreeBSD via the official Ports or Packages systems:

Ports:

$ cd /usr/ports/graphics/py-pillow && make install clean

Packages:

$ pkg install py27-pillow

: The Pillow FreeBSD port and packages are tested by the ports team with all supported FreeBSD versions and against
Python 2.x and 3.x.

1.4 Building From Source

Download and extract the compressed archive from PyPI.

4 Chapter 1. Installation

http://peak.telecommunity.com/DevCenter/PythonEggs
https://www.freshports.org/graphics/py-pillow/
https://pypi.python.org/pypi/Pillow

Pillow (PIL Fork) Documentation, 3.2.0

1.4.1 External Libraries

: You do not need to install all supported external libraries to use Pillow’s basic features. Zlib and libjpeg are
required by default.

: There are scripts to install the dependencies for some operating systems included in the depends directory.

Many of Pillow’s features require external libraries:

• libjpeg provides JPEG functionality.

– Pillow has been tested with libjpeg versions 6b, 8, 9, and 9a and libjpeg-turbo version 8.

– Starting with Pillow 3.0.0, libjpeg is required by default, but may be disabled with the --disable-jpeg
flag.

• zlib provides access to compressed PNGs

– Starting with Pillow 3.0.0, zlib is required by default, but may be disabled with the --disable-zlib
flag.

• libtiff provides compressed TIFF functionality

– Pillow has been tested with libtiff versions 3.x and 4.0

• libfreetype provides type related services

• littlecms provides color management

– Pillow version 2.2.1 and below uses liblcms1, Pillow 2.3.0 and above uses liblcms2. Tested with 1.19 and
2.7.

• libwebp provides the WebP format.

– Pillow has been tested with version 0.1.3, which does not read transparent WebP files. Versions 0.3.0 and
above support transparency.

• tcl/tk provides support for tkinter bitmap and photo images.

• openjpeg provides JPEG 2000 functionality.

– Pillow has been tested with openjpeg 2.0.0 and 2.1.0.

– Pillow does not support the earlier 1.5 series which ships with Ubuntu and Debian.

Once you have installed the prerequisites, run:

$ pip install Pillow

If the prerequisites are installed in the standard library locations for your machine (e.g. /usr or /usr/local), no
additional configuration should be required. If they are installed in a non-standard location, you may need to configure
setuptools to use those locations by editing setup.py or setup.cfg, or by adding environment variables on the
command line:

$ CFLAGS="-I/usr/pkg/include" pip install pillow

If Pillow has been previously built without the required prerequisites, it may be necessary to manually clear the pip
cache or build without cache using the --no-cache-dir option to force a build with newly installed external
libraries.

1.4. Building From Source 5

Pillow (PIL Fork) Documentation, 3.2.0

1.4.2 Build Options

• Environment Variable: MAX_CONCURRENCY=n. By default, Pillow will use multiprocessing to build the ex-
tension on all available CPUs, but not more than 4. Setting MAX_CONCURRENCY to 1 will disable parallel
building.

• Build flags: --disable-zlib, --disable-jpeg, --disable-tiff, --disable-freetype,
--disable-tcl, --disable-tk, --disable-lcms, --disable-webp, --disable-webpmux,
--disable-jpeg2000. Disable building the corresponding feature even if the development libraries are
present on the building machine.

• Build flags: --enable-zlib, --enable-jpeg, --enable-tiff, --enable-freetype,
--enable-tcl, --enable-tk, --enable-lcms, --enable-webp, --enable-webpmux,
--enable-jpeg2000. Require that the corresponding feature is built. The build will raise an exception
if the libraries are not found. Webpmux (WebP metadata) relies on WebP support. Tcl and Tk also must be used
together.

Sample Usage:

$ MAX_CONCURRENCY=1 python setup.py build_ext --enable-[feature] install

or using pip:

$ pip install pillow --global-option="build_ext" --global-option="--enable-[feature]"

1.4.3 Building on OS X

Xcode is required to compile portions of Pillow. Either install the full package from the app store, or run
xcode-select --install from the command line. It may be necessary to run sudo xcodebuild
-license to accept the license prior to using the tools.

The easiest way to install external libraries is via Homebrew. After you install Homebrew, run:

$ brew install libtiff libjpeg webp little-cms2

Install Pillow with:

$ pip install Pillow

or from within the uncompressed source directory:

$ python setup.py install

1.4.4 Building on Windows

We don’t recommend trying to build on Windows. It is a maze of twisty passages, mostly dead ends. There are build
scripts and notes for the Windows build in the winbuild directory.

1.4.5 Building on FreeBSD

: Only FreeBSD 10 tested

Make sure you have Python’s development libraries installed.:

6 Chapter 1. Installation

http://brew.sh/

Pillow (PIL Fork) Documentation, 3.2.0

$ sudo pkg install python2

Or for Python 3:

$ sudo pkg install python3

Prerequisites are installed on FreeBSD 10 with:

$ sudo pkg install jpeg tiff webp lcms2 freetype2

1.4.6 Building on Linux

If you didn’t build Python from source, make sure you have Python’s development libraries installed. In Debian or
Ubuntu:

$ sudo apt-get install python-dev python-setuptools

Or for Python 3:

$ sudo apt-get install python3-dev python3-setuptools

In Fedora, the command is:

$ sudo dnf install python-devel redhat-rpm-config

: redhat-rpm-config is required on Fedora 23, but not earlier versions.

Prerequisites are installed on Ubuntu 12.04 LTS or Raspian Wheezy 7.0 with:

$ sudo apt-get install libtiff4-dev libjpeg8-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.5-dev tk8.5-dev python-tk

Prerequisites are installed on Ubuntu 14.04 LTS with:

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk

Prerequisites are installed on Fedora 23 with:

$ sudo dnf install libtiff-devel libjpeg-devel libzip-devel freetype-devel \
lcms2-devel libwebp-devel tcl-devel tk-devel

1.5 Platform Support

Current platform support for Pillow. Binary distributions are contributed for each release on a volunteer basis, but
the source should compile and run everywhere platform support is listed. In general, we aim to support all current
versions of Linux, OS X, and Windows.

: Contributors please test Pillow on your platform then update this document and send a pull request.

1.5. Platform Support 7

Pillow (PIL Fork) Documentation, 3.2.0

Operating system Supported Tested Python ver-
sions

Latest tested Pillow
version

Tested processors

Mac OS X 10.11 El
Capitan

Yes 2.7,3.3,3.4,3.5 3.1.1 x86-64

Mac OS X 10.10
Yosemite

Yes 2.7,3.3,3.4 3.0.0 x86-64

Mac OS X 10.9 Mav-
ericks

Yes 2.7,3.2,3.3,3.4 3.0.0 x86-64

Mac OS X 10.8
Mountain Lion

Yes 2.6,2.7,3.2,3.3 x86-64

Redhat Linux 6 Yes 2.6 x86
CentOS 6.3 Yes 2.7,3.3 x86
Fedora 23 Yes 2.7,3.4 3.1.0 x86-64
Ubuntu Linux 10.04
LTS

Yes 2.6 2.3.0 x86,x86-64

Ubuntu Linux 12.04
LTS

Yes 2.6,2.7,3.2,3.3,3.4,3.5
PyPy2.4,PyPy3,v2.3
2.7,3.2

3.1.0
2.6.1

x86,x86-64
ppc

Ubuntu Linux 14.04
LTS

Yes 2.7,3.4 3.1.0 x86-64

Debian 8.2 Jessie Yes 2.7,3.4 3.1.0 x86-64
Raspian Jessie Yes 2.7,3.4 3.1.0 arm
Gentoo Linux Yes 2.7,3.2 2.1.0 x86-64
FreeBSD 10.2 Yes 2.7,3.4 3.1.0 x86-64
Windows 7 Pro Yes 2.7,3.2,3.3 2.2.1 x86-64
Windows Server 2008
R2 Enterprise

Yes 3.3 x86-64

Windows Server 2012
R2

Yes 2.7,3.3,3.4 3.0.0 x86-64

Windows 8 Pro Yes 2.6,2.7,3.2,3.3,3.4a3 2.2.0 x86,x86-64
Windows 8.1 Pro Yes 2.6,2.7,3.2,3.3,3.4 2.4.0 x86,x86-64

1.6 Old Versions

You can download old distributions from PyPI. Only the latest major releases for Python 2.x and 3.x are visible, but
all releases are available by direct URL access e.g. https://pypi.python.org/pypi/Pillow/1.0.

8 Chapter 1. Installation

https://pypi.python.org/pypi/Pillow
https://pypi.python.org/pypi/Pillow/1.0

CHAPTER 2

Handbook

2.1 Overview

The Python Imaging Library adds image processing capabilities to your Python interpreter.

This library provides extensive file format support, an efficient internal representation, and fairly powerful image
processing capabilities.

The core image library is designed for fast access to data stored in a few basic pixel formats. It should provide a solid
foundation for a general image processing tool.

Let’s look at a few possible uses of this library.

2.1.1 Image Archives

The Python Imaging Library is ideal for image archival and batch processing applications. You can use the library to
create thumbnails, convert between file formats, print images, etc.

The current version identifies and reads a large number of formats. Write support is intentionally restricted to the most
commonly used interchange and presentation formats.

2.1.2 Image Display

The current release includes Tk PhotoImage and BitmapImage interfaces, as well as a Windows DIB
interface that can be used with PythonWin and other Windows-based toolkits. Many other GUI toolkits come
with some kind of PIL support.

For debugging, there’s also a show() method which saves an image to disk, and calls an external display utility.

2.1.3 Image Processing

The library contains basic image processing functionality, including point operations, filtering with a set of built-in
convolution kernels, and colour space conversions.

The library also supports image resizing, rotation and arbitrary affine transforms.

There’s a histogram method allowing you to pull some statistics out of an image. This can be used for automatic
contrast enhancement, and for global statistical analysis.

9

Pillow (PIL Fork) Documentation, 3.2.0

2.2 Tutorial

2.2.1 Using the Image class

The most important class in the Python Imaging Library is the Image class, defined in the module with the same
name. You can create instances of this class in several ways; either by loading images from files, processing other
images, or creating images from scratch.

To load an image from a file, use the open() function in the Image module:

>>> from PIL import Image
>>> im = Image.open("lena.ppm")

If successful, this function returns an Image object. You can now use instance attributes to examine the file contents:

>>> from __future__ import print_function
>>> print(im.format, im.size, im.mode)
PPM (512, 512) RGB

The format attribute identifies the source of an image. If the image was not read from a file, it is set to None. The
size attribute is a 2-tuple containing width and height (in pixels). The mode attribute defines the number and names of
the bands in the image, and also the pixel type and depth. Common modes are “L” (luminance) for greyscale images,
“RGB” for true color images, and “CMYK” for pre-press images.

If the file cannot be opened, an IOError exception is raised.

Once you have an instance of the Image class, you can use the methods defined by this class to process and manipulate
the image. For example, let’s display the image we just loaded:

>>> im.show()

: The standard version of show() is not very efficient, since it saves the image to a temporary file and calls the xv
utility to display the image. If you don’t have xv installed, it won’t even work. When it does work though, it is very
handy for debugging and tests.

The following sections provide an overview of the different functions provided in this library.

2.2.2 Reading and writing images

The Python Imaging Library supports a wide variety of image file formats. To read files from disk, use the open()
function in the Image module. You don’t have to know the file format to open a file. The library automatically
determines the format based on the contents of the file.

To save a file, use the save() method of the Image class. When saving files, the name becomes important. Unless
you specify the format, the library uses the filename extension to discover which file storage format to use.

Convert files to JPEG

from __future__ import print_function
import os, sys
from PIL import Image

for infile in sys.argv[1:]:
f, e = os.path.splitext(infile)

10 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

outfile = f + ".jpg"
if infile != outfile:

try:
Image.open(infile).save(outfile)

except IOError:
print("cannot convert", infile)

A second argument can be supplied to the save() method which explicitly specifies a file format. If you use a
non-standard extension, you must always specify the format this way:

Create JPEG thumbnails

from __future__ import print_function
import os, sys
from PIL import Image

size = (128, 128)

for infile in sys.argv[1:]:
outfile = os.path.splitext(infile)[0] + ".thumbnail"
if infile != outfile:

try:
im = Image.open(infile)
im.thumbnail(size)
im.save(outfile, "JPEG")

except IOError:
print("cannot create thumbnail for", infile)

It is important to note that the library doesn’t decode or load the raster data unless it really has to. When you open a
file, the file header is read to determine the file format and extract things like mode, size, and other properties required
to decode the file, but the rest of the file is not processed until later.

This means that opening an image file is a fast operation, which is independent of the file size and compression type.
Here’s a simple script to quickly identify a set of image files:

Identify Image Files

from __future__ import print_function
import sys
from PIL import Image

for infile in sys.argv[1:]:
try:

with Image.open(infile) as im:
print(infile, im.format, "%dx%d" % im.size, im.mode)

except IOError:
pass

2.2.3 Cutting, pasting, and merging images

The Image class contains methods allowing you to manipulate regions within an image. To extract a sub-rectangle
from an image, use the crop() method.

2.2. Tutorial 11

Pillow (PIL Fork) Documentation, 3.2.0

Copying a subrectangle from an image

box = (100, 100, 400, 400)
region = im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right, lower). The Python Imaging Library uses a
coordinate system with (0, 0) in the upper left corner. Also note that coordinates refer to positions between the pixels,
so the region in the above example is exactly 300x300 pixels.

The region could now be processed in a certain manner and pasted back.

Processing a subrectangle, and pasting it back

region = region.transpose(Image.ROTATE_180)
im.paste(region, box)

When pasting regions back, the size of the region must match the given region exactly. In addition, the region cannot
extend outside the image. However, the modes of the original image and the region do not need to match. If they don’t,
the region is automatically converted before being pasted (see the section on Color transforms below for details).

Here’s an additional example:

Rolling an image

def roll(image, delta):
"Roll an image sideways"

xsize, ysize = image.size

delta = delta % xsize
if delta == 0: return image

part1 = image.crop((0, 0, delta, ysize))
part2 = image.crop((delta, 0, xsize, ysize))
image.paste(part2, (0, 0, xsize-delta, ysize))
image.paste(part1, (xsize-delta, 0, xsize, ysize))

return image

For more advanced tricks, the paste method can also take a transparency mask as an optional argument. In this mask,
the value 255 indicates that the pasted image is opaque in that position (that is, the pasted image should be used as
is). The value 0 means that the pasted image is completely transparent. Values in-between indicate different levels of
transparency. For example, pasting an RGBA image and also using it as the mask would paste the opaque portion of
the image but not its transparent background.

The Python Imaging Library also allows you to work with the individual bands of an multi-band image, such as an
RGB image. The split method creates a set of new images, each containing one band from the original multi-band
image. The merge function takes a mode and a tuple of images, and combines them into a new image. The following
sample swaps the three bands of an RGB image:

Splitting and merging bands

r, g, b = im.split()
im = Image.merge("RGB", (b, g, r))

12 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

Note that for a single-band image, split() returns the image itself. To work with individual color bands, you may
want to convert the image to “RGB” first.

2.2.4 Geometrical transforms

The PIL.Image.Image class contains methods to resize() and rotate() an image. The former takes a tuple
giving the new size, the latter the angle in degrees counter-clockwise.

Simple geometry transforms

out = im.resize((128, 128))
out = im.rotate(45) # degrees counter-clockwise

To rotate the image in 90 degree steps, you can either use the rotate() method or the transpose() method. The
latter can also be used to flip an image around its horizontal or vertical axis.

Transposing an image

out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)

transpose(ROTATE) operations can also be performed identically with rotate() operations, provided the ex-
pand flag is true, to provide for the same changes to the image’s size.

A more general form of image transformations can be carried out via the transform() method.

2.2.5 Color transforms

The Python Imaging Library allows you to convert images between different pixel representations using the
convert() method.

Converting between modes

im = Image.open("lena.ppm").convert("L")

The library supports transformations between each supported mode and the “L” and “RGB” modes. To convert be-
tween other modes, you may have to use an intermediate image (typically an “RGB” image).

2.2.6 Image enhancement

The Python Imaging Library provides a number of methods and modules that can be used to enhance images.

Filters

The ImageFilter module contains a number of pre-defined enhancement filters that can be used with the
filter() method.

2.2. Tutorial 13

Pillow (PIL Fork) Documentation, 3.2.0

Applying filters

from PIL import ImageFilter
out = im.filter(ImageFilter.DETAIL)

Point Operations

The point() method can be used to translate the pixel values of an image (e.g. image contrast manipulation). In
most cases, a function object expecting one argument can be passed to this method. Each pixel is processed according
to that function:

Applying point transforms

multiply each pixel by 1.2
out = im.point(lambda i: i * 1.2)

Using the above technique, you can quickly apply any simple expression to an image. You can also combine the
point() and paste() methods to selectively modify an image:

Processing individual bands

split the image into individual bands
source = im.split()

R, G, B = 0, 1, 2

select regions where red is less than 100
mask = source[R].point(lambda i: i < 100 and 255)

process the green band
out = source[G].point(lambda i: i * 0.7)

paste the processed band back, but only where red was < 100
source[G].paste(out, None, mask)

build a new multiband image
im = Image.merge(im.mode, source)

Note the syntax used to create the mask:

imout = im.point(lambda i: expression and 255)

Python only evaluates the portion of a logical expression as is necessary to determine the outcome, and returns the
last value examined as the result of the expression. So if the expression above is false (0), Python does not look at the
second operand, and thus returns 0. Otherwise, it returns 255.

Enhancement

For more advanced image enhancement, you can use the classes in the ImageEnhance module. Once created from
an image, an enhancement object can be used to quickly try out different settings.

You can adjust contrast, brightness, color balance and sharpness in this way.

14 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

Enhancing images

from PIL import ImageEnhance

enh = ImageEnhance.Contrast(im)
enh.enhance(1.3).show("30% more contrast")

2.2.7 Image sequences

The Python Imaging Library contains some basic support for image sequences (also called animation formats). Sup-
ported sequence formats include FLI/FLC, GIF, and a few experimental formats. TIFF files can also contain more than
one frame.

When you open a sequence file, PIL automatically loads the first frame in the sequence. You can use the seek and tell
methods to move between different frames:

Reading sequences

from PIL import Image

im = Image.open("animation.gif")
im.seek(1) # skip to the second frame

try:
while 1:

im.seek(im.tell()+1)
do something to im

except EOFError:
pass # end of sequence

As seen in this example, you’ll get an EOFError exception when the sequence ends.

Note that most drivers in the current version of the library only allow you to seek to the next frame (as in the above
example). To rewind the file, you may have to reopen it.

The following iterator class lets you use the for-statement to loop over the sequence:

A sequence iterator class

class ImageSequence:
def __init__(self, im):

self.im = im
def __getitem__(self, ix):

try:
if ix:

self.im.seek(ix)
return self.im

except EOFError:
raise IndexError # end of sequence

for frame in ImageSequence(im):
...do something to frame...

2.2. Tutorial 15

Pillow (PIL Fork) Documentation, 3.2.0

2.2.8 Postscript printing

The Python Imaging Library includes functions to print images, text and graphics on Postscript printers. Here’s a
simple example:

Drawing Postscript

from PIL import Image
from PIL import PSDraw

im = Image.open("lena.ppm")
title = "lena"
box = (1*72, 2*72, 7*72, 10*72) # in points

ps = PSDraw.PSDraw() # default is sys.stdout
ps.begin_document(title)

draw the image (75 dpi)
ps.image(box, im, 75)
ps.rectangle(box)

draw title
ps.setfont("HelveticaNarrow-Bold", 36)
ps.text((3*72, 4*72), title)

ps.end_document()

2.2.9 More on reading images

As described earlier, the open() function of the Image module is used to open an image file. In most cases, you
simply pass it the filename as an argument:

im = Image.open("lena.ppm")

If everything goes well, the result is an PIL.Image.Image object. Otherwise, an IOError exception is raised.

You can use a file-like object instead of the filename. The object must implement read(), seek() and tell()
methods, and be opened in binary mode.

Reading from an open file

fp = open("lena.ppm", "rb")
im = Image.open(fp)

To read an image from string data, use the StringIO class:

Reading from a string

import StringIO

im = Image.open(StringIO.StringIO(buffer))

16 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

Note that the library rewinds the file (using seek(0)) before reading the image header. In addition, seek will also be
used when the image data is read (by the load method). If the image file is embedded in a larger file, such as a tar file,
you can use the ContainerIO or TarIO modules to access it.

Reading from a tar archive

from PIL import TarIO

fp = TarIO.TarIO("Imaging.tar", "Imaging/test/lena.ppm")
im = Image.open(fp)

2.2.10 Controlling the decoder

Some decoders allow you to manipulate the image while reading it from a file. This can often be used to speed up
decoding when creating thumbnails (when speed is usually more important than quality) and printing to a monochrome
laser printer (when only a greyscale version of the image is needed).

The draft() method manipulates an opened but not yet loaded image so it as closely as possible matches the given
mode and size. This is done by reconfiguring the image decoder.

Reading in draft mode

from __future__ import print_function
im = Image.open(file)
print("original =", im.mode, im.size)

im.draft("L", (100, 100))
print("draft =", im.mode, im.size)

This prints something like:

original = RGB (512, 512)
draft = L (128, 128)

Note that the resulting image may not exactly match the requested mode and size. To make sure that the image is not
larger than the given size, use the thumbnail method instead.

2.3 Concepts

The Python Imaging Library handles raster images; that is, rectangles of pixel data.

2.3.1 Bands

An image can consist of one or more bands of data. The Python Imaging Library allows you to store several bands in
a single image, provided they all have the same dimensions and depth. For example, a PNG image might have ‘R’,
‘G’, ‘B’, and ‘A’ bands for the red, green, blue, and alpha transparency values. Many operations act on each band
separately, e.g., histograms. It is often useful to think of each pixel as having one value per band.

To get the number and names of bands in an image, use the getbands() method.

2.3. Concepts 17

Pillow (PIL Fork) Documentation, 3.2.0

2.3.2 Modes

The mode of an image defines the type and depth of a pixel in the image. The current release supports the following
standard modes:

• 1 (1-bit pixels, black and white, stored with one pixel per byte)

• L (8-bit pixels, black and white)

• P (8-bit pixels, mapped to any other mode using a color palette)

• RGB (3x8-bit pixels, true color)

• RGBA (4x8-bit pixels, true color with transparency mask)

• CMYK (4x8-bit pixels, color separation)

• YCbCr (3x8-bit pixels, color video format)

– Note that this refers to the JPEG, and not the ITU-R BT.2020, standard

• LAB (3x8-bit pixels, the L*a*b color space)

• HSV (3x8-bit pixels, Hue, Saturation, Value color space)

• I (32-bit signed integer pixels)

• F (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including LA (L with alpha), RGBX (true color with padding)
and RGBa (true color with premultiplied alpha). However, PIL doesn’t support user-defined modes; if you to handle
band combinations that are not listed above, use a sequence of Image objects.

You can read the mode of an image through the mode attribute. This is a string containing one of the above values.

2.3.3 Size

You can read the image size through the size attribute. This is a 2-tuple, containing the horizontal and vertical size
in pixels.

2.3.4 Coordinate System

The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0) in the upper left corner. Note that
the coordinates refer to the implied pixel corners; the centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5).

Coordinates are usually passed to the library as 2-tuples (x, y). Rectangles are represented as 4-tuples, with the upper
left corner given first. For example, a rectangle covering all of an 800x600 pixel image is written as (0, 0, 800, 600).

2.3.5 Palette

The palette mode (P) uses a color palette to define the actual color for each pixel.

2.3.6 Info

You can attach auxiliary information to an image using the info attribute. This is a dictionary object.

How such information is handled when loading and saving image files is up to the file format handler (see the chapter
on Image file formats). Most handlers add properties to the info attribute when loading an image, but ignore it when
saving images.

18 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

2.3.7 Filters

For geometry operations that may map multiple input pixels to a single output pixel, the Python Imaging Library
provides four different resampling filters.

NEAREST Pick the nearest pixel from the input image. Ignore all other input pixels.

BILINEAR For resize calculate the output pixel value using linear interpolation on all pixels that may contribute to
the output value. For other transformations linear interpolation over a 2x2 environment in the input image is
used.

BICUBIC For resize calculate the output pixel value using cubic interpolation on all pixels that may contribute to the
output value. For other transformations cubic interpolation over a 4x4 environment in the input image is used.

LANCZOS Calculate the output pixel value using a high-quality Lanczos filter (a truncated sinc) on all pixels that may
contribute to the output value. In the current version of PIL, this filter can only be used with the resize and
thumbnail methods.

1.1.3 .

2.4 Appendices

: Contributors please include appendices as needed or appropriate with your bug fixes, feature additions and tests.

2.4.1 Image file formats

The Python Imaging Library supports a wide variety of raster file formats. Over 30 different file formats can be
identified and read by the library. Write support is less extensive, but most common interchange and presentation
formats are supported.

The open() function identifies files from their contents, not their names, but the save() method looks at the name
to determine which format to use, unless the format is given explicitly.

Fully supported formats

BMP

PIL reads and writes Windows and OS/2 BMP files containing 1, L, P, or RGB data. 16-colour images are read as P
images. Run-length encoding is not supported.

The open() method sets the following info properties:

compression Set to bmp_rle if the file is run-length encoded.

EPS

PIL identifies EPS files containing image data, and can read files that contain embedded raster images (ImageData
descriptors). If Ghostscript is available, other EPS files can be read as well. The EPS driver can also write EPS
images.

If Ghostscript is available, you can call the load() method with the following parameter to affect how Ghostscript
renders the EPS

2.4. Appendices 19

Pillow (PIL Fork) Documentation, 3.2.0

scale Affects the scale of the resultant rasterized image. If the EPS suggests that the image be rendered at 100px x
100px, setting this parameter to 2 will make the Ghostscript render a 200px x 200px image instead. The relative
position of the bounding box is maintained:

im = Image.open(...)
im.size #(100,100)
im.load(scale=2)
im.size #(200,200)

GIF

PIL reads GIF87a and GIF89a versions of the GIF file format. The library writes run-length encoded files in GIF87a
by default, unless GIF89a features are used or GIF89a is already in use.

Note that GIF files are always read as grayscale (L) or palette mode (P) images.

The open() method sets the following info properties:

background Default background color (a palette color index).

duration Time between frames in an animation (in milliseconds).

transparency Transparency color index. This key is omitted if the image is not transparent.

version Version (either GIF87a or GIF89a).

duration May not be present. The time to display each frame of the GIF, in milliseconds.

loop May not be present. The number of times the GIF should loop.

Reading sequences The GIF loader supports the seek() and tell() methods. You can seek to the next frame
(im.seek(im.tell() + 1)), or rewind the file by seeking to the first frame. Random access is not supported.

im.seek() raises an EOFError if you try to seek after the last frame.

Saving sequences When calling save(), if a multiframe image is used, by default only the first frame will be
saved. To save all frames, the save_all parameter must be present and set to True.

If present, the loop parameter can be used to set the number of times the GIF should loop, and the duration
parameter can set the number of milliseconds between each frame.

Reading local images The GIF loader creates an image memory the same size as the GIF file’s logical screen size,
and pastes the actual pixel data (the local image) into this image. If you only want the actual pixel rectangle, you can
manipulate the size and tile attributes before loading the file:

im = Image.open(...)

if im.tile[0][0] == "gif":
only read the first "local image" from this GIF file
tag, (x0, y0, x1, y1), offset, extra = im.tile[0]
im.size = (x1 - x0, y1 - y0)
im.tile = [(tag, (0, 0) + im.size, offset, extra)]

20 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

ICNS

PIL reads and (OS X only) writes Mac OS X .icns files. By default, the largest available icon is read, though you
can override this by setting the size property before calling load(). The open() method sets the following info
property:

sizes A list of supported sizes found in this icon file; these are a 3-tuple, (width, height, scale), where
scale is 2 for a retina icon and 1 for a standard icon. You are permitted to use this 3-tuple format for the size
property if you set it before calling load(); after loading, the size will be reset to a 2-tuple containing pixel
dimensions (so, e.g. if you ask for (512, 512, 2), the final value of size will be (1024, 1024)).

IM

IM is a format used by LabEye and other applications based on the IFUNC image processing library. The library reads
and writes most uncompressed interchange versions of this format.

IM is the only format that can store all internal PIL formats.

JPEG

PIL reads JPEG, JFIF, and Adobe JPEG files containing L, RGB, or CMYK data. It writes standard and progressive
JFIF files.

Using the draft() method, you can speed things up by converting RGB images to L, and resize images to 1/2, 1/4
or 1/8 of their original size while loading them.

The open() method may set the following info properties if available:

jfif JFIF application marker found. If the file is not a JFIF file, this key is not present.

jfif_version A tuple representing the jfif version, (major version, minor version).

jfif_density A tuple representing the pixel density of the image, in units specified by jfif_unit.

jfif_unit Units for the jfif_density:

• 0 - No Units

• 1 - Pixels per Inch

• 2 - Pixels per Centimeter

dpi A tuple representing the reported pixel density in pixels per inch, if the file is a jfif file and the units are in inches.

adobe Adobe application marker found. If the file is not an Adobe JPEG file, this key is not present.

adobe_transform Vendor Specific Tag.

progression Indicates that this is a progressive JPEG file.

icc_profile The ICC color profile for the image.

exif Raw EXIF data from the image.

The save() method supports the following options:

quality The image quality, on a scale from 1 (worst) to 95 (best). The default is 75. Values above 95 should be
avoided; 100 disables portions of the JPEG compression algorithm, and results in large files with hardly any
gain in image quality.

optimize If present, indicates that the encoder should make an extra pass over the image in order to select optimal
encoder settings.

2.4. Appendices 21

Pillow (PIL Fork) Documentation, 3.2.0

progressive If present, indicates that this image should be stored as a progressive JPEG file.

dpi A tuple of integers representing the pixel density, (x,y).

icc_profile If present, the image is stored with the provided ICC profile. If this parameter is not provided, the image
will be saved with no profile attached. To preserve the existing profile:

im.save(filename, 'jpeg', icc_profile=im.info.get('icc_profile'))

exif If present, the image will be stored with the provided raw EXIF data.

subsampling If present, sets the subsampling for the encoder.

• keep: Only valid for JPEG files, will retain the original image setting.

• 4:4:4, 4:2:2, 4:1:1: Specific sampling values

• -1: equivalent to keep

• 0: equivalent to 4:4:4

• 1: equivalent to 4:2:2

• 2: equivalent to 4:1:1

qtables If present, sets the qtables for the encoder. This is listed as an advanced option for wizards in the JPEG
documentation. Use with caution. qtables can be one of several types of values:

• a string, naming a preset, e.g. keep, web_low, or web_high

• a list, tuple, or dictionary (with integer keys = range(len(keys))) of lists of 64 integers. There must be
between 2 and 4 tables.

