

Introduction to Pika

Pika is a pure-Python implementation of the AMQP 0-9-1 protocol that tries to stay fairly independent of the underlying network support library.

If you have not developed with Pika or RabbitMQ before, the Introduction to Pika documentation is a good place to get started.

Installing Pika

Pika is available for download via PyPI and may be installed using easy_install or pip:

pip install pika

or:

easy_install pika

To install from source, run “python setup.py install” in the root source directory.

Using Pika

	Introduction to Pika

	Core Class and Module Documentation

	Usage Examples

	Frequently Asked Questions

	Contributors

	Version History

Indices and tables

	Index

	Module Index

	Search Page

Introduction to Pika

IO and Event Looping

As AMQP is a two-way RPC protocol where the client can send requests to the server and the server can send requests to a client, Pika implements or extends IO loops in each of its asynchronous connection adapters. These IO loops are blocking methods which loop and listen for events. Each asynchronous adapter follows the same standard for invoking the IO loop. The IO loop is created when the connection adapter is created. To start an IO loop for any given adapter, call the connection.ioloop.start() method.

If you are using an external IO loop such as Tornado’s IOLoop [http://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop] you invoke it normally and then add the Pika Tornado adapter to it.

Example:

import pika

def on_open(connection):
 # Invoked when the connection is open
 pass

Create our connection object, passing in the on_open method
connection = pika.SelectConnection(on_open_callback=on_open)

try:
 # Loop so we can communicate with RabbitMQ
 connection.ioloop.start()
except KeyboardInterrupt:
 # Gracefully close the connection
 connection.close()
 # Loop until we're fully closed, will stop on its own
 connection.ioloop.start()

Continuation-Passing Style

Interfacing with Pika asynchronously is done by passing in callback methods you would like to have invoked when a certain event completes. For example, if you are going to declare a queue, you pass in a method that will be called when the RabbitMQ server returns a Queue.DeclareOk [http://www.rabbitmq.com/amqp-0-9-1-quickref.html#queue.declare] response.

In our example below we use the following five easy steps:

	We start by creating our connection object, then starting our event loop.

	When we are connected, the on_connected method is called. In that method we create a channel.

	When the channel is created, the on_channel_open method is called. In that method we declare a queue.

	When the queue is declared successfully, on_queue_declared is called. In that method we call channel.basic_consume telling it to call the handle_delivery for each message RabbitMQ delivers to us.

	When RabbitMQ has a message to send us, it calls the handle_delivery method passing the AMQP Method frame, Header frame, and Body.

Note

Step #1 is on line #28 and Step #2 is on line #6. This is so that Python knows about the functions we’ll call in Steps #2 through #5.

Example:

import pika

Create a global channel variable to hold our channel object in
channel = None

Step #2
def on_connected(connection):
 """Called when we are fully connected to RabbitMQ"""
 # Open a channel
 connection.channel(on_open_callback=on_channel_open)

Step #3
def on_channel_open(new_channel):
 """Called when our channel has opened"""
 global channel
 channel = new_channel
 channel.queue_declare(queue="test", durable=True, exclusive=False, auto_delete=False, callback=on_queue_declared)

Step #4
def on_queue_declared(frame):
 """Called when RabbitMQ has told us our Queue has been declared, frame is the response from RabbitMQ"""
 channel.basic_consume('test', handle_delivery)

Step #5
def handle_delivery(channel, method, header, body):
 """Called when we receive a message from RabbitMQ"""
 print(body)

Step #1: Connect to RabbitMQ using the default parameters
parameters = pika.ConnectionParameters()
connection = pika.SelectConnection(parameters, on_open_callback=on_connected)

try:
 # Loop so we can communicate with RabbitMQ
 connection.ioloop.start()
except KeyboardInterrupt:
 # Gracefully close the connection
 connection.close()
 # Loop until we're fully closed, will stop on its own
 connection.ioloop.start()

Credentials

The pika.credentials module provides the mechanism by which you pass the username and password to the ConnectionParameters class when it is created.

Example:

import pika
credentials = pika.PlainCredentials('username', 'password')
parameters = pika.ConnectionParameters(credentials=credentials)

Connection Parameters

There are two types of connection parameter classes in Pika to allow you to pass the connection information into a connection adapter, ConnectionParameters and URLParameters. Both classes share the same default connection values.

TCP Backpressure

As of RabbitMQ 2.0, client side Channel.Flow [http://www.rabbitmq.com/amqp-0-9-1-quickref.html#channel.flow] has been removed 1. Instead, the RabbitMQ broker uses TCP Backpressure to slow your client if it is delivering messages too fast. If you pass in backpressure_detection into your connection parameters, Pika attempts to help you handle this situation by providing a mechanism by which you may be notified if Pika has noticed too many frames have yet to be delivered. By registering a callback function with the add_backpressure_callback method of any connection adapter, your function will be called when Pika sees that a backlog of 10 times the average frame size you have been sending has been exceeded. You may tweak the notification multiplier value by calling the set_backpressure_multiplier method passing any integer value.

Example:

import pika

parameters = pika.URLParameters('amqp://guest:guest@rabbit-server1:5672/%2F?backpressure_detection=t')

Footnotes

	1

	“more effective flow control mechanism that does not require cooperation from clients and reacts quickly to prevent the broker from exhausting memory - see http://lists.rabbitmq.com/pipermail/rabbitmq-announce/attachments/20100825/2c672695/attachment.txt

Core Class and Module Documentation

For the end user, Pika is organized into a small set of objects for all communication with RabbitMQ.

	A connection adapter is used to connect to RabbitMQ and manages the connection.

	Connection parameters are used to instruct the Connection object how to connect to RabbitMQ.

	Authentication Credentials are used to encapsulate all authentication information for the ConnectionParameters class.

	A Channel object is used to communicate with RabbitMQ via the AMQP RPC methods.

	Exceptions are raised at various points when using Pika when something goes wrong.

Connection Adapters

Pika uses connection adapters to provide a flexible method for adapting pika’s
core communication to different IOLoop implementations. In addition to asynchronous adapters, there is the BlockingConnection adapter that provides a more idiomatic procedural approach to using Pika.

Adapters

	BlockingConnection

	Select Connection Adapter

	Tornado Connection Adapter

	Twisted Connection Adapter

BlockingConnection

The blocking connection adapter module implements blocking semantics on top
of Pika’s core AMQP driver. While most of the asynchronous expectations are
removed when using the blocking connection adapter, it attempts to remain true
to the asynchronous RPC nature of the AMQP protocol, supporting server sent
RPC commands.

The user facing classes in the module consist of the
BlockingConnection
and the BlockingChannel
classes.

Be sure to check out examples in Usage Examples.

	
class pika.adapters.blocking_connection.BlockingConnection(parameters=None, _impl_class=None)

	The BlockingConnection creates a layer on top of Pika’s asynchronous core
providing methods that will block until their expected response has
returned. Due to the asynchronous nature of the Basic.Deliver and
Basic.Return calls from RabbitMQ to your application, you can still
implement continuation-passing style asynchronous methods if you’d like to
receive messages from RabbitMQ using
basic_consume or if you want to be
notified of a delivery failure when using
basic_publish.

For more information about communicating with the blocking_connection
adapter, be sure to check out the
BlockingChannel class which implements the
Channel based communication for the
blocking_connection adapter.

To prevent recursion/reentrancy, the blocking connection and channel
implementations queue asynchronously-delivered events received
in nested context (e.g., while waiting for BlockingConnection.channel or
BlockingChannel.queue_declare to complete), dispatching them synchronously
once nesting returns to the desired context. This concerns all callbacks,
such as those registered via BlockingConnection.call_later,
BlockingConnection.add_on_connection_blocked_callback,
BlockingConnection.add_on_connection_unblocked_callback,
BlockingChannel.basic_consume, etc.

Blocked Connection deadlock avoidance: when RabbitMQ becomes low on
resources, it emits Connection.Blocked (AMQP extension) to the client
connection when client makes a resource-consuming request on that connection
or its channel (e.g., Basic.Publish); subsequently, RabbitMQ suspsends
processing requests from that connection until the affected resources are
restored. See http://www.rabbitmq.com/connection-blocked.html. This
may impact BlockingConnection and BlockingChannel operations in a
way that users might not be expecting. For example, if the user dispatches
BlockingChannel.basic_publish in non-publisher-confirmation mode while
RabbitMQ is in this low-resource state followed by a synchronous request
(e.g., BlockingConnection.channel, BlockingChannel.consume,
BlockingChannel.basic_consume, etc.), the synchronous request will block
indefinitely (until Connection.Unblocked) waiting for RabbitMQ to reply. If
the blocked state persists for a long time, the blocking operation will
appear to hang. In this state, BlockingConnection instance and its
channels will not dispatch user callbacks. SOLUTION: To break this potential
deadlock, applications may configure the blocked_connection_timeout
connection parameter when instantiating BlockingConnection. Upon blocked
connection timeout, this adapter will raise ConnectionBlockedTimeout
exception`. See pika.connection.ConnectionParameters documentation to
learn more about the blocked_connection_timeout configuration.

	
add_callback_threadsafe(callback)

	Requests a call to the given function as soon as possible in the
context of this connection’s thread.

NOTE: This is the only thread-safe method in BlockingConnection. All
other manipulations of BlockingConnection must be performed from the
connection’s thread.

NOTE: the callbacks are dispatched only in the scope of
specially-designated methods: see
BlockingConnection.process_data_events() and
BlockingChannel.start_consuming().

For example, a thread may request a call to the
BlockingChannel.basic_ack method of a BlockingConnection that is
running in a different thread via

```
connection.add_callback_threadsafe(


functools.partial(channel.basic_ack, delivery_tag=…))




```

NOTE: if you know that the requester is running on the same thread as
the connection it is more efficient to use the
BlockingConnection.call_later() method with a delay of 0.

	Parameters

	callback (callable) – The callback method; must be callable

	Raises

	pika.exceptions.ConnectionWrongStateError – if connection is
closed

	
add_on_connection_blocked_callback(callback)

	RabbitMQ AMQP extension - Add a callback to be notified when the
connection gets blocked (Connection.Blocked received from RabbitMQ)
due to the broker running low on resources (memory or disk). In this
state RabbitMQ suspends processing incoming data until the connection
is unblocked, so it’s a good idea for publishers receiving this
notification to suspend publishing until the connection becomes
unblocked.

NOTE: due to the blocking nature of BlockingConnection, if it’s sending
outbound data while the connection is/becomes blocked, the call may
remain blocked until the connection becomes unblocked, if ever. You
may use ConnectionParameters.blocked_connection_timeout to abort a
BlockingConnection method call with an exception when the connection
remains blocked longer than the given timeout value.

See also Connection.add_on_connection_unblocked_callback()

See also ConnectionParameters.blocked_connection_timeout.

	Parameters

	callback (callable) – Callback to call on Connection.Blocked,
having the signature callback(connection, pika.frame.Method),
where connection is the BlockingConnection instance and the method
frame’s method member is of type pika.spec.Connection.Blocked

	
add_on_connection_unblocked_callback(callback)

	RabbitMQ AMQP extension - Add a callback to be notified when the
connection gets unblocked (Connection.Unblocked frame is received from
RabbitMQ) letting publishers know it’s ok to start publishing again.

	Parameters

	callback (callable) – Callback to call on Connection.Unblocked`,
having the signature callback(connection, pika.frame.Method),
where connection is the BlockingConnection instance and the method

frame’s method member is of type pika.spec.Connection.Unblocked

	
basic_nack

	Specifies if the server supports basic.nack on the active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
basic_nack_supported

	Specifies if the server supports basic.nack on the active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
call_later(delay, callback)

	Create a single-shot timer to fire after delay seconds. Do not
confuse with Tornado’s timeout where you pass in the time you want to
have your callback called. Only pass in the seconds until it’s to be
called.

NOTE: the timer callbacks are dispatched only in the scope of
specially-designated methods: see
BlockingConnection.process_data_events() and
BlockingChannel.start_consuming().

	Parameters

	
	delay (float [https://docs.python.org/3/library/functions.html#float]) – The number of seconds to wait to call callback

	callback (callable) – The callback method with the signature
callback()

	Returns

	Opaque timer id

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
channel(channel_number=None)

	Create a new channel with the next available channel number or pass
in a channel number to use. Must be non-zero if you would like to
specify but it is recommended that you let Pika manage the channel
numbers.

	Return type

	pika.adapters.blocking_connection.BlockingChannel

	
close(reply_code=200, reply_text='Normal shutdown')

	Disconnect from RabbitMQ. If there are any open channels, it will
attempt to close them prior to fully disconnecting. Channels which
have active consumers will attempt to send a Basic.Cancel to RabbitMQ
to cleanly stop the delivery of messages prior to closing the channel.

	Parameters

	
	reply_code (int [https://docs.python.org/3/library/functions.html#int]) – The code number for the close

	reply_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text reason for the close

	Raises

	pika.exceptions.ConnectionWrongStateError – if called on a closed
connection (NEW in v1.0.0)

	
consumer_cancel_notify

	Specifies if the server supports consumer cancel notification on the
active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
consumer_cancel_notify_supported

	Specifies if the server supports consumer cancel notification on the
active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
exchange_exchange_bindings

	Specifies if the active connection supports exchange to exchange
bindings.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
exchange_exchange_bindings_supported

	Specifies if the active connection supports exchange to exchange
bindings.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_closed

	Returns a boolean reporting the current connection state.

	
is_open

	Returns a boolean reporting the current connection state.

	
process_data_events(time_limit=0)

	Will make sure that data events are processed. Dispatches timer and
channel callbacks if not called from the scope of BlockingConnection or
BlockingChannel callback. Your app can block on this method.

	Parameters

	time_limit (float [https://docs.python.org/3/library/functions.html#float]) – suggested upper bound on processing time in
seconds. The actual blocking time depends on the granularity of the
underlying ioloop. Zero means return as soon as possible. None means
there is no limit on processing time and the function will block
until I/O produces actionable events. Defaults to 0 for backward
compatibility. This parameter is NEW in pika 0.10.0.

	
publisher_confirms

	Specifies if the active connection can use publisher confirmations.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
publisher_confirms_supported

	Specifies if the active connection can use publisher confirmations.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
remove_timeout(timeout_id)

	Remove a timer if it’s still in the timeout stack

	Parameters

	timeout_id – The opaque timer id to remove

	
sleep(duration)

	A safer way to sleep than calling time.sleep() directly that would
keep the adapter from ignoring frames sent from the broker. The
connection will “sleep” or block the number of seconds specified in
duration in small intervals.

	Parameters

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The time to sleep in seconds

	
class pika.adapters.blocking_connection.BlockingChannel(channel_impl, connection)

	The BlockingChannel implements blocking semantics for most things that
one would use callback-passing-style for with the
Channel class. In addition,
the BlockingChannel class implements a generator [https://docs.python.org/3/glossary.html#term-generator] that allows
you to consume messages
without using callbacks.

Example of creating a BlockingChannel:

import pika

Create our connection object
connection = pika.BlockingConnection()

The returned object will be a synchronous channel
channel = connection.channel()

	
add_on_cancel_callback(callback)

	Pass a callback function that will be called when Basic.Cancel
is sent by the broker. The callback function should receive a method
frame parameter.

	Parameters

	callback (callable) – a callable for handling broker’s Basic.Cancel
notification with the call signature: callback(method_frame)
where method_frame is of type pika.frame.Method with method of
type spec.Basic.Cancel

	
add_on_return_callback(callback)

	Pass a callback function that will be called when a published
message is rejected and returned by the server via Basic.Return.

	Parameters

	callback (callable) – The method to call on callback with the
signature callback(channel, method, properties, body), where
channel: pika.Channel
method: pika.spec.Basic.Return
properties: pika.spec.BasicProperties
body: bytes

	
basic_ack(delivery_tag=0, multiple=False)

	Acknowledge one or more messages. When sent by the client, this
method acknowledges one or more messages delivered via the Deliver or
Get-Ok methods. When sent by server, this method acknowledges one or
more messages published with the Publish method on a channel in
confirm mode. The acknowledgement can be for a single message or a
set of messages up to and including a specific message.

	Parameters

	
	delivery-tag (int [https://docs.python.org/3/library/functions.html#int]) – The server-assigned delivery tag

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the delivery tag is treated as
“up to and including”, so that multiple messages
can be acknowledged with a single method. If set
to False, the delivery tag refers to a single
message. If the multiple field is 1, and the
delivery tag is zero, this indicates
acknowledgement of all outstanding messages.

	
basic_cancel(consumer_tag)

	This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send any more
messages for that consumer. The client may receive an arbitrary number
of messages in between sending the cancel method and receiving the
cancel-ok reply.

NOTE: When cancelling an auto_ack=False consumer, this implementation
automatically Nacks and suppresses any incoming messages that have not
yet been dispatched to the consumer’s callback. However, when cancelling
a auto_ack=True consumer, this method will return any pending messages
that arrived before broker confirmed the cancellation.

	Parameters

	consumer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the consumer; the result of
passing a consumer_tag that was created on another channel is
undefined (bad things will happen)

	Returns

	(NEW IN pika 0.10.0) empty sequence for a auto_ack=False
consumer; for a auto_ack=True consumer, returns a (possibly empty)
sequence of pending messages that arrived before broker confirmed
the cancellation (this is done instead of via consumer’s callback in
order to prevent reentrancy/recursion. Each message is four-tuple:
(channel, method, properties, body)

channel: BlockingChannel
method: spec.Basic.Deliver
properties: spec.BasicProperties
body: bytes

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
basic_consume(queue, on_message_callback, auto_ack=False, exclusive=False, consumer_tag=None, arguments=None)

	Sends the AMQP command Basic.Consume to the broker and binds messages
for the consumer_tag to the consumer callback. If you do not pass in
a consumer_tag, one will be automatically generated for you. Returns
the consumer tag.

NOTE: the consumer callbacks are dispatched only in the scope of
specially-designated methods: see
BlockingConnection.process_data_events and
BlockingChannel.start_consuming.

For more information about Basic.Consume, see:
http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.consume

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue from which to consume

	on_message_callback (callable) – Required function for dispatching messages
to user, having the signature:
on_message_callback(channel, method, properties, body)

channel: BlockingChannel
method: spec.Basic.Deliver
properties: spec.BasicProperties
body: bytes

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – if set to True, automatic acknowledgement mode will be used
(see http://www.rabbitmq.com/confirms.html). This corresponds
with the ‘no_ack’ parameter in the basic.consume AMQP 0.9.1
method

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t allow other consumers on the queue

	consumer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – You may specify your own consumer tag; if left
empty, a consumer tag will be generated automatically

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the consumer

	Returns

	consumer tag

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	pika.exceptions.DuplicateConsumerTag – if consumer with given
consumer_tag is already present.

	
basic_get(queue, auto_ack=False)

	Get a single message from the AMQP broker. Returns a sequence with
the method frame, message properties, and body.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of queue from which to get a message

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – Tell the broker to not expect a reply

	Returns

	a three-tuple; (None, None, None) if the queue was empty;
otherwise (method, properties, body); NOTE: body may be None

	Return type

	(spec.Basic.GetOk|None, spec.BasicProperties|None, str|None)

	
basic_nack(delivery_tag=None, multiple=False, requeue=True)

	This method allows a client to reject one or more incoming messages.
It can be used to interrupt and cancel large incoming messages, or
return untreatable messages to their original queue.

	Parameters

	
	delivery-tag (int [https://docs.python.org/3/library/functions.html#int]) – The server-assigned delivery tag

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the delivery tag is treated as
“up to and including”, so that multiple messages
can be acknowledged with a single method. If set
to False, the delivery tag refers to a single
message. If the multiple field is 1, and the
delivery tag is zero, this indicates
acknowledgement of all outstanding messages.