2.5.0 .

: To enable JPEG support, you need to build and install the IJG JPEG library before building the Python Imaging
Library. See the distribution README for details.

JPEG 2000

2.4.0 .

PIL reads and writes JPEG 2000 files containing L, LA, RGB or RGBA data. It can also read files containing YCbCr
data, which it converts on read into RGB or RGBA depending on whether or not there is an alpha channel. PIL supports
JPEG 2000 raw codestreams (.j2k files), as well as boxed JPEG 2000 files (.j2p or .jpx files). PIL does not
support files whose components have different sampling frequencies.

When loading, if you set the mode on the image prior to the load() method being invoked, you can ask PIL to
convert the image to either RGB or RGBA rather than choosing for itself. It is also possible to set reduce to the
number of resolutions to discard (each one reduces the size of the resulting image by a factor of 2), and layers to
specify the number of quality layers to load.

The save() method supports the following options:

offset The image offset, as a tuple of integers, e.g. (16, 16)

tile_offset The tile offset, again as a 2-tuple of integers.

tile_size The tile size as a 2-tuple. If not specified, or if set to None, the image will be saved without tiling.

quality_mode Either “rates” or “dB” depending on the units you want to use to specify image quality.

22 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

quality_layers A sequence of numbers, each of which represents either an approximate size reduction (if quality
mode is “rates”) or a signal to noise ratio value in decibels. If not specified, defaults to a single layer of full
quality.

num_resolutions The number of different image resolutions to be stored (which corresponds to the number of Dis-
crete Wavelet Transform decompositions plus one).

codeblock_size The code-block size as a 2-tuple. Minimum size is 4 x 4, maximum is 1024 x 1024, with the additional
restriction that no code-block may have more than 4096 coefficients (i.e. the product of the two numbers must
be no greater than 4096).

precinct_size The precinct size as a 2-tuple. Must be a power of two along both axes, and must be greater than the
code-block size.

irreversible If True, use the lossy Irreversible Color Transformation followed by DWT 9-7. Defaults to False,
which means to use the Reversible Color Transformation with DWT 5-3.

progression Controls the progression order; must be one of "LRCP", "RLCP", "RPCL", "PCRL", "CPRL". The
letters stand for Component, Position, Resolution and Layer respectively and control the order of encoding, the
idea being that e.g. an image encoded using LRCP mode can have its quality layers decoded as they arrive at
the decoder, while one encoded using RLCP mode will have increasing resolutions decoded as they arrive, and
so on.

cinema_mode Set the encoder to produce output compliant with the digital cinema specifications. The op-
tions here are "no" (the default), "cinema2k-24" for 24fps 2K, "cinema2k-48" for 48fps 2K, and
"cinema4k-24" for 24fps 4K. Note that for compliant 2K files, at least one of your image dimensions must
match 2048 x 1080, while for compliant 4K files, at least one of the dimensions must match 4096 x 2160.

: To enable JPEG 2000 support, you need to build and install the OpenJPEG library, version 2.0.0 or higher, before
building the Python Imaging Library.

Windows users can install the OpenJPEG binaries available on the OpenJPEG website, but must add them to their
PATH in order to use PIL (if you fail to do this, you will get errors about not being able to load the _imaging DLL).

MSP

PIL identifies and reads MSP files from Windows 1 and 2. The library writes uncompressed (Windows 1) versions of
this format.

PCX

PIL reads and writes PCX files containing 1, L, P, or RGB data.

PNG

PIL identifies, reads, and writes PNG files containing 1, L, P, RGB, or RGBA data. Interlaced files are supported as of
v1.1.7.

The open() method sets the following info properties, when appropriate:

gamma Gamma, given as a floating point number.

transparency Transparency color index. This key is omitted if the image is not a transparent palette image.

2.4. Appendices 23

Pillow (PIL Fork) Documentation, 3.2.0

Open also sets Image.text to a list of the values of the tEXt, zTXt, and iTXt chunks of the PNG image.
Individual compressed chunks are limited to a decompressed size of PngImagePlugin.MAX_TEXT_CHUNK, by
default 1MB, to prevent decompression bombs. Additionally, the total size of all of the text chunks is limited to
PngImagePlugin.MAX_TEXT_MEMORY, defaulting to 64MB.

The save() method supports the following options:

optimize If present, instructs the PNG writer to make the output file as small as possible. This includes extra process-
ing in order to find optimal encoder settings.

transparency For P, L, and RGB images, this option controls what color image to mark as transparent.

dpi A tuple of two numbers corresponding to the desired dpi in each direction.

pnginfo A PIL.PngImagePlugin.PngInfo instance containing text tags.

compress_level ZLIB compression level, a number between 0 and 9: 1 gives best speed, 9 gives best compression, 0
gives no compression at all. Default is 6. When optimize option is True compress_level has no effect
(it is set to 9 regardless of a value passed).

bits (experimental) For P images, this option controls how many bits to store. If omitted, the PNG writer uses 8 bits
(256 colors).

dictionary (experimental) Set the ZLIB encoder dictionary.

: To enable PNG support, you need to build and install the ZLIB compression library before building the Python
Imaging Library. See the distribution README for details.

PPM

PIL reads and writes PBM, PGM and PPM files containing 1, L or RGB data.

SPIDER

PIL reads and writes SPIDER image files of 32-bit floating point data (“F;32F”).

PIL also reads SPIDER stack files containing sequences of SPIDER images. The seek() and tell() methods are
supported, and random access is allowed.

The open() method sets the following attributes:

format Set to SPIDER

istack Set to 1 if the file is an image stack, else 0.

nimages Set to the number of images in the stack.

A convenience method, convert2byte(), is provided for converting floating point data to byte data (mode L):

im = Image.open('image001.spi').convert2byte()

Writing files in SPIDER format The extension of SPIDER files may be any 3 alphanumeric characters. Therefore
the output format must be specified explicitly:

im.save('newimage.spi', format='SPIDER')

For more information about the SPIDER image processing package, see the SPIDER homepage at Wadsworth Center.

24 Chapter 2. Handbook

http://spider.wadsworth.org/spider_doc/spider/docs/spider.html
http://www.wadsworth.org/

Pillow (PIL Fork) Documentation, 3.2.0

TIFF

PIL reads and writes TIFF files. It can read both striped and tiled images, pixel and plane interleaved multi-band
images, and either uncompressed, or Packbits, LZW, or JPEG compressed images.

If you have libtiff and its headers installed, PIL can read and write many more kinds of compressed TIFF files. If not,
PIL will always write uncompressed files.

The open() method sets the following info properties:

compression Compression mode.

2.0.0 .

dpi Image resolution as an (xdpi, ydpi) tuple, where applicable. You can use the tag attribute to get more
detailed information about the image resolution.

1.1.5 .

resolution Image resolution as an (xres, yres) tuple, where applicable. This is a measurement in whichever
unit is specified by the file.

1.1.5 .

The tag_v2 attribute contains a dictionary of TIFF metadata. The keys are numerical indexes from TAGS_V2.
Values are strings or numbers for single items, multiple values are returned in a tuple of values. Rational numbers are
returned as a IFDRational object.

3.0.0 .

For compatibility with legacy code, the tag attribute contains a dictionary of decoded TIFF fields as returned prior
to version 3.0.0. Values are returned as either strings or tuples of numeric values. Rational numbers are returned as a
tuple of (numerator, denominator).

3.0.0 .

Saving Tiff Images The save() method can take the following keyword arguments:

tiffinfo

A ImageFileDirectory_v2 object or dict object containing tiff tags and values. The
TIFF field type is autodetected for Numeric and string values, any other types require using an
ImageFileDirectory_v2 object and setting the type in tagtype with the appropriate nu-
merical value from TiffTags.TYPES.

2.3.0 .

Metadata values that are of the rational type should be passed in using a IFDRational object.

3.1.0 .

For compatibility with legacy code, a ImageFileDirectory_v1 object may be passed in this
field. However, this is deprecated.

3.0.0 .

: Only some tags are currently supported when writing using libtiff. The supported list is found in
LIBTIFF_CORE.

compression A string containing the desired compression method for the file. (valid only with libtiff installed)
Valid compression methods are: None, "tiff_ccitt", "group3", "group4", "tiff_jpeg",

2.4. Appendices 25

Pillow (PIL Fork) Documentation, 3.2.0

"tiff_adobe_deflate", "tiff_thunderscan", "tiff_deflate", "tiff_sgilog",
"tiff_sgilog24", "tiff_raw_16"

These arguments to set the tiff header fields are an alternative to using the general tags available through tiffinfo.

description

software

date_time

artist

copyright Strings

resolution_unit A string of “inch”, “centimeter” or “cm”

resolution

x_resolution

y_resolution

dpi Either a Float, 2 tuple of (numerator, denominator) or a IFDRational. Resolution implies an equal x and y
resolution, dpi also implies a unit of inches.

WebP

PIL reads and writes WebP files. The specifics of PIL’s capabilities with this format are currently undocumented.

The save() method supports the following options:

lossless If present, instructs the WEBP writer to use lossless compression.

quality Integer, 1-100, Defaults to 80. Sets the quality level for lossy compression.

icc_procfile The ICC Profile to include in the saved file. Only supported if the system webp library was built with
webpmux support.

exif The exif data to include in the saved file. Only supported if the system webp library was built with webpmux
support.

XBM

PIL reads and writes X bitmap files (mode 1).

Read-only formats

CUR

CUR is used to store cursors on Windows. The CUR decoder reads the largest available cursor. Animated cursors are
not supported.

DCX

DCX is a container file format for PCX files, defined by Intel. The DCX format is commonly used in fax applications.
The DCX decoder can read files containing 1, L, P, or RGB data.

When the file is opened, only the first image is read. You can use seek() or ImageSequence to read other images.

26 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

DDS

DDS is a popular container texture format used in video games and natively supported by DirectX. Currently, only
DXT1 and DXT5 pixel formats are supported and only in RGBA mode.

FLI, FLC

PIL reads Autodesk FLI and FLC animations.

The open() method sets the following info properties:

duration The delay (in milliseconds) between each frame.

FPX

PIL reads Kodak FlashPix files. In the current version, only the highest resolution image is read from the file, and the
viewing transform is not taken into account.

: To enable full FlashPix support, you need to build and install the IJG JPEG library before building the Python
Imaging Library. See the distribution README for details.

FTEX

3.2.0 .

The FTEX decoder reads textures used for 3D objects in Independence War 2: Edge Of Chaos. The plugin reads a
single texture per file, in the compressed and uncompressed formats.

GBR

The GBR decoder reads GIMP brush files, version 1 and 2.

The open() method sets the following info properties:

comment The brush name.

spacing The spacing between the brushes, in pixels. Version 2 only.

GD

PIL reads uncompressed GD files. Note that this file format cannot be automatically identified, so you must use
PIL.GdImageFile.open() to read such a file.

The open() method sets the following info properties:

transparency Transparency color index. This key is omitted if the image is not transparent.

2.4. Appendices 27

Pillow (PIL Fork) Documentation, 3.2.0

ICO

ICO is used to store icons on Windows. The largest available icon is read.

The save() method supports the following options:

sizes A list of sizes including in this ico file; these are a 2-tuple, (width, height); Default to [(16, 16),
(24, 24), (32, 32), (48, 48), (64, 64), (128, 128), (255, 255)]. Any size is big-
ger then the original size or 255 will be ignored.

IMT

PIL reads Image Tools images containing L data.

IPTC/NAA

PIL provides limited read support for IPTC/NAA newsphoto files.

MCIDAS

PIL identifies and reads 8-bit McIdas area files.

MIC

PIL identifies and reads Microsoft Image Composer (MIC) files. When opened, the first sprite in the file is loaded.
You can use seek() and tell() to read other sprites from the file.

MPO

Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary image when first opened. The
seek() and tell() methods may be used to read other pictures from the file. The pictures are zero-indexed and
random access is supported.

PCD

PIL reads PhotoCD files containing RGB data. By default, the 768x512 resolution is read. You can use the draft()
method to read the lower resolution versions instead, thus effectively resizing the image to 384x256 or 192x128.
Higher resolutions cannot be read by the Python Imaging Library.

PIXAR

PIL provides limited support for PIXAR raster files. The library can identify and read “dumped” RGB files.

The format code is PIXAR.

PSD

PIL identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

28 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

SGI

PIL reads uncompressed L, RGB, and RGBA files.

TGA

PIL reads 24- and 32-bit uncompressed and run-length encoded TGA files.

WAL

1.1.4 .

PIL reads Quake2 WAL texture files.

Note that this file format cannot be automatically identified, so you must use the open function in the WalImageFile
module to read files in this format.

By default, a Quake2 standard palette is attached to the texture. To override the palette, use the putpalette method.

XPM

PIL reads X pixmap files (mode P) with 256 colors or less.

The open() method sets the following info properties:

transparency Transparency color index. This key is omitted if the image is not transparent.

Write-only formats

PALM

PIL provides write-only support for PALM pixmap files.

The format code is Palm, the extension is .palm.

PDF

PIL can write PDF (Acrobat) images. Such images are written as binary PDF 1.1 files, using either JPEG or HEX
encoding depending on the image mode (and whether JPEG support is available or not).

When calling save(), if a multiframe image is used, by default, only the first image will be saved. To save all frames,
each frame to a separate page of the PDF, the save_all parameter must be present and set to True.

XV Thumbnails

PIL can read XV thumbnail files.

2.4. Appendices 29

Pillow (PIL Fork) Documentation, 3.2.0

Identify-only formats

BUFR

1.1.3 .

PIL provides a stub driver for BUFR files.

To add read or write support to your application, use PIL.BufrStubImagePlugin.register_handler().

FITS

1.1.5 .

PIL provides a stub driver for FITS files.

To add read or write support to your application, use PIL.FitsStubImagePlugin.register_handler().

GRIB

1.1.5 .

PIL provides a stub driver for GRIB files.

The driver requires the file to start with a GRIB header. If you have files with embedded GRIB data, or files with
multiple GRIB fields, your application has to seek to the header before passing the file handle to PIL.

To add read or write support to your application, use PIL.GribStubImagePlugin.register_handler().

HDF5

1.1.5 .

PIL provides a stub driver for HDF5 files.

To add read or write support to your application, use PIL.Hdf5StubImagePlugin.register_handler().

MPEG

PIL identifies MPEG files.

WMF

PIL can identify placable WMF files.

In PIL 1.1.4 and earlier, the WMF driver provides some limited rendering support, but not enough to be useful for any
real application.

In PIL 1.1.5 and later, the WMF driver is a stub driver. To add WMF read or write support to your application, use
PIL.WmfImagePlugin.register_handler() to register a WMF handler.

30 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

from PIL import Image
from PIL import WmfImagePlugin

class WmfHandler:
def open(self, im):

...
def load(self, im):

...
return image

def save(self, im, fp, filename):
...

wmf_handler = WmfHandler()

WmfImagePlugin.register_handler(wmf_handler)

im = Image.open("sample.wmf")

2.4.2 Writing Your Own File Decoder

The Python Imaging Library uses a plug-in model which allows you to add your own decoders to the library, without
any changes to the library itself. Such plug-ins usually have names like XxxImagePlugin.py, where Xxx is a
unique format name (usually an abbreviation).

: Pillow >= 2.1.0 no longer automatically imports any file in the Python path with a name ending in
ImagePlugin.py. You will need to import your decoder manually.

A decoder plug-in should contain a decoder class, based on the PIL.ImageFile.ImageFile base class. This
class should provide an _open() method, which reads the file header and sets up at least the mode and size
attributes. To be able to load the file, the method must also create a list of tile descriptors. The class must be
explicitly registered, via a call to the Image module.

For performance reasons, it is important that the _open()method quickly rejects files that do not have the appropriate
contents.

Example

The following plug-in supports a simple format, which has a 128-byte header consisting of the words “SPAM” fol-
lowed by the width, height, and pixel size in bits. The header fields are separated by spaces. The image data follows
directly after the header, and can be either bi-level, greyscale, or 24-bit true color.

SpamImagePlugin.py:

from PIL import Image, ImageFile
import string

class SpamImageFile(ImageFile.ImageFile):

format = "SPAM"
format_description = "Spam raster image"

def _open(self):

check header
header = self.fp.read(128)

2.4. Appendices 31

Pillow (PIL Fork) Documentation, 3.2.0

if header[:4] != "SPAM":
raise SyntaxError, "not a SPAM file"

header = string.split(header)

size in pixels (width, height)
self.size = int(header[1]), int(header[2])

mode setting
bits = int(header[3])
if bits == 1:

self.mode = "1"
elif bits == 8:

self.mode = "L"
elif bits == 24:

self.mode = "RGB"
else:

raise SyntaxError, "unknown number of bits"

data descriptor
self.tile = [

("raw", (0, 0) + self.size, 128, (self.mode, 0, 1))
]

Image.register_open("SPAM", SpamImageFile)

Image.register_extension("SPAM", ".spam")
Image.register_extension("SPAM", ".spa") # dos version

The format handler must always set the size and mode attributes. If these are not set, the file cannot be opened. To
simplify the decoder, the calling code considers exceptions like SyntaxError, KeyError, and IndexError, as
a failure to identify the file.

Note that the decoder must be explicitly registered using PIL.Image.register_open(). Although not required,
it is also a good idea to register any extensions used by this format.

The tile attribute

To be able to read the file as well as just identifying it, the tile attribute must also be set. This attribute consists of
a list of tile descriptors, where each descriptor specifies how data should be loaded to a given region in the image. In
most cases, only a single descriptor is used, covering the full image.

The tile descriptor is a 4-tuple with the following contents:

(decoder, region, offset, parameters)

The fields are used as follows:

decoder Specifies which decoder to use. The raw decoder used here supports uncompressed data, in a variety of
pixel formats. For more information on this decoder, see the description below.

region A 4-tuple specifying where to store data in the image.

offset Byte offset from the beginning of the file to image data.

parameters Parameters to the decoder. The contents of this field depends on the decoder specified by the first field in
the tile descriptor tuple. If the decoder doesn’t need any parameters, use None for this field.

Note that the tile attribute contains a list of tile descriptors, not just a single descriptor.

32 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

The raw decoder

The raw decoder is used to read uncompressed data from an image file. It can be used with most uncom-
pressed file formats, such as PPM, BMP, uncompressed TIFF, and many others. To use the raw decoder with the
PIL.Image.frombytes() function, use the following syntax:

image = Image.frombytes(
mode, size, data, "raw",
raw mode, stride, orientation
)

When used in a tile descriptor, the parameter field should look like:

(raw mode, stride, orientation)

The fields are used as follows:

raw mode The pixel layout used in the file, and is used to properly convert data to PIL’s internal layout. For a
summary of the available formats, see the table below.

stride The distance in bytes between two consecutive lines in the image. If 0, the image is assumed to be packed (no
padding between lines). If omitted, the stride defaults to 0.

orientation

Whether the first line in the image is the top line on the screen (1), or the bottom line (-1). If omitted, the
orientation defaults to 1.

The raw mode field is used to determine how the data should be unpacked to match PIL’s internal pixel layout. PIL
supports a large set of raw modes; for a complete list, see the table in the Unpack.c module. The following table
describes some commonly used raw modes:

mode description
1 1-bit bilevel, stored with the leftmost pixel in the most significant bit. 0 means black, 1 means white.
1;I 1-bit inverted bilevel, stored with the leftmost pixel in the most significant bit. 0 means white, 1 means

black.
1;R 1-bit reversed bilevel, stored with the leftmost pixel in the least significant bit. 0 means black, 1 means

white.
L 8-bit greyscale. 0 means black, 255 means white.
L;I 8-bit inverted greyscale. 0 means white, 255 means black.
P 8-bit palette-mapped image.
RGB 24-bit true colour, stored as (red, green, blue).
BGR 24-bit true colour, stored as (blue, green, red).
RGBX 24-bit true colour, stored as (blue, green, red, pad).
RGB;L 24-bit true colour, line interleaved (first all red pixels, the all green pixels, finally all blue pixels).

Note that for the most common cases, the raw mode is simply the same as the mode.

The Python Imaging Library supports many other decoders, including JPEG, PNG, and PackBits. For details, see the
decode.c source file, and the standard plug-in implementations provided with the library.

Decoding floating point data

PIL provides some special mechanisms to allow you to load a wide variety of formats into a mode F (floating point)
image memory.

You can use the raw decoder to read images where data is packed in any standard machine data type, using one of the
following raw modes:

2.4. Appendices 33

Pillow (PIL Fork) Documentation, 3.2.0

mode description
F 32-bit native floating point.
F;8 8-bit unsigned integer.
F;8S 8-bit signed integer.
F;16 16-bit little endian unsigned integer.
F;16S 16-bit little endian signed integer.
F;16B 16-bit big endian unsigned integer.
F;16BS 16-bit big endian signed integer.
F;16N 16-bit native unsigned integer.
F;16NS 16-bit native signed integer.
F;32 32-bit little endian unsigned integer.
F;32S 32-bit little endian signed integer.
F;32B 32-bit big endian unsigned integer.
F;32BS 32-bit big endian signed integer.
F;32N 32-bit native unsigned integer.
F;32NS 32-bit native signed integer.
F;32F 32-bit little endian floating point.
F;32BF 32-bit big endian floating point.
F;32NF 32-bit native floating point.
F;64F 64-bit little endian floating point.
F;64BF 64-bit big endian floating point.
F;64NF 64-bit native floating point.

The bit decoder

If the raw decoder cannot handle your format, PIL also provides a special “bit” decoder that can be used to read various
packed formats into a floating point image memory.

To use the bit decoder with the frombytes function, use the following syntax:

image = frombytes(
mode, size, data, "bit",
bits, pad, fill, sign, orientation
)

When used in a tile descriptor, the parameter field should look like:

(bits, pad, fill, sign, orientation)

The fields are used as follows:

bits Number of bits per pixel (2-32). No default.

pad Padding between lines, in bits. This is either 0 if there is no padding, or 8 if lines are padded to full bytes. If
omitted, the pad value defaults to 8.

fill Controls how data are added to, and stored from, the decoder bit buffer.

fill=0 Add bytes to the LSB end of the decoder buffer; store pixels from the MSB end.

fill=1 Add bytes to the MSB end of the decoder buffer; store pixels from the MSB end.

fill=2 Add bytes to the LSB end of the decoder buffer; store pixels from the LSB end.

fill=3 Add bytes to the MSB end of the decoder buffer; store pixels from the LSB end.

If omitted, the fill order defaults to 0.

sign If non-zero, bit fields are sign extended. If zero or omitted, bit fields are unsigned.

34 Chapter 2. Handbook

Pillow (PIL Fork) Documentation, 3.2.0

orientation Whether the first line in the image is the top line on the screen (1), or the bottom line (-1). If omitted, the
orientation defaults to 1.

2.4. Appendices 35

Pillow (PIL Fork) Documentation, 3.2.0

36 Chapter 2. Handbook

CHAPTER 3

Reference

3.1 Image Module

The Image module provides a class with the same name which is used to represent a PIL image. The module also
provides a number of factory functions, including functions to load images from files, and to create new images.

3.1.1 Examples

The following script loads an image, rotates it 45 degrees, and displays it using an external viewer (usually xv on Unix,
and the paint program on Windows).

Open, rotate, and display an image (using the default viewer)

from PIL import Image
im = Image.open("bride.jpg")
im.rotate(45).show()

The following script creates nice 128x128 thumbnails of all JPEG images in the current directory.

Create thumbnails

from PIL import Image
import glob, os

size = 128, 128

for infile in glob.glob("*.jpg"):
file, ext = os.path.splitext(infile)
im = Image.open(infile)
im.thumbnail(size)
im.save(file + ".thumbnail", "JPEG")

3.1.2 Functions

PIL.Image.open(fp, mode=’r’)
Opens and identifies the given image file.

37

Pillow (PIL Fork) Documentation, 3.2.0

This is a lazy operation; this function identifies the file, but the file remains open and the actual image data is
not read from the file until you try to process the data (or call the load() method). See new().

• fp – A filename (string), pathlib.Path object or a file object. The file object must implement
read(), seek(), and tell() methods, and be opened in binary mode.

• mode – The mode. If given, this argument must be “r”.

An Image object.

IOError – If the file cannot be found, or the image cannot be opened and identified.

: To protect against potential DOS attacks caused by “decompression bombs” (i.e. malicious files
which decompress into a huge amount of data and are designed to crash or cause disruption by using up
a lot of memory), Pillow will issue a DecompressionBombWarning if the image is over a certain limit.
If desired, the warning can be turned into an error with warnings.simplefilter(’error’,
Image.DecompressionBombWarning) or suppressed entirely with
warnings.simplefilter(’ignore’, Image.DecompressionBombWarning). See
also the logging documentation to have warnings output to the logging facility instead of stderr.

Image processing

PIL.Image.alpha_composite(im1, im2)
Alpha composite im2 over im1.

• im1 – The first image. Must have mode RGBA.

• im2 – The second image. Must have mode RGBA, and the same size as the first image.

An Image object.

PIL.Image.blend(im1, im2, alpha)
Creates a new image by interpolating between two input images, using a constant alpha.:

out = image1 * (1.0 - alpha) + image2 * alpha

• im1 – The first image.

• im2 – The second image. Must have the same mode and size as the first image.

• alpha – The interpolation alpha factor. If alpha is 0.0, a copy of the first image is returned.
If alpha is 1.0, a copy of the second image is returned. There are no restrictions on the alpha
value. If necessary, the result is clipped to fit into the allowed output range.

An Image object.

PIL.Image.composite(image1, image2, mask)
Create composite image by blending images using a transparency mask.

• image1 – The first image.

• image2 – The second image. Must have the same mode and size as the first image.

38 Chapter 3. Reference

https://en.wikipedia.org/wiki/Zip_bomb
https://docs.python.org/2/library/logging.html?highlight=logging#integration-with-the-warnings-module

Pillow (PIL Fork) Documentation, 3.2.0

• mask – A mask image. This image can have mode “1”, “L”, or “RGBA”, and must have the
same size as the other two images.

PIL.Image.eval(image, *args)
Applies the function (which should take one argument) to each pixel in the given image. If the image has more
than one band, the same function is applied to each band. Note that the function is evaluated once for each
possible pixel value, so you cannot use random components or other generators.

• image – The input image.

• function – A function object, taking one integer argument.

An Image object.

PIL.Image.merge(mode, bands)
Merge a set of single band images into a new multiband image.

• mode – The mode to use for the output image. See: Modes.

• bands – A sequence containing one single-band image for each band in the output image.
All bands must have the same size.

An Image object.

Constructing images

PIL.Image.new(mode, size, color=0)
Creates a new image with the given mode and size.

• mode – The mode to use for the new image. See: Modes.

• size – A 2-tuple, containing (width, height) in pixels.

• color – What color to use for the image. Default is black. If given, this should be a single
integer or floating point value for single-band modes, and a tuple for multi-band modes (one
value per band). When creating RGB images, you can also use color strings as supported
by the ImageColor module. If the color is None, the image is not initialised.

An Image object.

PIL.Image.fromarray(obj, mode=None)
Creates an image memory from an object exporting the array interface (using the buffer protocol).

If obj is not contiguous, then the tobytes method is called and frombuffer() is used.

• obj – Object with array interface

• mode – Mode to use (will be determined from type if None) See: Modes.

An image object.

1.1.6 .

PIL.Image.frombytes(mode, size, data, decoder_name=’raw’, *args)
Creates a copy of an image memory from pixel data in a buffer.

In its simplest form, this function takes three arguments (mode, size, and unpacked pixel data).

3.1. Image Module 39

Pillow (PIL Fork) Documentation, 3.2.0

You can also use any pixel decoder supported by PIL. For more information on available decoders, see the
section Writing Your Own File Decoder.

Note that this function decodes pixel data only, not entire images. If you have an entire image in a string, wrap
it in a BytesIO object, and use open() to load it.

• mode – The image mode. See: Modes.

• size – The image size.

• data – A byte buffer containing raw data for the given mode.

• decoder_name – What decoder to use.

• args – Additional parameters for the given decoder.

An Image object.

PIL.Image.fromstring(*args, **kw)

PIL.Image.frombuffer(mode, size, data, decoder_name=’raw’, *args)
Creates an image memory referencing pixel data in a byte buffer.

This function is similar to frombytes(), but uses data in the byte buffer, where possible. This means that
changes to the original buffer object are reflected in this image). Not all modes can share memory; supported
modes include “L”, “RGBX”, “RGBA”, and “CMYK”.

Note that this function decodes pixel data only, not entire images. If you have an entire image file in a string,
wrap it in a BytesIO object, and use open() to load it.

In the current version, the default parameters used for the “raw” decoder differs from that used for
frombytes(). This is a bug, and will probably be fixed in a future release. The current release issues a
warning if you do this; to disable the warning, you should provide the full set of parameters. See below for
details.

• mode – The image mode. See: Modes.

• size – The image size.

• data – A bytes or other buffer object containing raw data for the given mode.

• decoder_name – What decoder to use.

• args – Additional parameters for the given decoder. For the default encoder (“raw”), it’s
recommended that you provide the full set of parameters:

frombuffer(mode, size, data, "raw", mode, 0, 1)

An Image object.

1.1.4 .

Registering plugins

: These functions are for use by plugin authors. Application authors can ignore them.

PIL.Image.register_open(id, factory, accept=None)
Register an image file plugin. This function should not be used in application code.

40 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

• id – An image format identifier.

• factory – An image file factory method.

• accept – An optional function that can be used to quickly reject images having another
format.

PIL.Image.register_mime(id, mimetype)
Registers an image MIME type. This function should not be used in application code.

• id – An image format identifier.

• mimetype – The image MIME type for this format.

PIL.Image.register_save(id, driver)
Registers an image save function. This function should not be used in application code.

• id – An image format identifier.

• driver – A function to save images in this format.

PIL.Image.register_extension(id, extension)
Registers an image extension. This function should not be used in application code.

• id – An image format identifier.

• extension – An extension used for this format.

3.1.3 The Image Class

class PIL.Image.Image
This class represents an image object. To create Image objects, use the appropriate factory functions. There’s
hardly ever any reason to call the Image constructor directly.

•open()

•new()

•frombytes()

An instance of the Image class has the following methods. Unless otherwise stated, all methods return a new instance
of the Image class, holding the resulting image.

Image.convert(mode=None, matrix=None, dither=None, palette=0, colors=256)
Returns a converted copy of this image. For the “P” mode, this method translates pixels through the palette. If
mode is omitted, a mode is chosen so that all information in the image and the palette can be represented without
a palette.

The current version supports all possible conversions between “L”, “RGB” and “CMYK.” The matrix argument
only supports “L” and “RGB”.

When translating a color image to black and white (mode “L”), the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

3.1. Image Module 41

Pillow (PIL Fork) Documentation, 3.2.0

The default method of converting a greyscale (“L”) or “RGB” image into a bilevel (mode “1”) image uses Floyd-
Steinberg dither to approximate the original image luminosity levels. If dither is NONE, all non-zero values are
set to 255 (white). To use other thresholds, use the point() method.

• mode – The requested mode. See: Modes.

• matrix – An optional conversion matrix. If given, this should be 4- or 12-tuple containing
floating point values.

• dither – Dithering method, used when converting from mode “RGB” to “P” or from
“RGB” or “L” to “1”. Available methods are NONE or FLOYDSTEINBERG (default).

• palette – Palette to use when converting from mode “RGB” to “P”. Available palettes
are WEB or ADAPTIVE.

• colors – Number of colors to use for the ADAPTIVE palette. Defaults to 256.

Image

An Image object.

The following example converts an RGB image (linearly calibrated according to ITU-R 709, using the D65 luminant)
to the CIE XYZ color space:

rgb2xyz = (
0.412453, 0.357580, 0.180423, 0,
0.212671, 0.715160, 0.072169, 0,
0.019334, 0.119193, 0.950227, 0)

out = im.convert("RGB", rgb2xyz)

Image.copy()
Copies this image. Use this method if you wish to paste things into an image, but still retain the original.

Image

An Image object.

Image.crop(box=None)
Returns a rectangular region from this image. The box is a 4-tuple defining the left, upper, right, and lower pixel
coordinate.

This is a lazy operation. Changes to the source image may or may not be reflected in the cropped image. To
break the connection, call the load() method on the cropped copy.

box – The crop rectangle, as a (left, upper, right, lower)-tuple.

Image

An Image object.

Image.draft(mode, size)
Configures the image file loader so it returns a version of the image that as closely as possible matches the given
mode and size. For example, you can use this method to convert a color JPEG to greyscale while loading it, or
to extract a 128x192 version from a PCD file.

Note that this method modifies the Image object in place. If the image has already been loaded, this method
has no effect.

• mode – The requested mode.

• size – The requested size.

42 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

Image.filter(filter)
Filters this image using the given filter. For a list of available filters, see the ImageFilter module.

filter – Filter kernel.

An Image object.

Image.getbands()
Returns a tuple containing the name of each band in this image. For example, getbands on an RGB image
returns (“R”, “G”, “B”).

A tuple containing band names.

tuple

Image.getbbox()
Calculates the bounding box of the non-zero regions in the image.

The bounding box is returned as a 4-tuple defining the left, upper, right, and lower pixel coordinate.
If the image is completely empty, this method returns None.

Image.getcolors(maxcolors=256)
Returns a list of colors used in this image.

maxcolors – Maximum number of colors. If this number is exceeded, this method returns None.
The default limit is 256 colors.

An unsorted list of (count, pixel) values.

Image.getdata(band=None)
Returns the contents of this image as a sequence object containing pixel values. The sequence object is flattened,
so that values for line one follow directly after the values of line zero, and so on.

Note that the sequence object returned by this method is an internal PIL data type, which only supports certain
sequence operations. To convert it to an ordinary sequence (e.g. for printing), use list(im.getdata()).

band – What band to return. The default is to return all bands. To return a single band, pass in the
index value (e.g. 0 to get the “R” band from an “RGB” image).

A sequence-like object.

Image.getextrema()
Gets the the minimum and maximum pixel values for each band in the image.

For a single-band image, a 2-tuple containing the minimum and maximum pixel value. For a multi-
band image, a tuple containing one 2-tuple for each band.

Image.getpalette()
Returns the image palette as a list.

A list of color values [r, g, b, ...], or None if the image has no palette.

Image.getpixel(xy)
Returns the pixel value at a given position.

xy – The coordinate, given as (x, y).

The pixel value. If the image is a multi-layer image, this method returns a tuple.

Image.histogram(mask=None, extrema=None)
Returns a histogram for the image. The histogram is returned as a list of pixel counts, one for each pixel value
in the source image. If the image has more than one band, the histograms for all bands are concatenated (for
example, the histogram for an “RGB” image contains 768 values).

A bilevel image (mode “1”) is treated as a greyscale (“L”) image by this method.

3.1. Image Module 43

Pillow (PIL Fork) Documentation, 3.2.0

If a mask is provided, the method returns a histogram for those parts of the image where the mask image is
non-zero. The mask image must have the same size as the image, and be either a bi-level image (mode “1”) or
a greyscale image (“L”).

mask – An optional mask.

A list containing pixel counts.

Image.offset(xoffset, yoffset=None)

Image.paste(im, box=None, mask=None)
Pastes another image into this image. The box argument is either a 2-tuple giving the upper left corner, a 4-tuple
defining the left, upper, right, and lower pixel coordinate, or None (same as (0, 0)). If a 4-tuple is given, the size
of the pasted image must match the size of the region.

If the modes don’t match, the pasted image is converted to the mode of this image (see the convert() method
for details).

Instead of an image, the source can be a integer or tuple containing pixel values. The method then fills the region
with the given color. When creating RGB images, you can also use color strings as supported by the ImageColor
module.

If a mask is given, this method updates only the regions indicated by the mask. You can use either “1”, “L” or
“RGBA” images (in the latter case, the alpha band is used as mask). Where the mask is 255, the given image is
copied as is. Where the mask is 0, the current value is preserved. Intermediate values will mix the two images
together, including their alpha channels if they have them.

See alpha_composite() if you want to combine images with respect to their alpha channels.

• im – Source image or pixel value (integer or tuple).

• box – An optional 4-tuple giving the region to paste into. If a 2-tuple is used instead, it’s
treated as the upper left corner. If omitted or None, the source is pasted into the upper left
corner.

If an image is given as the second argument and there is no third, the box defaults to (0, 0),
and the second argument is interpreted as a mask image.

• mask – An optional mask image.

Image.point(lut, mode=None)
Maps this image through a lookup table or function.

• lut – A lookup table, containing 256 (or 65336 if self.mode==”I” and mode == “L”) values
per band in the image. A function can be used instead, it should take a single argument. The
function is called once for each possible pixel value, and the resulting table is applied to all
bands of the image.

• mode – Output mode (default is same as input). In the current version, this can only be used
if the source image has mode “L” or “P”, and the output has mode “1” or the source image
mode is “I” and the output mode is “L”.

An Image object.

Image.putalpha(alpha)
Adds or replaces the alpha layer in this image. If the image does not have an alpha layer, it’s converted to “LA”
or “RGBA”. The new layer must be either “L” or “1”.

alpha – The new alpha layer. This can either be an “L” or “1” image having the same size as this
image, or an integer or other color value.

44 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

Image.putdata(data, scale=1.0, offset=0.0)
Copies pixel data to this image. This method copies data from a sequence object into the image, starting at the
upper left corner (0, 0), and continuing until either the image or the sequence ends. The scale and offset values
are used to adjust the sequence values: pixel = value*scale + offset.

• data – A sequence object.

• scale – An optional scale value. The default is 1.0.

• offset – An optional offset value. The default is 0.0.

Image.putpalette(data, rawmode=’RGB’)
Attaches a palette to this image. The image must be a “P” or “L” image, and the palette sequence must contain
768 integer values, where each group of three values represent the red, green, and blue values for the corre-
sponding pixel index. Instead of an integer sequence, you can use an 8-bit string.

data – A palette sequence (either a list or a string).

Image.putpixel(xy, value)
Modifies the pixel at the given position. The color is given as a single numerical value for single-band images,
and a tuple for multi-band images.

Note that this method is relatively slow. For more extensive changes, use paste() or the ImageDraw module
instead.

See:

•paste()

•putdata()

•ImageDraw

• xy – The pixel coordinate, given as (x, y).

• value – The pixel value.

Image.quantize(colors=256, method=None, kmeans=0, palette=None)
Convert the image to ‘P’ mode with the specified number of colors.

• colors – The desired number of colors, <= 256

• method – 0 = median cut 1 = maximum coverage 2 = fast octree

• kmeans – Integer

• palette – Quantize to the PIL.ImagingPalette palette.

A new image

Image.resize(size, resample=0)
Returns a resized copy of this image.

• size – The requested size in pixels, as a 2-tuple: (width, height).

• resample – An optional resampling filter. This can be one of PIL.Image.NEAREST
(use nearest neighbour), PIL.Image.BILINEAR (linear interpolation),
PIL.Image.BICUBIC (cubic spline interpolation), or PIL.Image.LANCZOS (a

3.1. Image Module 45

Pillow (PIL Fork) Documentation, 3.2.0

high-quality downsampling filter). If omitted, or if the image has mode “1” or “P”, it is set
PIL.Image.NEAREST.

An Image object.

Image.rotate(angle, resample=0, expand=0)
Returns a rotated copy of this image. This method returns a copy of this image, rotated the given number of
degrees counter clockwise around its centre.

• angle – In degrees counter clockwise.

• resample – An optional resampling filter. This can be one of PIL.Image.NEAREST
(use nearest neighbour), PIL.Image.BILINEAR (linear interpolation in a 2x2 environ-
ment), or PIL.Image.BICUBIC (cubic spline interpolation in a 4x4 environment). If
omitted, or if the image has mode “1” or “P”, it is set PIL.Image.NEAREST.

• expand – Optional expansion flag. If true, expands the output image to make it large
enough to hold the entire rotated image. If false or omitted, make the output image the same
size as the input image.

An Image object.

Image.save(fp, format=None, **params)
Saves this image under the given filename. If no format is specified, the format to use is determined from the
filename extension, if possible.

Keyword options can be used to provide additional instructions to the writer. If a writer doesn’t recognise an
option, it is silently ignored. The available options are described in the image format documentation for each
writer.

You can use a file object instead of a filename. In this case, you must always specify the format. The file object
must implement the seek, tell, and write methods, and be opened in binary mode.

• fp – A filename (string), pathlib.Path object or file object.

• format – Optional format override. If omitted, the format to use is determined from the
filename extension. If a file object was used instead of a filename, this parameter should
always be used.

• options – Extra parameters to the image writer.

None

• KeyError – If the output format could not be determined from the file name. Use the
format option to solve this.

• IOError – If the file could not be written. The file may have been created, and may contain
partial data.

Image.seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

Note that in the current version of the library, most sequence formats only allows you to seek to the next frame.

See tell().

frame – Frame number, starting at 0.

46 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

EOFError – If the call attempts to seek beyond the end of the sequence.

Image.show(title=None, command=None)
Displays this image. This method is mainly intended for debugging purposes.

On Unix platforms, this method saves the image to a temporary PPM file, and calls the xv utility.

On Windows, it saves the image to a temporary BMP file, and uses the standard BMP display utility to show it
(usually Paint).

• title – Optional title to use for the image window, where possible.

• command – command used to show the image

Image.split()
Split this image into individual bands. This method returns a tuple of individual image bands from an image.
For example, splitting an “RGB” image creates three new images each containing a copy of one of the original
bands (red, green, blue).

A tuple containing bands.

Image.tell()
Returns the current frame number. See seek().

Frame number, starting with 0.

Image.thumbnail(size, resample=3)
Make this image into a thumbnail. This method modifies the image to contain a thumbnail version of itself, no
larger than the given size. This method calculates an appropriate thumbnail size to preserve the aspect of the
image, calls the draft() method to configure the file reader (where applicable), and finally resizes the image.

Note that this function modifies the Image object in place. If you need to use the full resolution image as well,
apply this method to a copy() of the original image.

• size – Requested size.

• resample – Optional resampling filter. This can be one of PIL.Image.NEAREST,
PIL.Image.BILINEAR, PIL.Image.BICUBIC, or PIL.Image.LANCZOS. If
omitted, it defaults to PIL.Image.BICUBIC. (was PIL.Image.NEAREST prior to ver-
sion 2.5.0)

None

Image.tobitmap(name=’image’)
Returns the image converted to an X11 bitmap.

: This method only works for mode “1” images.

name – The name prefix to use for the bitmap variables.

A string containing an X11 bitmap.

ValueError – If the mode is not “1”

Image.tobytes(encoder_name=’raw’, *args)
Return image as a bytes object.

3.1. Image Module 47

Pillow (PIL Fork) Documentation, 3.2.0

: This method returns the raw image data from the internal storage. For compressed image data (e.g. PNG,
JPEG) use save(), with a BytesIO parameter for in-memory data.

• encoder_name – What encoder to use. The default is to use the standard “raw” encoder.

• args – Extra arguments to the encoder.

A bytes object.

Image.tostring(*args, **kw)

Image.transform(size, method, data=None, resample=0, fill=1)
Transforms this image. This method creates a new image with the given size, and the same mode as the original,
and copies data to the new image using the given transform.

• size – The output size.

• method – The transformation method. This is one of PIL.Image.EXTENT
(cut out a rectangular subregion), PIL.Image.AFFINE (affine transform),
PIL.Image.PERSPECTIVE (perspective transform), PIL.Image.QUAD (map a
quadrilateral to a rectangle), or PIL.Image.MESH (map a number of source quadrilater-
als in one operation).

• data – Extra data to the transformation method.

• resample – Optional resampling filter. It can be one of PIL.Image.NEAREST (use
nearest neighbour), PIL.Image.BILINEAR (linear interpolation in a 2x2 environment),
or PIL.Image.BICUBIC (cubic spline interpolation in a 4x4 environment). If omitted,
or if the image has mode “1” or “P”, it is set to PIL.Image.NEAREST.

An Image object.

Image.transpose(method)
Transpose image (flip or rotate in 90 degree steps)

method – One of PIL.Image.FLIP_LEFT_RIGHT, PIL.Image.FLIP_TOP_BOTTOM,
PIL.Image.ROTATE_90, PIL.Image.ROTATE_180, PIL.Image.ROTATE_270 or
PIL.Image.TRANSPOSE.

Returns a flipped or rotated copy of this image.

Image.verify()
Verifies the contents of a file. For data read from a file, this method attempts to determine if the file is broken,
without actually decoding the image data. If this method finds any problems, it raises suitable exceptions. If
you need to load the image after using this method, you must reopen the image file.

Image.fromstring(*args, **kw)

Image.load()
Allocates storage for the image and loads the pixel data. In normal cases, you don’t need to call this method,
since the Image class automatically loads an opened image when it is accessed for the first time. This method
will close the file associated with the image.

An image access object.

PixelAccess Class or PIL.PyAccess

Image.close()
Closes the file pointer, if possible.

This operation will destroy the image core and release its memory. The image data will be unusable afterward.

48 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

This function is only required to close images that have not had their file read and closed by the load()
method.

3.1.4 Attributes

Instances of the Image class have the following attributes:

PIL.Image.format
The file format of the source file. For images created by the library itself (via a factory function, or by running
a method on an existing image), this attribute is set to None.

Type string or None

PIL.Image.mode
Image mode. This is a string specifying the pixel format used by the image. Typical values are “1”, “L”, “RGB”,
or “CMYK.” See Modes for a full list.

Type string

PIL.Image.size
Image size, in pixels. The size is given as a 2-tuple (width, height).

Type (width, height)

PIL.Image.width
Image width, in pixels.

Type int

PIL.Image.height
Image height, in pixels.

Type int

PIL.Image.palette
Colour palette table, if any. If mode is “P”, this should be an instance of the ImagePalette class. Otherwise,
it should be set to None.

Type ImagePalette or None

PIL.Image.info
A dictionary holding data associated with the image. This dictionary is used by file handlers to pass on various
non-image information read from the file. See documentation for the various file handlers for details.

Most methods ignore the dictionary when returning new images; since the keys are not standardized, it’s not
possible for a method to know if the operation affects the dictionary. If you need the information later on, keep
a reference to the info dictionary returned from the open method.

Unless noted elsewhere, this dictionary does not affect saving files.

Type dict

3.2 ImageChops (“Channel Operations”) Module

The ImageChops module contains a number of arithmetical image operations, called channel operations (“chops”).
These can be used for various purposes, including special effects, image compositions, algorithmic painting, and more.

For more pre-made operations, see ImageOps.

At this time, most channel operations are only implemented for 8-bit images (e.g. “L” and “RGB”).

3.2. ImageChops (“Channel Operations”) Module 49

Pillow (PIL Fork) Documentation, 3.2.0

3.2.1 Functions

Most channel operations take one or two image arguments and returns a new image. Unless otherwise noted, the
result of a channel operation is always clipped to the range 0 to MAX (which is 255 for all modes supported by the
operations in this module).

PIL.ImageChops.add(image1, image2, scale=1.0, offset=0)
Adds two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset
to 0.0.

out = ((image1 + image2) / scale + offset)

Image

PIL.ImageChops.add_modulo(image1, image2)
Add two images, without clipping the result.

out = ((image1 + image2) % MAX)

Image

PIL.ImageChops.blend(image1, image2, alpha)
Blend images using constant transparency weight. Alias for PIL.Image.Image.blend().

Image

PIL.ImageChops.composite(image1, image2, mask)
Create composite using transparency mask. Alias for PIL.Image.Image.composite().

Image

PIL.ImageChops.constant(image, value)
Fill a channel with a given grey level.

Image

PIL.ImageChops.darker(image1, image2)
Compares the two images, pixel by pixel, and returns a new image containing the darker values.

out = min(image1, image2)

Image

PIL.ImageChops.difference(image1, image2)
Returns the absolute value of the pixel-by-pixel difference between the two images.

out = abs(image1 - image2)

Image

PIL.ImageChops.duplicate(image)
Copy a channel. Alias for PIL.Image.Image.copy().

Image

PIL.ImageChops.invert(image)
Invert an image (channel).

50 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

out = MAX - image

Image

PIL.ImageChops.lighter(image1, image2)
Compares the two images, pixel by pixel, and returns a new image containing the lighter values.

out = max(image1, image2)

Image

PIL.ImageChops.logical_and(image1, image2)
Logical AND between two images.

out = ((image1 and image2) % MAX)

Image

PIL.ImageChops.logical_or(image1, image2)
Logical OR between two images.

out = ((image1 or image2) % MAX)

Image

PIL.ImageChops.multiply(image1, image2)
Superimposes two images on top of each other.

If you multiply an image with a solid black image, the result is black. If you multiply with a solid white image,
the image is unaffected.

out = image1 * image2 / MAX

Image

PIL.ImageChops.offset(image, xoffset, yoffset=None)
Returns a copy of the image where data has been offset by the given distances. Data wraps around the edges. If
yoffset is omitted, it is assumed to be equal to xoffset.

• xoffset – The horizontal distance.

• yoffset – The vertical distance. If omitted, both distances are set to the same value.

Image

PIL.ImageChops.screen(image1, image2)
Superimposes two inverted images on top of each other.

out = MAX - ((MAX - image1) * (MAX - image2) / MAX)

Image

PIL.ImageChops.subtract(image1, image2, scale=1.0, offset=0)
Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and
offset to 0.0.

3.2. ImageChops (“Channel Operations”) Module 51

Pillow (PIL Fork) Documentation, 3.2.0

out = ((image1 - image2) / scale + offset)

Image

PIL.ImageChops.subtract_modulo(image1, image2)
Subtract two images, without clipping the result.

out = ((image1 - image2) % MAX)

Image

3.3 ImageColor Module

The ImageColor module contains color tables and converters from CSS3-style color specifiers to RGB tuples. This
module is used by PIL.Image.Image.new() and the ImageDraw module, among others.

3.3.1 Color Names

The ImageColor module supports the following string formats:

• Hexadecimal color specifiers, given as #rgb or #rrggbb. For example, #ff0000 specifies pure red.

• RGB functions, given as rgb(red, green, blue) where the color values are integers in the range 0
to 255. Alternatively, the color values can be given as three percentages (0% to 100%). For example,
rgb(255,0,0) and rgb(100%,0%,0%) both specify pure red.

• Hue-Saturation-Lightness (HSL) functions, given as hsl(hue, saturation%, lightness%) where
hue is the color given as an angle between 0 and 360 (red=0, green=120, blue=240), saturation is a value
between 0% and 100% (gray=0%, full color=100%), and lightness is a value between 0% and 100% (black=0%,
normal=50%, white=100%). For example, hsl(0,100%,50%) is pure red.

• Common HTML color names. The ImageColor module provides some 140 standard color names, based on
the colors supported by the X Window system and most web browsers. color names are case insensitive. For
example, red and Red both specify pure red.

3.3.2 Functions

PIL.ImageColor.getrgb(color)

Convert a color string to an RGB tuple. If the string cannot be parsed, this function raises a
ValueError exception.

1.1.4 .

color – A color string

(red, green, blue[, alpha])

PIL.ImageColor.getcolor(color, mode)
Same as getrgb(), but converts the RGB value to a greyscale value if the mode is not color or a palette image.
If the string cannot be parsed, this function raises a ValueError exception.

1.1.4 .

color – A color string

52 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

(graylevel [, alpha]) or (red, green, blue[, alpha])

3.4 ImageCms Module

The ImageCms module provides color profile management support using the LittleCMS2 color management engine,
based on Kevin Cazabon’s PyCMS library.

exception PIL.ImageCms.PyCMSError
(pyCMS) Exception class. This is used for all errors in the pyCMS API.

PIL.ImageCms.applyTransform(im, transform, inPlace=0)
(pyCMS) Applies a transform to a given image.

If im.mode != transform.inMode, a PyCMSError is raised.

If inPlace == TRUE and transform.inMode != transform.outMode, a PyCMSError is raised.

If im.mode, transfer.inMode, or transfer.outMode is not supported by pyCMSdll or the profiles you used for the
transform, a PyCMSError is raised.

If an error occurs while the transform is being applied, a PyCMSError is raised.

This function applies a pre-calculated transform (from ImageCms.buildTransform() or Im-
ageCms.buildTransformFromOpenProfiles()) to an image. The transform can be used for multiple images,
saving considerable calculation time if doing the same conversion multiple times.

If you want to modify im in-place instead of receiving a new image as the return value, set inPlace to TRUE.
This can only be done if transform.inMode and transform.outMode are the same, because we can’t change the
mode in-place (the buffer sizes for some modes are different). The default behavior is to return a new Image
object of the same dimensions in mode transform.outMode.

• im – A PIL Image object, and im.mode must be the same as the inMode supported by the
transform.

• transform – A valid CmsTransform class object

• inPlace – Bool (1 == True, 0 or None == False). If True, im is modified in place and
None is returned, if False, a new Image object with the transform applied is returned (and
im is not changed). The default is False.

Either None, or a new PIL Image object, depending on the value of inPlace. The profile will be
returned in the image’s info[’icc_profile’].

PyCMSError –

PIL.ImageCms.buildProofTransform(inputProfile, outputProfile, proofProfile, inMode, outMode,
renderingIntent=0, proofRenderingIntent=3, flags=16384)

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile, but tries to simulate the
result that would be obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will be
raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile, but tries to simulate
the result that would be obtained on the proofProfile device using renderingIntent and proofRenderingIntent to
determine what to do with out-of-gamut colors. This is known as “soft-proofing”. It will ONLY work for

3.4. ImageCms Module 53

Pillow (PIL Fork) Documentation, 3.2.0

converting images that are in inMode to images that are in outMode color format (PIL mode, i.e. “RGB”,
“RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a good idea of what the final
printed/displayed image would look like on the proofProfile device when it’s quicker and easier to use the output
device for judging color. Generally, this means that the output device is a monitor, or a dye-sub printer (etc.),
and the simulated device is something more expensive, complicated, or time consuming (making it difficult to
make a real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the output device to match the colors of the device
being simulated. However, when the simulated device has a much wider gamut than the output device, you may
obtain marginal results.

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use
for this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output (monitor, usually)
profile you wish to use for this transform, or a profile object

• proofProfile – String, as a valid filename path to the ICC proof profile you wish to use
for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e.
“RGB”, “RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
input->proof (simulated) transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• proofRenderingIntent – Integer (0-3) specifying the rendering intent you wish to
use for proof->output transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-...) specifying additional flags

A CmsTransform class object.

PyCMSError –

PIL.ImageCms.buildProofTransformFromOpenProfiles(inputProfile, outputProfile, proofPro-
file, inMode, outMode, rendering-
Intent=0, proofRenderingIntent=3,
flags=16384)

54 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile, but tries to simulate the
result that would be obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will be
raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile, but tries to simulate
the result that would be obtained on the proofProfile device using renderingIntent and proofRenderingIntent to
determine what to do with out-of-gamut colors. This is known as “soft-proofing”. It will ONLY work for
converting images that are in inMode to images that are in outMode color format (PIL mode, i.e. “RGB”,
“RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a good idea of what the final
printed/displayed image would look like on the proofProfile device when it’s quicker and easier to use the output
device for judging color. Generally, this means that the output device is a monitor, or a dye-sub printer (etc.),
and the simulated device is something more expensive, complicated, or time consuming (making it difficult to
make a real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the output device to match the colors of the device
being simulated. However, when the simulated device has a much wider gamut than the output device, you may
obtain marginal results.

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use
for this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output (monitor, usually)
profile you wish to use for this transform, or a profile object

• proofProfile – String, as a valid filename path to the ICC proof profile you wish to use
for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e.
“RGB”, “RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
input->proof (simulated) transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• proofRenderingIntent – Integer (0-3) specifying the rendering intent you wish to
use for proof->output transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =

3.4. ImageCms Module 55

Pillow (PIL Fork) Documentation, 3.2.0

2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-...) specifying additional flags

A CmsTransform class object.

PyCMSError –

PIL.ImageCms.buildTransform(inputProfile, outputProfile, inMode, outMode, renderingIntent=0,
flags=0)

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile. Use applyTransform to
apply the transform to a given image.

If the input or output profiles specified are not valid filenames, a PyCMSError will be raised. If an error occurs
during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will be
raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile using the rendering-
Intent to determine what to do with out-of-gamut colors. It will ONLY work for converting images that are in
inMode to images that are in outMode color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in ImageCms.profileToProfile(), so if you’re planning
on converting multiple images using the same input/output settings, this can save you time. Once you have a
transform object, it can be used with ImageCms.applyProfile() to convert images without the need to re-compute
the lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly to the transform is that it needs to keep
track of the PIL input/output modes that the transform is meant for. These attributes are stored in the “inMode”
and “outMode” attributes of the object (which can be manually overridden if you really want to, but I don’t
know of any time that would be of use, or would even work).

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use
for this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output profile you wish to
use for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e.
“RGB”, “RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-...) specifying additional flags

A CmsTransform class object.

56 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

PyCMSError –

PIL.ImageCms.buildTransformFromOpenProfiles(inputProfile, outputProfile, inMode, out-
Mode, renderingIntent=0, flags=0)

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile. Use applyTransform to
apply the transform to a given image.

If the input or output profiles specified are not valid filenames, a PyCMSError will be raised. If an error occurs
during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will be
raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile using the rendering-
Intent to determine what to do with out-of-gamut colors. It will ONLY work for converting images that are in
inMode to images that are in outMode color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in ImageCms.profileToProfile(), so if you’re planning
on converting multiple images using the same input/output settings, this can save you time. Once you have a
transform object, it can be used with ImageCms.applyProfile() to convert images without the need to re-compute
the lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly to the transform is that it needs to keep
track of the PIL input/output modes that the transform is meant for. These attributes are stored in the “inMode”
and “outMode” attributes of the object (which can be manually overridden if you really want to, but I don’t
know of any time that would be of use, or would even work).

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use
for this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output profile you wish to
use for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e.
“RGB”, “RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-...) specifying additional flags

A CmsTransform class object.

PyCMSError –

PIL.ImageCms.createProfile(colorSpace, colorTemp=-1)
(pyCMS) Creates a profile.

If colorSpace not in [”LAB”, “XYZ”, “sRGB”], a PyCMSError is raised

If using LAB and colorTemp != a positive integer, a PyCMSError is raised.

3.4. ImageCms Module 57

Pillow (PIL Fork) Documentation, 3.2.0

If an error occurs while creating the profile, a PyCMSError is raised.

Use this function to create common profiles on-the-fly instead of having to supply a profile on disk
and knowing the path to it. It returns a normal CmsProfile object that can be passed to Im-
ageCms.buildTransformFromOpenProfiles() to create a transform to apply to images.

• colorSpace – String, the color space of the profile you wish to create. Currently only
“LAB”, “XYZ”, and “sRGB” are supported.

• colorTemp – Positive integer for the white point for the profile, in degrees Kelvin (i.e.
5000, 6500, 9600, etc.). The default is for D50 illuminant if omitted (5000k). colorTemp is
ONLY applied to LAB profiles, and is ignored for XYZ and sRGB.

A CmsProfile class object

PyCMSError –

PIL.ImageCms.getDefaultIntent(profile)
(pyCMS) Gets the default intent name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the default intent, a PyCMSError is raised.

Use this function to determine the default (and usually best optimized) rendering intent for this profile. Most
profiles support multiple rendering intents, but are intended mostly for one type of conversion. If you wish to
use a different intent than returned, use ImageCms.isIntentSupported() to verify it will work first.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Integer 0-3 specifying the default rendering intent for this profile.

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION = 2
(ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC = 3
(ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

PyCMSError –

PIL.ImageCms.getOpenProfile(profileFilename)
(pyCMS) Opens an ICC profile file.

The PyCMSProfile object can be passed back into pyCMS for use in creating transforms and such (as in Im-
ageCms.buildTransformFromOpenProfiles()).

If profileFilename is not a vaild filename for an ICC profile, a PyCMSError will be raised.

profileFilename – String, as a valid filename path to the ICC profile you wish to open, or a
file-like object.

A CmsProfile class object.

PyCMSError –

PIL.ImageCms.getProfileCopyright(profile)
(pyCMS) Gets the copyright for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

58 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

If an error occurs while trying to obtain the copyright tag, a PyCMSError is raised

Use this function to obtain the information stored in the profile’s copyright tag.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

A string containing the internal profile information stored in an ICC tag.

PyCMSError –

PIL.ImageCms.getProfileDescription(profile)
(pyCMS) Gets the description for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the description tag, a PyCMSError is raised

Use this function to obtain the information stored in the profile’s description tag.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

A string containing the internal profile information stored in an ICC tag.

PyCMSError –

PIL.ImageCms.getProfileInfo(profile)
(pyCMS) Gets the internal product information for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the info tag, a PyCMSError is raised

Use this function to obtain the information stored in the profile’s info tag. This often contains details about the
profile, and how it was created, as supplied by the creator.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

A string containing the internal profile information stored in an ICC tag.