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If requeue is true, the server will attempt to
requeue the message. If requeue is false or the
requeue attempt fails the messages are discarded or
dead-lettered.

	
basic_publish(exchange, routing_key, body, properties=None, mandatory=False)

	Publish to the channel with the given exchange, routing key, and
body.

For more information on basic_publish and what the parameters do, see:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.publish

	NOTE: mandatory may be enabled even without delivery

	confirmation, but in the absence of delivery confirmation the
synchronous implementation has no way to know how long to wait for
the Basic.Return.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	body (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message body; empty string if no body

	properties (pika.spec.BasicProperties) – message properties

	mandatory (bool [https://docs.python.org/3/library/functions.html#bool]) – The mandatory flag

	Raises

	
	UnroutableError – raised when a message published in
publisher-acknowledgments mode (see
BlockingChannel.confirm_delivery) is returned via Basic.Return
followed by Basic.Ack.

	NackError – raised when a message published in
publisher-acknowledgements mode is Nack’ed by the broker. See
BlockingChannel.confirm_delivery.

	
basic_qos(prefetch_size=0, prefetch_count=0, global_qos=False)

	Specify quality of service. This method requests a specific quality
of service. The QoS can be specified for the current channel or for all
channels on the connection. The client can request that messages be sent
in advance so that when the client finishes processing a message, the
following message is already held locally, rather than needing to be
sent down the channel. Prefetching gives a performance improvement.

	Parameters

	
	prefetch_size (int [https://docs.python.org/3/library/functions.html#int]) – This field specifies the prefetch window
size. The server will send a message in
advance if it is equal to or smaller in size
than the available prefetch size (and also
falls into other prefetch limits). May be set
to zero, meaning “no specific limit”,
although other prefetch limits may still
apply. The prefetch-size is ignored if the
no-ack option is set in the consumer.

	prefetch_count (int [https://docs.python.org/3/library/functions.html#int]) – Specifies a prefetch window in terms of whole
messages. This field may be used in
combination with the prefetch-size field; a
message will only be sent in advance if both
prefetch windows (and those at the channel
and connection level) allow it. The
prefetch-count is ignored if the no-ack
option is set in the consumer.

	global_qos (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the QoS apply to all channels on the
connection.

	
basic_recover(requeue=False)

	This method asks the server to redeliver all unacknowledged messages
on a specified channel. Zero or more messages may be redelivered. This
method replaces the asynchronous Recover.

	Parameters

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the message will be redelivered to the
original recipient. If True, the server will
attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
basic_reject(delivery_tag=None, requeue=True)

	Reject an incoming message. This method allows a client to reject a
message. It can be used to interrupt and cancel large incoming messages,
or return untreatable messages to their original queue.

	Parameters

	
	delivery-tag (int [https://docs.python.org/3/library/functions.html#int]) – The server-assigned delivery tag

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If requeue is true, the server will attempt to
requeue the message. If requeue is false or the
requeue attempt fails the messages are discarded or
dead-lettered.

	
cancel()

	Cancel the queue consumer created by BlockingChannel.consume,
rejecting all pending ackable messages.

NOTE: If you’re looking to cancel a consumer issued with
BlockingChannel.basic_consume then you should call
BlockingChannel.basic_cancel.

	Returns

	The number of messages requeued by Basic.Nack.
NEW in 0.10.0: returns 0

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
channel_number

	Channel number

	
close(reply_code=0, reply_text='Normal shutdown')

	Will invoke a clean shutdown of the channel with the AMQP Broker.

	Parameters

	
	reply_code (int [https://docs.python.org/3/library/functions.html#int]) – The reply code to close the channel with

	reply_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reply text to close the channel with

	
confirm_delivery()

	Turn on RabbitMQ-proprietary Confirm mode in the channel.

	For more information see:

	https://www.rabbitmq.com/confirms.html

	
connection

	The channel’s BlockingConnection instance

	
consume(queue, auto_ack=False, exclusive=False, arguments=None, inactivity_timeout=None)

	Blocking consumption of a queue instead of via a callback. This
method is a generator that yields each message as a tuple of method,
properties, and body. The active generator iterator terminates when the
consumer is cancelled by client via BlockingChannel.cancel() or by
broker.

Example:

	for method, properties, body in channel.consume(‘queue’):

	print body
channel.basic_ack(method.delivery_tag)

You should call BlockingChannel.cancel() when you escape out of the
generator loop.

If you don’t cancel this consumer, then next call on the same channel
to consume() with the exact same (queue, auto_ack, exclusive) parameters
will resume the existing consumer generator; however, calling with
different parameters will result in an exception.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue name to consume

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – Tell the broker to not expect a ack/nack response

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t allow other consumers on the queue

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the consumer

	inactivity_timeout (float [https://docs.python.org/3/library/functions.html#float]) – if a number is given (in
seconds), will cause the method to yield (None, None, None) after the
given period of inactivity; this permits for pseudo-regular maintenance
activities to be carried out by the user while waiting for messages
to arrive. If None is given (default), then the method blocks until
the next event arrives. NOTE that timing granularity is limited by
the timer resolution of the underlying implementation.
NEW in pika 0.10.0.

	Yields

	tuple(spec.Basic.Deliver, spec.BasicProperties, str or unicode)

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if consumer-creation parameters don’t match those
of the existing queue consumer generator, if any.
NEW in pika 0.10.0

	ChannelClosed – when this channel is closed by broker.

	
consumer_tags

	Property method that returns a list of consumer tags for active
consumers

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
exchange_bind(destination, source, routing_key='', arguments=None)

	Bind an exchange to another exchange.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination exchange to bind

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Method frame from the Exchange.Bind-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Exchange.BindOk

	
exchange_declare(exchange, exchange_type='direct', passive=False, durable=False, auto_delete=False, internal=False, arguments=None)

	This method creates an exchange if it does not already exist, and if
the exchange exists, verifies that it is of the correct and expected
class.

If passive set, the server will reply with Declare-Ok if the exchange
already exists with the same name, and raise an error if not and if the
exchange does not already exist, the server MUST raise a channel
exception with reply code 404 (not found).

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange name consists of a non-empty sequence of
these characters: letters, digits, hyphen, underscore,
period, or colon.

	exchange_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange type to use

	passive (bool [https://docs.python.org/3/library/functions.html#bool]) – Perform a declare or just check to see if it exists

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Survive a reboot of RabbitMQ

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove when no more queues are bound to it

	internal (bool [https://docs.python.org/3/library/functions.html#bool]) – Can only be published to by other exchanges

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the exchange

	Returns

	Method frame from the Exchange.Declare-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Exchange.DeclareOk

	
exchange_delete(exchange=None, if_unused=False)

	Delete the exchange.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange name

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if the exchange is unused

	Returns

	Method frame from the Exchange.Delete-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Exchange.DeleteOk

	
exchange_unbind(destination=None, source=None, routing_key='', arguments=None)

	Unbind an exchange from another exchange.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination exchange to unbind

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to unbind from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to unbind

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Method frame from the Exchange.Unbind-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Exchange.UnbindOk

	
flow(active)

	Turn Channel flow control off and on.

NOTE: RabbitMQ doesn’t support active=False; per
https://www.rabbitmq.com/specification.html: “active=false is not
supported by the server. Limiting prefetch with basic.qos provides much
better control”

For more information, please reference:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#channel.flow

	Parameters

	active (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn flow on (True) or off (False)

	Returns

	True if broker will start or continue sending; False if not

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_waiting_message_count()

	Returns the number of messages that may be retrieved from the current
queue consumer generator via BlockingChannel.consume without blocking.
NEW in pika 0.10.0

	Returns

	The number of waiting messages

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
is_closed

	Returns True if the channel is closed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_open

	Returns True if the channel is open.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
queue_bind(queue, exchange, routing_key=None, arguments=None)

	Bind the queue to the specified exchange

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to bind to the exchange

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Method frame from the Queue.Bind-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Queue.BindOk

	
queue_declare(queue, passive=False, durable=False, exclusive=False, auto_delete=False, arguments=None)

	Declare queue, create if needed. This method creates or checks a
queue. When creating a new queue the client can specify various
properties that control the durability of the queue and its contents,
and the level of sharing for the queue.

Use an empty string as the queue name for the broker to auto-generate
one. Retrieve this auto-generated queue name from the returned
spec.Queue.DeclareOk method frame.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue name; if empty string, the broker will
create a unique queue name

	passive (bool [https://docs.python.org/3/library/functions.html#bool]) – Only check to see if the queue exists and raise
ChannelClosed if it doesn’t

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Survive reboots of the broker

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Only allow access by the current connection

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Delete after consumer cancels or disconnects

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value arguments for the queue

	Returns

	Method frame from the Queue.Declare-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Queue.DeclareOk

	
queue_delete(queue, if_unused=False, if_empty=False)

	Delete a queue from the broker.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to delete

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if it’s unused

	if_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if the queue is empty

	Returns

	Method frame from the Queue.Delete-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Queue.DeleteOk

	
queue_purge(queue)

	Purge all of the messages from the specified queue

	Parameters

	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to purge

	Returns

	Method frame from the Queue.Purge-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Queue.PurgeOk

	
queue_unbind(queue, exchange=None, routing_key=None, arguments=None)

	Unbind a queue from an exchange.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to unbind from the exchange

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to unbind

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Method frame from the Queue.Unbind-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Queue.UnbindOk

	
start_consuming()

	Processes I/O events and dispatches timers and basic_consume
callbacks until all consumers are cancelled.

NOTE: this blocking function may not be called from the scope of a
pika callback, because dispatching basic_consume callbacks from this
context would constitute recursion.

	Raises

	
	pika.exceptions.ReentrancyError – if called from the scope of a
BlockingConnection or BlockingChannel callback

	ChannelClosed – when this channel is closed by broker.

	
stop_consuming(consumer_tag=None)

	Cancels all consumers, signalling the start_consuming loop to
exit.

NOTE: pending non-ackable messages will be lost; pending ackable
messages will be rejected.

	
tx_commit()

	Commit a transaction.

	Returns

	Method frame from the Tx.Commit-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Tx.CommitOk

	
tx_rollback()

	Rollback a transaction.

	Returns

	Method frame from the Tx.Commit-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Tx.CommitOk

	
tx_select()

	Select standard transaction mode. This method sets the channel to use
standard transactions. The client must use this method at least once on
a channel before using the Commit or Rollback methods.

	Returns

	Method frame from the Tx.Select-ok response

	Return type

	pika.frame.Method having method attribute of type
spec.Tx.SelectOk

Select Connection Adapter

A connection adapter that tries to use the best polling method for the
platform pika is running on.

	
class pika.adapters.select_connection.SelectConnection(parameters=None, on_open_callback=None, on_open_error_callback=None, on_close_callback=None, custom_ioloop=None, internal_connection_workflow=True)

	An asynchronous connection adapter that attempts to use the fastest
event loop adapter for the given platform.

	
add_on_close_callback(callback)

	Add a callback notification when the connection has closed. The
callback will be passed the connection and an exception instance. The
exception will either be an instance of exceptions.ConnectionClosed if
a fully-open connection was closed by user or broker or exception of
another type that describes the cause of connection closure/failure.

	Parameters

	callback (callable) – Callback to call on close, having the signature:
callback(pika.connection.Connection, exception)

	
add_on_connection_blocked_callback(callback)

	RabbitMQ AMQP extension - Add a callback to be notified when the
connection gets blocked (Connection.Blocked received from RabbitMQ)
due to the broker running low on resources (memory or disk). In this
state RabbitMQ suspends processing incoming data until the connection
is unblocked, so it’s a good idea for publishers receiving this
notification to suspend publishing until the connection becomes
unblocked.

See also Connection.add_on_connection_unblocked_callback()

See also ConnectionParameters.blocked_connection_timeout.

	Parameters

	callback (callable) – Callback to call on Connection.Blocked,
having the signature callback(connection, pika.frame.Method),
where the method frame’s method member is of type
pika.spec.Connection.Blocked

	
add_on_connection_unblocked_callback(callback)

	RabbitMQ AMQP extension - Add a callback to be notified when the
connection gets unblocked (Connection.Unblocked frame is received from
RabbitMQ) letting publishers know it’s ok to start publishing again.

	Parameters

	callback (callable) – Callback to call on
Connection.Unblocked, having the signature
callback(connection, pika.frame.Method), where the method frame’s
method member is of type pika.spec.Connection.Unblocked

	
add_on_open_callback(callback)

	Add a callback notification when the connection has opened. The
callback will be passed the connection instance as its only arg.

	Parameters

	callback (callable) – Callback to call when open

	
add_on_open_error_callback(callback, remove_default=True)

	Add a callback notification when the connection can not be opened.

The callback method should accept the connection instance that could not
connect, and either a string or an exception as its second arg.

	Parameters

	
	callback (callable) – Callback to call when can’t connect, having
the signature _(Connection, Exception)

	remove_default (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove default exception raising callback

	
basic_nack

	Specifies if the server supports basic.nack on the active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
channel(channel_number=None, on_open_callback=None)

	Create a new channel with the next available channel number or pass
in a channel number to use. Must be non-zero if you would like to
specify but it is recommended that you let Pika manage the channel
numbers.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – The channel number to use, defaults to the
next available.

	on_open_callback (callable) – The callback when the channel is
opened. The callback will be invoked with the Channel instance
as its only argument.

	Return type

	pika.channel.Channel

	
close(reply_code=200, reply_text='Normal shutdown')

	Disconnect from RabbitMQ. If there are any open channels, it will
attempt to close them prior to fully disconnecting. Channels which
have active consumers will attempt to send a Basic.Cancel to RabbitMQ
to cleanly stop the delivery of messages prior to closing the channel.

	Parameters

	
	reply_code (int [https://docs.python.org/3/library/functions.html#int]) – The code number for the close

	reply_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text reason for the close

	Raises

	pika.exceptions.ConnectionWrongStateError – if connection is
closed or closing.

	
consumer_cancel_notify

	Specifies if the server supports consumer cancel notification on the
active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod create_connection(connection_configs, on_done, custom_ioloop=None, workflow=None)

	Implement
:py:classmethod:`pika.adapters.BaseConnection.create_connection()`.

	
exchange_exchange_bindings

	Specifies if the active connection supports exchange to exchange
bindings.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
ioloop

	
	Returns

	the native I/O loop instance underlying async services selected
by user or the default selected by the specialized connection
adapter (e.g., Twisted reactor, asyncio.SelectorEventLoop,
select_connection.IOLoop, etc.)

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
is_closed

	Returns a boolean reporting the current connection state.

	
is_closing

	Returns True if connection is in the process of closing due to
client-initiated close request, but closing is not yet complete.

	
is_open

	Returns a boolean reporting the current connection state.

	
publisher_confirms

	Specifies if the active connection can use publisher confirmations.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Tornado Connection Adapter

Be sure to check out the asynchronous examples including the Tornado specific consumer example.

Twisted Connection Adapter

Using Pika with a Twisted reactor.

The interfaces in this module are Deferred-based when possible. This means that
the connection.channel() method and most of the channel methods return
Deferreds instead of taking a callback argument and that basic_consume()
returns a Twisted DeferredQueue where messages from the server will be
stored. Refer to the docstrings for TwistedProtocolConnection.channel() and the
TwistedChannel class for details.

	
class pika.adapters.twisted_connection.TwistedProtocolConnection(parameters=None, custom_reactor=None)

	A Pika-specific implementation of a Twisted Protocol. Allows using
Twisted’s non-blocking connectTCP/connectSSL methods for connecting to the
server.

TwistedProtocolConnection objects have a ready instance variable that’s a
Deferred which fires when the connection is ready to be used (the initial
AMQP handshaking has been done). You have to wait for this Deferred to
fire before requesting a channel.

Once the connection is ready, you will be able to use the closed instance
variable: a Deferred which fires when the connection is closed.

Since it’s Twisted handling connection establishing it does not accept
connect callbacks, you have to implement that within Twisted. Also remember
that the host, port and ssl values of the connection parameters are ignored
because, yet again, it’s Twisted who manages the connection.

	
channel(channel_number=None)

	Create a new channel with the next available channel number or pass
in a channel number to use. Must be non-zero if you would like to
specify but it is recommended that you let Pika manage the channel
numbers.

	Parameters

	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – The channel number to use, defaults to the
next available.

	Returns

	a Deferred that fires with an instance of a wrapper around
the Pika Channel class.

	Return type

	Deferred

	
connectionMade()

	Called when a connection is made.

This may be considered the initializer of the protocol, because
it is called when the connection is completed. For clients,
this is called once the connection to the server has been
established; for servers, this is called after an accept() call
stops blocking and a socket has been received. If you need to
send any greeting or initial message, do it here.

	
connectionReady()

	This method will be called when the underlying connection is ready.

	
logPrefix()

	Return a prefix matching the class name, to identify log messages
related to this protocol instance.

	
class pika.adapters.twisted_connection.TwistedChannel(channel)

	A wrapper around Pika’s Channel.

Channel methods that normally take a callback argument are wrapped to
return a Deferred that fires with whatever would be passed to the callback.
If the channel gets closed, all pending Deferreds are errbacked with a
ChannelClosed exception. The returned Deferreds fire with whatever
arguments the callback to the original method would receive.

Some methods like basic_consume and basic_get are wrapped in a special way,
see their docstrings for details.

	
add_on_return_callback(callback)

	Pass a callback function that will be called when a published
message is rejected and returned by the server via Basic.Return.

	Parameters

	callback (callable) – The method to call on callback with the
message as only argument. The message is a named tuple with
the following attributes:
channel: this TwistedChannel
method: pika.spec.Basic.Return
properties: pika.spec.BasicProperties
body: bytes

	
basic_ack(delivery_tag=0, multiple=False)

	Acknowledge one or more messages. When sent by the client, this
method acknowledges one or more messages delivered via the Deliver or
Get-Ok methods. When sent by server, this method acknowledges one or
more messages published with the Publish method on a channel in
confirm mode. The acknowledgement can be for a single message or a
set of messages up to and including a specific message.

	Parameters

	
	delivery_tag (integer) – int/long The server-assigned delivery tag

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the delivery tag is treated as
“up to and including”, so that multiple messages
can be acknowledged with a single method. If set
to False, the delivery tag refers to a single
message. If the multiple field is 1, and the
delivery tag is zero, this indicates
acknowledgement of all outstanding messages.

	
basic_cancel(consumer_tag='')

	This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send any more
messages for that consumer. The client may receive an arbitrary number
of messages in between sending the cancel method and receiving the
cancel-ok reply. It may also be sent from the server to the client in
the event of the consumer being unexpectedly cancelled (i.e. cancelled
for any reason other than the server receiving the corresponding
basic.cancel from the client). This allows clients to be notified of
the loss of consumers due to events such as queue deletion.

This method wraps Channel.basic_cancel and closes any deferred queue
associated with that consumer.

	Parameters

	consumer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the consumer

	Returns

	Deferred that fires on the Basic.CancelOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
basic_consume(queue, auto_ack=False, exclusive=False, consumer_tag=None, arguments=None)

	Consume from a server queue.

Sends the AMQP 0-9-1 command Basic.Consume to the broker and binds
messages for the consumer_tag to a
ClosableDeferredQueue. If you do not pass in a
consumer_tag, one will be automatically generated for you.

For more information on basic_consume, see:
Tutorial 2 at http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/confirms.html
http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.consume

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to consume from. Use the empty string to
specify the most recent server-named queue for this channel.