PyCMSError –

PIL.ImageCms.getProfileManufacturer(profile)
(pyCMS) Gets the manufacturer for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the manufacturer tag, a PyCMSError is raised

Use this function to obtain the information stored in the profile’s manufacturer tag.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

A string containing the internal profile information stored in an ICC tag.

PyCMSError –

PIL.ImageCms.getProfileModel(profile)
(pyCMS) Gets the model for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the model tag, a PyCMSError is raised

Use this function to obtain the information stored in the profile’s model tag.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

A string containing the internal profile information stored in an ICC tag.

PyCMSError –

3.4. ImageCms Module 59

Pillow (PIL Fork) Documentation, 3.2.0

PIL.ImageCms.getProfileName(profile)
(pyCMS) Gets the internal product name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised If an error occurs while
trying to obtain the name tag, a PyCMSError is raised.

Use this function to obtain the INTERNAL name of the profile (stored in an ICC tag in the profile itself), usually
the one used when the profile was originally created. Sometimes this tag also contains additional information
supplied by the creator.

profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

A string containing the internal name of the profile as stored in an ICC tag.

PyCMSError –

PIL.ImageCms.get_display_profile(handle=None)
(experimental) Fetches the profile for the current display device. :returns: None if the profile is not known.

PIL.ImageCms.isIntentSupported(profile, intent, direction)
(pyCMS) Checks if a given intent is supported.

Use this function to verify that you can use your desired renderingIntent with profile, and that profile can be
used for the input/output/proof profile as you desire.

Some profiles are created specifically for one “direction”, can cannot be used for others. Some profiles can only
be used for certain rendering intents... so it’s best to either verify this before trying to create a transform with
them (using this function), or catch the potential PyCMSError that will occur if they don’t support the modes
you select.

• profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC
profile.

• intent – Integer (0-3) specifying the rendering intent you wish to use with this profile

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• direction – Integer specifying if the profile is to be used for input, output, or proof

INPUT = 0 (or use ImageCms.DIRECTION_INPUT) OUTPUT = 1
(or use ImageCms.DIRECTION_OUTPUT) PROOF = 2 (or use Im-
ageCms.DIRECTION_PROOF)

1 if the intent/direction are supported, -1 if they are not.

PyCMSError –

PIL.ImageCms.profileToProfile(im, inputProfile, outputProfile, renderingIntent=0, output-
Mode=None, inPlace=0, flags=0)

(pyCMS) Applies an ICC transformation to a given image, mapping from inputProfile to outputProfile.

If the input or output profiles specified are not valid filenames, a PyCMSError will be raised. If inPlace ==
TRUE and outputMode != im.mode, a PyCMSError will be raised. If an error occurs during application of
the profiles, a PyCMSError will be raised. If outputMode is not a mode supported by the outputProfile (or by
pyCMS), a PyCMSError will be raised.

60 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

This function applies an ICC transformation to im from inputProfile’s color space to outputProfile’s color space
using the specified rendering intent to decide how to handle out-of-gamut colors.

OutputMode can be used to specify that a color mode conversion is to be done using these profiles, but the
specified profiles must be able to handle that mode. I.e., if converting im from RGB to CMYK using profiles,
the input profile must handle RGB data, and the output profile must handle CMYK data.

• im – An open PIL image object (i.e. Image.new(...) or Image.open(...), etc.)

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use
for this image, or a profile object

• outputProfile – String, as a valid filename path to the ICC output profile you wish to
use for this image, or a profile object

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (Im-
ageCms.INTENT_RELATIVE_COLORIMETRIC) INTENT_SATURATION =
2 (ImageCms.INTENT_SATURATION) INTENT_ABSOLUTE_COLORIMETRIC
= 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what they do.

• outputMode – A valid PIL mode for the output image (i.e. “RGB”, “CMYK”, etc.).
Note: if rendering the image “inPlace”, outputMode MUST be the same mode as the input,
or omitted completely. If omitted, the outputMode will be the same as the mode of the input
image (im.mode)

• inPlace – Boolean (1 = True, None or 0 = False). If True, the original image is modified
in-place, and None is returned. If False (default), a new Image object is returned with the
transform applied.

• flags – Integer (0-...) specifying additional flags

Either None or a new PIL image object, depending on value of inPlace

PyCMSError –

PIL.ImageCms.versions()
(pyCMS) Fetches versions.

3.4.1 CmsProfile

The ICC color profiles are wrapped in an instance of the class CmsProfile. The specification ICC.1:2010 contains
more information about the meaning of the values in ICC profiles.

For convenience, all XYZ-values are also given as xyY-values (so they can be easily displayed in a chromaticity
diagram, for example).

class PIL.ImageCms.CmsProfile

creation_date
Date and time this profile was first created (see 7.2.1 of ICC.1:2010).

Type datetime.datetime or None

3.4. ImageCms Module 61

Pillow (PIL Fork) Documentation, 3.2.0

version
The version number of the ICC standard that this profile follows (e.g. 2.0).

Type float

icc_version
Same as version, but in encoded format (see 7.2.4 of ICC.1:2010).

device_class
4-character string identifying the profile class. One of scnr, mntr, prtr, link, spac, abst, nmcl
(see 7.2.5 of ICC.1:2010 for details).

Type string

xcolor_space
4-character string (padded with whitespace) identifying the color space, e.g. XYZ , RGB or CMYK (see
7.2.6 of ICC.1:2010 for details).

Note that the deprecated attribute color_space contains an interpreted (non-padded) variant of this (but
can be empty on unknown input).

Type string

connection_space
4-character string (padded with whitespace) identifying the color space on the B-side of the transform (see
7.2.7 of ICC.1:2010 for details).

Note that the deprecated attribute pcs contains an interpreted (non-padded) variant of this (but can be
empty on unknown input).

Type string

header_flags
The encoded header flags of the profile (see 7.2.11 of ICC.1:2010 for details).

Type int

header_manufacturer
4-character string (padded with whitespace) identifying the device manufacturer, which shall match the
signature contained in the appropriate section of the ICC signature registry found at www.color.org (see
7.2.12 of ICC.1:2010).

Type string

header_model
4-character string (padded with whitespace) identifying the device model, which shall match the signature
contained in the appropriate section of the ICC signature registry found at www.color.org (see 7.2.13 of
ICC.1:2010).

Type string

attributes
Flags used to identify attributes unique to the particular device setup for which the profile is applicable
(see 7.2.14 of ICC.1:2010 for details).

Type int

rendering_intent
The rendering intent to use when combining this profile with another profile (usually overridden at run-
time, but provided here for DeviceLink and embedded source profiles, see 7.2.15 of ICC.1:2010).

One of ImageCms.INTENT_ABSOLUTE_COLORIMETRIC, ImageCms.INTENT_PERCEPTUAL,
ImageCms.INTENT_RELATIVE_COLORIMETRIC and ImageCms.INTENT_SATURATION.

62 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

Type int

profile_id
A sequence of 16 bytes identifying the profile (via a specially constructed MD5 sum), or 16 binary zeroes
if the profile ID has not been calculated (see 7.2.18 of ICC.1:2010).

Type bytes

copyright
The text copyright information for the profile (see 9.2.21 of ICC.1:2010).

Type unicode or None

manufacturer
The (english) display string for the device manufacturer (see 9.2.22 of ICC.1:2010).

Type unicode or None

model
The (english) display string for the device model of the device for which this profile is created (see 9.2.23
of ICC.1:2010).

Type unicode or None

profile_description
The (english) display string for the profile description (see 9.2.41 of ICC.1:2010).

Type unicode or None

target
The name of the registered characterization data set, or the measurement data for a characterization target
(see 9.2.14 of ICC.1:2010).

Type unicode or None

red_colorant
The first column in the matrix used in matrix/TRC transforms (see 9.2.44 of ICC.1:2010).

Type ((X, Y, Z), (x, y, Y)) or None

green_colorant
The second column in the matrix used in matrix/TRC transforms (see 9.2.30 of ICC.1:2010).

Type ((X, Y, Z), (x, y, Y)) or None

blue_colorant
The third column in the matrix used in matrix/TRC transforms (see 9.2.4 of ICC.1:2010).

Type ((X, Y, Z), (x, y, Y)) or None

luminance
The absolute luminance of emissive devices in candelas per square metre as described by the Y channel
(see 9.2.32 of ICC.1:2010).

Type ((X, Y, Z), (x, y, Y)) or None

chromaticity
The data of the phosphor/colorant chromaticity set used (red, green and blue channels, see 9.2.16 of
ICC.1:2010).

Type ((x, y, Y), (x, y, Y), (x, y, Y)) or None

chromatic_adaption
The chromatic adaption matrix converts a color measured using the actual illumination conditions and

3.4. ImageCms Module 63

Pillow (PIL Fork) Documentation, 3.2.0

relative to the actual adopted white, to an color relative to the PCS adopted white, with complete adap-
tation from the actual adopted white chromaticity to the PCS adopted white chromaticity (see 9.2.15 of
ICC.1:2010).

Two matrices are returned, one in (X, Y, Z) space and one in (x, y, Y) space.

Type 2-tuple of 3-tuple, the first with (X, Y, Z) and the second with (x, y, Y) values

colorant_table
This tag identifies the colorants used in the profile by a unique name and set of PCSXYZ or PCSLAB
values (see 9.2.19 of ICC.1:2010).

Type list of strings

colorant_table_out
This tag identifies the colorants used in the profile by a unique name and set of PCSLAB values (for
DeviceLink profiles only, see 9.2.19 of ICC.1:2010).

Type list of strings

colorimetric_intent
4-character string (padded with whitespace) identifying the image state of PCS colorimetry produced using
the colorimetric intent transforms (see 9.2.20 of ICC.1:2010 for details).

Type string or None

perceptual_rendering_intent_gamut
4-character string (padded with whitespace) identifying the (one) standard reference medium gamut (see
9.2.37 of ICC.1:2010 for details).

Type string or None

saturation_rendering_intent_gamut
4-character string (padded with whitespace) identifying the (one) standard reference medium gamut (see
9.2.37 of ICC.1:2010 for details).

Type string or None

technology
4-character string (padded with whitespace) identifying the device technology (see 9.2.47 of ICC.1:2010
for details).

Type string or None

media_black_point
This tag specifies the media black point and is used for generating absolute colorimetry.

This tag was available in ICC 3.2, but it is removed from version 4.

Type ((X, Y, Z), (x, y, Y)) or None

media_white_point_temperature
Calculates the white point temperature (see the LCMS documentation for more information).

Type float or None

viewing_condition
The (english) display string for the viewing conditions (see 9.2.48 of ICC.1:2010).

Type unicode or None

screening_description
The (english) display string for the screening conditions.

This tag was available in ICC 3.2, but it is removed from version 4.

64 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

Type unicode or None

red_primary
The XYZ-transformed of the RGB primary color red (1, 0, 0).

Type ((X, Y, Z), (x, y, Y)) or None

green_primary
The XYZ-transformed of the RGB primary color green (0, 1, 0).

Type ((X, Y, Z), (x, y, Y)) or None

blue_primary
The XYZ-transformed of the RGB primary color blue (0, 0, 1).

Type ((X, Y, Z), (x, y, Y)) or None

is_matrix_shaper
True if this profile is implemented as a matrix shaper (see documentation on LCMS).

Type bool

clut
Returns a dictionary of all supported intents and directions for the CLUT model.

The dictionary is indexed by intents (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC,
ImageCms.INTENT_PERCEPTUAL, ImageCms.INTENT_RELATIVE_COLORIMETRIC and
ImageCms.INTENT_SATURATION).

The values are 3-tuples indexed by directions (ImageCms.DIRECTION_INPUT,
ImageCms.DIRECTION_OUTPUT, ImageCms.DIRECTION_PROOF).

The elements of the tuple are booleans. If the value is True, that intent is supported for that direction.

Type dict of boolean 3-tuples

intent_supported
Returns a dictionary of all supported intents and directions.

The dictionary is indexed by intents (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC,
ImageCms.INTENT_PERCEPTUAL, ImageCms.INTENT_RELATIVE_COLORIMETRIC and
ImageCms.INTENT_SATURATION).

The values are 3-tuples indexed by directions (ImageCms.DIRECTION_INPUT,
ImageCms.DIRECTION_OUTPUT, ImageCms.DIRECTION_PROOF).

The elements of the tuple are booleans. If the value is True, that intent is supported for that direction.

Type dict of boolean 3-tuples

color_space
Deprecated but retained for backwards compatibility. Interpreted value of xcolor_space. May be the
empty string if value could not be decoded.

Type string

pcs
Deprecated but retained for backwards compatibility. Interpreted value of connection_space. May
be the empty string if value could not be decoded.

Type string

product_model
Deprecated but retained for backwards compatibility. ASCII-encoded value of model.

Type string

3.4. ImageCms Module 65

Pillow (PIL Fork) Documentation, 3.2.0

product_manufacturer
Deprecated but retained for backwards compatibility. ASCII-encoded value of manufacturer.

Type string

product_copyright
Deprecated but retained for backwards compatibility. ASCII-encoded value of copyright.

Type string

product_description
Deprecated but retained for backwards compatibility. ASCII-encoded value of
profile_description.

Type string

product_desc
Deprecated but retained for backwards compatibility. ASCII-encoded value of
profile_description.

This alias of product_description used to contain a derived informative string about the profile,
depending on the value of the description, copyright, manufacturer and model fields).

Type string

There is one function defined on the class:

is_intent_supported(intent, direction)
Returns if the intent is supported for the given direction.

Note that you can also get this information for all intents and directions with intent_supported.

• intent – One of ImageCms.INTENT_ABSOLUTE_COLORIMETRIC,
ImageCms.INTENT_PERCEPTUAL, ImageCms.INTENT_RELATIVE_COLORIMETRIC
and ImageCms.INTENT_SATURATION.

• direction – One of ImageCms.DIRECTION_INPUT,
ImageCms.DIRECTION_OUTPUT and ImageCms.DIRECTION_PROOF

Boolean if the intent and direction is supported.

3.5 ImageDraw Module

The ImageDraw module provide simple 2D graphics for Image objects. You can use this module to create new
images, annotate or retouch existing images, and to generate graphics on the fly for web use.

For a more advanced drawing library for PIL, see the aggdraw module.

3.5.1 Example: Draw a gray cross over an image

from PIL import Image, ImageDraw

im = Image.open("lena.pgm")

draw = ImageDraw.Draw(im)
draw.line((0, 0) + im.size, fill=128)
draw.line((0, im.size[1], im.size[0], 0), fill=128)
del draw

66 Chapter 3. Reference

http://effbot.org/zone/aggdraw-index.htm

Pillow (PIL Fork) Documentation, 3.2.0

write to stdout
im.save(sys.stdout, "PNG")

3.5.2 Concepts

Coordinates

The graphics interface uses the same coordinate system as PIL itself, with (0, 0) in the upper left corner.

Colors

To specify colors, you can use numbers or tuples just as you would use with PIL.Image.Image.new() or
PIL.Image.Image.putpixel(). For “1”, “L”, and “I” images, use integers. For “RGB” images, use a 3-tuple
containing integer values. For “F” images, use integer or floating point values.

For palette images (mode “P”), use integers as color indexes. In 1.1.4 and later, you can also use RGB 3-tuples or
color names (see below). The drawing layer will automatically assign color indexes, as long as you don’t draw with
more than 256 colors.

Color Names

See Color Names for the color names supported by Pillow.

Fonts

PIL can use bitmap fonts or OpenType/TrueType fonts.

Bitmap fonts are stored in PIL’s own format, where each font typically consists of a two files, one named .pil and the
other usually named .pbm. The former contains font metrics, the latter raster data.

To load a bitmap font, use the load functions in the ImageFont module.

To load a OpenType/TrueType font, use the truetype function in the ImageFont module. Note that this function
depends on third-party libraries, and may not available in all PIL builds.

3.5.3 Example: Draw Partial Opacity Text

from PIL import Image, ImageDraw, ImageFont
get an image
base = Image.open('Pillow/Tests/images/lena.png').convert('RGBA')

make a blank image for the text, initialized to transparent text color
txt = Image.new('RGBA', base.size, (255,255,255,0))

get a font
fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 40)
get a drawing context
d = ImageDraw.Draw(txt)

draw text, half opacity
d.text((10,10), "Hello", font=fnt, fill=(255,255,255,128))
draw text, full opacity

3.5. ImageDraw Module 67

Pillow (PIL Fork) Documentation, 3.2.0

d.text((10,60), "World", font=fnt, fill=(255,255,255,255))

out = Image.alpha_composite(base, txt)

out.show()

3.5.4 Functions

class PIL.ImageDraw.Draw(im, mode=None)
Creates an object that can be used to draw in the given image.

Note that the image will be modified in place.

• im – The image to draw in.

• mode – Optional mode to use for color values. For RGB images, this argument can be RGB
or RGBA (to blend the drawing into the image). For all other modes, this argument must be
the same as the image mode. If omitted, the mode defaults to the mode of the image.

3.5.5 Methods

PIL.ImageDraw.Draw.arc(xy, start, end, fill=None)
Draws an arc (a portion of a circle outline) between the start and end angles, inside the given bounding box.

• xy – Four points to define the bounding box. Sequence of [(x0, y0), (x1, y1)] or
[x0, y0, x1, y1].

• start – Starting angle, in degrees. Angles are measured from 3 o’clock, increasing clock-
wise.

• end – Ending angle, in degrees.

• fill – Color to use for the arc.

PIL.ImageDraw.Draw.bitmap(xy, bitmap, fill=None)
Draws a bitmap (mask) at the given position, using the current fill color for the non-zero portions. The bitmap
should be a valid transparency mask (mode “1”) or matte (mode “L” or “RGBA”).

This is equivalent to doing image.paste(xy, color, bitmap).

To paste pixel data into an image, use the paste() method on the image itself.

PIL.ImageDraw.Draw.chord(xy, start, end, fill=None, outline=None)
Same as arc(), but connects the end points with a straight line.

• xy – Four points to define the bounding box. Sequence of [(x0, y0), (x1, y1)] or
[x0, y0, x1, y1].

• outline – Color to use for the outline.

• fill – Color to use for the fill.

PIL.ImageDraw.Draw.ellipse(xy, fill=None, outline=None)
Draws an ellipse inside the given bounding box.

68 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

• xy – Four points to define the bounding box. Sequence of either [(x0, y0), (x1,
y1)] or [x0, y0, x1, y1].

• outline – Color to use for the outline.

• fill – Color to use for the fill.

PIL.ImageDraw.Draw.line(xy, fill=None, width=0)
Draws a line between the coordinates in the xy list.

• xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or numeric values like
[x, y, x, y, ...].

• fill – Color to use for the line.

• width – The line width, in pixels. Note that line joins are not handled well, so wide
polylines will not look good.

1.1.5 .

: This option was broken until version 1.1.6.

PIL.ImageDraw.Draw.pieslice(xy, start, end, fill=None, outline=None)
Same as arc, but also draws straight lines between the end points and the center of the bounding box.

• xy – Four points to define the bounding box. Sequence of [(x0, y0), (x1, y1)] or
[x0, y0, x1, y1].

• start – Starting angle, in degrees. Angles are measured from 3 o’clock, increasing clock-
wise.

• end – Ending angle, in degrees.

• fill – Color to use for the fill.

• outline – Color to use for the outline.

PIL.ImageDraw.Draw.point(xy, fill=None)
Draws points (individual pixels) at the given coordinates.

• xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or numeric values like
[x, y, x, y, ...].

• fill – Color to use for the point.

PIL.ImageDraw.Draw.polygon(xy, fill=None, outline=None)
Draws a polygon.

The polygon outline consists of straight lines between the given coordinates, plus a straight line between the last
and the first coordinate.

• xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or numeric values like
[x, y, x, y, ...].

• outline – Color to use for the outline.

3.5. ImageDraw Module 69

Pillow (PIL Fork) Documentation, 3.2.0

• fill – Color to use for the fill.

PIL.ImageDraw.Draw.rectangle(xy, fill=None, outline=None)
Draws a rectangle.

• xy – Four points to define the bounding box. Sequence of either [(x0, y0), (x1,
y1)] or [x0, y0, x1, y1]. The second point is just outside the drawn rectangle.

• outline – Color to use for the outline.

• fill – Color to use for the fill.

PIL.ImageDraw.Draw.shape(shape, fill=None, outline=None)

: This method is experimental.

Draw a shape.

PIL.ImageDraw.Draw.text(xy, text, fill=None, font=None, anchor=None, spacing=0, align=”left”)
Draws the string at the given position.

• xy – Top left corner of the text.

• text – Text to be drawn. If it contains any newline characters, the text is passed on to
multiline_text()

• fill – Color to use for the text.

• font – An ImageFont instance.

• spacing – If the text is passed on to multiline_text(), the number of pixels between lines.

• align – If the text is passed on to multiline_text(), “left”, “center” or “right”.

PIL.ImageDraw.Draw.multiline_text(xy, text, fill=None, font=None, anchor=None, spacing=0,
align=”left”)

Draws the string at the given position.

• xy – Top left corner of the text.

• text – Text to be drawn.

• fill – Color to use for the text.

• font – An ImageFont instance.

• spacing – The number of pixels between lines.

• align – “left”, “center” or “right”.

PIL.ImageDraw.Draw.textsize(text, font=None, spacing=0)
Return the size of the given string, in pixels.

• text – Text to be measured. If it contains any newline characters, the text is passed on to
multiline_textsize()

• font – An ImageFont instance.

• spacing – If the text is passed on to multiline_textsize(), the number of pixels between
lines.

70 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

PIL.ImageDraw.Draw.multiline_textsize(text, font=None, spacing=0)
Return the size of the given string, in pixels.

• text – Text to be measured.

• font – An ImageFont instance.

• spacing – The number of pixels between lines.

3.5.6 Legacy API

The Draw class contains a constructor and a number of methods which are provided for backwards compatibility only.
For this to work properly, you should either use options on the drawing primitives, or these methods. Do not mix the
old and new calling conventions.

PIL.ImageDraw.ImageDraw(image)

Draw

PIL.ImageDraw.Draw.setfont(font)
1.1.5 .

Sets the default font to use for the text method.

font – An ImageFont instance.

3.6 ImageEnhance Module

The ImageEnhance module contains a number of classes that can be used for image enhancement.

3.6.1 Example: Vary the sharpness of an image

from PIL import ImageEnhance

enhancer = ImageEnhance.Sharpness(image)

for i in range(8):
factor = i / 4.0
enhancer.enhance(factor).show("Sharpness %f" % factor)

Also see the enhancer.py demo program in the Scripts/ directory.

3.6.2 Classes

All enhancement classes implement a common interface, containing a single method:

class PIL.ImageEnhance._Enhance

enhance(factor)
Returns an enhanced image.

3.6. ImageEnhance Module 71

Pillow (PIL Fork) Documentation, 3.2.0

factor – A floating point value controlling the enhancement. Factor 1.0 always returns a
copy of the original image, lower factors mean less color (brightness, contrast, etc), and
higher values more. There are no restrictions on this value.

Image

class PIL.ImageEnhance.Color(image)
Adjust image color balance.

This class can be used to adjust the colour balance of an image, in a manner similar to the controls on a colour
TV set. An enhancement factor of 0.0 gives a black and white image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Contrast(image)
Adjust image contrast.

This class can be used to control the contrast of an image, similar to the contrast control on a TV set. An
enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Brightness(image)
Adjust image brightness.

This class can be used to control the brightness of an image. An enhancement factor of 0.0 gives a black image.
A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Sharpness(image)
Adjust image sharpness.

This class can be used to adjust the sharpness of an image. An enhancement factor of 0.0 gives a blurred image,
a factor of 1.0 gives the original image, and a factor of 2.0 gives a sharpened image.

3.7 ImageFile Module

The ImageFile module provides support functions for the image open and save functions.

In addition, it provides a Parser class which can be used to decode an image piece by piece (e.g. while receiving it
over a network connection). This class implements the same consumer interface as the standard sgmllib and xmllib
modules.

3.7.1 Example: Parse an image

from PIL import ImageFile

fp = open("lena.pgm", "rb")

p = ImageFile.Parser()

while 1:
s = fp.read(1024)
if not s:

break
p.feed(s)

im = p.close()

im.save("copy.jpg")

72 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

3.7.2 Parser

class PIL.ImageFile.Parser
Incremental image parser. This class implements the standard feed/close consumer interface.

In Python 2.x, this is an old-style class.

close()
(Consumer) Close the stream.

An image object.

IOError – If the parser failed to parse the image file either because it cannot be identified or
cannot be decoded.

feed(data)
(Consumer) Feed data to the parser.

data – A string buffer.

IOError – If the parser failed to parse the image file.

reset()
(Consumer) Reset the parser. Note that you can only call this method immediately after you’ve created a
parser; parser instances cannot be reused.

3.8 ImageFilter Module

The ImageFilter module contains definitions for a pre-defined set of filters, which can be be used with the
Image.filter() method.

3.8.1 Example: Filter an image

from PIL import ImageFilter

im1 = im.filter(ImageFilter.BLUR)

im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter) # same as MinFilter(3)

3.8.2 Filters

The current version of the library provides the following set of predefined image enhancement filters:

• BLUR

• CONTOUR

• DETAIL

• EDGE_ENHANCE

• EDGE_ENHANCE_MORE

• EMBOSS

• FIND_EDGES

3.8. ImageFilter Module 73

Pillow (PIL Fork) Documentation, 3.2.0

• SMOOTH

• SMOOTH_MORE

• SHARPEN

class PIL.ImageFilter.GaussianBlur(radius=2)
Gaussian blur filter.

radius – Blur radius.

class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)
Unsharp mask filter.

See Wikipedia’s entry on digital unsharp masking for an explanation of the parameters.

• radius – Blur Radius

• percent – Unsharp strength, in percent

• threshold – Threshold controls the minimum brightness change that will be sharpened

class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)
Create a convolution kernel. The current version only supports 3x3 and 5x5 integer and floating point kernels.

In the current version, kernels can only be applied to “L” and “RGB” images.

• size – Kernel size, given as (width, height). In the current version, this must be (3,3) or
(5,5).

• kernel – A sequence containing kernel weights.

• scale – Scale factor. If given, the result for each pixel is divided by this value. the default
is the sum of the kernel weights.

• offset – Offset. If given, this value is added to the result, after it has been divided by the
scale factor.

class PIL.ImageFilter.RankFilter(size, rank)
Create a rank filter. The rank filter sorts all pixels in a window of the given size, and returns the rank‘th value.

• size – The kernel size, in pixels.

• rank – What pixel value to pick. Use 0 for a min filter, size * size / 2 for a median
filter, size * size - 1 for a max filter, etc.

class PIL.ImageFilter.MedianFilter(size=3)
Create a median filter. Picks the median pixel value in a window with the given size.

size – The kernel size, in pixels.

class PIL.ImageFilter.MinFilter(size=3)
Create a min filter. Picks the lowest pixel value in a window with the given size.

size – The kernel size, in pixels.

class PIL.ImageFilter.MaxFilter(size=3)
Create a max filter. Picks the largest pixel value in a window with the given size.

size – The kernel size, in pixels.

74 Chapter 3. Reference

https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking

Pillow (PIL Fork) Documentation, 3.2.0

class PIL.ImageFilter.ModeFilter(size=3)
Create a mode filter. Picks the most frequent pixel value in a box with the given size. Pixel values that occur
only once or twice are ignored; if no pixel value occurs more than twice, the original pixel value is preserved.

size – The kernel size, in pixels.

3.9 ImageFont Module

The ImageFont module defines a class with the same name. Instances of this class store bitmap fonts, and are used
with the PIL.ImageDraw.Draw.text() method.

PIL uses its own font file format to store bitmap fonts. You can use the :command‘pilfont‘ utility to convert BDF and
PCF font descriptors (X window font formats) to this format.

Starting with version 1.1.4, PIL can be configured to support TrueType and OpenType fonts (as well as other font
formats supported by the FreeType library). For earlier versions, TrueType support is only available as part of the
imToolkit package

3.9.1 Example

from PIL import ImageFont, ImageDraw

draw = ImageDraw.Draw(image)

use a bitmap font
font = ImageFont.load("arial.pil")

draw.text((10, 10), "hello", font=font)

use a truetype font
font = ImageFont.truetype("arial.ttf", 15)

draw.text((10, 25), "world", font=font)

3.9.2 Functions

PIL.ImageFont.load(filename)
Load a font file. This function loads a font object from the given bitmap font file, and returns the corresponding
font object.

filename – Name of font file.

A font object.

IOError – If the file could not be read.

PIL.ImageFont.load_path(filename)
Load font file. Same as load(), but searches for a bitmap font along the Python path.

filename – Name of font file.

A font object.

IOError – If the file could not be read.

3.9. ImageFont Module 75

Pillow (PIL Fork) Documentation, 3.2.0

PIL.ImageFont.truetype(font=None, size=10, index=0, encoding=’‘)
Load a TrueType or OpenType font file, and create a font object. This function loads a font object from the
given file, and creates a font object for a font of the given size.

This function requires the _imagingft service.

• font – A truetype font file. Under Windows, if the file is not found in this filename, the
loader also looks in Windows fonts/ directory.

• size – The requested size, in points.

• index – Which font face to load (default is first available face).

• encoding – Which font encoding to use (default is Unicode). Common encodings
are “unic” (Unicode), “symb” (Microsoft Symbol), “ADOB” (Adobe Standard), “ADBE”
(Adobe Expert), and “armn” (Apple Roman). See the FreeType documentation for more
information.

A font object.

IOError – If the file could not be read.

PIL.ImageFont.load_default()
Load a “better than nothing” default font.

1.1.4 .

A font object.

3.9.3 Methods

PIL.ImageFont.ImageFont.getsize(text)

(width, height)

PIL.ImageFont.ImageFont.getmask(text, mode=’‘)
Create a bitmap for the text.

If the font uses antialiasing, the bitmap should have mode “L” and use a maximum value of 255. Otherwise, it
should have mode “1”.

• text – Text to render.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

1.1.5 .

An internal PIL storage memory instance as defined by the PIL.Image.core interface module.

3.10 ImageGrab Module (OS X and Windows only)

The ImageGrab module can be used to copy the contents of the screen or the clipboard to a PIL image memory.

76 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

: The current version works on OS X and Windows only. OS X support was added in 3.0.0.

1.1.3 .

PIL.ImageGrab.grab(bbox=None)
Take a snapshot of the screen. The pixels inside the bounding box are returned as an “RGB” image on Windows
or “RGBA” on OS X. If the bounding box is omitted, the entire screen is copied.

1.1.3 .

bbox – What region to copy. Default is the entire screen.