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – if set to True, automatic acknowledgement mode
will be used (see http://www.rabbitmq.com/confirms.html). This
corresponds with the ‘no_ack’ parameter in the basic.consume AMQP
0.9.1 method

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t allow other consumers on the queue

	consumer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specify your own consumer tag

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the consumer

	Returns

	Deferred that fires with a tuple
(queue_object, consumer_tag). The Deferred will errback with an
instance of exceptions.ChannelClosed if the call fails.
The queue object is an instance of ClosableDeferredQueue,
where data received from the queue will be stored. Clients should
use its get() method to fetch
an individual message, which will return a Deferred firing with a
namedtuple whose attributes are:

	channel: this TwistedChannel

	method: pika.spec.Basic.Deliver

	properties: pika.spec.BasicProperties

	body: bytes

	Return type

	Deferred

	
basic_get(queue, auto_ack=False)

	Get a single message from the AMQP broker.

Will return If the queue is empty, it will return None.
If you want to
be notified of Basic.GetEmpty, use the Channel.add_callback method
adding your Basic.GetEmpty callback which should expect only one
parameter, frame. Due to implementation details, this cannot be called
a second time until the callback is executed. For more information on
basic_get and its parameters, see:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.get

This method wraps Channel.basic_get.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue from which to get a message. Use the empty
string to specify the most recent server-named queue
for this channel.

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – Tell the broker to not expect a reply

	Returns

	Deferred that fires with a namedtuple whose attributes are:
channel: this TwistedChannel
method: pika.spec.Basic.GetOk
properties: pika.spec.BasicProperties
body: bytes
If the queue is empty, None will be returned.

	Return type

	Deferred

	Raises

	pika.exceptions.DuplicateGetOkCallback –

	
basic_nack(delivery_tag=None, multiple=False, requeue=True)

	This method allows a client to reject one or more incoming messages.
It can be used to interrupt and cancel large incoming messages, or
return untreatable messages to their original queue.

	Parameters

	
	delivery-tag (integer) – int/long The server-assigned delivery tag

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the delivery tag is treated as
“up to and including”, so that multiple messages
can be acknowledged with a single method. If set
to False, the delivery tag refers to a single
message. If the multiple field is 1, and the
delivery tag is zero, this indicates
acknowledgement of all outstanding messages.

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If requeue is true, the server will attempt to
requeue the message. If requeue is false or the
requeue attempt fails the messages are discarded
or dead-lettered.

	
basic_publish(exchange, routing_key, body, properties=None, mandatory=False)

	Publish to the channel with the given exchange, routing key and body.

This method wraps Channel.basic_publish, but makes sure the channel is
not closed before publishing.

For more information on basic_publish and what the parameters do, see:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.publish

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	body (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message body

	properties (pika.spec.BasicProperties) – Basic.properties

	mandatory (bool [https://docs.python.org/3/library/functions.html#bool]) – The mandatory flag

	Returns

	A Deferred that fires with the result of the channel’s
basic_publish.

	Return type

	Deferred

	Raises

	
	UnroutableError – raised when a message published in
publisher-acknowledgments mode (see
BlockingChannel.confirm_delivery) is returned via Basic.Return
followed by Basic.Ack.

	NackError – raised when a message published in
publisher-acknowledgements mode is Nack’ed by the broker. See
BlockingChannel.confirm_delivery.

	
basic_qos(prefetch_size=0, prefetch_count=0, global_qos=False)

	Specify quality of service. This method requests a specific quality
of service. The QoS can be specified for the current channel or for all
channels on the connection. The client can request that messages be
sent in advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing to
be sent down the channel. Prefetching gives a performance improvement.

	Parameters

	
	prefetch_size (int [https://docs.python.org/3/library/functions.html#int]) – This field specifies the prefetch window
size. The server will send a message in
advance if it is equal to or smaller in size
than the available prefetch size (and also
falls into other prefetch limits). May be
set to zero, meaning “no specific limit”,
although other prefetch limits may still
apply. The prefetch-size is ignored by
consumers who have enabled the no-ack
option.

	prefetch_count (int [https://docs.python.org/3/library/functions.html#int]) – Specifies a prefetch window in terms of
whole messages. This field may be used in
combination with the prefetch-size field; a
message will only be sent in advance if both
prefetch windows (and those at the channel
and connection level) allow it. The
prefetch-count is ignored by consumers who
have enabled the no-ack option.

	global_qos (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the QoS apply to all channels on the
connection.

	Returns

	Deferred that fires on the Basic.QosOk response

	Return type

	Deferred

	
basic_recover(requeue=False)

	This method asks the server to redeliver all unacknowledged messages
on a specified channel. Zero or more messages may be redelivered. This
method replaces the asynchronous Recover.

	Parameters

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the message will be redelivered to the
original recipient. If True, the server will
attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	Returns

	Deferred that fires on the Basic.RecoverOk response

	Return type

	Deferred

	
basic_reject(delivery_tag, requeue=True)

	Reject an incoming message. This method allows a client to reject a
message. It can be used to interrupt and cancel large incoming
messages, or return untreatable messages to their original queue.

	Parameters

	
	delivery_tag (integer) – int/long The server-assigned delivery tag

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If requeue is true, the server will attempt to
requeue the message. If requeue is false or the
requeue attempt fails the messages are discarded
or dead-lettered.

	Raises

	TypeError

	
callback_deferred(deferred, replies)

	Pass in a Deferred and a list replies from the RabbitMQ broker which
you’d like the Deferred to be callbacked on with the frame as callback
value.

	Parameters

	
	deferred (Deferred) – The Deferred to callback

	replies (list [https://docs.python.org/3/library/stdtypes.html#list]) – The replies to callback on

	
close(reply_code=0, reply_text='Normal shutdown')

	Invoke a graceful shutdown of the channel with the AMQP Broker.

If channel is OPENING, transition to CLOSING and suppress the incoming
Channel.OpenOk, if any.

	Parameters

	
	reply_code (int [https://docs.python.org/3/library/functions.html#int]) – The reason code to send to broker

	reply_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reason text to send to broker

	Raises

	ChannelWrongStateError – if channel is closed or closing

	
confirm_delivery()

	Turn on Confirm mode in the channel. Pass in a callback to be
notified by the Broker when a message has been confirmed as received or
rejected (Basic.Ack, Basic.Nack) from the broker to the publisher.

	For more information see:

	http://www.rabbitmq.com/confirms.html#publisher-confirms

	Returns

	Deferred that fires on the Confirm.SelectOk response

	Return type

	Deferred

	
exchange_bind(destination, source, routing_key='', arguments=None)

	Bind an exchange to another exchange.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination exchange to bind

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	Returns

	Deferred that fires on the Exchange.BindOk response

	Return type

	Deferred

	
exchange_declare(exchange, exchange_type='direct', passive=False, durable=False, auto_delete=False, internal=False, arguments=None)

	This method creates an exchange if it does not already exist, and if
the exchange exists, verifies that it is of the correct and expected
class.

If passive set, the server will reply with Declare-Ok if the exchange
already exists with the same name, and raise an error if not and if the
exchange does not already exist, the server MUST raise a channel
exception with reply code 404 (not found).

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange name consists of a non-empty sequence
of these characters: letters, digits, hyphen, underscore, period,
or colon

	exchange_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange type to use

	passive (bool [https://docs.python.org/3/library/functions.html#bool]) – Perform a declare or just check to see if it
exists

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Survive a reboot of RabbitMQ

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove when no more queues are bound to it

	internal (bool [https://docs.python.org/3/library/functions.html#bool]) – Can only be published to by other exchanges

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the exchange

	Returns

	Deferred that fires on the Exchange.DeclareOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
exchange_delete(exchange=None, if_unused=False)

	Delete the exchange.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange name

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if the exchange is unused

	Returns

	Deferred that fires on the Exchange.DeleteOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
exchange_unbind(destination=None, source=None, routing_key='', arguments=None)

	Unbind an exchange from another exchange.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination exchange to unbind

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to unbind from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to unbind

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Deferred that fires on the Exchange.UnbindOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
flow(active)

	Turn Channel flow control off and on.

Returns a Deferred that will fire with a bool indicating the channel
flow state. For more information, please reference:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#channel.flow

	Parameters

	active (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn flow on or off

	Returns

	Deferred that fires with the channel flow state

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
is_closed

	Returns True if the channel is closed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_closing

	Returns True if client-initiated closing of the channel is in
progress.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_open

	Returns True if the channel is open.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
open()

	Open the channel

	
queue_bind(queue, exchange, routing_key=None, arguments=None)

	Bind the queue to the specified exchange

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to bind to the exchange

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Deferred that fires on the Queue.BindOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_declare(queue, passive=False, durable=False, exclusive=False, auto_delete=False, arguments=None)

	Declare queue, create if needed. This method creates or checks a
queue. When creating a new queue the client can specify various
properties that control the durability of the queue and its contents,
and the level of sharing for the queue.

Use an empty string as the queue name for the broker to auto-generate
one

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue name; if empty string, the broker will
create a unique queue name

	passive (bool [https://docs.python.org/3/library/functions.html#bool]) – Only check to see if the queue exists

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Survive reboots of the broker

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Only allow access by the current connection

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Delete after consumer cancels or disconnects

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value arguments for the queue

	Returns

	Deferred that fires on the Queue.DeclareOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_delete(queue, if_unused=False, if_empty=False)

	Delete a queue from the broker.

This method wraps Channel.queue_delete, and removes the reference to the
queue object after it gets deleted on the server.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to delete

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if it’s unused

	if_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if the queue is empty

	Returns

	Deferred that fires on the Queue.DeleteOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_purge(queue)

	Purge all of the messages from the specified queue

	Parameters

	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to purge

	Returns

	Deferred that fires on the Queue.PurgeOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_unbind(queue, exchange=None, routing_key=None, arguments=None)

	Unbind a queue from an exchange.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to unbind from the exchange

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to unbind

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	Returns

	Deferred that fires on the Queue.UnbindOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
tx_commit()

	Commit a transaction.

	Returns

	Deferred that fires on the Tx.CommitOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
tx_rollback()

	Rollback a transaction.

	Returns

	Deferred that fires on the Tx.RollbackOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
tx_select()

	Select standard transaction mode. This method sets the channel to use
standard transactions. The client must use this method at least once on
a channel before using the Commit or Rollback methods.

	Returns

	Deferred that fires on the Tx.SelectOk response

	Return type

	Deferred

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
class pika.adapters.twisted_connection.ClosableDeferredQueue(size=None, backlog=None)

	Like the normal Twisted DeferredQueue, but after close() is called with an
exception instance all pending Deferreds are errbacked and further attempts
to call get() or put() return a Failure wrapping that exception.

	
close(reason)

	Closes the queue.

Errback the pending calls to get().

	
get()

	Returns a Deferred that will fire with the next item in the queue, when
it’s available.

The Deferred will errback if the queue is closed.

	Returns

	Deferred that fires with the next item.

	Return type

	Deferred

	
put(obj)

	Like the original DeferredQueue.put() method, but returns an
errback if the queue is closed.

Channel

The Channel class provides a wrapper for interacting with RabbitMQ
implementing the methods and behaviors for an AMQP Channel.

Channel

	
class pika.channel.Channel(connection, channel_number, on_open_callback)

	A Channel is the primary communication method for interacting with
RabbitMQ. It is recommended that you do not directly invoke the creation of
a channel object in your application code but rather construct a channel by
calling the active connection’s channel() method.

	
add_callback(callback, replies, one_shot=True)

	Pass in a callback handler and a list replies from the
RabbitMQ broker which you’d like the callback notified of. Callbacks
should allow for the frame parameter to be passed in.

	Parameters

	
	callback (callable) – The callback to call

	replies (list [https://docs.python.org/3/library/stdtypes.html#list]) – The replies to get a callback for

	one_shot (bool [https://docs.python.org/3/library/functions.html#bool]) – Only handle the first type callback

	
add_on_cancel_callback(callback)

	Pass a callback function that will be called when the basic_cancel
is sent by the server. The callback function should receive a frame
parameter.

	Parameters

	callback (callable) – The callback to call on Basic.Cancel from
broker

	
add_on_close_callback(callback)

	Pass a callback function that will be called when the channel is
closed. The callback function will receive the channel and an exception
describing why the channel was closed.

If the channel is closed by broker via Channel.Close, the callback will
receive ChannelClosedByBroker as the reason.

If graceful user-initiated channel closing completes successfully (
either directly of indirectly by closing a connection containing the
channel) and closing concludes gracefully without Channel.Close from the
broker and without loss of connection, the callback will receive
ChannelClosedByClient exception as reason.

If channel was closed due to loss of connection, the callback will
receive another exception type describing the failure.

	Parameters

	callback (callable) – The callback, having the signature:
callback(Channel, Exception reason)

	
add_on_flow_callback(callback)

	Pass a callback function that will be called when Channel.Flow is
called by the remote server. Note that newer versions of RabbitMQ
will not issue this but instead use TCP backpressure

	Parameters

	callback (callable) – The callback function

	
add_on_return_callback(callback)

	Pass a callback function that will be called when basic_publish is
sent a message that has been rejected and returned by the server.

	Parameters

	callback (callable) – The function to call, having the signature
callback(channel, method, properties, body)
where
channel: pika.Channel
method: pika.spec.Basic.Return
properties: pika.spec.BasicProperties
body: bytes

	
basic_ack(delivery_tag=0, multiple=False)

	Acknowledge one or more messages. When sent by the client, this
method acknowledges one or more messages delivered via the Deliver or
Get-Ok methods. When sent by server, this method acknowledges one or
more messages published with the Publish method on a channel in
confirm mode. The acknowledgement can be for a single message or a
set of messages up to and including a specific message.

	Parameters

	
	delivery_tag (integer) – int/long The server-assigned delivery tag

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the delivery tag is treated as
“up to and including”, so that multiple messages
can be acknowledged with a single method. If set
to False, the delivery tag refers to a single
message. If the multiple field is 1, and the
delivery tag is zero, this indicates
acknowledgement of all outstanding messages.

	
basic_cancel(consumer_tag='', callback=None)

	This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send any more
messages for that consumer. The client may receive an arbitrary number
of messages in between sending the cancel method and receiving the
cancel-ok reply. It may also be sent from the server to the client in
the event of the consumer being unexpectedly cancelled (i.e. cancelled
for any reason other than the server receiving the corresponding
basic.cancel from the client). This allows clients to be notified of
the loss of consumers due to events such as queue deletion.

	Parameters

	
	consumer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the consumer

	callback (callable) – callback(pika.frame.Method) for method
Basic.CancelOk. If None, do not expect a Basic.CancelOk response,
otherwise, callback must be callable

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
basic_consume(queue, on_message_callback, auto_ack=False, exclusive=False, consumer_tag=None, arguments=None, callback=None)

	Sends the AMQP 0-9-1 command Basic.Consume to the broker and binds messages
for the consumer_tag to the consumer callback. If you do not pass in
a consumer_tag, one will be automatically generated for you. Returns
the consumer tag.

For more information on basic_consume, see:
Tutorial 2 at http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/confirms.html
http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.consume

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to consume from. Use the empty string to
specify the most recent server-named queue for this channel

	on_message_callback (callable) – The function to call when
consuming with the signature
on_message_callback(channel, method, properties, body), where

channel: pika.Channel
method: pika.spec.Basic.Deliver
properties: pika.spec.BasicProperties
body: bytes

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – if set to True, automatic acknowledgement mode
will be used (see http://www.rabbitmq.com/confirms.html).
This corresponds with the ‘no_ack’ parameter in the basic.consume
AMQP 0.9.1 method

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Don’t allow other consumers on the queue

	consumer_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specify your own consumer tag

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the consumer

	callback (callable) – callback(pika.frame.Method) for method
Basic.ConsumeOk.

	Returns

	Consumer tag which may be used to cancel the consumer.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
basic_get(queue, callback, auto_ack=False)

	Get a single message from the AMQP broker. If you want to
be notified of Basic.GetEmpty, use the Channel.add_callback method
adding your Basic.GetEmpty callback which should expect only one
parameter, frame. Due to implementation details, this cannot be called
a second time until the callback is executed. For more information on
basic_get and its parameters, see:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.get

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue from which to get a message. Use the empty
string to specify the most recent server-named queue for this
channel

	callback (callable) – The callback to call with a message that has
the signature callback(channel, method, properties, body), where:
channel: pika.Channel
method: pika.spec.Basic.GetOk
properties: pika.spec.BasicProperties
body: bytes

	auto_ack (bool [https://docs.python.org/3/library/functions.html#bool]) – Tell the broker to not expect a reply

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
basic_nack(delivery_tag=None, multiple=False, requeue=True)

	This method allows a client to reject one or more incoming messages.
It can be used to interrupt and cancel large incoming messages, or
return untreatable messages to their original queue.

	Parameters

	
	delivery-tag (integer) – int/long The server-assigned delivery tag

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the delivery tag is treated as
“up to and including”, so that multiple messages
can be acknowledged with a single method. If set
to False, the delivery tag refers to a single
message. If the multiple field is 1, and the
delivery tag is zero, this indicates
acknowledgement of all outstanding messages.

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If requeue is true, the server will attempt to
requeue the message. If requeue is false or the
requeue attempt fails the messages are discarded or
dead-lettered.

	
basic_publish(exchange, routing_key, body, properties=None, mandatory=False)

	Publish to the channel with the given exchange, routing key and body.
For more information on basic_publish and what the parameters do, see:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.publish

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	body (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message body

	properties (pika.spec.BasicProperties) – Basic.properties

	mandatory (bool [https://docs.python.org/3/library/functions.html#bool]) – The mandatory flag

	
basic_qos(prefetch_size=0, prefetch_count=0, global_qos=False, callback=None)

	Specify quality of service. This method requests a specific quality
of service. The QoS can be specified for the current channel or for all
channels on the connection. The client can request that messages be sent
in advance so that when the client finishes processing a message, the
following message is already held locally, rather than needing to be
sent down the channel. Prefetching gives a performance improvement.

	Parameters

	
	prefetch_size (int [https://docs.python.org/3/library/functions.html#int]) – This field specifies the prefetch window
size. The server will send a message in
advance if it is equal to or smaller in size
than the available prefetch size (and also
falls into other prefetch limits). May be set
to zero, meaning “no specific limit”,
although other prefetch limits may still
apply. The prefetch-size is ignored by
consumers who have enabled the no-ack option.

	prefetch_count (int [https://docs.python.org/3/library/functions.html#int]) – Specifies a prefetch window in terms of whole
messages. This field may be used in
combination with the prefetch-size field; a
message will only be sent in advance if both
prefetch windows (and those at the channel
and connection level) allow it. The
prefetch-count is ignored by consumers who
have enabled the no-ack option.

	global_qos (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the QoS apply to all channels on the
connection.

	callback (callable) – The callback to call for Basic.QosOk response

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
basic_reject(delivery_tag, requeue=True)

	Reject an incoming message. This method allows a client to reject a
message. It can be used to interrupt and cancel large incoming messages,
or return untreatable messages to their original queue.

	Parameters

	
	delivery-tag (integer) – int/long The server-assigned delivery tag

	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If requeue is true, the server will attempt to
requeue the message. If requeue is false or the
requeue attempt fails the messages are discarded or
dead-lettered.

	Raises

	TypeError

	
basic_recover(requeue=False, callback=None)

	This method asks the server to redeliver all unacknowledged messages
on a specified channel. Zero or more messages may be redelivered. This
method replaces the asynchronous Recover.

	Parameters

	
	requeue (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the message will be redelivered to the
original recipient. If True, the server will
attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	callback (callable) – Callback to call when receiving
Basic.RecoverOk

	callback – callback(pika.frame.Method) for method
Basic.RecoverOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
close(reply_code=0, reply_text='Normal shutdown')

	Invoke a graceful shutdown of the channel with the AMQP Broker.

If channel is OPENING, transition to CLOSING and suppress the incoming
Channel.OpenOk, if any.

	Parameters

	
	reply_code (int [https://docs.python.org/3/library/functions.html#int]) – The reason code to send to broker

	reply_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reason text to send to broker

	Raises

	ChannelWrongStateError – if channel is closed or closing

	
confirm_delivery(ack_nack_callback, callback=None)

	Turn on Confirm mode in the channel. Pass in a callback to be
notified by the Broker when a message has been confirmed as received or
rejected (Basic.Ack, Basic.Nack) from the broker to the publisher.

	For more information see:

	https://www.rabbitmq.com/confirms.html

	Parameters

	
	ack_nack_callback (callable) – Required callback for delivery
confirmations that has the following signature:
callback(pika.frame.Method), where method_frame contains
either method spec.Basic.Ack or spec.Basic.Nack.

	callback (callable) – callback(pika.frame.Method) for method
Confirm.SelectOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
consumer_tags

	Property method that returns a list of currently active consumers

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
exchange_bind(destination, source, routing_key='', arguments=None, callback=None)

	Bind an exchange to another exchange.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination exchange to bind

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	callback (callable) – callback(pika.frame.Method) for method Exchange.BindOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
exchange_declare(exchange, exchange_type='direct', passive=False, durable=False, auto_delete=False, internal=False, arguments=None, callback=None)

	This method creates an exchange if it does not already exist, and if
the exchange exists, verifies that it is of the correct and expected
class.

If passive set, the server will reply with Declare-Ok if the exchange
already exists with the same name, and raise an error if not and if the
exchange does not already exist, the server MUST raise a channel
exception with reply code 404 (not found).

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange name consists of a non-empty sequence
of these characters: letters, digits, hyphen, underscore, period,
or colon

	exchange_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange type to use

	passive (bool [https://docs.python.org/3/library/functions.html#bool]) – Perform a declare or just check to see if it exists

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Survive a reboot of RabbitMQ

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove when no more queues are bound to it

	internal (bool [https://docs.python.org/3/library/functions.html#bool]) – Can only be published to by other exchanges

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the exchange

	callback (callable) – callback(pika.frame.Method) for method Exchange.DeclareOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
exchange_delete(exchange=None, if_unused=False, callback=None)

	Delete the exchange.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange name

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if the exchange is unused

	callback (callable) – callback(pika.frame.Method) for method Exchange.DeleteOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
exchange_unbind(destination=None, source=None, routing_key='', arguments=None, callback=None)

	Unbind an exchange from another exchange.

	Parameters

	
	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination exchange to unbind

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to unbind from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to unbind

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	callback (callable) – callback(pika.frame.Method) for method Exchange.UnbindOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
flow(active, callback=None)

	Turn Channel flow control off and on. Pass a callback to be notified
of the response from the server. active is a bool. Callback should
expect a bool in response indicating channel flow state. For more
information, please reference:

http://www.rabbitmq.com/amqp-0-9-1-reference.html#channel.flow

	Parameters

	
	active (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn flow on or off

	callback (callable) – callback(bool) upon completion

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
is_closed

	Returns True if the channel is closed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_closing

	Returns True if client-initiated closing of the channel is in
progress.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_open

	Returns True if the channel is open.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
open()

	Open the channel

	
queue_bind(queue, exchange, routing_key=None, arguments=None, callback=None)

	Bind the queue to the specified exchange

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to bind to the exchange

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to bind on

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	callback (callable) – callback(pika.frame.Method) for method Queue.BindOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_declare(queue, passive=False, durable=False, exclusive=False, auto_delete=False, arguments=None, callback=None)

	Declare queue, create if needed. This method creates or checks a
queue. When creating a new queue the client can specify various
properties that control the durability of the queue and its contents,
and the level of sharing for the queue.

Use an empty string as the queue name for the broker to auto-generate
one

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue name; if empty string, the broker will
create a unique queue name

	passive (bool [https://docs.python.org/3/library/functions.html#bool]) – Only check to see if the queue exists

	durable (bool [https://docs.python.org/3/library/functions.html#bool]) – Survive reboots of the broker

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Only allow access by the current connection

	auto_delete (bool [https://docs.python.org/3/library/functions.html#bool]) – Delete after consumer cancels or disconnects

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value arguments for the queue

	callback (callable) – callback(pika.frame.Method) for method Queue.DeclareOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_delete(queue, if_unused=False, if_empty=False, callback=None)

	Delete a queue from the broker.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to delete

	if_unused (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if it’s unused

	if_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – only delete if the queue is empty

	callback (callable) – callback(pika.frame.Method) for method Queue.DeleteOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_purge(queue, callback=None)

	Purge all of the messages from the specified queue

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to purge

	callback (callable) – callback(pika.frame.Method) for method Queue.PurgeOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
queue_unbind(queue, exchange=None, routing_key=None, arguments=None, callback=None)

	Unbind a queue from an exchange.

	Parameters

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – The queue to unbind from the exchange

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source exchange to bind from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to unbind

	arguments (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Custom key/value pair arguments for the binding

	callback (callable) – callback(pika.frame.Method) for method Queue.UnbindOk

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
tx_commit(callback=None)

	Commit a transaction

	Parameters

	callback (callable) – The callback for delivery confirmations

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
tx_rollback(callback=None)

	Rollback a transaction.

	Parameters

	callback (callable) – The callback for delivery confirmations

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

	
tx_select(callback=None)

	Select standard transaction mode. This method sets the channel to use
standard transactions. The client must use this method at least once on
a channel before using the Commit or Rollback methods.

	Parameters

	callback (callable) – The callback for delivery confirmations

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –

Connection

The Connection class implements the base behavior
that all connection adapters extend.

	
class pika.connection.Connection(parameters=None, on_open_callback=None, on_open_error_callback=None, on_close_callback=None, internal_connection_workflow=True)

	This is the core class that implements communication with RabbitMQ. This
class should not be invoked directly but rather through the use of an
adapter such as SelectConnection or BlockingConnection.

	
add_on_close_callback(callback)

	Add a callback notification when the connection has closed. The
callback will be passed the connection and an exception instance. The
exception will either be an instance of exceptions.ConnectionClosed if
a fully-open connection was closed by user or broker or exception of
another type that describes the cause of connection closure/failure.

	Parameters

	callback (callable) – Callback to call on close, having the signature:
callback(pika.connection.Connection, exception)

	
add_on_connection_blocked_callback(callback)

	RabbitMQ AMQP extension - Add a callback to be notified when the
connection gets blocked (Connection.Blocked received from RabbitMQ)
due to the broker running low on resources (memory or disk). In this
state RabbitMQ suspends processing incoming data until the connection
is unblocked, so it’s a good idea for publishers receiving this
notification to suspend publishing until the connection becomes
unblocked.

See also Connection.add_on_connection_unblocked_callback()

See also ConnectionParameters.blocked_connection_timeout.

	Parameters

	callback (callable) – Callback to call on Connection.Blocked,
having the signature callback(connection, pika.frame.Method),
where the method frame’s method member is of type
pika.spec.Connection.Blocked

	
add_on_connection_unblocked_callback(callback)

	RabbitMQ AMQP extension - Add a callback to be notified when the
connection gets unblocked (Connection.Unblocked frame is received from
RabbitMQ) letting publishers know it’s ok to start publishing again.

	Parameters

	callback (callable) – Callback to call on
Connection.Unblocked, having the signature
callback(connection, pika.frame.Method), where the method frame’s
method member is of type pika.spec.Connection.Unblocked

	
add_on_open_callback(callback)

	Add a callback notification when the connection has opened. The
callback will be passed the connection instance as its only arg.

	Parameters

	callback (callable) – Callback to call when open

	
add_on_open_error_callback(callback, remove_default=True)

	Add a callback notification when the connection can not be opened.

The callback method should accept the connection instance that could not
connect, and either a string or an exception as its second arg.

	Parameters

	
	callback (callable) – Callback to call when can’t connect, having
the signature _(Connection, Exception)

	remove_default (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove default exception raising callback

	
basic_nack

	Specifies if the server supports basic.nack on the active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
channel(channel_number=None, on_open_callback=None)

	Create a new channel with the next available channel number or pass
in a channel number to use. Must be non-zero if you would like to
specify but it is recommended that you let Pika manage the channel
numbers.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – The channel number to use, defaults to the
next available.

	on_open_callback (callable) – The callback when the channel is
opened. The callback will be invoked with the Channel instance
as its only argument.

	Return type

	pika.channel.Channel

	
close(reply_code=200, reply_text='Normal shutdown')

	Disconnect from RabbitMQ. If there are any open channels, it will
attempt to close them prior to fully disconnecting. Channels which
have active consumers will attempt to send a Basic.Cancel to RabbitMQ
to cleanly stop the delivery of messages prior to closing the channel.

	Parameters

	
	reply_code (int [https://docs.python.org/3/library/functions.html#int]) – The code number for the close

	reply_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text reason for the close

	Raises

	pika.exceptions.ConnectionWrongStateError – if connection is
closed or closing.

	
consumer_cancel_notify

	Specifies if the server supports consumer cancel notification on the
active connection.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
exchange_exchange_bindings

	Specifies if the active connection supports exchange to exchange
bindings.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_closed

	Returns a boolean reporting the current connection state.

	
is_closing

	Returns True if connection is in the process of closing due to
client-initiated close request, but closing is not yet complete.

	
is_open

	Returns a boolean reporting the current connection state.

	
publisher_confirms

	Specifies if the active connection can use publisher confirmations.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Authentication Credentials

The credentials classes are used to encapsulate all authentication
information for the ConnectionParameters class.

The PlainCredentials class returns the properly
formatted username and password to the Connection.

To authenticate with Pika, create a PlainCredentials
object passing in the username and password and pass it as the credentials
argument value to the ConnectionParameters object.

If you are using URLParameters you do not need a
credentials object, one will automatically be created for you.

If you are looking to implement SSL certificate style authentication, you would
extend the ExternalCredentials class implementing
the required behavior.

PlainCredentials

	
class pika.credentials.PlainCredentials(username, password, erase_on_connect=False)

	A credentials object for the default authentication methodology with
RabbitMQ.

If you do not pass in credentials to the ConnectionParameters object, it
will create credentials for ‘guest’ with the password of ‘guest’.

If you pass True to erase_on_connect the credentials will not be stored
in memory after the Connection attempt has been made.

	Parameters

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username to authenticate with

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – The password to authenticate with

	erase_on_connect (bool [https://docs.python.org/3/library/functions.html#bool]) – erase credentials on connect.

	
erase_credentials()

	Called by Connection when it no longer needs the credentials

	
response_for(start)

	Validate that this type of authentication is supported

	Parameters

	start (spec.Connection.Start) – Connection.Start method

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str|None, str|None)

ExternalCredentials

	
class pika.credentials.ExternalCredentials

	The ExternalCredentials class allows the connection to use EXTERNAL
authentication, generally with a client SSL certificate.

	
erase_credentials()

	Called by Connection when it no longer needs the credentials

	
response_for(start)

	Validate that this type of authentication is supported

	Parameters

	start (spec.Connection.Start) – Connection.Start method

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None])

Exceptions

Pika specific exceptions

	
exception pika.exceptions.AMQPChannelError

	

	
exception pika.exceptions.AMQPConnectionError

	

	
exception pika.exceptions.AMQPError

	

	
exception pika.exceptions.AMQPHeartbeatTimeout

	Connection was dropped as result of heartbeat timeout.

	
exception pika.exceptions.AuthenticationError

	

	
exception pika.exceptions.BodyTooLongError

	

	
exception pika.exceptions.ChannelClosed(reply_code, reply_text)

	The channel closed by client or by broker

	
reply_code

	NEW in v1.0.0
:rtype: int

	
reply_text

	NEW in v1.0.0
:rtype: str

	
exception pika.exceptions.ChannelClosedByBroker(reply_code, reply_text)

	Channel.Close from broker; may be passed as reason to channel’s
on-closed callback of non-blocking connection adapters or raised by
BlockingConnection.

NEW in v1.0.0

	
exception pika.exceptions.ChannelClosedByClient(reply_code, reply_text)

	Channel closed by client upon receipt of Channel.CloseOk; may be passed
as reason to channel’s on-closed callback of non-blocking connection
adapters, but not raised by BlockingConnection.

NEW in v1.0.0

	
exception pika.exceptions.ChannelError

	

	
exception pika.exceptions.ChannelWrongStateError

	Channel is in wrong state for the requested operation.

	
exception pika.exceptions.ConnectionBlockedTimeout

	RabbitMQ-specific: timed out waiting for connection.unblocked.

	
exception pika.exceptions.ConnectionClosed(reply_code, reply_text)

	
	
reply_code

	NEW in v1.0.0
:rtype: int

	
reply_text

	NEW in v1.0.0
:rtype: str

	
exception pika.exceptions.ConnectionClosedByBroker(reply_code, reply_text)

	Connection.Close from broker.

	
exception pika.exceptions.ConnectionClosedByClient(reply_code, reply_text)

	Connection was closed at request of Pika client.

	
exception pika.exceptions.ConnectionOpenAborted

	Client closed connection while opening.

	
exception pika.exceptions.ConnectionWrongStateError

	Connection is in wrong state for the requested operation.

	
exception pika.exceptions.ConsumerCancelled

	

	
exception pika.exceptions.DuplicateConsumerTag

	

	
exception pika.exceptions.DuplicateGetOkCallback

	

	
exception pika.exceptions.IncompatibleProtocolError

	

	
exception pika.exceptions.InvalidChannelNumber

	

	
exception pika.exceptions.InvalidFieldTypeException

	

	
exception pika.exceptions.InvalidFrameError

	

	
exception pika.exceptions.MethodNotImplemented

	

	
exception pika.exceptions.NackError(messages)

	This exception is raised when a message published in
publisher-acknowledgements mode is Nack’ed by the broker.

Used by BlockingChannel.

	
exception pika.exceptions.NoFreeChannels

	

	
exception pika.exceptions.ProbableAccessDeniedError

	

	
exception pika.exceptions.ProbableAuthenticationError

	

	
exception pika.exceptions.ProtocolSyntaxError

	

	
exception pika.exceptions.ProtocolVersionMismatch

	

	
exception pika.exceptions.ReentrancyError

	The requested operation would result in unsupported recursion or
reentrancy.

Used by BlockingConnection/BlockingChannel

	
exception pika.exceptions.ShortStringTooLong

	

	
exception pika.exceptions.StreamLostError

	Stream (TCP) connection lost.

	
exception pika.exceptions.UnexpectedFrameError

	

	
exception pika.exceptions.UnroutableError(messages)

	Exception containing one or more unroutable messages returned by broker
via Basic.Return.

Used by BlockingChannel.

In publisher-acknowledgements mode, this is raised upon receipt of Basic.Ack
from broker; in the event of Basic.Nack from broker, NackError is raised
instead

	
exception pika.exceptions.UnsupportedAMQPFieldException

	

Connection Parameters

To maintain flexibility in how you specify the connection information required for your applications to properly connect to RabbitMQ, pika implements two classes for encapsulating the information, ConnectionParameters and URLParameters.

ConnectionParameters

The classic object for specifying all of the connection parameters required to connect to RabbitMQ, ConnectionParameters provides attributes for tweaking every possible connection option.

Example:

import pika

Set the connection parameters to connect to rabbit-server1 on port 5672
on the / virtual host using the username "guest" and password "guest"
credentials = pika.PlainCredentials('guest', 'guest')
parameters = pika.ConnectionParameters('rabbit-server1',
 5672,
 '/',
 credentials)

	
class pika.connection.ConnectionParameters(host=<class 'pika.connection._DEFAULT'>, port=<class 'pika.connection._DEFAULT'>, virtual_host=<class 'pika.connection._DEFAULT'>, credentials=<class 'pika.connection._DEFAULT'>, channel_max=<class 'pika.connection._DEFAULT'>, frame_max=<class 'pika.connection._DEFAULT'>, heartbeat=<class 'pika.connection._DEFAULT'>, ssl_options=<class 'pika.connection._DEFAULT'>, connection_attempts=<class 'pika.connection._DEFAULT'>, retry_delay=<class 'pika.connection._DEFAULT'>, socket_timeout=<class 'pika.connection._DEFAULT'>, stack_timeout=<class 'pika.connection._DEFAULT'>, locale=<class 'pika.connection._DEFAULT'>, blocked_connection_timeout=<class 'pika.connection._DEFAULT'>, client_properties=<class 'pika.connection._DEFAULT'>, tcp_options=<class 'pika.connection._DEFAULT'>, **kwargs)

	Connection parameters object that is passed into the connection adapter
upon construction.

	
blocked_connection_timeout

	
	Returns

	blocked connection timeout. Defaults to
DEFAULT_BLOCKED_CONNECTION_TIMEOUT.

	Return type

	float|None

	
channel_max

	
	Returns

	max preferred number of channels. Defaults to
DEFAULT_CHANNEL_MAX.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
client_properties

	
	Returns

	client properties used to override the fields in the default
client poperties reported to RabbitMQ via Connection.StartOk
method. Defaults to DEFAULT_CLIENT_PROPERTIES.

	Return type

	dict|None

	
connection_attempts

	
	Returns

	number of socket connection attempts. Defaults to
DEFAULT_CONNECTION_ATTEMPTS. See also retry_delay.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
credentials

	
	Return type

	one of the classes from pika.credentials.VALID_TYPES. Defaults
to DEFAULT_CREDENTIALS.

	
frame_max

	
	Returns

	desired maximum AMQP frame size to use. Defaults to
DEFAULT_FRAME_MAX.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
heartbeat

	
	Returns

	AMQP connection heartbeat timeout value for negotiation during
connection tuning or callable which is invoked during connection tuning.
None to accept broker’s value. 0 turns heartbeat off. Defaults to
DEFAULT_HEARTBEAT_TIMEOUT.

	Return type

	int|callable|None

	
host

	
	Returns

	hostname or ip address of broker. Defaults to DEFAULT_HOST.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
locale

	
	Returns

	locale value to pass to broker; e.g., ‘en_US’. Defaults to
DEFAULT_LOCALE.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
retry_delay

	
	Returns

	interval between socket connection attempts; see also
connection_attempts. Defaults to DEFAULT_RETRY_DELAY.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
socket_timeout

	
	Returns

	socket connect timeout in seconds. Defaults to
DEFAULT_SOCKET_TIMEOUT. The value None disables this timeout.

	Return type

	float|None

	
stack_timeout

	
	Returns

	full protocol stack TCP/[SSL]/AMQP bring-up timeout in
seconds. Defaults to DEFAULT_STACK_TIMEOUT. The value None
disables this timeout.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
ssl_options

	
	Returns

	None for plaintext or pika.SSLOptions instance for SSL/TLS.

	Return type

	`pika.SSLOptions`|None

	
port

	
	Returns

	port number of broker’s listening socket. Defaults to
DEFAULT_PORT.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
virtual_host

	
	Returns

	rabbitmq virtual host name. Defaults to
DEFAULT_VIRTUAL_HOST.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
tcp_options

	
	Returns

	None or a dict of options to pass to the underlying socket

	Return type

	dict|None

URLParameters

The URLParameters class allows you to pass in an AMQP URL when creating the object and supports the host, port, virtual host, ssl, username and password in the base URL and other options are passed in via query parameters.

Example:

import pika

Set the connection parameters to connect to rabbit-server1 on port 5672
on the / virtual host using the username "guest" and password "guest"
parameters = pika.URLParameters('amqp://guest:guest@rabbit-server1:5672/%2F')

	
class pika.connection.URLParameters(url)

	Connect to RabbitMQ via an AMQP URL in the format:

amqp://username:password@host:port/<virtual_host>[?query-string]

Ensure that the virtual host is URI encoded when specified. For example if
you are using the default “/” virtual host, the value should be %2f.