An image

PIL.ImageGrab.grabclipboard()
Take a snapshot of the clipboard image, if any.

1.1.4 .

On Windows, an image, a list of filenames, or None if the clipboard does not contain image data
or filenames. Note that if a list is returned, the filenames may not represent image files.

On Mac, this is not currently supported.

3.11 ImageMath Module

The ImageMath module can be used to evaluate “image expressions”. The module provides a single eval function,
which takes an expression string and one or more images.

3.11.1 Example: Using the ImageMath module

from PIL import Image, ImageMath

im1 = Image.open("image1.jpg")
im2 = Image.open("image2.jpg")

out = ImageMath.eval("convert(min(a, b), 'L')", a=im1, b=im2)
out.save("result.png")

PIL.ImageMath.eval(expression, environment)
Evaluate expression in the given environment.

In the current version, ImageMath only supports single-layer images. To process multi-band images, use the
split() method or merge() function.

• expression – A string which uses the standard Python expression syntax. In addition to
the standard operators, you can also use the functions described below.

• environment – A dictionary that maps image names to Image instances. You can use one
or more keyword arguments instead of a dictionary, as shown in the above example. Note
that the names must be valid Python identifiers.

An image, an integer value, a floating point value, or a pixel tuple, depending on the expression.

3.11. ImageMath Module 77

Pillow (PIL Fork) Documentation, 3.2.0

3.11.2 Expression syntax

Expressions are standard Python expressions, but they’re evaluated in a non-standard environment. You can use PIL
methods as usual, plus the following set of operators and functions:

Standard Operators

You can use standard arithmetical operators for addition (+), subtraction (-), multiplication (*), and division (/).

The module also supports unary minus (-), modulo (%), and power (**) operators.

Note that all operations are done with 32-bit integers or 32-bit floating point values, as necessary. For example, if you
add two 8-bit images, the result will be a 32-bit integer image. If you add a floating point constant to an 8-bit image,
the result will be a 32-bit floating point image.

You can force conversion using the convert(), float(), and int() functions described below.

Bitwise Operators

The module also provides operations that operate on individual bits. This includes and (&), or (|), and exclusive or (^).
You can also invert (~) all pixel bits.

Note that the operands are converted to 32-bit signed integers before the bitwise operation is applied. This means that
you’ll get negative values if you invert an ordinary greyscale image. You can use the and (&) operator to mask off
unwanted bits.

Bitwise operators don’t work on floating point images.

Logical Operators

Logical operators like and, or, and not work on entire images, rather than individual pixels.

An empty image (all pixels zero) is treated as false. All other images are treated as true.

Note that and and or return the last evaluated operand, while not always returns a boolean value.

Built-in Functions

These functions are applied to each individual pixel.

abs(image)
Absolute value.

convert(image, mode)
Convert image to the given mode. The mode must be given as a string constant.

float(image)
Convert image to 32-bit floating point. This is equivalent to convert(image, “F”).

int(image)
Convert image to 32-bit integer. This is equivalent to convert(image, “I”).

Note that 1-bit and 8-bit images are automatically converted to 32-bit integers if necessary to get a correct result.

max(image1, image2)
Maximum value.

78 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

min(image1, image2)
Minimum value.

3.12 ImageMorph Module

The ImageMorph module provides morphology operations on images.

class PIL.ImageMorph.LutBuilder(patterns=None, op_name=None)
object

A class for building a MorphLut from a descriptive language

The input patterns is a list of a strings sequences like these:

4:(...
.1.
111)->1

(whitespaces including linebreaks are ignored). The option 4 describes a series of symmetry operations (in this
case a 4-rotation), the pattern is described by:

•. or X - Ignore

•1 - Pixel is on

•0 - Pixel is off

The result of the operation is described after “->” string.

The default is to return the current pixel value, which is returned if no other match is found.

Operations:

•4 - 4 way rotation

•N - Negate

•1 - Dummy op for no other operation (an op must always be given)

•M - Mirroring

Example:

lb = LutBuilder(patterns = ["4:(... .1. 111)->1"])
lut = lb.build_lut()

add_patterns(patterns)

build_default_lut()

build_lut()
Compile all patterns into a morphology lut.

TBD :Build based on (file) morphlut:modify_lut

get_lut()

class PIL.ImageMorph.MorphOp(lut=None, op_name=None, patterns=None)
object

A class for binary morphological operators

3.12. ImageMorph Module 79

Pillow (PIL Fork) Documentation, 3.2.0

apply(image)
Run a single morphological operation on an image

Returns a tuple of the number of changed pixels and the morphed image

get_on_pixels(image)
Get a list of all turned on pixels in a binary image

Returns a list of tuples of (x,y) coordinates of all matching pixels.

load_lut(filename)
Load an operator from an mrl file

match(image)
Get a list of coordinates matching the morphological operation on an image.

Returns a list of tuples of (x,y) coordinates of all matching pixels.

save_lut(filename)
Save an operator to an mrl file

set_lut(lut)
Set the lut from an external source

3.13 ImageOps Module

The ImageOps module contains a number of ‘ready-made’ image processing operations. This module is somewhat
experimental, and most operators only work on L and RGB images.

Only bug fixes have been added since the Pillow fork.

1.1.3 .

PIL.ImageOps.autocontrast(image, cutoff=0, ignore=None)
Maximize (normalize) image contrast. This function calculates a histogram of the input image, removes cutoff
percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel
becomes black (0), and the lightest becomes white (255).

• image – The image to process.

• cutoff – How many percent to cut off from the histogram.

• ignore – The background pixel value (use None for no background).

An image.

PIL.ImageOps.colorize(image, black, white)
Colorize grayscale image. The black and white arguments should be RGB tuples; this function calculates a
color wedge mapping all black pixels in the source image to the first color, and all white pixels to the second
color.

• image – The image to colorize.

• black – The color to use for black input pixels.

• white – The color to use for white input pixels.

An image.

80 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

PIL.ImageOps.crop(image, border=0)
Remove border from image. The same amount of pixels are removed from all four sides. This function works
on all image modes.

:

crop()

• image – The image to crop.

• border – The number of pixels to remove.

An image.

PIL.ImageOps.deform(image, deformer, resample=2)
Deform the image.

• image – The image to deform.

• deformer – A deformer object. Any object that implements a getmesh method can be
used.

• resample – What resampling filter to use.

An image.

PIL.ImageOps.equalize(image, mask=None)
Equalize the image histogram. This function applies a non-linear mapping to the input image, in order to create
a uniform distribution of grayscale values in the output image.

• image – The image to equalize.

• mask – An optional mask. If given, only the pixels selected by the mask are included in the
analysis.

An image.

PIL.ImageOps.expand(image, border=0, fill=0)
Add border to the image

• image – The image to expand.

• border – Border width, in pixels.

• fill – Pixel fill value (a color value). Default is 0 (black).

An image.

PIL.ImageOps.fit(image, size, method=0, bleed=0.0, centering=(0.5, 0.5))
Returns a sized and cropped version of the image, cropped to the requested aspect ratio and size.

This function was contributed by Kevin Cazabon.

• size – The requested output size in pixels, given as a (width, height) tuple.

• method – What resampling method to use. Default is PIL.Image.NEAREST.

3.13. ImageOps Module 81

Pillow (PIL Fork) Documentation, 3.2.0

• bleed – Remove a border around the outside of the image (from all four edges. The value
is a decimal percentage (use 0.01 for one percent). The default value is 0 (no border).

• centering – Control the cropping position. Use (0.5, 0.5) for center cropping (e.g. if
cropping the width, take 50% off of the left side, and therefore 50% off the right side). (0.0,
0.0) will crop from the top left corner (i.e. if cropping the width, take all of the crop off of
the right side, and if cropping the height, take all of it off the bottom). (1.0, 0.0) will crop
from the bottom left corner, etc. (i.e. if cropping the width, take all of the crop off the left
side, and if cropping the height take none from the top, and therefore all off the bottom).

An image.

PIL.ImageOps.flip(image)
Flip the image vertically (top to bottom).

image – The image to flip.

An image.

PIL.ImageOps.grayscale(image)
Convert the image to grayscale.

image – The image to convert.

An image.

PIL.ImageOps.invert(image)
Invert (negate) the image.

image – The image to invert.

An image.

PIL.ImageOps.mirror(image)
Flip image horizontally (left to right).

image – The image to mirror.

An image.

PIL.ImageOps.posterize(image, bits)
Reduce the number of bits for each color channel.

• image – The image to posterize.

• bits – The number of bits to keep for each channel (1-8).

An image.

PIL.ImageOps.solarize(image, threshold=128)
Invert all pixel values above a threshold.

• image – The image to solarize.

• threshold – All pixels above this greyscale level are inverted.

An image.

82 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

3.14 ImagePalette Module

The ImagePalette module contains a class of the same name to represent the color palette of palette mapped
images.

: This module was never well-documented. It hasn’t changed since 2001, though, so it’s probably safe for you to read
the source code and puzzle out the internals if you need to.

The ImagePalette class has several methods, but they are all marked as “experimental.” Read that as you will.
The [source] link is there for a reason.

class PIL.ImagePalette.ImagePalette(mode=’RGB’, palette=None, size=0)
Color palette for palette mapped images

• mode – The mode to use for the Palette. See: Modes. Defaults to “RGB”

• palette – An optional palette. If given, it must be a bytearray, an array or a list of ints
between 0-255 and of length size times the number of colors in mode. The list must be
aligned by channel (All R values must be contiguous in the list before G and B values.)
Defaults to 0 through 255 per channel.

• size – An optional palette size. If given, it cannot be equal to or greater than 256. Defaults
to 0.

getcolor(color)
Given an rgb tuple, allocate palette entry.

: This method is experimental.

getdata()
Get palette contents in format suitable # for the low-level im.putpalette primitive.

: This method is experimental.

save(fp)
Save palette to text file.

: This method is experimental.

tobytes()
Convert palette to bytes.

: This method is experimental.

tostring()
Convert palette to bytes.

: This method is experimental.

3.14. ImagePalette Module 83

Pillow (PIL Fork) Documentation, 3.2.0

3.15 ImagePath Module

The ImagePath module is used to store and manipulate 2-dimensional vector data. Path objects can be passed to the
methods on the ImageDraw module.

class PIL.ImagePath.Path
A path object. The coordinate list can be any sequence object containing either 2-tuples [(x, y), . . .] or numeric
values [x, y, . . .].

You can also create a path object from another path object.

In 1.1.6 and later, you can also pass in any object that implements Python’s buffer API. The buffer should
provide read access, and contain C floats in machine byte order.

The path object implements most parts of the Python sequence interface, and behaves like a list of (x, y) pairs.
You can use len(), item access, and slicing as usual. However, the current version does not support slice assign-
ment, or item and slice deletion.

xy – A sequence. The sequence can contain 2-tuples [(x, y), ...] or a flat list of numbers [x, y, ...].

PIL.ImagePath.Path.compact(distance=2)
Compacts the path, by removing points that are close to each other. This method modifies the path in place, and
returns the number of points left in the path.

distance is measured as Manhattan distance and defaults to two pixels.

PIL.ImagePath.Path.getbbox()
Gets the bounding box of the path.

(x0, y0, x1, y1)

PIL.ImagePath.Path.map(function)
Maps the path through a function.

PIL.ImagePath.Path.tolist(flat=0)
Converts the path to a Python list [(x, y), . . .].

flat – By default, this function returns a list of 2-tuples [(x, y), ...]. If this argument is True, it
returns a flat list [x, y, ...] instead.

A list of coordinates. See flat.

PIL.ImagePath.Path.transform(matrix)
Transforms the path in place, using an affine transform. The matrix is a 6-tuple (a, b, c, d, e, f), and each point
is mapped as follows:

xOut = xIn * a + yIn * b + c
yOut = xIn * d + yIn * e + f

3.16 ImageQt Module

The ImageQt module contains support for creating PyQt4 or PyQt5 QImage objects from PIL images.

1.1.6 .

class ImageQt.ImageQt(image)
Creates an ImageQt object from a PIL Image object. This class is a subclass of QtGui.QImage, which means
that you can pass the resulting objects directly to PyQt4/5 API functions and methods.

84 Chapter 3. Reference

https://en.wikipedia.org/wiki/Manhattan_distance

Pillow (PIL Fork) Documentation, 3.2.0

This operation is currently supported for mode 1, L, P, RGB, and RGBA images. To handle other modes, you
need to convert the image first.

3.17 ImageSequence Module

The ImageSequence module contains a wrapper class that lets you iterate over the frames of an image sequence.

3.17.1 Extracting frames from an animation

from PIL import Image, ImageSequence

im = Image.open("animation.fli")

index = 1
for frame in ImageSequence.Iterator(im):

frame.save("frame%d.png" % index)
index = index + 1

3.17.2 The Iterator class

class PIL.ImageSequence.Iterator(im)
This class implements an iterator object that can be used to loop over an image sequence.

You can use the [] operator to access elements by index. This operator will raise an IndexError if you try
to access a nonexistent frame.

im – An image object.

3.18 ImageStat Module

The ImageStat module calculates global statistics for an image, or for a region of an image.

class PIL.ImageStat.Stat(image_or_list, mask=None)
Calculate statistics for the given image. If a mask is included, only the regions covered by that mask are included
in the statistics. You can also pass in a previously calculated histogram.

• image – A PIL image, or a precalculated histogram.

• mask – An optional mask.

extrema
Min/max values for each band in the image.

count
Total number of pixels for each band in the image.

sum
Sum of all pixels for each band in the image.

sum2
Squared sum of all pixels for each band in the image.

3.17. ImageSequence Module 85

Pillow (PIL Fork) Documentation, 3.2.0

mean
Average (arithmetic mean) pixel level for each band in the image.

median
Median pixel level for each band in the image.

rms
RMS (root-mean-square) for each band in the image.

var
Variance for each band in the image.

stddev
Standard deviation for each band in the image.

3.19 ImageTk Module

The ImageTk module contains support to create and modify Tkinter BitmapImage and PhotoImage objects from PIL
images.

For examples, see the demo programs in the Scripts directory.

class PIL.ImageTk.BitmapImage(image=None, **kw)
A Tkinter-compatible bitmap image. This can be used everywhere Tkinter expects an image object.

The given image must have mode “1”. Pixels having value 0 are treated as transparent. Options, if any, are
passed on to Tkinter. The most commonly used option is foreground, which is used to specify the color for the
non-transparent parts. See the Tkinter documentation for information on how to specify colours.

image – A PIL image.

height()
Get the height of the image.

The height, in pixels.

width()
Get the width of the image.

The width, in pixels.

class PIL.ImageTk.PhotoImage(image=None, size=None, **kw)
A Tkinter-compatible photo image. This can be used everywhere Tkinter expects an image object. If the image
is an RGBA image, pixels having alpha 0 are treated as transparent.

The constructor takes either a PIL image, or a mode and a size. Alternatively, you can use the file or data
options to initialize the photo image object.

• image – Either a PIL image, or a mode string. If a mode string is used, a size must also be
given.

• size – If the first argument is a mode string, this defines the size of the image.

• file – A filename to load the image from (using Image.open(file)).

• data – An 8-bit string containing image data (as loaded from an image file).

height()
Get the height of the image.

The height, in pixels.

86 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

paste(im, box=None)
Paste a PIL image into the photo image. Note that this can be very slow if the photo image is displayed.

• im – A PIL image. The size must match the target region. If the mode does not match, the
image is converted to the mode of the bitmap image.

• box – A 4-tuple defining the left, upper, right, and lower pixel coordinate. If None is
given instead of a tuple, all of the image is assumed.

width()
Get the width of the image.

The width, in pixels.

3.20 ImageWin Module (Windows-only)

The ImageWin module contains support to create and display images on Windows.

ImageWin can be used with PythonWin and other user interface toolkits that provide access to Windows device con-
texts or window handles. For example, Tkinter makes the window handle available via the winfo_id method:

from PIL import ImageWin

dib = ImageWin.Dib(...)

hwnd = ImageWin.HWND(widget.winfo_id())
dib.draw(hwnd, xy)

class PIL.ImageWin.Dib(image, size=None)
A Windows bitmap with the given mode and size. The mode can be one of “1”, “L”, “P”, or “RGB”.

If the display requires a palette, this constructor creates a suitable palette and associates it with the image. For
an “L” image, 128 greylevels are allocated. For an “RGB” image, a 6x6x6 colour cube is used, together with 20
greylevels.

To make sure that palettes work properly under Windows, you must call the palette method upon certain events
from Windows.

• image – Either a PIL image, or a mode string. If a mode string is used, a size must also be
given. The mode can be one of “1”, “L”, “P”, or “RGB”.

• size – If the first argument is a mode string, this defines the size of the image.

draw(handle, dst, src=None)
Same as expose, but allows you to specify where to draw the image, and what part of it to draw.

The destination and source areas are given as 4-tuple rectangles. If the source is omitted, the entire image
is copied. If the source and the destination have different sizes, the image is resized as necessary.

expose(handle)
Copy the bitmap contents to a device context.

handle – Device context (HDC), cast to a Python integer, or an HDC or HWND instance. In
PythonWin, you can use the CDC.GetHandleAttrib() to get a suitable handle.

frombytes(buffer)
Load display memory contents from byte data.

3.20. ImageWin Module (Windows-only) 87

Pillow (PIL Fork) Documentation, 3.2.0

buffer – A buffer containing display data (usually data returned from tobytes)

paste(im, box=None)
Paste a PIL image into the bitmap image.

• im – A PIL image. The size must match the target region. If the mode does not match, the
image is converted to the mode of the bitmap image.

• box – A 4-tuple defining the left, upper, right, and lower pixel coordinate. If None is
given instead of a tuple, all of the image is assumed.

query_palette(handle)
Installs the palette associated with the image in the given device context.

This method should be called upon QUERYNEWPALETTE and PALETTECHANGED events from
Windows. If this method returns a non-zero value, one or more display palette entries were changed, and
the image should be redrawn.

handle – Device context (HDC), cast to a Python integer, or an HDC or HWND instance.

A true value if one or more entries were changed (this indicates that the image should be re-
drawn).

tobytes()
Copy display memory contents to bytes object.

A bytes object containing display data.

class PIL.ImageWin.HDC(dc)
Wraps an HDC integer. The resulting object can be passed to the draw() and expose() methods.

class PIL.ImageWin.HWND(wnd)
Wraps an HWND integer. The resulting object can be passed to the draw() and expose() methods, instead
of a DC.

3.21 ExifTags Module

The ExifTags module exposes two dictionaries which provide constants and clear-text names for various well-
known EXIF tags.

class PIL.ExifTags.TAGS
The TAG dictionary maps 16-bit integer EXIF tag enumerations to descriptive string names. For instance:

>>> from PIL.ExifTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

class PIL.ExifTags.GPSTAGS
The GPSTAGS dictionary maps 8-bit integer EXIF gps enumerations to descriptive string names. For instance:

>>> from PIL.ExifTags import GPSTAGS
>>> GPSTAGS[20]
'GPSDestLatitude'

88 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

3.22 TiffTags Module

The TiffTags module exposes many of the stantard TIFF metadata tag numbers, names, and type information.

PIL.TiffTags.lookup(tag)

tag – Integer tag number

Taginfo namedtuple, From the TAGS_V2 info if possible, otherwise just populating the value and
name from TAGS. If the tag is not recognized, “unknown” is returned for the name

3.1.0 .

class PIL.TiffTags.TagInfo

__init__(self, value=None, name=”unknown”, type=None, length=0, enum=None)

• value – Integer Tag Number

• name – Tag Name

• type – Integer type from PIL.TiffTags.TYPES

• length – Array length: 0 == variable, 1 == single value, n = fixed

• enum – Dict of name:integer value options for an enumeration

cvt_enum(self, value)

value – The enumerated value name

The integer corresponding to the name.

3.0.0 .

PIL.TiffTags.TAGS_V2
The TAGS_V2 dictionary maps 16-bit integer tag numbers to PIL.TagTypes.TagInfo tuples for metadata
fields defined in the TIFF spec.

3.0.0 .

PIL.TiffTags.TAGS
The TAGS dictionary maps 16-bit integer TIFF tag number to descriptive string names. For instance:

>>> from PIL.TiffTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

This dictionary contains a superset of the tags in TAGS_V2, common EXIF tags, and other well known metadata
tags.

PIL.TiffTags.TYPES
The TYPES dictionary maps the TIFF type short integer to a human readable type name.

3.23 OleFileIO Module

The OleFileIO module reads Microsoft OLE2 files (also called Structured Storage or Microsoft Compound Docu-
ment File Format), such as Microsoft Office documents, Image Composer and FlashPix files, and Outlook messages.

This module is the OleFileIO_PL project by Philippe Lagadec, v0.42, merged back into Pillow.

3.22. TiffTags Module 89

http://www.decalage.info/python/olefileio

Pillow (PIL Fork) Documentation, 3.2.0

3.23.1 How to use this module

For more information, see also the file PIL/OleFileIO.py, sample code at the end of the module itself, and docstrings
within the code.

About the structure of OLE files

An OLE file can be seen as a mini file system or a Zip archive: It contains streams of data that look like files embedded
within the OLE file. Each stream has a name. For example, the main stream of a MS Word document containing its
text is named “WordDocument”.

An OLE file can also contain storages. A storage is a folder that contains streams or other storages. For example, a
MS Word document with VBA macros has a storage called “Macros”.

Special streams can contain properties. A property is a specific value that can be used to store information such as the
metadata of a document (title, author, creation date, etc). Property stream names usually start with the character ‘05’.

For example, a typical MS Word document may look like this:

\x05DocumentSummaryInformation (stream)
\x05SummaryInformation (stream)
WordDocument (stream)
Macros (storage)

PROJECT (stream)
PROJECTwm (stream)
VBA (storage)

Module1 (stream)
ThisDocument (stream)
_VBA_PROJECT (stream)
dir (stream)

ObjectPool (storage)

Test if a file is an OLE container

Use isOleFile to check if the first bytes of the file contain the Magic for OLE files, before opening it. isOleFile returns
True if it is an OLE file, False otherwise.

assert OleFileIO.isOleFile('myfile.doc')

Open an OLE file from disk

Create an OleFileIO object with the file path as parameter:

ole = OleFileIO.OleFileIO('myfile.doc')

Open an OLE file from a file-like object

This is useful if the file is not on disk, e.g. already stored in a string or as a file-like object.

ole = OleFileIO.OleFileIO(f)

For example the code below reads a file into a string, then uses BytesIO to turn it into a file-like object.

90 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

data = open('myfile.doc', 'rb').read()
f = io.BytesIO(data) # or StringIO.StringIO for Python 2.x
ole = OleFileIO.OleFileIO(f)

How to handle malformed OLE files

By default, the parser is configured to be as robust and permissive as possible, allowing to parse most malformed
OLE files. Only fatal errors will raise an exception. It is possible to tell the parser to be more strict in order to raise
exceptions for files that do not fully conform to the OLE specifications, using the raise_defect option:

ole = OleFileIO.OleFileIO('myfile.doc', raise_defects=DEFECT_INCORRECT)

When the parsing is done, the list of non-fatal issues detected is available as a list in the parsing_issues attribute of the
OleFileIO object:

print('Non-fatal issues raised during parsing:')
if ole.parsing_issues:

for exctype, msg in ole.parsing_issues:
print('- %s: %s' % (exctype.__name__, msg))

else:
print('None')

Syntax for stream and storage path

Two different syntaxes are allowed for methods that need or return the path of streams and storages:

1. Either a list of strings including all the storages from the root up to the stream/storage name. For example a
stream called “WordDocument” at the root will have [’WordDocument’] as full path. A stream called “ThisDoc-
ument” located in the storage “Macros/VBA” will be [’Macros’, ‘VBA’, ‘ThisDocument’]. This is the original
syntax from PIL. While hard to read and not very convenient, this syntax works in all cases.

2. Or a single string with slashes to separate storage and stream names (similar to the Unix path syntax). The
previous examples would be ‘WordDocument’ and ‘Macros/VBA/ThisDocument’. This syntax is easier, but
may fail if a stream or storage name contains a slash.

Both are case-insensitive.

Switching between the two is easy:

slash_path = '/'.join(list_path)
list_path = slash_path.split('/')

Get the list of streams

listdir() returns a list of all the streams contained in the OLE file, including those stored in storages. Each stream is
listed itself as a list, as described above.

print(ole.listdir())

Sample result:

[['\x01CompObj'], ['\x05DocumentSummaryInformation'], ['\x05SummaryInformation']
, ['1Table'], ['Macros', 'PROJECT'], ['Macros', 'PROJECTwm'], ['Macros', 'VBA',
'Module1'], ['Macros', 'VBA', 'ThisDocument'], ['Macros', 'VBA', '_VBA_PROJECT']
, ['Macros', 'VBA', 'dir'], ['ObjectPool'], ['WordDocument']]

3.23. OleFileIO Module 91

Pillow (PIL Fork) Documentation, 3.2.0

As an option it is possible to choose if storages should also be listed, with or without streams:

ole.listdir (streams=False, storages=True)

Test if known streams/storages exist:

exists(path) checks if a given stream or storage exists in the OLE file.

if ole.exists('worddocument'):
print("This is a Word document.")
if ole.exists('macros/vba'):

print("This document seems to contain VBA macros.")

Read data from a stream

openstream(path) opens a stream as a file-like object.

The following example extracts the “Pictures” stream from a PPT file:

pics = ole.openstream('Pictures')
data = pics.read()

Get information about a stream/storage

Several methods can provide the size, type and timestamps of a given stream/storage:

get_size(path) returns the size of a stream in bytes:

s = ole.get_size('WordDocument')

get_type(path) returns the type of a stream/storage, as one of the following constants: STGTY_STREAM for a stream,
STGTY_STORAGE for a storage, STGTY_ROOT for the root entry, and False for a non existing path.

t = ole.get_type('WordDocument')

get_ctime(path) and get_mtime(path) return the creation and modification timestamps of a stream/storage, as a Python
datetime object with UTC timezone. Please note that these timestamps are only present if the application that created
the OLE file explicitly stored them, which is rarely the case. When not present, these methods return None.

c = ole.get_ctime('WordDocument')
m = ole.get_mtime('WordDocument')

The root storage is a special case: You can get its creation and modification timestamps using the OleFileIO.root
attribute:

c = ole.root.getctime()
m = ole.root.getmtime()

Extract metadata

get_metadata() will check if standard property streams exist, parse all the properties they contain, and return an
OleMetadata object with the found properties as attributes.

92 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

meta = ole.get_metadata()
print('Author:', meta.author)
print('Title:', meta.title)
print('Creation date:', meta.create_time)
print all metadata:
meta.dump()

Available attributes include:

codepage, title, subject, author, keywords, comments, template,
last_saved_by, revision_number, total_edit_time, last_printed, create_time,
last_saved_time, num_pages, num_words, num_chars, thumbnail,
creating_application, security, codepage_doc, category, presentation_target,
bytes, lines, paragraphs, slides, notes, hidden_slides, mm_clips,
scale_crop, heading_pairs, titles_of_parts, manager, company, links_dirty,
chars_with_spaces, unused, shared_doc, link_base, hlinks, hlinks_changed,
version, dig_sig, content_type, content_status, language, doc_version

See the source code of the OleMetadata class for more information.

Parse a property stream

get_properties(path) can be used to parse any property stream that is not handled by get_metadata. It returns a dictio-
nary indexed by integers. Each integer is the index of the property, pointing to its value. For example in the standard
property stream ‘05SummaryInformation’, the document title is property #2, and the subject is #3.

p = ole.getproperties('specialprops')

By default as in the original PIL version, timestamp properties are converted into a number of seconds since Jan
1,1601. With the option convert_time, you can obtain more convenient Python datetime objects (UTC timezone).
If some time properties should not be converted (such as total editing time in ‘05SummaryInformation’), the list of
indexes can be passed as no_conversion:

p = ole.getproperties('specialprops', convert_time=True, no_conversion=[10])

Close the OLE file

Unless your application is a simple script that terminates after processing an OLE file, do not forget to close each
OleFileIO object after parsing to close the file on disk.

ole.close()

Use OleFileIO as a script

OleFileIO can also be used as a script from the command-line to display the structure of an OLE file and its metadata,
for example:

PIL/OleFileIO.py myfile.doc

You can use the option -c to check that all streams can be read fully, and -d to generate very verbose debugging
information.

3.23. OleFileIO Module 93

Pillow (PIL Fork) Documentation, 3.2.0

3.23.2 How to contribute

The code is available in a Mercurial repository on bitbucket. You may use it to submit enhancements or to report any
issue.

If you would like to help us improve this module, or simply provide feedback, please contact me. You can help in
many ways:

• test this module on different platforms / Python versions

• find and report bugs

• improve documentation, code samples, docstrings

• write unittest test cases

• provide tricky malformed files

3.23.3 How to report bugs

To report a bug, for example a normal file which is not parsed correctly, please use the issue reporting page, or if
you prefer to do it privately, use this contact form. Please provide all the information about the context and how to
reproduce the bug.

If possible please join the debugging output of OleFileIO. For this, launch the following command :

PIL/OleFileIO.py -d -c file >debug.txt

3.23.4 Classes and Methods

class PIL.OleFileIO.OleFileIO(filename=None, raise_defects=40, write_mode=False, debug=False,
path_encoding=None)

object

OLE container object

This class encapsulates the interface to an OLE 2 structured storage file. Use the listdir() and
openstream() methods to access the contents of this file.