See Parameters for default values.

Valid query string values are:

	
	channel_max:

	Override the default maximum channel count value

	
	client_properties:

	dict of client properties used to override the fields in the default
client properties reported to RabbitMQ via Connection.StartOk
method

	
	connection_attempts:

	Specify how many times pika should try and reconnect before it gives up

	
	frame_max:

	Override the default maximum frame size for communication

	
	heartbeat:

	Desired connection heartbeat timeout for negotiation. If not present
the broker’s value is accepted. 0 turns heartbeat off.

	
	locale:

	Override the default en_US locale value

	
	ssl_options:

	None for plaintext; for SSL: dict of public ssl context-related
arguments that may be passed to ssl.SSLSocket() as kwargs,
except sock, server_side,`do_handshake_on_connect`, family,
type, proto, fileno.

	
	retry_delay:

	The number of seconds to sleep before attempting to connect on
connection failure.

	
	socket_timeout:

	Socket connect timeout value in seconds (float or int)

	
	stack_timeout:

	Positive full protocol stack (TCP/[SSL]/AMQP) bring-up timeout in
seconds. It’s recommended to set this value higher than
socket_timeout.

	
	blocked_connection_timeout:

	Set the timeout, in seconds, that the connection may remain blocked
(triggered by Connection.Blocked from broker); if the timeout
expires before connection becomes unblocked, the connection will be
torn down, triggering the connection’s on_close_callback

	
	tcp_options:

	Set the tcp options for the underlying socket.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The AMQP URL to connect to

	
ssl_options

	
	Returns

	None for plaintext or pika.SSLOptions instance for SSL/TLS.

	Return type

	`pika.SSLOptions`|None

	
host

	
	Returns

	hostname or ip address of broker. Defaults to DEFAULT_HOST.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
port

	
	Returns

	port number of broker’s listening socket. Defaults to
DEFAULT_PORT.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
credentials

	
	Return type

	one of the classes from pika.credentials.VALID_TYPES. Defaults
to DEFAULT_CREDENTIALS.

	
virtual_host

	
	Returns

	rabbitmq virtual host name. Defaults to
DEFAULT_VIRTUAL_HOST.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
blocked_connection_timeout

	
	Returns

	blocked connection timeout. Defaults to
DEFAULT_BLOCKED_CONNECTION_TIMEOUT.

	Return type

	float|None

	
channel_max

	
	Returns

	max preferred number of channels. Defaults to
DEFAULT_CHANNEL_MAX.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
client_properties

	
	Returns

	client properties used to override the fields in the default
client poperties reported to RabbitMQ via Connection.StartOk
method. Defaults to DEFAULT_CLIENT_PROPERTIES.

	Return type

	dict|None

	
connection_attempts

	
	Returns

	number of socket connection attempts. Defaults to
DEFAULT_CONNECTION_ATTEMPTS. See also retry_delay.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
frame_max

	
	Returns

	desired maximum AMQP frame size to use. Defaults to
DEFAULT_FRAME_MAX.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
heartbeat

	
	Returns

	AMQP connection heartbeat timeout value for negotiation during
connection tuning or callable which is invoked during connection tuning.
None to accept broker’s value. 0 turns heartbeat off. Defaults to
DEFAULT_HEARTBEAT_TIMEOUT.

	Return type

	int|callable|None

	
locale

	
	Returns

	locale value to pass to broker; e.g., ‘en_US’. Defaults to
DEFAULT_LOCALE.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
retry_delay

	
	Returns

	interval between socket connection attempts; see also
connection_attempts. Defaults to DEFAULT_RETRY_DELAY.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
socket_timeout

	
	Returns

	socket connect timeout in seconds. Defaults to
DEFAULT_SOCKET_TIMEOUT. The value None disables this timeout.

	Return type

	float|None

	
stack_timeout

	
	Returns

	full protocol stack TCP/[SSL]/AMQP bring-up timeout in
seconds. Defaults to DEFAULT_STACK_TIMEOUT. The value None
disables this timeout.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
tcp_options

	
	Returns

	None or a dict of options to pass to the underlying socket

	Return type

	dict|None

pika.spec

AMQP Specification

This module implements the constants and classes that comprise AMQP protocol
level constructs. It should rarely be directly referenced outside of Pika’s
own internal use.

Note

Auto-generated code by codegen.py, do not edit directly. Pull

requests to this file without accompanying utils/codegen.py changes will be
rejected.

	
class pika.spec.Connection

	
	
INDEX = 10

	

	
NAME = 'Connection'

	

	
class Start(version_major=0, version_minor=9, server_properties=None, mechanisms='PLAIN', locales='en_US')

	
	
INDEX = 655370

	

	
NAME = 'Connection.Start'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class StartOk(client_properties=None, mechanism='PLAIN', response=None, locale='en_US')

	
	
INDEX = 655371

	

	
NAME = 'Connection.StartOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Secure(challenge=None)

	
	
INDEX = 655380

	

	
NAME = 'Connection.Secure'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class SecureOk(response=None)

	
	
INDEX = 655381

	

	
NAME = 'Connection.SecureOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Tune(channel_max=0, frame_max=0, heartbeat=0)

	
	
INDEX = 655390

	

	
NAME = 'Connection.Tune'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class TuneOk(channel_max=0, frame_max=0, heartbeat=0)

	
	
INDEX = 655391

	

	
NAME = 'Connection.TuneOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Open(virtual_host='/', capabilities='', insist=False)

	
	
INDEX = 655400

	

	
NAME = 'Connection.Open'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class OpenOk(known_hosts='')

	
	
INDEX = 655401

	

	
NAME = 'Connection.OpenOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Close(reply_code=None, reply_text='', class_id=None, method_id=None)

	
	
INDEX = 655410

	

	
NAME = 'Connection.Close'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class CloseOk

	
	
INDEX = 655411

	

	
NAME = 'Connection.CloseOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Blocked(reason='')

	
	
INDEX = 655420

	

	
NAME = 'Connection.Blocked'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Unblocked

	
	
INDEX = 655421

	

	
NAME = 'Connection.Unblocked'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Channel

	
	
INDEX = 20

	

	
NAME = 'Channel'

	

	
class Open(out_of_band='')

	
	
INDEX = 1310730

	

	
NAME = 'Channel.Open'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class OpenOk(channel_id='')

	
	
INDEX = 1310731

	

	
NAME = 'Channel.OpenOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Flow(active=None)

	
	
INDEX = 1310740

	

	
NAME = 'Channel.Flow'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class FlowOk(active=None)

	
	
INDEX = 1310741

	

	
NAME = 'Channel.FlowOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Close(reply_code=None, reply_text='', class_id=None, method_id=None)

	
	
INDEX = 1310760

	

	
NAME = 'Channel.Close'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class CloseOk

	
	
INDEX = 1310761

	

	
NAME = 'Channel.CloseOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Access

	
	
INDEX = 30

	

	
NAME = 'Access'

	

	
class Request(realm='/data', exclusive=False, passive=True, active=True, write=True, read=True)

	
	
INDEX = 1966090

	

	
NAME = 'Access.Request'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class RequestOk(ticket=1)

	
	
INDEX = 1966091

	

	
NAME = 'Access.RequestOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Exchange

	
	
INDEX = 40

	

	
NAME = 'Exchange'

	

	
class Declare(ticket=0, exchange=None, type='direct', passive=False, durable=False, auto_delete=False, internal=False, nowait=False, arguments=None)

	
	
INDEX = 2621450

	

	
NAME = 'Exchange.Declare'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class DeclareOk

	
	
INDEX = 2621451

	

	
NAME = 'Exchange.DeclareOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Delete(ticket=0, exchange=None, if_unused=False, nowait=False)

	
	
INDEX = 2621460

	

	
NAME = 'Exchange.Delete'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class DeleteOk

	
	
INDEX = 2621461

	

	
NAME = 'Exchange.DeleteOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Bind(ticket=0, destination=None, source=None, routing_key='', nowait=False, arguments=None)

	
	
INDEX = 2621470

	

	
NAME = 'Exchange.Bind'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class BindOk

	
	
INDEX = 2621471

	

	
NAME = 'Exchange.BindOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Unbind(ticket=0, destination=None, source=None, routing_key='', nowait=False, arguments=None)

	
	
INDEX = 2621480

	

	
NAME = 'Exchange.Unbind'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class UnbindOk

	
	
INDEX = 2621491

	

	
NAME = 'Exchange.UnbindOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Queue

	
	
INDEX = 50

	

	
NAME = 'Queue'

	

	
class Declare(ticket=0, queue='', passive=False, durable=False, exclusive=False, auto_delete=False, nowait=False, arguments=None)

	
	
INDEX = 3276810

	

	
NAME = 'Queue.Declare'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class DeclareOk(queue=None, message_count=None, consumer_count=None)

	
	
INDEX = 3276811

	

	
NAME = 'Queue.DeclareOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Bind(ticket=0, queue='', exchange=None, routing_key='', nowait=False, arguments=None)

	
	
INDEX = 3276820

	

	
NAME = 'Queue.Bind'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class BindOk

	
	
INDEX = 3276821

	

	
NAME = 'Queue.BindOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Purge(ticket=0, queue='', nowait=False)

	
	
INDEX = 3276830

	

	
NAME = 'Queue.Purge'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class PurgeOk(message_count=None)

	
	
INDEX = 3276831

	

	
NAME = 'Queue.PurgeOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Delete(ticket=0, queue='', if_unused=False, if_empty=False, nowait=False)

	
	
INDEX = 3276840

	

	
NAME = 'Queue.Delete'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class DeleteOk(message_count=None)

	
	
INDEX = 3276841

	

	
NAME = 'Queue.DeleteOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Unbind(ticket=0, queue='', exchange=None, routing_key='', arguments=None)

	
	
INDEX = 3276850

	

	
NAME = 'Queue.Unbind'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class UnbindOk

	
	
INDEX = 3276851

	

	
NAME = 'Queue.UnbindOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Basic

	
	
INDEX = 60

	

	
NAME = 'Basic'

	

	
class Qos(prefetch_size=0, prefetch_count=0, global_qos=False)

	
	
INDEX = 3932170

	

	
NAME = 'Basic.Qos'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class QosOk

	
	
INDEX = 3932171

	

	
NAME = 'Basic.QosOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Consume(ticket=0, queue='', consumer_tag='', no_local=False, no_ack=False, exclusive=False, nowait=False, arguments=None)

	
	
INDEX = 3932180

	

	
NAME = 'Basic.Consume'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class ConsumeOk(consumer_tag=None)

	
	
INDEX = 3932181

	

	
NAME = 'Basic.ConsumeOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Cancel(consumer_tag=None, nowait=False)

	
	
INDEX = 3932190

	

	
NAME = 'Basic.Cancel'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class CancelOk(consumer_tag=None)

	
	
INDEX = 3932191

	

	
NAME = 'Basic.CancelOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Publish(ticket=0, exchange='', routing_key='', mandatory=False, immediate=False)

	
	
INDEX = 3932200

	

	
NAME = 'Basic.Publish'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Return(reply_code=None, reply_text='', exchange=None, routing_key=None)

	
	
INDEX = 3932210

	

	
NAME = 'Basic.Return'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Deliver(consumer_tag=None, delivery_tag=None, redelivered=False, exchange=None, routing_key=None)

	
	
INDEX = 3932220

	

	
NAME = 'Basic.Deliver'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Get(ticket=0, queue='', no_ack=False)

	
	
INDEX = 3932230

	

	
NAME = 'Basic.Get'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class GetOk(delivery_tag=None, redelivered=False, exchange=None, routing_key=None, message_count=None)

	
	
INDEX = 3932231

	

	
NAME = 'Basic.GetOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class GetEmpty(cluster_id='')

	
	
INDEX = 3932232

	

	
NAME = 'Basic.GetEmpty'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Ack(delivery_tag=0, multiple=False)

	
	
INDEX = 3932240

	

	
NAME = 'Basic.Ack'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Reject(delivery_tag=None, requeue=True)

	
	
INDEX = 3932250

	

	
NAME = 'Basic.Reject'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class RecoverAsync(requeue=False)

	
	
INDEX = 3932260

	

	
NAME = 'Basic.RecoverAsync'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Recover(requeue=False)

	
	
INDEX = 3932270

	

	
NAME = 'Basic.Recover'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class RecoverOk

	
	
INDEX = 3932271

	

	
NAME = 'Basic.RecoverOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Nack(delivery_tag=0, multiple=False, requeue=True)

	
	
INDEX = 3932280

	

	
NAME = 'Basic.Nack'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Tx

	
	
INDEX = 90

	

	
NAME = 'Tx'

	

	
class Select

	
	
INDEX = 5898250

	

	
NAME = 'Tx.Select'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class SelectOk

	
	
INDEX = 5898251

	

	
NAME = 'Tx.SelectOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Commit

	
	
INDEX = 5898260

	

	
NAME = 'Tx.Commit'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class CommitOk

	
	
INDEX = 5898261

	

	
NAME = 'Tx.CommitOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class Rollback

	
	
INDEX = 5898270

	

	
NAME = 'Tx.Rollback'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class RollbackOk

	
	
INDEX = 5898271

	

	
NAME = 'Tx.RollbackOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.Confirm

	
	
INDEX = 85

	

	
NAME = 'Confirm'

	

	
class Select(nowait=False)

	
	
INDEX = 5570570

	

	
NAME = 'Confirm.Select'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class SelectOk

	
	
INDEX = 5570571

	

	
NAME = 'Confirm.SelectOk'

	

	
synchronous

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
get_body()

	Return the message body if it is set.

	Return type

	str|unicode

	
get_properties()

	Return the properties if they are set.

	Return type

	pika.frame.Properties

	
class pika.spec.BasicProperties(content_type=None, content_encoding=None, headers=None, delivery_mode=None, priority=None, correlation_id=None, reply_to=None, expiration=None, message_id=None, timestamp=None, type=None, user_id=None, app_id=None, cluster_id=None)

	
	
CLASS

	alias of Basic

	
INDEX = 60

	

	
NAME = 'BasicProperties'

	

	
FLAG_CONTENT_TYPE = 32768

	

	
FLAG_CONTENT_ENCODING = 16384

	

	
FLAG_HEADERS = 8192

	

	
FLAG_DELIVERY_MODE = 4096

	

	
FLAG_PRIORITY = 2048

	

	
FLAG_CORRELATION_ID = 1024

	

	
FLAG_REPLY_TO = 512

	

	
FLAG_EXPIRATION = 256

	

	
FLAG_MESSAGE_ID = 128

	

	
FLAG_TIMESTAMP = 64

	

	
FLAG_TYPE = 32

	

	
FLAG_USER_ID = 16

	

	
FLAG_APP_ID = 8

	

	
FLAG_CLUSTER_ID = 4

	

	
decode(encoded, offset=0)

	

	
encode()

	

	
pika.spec.has_content(methodNumber)

	

Usage Examples

Pika has various methods of use, between the synchronous BlockingConnection adapter and the various asynchronous connection adapter. The following examples illustrate the various ways that you can use Pika in your projects.

	Using URLParameters

	Connecting to RabbitMQ with Callback-Passing Style

	Using the Blocking Connection to get a message from RabbitMQ

	Using the Blocking Connection to consume messages from RabbitMQ

	Using the Blocking Connection with connection recovery with multiple hosts

	Using the BlockingChannel.consume generator to consume messages

	Comparing Message Publishing with BlockingConnection and SelectConnection

	Using Delivery Confirmations with the BlockingConnection

	Ensuring message delivery with the mandatory flag

	Asynchronous consumer example

	Asynchronous publisher example

	Twisted Consumer Example

	Tornado Consumer

	TLS parameters example

	TLS parameters example

Using URLParameters

Pika has two methods of encapsulating the data that lets it know how to connect
to RabbitMQ, pika.connection.ConnectionParameters and pika.connection.URLParameters.

Note

If you’re connecting to RabbitMQ on localhost on port 5672, with the default virtual host of / and the default username and password of guest and guest, you do not need to specify connection parameters when connecting.

Using pika.connection.URLParameters is an easy way to minimize the
variables required to connect to RabbitMQ and supports all of the directives
that pika.connection.ConnectionParameters supports.

The following is the format for the URLParameters connection value:

scheme://username:password@host:port/virtual_host?key=value&key=value

As you can see, by default, the scheme (amqp, amqps), username, password, host, port and virtual host make up the core of the URL and any other parameter is passed in as query string values.

Example Connection URLS

The default connection URL connects to the / virtual host as guest using the guest password on localhost port 5672. Note the forwardslash in the URL is encoded to %2F:

amqp://guest:guest@localhost:5672/%2F

Connect to a host rabbit1 as the user www-data using the password rabbit_pwd on the virtual host web_messages:

amqp://www-data:rabbit_pwd@rabbit1/web_messages

Connecting via SSL is pretty easy too. To connect via SSL for the previous example, simply change the scheme to amqps. If you do not specify a port, Pika will use the default SSL port of 5671:

amqps://www-data:rabbit_pwd@rabbit1/web_messages

If you’re looking to tweak other parameters, such as enabling heartbeats, simply add the key/value pair as a query string value. The following builds upon the SSL connection, enabling heartbeats every 30 seconds:

amqps://www-data:rabbit_pwd@rabbit1/web_messages?heartbeat=30

Options that are available as query string values:

	backpressure_detection: Pass in a value of t to enable backpressure detection, it is disabled by default.

	channel_max: Alter the default channel maximum by passing in a 32-bit integer value here.

	connection_attempts: Alter the default of 1 connection attempt by passing in an integer value here.

	frame_max: Alter the default frame maximum size value by passing in a long integer value 1.

	heartbeat: Pass a value greater than zero to enable heartbeats between the server and your application. The integer value you pass here will be the number of seconds between heartbeats.

	locale: Set the locale of the client using underscore delimited posix Locale code in ll_CC format (en_US, pt_BR, de_DE).

	retry_delay: The number of seconds to wait before attempting to reconnect on a failed connection, if connection_attempts is > 0.

	socket_timeout: Change the default socket timeout duration from 0.25 seconds to another integer or float value. Adjust with caution.

	
	ssl_options: A url encoded dict of values for the SSL connection. The available keys are:

	
	ca_certs

	cert_reqs

	certfile

	keyfile

	ssl_version

For an information on what the ssl_options can be set to reference the official Python documentation [http://docs.python.org/2/library/ssl.html]. Here is an example of setting the client certificate and key:

amqp://www-data:rabbit_pwd@rabbit1/web_messages?heartbeat=30&ssl_options=%7B%27keyfile%27%3A+%27%2Fetc%2Fssl%2Fmykey.pem%27%2C+%27certfile%27%3A+%27%2Fetc%2Fssl%2Fmycert.pem%27%7D

The following example demonstrates how to generate the ssl_options string with Python’s urllib [http://docs.python.org/2/library/urllib.html]:

import urllib
urllib.urlencode({'ssl_options': {'certfile': '/etc/ssl/mycert.pem', 'keyfile': '/etc/ssl/mykey.pem'}})

Footnotes

	1

	The AMQP specification states that a server can reject a request for a frame size larger than the value it passes during content negotiation.

Connecting to RabbitMQ with Callback-Passing Style

When you connect to RabbitMQ with an asynchronous adapter, you are writing event
oriented code. The connection adapter will block on the IOLoop that is watching
to see when pika should read data from and write data to RabbitMQ. Because you’re
now blocking on the IOLoop, you will receive callback notifications when specific
events happen.

Example Code

In the example, there are three steps that take place:

	Setup the connection to RabbitMQ

	Start the IOLoop

	Once connected, the on_open method will be called by Pika with a handle to
the connection. In this method, a new channel will be opened on the connection.

	Once the channel is opened, you can do your other actions, whether they be
publishing messages, consuming messages or other RabbitMQ related activities.:

import pika

Step #3
def on_open(connection):
 connection.channel(on_open_callback=on_channel_open)

Step #4
def on_channel_open(channel):
 channel.basic_publish('exchange_name',
 'routing_key',
 'Test Message',
 pika.BasicProperties(content_type='text/plain',
 type='example'))

Step #1: Connect to RabbitMQ
connection = pika.SelectConnection(on_open_callback=on_open)

try:
 # Step #2 - Block on the IOLoop
 connection.ioloop.start()

Catch a Keyboard Interrupt to make sure that the connection is closed cleanly
except KeyboardInterrupt:

 # Gracefully close the connection
 connection.close()

 # Start the IOLoop again so Pika can communicate, it will stop on its own when the connection is closed
 connection.ioloop.start()

Using the Blocking Connection to get a message from RabbitMQ

The BlockingChannel.basic_get method will return a tuple with the members.

If the server returns a message, the first item in the tuple will be a pika.spec.Basic.GetOk object with the current message count, the redelivered flag, the routing key that was used to put the message in the queue, and the exchange the message was published to. The second item will be a BasicProperties object and the third will be the message body.

If the server did not return a message a tuple of None, None, None will be returned.

Example of getting a message and acknowledging it:

import pika

connection = pika.BlockingConnection()
channel = connection.channel()
method_frame, header_frame, body = channel.basic_get('test')
if method_frame:
 print(method_frame, header_frame, body)
 channel.basic_ack(method_frame.delivery_tag)
else:
 print('No message returned')

Using the Blocking Connection to consume messages from RabbitMQ

The BlockingChannel.basic_consume method assign a callback method to be called every time that RabbitMQ delivers messages to your consuming application.

When pika calls your method, it will pass in the channel, a pika.spec.Basic.Deliver object with the delivery tag, the redelivered flag, the routing key that was used to put the message in the queue, and the exchange the message was published to. The third argument will be a pika.spec.BasicProperties object and the last will be the message body.

Example of consuming messages and acknowledging them:

import pika

def on_message(channel, method_frame, header_frame, body):
 print(method_frame.delivery_tag)
 print(body)
 print()
 channel.basic_ack(delivery_tag=method_frame.delivery_tag)

connection = pika.BlockingConnection()
channel = connection.channel()
channel.basic_consume('test', on_message)
try:
 channel.start_consuming()
except KeyboardInterrupt:
 channel.stop_consuming()
connection.close()

Using the Blocking Connection with connection recovery with multiple hosts

RabbitMQ nodes can be clustered [http://www.rabbitmq.com/clustering.html].
In the absence of failure clients can connect to any node and perform any operation.
In case a node fails, stops, or becomes unavailable, clients should be able to
connect to another node and continue.

To simplify reconnection to a different node, connection recovery mechanism
should be combined with connection configuration that specifies multiple hosts.

The BlockingConnection adapter relies on exception handling to check for
connection errors:

import pika
import random

def on_message(channel, method_frame, header_frame, body):
 print(method_frame.delivery_tag)
 print(body)
 print()
 channel.basic_ack(delivery_tag=method_frame.delivery_tag)

Assuming there are three hosts: host1, host2, and host3
node1 = pika.URLParameters('amqp://node1')
node2 = pika.URLParameters('amqp://node2')
node3 = pika.URLParameters('amqp://node3')
all_endpoints = [node1, node2, node3]

while(True):
 try:
 print("Connecting...")
 ## Shuffle the hosts list before reconnecting.
 ## This can help balance connections.
 random.shuffle(all_endpoints)
 connection = pika.BlockingConnection(all_endpoints)
 channel = connection.channel()
 channel.basic_qos(prefetch_count=1)
 ## This queue is intentionally non-durable. See http://www.rabbitmq.com/ha.html#non-mirrored-queue-behavior-on-node-failure
 ## to learn more.
 channel.queue_declare('recovery-example', durable = False, auto_delete = True)
 channel.basic_consume('recovery-example', on_message)
 try:
 channel.start_consuming()
 except KeyboardInterrupt:
 channel.stop_consuming()
 connection.close()
 break
 except pika.exceptions.ConnectionClosedByBroker:
 # Uncomment this to make the example not attempt recovery
 # from server-initiated connection closure, including
 # when the node is stopped cleanly
 #
 # break
 continue
 # Do not recover on channel errors
 except pika.exceptions.AMQPChannelError as err:
 print("Caught a channel error: {}, stopping...".format(err))
 break
 # Recover on all other connection errors
 except pika.exceptions.AMQPConnectionError:
 print("Connection was closed, retrying...")
 continue

Generic operation retry libraries such as retry [https://github.com/invl/retry]
can prove useful.

To run the following example, install the library first with pip install retry.

In this example the retry decorator is used to set up recovery with delay:

import pika
import random
from retry import retry

def on_message(channel, method_frame, header_frame, body):
 print(method_frame.delivery_tag)
 print(body)
 print()
 channel.basic_ack(delivery_tag=method_frame.delivery_tag)

Assuming there are three hosts: host1, host2, and host3
node1 = pika.URLParameters('amqp://node1')
node2 = pika.URLParameters('amqp://node2')
node3 = pika.URLParameters('amqp://node3')
all_endpoints = [node1, node2, node3]

@retry(pika.exceptions.AMQPConnectionError, delay=5, jitter=(1, 3))
def consume():
 random.shuffle(all_endpoints)
 connection = pika.BlockingConnection(all_endpoints)
 channel = connection.channel()
 channel.basic_qos(prefetch_count=1)

 ## This queue is intentionally non-durable. See http://www.rabbitmq.com/ha.html#non-mirrored-queue-behavior-on-node-failure
 ## to learn more.
 channel.queue_declare('recovery-example', durable = False, auto_delete = True)
 channel.basic_consume('recovery-example', on_message)

 try:
 channel.start_consuming()
 except KeyboardInterrupt:
 channel.stop_consuming()
 connection.close()
 except pika.exceptions.ConnectionClosedByBroker:
 # Uncomment this to make the example not attempt recovery
 # from server-initiated connection closure, including
 # when the node is stopped cleanly
 # except pika.exceptions.ConnectionClosedByBroker:
 # pass
 continue

consume()

Using the BlockingChannel.consume generator to consume messages

The BlockingChannel.consume method is a generator that will return a tuple of method, properties and body.

When you escape out of the loop, be sure to call consumer.cancel() to return any unprocessed messages.

Example of consuming messages and acknowledging them:

import pika

connection = pika.BlockingConnection()
channel = connection.channel()

Get ten messages and break out
for method_frame, properties, body in channel.consume('test'):

 # Display the message parts
 print(method_frame)
 print(properties)
 print(body)

 # Acknowledge the message
 channel.basic_ack(method_frame.delivery_tag)

 # Escape out of the loop after 10 messages
 if method_frame.delivery_tag == 10:
 break

Cancel the consumer and return any pending messages
requeued_messages = channel.cancel()
print('Requeued %i messages' % requeued_messages)

Close the channel and the connection
channel.close()
connection.close()

If you have pending messages in the test queue, your output should look something like:

(pika)gmr-0x02:pika gmr$ python blocking_nack.py
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=1', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=2', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=3', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=4', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=5', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=6', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=7', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=8', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=9', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
<Basic.Deliver(['consumer_tag=ctag1.0', 'redelivered=True', 'routing_key=test', 'delivery_tag=10', 'exchange=test'])>
<BasicProperties(['delivery_mode=1', 'content_type=text/plain'])>
Hello World!
Requeued 1894 messages

Comparing Message Publishing with BlockingConnection and SelectConnection

For those doing simple, non-asynchronous programming, pika.adapters.blocking_connection.BlockingConnection() proves to be the easiest way to get up and running with Pika to publish messages.

In the following example, a connection is made to RabbitMQ listening to port 5672 on localhost using the username guest and password guest and virtual host /. Once connected, a channel is opened and a message is published to the test_exchange exchange using the test_routing_key routing key. The BasicProperties value passed in sets the message to delivery mode 1 (non-persisted) with a content-type of text/plain. Once the message is published, the connection is closed:

import pika

parameters = pika.URLParameters('amqp://guest:guest@localhost:5672/%2F')

connection = pika.BlockingConnection(parameters)

channel = connection.channel()

channel.basic_publish('test_exchange',
 'test_routing_key',
 'message body value',
 pika.BasicProperties(content_type='text/plain',
 delivery_mode=1))

connection.close()

In contrast, using pika.adapters.select_connection.SelectConnection() and the other asynchronous adapters is more complicated and less pythonic, but when used with other asynchronous services can have tremendous performance improvements. In the following code example, all of the same parameters and values are used as were used in the previous example:

import pika

Step #3
def on_open(connection):

 connection.channel(on_open_callback=on_channel_open)

Step #4
def on_channel_open(channel):

 channel.basic_publish('test_exchange',
 'test_routing_key',
 'message body value',
 pika.BasicProperties(content_type='text/plain',
 delivery_mode=1))

 connection.close()

Step #1: Connect to RabbitMQ
parameters = pika.URLParameters('amqp://guest:guest@localhost:5672/%2F')

connection = pika.SelectConnection(parameters=parameters,
 on_open_callback=on_open)

try:

 # Step #2 - Block on the IOLoop
 connection.ioloop.start()

Catch a Keyboard Interrupt to make sure that the connection is closed cleanly
except KeyboardInterrupt:

 # Gracefully close the connection
 connection.close()

 # Start the IOLoop again so Pika can communicate, it will stop on its own when the connection is closed
 connection.ioloop.start()

Using Delivery Confirmations with the BlockingConnection

The following code demonstrates how to turn on delivery confirmations with the BlockingConnection and how to check for confirmation from RabbitMQ:

import pika

Open a connection to RabbitMQ on localhost using all default parameters
connection = pika.BlockingConnection()

Open the channel
channel = connection.channel()

Declare the queue
channel.queue_declare(queue="test", durable=True, exclusive=False, auto_delete=False)

Turn on delivery confirmations
channel.confirm_delivery()

Send a message
try:
 channel.basic_publish(exchange='test',
 routing_key='test',
 body='Hello World!',
 properties=pika.BasicProperties(content_type='text/plain',
 delivery_mode=1)):
 print('Message publish was confirmed')
except pika.exceptions.UnroutableError:
 print('Message could not be confirmed')

Ensuring message delivery with the mandatory flag

The following example demonstrates how to check if a message is delivered by setting the mandatory flag and handling exceptions when using the BlockingConnection:

import pika
import pika.exceptions

Open a connection to RabbitMQ on localhost using all default parameters
connection = pika.BlockingConnection()

Open the channel
channel = connection.channel()

Declare the queue
channel.queue_declare(queue="test", durable=True, exclusive=False, auto_delete=False)

Enabled delivery confirmations. This is REQUIRED.
channel.confirm_delivery()

Send a message
try:
 channel.basic_publish(exchange='test',
 routing_key='test',
 body='Hello World!',
 properties=pika.BasicProperties(content_type='text/plain',
 delivery_mode=1),
 mandatory=True)
 print('Message was published')
except pika.exceptions.UnroutableError:
 print('Message was returned')

Asynchronous consumer example

The following example implements a consumer that will respond to RPC commands
sent from RabbitMQ. For example, it will reconnect if RabbitMQ closes the
connection and will shutdown if RabbitMQ cancels the consumer or closes the
channel. While it may look intimidating, each method is very short and
represents a individual actions that a consumer can do.

Asynchronous Consumer Example [https://github.com/pika/pika/blob/master/examples/asynchronous_consumer_example.py]

Asynchronous publisher example

The following example implements a publisher that will respond to RPC commands
sent from RabbitMQ and uses delivery confirmations. It will reconnect if
RabbitMQ closes the connection and will shutdown if RabbitMQ closes the
channel. While it may look intimidating, each method is very short and
represents a individual actions that a publisher can do.

Asynchronous Publisher Example [https://github.com/pika/pika/blob/master/examples/asynchronous_publisher_example.py]

Twisted Consumer Example

Example of writing an application using the Twisted connection adapter::.

Twisted Example [https://github.com/pika/pika/blob/master/examples/twisted_service.py]

Tornado Consumer

The following example implements a consumer using the Tornado adapter for the Tornado framework [http://tornadoweb.org] that will respond to RPC commands sent from RabbitMQ. For example, it will reconnect if RabbitMQ closes the connection and will shutdown if RabbitMQ cancels the consumer or closes the channel. While it may look intimidating, each method is very short and represents a individual actions that a consumer can do.

consumer.py:

from pika import adapters
import pika
import logging

LOG_FORMAT = ('%(levelname) -10s %(asctime)s %(name) -30s %(funcName) '
 '-35s %(lineno) -5d: %(message)s')
LOGGER = logging.getLogger(__name__)

class ExampleConsumer(object):
 """This is an example consumer that will handle unexpected interactions
 with RabbitMQ such as channel and connection closures.

 If RabbitMQ closes the connection, it will reopen it. You should
 look at the output, as there are limited reasons why the connection may
 be closed, which usually are tied to permission related issues or
 socket timeouts.

 If the channel is closed, it will indicate a problem with one of the
 commands that were issued and that should surface in the output as well.

 """
 EXCHANGE = 'message'
 EXCHANGE_TYPE = 'topic'
 QUEUE = 'text'
 ROUTING_KEY = 'example.text'

 def __init__(self, amqp_url):
 """Create a new instance of the consumer class, passing in the AMQP
 URL used to connect to RabbitMQ.

 :param str amqp_url: The AMQP url to connect with

 """
 self._connection = None
 self._channel = None
 self._closing = False
 self._consumer_tag = None
 self._url = amqp_url

 def connect(self):
 """This method connects to RabbitMQ, returning the connection handle.
 When the connection is established, the on_connection_open method
 will be invoked by pika.

 :rtype: pika.SelectConnection

 """
 LOGGER.info('Connecting to %s', self._url)
 return adapters.tornado_connection.TornadoConnection(pika.URLParameters(self._url),
 self.on_connection_open)

 def close_connection(self):
 """This method closes the connection to RabbitMQ."""
 LOGGER.info('Closing connection')
 self._connection.close()

 def add_on_connection_close_callback(self):
 """This method adds an on close callback that will be invoked by pika
 when RabbitMQ closes the connection to the publisher unexpectedly.

 """
 LOGGER.info('Adding connection close callback')
 self._connection.add_on_close_callback(self.on_connection_closed)

 def on_connection_closed(self, connection, reason):
 """This method is invoked by pika when the connection to RabbitMQ is
 closed unexpectedly. Since it is unexpected, we will reconnect to
 RabbitMQ if it disconnects.

 :param pika.connection.Connection connection: The closed connection obj
 :param Exception reason: exception representing reason for loss of
 connection.

 """
 self._channel = None
 if self._closing:
 self._connection.ioloop.stop()
 else:
 LOGGER.warning('Connection closed, reopening in 5 seconds: %s',
 reason)
 self._connection.ioloop.call_later(5, self.reconnect)

 def on_connection_open(self, unused_connection):
 """This method is called by pika once the connection to RabbitMQ has
 been established. It passes the handle to the connection object in
 case we need it, but in this case, we'll just mark it unused.

 :param pika.SelectConnection _unused_connection: The connection

 """
 LOGGER.info('Connection opened')
 self.add_on_connection_close_callback()
 self.open_channel()

 def reconnect(self):
 """Will be invoked by the IOLoop timer if the connection is
 closed. See the on_connection_closed method.

 """
 if not self._closing:

 # Create a new connection
 self._connection = self.connect()

 def add_on_channel_close_callback(self):
 """This method tells pika to call the on_channel_closed method if
 RabbitMQ unexpectedly closes the channel.

 """
 LOGGER.info('Adding channel close callback')
 self._channel.add_on_close_callback(self.on_channel_closed)

 def on_channel_closed(self, channel, reason):
 """Invoked by pika when RabbitMQ unexpectedly closes the channel.
 Channels are usually closed if you attempt to do something that
 violates the protocol, such as re-declare an exchange or queue with
 different parameters. In this case, we'll close the connection
 to shutdown the object.

 :param pika.channel.Channel: The closed channel
 :param Exception reason: why the channel was closed

 """
 LOGGER.warning('Channel %i was closed: %s', channel, reason)
 self._connection.close()

 def on_channel_open(self, channel):
 """This method is invoked by pika when the channel has been opened.
 The channel object is passed in so we can make use of it.

 Since the channel is now open, we'll declare the exchange to use.

 :param pika.channel.Channel channel: The channel object

 """
 LOGGER.info('Channel opened')
 self._channel = channel
 self.add_on_channel_close_callback()
 self.setup_exchange(self.EXCHANGE)

 def setup_exchange(self, exchange_name):
 """Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC
 command. When it is complete, the on_exchange_declareok method will
 be invoked by pika.

 :param str|unicode exchange_name: The name of the exchange to declare

 """
 LOGGER.info('Declaring exchange %s', exchange_name)
 self._channel.exchange_declare(self.on_exchange_declareok,
 exchange_name,
 self.EXCHANGE_TYPE)

 def on_exchange_declareok(self, unused_frame):
 """Invoked by pika when RabbitMQ has finished the Exchange.Declare RPC
 command.

 :param pika.Frame.Method unused_frame: Exchange.DeclareOk response frame

 """
 LOGGER.info('Exchange declared')
 self.setup_queue(self.QUEUE)

 def setup_queue(self, queue_name):
 """Setup the queue on RabbitMQ by invoking the Queue.Declare RPC
 command. When it is complete, the on_queue_declareok method will
 be invoked by pika.

 :param str|unicode queue_name: The name of the queue to declare.

 """
 LOGGER.info('Declaring queue %s', queue_name)
 self._channel.queue_declare(self.on_queue_declareok,
 queue_name)

 def on_queue_declareok(self, method_frame):
 """Method invoked by pika when the Queue.Declare RPC call made in
 setup_queue has completed. In this method we will bind the queue
 and exchange together with the routing key by issuing the Queue.Bind
 RPC command. When this command is complete, the on_bindok method will
 be invoked by pika.

 :param pika.frame.Method method_frame: The Queue.DeclareOk frame

 """
 LOGGER.info('Binding %s to %s with %s',
 self.EXCHANGE, self.QUEUE, self.ROUTING_KEY)
 self._channel.queue_bind(self.on_bindok, self.QUEUE,
 self.EXCHANGE, self.ROUTING_KEY)

 def add_on_cancel_callback(self):
 """Add a callback that will be invoked if RabbitMQ cancels the consumer
 for some reason. If RabbitMQ does cancel the consumer,
 on_consumer_cancelled will be invoked by pika.

 """
 LOGGER.info('Adding consumer cancellation callback')
 self._channel.add_on_cancel_callback(self.on_consumer_cancelled)

 def on_consumer_cancelled(self, method_frame):
 """Invoked by pika when RabbitMQ sends a Basic.Cancel for a consumer
 receiving messages.

 :param pika.frame.Method method_frame: The Basic.Cancel frame

 """
 LOGGER.info('Consumer was cancelled remotely, shutting down: %r',
 method_frame)
 if self._channel:
 self._channel.close()

 def acknowledge_message(self, delivery_tag):
 """Acknowledge the message delivery from RabbitMQ by sending a
 Basic.Ack RPC method for the delivery tag.