Object names are given as a list of strings, one for each subentry level. The root entry should be omitted. For
example, the following code extracts all image streams from a Microsoft Image Composer file:

ole = OleFileIO("fan.mic")

for entry in ole.listdir():
if entry[1:2] == "Image":

fin = ole.openstream(entry)
fout = open(entry[0:1], "wb")
while True:

s = fin.read(8192)
if not s:

break
fout.write(s)

You can use the viewer application provided with the Python Imaging Library to view the resulting files (which
happens to be standard TIFF files).

close()
close the OLE file, to release the file object

94 Chapter 3. Reference

https://bitbucket.org/decalage/olefileio_pl
http://decalage.info/contact
https://bitbucket.org/decalage/olefileio_pl/issues?status=new&status=open
http://decalage.info/contact

Pillow (PIL Fork) Documentation, 3.2.0

dumpdirectory()
Dump directory (for debugging only)

dumpfat(fat, firstindex=0)
Displays a part of FAT in human-readable form for debugging purpose

dumpsect(sector, firstindex=0)
Displays a sector in a human-readable form, for debugging purpose.

exists(filename)
Test if given filename exists as a stream or a storage in the OLE container. Note: filename is case-
insensitive.

filename – path of stream in storage tree. (see openstream for syntax)

True if object exist, else False.

get_metadata()
Parse standard properties streams, return an OleMetadata object containing all the available metadata. (also
stored in the metadata attribute of the OleFileIO object)

new in version 0.25

get_rootentry_name()
Return root entry name. Should usually be ‘Root Entry’ or ‘R’ in most implementations.

get_size(filename)
Return size of a stream in the OLE container, in bytes.

filename – path of stream in storage tree (see openstream for syntax)

size in bytes (long integer)

• IOError – if file not found

• TypeError – if this is not a stream.

get_type(filename)
Test if given filename exists as a stream or a storage in the OLE container, and return its type.

filename – path of stream in storage tree. (see openstream for syntax)

False if object does not exist, its entry type (>0) otherwise:

• STGTY_STREAM: a stream

• STGTY_STORAGE: a storage

• STGTY_ROOT: the root entry

getctime(filename)
Return creation time of a stream/storage.

filename – path of stream/storage in storage tree. (see openstream for syntax)

None if creation time is null, a python datetime object otherwise (UTC timezone)

new in version 0.26

getmtime(filename)
Return modification time of a stream/storage.

filename – path of stream/storage in storage tree. (see openstream for syntax)

3.23. OleFileIO Module 95

Pillow (PIL Fork) Documentation, 3.2.0

None if modification time is null, a python datetime object otherwise (UTC timezone)

new in version 0.26

getproperties(filename, convert_time=False, no_conversion=None)
Return properties described in substream.

• filename – path of stream in storage tree (see openstream for syntax)

• convert_time – bool, if True timestamps will be converted to Python datetime

• no_conversion – None or list of int, timestamps not to be converted (for example total
editing time is not a real timestamp)

a dictionary of values indexed by id (integer)

getsect(sect)
Read given sector from file on disk.

sect – int, sector index

a string containing the sector data.

listdir(streams=True, storages=False)
Return a list of streams and/or storages stored in this file

• streams – bool, include streams if True (True by default) - new in v0.26

• storages – bool, include storages if True (False by default) - new in v0.26 (note: the
root storage is never included)

list of stream and/or storage paths

loaddirectory(sect)
Load the directory.

sect – sector index of directory stream.

loadfat(header)
Load the FAT table.

loadfat_sect(sect)
Adds the indexes of the given sector to the FAT

sect – string containing the first FAT sector, or array of long integers

index of last FAT sector.

loadminifat()
Load the MiniFAT table.

open(filename, write_mode=False)
Open an OLE2 file in read-only or read/write mode. Read and parse the header, FAT and directory.

• filename – string-like or file-like object, OLE file to parse

– if filename is a string smaller than 1536 bytes, it is the path of the file to open. (bytes or
unicode string)

– if filename is a string longer than 1535 bytes, it is parsed as the content of an OLE file
in memory. (bytes type only)

96 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

– if filename is a file-like object (with read, seek and tell methods), it is parsed as-is.

• write_mode – bool, if True the file is opened in read/write mode instead of read-only
by default. (ignored if filename is not a path)

openstream(filename)
Open a stream as a read-only file object (BytesIO). Note: filename is case-insensitive.

filename – path of stream in storage tree (except root entry), either:

• a string using Unix path syntax, for example: ‘storage_1/storage_1.2/stream’

• or a list of storage filenames, path to the desired stream/storage. Example: [’storage_1’,
‘storage_1.2’, ‘stream’]

file object (read-only)

IOError – if filename not found, or if this is not a stream.

raise_defect(defect_level, message, exception_type=<class ‘OSError’>)
This method should be called for any defect found during file parsing. It may raise an IOError exception
according to the minimal level chosen for the OleFileIO object.

• defect_level – defect level, possible values are:

– DEFECT_UNSURE : a case which looks weird, but not sure it’s a defect

– DEFECT_POTENTIAL : a potential defect

– DEFECT_INCORRECT : an error according to specifications, but parsing can go on

– DEFECT_FATAL : an error which cannot be ignored, parsing is impossible

• message – string describing the defect, used with raised exception.

• exception_type – exception class to be raised, IOError by default

sect2array(sect)
convert a sector to an array of 32 bits unsigned integers, swapping bytes on big endian CPUs such as
PowerPC (old Macs)

write_sect(sect, data, padding=b’\x00’)
Write given sector to file on disk.

• sect – int, sector index

• data – bytes, sector data

• padding – single byte, padding character if data < sector size

write_stream(stream_name, data)
Write a stream to disk. For now, it is only possible to replace an existing stream by data of the same size.

• stream_name – path of stream in storage tree (except root entry), either:

– a string using Unix path syntax, for example: ‘storage_1/storage_1.2/stream’

– or a list of storage filenames, path to the desired stream/storage. Example: [’storage_1’,
‘storage_1.2’, ‘stream’]

• data – bytes, data to be written, must be the same size as the original stream.

3.23. OleFileIO Module 97

Pillow (PIL Fork) Documentation, 3.2.0

class PIL.OleFileIO.OleMetadata
object

class to parse and store metadata from standard properties of OLE files.

Available attributes: codepage, title, subject, author, keywords, comments, template, last_saved_by, revi-
sion_number, total_edit_time, last_printed, create_time, last_saved_time, num_pages, num_words, num_chars,
thumbnail, creating_application, security, codepage_doc, category, presentation_target, bytes, lines, para-
graphs, slides, notes, hidden_slides, mm_clips, scale_crop, heading_pairs, titles_of_parts, manager, company,
links_dirty, chars_with_spaces, unused, shared_doc, link_base, hlinks, hlinks_changed, version, dig_sig, con-
tent_type, content_status, language, doc_version

Note: an attribute is set to None when not present in the properties of the OLE file.

References for SummaryInformation stream: - http://msdn.microsoft.com/en-
us/library/dd942545.aspx - http://msdn.microsoft.com/en-us/library/dd925819%28v=office.12%29.aspx
- http://msdn.microsoft.com/en-us/library/windows/desktop/aa380376%28v=vs.85%29.aspx -
http://msdn.microsoft.com/en-us/library/aa372045.aspx - http://sedna-soft.de/summary-information-stream/ -
http://poi.apache.org/apidocs/org/apache/poi/hpsf/SummaryInformation.html

References for DocumentSummaryInformation stream: - http://msdn.microsoft.com/en-
us/library/dd945671%28v=office.12%29.aspx - http://msdn.microsoft.com/en-
us/library/windows/desktop/aa380374%28v=vs.85%29.aspx - http://poi.apache.org/apidocs/org/apache/poi/hpsf/DocumentSummaryInformation.html

new in version 0.25

DOCSUM_ATTRIBS = [’codepage_doc’, ‘category’, ‘presentation_target’, ‘bytes’, ‘lines’, ‘paragraphs’, ‘slides’, ‘notes’, ‘hidden_slides’, ‘mm_clips’, ‘scale_crop’, ‘heading_pairs’, ‘titles_of_parts’, ‘manager’, ‘company’, ‘links_dirty’, ‘chars_with_spaces’, ‘unused’, ‘shared_doc’, ‘link_base’, ‘hlinks’, ‘hlinks_changed’, ‘version’, ‘dig_sig’, ‘content_type’, ‘content_status’, ‘language’, ‘doc_version’]

SUMMARY_ATTRIBS = [’codepage’, ‘title’, ‘subject’, ‘author’, ‘keywords’, ‘comments’, ‘template’, ‘last_saved_by’, ‘revision_number’, ‘total_edit_time’, ‘last_printed’, ‘create_time’, ‘last_saved_time’, ‘num_pages’, ‘num_words’, ‘num_chars’, ‘thumbnail’, ‘creating_application’, ‘security’]

dump()
Dump all metadata, for debugging purposes.

parse_properties(olefile)
Parse standard properties of an OLE file, from the streams “SummaryInformation” and “DocumentSum-
maryInformation”, if present. Properties are converted to strings, integers or python datetime objects. If a
property is not present, its value is set to None.

PIL.OleFileIO.debug(msg)

PIL.OleFileIO.debug_pass(msg)

PIL.OleFileIO.debug_print(msg)

PIL.OleFileIO.filetime2datetime(filetime)
convert FILETIME (64 bits int) to Python datetime.datetime

PIL.OleFileIO.i16(c, o=0)
Converts a 2-bytes (16 bits) string to an integer.

c: string containing bytes to convert o: offset of bytes to convert in string

PIL.OleFileIO.i32(c, o=0)
Converts a 4-bytes (32 bits) string to an integer.

c: string containing bytes to convert o: offset of bytes to convert in string

PIL.OleFileIO.i8(c)

PIL.OleFileIO.isOleFile(filename)
Test if a file is an OLE container (according to the magic bytes in its header).

filename – string-like or file-like object, OLE file to parse

98 Chapter 3. Reference

http://msdn.microsoft.com/en-us/library/dd942545.aspx
http://msdn.microsoft.com/en-us/library/dd942545.aspx
http://msdn.microsoft.com/en-us/library/dd925819%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380376%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa372045.aspx
http://sedna-soft.de/summary-information-stream/
http://poi.apache.org/apidocs/org/apache/poi/hpsf/SummaryInformation.html
http://msdn.microsoft.com/en-us/library/dd945671%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/dd945671%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380374%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380374%28v=vs.85%29.aspx
http://poi.apache.org/apidocs/org/apache/poi/hpsf/DocumentSummaryInformation.html

Pillow (PIL Fork) Documentation, 3.2.0

• if filename is a string smaller than 1536 bytes, it is the path of the file to open. (bytes or
unicode string)

• if filename is a string longer than 1535 bytes, it is parsed as the content of an OLE file in
memory. (bytes type only)

• if filename is a file-like object (with read and seek methods), it is parsed as-is.

True if OLE, False otherwise.

PIL.OleFileIO.set_debug_mode(debug_mode)
Set debug mode on or off, to control display of debugging messages. :param mode: True or False

3.24 PSDraw Module

The PSDraw module provides simple print support for Postscript printers. You can print text, graphics and images
through this module.

class PIL.PSDraw.PSDraw(fp=None)
Sets up printing to the given file. If file is omitted, sys.stdout is assumed.

begin_document(id=None)
Set up printing of a document. (Write Postscript DSC header.)

end_document()
Ends printing. (Write Postscript DSC footer.)

image(box, im, dpi=None)
Draw a PIL image, centered in the given box.

line(xy0, xy1)
Draws a line between the two points. Coordinates are given in Postscript point coordinates (72 points per
inch, (0, 0) is the lower left corner of the page).

rectangle(box)
Draws a rectangle.

box – A 4-tuple of integers whose order and function is currently undocumented.

Hint: the tuple is passed into this format string:

%d %d M %d %d 0 Vr

setfont(font, size)
Selects which font to use.

• font – A Postscript font name

• size – Size in points.

text(xy, text)
Draws text at the given position. You must use setfont() before calling this method.

3.25 PixelAccess Class

The PixelAccess class provides read and write access to PIL.Image data at a pixel level.

3.24. PSDraw Module 99

Pillow (PIL Fork) Documentation, 3.2.0

: Accessing individual pixels is fairly slow. If you are looping over all of the pixels in an image, there is likely a faster
way using other parts of the Pillow API.

3.25.1 Example

The following script loads an image, accesses one pixel from it, then changes it.

from PIL import Image
im = Image.open('hopper.jpg')
px = im.load()
print (px[4,4])
px[4,4] = (0,0,0)
print (px[4,4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

3.25.2 PixelAccess Class

class PixelAccess

__setitem__(self, xy, color):
Modifies the pixel at x,y. The color is given as a single numerical value for single band images, and a tuple
for multi-band images

• xy – The pixel coordinate, given as (x, y).

• value – The pixel value.

__getitem__(self, xy):

Returns the pixel at x,y. The pixel is returned as a single value for single band images or a tuple for
multiple band images

param xy The pixel coordinate, given as (x, y).

returns a pixel value for single band images, a tuple of pixel values for multiband images.

putpixel(self, xy, color):
Modifies the pixel at x,y. The color is given as a single numerical value for single band images, and a tuple
for multi-band images

• xy – The pixel coordinate, given as (x, y).

• value – The pixel value.

getpixel(self, xy):

Returns the pixel at x,y. The pixel is returned as a single value for single band images or a tuple for
multiple band images

param xy The pixel coordinate, given as (x, y).

100 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

returns a pixel value for single band images, a tuple of pixel values for multiband images.

3.26 PyAccess Module

The PyAccess module provides a CFFI/Python implementation of the PixelAccess Class. This implementation is
far faster on PyPy than the PixelAccess version.

: Accessing individual pixels is fairly slow. If you are looping over all of the pixels in an image, there is likely a faster
way using other parts of the Pillow API.

3.26.1 Example

The following script loads an image, accesses one pixel from it, then changes it.

from PIL import Image
im = Image.open('hopper.jpg')
px = im.load()
print (px[4,4])
px[4,4] = (0,0,0)
print (px[4,4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

3.26.2 PyAccess Class

3.27 PIL Package (autodoc of remaining modules)

Reference for modules whose documentation has not yet been ported or written can be found here.

3.27.1 BdfFontFile Module

class PIL.BdfFontFile.BdfFontFile(fp)
PIL.FontFile.FontFile

PIL.BdfFontFile.bdf_char(f)

3.27.2 ContainerIO Module

class PIL.ContainerIO.ContainerIO(file, offset, length)
object

isatty()

read(n=0)

readline()

3.26. PyAccess Module 101

Pillow (PIL Fork) Documentation, 3.2.0

readlines()

seek(offset, mode=0)

tell()

3.27.3 FontFile Module

class PIL.FontFile.FontFile
object

bitmap = None

compile()
Create metrics and bitmap

save(filename)
Save font

PIL.FontFile.puti16(fp, values)

3.27.4 GdImageFile Module

class PIL.GdImageFile.GdImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘GD’

format_description = ‘GD uncompressed images’

PIL.GdImageFile.open(fp, mode=’r’)

3.27.5 GimpGradientFile Module

class PIL.GimpGradientFile.GimpGradientFile(fp)
PIL.GimpGradientFile.GradientFile

class PIL.GimpGradientFile.GradientFile
object

getpalette(entries=256)

gradient = None

PIL.GimpGradientFile.curved(middle, pos)

PIL.GimpGradientFile.linear(middle, pos)

PIL.GimpGradientFile.sine(middle, pos)

PIL.GimpGradientFile.sphere_decreasing(middle, pos)

PIL.GimpGradientFile.sphere_increasing(middle, pos)

3.27.6 GimpPaletteFile Module

class PIL.GimpPaletteFile.GimpPaletteFile(fp)
object

102 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

getpalette()

rawmode = ‘RGB’

3.27.7 ImageDraw2 Module

class PIL.ImageDraw2.Brush(color, opacity=255)
object

class PIL.ImageDraw2.Draw(image, size=None, color=None)
object

arc(xy, start, end, *options)

chord(xy, start, end, *options)

ellipse(xy, *options)

flush()

line(xy, *options)

pieslice(xy, start, end, *options)

polygon(xy, *options)

rectangle(xy, *options)

render(op, xy, pen, brush=None)

settransform(offset)

symbol(xy, symbol, *options)

text(xy, text, font)

textsize(text, font)

class PIL.ImageDraw2.Font(color, file, size=12)
object

class PIL.ImageDraw2.Pen(color, width=1, opacity=255)
object

3.27.8 ImageShow Module

class PIL.ImageShow.DisplayViewer
PIL.ImageShow.UnixViewer

get_command_ex(file, **options)

class PIL.ImageShow.UnixViewer
PIL.ImageShow.Viewer

show_file(file, **options)

class PIL.ImageShow.Viewer
object

format = None

get_command(file, **options)

get_format(image)

3.27. PIL Package (autodoc of remaining modules) 103

Pillow (PIL Fork) Documentation, 3.2.0

save_image(image)

show(image, **options)

show_file(file, **options)

show_image(image, **options)

class PIL.ImageShow.XVViewer
PIL.ImageShow.UnixViewer

get_command_ex(file, title=None, **options)

PIL.ImageShow.register(viewer, order=1)

PIL.ImageShow.show(image, title=None, **options)

PIL.ImageShow.which(executable)

3.27.9 ImageTransform Module

class PIL.ImageTransform.AffineTransform(data)
PIL.ImageTransform.Transform

method = 0

class PIL.ImageTransform.ExtentTransform(data)
PIL.ImageTransform.Transform

method = 1

class PIL.ImageTransform.MeshTransform(data)
PIL.ImageTransform.Transform

method = 4

class PIL.ImageTransform.QuadTransform(data)
PIL.ImageTransform.Transform

method = 3

class PIL.ImageTransform.Transform(data)
PIL.Image.ImageTransformHandler

getdata()

transform(size, image, **options)

3.27.10 JpegPresets Module

JPEG quality settings equivalent to the Photoshop settings.

More presets can be added to the presets dict if needed.

Can be use when saving JPEG file.

To apply the preset, specify:

quality="preset_name"

To apply only the quantization table:

104 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

qtables="preset_name"

To apply only the subsampling setting:

subsampling="preset_name"

Example:

im.save("image_name.jpg", quality="web_high")

Subsampling

Subsampling is the practice of encoding images by implementing less resolution for chroma information than for luma
information. (ref.: https://en.wikipedia.org/wiki/Chroma_subsampling)

Possible subsampling values are 0, 1 and 2 that correspond to 4:4:4, 4:2:2 and 4:1:1 (or 4:2:0?).

You can get the subsampling of a JPEG with the JpegImagePlugin.get_subsampling(im) function.

Quantization tables

They are values use by the DCT (Discrete cosine transform) to remove unnecessary information from the image
(the lossy part of the compression). (ref.: https://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices,
https://en.wikipedia.org/wiki/JPEG#Quantization)

You can get the quantization tables of a JPEG with:

im.quantization

This will return a dict with a number of arrays. You can pass this dict directly as the qtables argument when saving a
JPEG.

The tables format between im.quantization and quantization in presets differ in 3 ways:

1. The base container of the preset is a list with sublists instead of dict. dict[0] -> list[0], dict[1] -> list[1], ...

2. Each table in a preset is a list instead of an array.

3. The zigzag order is remove in the preset (needed by libjpeg >= 6a).

You can convert the dict format to the preset format with the JpegImagePlugin.convert_dict_qtables(dict_qtables)
function.

Libjpeg ref.: http://web.archive.org/web/20120328125543/http://www.jpegcameras.com/libjpeg/libjpeg-3.html

3.27.11 PaletteFile Module

class PIL.PaletteFile.PaletteFile(fp)
object

getpalette()

rawmode = ‘RGB’

3.27. PIL Package (autodoc of remaining modules) 105

https://en.wikipedia.org/wiki/Chroma_subsampling
https://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices
https://en.wikipedia.org/wiki/JPEG#Quantization
http://web.archive.org/web/20120328125543/http://www.jpegcameras.com/libjpeg/libjpeg-3.html

Pillow (PIL Fork) Documentation, 3.2.0

3.27.12 PcfFontFile Module

class PIL.PcfFontFile.PcfFontFile(fp)
PIL.FontFile.FontFile

name = ‘name’

PIL.PcfFontFile.sz(s, o)

3.27.13 PngImagePlugin.iTXt Class

class PIL.PngImagePlugin.iTXt
str

Subclass of string to allow iTXt chunks to look like strings while keeping their extra information

__new__(cls, text, lang, tkey)

• value – value for this key

• lang – language code

• tkey – UTF-8 version of the key name

3.27.14 PngImagePlugin.PngInfo Class

class PIL.PngImagePlugin.PngInfo
object

PNG chunk container (for use with save(pnginfo=))

add(cid, data)
Appends an arbitrary chunk. Use with caution.

• cid – a byte string, 4 bytes long.

• data – a byte string of the encoded data

add_itxt(key, value, lang=’‘, tkey=’‘, zip=False)
Appends an iTXt chunk.

• key – latin-1 encodable text key name

• value – value for this key

• lang – language code

• tkey – UTF-8 version of the key name

• zip – compression flag

add_text(key, value, zip=0)
Appends a text chunk.

• key – latin-1 encodable text key name

106 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

• value – value for this key, text or an PIL.PngImagePlugin.iTXt instance

• zip – compression flag

3.27.15 TarIO Module

class PIL.TarIO.TarIO(tarfile, file)
PIL.ContainerIO.ContainerIO

3.27.16 WalImageFile Module

PIL.WalImageFile.open(filename)

3.27.17 _binary Module

PIL._binary.i16be(c, o=0)

PIL._binary.i16le(c, o=0)
Converts a 2-bytes (16 bits) string to an integer.

c: string containing bytes to convert o: offset of bytes to convert in string

PIL._binary.i32be(c, o=0)

PIL._binary.i32le(c, o=0)
Converts a 4-bytes (32 bits) string to an integer.

c: string containing bytes to convert o: offset of bytes to convert in string

PIL._binary.i8(c)

PIL._binary.o16be(i)

PIL._binary.o16le(i)

PIL._binary.o32be(i)

PIL._binary.o32le(i)

PIL._binary.o8(i)

3.28 Plugin reference

3.28.1 BmpImagePlugin Module

class PIL.BmpImagePlugin.BmpImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

Image plugin for the Windows Bitmap format (BMP)

BITFIELDS = 3

COMPRESSIONS = {‘JPEG’: 4, ‘RLE8’: 1, ‘PNG’: 5, ‘BITFIELDS’: 3, ‘RAW’: 0, ‘RLE4’: 2}

JPEG = 4

PNG = 5

3.28. Plugin reference 107

Pillow (PIL Fork) Documentation, 3.2.0

RAW = 0

RLE4 = 2

RLE8 = 1

format = ‘BMP’

format_description = ‘Windows Bitmap’

class PIL.BmpImagePlugin.DibImageFile(fp=None, filename=None)
PIL.BmpImagePlugin.BmpImageFile

format = ‘DIB’

format_description = ‘Windows Bitmap’

3.28.2 BufrStubImagePlugin Module

class PIL.BufrStubImagePlugin.BufrStubImageFile(fp=None, filename=None)
PIL.ImageFile.StubImageFile

format = ‘BUFR’

format_description = ‘BUFR’

PIL.BufrStubImagePlugin.register_handler(handler)

3.28.3 CurImagePlugin Module

class PIL.CurImagePlugin.CurImageFile(fp=None, filename=None)
PIL.BmpImagePlugin.BmpImageFile

format = ‘CUR’

format_description = ‘Windows Cursor’

3.28.4 DcxImagePlugin Module

class PIL.DcxImagePlugin.DcxImageFile(fp=None, filename=None)
PIL.PcxImagePlugin.PcxImageFile

format = ‘DCX’

format_description = ‘Intel DCX’

is_animated

n_frames

seek(frame)

tell()

3.28.5 EpsImagePlugin Module

class PIL.EpsImagePlugin.EpsImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

EPS File Parser for the Python Imaging Library

108 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

format = ‘EPS’

format_description = ‘Encapsulated Postscript’

load(scale=1)

load_seek(*args, **kwargs)

mode_map = {1: ‘L’, 2: ‘LAB’, 3: ‘RGB’}

PIL.EpsImagePlugin.Ghostscript(tile, size, fp, scale=1)
Render an image using Ghostscript

class PIL.EpsImagePlugin.PSFile(fp)
object

Wrapper for bytesio object that treats either CR or LF as end of line.

readline()

seek(offset, whence=0)

PIL.EpsImagePlugin.has_ghostscript()

3.28.6 FitsStubImagePlugin Module

class PIL.FitsStubImagePlugin.FITSStubImageFile(fp=None, filename=None)
PIL.ImageFile.StubImageFile

format = ‘FITS’

format_description = ‘FITS’

PIL.FitsStubImagePlugin.register_handler(handler)

3.28.7 FliImagePlugin Module

class PIL.FliImagePlugin.FliImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘FLI’

format_description = ‘Autodesk FLI/FLC Animation’

is_animated

n_frames

seek(frame)

tell()

3.28.8 FpxImagePlugin Module

class PIL.FpxImagePlugin.FpxImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘FPX’

format_description = ‘FlashPix’

load()

3.28. Plugin reference 109

Pillow (PIL Fork) Documentation, 3.2.0

3.28.9 GbrImagePlugin Module

class PIL.GbrImagePlugin.GbrImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘GBR’

format_description = ‘GIMP brush file’

load()

3.28.10 GifImagePlugin Module

class PIL.GifImagePlugin.GifImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

data()

format = ‘GIF’

format_description = ‘Compuserve GIF’

global_palette = None

is_animated

load_end()

n_frames

seek(frame)

tell()

PIL.GifImagePlugin.get_interlace(im)

PIL.GifImagePlugin.getdata(im, offset=(0, 0), **params)
Return a list of strings representing this image. The first string is a local image header, the rest contains encoded
image data.

PIL.GifImagePlugin.getheader(im, palette=None, info=None)
Return a list of strings representing a GIF header

3.28.11 GribStubImagePlugin Module

class PIL.GribStubImagePlugin.GribStubImageFile(fp=None, filename=None)
PIL.ImageFile.StubImageFile

format = ‘GRIB’

format_description = ‘GRIB’

PIL.GribStubImagePlugin.register_handler(handler)

3.28.12 Hdf5StubImagePlugin Module

class PIL.Hdf5StubImagePlugin.HDF5StubImageFile(fp=None, filename=None)
PIL.ImageFile.StubImageFile

format = ‘HDF5’

110 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

format_description = ‘HDF5’

PIL.Hdf5StubImagePlugin.register_handler(handler)

3.28.13 IcnsImagePlugin Module

class PIL.IcnsImagePlugin.IcnsFile(fobj)
object

SIZES = {(32, 32, 2): [(b’ic12’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (256, 256, 1): [(b’ic08’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (128, 128, 2): [(b’ic13’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (64, 64, 1): [(b’icp6’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (128, 128, 1): [(b’ic07’, <function read_png_or_jpeg2000 at 0x7f6327911e18>), (b’it32’, <function read_32t at 0x7f6327911c80>), (b’t8mk’, <function read_mk at 0x7f6327911d90>)], (256, 256, 2): [(b’ic14’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (32, 32, 1): [(b’icp5’, <function read_png_or_jpeg2000 at 0x7f6327911e18>), (b’il32’, <function read_32 at 0x7f6327911d08>), (b’l8mk’, <function read_mk at 0x7f6327911d90>)], (48, 48, 1): [(b’ih32’, <function read_32 at 0x7f6327911d08>), (b’h8mk’, <function read_mk at 0x7f6327911d90>)], (16, 16, 1): [(b’icp4’, <function read_png_or_jpeg2000 at 0x7f6327911e18>), (b’is32’, <function read_32 at 0x7f6327911d08>), (b’s8mk’, <function read_mk at 0x7f6327911d90>)], (16, 16, 2): [(b’ic11’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (512, 512, 1): [(b’ic09’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)], (512, 512, 2): [(b’ic10’, <function read_png_or_jpeg2000 at 0x7f6327911e18>)]}

bestsize()

dataforsize(size)
Get an icon resource as {channel: array}. Note that the arrays are bottom-up like windows bitmaps and
will likely need to be flipped or transposed in some way.

getimage(size=None)

itersizes()

class PIL.IcnsImagePlugin.IcnsImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

PIL image support for Mac OS .icns files. Chooses the best resolution, but will possibly load a different size
image if you mutate the size attribute before calling ‘load’.

The info dictionary has a key ‘sizes’ that is a list of sizes that the icns file has.

format = ‘ICNS’

format_description = ‘Mac OS icns resource’

load()

PIL.IcnsImagePlugin.nextheader(fobj)

PIL.IcnsImagePlugin.read_32(fobj, start_length, size)
Read a 32bit RGB icon resource. Seems to be either uncompressed or an RLE packbits-like scheme.

PIL.IcnsImagePlugin.read_32t(fobj, start_length, size)

PIL.IcnsImagePlugin.read_mk(fobj, start_length, size)

PIL.IcnsImagePlugin.read_png_or_jpeg2000(fobj, start_length, size)

3.28.14 IcoImagePlugin Module

class PIL.IcoImagePlugin.IcoFile(buf)
object

frame(idx)
Get an image from frame idx

getimage(size, bpp=False)
Get an image from the icon

sizes()
Get a list of all available icon sizes and color depths.

3.28. Plugin reference 111

Pillow (PIL Fork) Documentation, 3.2.0

class PIL.IcoImagePlugin.IcoImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

PIL read-only image support for Microsoft Windows .ico files.

By default the largest resolution image in the file will be loaded. This can be changed by altering the ‘size’
attribute before calling ‘load’.

The info dictionary has a key ‘sizes’ that is a list of the sizes available in the icon file.

Handles classic, XP and Vista icon formats.

This plugin is a refactored version of Win32IconImagePlugin by Bryan Davis <casadebender@gmail.com>.
https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki

format = ‘ICO’

format_description = ‘Windows Icon’

load()

load_seek()

3.28.15 ImImagePlugin Module

class PIL.ImImagePlugin.ImImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘IM’

format_description = ‘IFUNC Image Memory’

is_animated

n_frames

seek(frame)

tell()

PIL.ImImagePlugin.number(s)

3.28.16 ImtImagePlugin Module

class PIL.ImtImagePlugin.ImtImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘IMT’

format_description = ‘IM Tools’

3.28.17 IptcImagePlugin Module

class PIL.IptcImagePlugin.IptcImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

field()

format = ‘IPTC’

format_description = ‘IPTC/NAA’

112 Chapter 3. Reference

mailto:casadebender@gmail.com
https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki

Pillow (PIL Fork) Documentation, 3.2.0

getint(key)

load()

PIL.IptcImagePlugin.dump(c)

PIL.IptcImagePlugin.getiptcinfo(im)

PIL.IptcImagePlugin.i(c)

3.28.18 JpegImagePlugin Module

PIL.JpegImagePlugin.APP(self, marker)

PIL.JpegImagePlugin.COM(self, marker)

PIL.JpegImagePlugin.DQT(self, marker)

class PIL.JpegImagePlugin.JpegImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

draft(mode, size)

format = ‘JPEG’

format_description = ‘JPEG (ISO 10918)’

load_djpeg()

PIL.JpegImagePlugin.SOF(self, marker)

PIL.JpegImagePlugin.Skip(self, marker)

PIL.JpegImagePlugin.convert_dict_qtables(qtables)

PIL.JpegImagePlugin.get_sampling(im)

PIL.JpegImagePlugin.jpeg_factory(fp=None, filename=None)

3.28.19 Jpeg2KImagePlugin Module

class PIL.Jpeg2KImagePlugin.Jpeg2KImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘JPEG2000’

format_description = ‘JPEG 2000 (ISO 15444)’

load()

3.28.20 McIdasImagePlugin Module

class PIL.McIdasImagePlugin.McIdasImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘MCIDAS’

format_description = ‘McIdas area file’

3.28. Plugin reference 113

Pillow (PIL Fork) Documentation, 3.2.0

3.28.21 MicImagePlugin Module

class PIL.MicImagePlugin.MicImageFile(fp=None, filename=None)
PIL.TiffImagePlugin.TiffImageFile

format = ‘MIC’

format_description = ‘Microsoft Image Composer’

is_animated

n_frames

seek(frame)

tell()

3.28.22 MpegImagePlugin Module

class PIL.MpegImagePlugin.BitStream(fp)
object

next()

peek(bits)

read(bits)

skip(bits)

class PIL.MpegImagePlugin.MpegImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘MPEG’

format_description = ‘MPEG’

3.28.23 MspImagePlugin Module

class PIL.MspImagePlugin.MspImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘MSP’

format_description = ‘Windows Paint’

3.28.24 PalmImagePlugin Module

PIL.PalmImagePlugin.build_prototype_image()

3.28.25 PcdImagePlugin Module

class PIL.PcdImagePlugin.PcdImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘PCD’

format_description = ‘Kodak PhotoCD’

114 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

3.28.26 PcxImagePlugin Module

class PIL.PcxImagePlugin.PcxImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘PCX’

format_description = ‘Paintbrush’

3.28.27 PdfImagePlugin Module

3.28.28 PixarImagePlugin Module

class PIL.PixarImagePlugin.PixarImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘PIXAR’

format_description = ‘PIXAR raster image’

3.28.29 PngImagePlugin Module

PIL.PngImagePlugin.getchunks(im, **params)
Return a list of PNG chunks representing this image.

PIL.PngImagePlugin.is_cid()
match(string[, pos[, endpos]]) -> match object or None. Matches zero or more characters at the beginning of the
string

PIL.PngImagePlugin.putchunk(fp, cid, *data)
Write a PNG chunk (including CRC field)

class PIL.PngImagePlugin.ChunkStream(fp)
object

call(cid, pos, length)
Call the appropriate chunk handler

close()

crc(cid, data)
Read and verify checksum

crc_skip(cid, data)
Read checksum. Used if the C module is not present

push(cid, pos, length)

read()
Fetch a new chunk. Returns header information.

verify(endchunk=b’IEND’)

class PIL.PngImagePlugin.PngImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘PNG’

format_description = ‘Portable network graphics’

3.28. Plugin reference 115

Pillow (PIL Fork) Documentation, 3.2.0

load_end()
internal: finished reading image data

load_prepare()
internal: prepare to read PNG file

load_read(read_bytes)
internal: read more image data

verify()
Verify PNG file

class PIL.PngImagePlugin.PngStream(fp)
PIL.PngImagePlugin.ChunkStream

check_text_memory(chunklen)

chunk_IDAT(pos, length)

chunk_IEND(pos, length)

chunk_IHDR(pos, length)

chunk_PLTE(pos, length)

chunk_gAMA(pos, length)

chunk_iCCP(pos, length)

chunk_iTXt(pos, length)

chunk_pHYs(pos, length)

chunk_tEXt(pos, length)

chunk_tRNS(pos, length)

chunk_zTXt(pos, length)

3.28.30 PpmImagePlugin Module

class PIL.PpmImagePlugin.PpmImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘PPM’

format_description = ‘Pbmplus image’

3.28.31 PsdImagePlugin Module

class PIL.PsdImagePlugin.PsdImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘PSD’

format_description = ‘Adobe Photoshop’

is_animated

load_prepare()

n_frames

seek(layer)

116 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

tell()

3.28.32 SgiImagePlugin Module

class PIL.SgiImagePlugin.SgiImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘SGI’

format_description = ‘SGI Image File Format’

3.28.33 SpiderImagePlugin Module

class PIL.SpiderImagePlugin.SpiderImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

convert2byte(depth=255)

format = ‘SPIDER’

format_description = ‘Spider 2D image’

is_animated

n_frames

seek(frame)

tell()

tkPhotoImage()

PIL.SpiderImagePlugin.isInt(f)

PIL.SpiderImagePlugin.isSpiderHeader(t)

PIL.SpiderImagePlugin.isSpiderImage(filename)

PIL.SpiderImagePlugin.loadImageSeries(filelist=None)
create a list of Image.images for use in montage

PIL.SpiderImagePlugin.makeSpiderHeader(im)

3.28.34 SunImagePlugin Module

class PIL.SunImagePlugin.SunImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘SUN’

format_description = ‘Sun Raster File’

3.28.35 TgaImagePlugin Module

class PIL.TgaImagePlugin.TgaImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘TGA’

format_description = ‘Targa’

3.28. Plugin reference 117

Pillow (PIL Fork) Documentation, 3.2.0

3.28.36 TiffImagePlugin Module

class PIL.TiffImagePlugin.IFDRational(value, denominator=1)
numbers.Rational

Implements a rational class where 0/0 is a legal value to match the in the wild use of exif rationals.

e.g., DigitalZoomRatio - 0.00/0.00 indicates that no digital zoom was used

denominator

limit_rational(max_denominator)

max_denominator – Integer, the maximum denominator value

Tuple of (numerator, denominator)

numerator

PIL.TiffImagePlugin.ImageFileDirectory
ImageFileDirectory_v1

class PIL.TiffImagePlugin.ImageFileDirectory_v1(*args, **kwargs)
PIL.TiffImagePlugin.ImageFileDirectory_v2

This class represents the legacy interface to a TIFF tag directory.

Exposes a dictionary interface of the tags in the directory:

ifd = ImageFileDirectory_v1()
ifd[key] = 'Some Data'
ifd.tagtype[key] = 2
print ifd[key]
('Some Data',)

Also contains a dictionary of tag types as read from the tiff image file,
~PIL.TiffImagePlugin.ImageFileDirectory_v1.tagtype.

Values are returned as a tuple.

3.0.0 .

classmethod from_v2(original)
Returns an ImageFileDirectory_v1 instance with the same data as is contained in the original
ImageFileDirectory_v2 instance.

ImageFileDirectory_v1

tagdata

tags

to_v2()
Returns an ImageFileDirectory_v2 instance with the same data as is contained in the original
ImageFileDirectory_v1 instance.

ImageFileDirectory_v2

class PIL.TiffImagePlugin.ImageFileDirectory_v2(ifh=b’II*x00x00x00x00x00’, pre-
fix=None)

collections.abc.MutableMapping

This class represents a TIFF tag directory. To speed things up, we don’t decode tags unless they’re asked for.

Exposes a dictionary interface of the tags in the directory:

118 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

ifd = ImageFileDirectory_v2()
ifd[key] = 'Some Data'
ifd.tagtype[key] = 2
print(ifd[key])
'Some Data'

Individual values are returned as the strings or numbers, sequences are returned as tuples of the values.

The tiff metadata type of each item is stored in a dictionary of tag types in
~PIL.TiffImagePlugin.ImageFileDirectory_v2.tagtype. The types are read from a tiff file, guessed from
the type added, or added manually.

Data Structures:

•self.tagtype = {}

–Key: numerical tiff tag number

–Value: integer corresponding to the data type from ~PIL.TiffTags.TYPES

3.0.0 .

as_dict()
Return a dictionary of the image’s tags.

use dict(ifd) instead.

3.0.0 .

legacy_api

load(fp)

load_byte(data, legacy_api=True)

load_double(data, legacy_api=True)

load_float(data, legacy_api=True)

load_long(data, legacy_api=True)

load_rational(data, legacy_api=True)

load_short(data, legacy_api=True)

load_signed_byte(data, legacy_api=True)

load_signed_long(data, legacy_api=True)

load_signed_rational(data, legacy_api=True)

load_signed_short(data, legacy_api=True)

load_string(data, legacy_api=True)

load_undefined(data, legacy_api=True)

named()

dict of name|key: value

Returns the complete tag dictionary, with named tags where possible.

offset

prefix

reset()

3.28. Plugin reference 119

Pillow (PIL Fork) Documentation, 3.2.0

save(fp)

write_byte(data)

write_double(*values)

write_float(*values)

write_long(*values)

write_rational(*values)

write_short(*values)

write_signed_byte(*values)

write_signed_long(*values)

write_signed_rational(*values)

write_signed_short(*values)

write_string(value)

write_undefined(value)

class PIL.TiffImagePlugin.TiffImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘TIFF’

format_description = ‘Adobe TIFF’

is_animated

load()

n_frames

seek(frame)
Select a given frame as current image

tell()
Return the current frame number

3.28.37 WebPImagePlugin Module

class PIL.WebPImagePlugin.WebPImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘WEBP’

format_description = ‘WebP image’

3.28.38 WmfImagePlugin Module

class PIL.WmfImagePlugin.WmfStubImageFile(fp=None, filename=None)
PIL.ImageFile.StubImageFile

format = ‘WMF’

format_description = ‘Windows Metafile’

PIL.WmfImagePlugin.register_handler(handler)

120 Chapter 3. Reference

Pillow (PIL Fork) Documentation, 3.2.0

PIL.WmfImagePlugin.short(c, o=0)

3.28.39 XVThumbImagePlugin Module

class PIL.XVThumbImagePlugin.XVThumbImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘XVThumb’

format_description = ‘XV thumbnail image’

3.28.40 XbmImagePlugin Module

class PIL.XbmImagePlugin.XbmImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘XBM’

format_description = ‘X11 Bitmap’

3.28.41 XpmImagePlugin Module

class PIL.XpmImagePlugin.XpmImageFile(fp=None, filename=None)
PIL.ImageFile.ImageFile

format = ‘XPM’

format_description = ‘X11 Pixel Map’

load_read(bytes)

3.28. Plugin reference 121

Pillow (PIL Fork) Documentation, 3.2.0

122 Chapter 3. Reference

CHAPTER 4

Porting

Porting existing PIL-based code to Pillow

Pillow is a functional drop-in replacement for the Python Imaging Library. To run your existing PIL-compatible code
with Pillow, it needs to be modified to import the Image module from the PIL namespace instead of the global
namespace. Change this:

import Image

to this:

from PIL import Image

The _imaging module has been moved. You can now import it like this:

from PIL.Image import core as _imaging

The image plugin loading mechanism has changed. Pillow no longer automatically imports any file in the Python path
with a name ending in ImagePlugin.py. You will need to import your image plugin manually.

Pillow will raise an exception if the core extension can’t be loaded for any reason, including a version mismatch
between the Python and extension code. Previously PIL allowed Python only code to run if the core extension was not
available.

123

Pillow (PIL Fork) Documentation, 3.2.0

124 Chapter 4. Porting

CHAPTER 5

About

5.1 Goals

The fork author’s goal is to foster and support active development of PIL through:

• Continuous integration testing via Travis CI and AppVeyor

• Publicized development activity on GitHub

• Regular releases to the Python Package Index

5.2 License

Like PIL, Pillow is licensed under the MIT-like open source PIL Software License:

Software License

The Python Imaging Library (PIL) is

Copyright © 1997-2011 by Secret Labs AB
Copyright © 1995-2011 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its associated documentation, you agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its associated documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Secret Labs AB or the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

5.3 Why a fork?

PIL is not setuptools compatible. Please see this Image-SIG post for a more detailed explanation. Also, PIL’s current
bi-yearly (or greater) release schedule is too infrequent to accommodate the large number and frequency of issues
reported.

5.4 What about PIL?

125

https://travis-ci.org/python-pillow/Pillow
https://ci.appveyor.com/project/Python-pillow/pillow
https://github.com/python-pillow/Pillow
https://pypi.python.org/pypi/Pillow
http://www.pythonware.com/products/pil/license.htm
https://mail.python.org/pipermail/image-sig/2010-August/006480.html

Pillow (PIL Fork) Documentation, 3.2.0

: Prior to Pillow 2.0.0, very few image code changes were made. Pillow 2.0.0 added Python 3 support and includes
many bug fixes from many contributors.

As more time passes since the last PIL release, the likelihood of a new PIL release decreases. However, we’ve yet to
hear an official “PIL is dead” announcement. So if you still want to support PIL, please report issues here first, then
open corresponding Pillow tickets here.

Please provide a link to the first ticket so we can track the issue(s) upstream.

126 Chapter 5. About

https://bitbucket.org/effbot/pil-2009-raclette/issues
https://github.com/python-pillow/Pillow/issues

CHAPTER 6

Release Notes

: Contributors please include release notes as needed or appropriate with your bug fixes, feature additions and tests.

6.1 3.2.0

6.2 New DDS and FTEX Image Plugins

The DdsImagePlugin reading DXT1 and DXT5 encoded .dds images was added. DXT3 images are not currently
supported.

The FtexImagePlugin reads textures used for 3D objects in Independence War 2: Edge Of Chaos. The plugin reads a
single texture per file, in the .ftc (compressed) and .ftu (uncompressed) formats.

6.3 Updates to the GbrImagePlugin

The GbrImagePlugin (GIMP brush format) has been updated to fix support for version 1 files and add support for
version 2 files.

6.4 Passthrough Parameters for ImageDraw.text

ImageDraw.multiline_text and ImageDraw.multiline_size take extra spacing parameters above what are used in Image-
Draw.text and ImageDraw.size. These parameters can now be passed into ImageDraw.text and ImageDraw.size and
they will be passed through to the corresponding multiline functions.

6.5 ImageSequence.Iterator changes

ImageSequence.Iterator is now an actual iterator implementing the Iterator protocol. It is also now possible to seek to
the first image of the file when using direct indexing.

127

Pillow (PIL Fork) Documentation, 3.2.0

6.6 3.1.2

6.6.1 CVE-2016-3076 – Buffer overflow in Jpeg2KEncode.c

Pillow between 2.5.0 and 3.1.1 may overflow a buffer when writing large Jpeg2000 files, allowing for code execution
or other memory corruption.

This occurs specifically in the function j2k_encode_entry, at the line:

state->buffer = malloc (tile_width * tile_height * components * prec / 8);

This vulnerability requires a particular value for height * width such that height * width *
components * precision overflows, at which point the malloc will be for a smaller value than expected. The
buffer that is allocated will be ((height * width * components * precision) mod (2^31) / 8),
where components is 1-4 and precision is either 8 or 16. Common values would be 4 components at precision 8 for a
standard RGBA image.

The unpackers then split an image that is laid out:

RGBARGBARGBA....

into:

RRR.
GGG.
BBB.
AAA.

If this buffer is smaller than expected, the jpeg2k unpacker functions will write outside the allocation and onto the
heap, corrupting memory.

This issue was found by Alyssa Besseling at Atlassian.

6.7 3.1.1

6.7.1 CVE-2016-0740 – Buffer overflow in TiffDecode.c

Pillow 3.1.0 and earlier when linked against libtiff >= 4.0.0 on x64 may overflow a buffer when reading a specially
crafted tiff file.

Specifically, libtiff >= 4.0.0 changed the return type of TIFFScanlineSize from int32 to machine dependent
int32|64. If the scanline is sized so that it overflows an int32, it may be interpreted as a negative number, which
will then pass the size check in TiffDecode.c line 236. To do this, the logical scanline size has to be > 2gb, and
for the test file, the allocated buffer size is 64k against a roughly 4gb scan line size. Any image data over 64k is written
over the heap, causing a segfault.

This issue was found by security researcher FourOne.

6.7.2 CVE-2016-0775 – Buffer overflow in FliDecode.c

In all versions of Pillow, dating back at least to the last PIL 1.1.7 release, FliDecode.c has a buffer overflow error.

Around line 192:

128 Chapter 6. Release Notes

Pillow (PIL Fork) Documentation, 3.2.0

case 16:
/* COPY chunk */
for (y = 0; y < state->ysize; y++) {

UINT8* buf = (UINT8*) im->image[y];
memcpy(buf+x, data, state->xsize);
data += state->xsize;

}
break;

The memcpy has error where x is added to the target buffer address. X is used in several internal temporary variable
roles, but can take a value up to the width of the image. Im->image[y] is a set of row pointers to segments of
memory that are the size of the row. At the max y, this will write the contents of the line off the end of the memory
buffer, causing a segfault.

This issue was found by Alyssa Besseling at Atlassian

6.7.3 CVE-2016-2533 – Buffer overflow in PcdDecode.c

In all versions of Pillow, dating back at least to the last PIL 1.1.7 release, PcdDecode.c has a buffer overflow error.

The state.buffer for PcdDecode.c is allocated based on a 3 bytes per pixel sizing, where PcdDecode.c
wrote into the buffer assuming 4 bytes per pixel. This writes 768 bytes beyond the end of the buffer into other Python
object storage. In some cases, this causes a segfault, in others an internal Python malloc error.

6.7.4 Integer overflow in Resample.c

If a large value was passed into the new size for an image, it is possible to overflow an int32 value passed into malloc.

kk = malloc(xsize * kmax * sizeof(float)); ... xbounds = malloc(xsize * 2 * sizeof(int));

xsize is trusted user input. These multiplications can overflow, leading the malloc’d buffer to be undersized. These
allocations are followed by a loop that writes out of bounds. This can lead to corruption on the heap of the Python
process with attacker controlled float data.

This issue was found by Ned Williamson.

6.8 3.1.0

6.8.1 ImageDraw arc, chord and pieslice can now use floats

There is no longer a need to ensure that the start and end arguments for arc, chord and pieslice are integers.

Note that these numbers are not simply rounded internally, but are actually utilised in the drawing process.

6.8.2 Consistent multiline text spacing

When using the ImageDrawmultiline methods, the spacing between lines was inconsistent, based on the combination
on ascenders and descenders.

This has now been fixed, so that lines are offset by their baselines, not the absolute height of each line.

There is also now a default spacing of 4px between lines.

6.8. 3.1.0 129

Pillow (PIL Fork) Documentation, 3.2.0

6.8.3 Exif, Jpeg and Tiff Metadata

There were major changes in the TIFF ImageFileDirectory support in Pillow 3.0 that led to a number of regressions.
Some of them have been fixed in Pillow 3.1, and some of them have been extended to have different behavior.

TiffImagePlugin.IFDRational

Pillow 3.0 changed rational metadata to use a float. In Pillow 3.1, this has changed to allow the expression of 0/0 as a
valid piece of rational metadata to reflect usage in the wild.

Rational metadata is now encapsulated in an IFDRational instance. This class extends the Rational class to allow
a denominator of 0. It compares as a float or a number, but does allow access to the raw numerator and denominator
values through attributes.

When used in a ImageFileDirectory_v1, a 2 item tuple is returned of the numerator and denominator, as was
done previously.

This class should be used when adding a rational value to an ImageFileDirectory for saving to image metadata.

JpegImagePlugin._getexif

In Pillow 3.0, the dictionary returned from the private, experimental, but generally widely used _getexif function
changed to reflect the ImageFileDirectory_v2 format, without a fallback to the previous format.

In Pillow 3.1, _getexif now returns a dictionary compatible with Pillow 2.9 and earlier, built with
ImageFileDirectory_v1 instances. Additionally, any single item tuples have been unwrapped and return a
bare element.

The format returned by Pillow 3.0 has been abandoned. A more fully featured interface for EXIF is anticipated in a
future release.

Out of Spec Metadata

In Pillow 3.0 and 3.1, images that contain metadata that is internally consistent but not in agreement with the TIFF
spec may cause an exception when reading the metadata. This can happen when a tag that is specified to have a single
value is stored with an array of values.

It is anticipated that this behavior will change in future releases.

6.9 3.0.0

6.9.1 Saving Multipage Images

There is now support for saving multipage images in the GIF and PDF formats. To enable this functionality, pass in
save_all=True as a keyword argument to the save:

im.save('test.pdf', save_all=True)

130 Chapter 6. Release Notes

Pillow (PIL Fork) Documentation, 3.2.0

6.9.2 Tiff ImageFileDirectory Rewrite

The Tiff ImageFileDirectory metadata code has been rewritten. Where previously it returned a somewhat arbitrary set
of values and tuples, it now returns bare values where appropriate and tuples when the metadata item is a sequence or
collection.

The original metadata is still available in the TiffImage.tags, the new values are available in the TiffImage.tags_v2
member. The old structures will be deprecated at some point in the future. When saving Tiff metadata, new code
should use the TiffImagePlugin.ImageFileDirectory_v2 class.

6.9.3 Deprecated Methods

Several methods that have been marked as deprecated for many releases have been removed in this release:

Image.tostring()
Image.fromstring()
Image.offset()
ImageDraw.setink()
ImageDraw.setfill()
The ImageFileIO module
The ImageFont.FreeTypeFont and ImageFont.truetype `file` keyword arg
The ImagePalette private _make functions
ImageWin.fromstring()
ImageWin.tostring()

6.9.4 LibJpeg and Zlib are Required by Default

The external dependencies on libjpeg and zlib are now required by default. If the headers or libraries are not found,
then installation will abort with an error. This behaviour can be disabled with the --disable-libjpeg and
--disable-zlib flags.

6.10 2.8.0

6.10.1 Open HTTP response objects with Image.open

HTTP response objects returned from urllib2.urlopen(url) or requests.get(url, stream=True).raw are ‘file-like’ but do
not support .seek() operations. As a result PIL was unable to open them as images, requiring a wrap in cStringIO or
BytesIO.

Now new functionality has been added to Image.open() by way of an .seek(0) check and catch on exception Attribu-
teError or io.UnsupportedOperation. If this is caught we attempt to wrap the object using io.BytesIO (which will only
work on buffer-file-like objects).

This allows opening of files using both urllib2 and requests, e.g.:

Image.open(urllib2.urlopen(url))
Image.open(requests.get(url, stream=True).raw)

If the response uses content-encoding (compression, either gzip or deflate) then this will fail as both the urllib2 and
requests raw file object will produce compressed data in that case. Using Content-Encoding on images is rather
non-sensical as most images are already compressed, but it can still happen.

For requests the work-around is to set the decode_content attribute on the raw object to True:

6.10. 2.8.0 131

Pillow (PIL Fork) Documentation, 3.2.0

response = requests.get(url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw)

6.11 2.7.0

6.11.1 Sane Plugin

The Sane plugin has now been split into its own repo: https://github.com/python-pillow/Sane .

6.11.2 Png text chunk size limits

To prevent potential denial of service attacks using compressed text chunks, there are now limits to the decompressed
size of text chunks decoded from PNG images. If the limits are exceeded when opening a PNG image a ValueError
will be raised.

Individual text chunks are limited to PIL.PngImagePlugin.MAX_TEXT_CHUNK, set to 1MB by default. The
total decompressed size of all text chunks is limited to PIL.PngImagePlugin.MAX_TEXT_MEMORY, which de-
faults to 64MB. These values can be changed prior to opening PNG images if you know that there are large text blocks
that are desired.

6.11.3 Image resizing filters

Image resizing methods resize() and thumbnail() take a resample argument, which tells which fil-
ter should be used for resampling. Possible values are: PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC and PIL.Image.ANTIALIAS. Almost all of them were changed in this version.

Bicubic and bilinear downscaling

From the beginning BILINEAR and BICUBIC filters were based on affine transformations and used a fixed number
of pixels from the source image for every destination pixel (2x2 pixels for BILINEAR and 4x4 for BICUBIC). This
gave an unsatisfactory result for downscaling. At the same time, a high quality convolutions-based algorithm with
flexible kernel was used for ANTIALIAS filter.

Starting from Pillow 2.7.0, a high quality convolutions-based algorithm is used for all of these three filters.

If you have previously used any tricks to maintain quality when downscaling with BILINEAR and BICUBIC filters
(for example, reducing within several steps), they are unnecessary now.

Antialias renamed to Lanczos

A new PIL.Image.LANCZOS constant was added instead of ANTIALIAS.

When ANTIALIAS was initially added, it was the only high-quality filter based on convolutions. It’s name was
supposed to reflect this. Starting from Pillow 2.7.0 all resize method are based on convolutions. All of them are
antialias from now on. And the real name of the ANTIALIAS filter is Lanczos filter.

The ANTIALIAS constant is left for backward compatibility and is an alias for LANCZOS.

132 Chapter 6. Release Notes

https://github.com/python-pillow/Sane

Pillow (PIL Fork) Documentation, 3.2.0

Lanczos upscaling quality

The image upscaling quality with LANCZOS filter was almost the same as BILINEAR due to bug. This has been fixed.

Bicubic upscaling quality

The BICUBIC filter for affine transformations produced sharp, slightly pixelated image for upscaling. Bicubic for
convolutions is more soft.

Resize performance

In most cases, convolution is more a expensive algorithm for downscaling because it takes into account all the pixels
of source image. Therefore BILINEAR and BICUBIC filters’ performance can be lower than before. On the other
hand the quality of BILINEAR and BICUBIC was close to NEAREST. So if such quality is suitable for your tasks
you can switch to NEAREST filter for downscaling, which will give a huge improvement in performance.

At the same time performance of convolution resampling for downscaling has been improved by around a factor of
two compared to the previous version. The upscaling performance of the LANCZOS filter has remained the same. For
BILINEAR filter it has improved by 1.5 times and for BICUBIC by four times.

Default filter for thumbnails

In Pillow 2.5 the default filter for thumbnail()was changed from NEAREST to ANTIALIAS. Antialias was chosen
because all the other filters gave poor quality for reduction. Starting from Pillow 2.7.0, ANTIALIAS has been replaced
with BICUBIC, because it’s faster and ANTIALIAS doesn’t give any advantages after downscaling with libjpeg,
which uses supersampling internally, not convolutions.

6.11.4 Image transposition

A new method PIL.Image.TRANSPOSE has been added for the transpose() operation in addition to
FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM, ROTATE_90, ROTATE_180, ROTATE_270. TRANSPOSE is an al-
gebra transpose, with an image reflected across its main diagonal.

The speed of ROTATE_90, ROTATE_270 and TRANSPOSE has been significantly improved for large images which
don’t fit in the processor cache.

6.11.5 Gaussian blur and unsharp mask

The GaussianBlur() implementation has been replaced with a sequential application of box filters. The new im-
plementation is based on “Theoretical foundations of Gaussian convolution by extended box filtering” from the Math-
ematical Image Analysis Group. As UnsharpMask() implementations use Gaussian blur internally, all changes
from this chapter are also applicable to it.

Blur radius

There was an error in the previous version of Pillow, where blur radius (the standard deviation of Gaussian) actually
meant blur diameter. For example, to blur an image with actual radius 5 you were forced to use value 10. This has
been fixed. Now the meaning of the radius is the same as in other software.

If you used a Gaussian blur with some radius value, you need to divide this value by two.

6.11. 2.7.0 133

Pillow (PIL Fork) Documentation, 3.2.0

Blur performance

Box filter computation time is constant relative to the radius and depends on source image size only. Because the new
Gaussian blur implementation is based on box filter, its computation time also doesn’t depends on the blur radius.

For example, previously, if the execution time for a given test image was 1 second for radius 1, 3.6 seconds for radius
10 and 17 seconds for 50, now blur with any radius on same image is executed for 0.2 seconds.

Blur quality

The previous implementation takes into account only source pixels within 2 * standard deviation radius for every
destination pixel. This was not enough, so the quality was worse compared to other Gaussian blur software.

The new implementation does not have this drawback.