 :param int delivery_tag: The delivery tag from the Basic.Deliver frame

 """
 LOGGER.info('Acknowledging message %s', delivery_tag)
 self._channel.basic_ack(delivery_tag)

 def on_message(self, unused_channel, basic_deliver, properties, body):
 """Invoked by pika when a message is delivered from RabbitMQ. The
 channel is passed for your convenience. The basic_deliver object that
 is passed in carries the exchange, routing key, delivery tag and
 a redelivered flag for the message. The properties passed in is an
 instance of BasicProperties with the message properties and the body
 is the message that was sent.

 :param pika.channel.Channel unused_channel: The channel object
 :param pika.Spec.Basic.Deliver: basic_deliver method
 :param pika.Spec.BasicProperties: properties
 :param bytes body: The message body

 """
 LOGGER.info('Received message # %s from %s: %s',
 basic_deliver.delivery_tag, properties.app_id, body)
 self.acknowledge_message(basic_deliver.delivery_tag)

 def on_cancelok(self, unused_frame):
 """This method is invoked by pika when RabbitMQ acknowledges the
 cancellation of a consumer. At this point we will close the channel.
 This will invoke the on_channel_closed method once the channel has been
 closed, which will in-turn close the connection.

 :param pika.frame.Method unused_frame: The Basic.CancelOk frame

 """
 LOGGER.info('RabbitMQ acknowledged the cancellation of the consumer')
 self.close_channel()

 def stop_consuming(self):
 """Tell RabbitMQ that you would like to stop consuming by sending the
 Basic.Cancel RPC command.

 """
 if self._channel:
 LOGGER.info('Sending a Basic.Cancel RPC command to RabbitMQ')
 self._channel.basic_cancel(self.on_cancelok, self._consumer_tag)

 def start_consuming(self):
 """This method sets up the consumer by first calling
 add_on_cancel_callback so that the object is notified if RabbitMQ
 cancels the consumer. It then issues the Basic.Consume RPC command
 which returns the consumer tag that is used to uniquely identify the
 consumer with RabbitMQ. We keep the value to use it when we want to
 cancel consuming. The on_message method is passed in as a callback pika
 will invoke when a message is fully received.

 """
 LOGGER.info('Issuing consumer related RPC commands')
 self.add_on_cancel_callback()
 self._consumer_tag = self._channel.basic_consume(self.on_message,
 self.QUEUE)

 def on_bindok(self, unused_frame):
 """Invoked by pika when the Queue.Bind method has completed. At this
 point we will start consuming messages by calling start_consuming
 which will invoke the needed RPC commands to start the process.

 :param pika.frame.Method unused_frame: The Queue.BindOk response frame

 """
 LOGGER.info('Queue bound')
 self.start_consuming()

 def close_channel(self):
 """Call to close the channel with RabbitMQ cleanly by issuing the
 Channel.Close RPC command.

 """
 LOGGER.info('Closing the channel')
 self._channel.close()

 def open_channel(self):
 """Open a new channel with RabbitMQ by issuing the Channel.Open RPC
 command. When RabbitMQ responds that the channel is open, the
 on_channel_open callback will be invoked by pika.

 """
 LOGGER.info('Creating a new channel')
 self._connection.channel(on_open_callback=self.on_channel_open)

 def run(self):
 """Run the example consumer by connecting to RabbitMQ and then
 starting the IOLoop to block and allow the SelectConnection to operate.

 """
 self._connection = self.connect()
 self._connection.ioloop.start()

 def stop(self):
 """Cleanly shutdown the connection to RabbitMQ by stopping the consumer
 with RabbitMQ. When RabbitMQ confirms the cancellation, on_cancelok
 will be invoked by pika, which will then closing the channel and
 connection. The IOLoop is started again because this method is invoked
 when CTRL-C is pressed raising a KeyboardInterrupt exception. This
 exception stops the IOLoop which needs to be running for pika to
 communicate with RabbitMQ. All of the commands issued prior to starting
 the IOLoop will be buffered but not processed.

 """
 LOGGER.info('Stopping')
 self._closing = True
 self.stop_consuming()
 self._connection.ioloop.start()
 LOGGER.info('Stopped')

def main():
 logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
 example = ExampleConsumer('amqp://guest:guest@localhost:5672/%2F')
 try:
 example.run()
 except KeyboardInterrupt:
 example.stop()

if __name__ == '__main__':
 main()

TLS parameters example

This example demonstrates a TLS session with RabbitMQ using mutual authentication (server and client authentication). It was tested against RabbitMQ 3.7.4, using Python 3.6.5 and Pika 1.0.0.

See the RabbitMQ TLS/SSL documentation [https://www.rabbitmq.com/ssl.html] for certificate generation and RabbitMQ TLS configuration. Please note that the RabbitMQ TLS (x509 certificate) authentication mechanism [https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl] must be enabled for these examples to work.

tls_example.py:

import logging
import pika
import ssl

logging.basicConfig(level=logging.INFO)
context = ssl.create_default_context(
 cafile="PIKA_DIR/testdata/certs/ca_certificate.pem")
context.load_cert_chain("PIKA_DIR/testdata/certs/client_certificate.pem",
 "PIKA_DIR/testdata/certs/client_key.pem")
ssl_options = pika.SSLOptions(context, "localhost")
conn_params = pika.ConnectionParameters(port=5671,
 ssl_options=ssl_options)

with pika.BlockingConnection(conn_params) as conn:
 ch = conn.channel()
 ch.queue_declare("foobar")
 ch.basic_publish("", "foobar", "Hello, world!")
 print(ch.basic_get("foobar"))

rabbitmq.config:

Enable AMQPS
listeners.ssl.default = 5671
ssl_options.cacertfile = PIKA_DIR/testdata/certs/ca_certificate.pem
ssl_options.certfile = PIKA_DIR/testdata/certs/server_certificate.pem
ssl_options.keyfile = PIKA_DIR/testdata/certs/server_key.pem
ssl_options.verify = verify_peer
ssl_options.fail_if_no_peer_cert = true

Enable HTTPS
management.listener.port = 15671
management.listener.ssl = true
management.listener.ssl_opts.cacertfile = PIKA_DIR/testdata/certs/ca_certificate.pem
management.listener.ssl_opts.certfile = PIKA_DIR/testdata/certs/server_certificate.pem
management.listener.ssl_opts.keyfile = PIKA_DIR/testdata/certs/server_key.pem

To perform mutual authentication with a Twisted connection:

from pika import ConnectionParameters
from pika.adapters import twisted_connection
from pika.credentials import ExternalCredentials

from twisted.internet import defer, protocol, ssl, reactor

@defer.inlineCallbacks
def publish(connection):
 channel = yield connection.channel()
 yield channel.basic_publish(
 exchange='amq.topic',
 routing_key='hello.world',
 body='Hello World!',
)
 print("published")

Load the CA certificate to validate the server's identity
with open("PIKA_DIR/testdata/certs/ca_certificate.pem") as fd:
 ca_cert = ssl.Certificate.loadPEM(fd.read())

Load the client certificate and key to authenticate with the server
with open("PIKA_DIR/testdata/certs/client_key.pem") as fd:
 client_key = fd.read()
with open("PIKA_DIR/testdata/certs/client_certificate.pem"") as fd:
 client_cert = fd.read()
client_keypair = ssl.PrivateCertificate.loadPEM(client_key + client_cert)

context_factory = ssl.optionsForClientTLS(
 "localhost",
 trustRoot=ca_cert,
 clientCertificate=client_keypair,
)
params = ConnectionParameters(credentials=ExternalCredentials())
cc = protocol.ClientCreator(
 reactor, twisted_connection.TwistedProtocolConnection, params)
deferred = cc.connectSSL("localhost", 5671, context_factory)
deferred.addCallback(lambda protocol: protocol.ready)
deferred.addCallback(publish)
reactor.run()

TLS parameters example

This examples demonstrates a TLS session with RabbitMQ using server authentication.

It was tested against RabbitMQ 3.6.10, using Python 3.6.1 and pre-release Pika 0.11.0

Note the use of ssl_version=ssl.PROTOCOL_TLSv1. The recent versions of RabbitMQ disable older versions of
SSL due to security vulnerabilities.

See https://www.rabbitmq.com/ssl.html for certificate creation and rabbitmq SSL configuration instructions.

tls_example.py:

import ssl
import pika
import logging

logging.basicConfig(level=logging.INFO)

context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
context.verify_mode = ssl.CERT_REQUIRED
context.load_verify_locations('/Users/me/tls-gen/basic/testca/cacert.pem')

cp = pika.ConnectionParameters(ssl_options=pika.SSLOptions(context))

conn = pika.BlockingConnection(cp)
ch = conn.channel()
print(ch.queue_declare("sslq"))
ch.publish("", "sslq", "abc")
print(ch.basic_get("sslq"))

rabbitmq.config:

%% Both the client and rabbitmq server were running on the same machine, a MacBookPro laptop.
%%
%% rabbitmq.config was created in its default location for OS X: /usr/local/etc/rabbitmq/rabbitmq.config.
%%
%% The contents of the example rabbitmq.config are for demonstration purposes only. See https://www.rabbitmq.com/ssl.html for instructions about creating the test certificates and the contents of rabbitmq.config.
%%
%% Note that the {fail_if_no_peer_cert,false} option, states that RabbitMQ should accept clients that don't have a certificate to send to the broker, but through the {verify,verify_peer} option, we state that if the client does send a certificate to the broker, the broker must be able to establish a chain of trust to it.

[
 {rabbit,
 [
 {ssl_listeners, [{"127.0.0.1", 5671}]},

 %% Configuring SSL.
 %% See http://www.rabbitmq.com/ssl.html for full documentation.
 %%
 {ssl_options, [{cacertfile, "/Users/me/tls-gen/basic/testca/cacert.pem"},
 {certfile, "/Users/me/tls-gen/basic/server/cert.pem"},
 {keyfile, "/Users/me/tls-gen/basic/server/key.pem"},
 {verify, verify_peer},
 {fail_if_no_peer_cert, false}]}
]
 }
].

Frequently Asked Questions

	Is Pika thread safe?

Pika does not have any notion of threading in the code. If you want to use Pika with threading, make sure you have a Pika connection per thread, created in that thread. It is not safe to share one Pika connection across threads, with one exception: you may call the connection method add_callback_threadsafe from another thread to schedule a callback within an active pika connection.

	How do I report a bug with Pika?

The main Pika repository [https://github.com/pika/pika] is hosted on Github [https://github.com] and we use the Issue tracker at https://github.com/pika/pika/issues.

	Is there a mailing list for Pika?

Yes, Pika’s mailing list is available on Google Groups [https://groups.google.com/forum/?fromgroups#!forum/pika-python] and the email address is pika-python@googlegroups.com, though traditionally questions about Pika have been asked on the RabbitMQ mailing list [https://groups.google.com/forum/#!forum/rabbitmq-users].

	How can I contribute to Pika?

You can fork the project on Github [https://help.github.com/en/articles/fork-a-repo/] and issue Pull Requests [https://help.github.com/en/articles/about-pull-requests/] when you believe you have something solid to be added to the main repository.

Contributors

The following people have directly contributes code by way of new features and/or bug fixes to Pika:

	Gavin M. Roy

	Tony Garnock-Jones

	Vitaly Kruglikov

	Michael Laing

	Marek Majkowski

	Jan Urbański

	Brian K. Jones

	Ask Solem

	ml

	Will

	atatsu

	Fredrik Svensson

	Pedro Abranches

	Kyösti Herrala

	Erik Andersson

	Charles Law

	Alex Chandel

	Tristan Penman

	Raphaël De Giusti

	Jozef Van Eenbergen

	Josh Braegger

	Jason J. W. Williams

	James Mutton

	Cenk Alti

	Asko Soukka

	Antti Haapala

	Anton Ryzhov

	cellscape

	cacovsky

	bra-fsn

	ateska

	Roey Berman

	Robert Weidlich

	Riccardo Cirimelli

	Perttu Ranta-aho

	Pau Gargallo

	Kane

	Kamil Kisiel

	Jonty Wareing

	Jonathan Kirsch

	Jacek ‘Forger’ Całusiński

	Garth Williamson

	Erik Olof Gunnar Andersson

	David Strauss

	Anton V. Yanchenko

	Alexey Myasnikov

	Alessandro Tagliapietra

	Adam Flynn

	skftn

	saarni

	pavlobaron

	nonleaf

	markcf

	george y

	eivanov

	bstemshorn

	a-tal

	Yang Yang

	Stuart Longland

	Sigurd Høgsbro

	Sean Dwyer

	Samuel Stauffer

	Roberto Decurnex

	Rikard Hultén

	Richard Boulton

	Ralf Nyren

	Qi Fan

	Peter Magnusson

	Pankrat

	Olivier Le Thanh Duong

	Njal Karevoll

	Milan Skuhra

	Mik Kocikowski

	Michael Kenney

	Mark Unsworth

	Luca Wehrstedt

	Laurent Eschenauer

	Lars van de Kerkhof

	Kyösti Herrala

	Juhyeong Park

	JuhaS

	Josh Hansen

	Jorge Puente Sarrín

	Jeff Tang

	Jeff Fein-Worton

	Jeff

	Hunter Morris

	Guruprasad

	Garrett Cooper

	Frank Slaughter

	Dustin Koupal

	Bjorn Sandberg

	Axel Eirola

	Andrew Smith

	Andrew Grigorev

	Andrew

	Allard Hoeve

	A.Shaposhnikov

Contributors listed by commit count.

Version History

1.1.0 2019-07-16

GitHub milestone [https://github.com/pika/pika/milestone/16?closed=1]

1.0.1 2019-04-12

GitHub milestone [https://github.com/pika/pika/milestone/15?closed=1]

	API docstring updates

	Twisted adapter: Add basic_consume Deferred to the call list (PR [https://github.com/pika/pika/pull/1202])

1.0.0 2019-03-26

GitHub milestone [https://github.com/pika/pika/milestone/8?closed=1]

	AsyncioConnection, TornadoConnection and TwistedProtocolConnection are no longer auto-imported (PR [https://github.com/pika/pika/pull/1129])

	BlockingConnection.consume now returns (None, None, None) when inactivity timeout is reached (PR [https://github.com/pika/pika/pull/899])

	Python 3.7 support (Issue [https://github.com/pika/pika/issues/1107])

	all_channels parameter of the Channel.basic_qos method renamed to global_qos

	global_ parameter of the Basic.Qos spec class renamed to global_qos

	NOTE: heartbeat_interval is removed, use heartbeat instead.

	NOTE: The backpressure_detection option of ConnectionParameters and URLParameters property is REMOVED in favor of Connection.Blocked and Connection.Unblocked. See Connection.add_on_connection_blocked_callback.

	NOTE: The legacy basic_publish method is removed, and publish renamed to basic_publish

	NOTE: The signature of the following methods has changed from Pika 0.13.0. In general, the callback parameter that indicates completion of the method has been moved to the end of the parameter list to be consistent with other parts of Pika’s API and with other libraries in general.

IMPORTANT: The signature of the following methods has changed from Pika 0.13.0. In general, the callback parameter that indicates completion of the method has been moved to the end of the parameter list to be consistent with other parts of Pika’s API and with other libraries in general.

	basic_cancel

	basic_consume

	basic_get

	basic_qos

	basic_recover

	confirm_delivery

	exchange_bind

	exchange_declare

	exchange_delete

	exchange_unbind

	flow

	queue_bind

	queue_declare

	queue_delete

	queue_purge

	queue_unbind

IMPORTANT: When specifying TLS / SSL options, the SSLOptions class must be used, and a dict is no longer supported.

0.13.1 2019-02-04

GitHub milestone [https://github.com/pika/pika/milestone/14]

0.13.0 2019-01-17

GitHub milestone [https://github.com/pika/pika/milestone/13]

0.12.0 2018-06-19

GitHub milestone [https://github.com/pika/pika/milestone/12]

This is an interim release prior to version 1.0.0. It includes the following backported pull requests and commits from the master branch:

	PR #908 [https://github.com/pika/pika/pull/908]

	PR #910 [https://github.com/pika/pika/pull/910]

	PR #918 [https://github.com/pika/pika/pull/918]

	PR #920 [https://github.com/pika/pika/pull/920]

	PR #924 [https://github.com/pika/pika/pull/924]

	PR #937 [https://github.com/pika/pika/pull/937]

	PR #938 [https://github.com/pika/pika/pull/938]

	PR #933 [https://github.com/pika/pika/pull/933]

	PR #940 [https://github.com/pika/pika/pull/940]

	PR #932 [https://github.com/pika/pika/pull/932]

	PR #928 [https://github.com/pika/pika/pull/928]

	PR #934 [https://github.com/pika/pika/pull/934]

	PR #915 [https://github.com/pika/pika/pull/915]

	PR #946 [https://github.com/pika/pika/pull/946]

	PR #947 [https://github.com/pika/pika/pull/947]

	PR #952 [https://github.com/pika/pika/pull/952]

	PR #956 [https://github.com/pika/pika/pull/956]

	PR #966 [https://github.com/pika/pika/pull/966]

	PR #975 [https://github.com/pika/pika/pull/975]

	PR #978 [https://github.com/pika/pika/pull/978]

	PR #981 [https://github.com/pika/pika/pull/981]

	PR #994 [https://github.com/pika/pika/pull/994]

	PR #1007 [https://github.com/pika/pika/pull/1007]

	PR #1045 [https://github.com/pika/pika/pull/1045] (manually backported)

	PR #1011 [https://github.com/pika/pika/pull/1011]

Commits:

Travis CI fail fast - 3f0e739

New features:

BlockingConnection now supports the add_callback_threadsafe method which allows a function to be executed correctly on the IO loop thread. The main use-case for this is as follows:

	Application sets up a thread for BlockingConnection and calls basic_consume on it

	When a message is received, work is done on another thread

	When the work is done, the worker uses connection.add_callback_threadsafe to call the basic_ack method on the channel instance.

Please see examples/basic_consumer_threaded.py for an example. As always, SelectConnection and a fully async consumer/publisher is the preferred method of using Pika.

Heartbeats are now sent at an interval equal to 1/2 of the negotiated idle connection timeout. RabbitMQ’s default timeout value is 60 seconds, so heartbeats will be sent at a 30 second interval. In addition, Pika’s check for an idle connection will be done at an interval equal to the timeout value plus 5 seconds to allow for delays. This results in an interval of 65 seconds by default.

0.11.2 2017-11-30

GitHub milestone [https://github.com/pika/pika/milestone/11]

0.11.2 [https://github.com/pika/pika/compare/0.11.1...0.11.2]

	Remove + character from platform releases string (PR [https://github.com/pika/pika/pull/895])

0.11.1 2017-11-27

GitHub milestone [https://github.com/pika/pika/milestone/10]

0.11.1 [https://github.com/pika/pika/compare/0.11.0...0.11.1]

	Fix BlockingConnection to ensure event loop exits (PR [https://github.com/pika/pika/pull/887])

	Heartbeat timeouts will use the client value if specified (PR [https://github.com/pika/pika/pull/874])

	Allow setting some common TCP options (PR [https://github.com/pika/pika/pull/880])

	Errors when decoding Unicode are ignored (PR [https://github.com/pika/pika/pull/890])

	Fix large number encoding (PR [https://github.com/pika/pika/pull/888])

0.11.0 2017-07-29

GitHub milestone [https://github.com/pika/pika/milestone/9]

0.11.0 [https://github.com/pika/pika/compare/0.10.0...0.11.0]

	Simplify Travis CI configuration for OS X.

	Add asyncio connection adapter for Python 3.4 and newer.

	Connection failures that occur after the socket is opened and before the
AMQP connection is ready to go are now reported by calling the connection
error callback. Previously these were not consistently reported.

	In BaseConnection.close, call _handle_ioloop_stop only if the connection is
already closed to allow the asynchronous close operation to complete
gracefully.

	Pass error information from failed socket connection to user callbacks
on_open_error_callback and on_close_callback with result_code=-1.