6.11.6 TIFF Parameter Changes

Several kwarg parameters for saving TIFF images were previously specified as strings with included spaces (e.g. ‘x
resolution’). This was difficult to use as kwargs without constructing and passing a dictionary. These parameters now
use the underscore character instead of space. (e.g. ‘x_resolution’)

134 Chapter 6. Release Notes

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

135

Pillow (PIL Fork) Documentation, 3.2.0

136 Chapter 7. Indices and tables

Python

p
PIL._binary, 107
PIL.BdfFontFile, 101
PIL.BmpImagePlugin, 107
PIL.BufrStubImagePlugin, 108
PIL.ContainerIO, 101
PIL.CurImagePlugin, 108
PIL.DcxImagePlugin, 108
PIL.EpsImagePlugin, 108
PIL.ExifTags, 88
PIL.FitsStubImagePlugin, 109
PIL.FliImagePlugin, 109
PIL.FontFile, 102
PIL.FpxImagePlugin, 109
PIL.GbrImagePlugin, 110
PIL.GdImageFile, 102
PIL.GifImagePlugin, 110
PIL.GimpGradientFile, 102
PIL.GimpPaletteFile, 102
PIL.GribStubImagePlugin, 110
PIL.Hdf5StubImagePlugin, 110
PIL.IcnsImagePlugin, 111
PIL.IcoImagePlugin, 111
PIL.Image, 37
PIL.ImageChops, 49
PIL.ImageCms, 53
PIL.ImageColor, 52
PIL.ImageDraw, 66
PIL.ImageDraw2, 103
PIL.ImageEnhance, 71
PIL.ImageFile, 72
PIL.ImageFilter, 73
PIL.ImageFont, 75
PIL.ImageGrab, 76
PIL.ImageMath, 77
PIL.ImageMorph, 79
PIL.ImageOps, 80
PIL.ImagePalette, 82
PIL.ImagePath, 83
PIL.ImageQt, 84

PIL.ImageSequence, 85
PIL.ImageShow, 103
PIL.ImageStat, 85
PIL.ImageTk, 86
PIL.ImageTransform, 104
PIL.ImageWin, 87
PIL.ImImagePlugin, 112
PIL.ImtImagePlugin, 112
PIL.IptcImagePlugin, 112
PIL.Jpeg2KImagePlugin, 113
PIL.JpegImagePlugin, 113
PIL.JpegPresets, 104
PIL.McIdasImagePlugin, 113
PIL.MicImagePlugin, 114
PIL.MpegImagePlugin, 114
PIL.MspImagePlugin, 114
PIL.OleFileIO, 89
PIL.PaletteFile, 105
PIL.PalmImagePlugin, 114
PIL.PcdImagePlugin, 114
PIL.PcfFontFile, 106
PIL.PcxImagePlugin, 115
PIL.PdfImagePlugin, 115
PIL.PixarImagePlugin, 115
PIL.PngImagePlugin, 115
PIL.PpmImagePlugin, 116
PIL.PsdImagePlugin, 116
PIL.PSDraw, 99
PIL.PyAccess, 101
PIL.SgiImagePlugin, 117
PIL.SpiderImagePlugin, 117
PIL.SunImagePlugin, 117
PIL.TarIO, 107
PIL.TgaImagePlugin, 117
PIL.TiffImagePlugin, 118
PIL.TiffTags, 88
PIL.WalImageFile, 107
PIL.WebPImagePlugin, 120
PIL.WmfImagePlugin, 120
PIL.XbmImagePlugin, 121
PIL.XpmImagePlugin, 121

137

Pillow (PIL Fork) Documentation, 3.2.0

PIL.XVThumbImagePlugin, 121

138 Python

Symbols
__init__() (PIL.TiffTags.TagInfo), 89
__new__() (PIL.PcfFontFile.iTXt), 106

A
add() (PIL.PngImagePlugin.PngInfo), 106
add_itxt() (PIL.PngImagePlugin.PngInfo), 106
add_text() (PIL.PngImagePlugin.PngInfo), 106
arc() (PIL.ImageDraw.PIL.ImageDraw.Draw), 68
arc() (PIL.ImageDraw2.Draw), 103
as_dict() (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
attributes (PIL.ImageCms.CmsProfile), 62

B
begin_document() (PIL.PSDraw.PSDraw), 99
bestsize() (PIL.IcnsImagePlugin.IcnsFile), 111
BITFIELDS (PIL.BmpImagePlugin.BmpImageFile),

107
bitmap (PIL.FontFile.FontFile), 102
bitmap() (PIL.ImageDraw.PIL.ImageDraw.Draw), 68
blue_colorant (PIL.ImageCms.CmsProfile), 63
blue_primary (PIL.ImageCms.CmsProfile), 65

C
call() (PIL.PngImagePlugin.ChunkStream), 115
check_text_memory() (PIL.PngImagePlugin.PngStream

), 116
chord() (PIL.ImageDraw.PIL.ImageDraw.Draw), 68
chord() (PIL.ImageDraw2.Draw), 103
chromatic_adaption (PIL.ImageCms.CmsProfile), 63
chromaticity (PIL.ImageCms.CmsProfile), 63
chunk_gAMA() (PIL.PngImagePlugin.PngStream), 116
chunk_iCCP() (PIL.PngImagePlugin.PngStream), 116
chunk_IDAT() (PIL.PngImagePlugin.PngStream), 116
chunk_IEND() (PIL.PngImagePlugin.PngStream), 116
chunk_IHDR() (PIL.PngImagePlugin.PngStream), 116
chunk_iTXt() (PIL.PngImagePlugin.PngStream), 116
chunk_pHYs() (PIL.PngImagePlugin.PngStream), 116
chunk_PLTE() (PIL.PngImagePlugin.PngStream), 116

chunk_tEXt() (PIL.PngImagePlugin.PngStream), 116
chunk_tRNS() (PIL.PngImagePlugin.PngStream), 116
chunk_zTXt() (PIL.PngImagePlugin.PngStream), 116
close() (PIL.Image.Image), 48
close() (PIL.ImageFile.Parser), 73
close() (PIL.PngImagePlugin.ChunkStream), 115
clut (PIL.ImageCms.CmsProfile), 65
color_space (PIL.ImageCms.CmsProfile), 65
colorant_table (PIL.ImageCms.CmsProfile), 64
colorant_table_out (PIL.ImageCms.CmsProfile), 64
colorimetric_intent (PIL.ImageCms.CmsProfile), 64
compact() (PIL.ImagePath.PIL.ImagePath.Path), 84
compile() (PIL.FontFile.FontFile), 102
COMPRESSIONS (PIL.BmpImagePlugin.BmpImageFile

), 107
connection_space (PIL.ImageCms.CmsProfile), 62
convert() (PIL.Image.Image), 41
convert2byte() (PIL.SpiderImagePlugin.SpiderImageFile

), 117
copy() (PIL.Image.Image), 42
copyright (PIL.ImageCms.CmsProfile), 63
count (PIL.ImageStat.PIL.ImageStat.Stat), 85
crc() (PIL.PngImagePlugin.ChunkStream), 115
crc_skip() (PIL.PngImagePlugin.ChunkStream), 115
creation_date (PIL.ImageCms.CmsProfile), 61
crop() (PIL.Image.Image), 42
cvt_enum() (PIL.TiffTags.TagInfo), 89

D
data() (PIL.GifImagePlugin.GifImageFile), 110
dataforsize() (PIL.IcnsImagePlugin.IcnsFile), 111
denominator (PIL.TiffImagePlugin.IFDRational), 118
device_class (PIL.ImageCms.CmsProfile), 62
Dib (PIL.ImageWin), 87
draft() (PIL.Image.Image), 42
draft() (PIL.JpegImagePlugin.JpegImageFile), 113
draw() (PIL.ImageWin.Dib), 87

E
ellipse() (PIL.ImageDraw.PIL.ImageDraw.Draw), 68

139

Pillow (PIL Fork) Documentation, 3.2.0

ellipse() (PIL.ImageDraw2.Draw), 103
end_document() (PIL.PSDraw.PSDraw), 99
enhance() (PIL.ImageEnhance._Enhance), 71
expose() (PIL.ImageWin.Dib), 87
extrema (PIL.ImageStat.PIL.ImageStat.Stat), 85

F
feed() (PIL.ImageFile.Parser), 73
field() (PIL.IptcImagePlugin.IptcImageFile), 112
filter() (PIL.Image.Image), 42
flush() (PIL.ImageDraw2.Draw), 103
format (PIL.BmpImagePlugin.BmpImageFile), 108
format (PIL.BmpImagePlugin.DibImageFile), 108
format (PIL.BufrStubImagePlugin.BufrStubImageFile),

108
format (PIL.CurImagePlugin.CurImageFile), 108
format (PIL.DcxImagePlugin.DcxImageFile), 108
format (PIL.EpsImagePlugin.EpsImageFile), 108
format (PIL.FitsStubImagePlugin.FITSStubImageFile),

109
format (PIL.FliImagePlugin.FliImageFile), 109
format (PIL.FpxImagePlugin.FpxImageFile), 109
format (PIL.GbrImagePlugin.GbrImageFile), 110
format (PIL.GdImageFile.GdImageFile), 102
format (PIL.GifImagePlugin.GifImageFile), 110
format (PIL.GribStubImagePlugin.GribStubImageFile),

110
format (PIL.Hdf5StubImagePlugin.HDF5StubImageFile

), 110
format (PIL.IcnsImagePlugin.IcnsImageFile), 111
format (PIL.IcoImagePlugin.IcoImageFile), 112
format (PIL.ImageShow.Viewer), 103
format (PIL.ImImagePlugin.ImImageFile), 112
format (PIL.ImtImagePlugin.ImtImageFile), 112
format (PIL.IptcImagePlugin.IptcImageFile), 112
format (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile), 113
format (PIL.JpegImagePlugin.JpegImageFile), 113
format (PIL.McIdasImagePlugin.McIdasImageFile), 113
format (PIL.MicImagePlugin.MicImageFile), 114
format (PIL.MpegImagePlugin.MpegImageFile), 114
format (PIL.MspImagePlugin.MspImageFile), 114
format (PIL.PcdImagePlugin.PcdImageFile), 114
format (PIL.PcxImagePlugin.PcxImageFile), 115
format (PIL.PixarImagePlugin.PixarImageFile), 115
format (PIL.PngImagePlugin.PngImageFile), 115
format (PIL.PpmImagePlugin.PpmImageFile), 116
format (PIL.PsdImagePlugin.PsdImageFile), 116
format (PIL.SgiImagePlugin.SgiImageFile), 117
format (PIL.SpiderImagePlugin.SpiderImageFile), 117
format (PIL.SunImagePlugin.SunImageFile), 117
format (PIL.TgaImagePlugin.TgaImageFile), 117
format (PIL.TiffImagePlugin.TiffImageFile), 120
format (PIL.WebPImagePlugin.WebPImageFile), 120
format (PIL.WmfImagePlugin.WmfStubImageFile), 120

format (PIL.XbmImagePlugin.XbmImageFile), 121
format (PIL.XpmImagePlugin.XpmImageFile), 121
format (PIL.XVThumbImagePlugin.XVThumbImageFile

), 121
format_description (PIL.BmpImagePlugin.BmpImageFile

), 108
format_description (PIL.BmpImagePlugin.DibImageFile

), 108
format_description (PIL.BufrStubImagePlugin.BufrStubImageFile

), 108
format_description (PIL.CurImagePlugin.CurImageFile

), 108
format_description (PIL.DcxImagePlugin.DcxImageFile

), 108
format_description (PIL.EpsImagePlugin.EpsImageFile

), 109
format_description (PIL.FitsStubImagePlugin.FITSStubImageFile

), 109
format_description (PIL.FliImagePlugin.FliImageFile),

109
format_description (PIL.FpxImagePlugin.FpxImageFile

), 109
format_description (PIL.GbrImagePlugin.GbrImageFile

), 110
format_description (PIL.GdImageFile.GdImageFile),

102
format_description (PIL.GifImagePlugin.GifImageFile),

110
format_description (PIL.GribStubImagePlugin.GribStubImageFile

), 110
format_description (PIL.Hdf5StubImagePlugin.HDF5StubImageFile

), 110
format_description (PIL.IcnsImagePlugin.IcnsImageFile

), 111
format_description (PIL.IcoImagePlugin.IcoImageFile),

112
format_description (PIL.ImImagePlugin.ImImageFile),

112
format_description (PIL.ImtImagePlugin.ImtImageFile),

112
format_description (PIL.IptcImagePlugin.IptcImageFile

), 112
format_description (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile

), 113
format_description (PIL.JpegImagePlugin.JpegImageFile

), 113
format_description (PIL.McIdasImagePlugin.McIdasImageFile

), 113
format_description (PIL.MicImagePlugin.MicImageFile

), 114
format_description (PIL.MpegImagePlugin.MpegImageFile

), 114
format_description (PIL.MspImagePlugin.MspImageFile

), 114

140

Pillow (PIL Fork) Documentation, 3.2.0

format_description (PIL.PcdImagePlugin.PcdImageFile
), 114

format_description (PIL.PcxImagePlugin.PcxImageFile
), 115

format_description (PIL.PixarImagePlugin.PixarImageFile
), 115

format_description (PIL.PngImagePlugin.PngImageFile
), 115

format_description (PIL.PpmImagePlugin.PpmImageFile
), 116

format_description (PIL.PsdImagePlugin.PsdImageFile),
116

format_description (PIL.SgiImagePlugin.SgiImageFile),
117

format_description (PIL.SpiderImagePlugin.SpiderImageFile
), 117

format_description (PIL.SunImagePlugin.SunImageFile
), 117

format_description (PIL.TgaImagePlugin.TgaImageFile
), 117

format_description (PIL.TiffImagePlugin.TiffImageFile
), 120

format_description (PIL.WebPImagePlugin.WebPImageFile
), 120

format_description (PIL.WmfImagePlugin.WmfStubImageFile
), 120

format_description (PIL.XbmImagePlugin.XbmImageFile
), 121

format_description (PIL.XpmImagePlugin.XpmImageFile
), 121

format_description (PIL.XVThumbImagePlugin.XVThumbImageFile
), 121

frame() (PIL.IcoImagePlugin.IcoFile), 111
frombytes() (PIL.ImageWin.Dib), 87
fromstring() (PIL.Image.Image), 48

G
get_command() (PIL.ImageShow.Viewer), 103
get_command_ex() (PIL.ImageShow.DisplayViewer),

103
get_command_ex() (PIL.ImageShow.XVViewer), 104
get_format() (PIL.ImageShow.Viewer), 103
getbands() (PIL.Image.Image), 43
getbbox() (PIL.Image.Image), 43
getbbox() (PIL.ImagePath.PIL.ImagePath.Path), 84
getcolor() (PIL.ImagePalette.ImagePalette), 83
getcolors() (PIL.Image.Image), 43
getdata() (PIL.Image.Image), 43
getdata() (PIL.ImagePalette.ImagePalette), 83
getdata() (PIL.ImageTransform.Transform), 104
getextrema() (PIL.Image.Image), 43
getimage() (PIL.IcnsImagePlugin.IcnsFile), 111
getimage() (PIL.IcoImagePlugin.IcoFile), 111
getint() (PIL.IptcImagePlugin.IptcImageFile), 112

getmask() (PIL.ImageFont.PIL.ImageFont.ImageFont),
76

getpalette() (PIL.GimpGradientFile.GradientFile), 102
getpalette() (PIL.GimpPaletteFile.GimpPaletteFile), 102
getpalette() (PIL.Image.Image), 43
getpalette() (PIL.PaletteFile.PaletteFile), 105
getpixel() (PIL.Image.Image), 43
getsize() (PIL.ImageFont.PIL.ImageFont.ImageFont), 76
global_palette (PIL.GifImagePlugin.GifImageFile), 110
gradient (PIL.GimpGradientFile.GradientFile), 102
green_colorant (PIL.ImageCms.CmsProfile), 63
green_primary (PIL.ImageCms.CmsProfile), 65

H
HDC (PIL.ImageWin), 88
header_flags (PIL.ImageCms.CmsProfile), 62
header_manufacturer (PIL.ImageCms.CmsProfile), 62
header_model (PIL.ImageCms.CmsProfile), 62
height() (PIL.ImageTk.BitmapImage), 86
height() (PIL.ImageTk.PhotoImage), 86
histogram() (PIL.Image.Image), 43
HWND (PIL.ImageWin), 88

I
icc_version (PIL.ImageCms.CmsProfile), 62
Image (PIL.Image), 41
image() (PIL.PSDraw.PSDraw), 99
intent_supported (PIL.ImageCms.CmsProfile), 65
is_animated (PIL.DcxImagePlugin.DcxImageFile), 108
is_animated (PIL.FliImagePlugin.FliImageFile), 109
is_animated (PIL.GifImagePlugin.GifImageFile), 110
is_animated (PIL.ImImagePlugin.ImImageFile), 112
is_animated (PIL.MicImagePlugin.MicImageFile), 114
is_animated (PIL.PsdImagePlugin.PsdImageFile), 116
is_animated (PIL.SpiderImagePlugin.SpiderImageFile),

117
is_animated (PIL.TiffImagePlugin.TiffImageFile), 120
is_intent_supported() (PIL.ImageCms.CmsProfile), 66
is_matrix_shaper (PIL.ImageCms.CmsProfile), 65
isatty() (PIL.ContainerIO.ContainerIO), 101
itersizes() (PIL.IcnsImagePlugin.IcnsFile), 111

J
JPEG (PIL.BmpImagePlugin.BmpImageFile), 107

L
legacy_api (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
limit_rational() (PIL.TiffImagePlugin.IFDRational), 118
line() (PIL.ImageDraw.PIL.ImageDraw.Draw), 69
line() (PIL.ImageDraw2.Draw), 103
line() (PIL.PSDraw.PSDraw), 99
load() (PIL.EpsImagePlugin.EpsImageFile), 109

141

Pillow (PIL Fork) Documentation, 3.2.0

load() (PIL.FpxImagePlugin.FpxImageFile), 109
load() (PIL.GbrImagePlugin.GbrImageFile), 110
load() (PIL.IcnsImagePlugin.IcnsImageFile), 111
load() (PIL.IcoImagePlugin.IcoImageFile), 112
load() (PIL.Image.Image), 48
load() (PIL.IptcImagePlugin.IptcImageFile), 113
load() (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile), 113
load() (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
load() (PIL.TiffImagePlugin.TiffImageFile), 120
load_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_djpeg() (PIL.JpegImagePlugin.JpegImageFile), 113
load_double() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_end() (PIL.GifImagePlugin.GifImageFile), 110
load_end() (PIL.PngImagePlugin.PngImageFile), 115
load_float() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_prepare() (PIL.PngImagePlugin.PngImageFile),

116
load_prepare() (PIL.PsdImagePlugin.PsdImageFile), 116
load_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_read() (PIL.PngImagePlugin.PngImageFile), 116
load_read() (PIL.XpmImagePlugin.XpmImageFile), 121
load_seek() (PIL.EpsImagePlugin.EpsImageFile), 109
load_seek() (PIL.IcoImagePlugin.IcoImageFile), 112
load_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_signed_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_signed_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_signed_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_signed_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_string() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
load_undefined() (PIL.TiffImagePlugin.ImageFileDirectory_v2

), 119
luminance (PIL.ImageCms.CmsProfile), 63

M
manufacturer (PIL.ImageCms.CmsProfile), 63
map() (PIL.ImagePath.PIL.ImagePath.Path), 84
mean (PIL.ImageStat.PIL.ImageStat.Stat), 85
media_black_point (PIL.ImageCms.CmsProfile), 64
media_white_point_temperature

(PIL.ImageCms.CmsProfile), 64
median (PIL.ImageStat.PIL.ImageStat.Stat), 86

method (PIL.ImageTransform.AffineTransform), 104
method (PIL.ImageTransform.ExtentTransform), 104
method (PIL.ImageTransform.MeshTransform), 104
method (PIL.ImageTransform.QuadTransform), 104
mode_map (PIL.EpsImagePlugin.EpsImageFile), 109
model (PIL.ImageCms.CmsProfile), 63
multiline_text() (PIL.ImageDraw.PIL.ImageDraw.Draw

), 70
multiline_textsize() (PIL.ImageDraw.PIL.ImageDraw.Draw

), 70

N
n_frames (PIL.DcxImagePlugin.DcxImageFile), 108
n_frames (PIL.FliImagePlugin.FliImageFile), 109
n_frames (PIL.GifImagePlugin.GifImageFile), 110
n_frames (PIL.ImImagePlugin.ImImageFile), 112
n_frames (PIL.MicImagePlugin.MicImageFile), 114
n_frames (PIL.PsdImagePlugin.PsdImageFile), 116
n_frames (PIL.SpiderImagePlugin.SpiderImageFile),

117
n_frames (PIL.TiffImagePlugin.TiffImageFile), 120
name (PIL.PcfFontFile.PcfFontFile), 106
named() (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
next() (PIL.MpegImagePlugin.BitStream), 114
numerator (PIL.TiffImagePlugin.IFDRational), 118

O
offset (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
offset() (PIL.Image.Image), 44

P
paste() (PIL.Image.Image), 44
paste() (PIL.ImageTk.PhotoImage), 86
paste() (PIL.ImageWin.Dib), 88
pcs (PIL.ImageCms.CmsProfile), 65
peek() (PIL.MpegImagePlugin.BitStream), 114
perceptual_rendering_intent_gamut

(PIL.ImageCms.CmsProfile), 64
pieslice() (PIL.ImageDraw.PIL.ImageDraw.Draw), 69
pieslice() (PIL.ImageDraw2.Draw), 103
PIL._binary (), 107
PIL.BdfFontFile (), 101
PIL.BmpImagePlugin (), 107
PIL.BufrStubImagePlugin (), 108
PIL.ContainerIO (), 101
PIL.CurImagePlugin (), 108
PIL.DcxImagePlugin (), 108
PIL.EpsImagePlugin (), 108
PIL.ExifTags (), 88
PIL.FitsStubImagePlugin (), 109
PIL.FliImagePlugin (), 109
PIL.FontFile (), 102

142

Pillow (PIL Fork) Documentation, 3.2.0

PIL.FpxImagePlugin (), 109
PIL.GbrImagePlugin (), 110
PIL.GdImageFile (), 102
PIL.GifImagePlugin (), 110
PIL.GimpGradientFile (), 102
PIL.GimpPaletteFile (), 102
PIL.GribStubImagePlugin (), 110
PIL.Hdf5StubImagePlugin (), 110
PIL.IcnsImagePlugin (), 111
PIL.IcoImagePlugin (), 111
PIL.Image (), 37
PIL.ImageChops (), 49
PIL.ImageCms (), 53
PIL.ImageColor (), 52
PIL.ImageDraw (), 66
PIL.ImageDraw2 (), 103
PIL.ImageEnhance (), 71
PIL.ImageFile (), 72
PIL.ImageFilter (), 73
PIL.ImageFont (), 75
PIL.ImageGrab (), 76
PIL.ImageMath (), 77
PIL.ImageMorph (), 79
PIL.ImageOps (), 80
PIL.ImagePalette (), 82
PIL.ImagePath (), 83
PIL.ImageQt (), 84
PIL.ImageSequence (), 85
PIL.ImageShow (), 103
PIL.ImageStat (), 85
PIL.ImageTk (), 86
PIL.ImageTransform (), 104
PIL.ImageWin (), 87
PIL.ImImagePlugin (), 112
PIL.ImtImagePlugin (), 112
PIL.IptcImagePlugin (), 112
PIL.Jpeg2KImagePlugin (), 113
PIL.JpegImagePlugin (), 113
PIL.JpegPresets (), 104
PIL.McIdasImagePlugin (), 113
PIL.MicImagePlugin (), 114
PIL.MpegImagePlugin (), 114
PIL.MspImagePlugin (), 114
PIL.OleFileIO (), 89
PIL.PaletteFile (), 105
PIL.PalmImagePlugin (), 114
PIL.PcdImagePlugin (), 114
PIL.PcfFontFile (), 106
PIL.PcxImagePlugin (), 115
PIL.PdfImagePlugin (), 115
PIL.PixarImagePlugin (), 115
PIL.PngImagePlugin (), 115
PIL.PpmImagePlugin (), 116
PIL.PsdImagePlugin (), 116

PIL.PSDraw (), 99
PIL.PyAccess (), 101
PIL.SgiImagePlugin (), 117
PIL.SpiderImagePlugin (), 117
PIL.SunImagePlugin (), 117
PIL.TarIO (), 107
PIL.TgaImagePlugin (), 117
PIL.TiffImagePlugin (), 118
PIL.TiffTags (), 88
PIL.WalImageFile (), 107
PIL.WebPImagePlugin (), 120
PIL.WmfImagePlugin (), 120
PIL.XbmImagePlugin (), 121
PIL.XpmImagePlugin (), 121
PIL.XVThumbImagePlugin (), 121
PixelAccess (), 100
PNG (PIL.BmpImagePlugin.BmpImageFile), 107
point() (PIL.Image.Image), 44
point() (PIL.ImageDraw.PIL.ImageDraw.Draw), 69
polygon() (PIL.ImageDraw.PIL.ImageDraw.Draw), 69
polygon() (PIL.ImageDraw2.Draw), 103
prefix (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
product_copyright (PIL.ImageCms.CmsProfile), 66
product_desc (PIL.ImageCms.CmsProfile), 66
product_description (PIL.ImageCms.CmsProfile), 66
product_manufacturer (PIL.ImageCms.CmsProfile), 65
product_model (PIL.ImageCms.CmsProfile), 65
profile_description (PIL.ImageCms.CmsProfile), 63
profile_id (PIL.ImageCms.CmsProfile), 63
PSDraw (PIL.PSDraw), 99
push() (PIL.PngImagePlugin.ChunkStream), 115
putalpha() (PIL.Image.Image), 44
putdata() (PIL.Image.Image), 44
putpalette() (PIL.Image.Image), 45
putpixel() (PIL.Image.Image), 45

Q
quantize() (PIL.Image.Image), 45
query_palette() (PIL.ImageWin.Dib), 88

R
RAW (PIL.BmpImagePlugin.BmpImageFile), 107
rawmode (PIL.GimpPaletteFile.GimpPaletteFile), 103
rawmode (PIL.PaletteFile.PaletteFile), 105
read() (PIL.ContainerIO.ContainerIO), 101
read() (PIL.MpegImagePlugin.BitStream), 114
read() (PIL.PngImagePlugin.ChunkStream), 115
readline() (PIL.ContainerIO.ContainerIO), 101
readline() (PIL.EpsImagePlugin.PSFile), 109
readlines() (PIL.ContainerIO.ContainerIO), 101
rectangle() (PIL.ImageDraw.PIL.ImageDraw.Draw), 70
rectangle() (PIL.ImageDraw2.Draw), 103
rectangle() (PIL.PSDraw.PSDraw), 99

143

Pillow (PIL Fork) Documentation, 3.2.0

red_colorant (PIL.ImageCms.CmsProfile), 63
red_primary (PIL.ImageCms.CmsProfile), 65
render() (PIL.ImageDraw2.Draw), 103
rendering_intent (PIL.ImageCms.CmsProfile), 62
reset() (PIL.ImageFile.Parser), 73
reset() (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
resize() (PIL.Image.Image), 45
RLE4 (PIL.BmpImagePlugin.BmpImageFile), 108
RLE8 (PIL.BmpImagePlugin.BmpImageFile), 108
rms (PIL.ImageStat.PIL.ImageStat.Stat), 86
rotate() (PIL.Image.Image), 46

S
saturation_rendering_intent_gamut

(PIL.ImageCms.CmsProfile), 64
save() (PIL.FontFile.FontFile), 102
save() (PIL.Image.Image), 46
save() (PIL.ImagePalette.ImagePalette), 83
save() (PIL.TiffImagePlugin.ImageFileDirectory_v2),

119
save_image() (PIL.ImageShow.Viewer), 103
screening_description (PIL.ImageCms.CmsProfile), 64
seek() (PIL.ContainerIO.ContainerIO), 102
seek() (PIL.DcxImagePlugin.DcxImageFile), 108
seek() (PIL.EpsImagePlugin.PSFile), 109
seek() (PIL.FliImagePlugin.FliImageFile), 109
seek() (PIL.GifImagePlugin.GifImageFile), 110
seek() (PIL.Image.Image), 46
seek() (PIL.ImImagePlugin.ImImageFile), 112
seek() (PIL.MicImagePlugin.MicImageFile), 114
seek() (PIL.PsdImagePlugin.PsdImageFile), 116
seek() (PIL.SpiderImagePlugin.SpiderImageFile), 117
seek() (PIL.TiffImagePlugin.TiffImageFile), 120
setfont() (PIL.ImageDraw.PIL.ImageDraw.Draw), 71
setfont() (PIL.PSDraw.PSDraw), 99
settransform() (PIL.ImageDraw2.Draw), 103
shape() (PIL.ImageDraw.PIL.ImageDraw.Draw), 70
show() (PIL.Image.Image), 47
show() (PIL.ImageShow.Viewer), 104
show_file() (PIL.ImageShow.UnixViewer), 103
show_file() (PIL.ImageShow.Viewer), 104
show_image() (PIL.ImageShow.Viewer), 104
SIZES (PIL.IcnsImagePlugin.IcnsFile), 111
sizes() (PIL.IcoImagePlugin.IcoFile), 111
skip() (PIL.MpegImagePlugin.BitStream), 114
split() (PIL.Image.Image), 47
stddev (PIL.ImageStat.PIL.ImageStat.Stat), 86
sum (PIL.ImageStat.PIL.ImageStat.Stat), 85
sum2 (PIL.ImageStat.PIL.ImageStat.Stat), 85
symbol() (PIL.ImageDraw2.Draw), 103

T
tagdata (PIL.TiffImagePlugin.ImageFileDirectory_v1),

118
tags (PIL.TiffImagePlugin.ImageFileDirectory_v1), 118
TAGS (PIL.TiffTags.PIL.TiffTags), 89
TAGS_V2 (PIL.TiffTags.PIL.TiffTags), 89
target (PIL.ImageCms.CmsProfile), 63
TarIO (PIL.TarIO), 107
technology (PIL.ImageCms.CmsProfile), 64
tell() (PIL.ContainerIO.ContainerIO), 102
tell() (PIL.DcxImagePlugin.DcxImageFile), 108
tell() (PIL.FliImagePlugin.FliImageFile), 109
tell() (PIL.GifImagePlugin.GifImageFile), 110
tell() (PIL.Image.Image), 47
tell() (PIL.ImImagePlugin.ImImageFile), 112
tell() (PIL.MicImagePlugin.MicImageFile), 114
tell() (PIL.PsdImagePlugin.PsdImageFile), 116
tell() (PIL.SpiderImagePlugin.SpiderImageFile), 117
tell() (PIL.TiffImagePlugin.TiffImageFile), 120
text() (PIL.ImageDraw.PIL.ImageDraw.Draw), 70
text() (PIL.ImageDraw2.Draw), 103
text() (PIL.PSDraw.PSDraw), 99
textsize() (PIL.ImageDraw.PIL.ImageDraw.Draw), 70
textsize() (PIL.ImageDraw2.Draw), 103
thumbnail() (PIL.Image.Image), 47
tkPhotoImage() (PIL.SpiderImagePlugin.SpiderImageFile

), 117
to_v2() (PIL.TiffImagePlugin.ImageFileDirectory_v1),

118
tobitmap() (PIL.Image.Image), 47
tobytes() (PIL.Image.Image), 47
tobytes() (PIL.ImagePalette.ImagePalette), 83
tobytes() (PIL.ImageWin.Dib), 88
tolist() (PIL.ImagePath.PIL.ImagePath.Path), 84
tostring() (PIL.Image.Image), 48
tostring() (PIL.ImagePalette.ImagePalette), 83
transform() (PIL.Image.Image), 48
transform() (PIL.ImagePath.PIL.ImagePath.Path), 84
transform() (PIL.ImageTransform.Transform), 104
transpose() (PIL.Image.Image), 48
TYPES (PIL.TiffTags.PIL.TiffTags), 89

V
var (PIL.ImageStat.PIL.ImageStat.Stat), 86
verify() (PIL.Image.Image), 48
verify() (PIL.PngImagePlugin.ChunkStream), 115
verify() (PIL.PngImagePlugin.PngImageFile), 116
version (PIL.ImageCms.CmsProfile), 61
viewing_condition (PIL.ImageCms.CmsProfile), 64

W
width() (PIL.ImageTk.BitmapImage), 86
width() (PIL.ImageTk.PhotoImage), 87

144

Pillow (PIL Fork) Documentation, 3.2.0

write_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_double() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_float() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_signed_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_signed_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_signed_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_signed_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_string() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

write_undefined() (PIL.TiffImagePlugin.ImageFileDirectory_v2
), 120

X
xcolor_space (PIL.ImageCms.CmsProfile), 62

145

	Installation
	Warnings
	Notes
	Basic Installation
	Building From Source
	Platform Support
	Old Versions

	Handbook
	Overview
	Tutorial
	Concepts
	Appendices

	Reference
	Image Module
	ImageChops (``Channel Operations'') Module
	ImageColor Module
	ImageCms Module
	ImageDraw Module
	ImageEnhance Module
	ImageFile Module
	ImageFilter Module
	ImageFont Module
	ImageGrab Module (OS X and Windows only)
	ImageMath Module
	ImageMorph Module
	ImageOps Module
	ImagePalette Module
	ImagePath Module
	ImageQt Module
	ImageSequence Module
	ImageStat Module
	ImageTk Module
	ImageWin Module (Windows-only)
	ExifTags Module
	TiffTags Module
	OleFileIO Module
	PSDraw Module
	PixelAccess Class
	PyAccess Module
	PIL Package (autodoc of remaining modules)
	Plugin reference

	Porting
	About
	Goals
	License
	Why a fork?
	What about PIL?

	Release Notes
	3.2.0
	New DDS and FTEX Image Plugins
	Updates to the GbrImagePlugin
	Passthrough Parameters for ImageDraw.text
	ImageSequence.Iterator changes
	3.1.2
	3.1.1
	3.1.0
	3.0.0
	2.8.0
	2.7.0

	Indices and tables
	Python