	ValueError is raised when a completion callback is passed to an asynchronous
(nowait) Channel operation. It’s an application error to pass a non-None
completion callback with an asynchronous request, because this callback can
never be serviced in the asynchronous scenario.

	Channel.basic_reject fixed to allow delivery_tag to be of type long
as well as int. (by quantum5)

	Implemented support for blocked connection timeouts in
pika.connection.Connection. This feature is available to all pika adapters.
See pika.connection.ConnectionParameters docstring to learn more about
blocked_connection_timeout configuration.

	Deprecated the heartbeat_interval arg in pika.ConnectionParameters in
favor of the heartbeat arg for consistency with the other connection
parameters classes pika.connection.Parameters and pika.URLParameters.

	When the port arg is not set explicitly in ConnectionParameters
constructor, but the ssl arg is set explicitly, then set the port value to
to the default AMQP SSL port if SSL is enabled, otherwise to the default
AMQP plaintext port.

	URLParameters will raise ValueError if a non-empty URL scheme other than
{amqp | amqps | http | https} is specified.

	InvalidMinimumFrameSize and InvalidMaximumFrameSize exceptions are
deprecated. pika.connection.Parameters.frame_max property setter now raises
the standard ValueError exception when the value is out of bounds.

	Removed deprecated parameter type in Channel.exchange_declare and
BlockingChannel.exchange_declare in favor of the exchange_type arg that
doesn’t overshadow the builtin type keyword.

	Channel.close() on OPENING channel transitions it to CLOSING instead of
raising ChannelClosed.

	Channel.close() on CLOSING channel raises ChannelAlreadyClosing; used to
raise ChannelClosed.

	Connection.channel() raises ConnectionClosed if connection is not in OPEN
state.

	When performing graceful close on a channel and Channel.Close from broker
arrives while waiting for CloseOk, don’t release the channel number until
CloseOk arrives to avoid race condition that may lead to a new channel
receiving the CloseOk that was destined for the closing channel.

	The backpressure_detection option of ConnectionParameters and
URLParameters property is DEPRECATED in favor of Connection.Blocked and
Connection.Unblocked. See Connection.add_on_connection_blocked_callback.

0.10.0 2015-09-02

0.10.0 [https://github.com/pika/pika/compare/0.9.14...0.10.0]

	a9bf96d - LibevConnection: Fixed dict chgd size during iteration (Michael Laing)

	388c55d - SelectConnection: Fixed KeyError exceptions in IOLoop timeout executions (Shinji Suzuki)

	4780de3 - BlockingConnection: Add support to make BlockingConnection a Context Manager (@reddec)

0.10.0b2 2015-07-15

	f72b58f - Fixed failure to purge _ConsumerCancellationEvt from BlockingChannel._pending_events during basic_cancel. (Vitaly Kruglikov)

0.10.0b1 2015-07-10

High-level summary of notable changes:

	Change to 3-Clause BSD License

	Python 3.x support

	Over 150 commits from 19 contributors

	Refactoring of SelectConnection ioloop

	This major release contains certain non-backward-compatible API changes as
well as significant performance improvements in the BlockingConnection
adapter.

	Non-backward-compatible changes in Channel.add_on_return_callback callback’s
signature.

	The AsyncoreConnection adapter was retired

Details

Python 3.x: this release introduces python 3.x support. Tested on Python 3.3
and 3.4.

AsyncoreConnection: Retired this legacy adapter to reduce maintenance burden;
the recommended replacement is the SelectConnection adapter.

SelectConnection: ioloop was refactored for compatibility with other ioloops.

Channel.add_on_return_callback: The callback is now passed the individual
parameters channel, method, properties, and body instead of a tuple of those
values for congruence with other similar callbacks.

BlockingConnection: This adapter underwent a makeover under the hood and
gained significant performance improvements as well as enhanced timer
resolution. It is now implemented as a client of the SelectConnection adapter.

Below is an overview of the BlockingConnection and BlockingChannel API
changes:

	Recursion: the new implementation eliminates callback recursion that
sometimes blew out the stack in the legacy implementation (e.g.,
publish -> consumer_callback -> publish -> consumer_callback, etc.). While
BlockingConnection.process_data_events and BlockingConnection.sleep may
still be called from the scope of the blocking adapter’s callbacks in order
to process pending I/O, additional callbacks will be suppressed whenever
BlockingConnection.process_data_events and BlockingConnection.sleep are
nested in any combination; in that case, the callback information will be
bufferred and dispatched once nesting unwinds and control returns to the
level-zero dispatcher.

	BlockingConnection.connect: this method was removed in favor of the
constructor as the only way to establish connections; this reduces
maintenance burden, while improving reliability of the adapter.

	BlockingConnection.process_data_events: added the optional parameter
time_limit.

	BlockingConnection.add_on_close_callback: removed; legacy raised
NotImplementedError.

	BlockingConnection.add_on_open_callback: removed; legacy raised
NotImplementedError.

	BlockingConnection.add_on_open_error_callback: removed; legacy raised
NotImplementedError.

	BlockingConnection.add_backpressure_callback: not supported

	BlockingConnection.set_backpressure_multiplier: not supported

	BlockingChannel.add_on_flow_callback: not supported; per docstring in
channel.py: “Note that newer versions of RabbitMQ will not issue this but
instead use TCP backpressure”.

	BlockingChannel.flow: not supported

	BlockingChannel.force_data_events: removed as it is no longer necessary
following redesign of the adapter.

	Removed the nowait parameter from BlockingChannel methods, forcing
nowait=False (former API default) in the implementation; this is more
suitable for the blocking nature of the adapter and its error-reporting
strategy; this concerns the following methods: basic_cancel,
confirm_delivery, exchange_bind, exchange_declare, exchange_delete,
exchange_unbind, queue_bind, queue_declare, queue_delete, and
queue_purge.

	BlockingChannel.basic_cancel: returns a sequence instead of None; for a
no_ack=True consumer, basic_cancel returns a sequence of pending
messages that arrived before broker confirmed the cancellation.

	BlockingChannel.consume: added new optional kwargs arguments and
inactivity_timeout. Also, raises ValueError if the consumer creation
parameters don’t match those used to create the existing queue consumer
generator, if any; this happens when you break out of the consume loop, then
call BlockingChannel.consume again with different consumer-creation args
without first cancelling the previous queue consumer generator via
BlockingChannel.cancel. The legacy implementation would silently resume
consuming from the existing queue consumer generator even if the subsequent
BlockingChannel.consume was invoked with a different queue name, etc.

	BlockingChannel.cancel: returns 0; the legacy implementation tried to
return the number of requeued messages, but this number was not accurate
as it didn’t include the messages returned by the Channel class; this count
is not generally useful, so returning 0 is a reasonable replacement.

	BlockingChannel.open: removed in favor of having a single mechanism for
creating a channel (BlockingConnection.channel); this reduces maintenance
burden, while improving reliability of the adapter.

	BlockingChannel.confirm_delivery: raises UnroutableError when unroutable
messages that were sent prior to this call are returned before we receive
Confirm.Select-ok.

	BlockingChannel.basic_publish: always returns True when delivery
confirmation is not enabled (publisher-acks = off); the legacy implementation
returned a bool in this case if `mandatory=True to indicate whether the
message was delivered; however, this was non-deterministic, because
Basic.Return is asynchronous and there is no way to know how long to wait
for it or its absence. The legacy implementation returned None when
publishing with publisher-acks = off and mandatory=False. The new
implementation always returns True when publishing while
publisher-acks = off.

	
	BlockingChannel.publish: a new alternate method (vs. basic_publish) for

	publishing a message with more detailed error reporting via UnroutableError
and NackError exceptions.

	BlockingChannel.start_consuming: raises pika.exceptions.RecursionError if
called from the scope of a BlockingConnection or BlockingChannel
callback.

	BlockingChannel.get_waiting_message_count: new method; returns the number
of messages that may be retrieved from the current queue consumer generator
via BasicChannel.consume without blocking.

Commits

	5aaa753 - Fixed SSL import and removed no_ack=True in favor of explicit AMQP message handling based on deferreds (skftn)

	7f222c2 - Add checkignore for codeclimate (Gavin M. Roy)

	4dec370 - Implemented BlockingChannel.flow; Implemented BlockingConnection.add_on_connection_blocked_callback; Implemented BlockingConnection.add_on_connection_unblocked_callback. (Vitaly Kruglikov)

	4804200 - Implemented blocking adapter acceptance test for exchange-to-exchange binding. Added rudimentary validation of BasicProperties passthru in blocking adapter publish tests. Updated CHANGELOG. (Vitaly Kruglikov)

	4ec07fd - Fixed sending of data in TwistedProtocolConnection (Vitaly Kruglikov)

	a747fb3 - Remove my copyright from forward_server.py test utility. (Vitaly Kruglikov)

	94246d2 - Return True from basic_publish when pubacks is off. Implemented more blocking adapter accceptance tests. (Vitaly Kruglikov)

	3ce013d - PIKA-609 Wait for broker to dispatch all messages to client before cancelling consumer in TestBasicCancelWithNonAckableConsumer and TestBasicCancelWithAckableConsumer (Vitaly Kruglikov)

	293f778 - Created CHANGELOG entry for release 0.10.0. Fixed up callback documentation for basic_get, basic_consume, and add_on_return_callback. (Vitaly Kruglikov)

	16d360a - Removed the legacy AsyncoreConnection adapter in favor of the recommended SelectConnection adapter. (Vitaly Kruglikov)

	240a82c - Defer creation of poller’s event loop interrupt socket pair until start is called, because some SelectConnection users (e.g., BlockingConnection adapter) don’t use the event loop, and these sockets would just get reported as resource leaks. (Vitaly Kruglikov)

	aed5cae - Added EINTR loops in select_connection pollers. Addressed some pylint findings, including an error or two. Wrap socket.send and socket.recv calls in EINTR loops Use the correct exception for socket.error and select.error and get errno depending on python version. (Vitaly Kruglikov)

	498f1be - Allow passing exchange, queue and routing_key as text, handle short strings as text in python3 (saarni)

	9f7f243 - Restored basic_consume, basic_cancel, and add_on_cancel_callback (Vitaly Kruglikov)

	18c9909 - Reintroduced BlockingConnection.process_data_events. (Vitaly Kruglikov)

	4b25cb6 - Fixed BlockingConnection/BlockingChannel acceptance and unit tests (Vitaly Kruglikov)

	bfa932f - Facilitate proper connection state after BasicConnection._adapter_disconnect (Vitaly Kruglikov)

	9a09268 - Fixed BlockingConnection test that was failing with ConnectionClosed error. (Vitaly Kruglikov)

	5a36934 - Copied synchronous_connection.py from pika-synchronous branch Fixed pylint findings Integrated SynchronousConnection with the new ioloop in SelectConnection Defined dedicated message classes PolledMessage and ConsumerMessage and moved from BlockingChannel to module-global scope. Got rid of nowait args from BlockingChannel public API methods Signal unroutable messages via UnroutableError exception. Signal Nack’ed messages via NackError exception. These expose more information about the failure than legacy basic_publich API. Removed set_timeout and backpressure callback methods Restored legacy is_open, etc. property names (Vitaly Kruglikov)

	6226dc0 - Remove deprecated –use-mirrors (Gavin M. Roy)

	1a7112f - Raise ConnectionClosed when sending a frame with no connection (#439) (Gavin M. Roy)

	9040a14 - Make delivery_tag non-optional (#498) (Gavin M. Roy)

	86aabc2 - Bump version (Gavin M. Roy)

	562075a - Update a few testing things (Gavin M. Roy)

	4954d38 - use unicode_type in blocking_connection.py (Antti Haapala)

	133d6bc - Let Travis install ordereddict for Python 2.6, and ttest 3.3, 3.4 too. (Antti Haapala)

	0d2287d - Pika Python 3 support (Antti Haapala)

	3125c79 - SSLWantRead is not supported before python 2.7.9 and 3.3 (Will)

	9a9c46c - Fixed TestDisconnectDuringConnectionStart: it turns out that depending on callback order, it might get either ProbableAuthenticationError or ProbableAccessDeniedError. (Vitaly Kruglikov)

	cd8c9b0 - A fix the write starvation problem that we see with tornado and pika (Will)

	8654fbc - SelectConnection - make interrupt socketpair non-blocking (Will)

	4f3666d - Added copyright in forward_server.py and fixed NameError bug (Vitaly Kruglikov)

	f8ebbbc - ignore docs (Gavin M. Roy)

	a344f78 - Updated codeclimate config (Gavin M. Roy)

	373c970 - Try and fix pathing issues in codeclimate (Gavin M. Roy)

	228340d - Ignore codegen (Gavin M. Roy)

	4db0740 - Add a codeclimate config (Gavin M. Roy)

	7e989f9 - Slight code re-org, usage comment and better naming of test file. (Will)

	287be36 - Set up _kqueue member of KQueuePoller before calling super constructor to avoid exception due to missing _kqueue member. Call self._map_event(event) instead of self._map_event(event.filter), because KQueuePoller._map_event() assumes it’s getting an event, not an event filter. (Vitaly Kruglikov)

	62810fb - Fix issue #412: reset BlockingConnection._read_poller in BlockingConnection._adapter_disconnect() to guard against accidental access to old file descriptor. (Vitaly Kruglikov)

	03400ce - Rationalise adapter acceptance tests (Will)

	9414153 - Fix bug selecting non epoll poller (Will)

	4f063df - Use user heartbeat setting if server proposes none (Pau Gargallo)

	9d04d6e - Deactivate heartbeats when heartbeat_interval is 0 (Pau Gargallo)

	a52a608 - Bug fix and review comments. (Will)

	e3ebb6f - Fix incorrect x-expires argument in acceptance tests (Will)

	294904e - Get BlockingConnection into consistent state upon loss of TCP/IP connection with broker and implement acceptance tests for those cases. (Vitaly Kruglikov)

	7f91a68 - Make SelectConnection behave like an ioloop (Will)

	dc9db2b - Perhaps 5 seconds is too agressive for travis (Gavin M. Roy)

	c23e532 - Lower the stuck test timeout (Gavin M. Roy)

	1053ebc - Late night bug (Gavin M. Roy)

	cd6c1bf - More BaseConnection._handle_error cleanup (Gavin M. Roy)

	a0ff21c - Fix the test to work with Python 2.6 (Gavin M. Roy)

	748e8aa - Remove pypy for now (Gavin M. Roy)

	1c921c1 - Socket close/shutdown cleanup (Gavin M. Roy)

	5289125 - Formatting update from PR (Gavin M. Roy)

	d235989 - Be more specific when calling getaddrinfo (Gavin M. Roy)

	b5d1b31 - Reflect the method name change in pika.callback (Gavin M. Roy)

	df7d3b7 - Cleanup BlockingConnection in a few places (Gavin M. Roy)

	cd99e1c - Rename method due to use in BlockingConnection (Gavin M. Roy)

	7e0d1b3 - Use google style with yapf instead of pep8 (Gavin M. Roy)

	7dc9bab - Refactor socket writing to not use sendall #481 (Gavin M. Roy)

	4838789 - Dont log the fd #521 (Gavin M. Roy)

	765107d - Add Connection.Blocked callback registration methods #476 (Gavin M. Roy)

	c15b5c1 - Fix _blocking typo pointed out in #513 (Gavin M. Roy)

	759ac2c - yapf of codegen (Gavin M. Roy)

	9dadd77 - yapf cleanup of codegen and spec (Gavin M. Roy)

	ddba7ce - Do not reject consumers with no_ack=True #486 #530 (Gavin M. Roy)

	4528a1a - yapf reformatting of tests (Gavin M. Roy)

	e7b6d73 - Remove catching AttributError (#531) (Gavin M. Roy)

	41ea5ea - Update README badges [skip ci] (Gavin M. Roy)

	6af987b - Add note on contributing (Gavin M. Roy)

	161fc0d - yapf formatting cleanup (Gavin M. Roy)

	edcb619 - Add PYPY to travis testing (Gavin M. Roy)

	2225771 - Change the coverage badge (Gavin M. Roy)

	8f7d451 - Move to codecov from coveralls (Gavin M. Roy)

	b80407e - Add confirm_delivery to example (Andrew Smith)

	6637212 - Update base_connection.py (bstemshorn)

	1583537 - #544 get_waiting_message_count() (markcf)

	0c9be99 - Fix #535: pass expected reply_code and reply_text from method frame to Connection._on_disconnect from Connection._on_connection_closed (Vitaly Kruglikov)

	d11e73f - Propagate ConnectionClosed exception out of BlockingChannel._send_method() and log ConnectionClosed in BlockingConnection._on_connection_closed() (Vitaly Kruglikov)

	63d2951 - Fix #541 - make sure connection state is properly reset when BlockingConnection._check_state_on_disconnect raises ConnectionClosed. This supplements the previously-merged PR #450 by getting the connection into consistent state. (Vitaly Kruglikov)

	71bc0eb - Remove unused self.fd attribute from BaseConnection (Vitaly Kruglikov)

	8c08f93 - PIKA-532 Removed unnecessary params (Vitaly Kruglikov)

	6052ecf - PIKA-532 Fix bug in BlockingConnection._handle_timeout that was preventing _on_connection_closed from being called when not closing. (Vitaly Kruglikov)

	562aa15 - pika: callback: Display exception message when callback fails. (Stuart Longland)

	452995c - Typo fix in connection.py (Andrew)

	361c0ad - Added some missing yields (Robert Weidlich)

	0ab5a60 - Added complete example for python twisted service (Robert Weidlich)

	4429110 - Add deployment and webhooks (Gavin M. Roy)

	7e50302 - Fix has_content style in codegen (Andrew Grigorev)

	28c2214 - Fix the trove categorization (Gavin M. Roy)

	de8b545 - Ensure frames can not be interspersed on send (Gavin M. Roy)

	8fe6bdd - Fix heartbeat behaviour after connection failure. (Kyösti Herrala)

	c123472 - Updating BlockingChannel.basic_get doc (it does not receive a callback like the rest of the adapters) (Roberto Decurnex)

	b5f52fb - Fix number of arguments passed to _on_return callback (Axel Eirola)

	765139e - Lower default TIMEOUT to 0.01 (bra-fsn)

	6cc22a5 - Fix confirmation on reconnects (bra-fsn)

	f4faf0a - asynchronous publisher and subscriber examples refactored to follow the StepDown rule (Riccardo Cirimelli)

0.9.14 - 2014-07-11

0.9.14 [https://github.com/pika/pika/compare/0.9.13...0.9.14]

	57fe43e - fix test to generate a correct range of random ints (ml)

	0d68dee - fix async watcher for libev_connection (ml)

	01710ad - Use default username and password if not specified in URLParameters (Sean Dwyer)

	fae328e - documentation typo (Jeff Fein-Worton)

	afbc9e0 - libev_connection: reset_io_watcher (ml)

	24332a2 - Fix the manifest (Gavin M. Roy)

	acdfdef - Remove useless test (Gavin M. Roy)

	7918e1a - Skip libev tests if pyev is not installed or if they are being run in pypy (Gavin M. Roy)

	bb583bf - Remove the deprecated test (Gavin M. Roy)

	aecf3f2 - Don’t reject a message if the channel is not open (Gavin M. Roy)

	e37f336 - Remove UTF-8 decoding in spec (Gavin M. Roy)

	ddc35a9 - Update the unittest to reflect removal of force binary (Gavin M. Roy)

	fea2476 - PEP8 cleanup (Gavin M. Roy)

	9b97956 - Remove force_binary (Gavin M. Roy)

	a42dd90 - Whitespace required (Gavin M. Roy)

	85867ea - Update the content_frame_dispatcher tests to reflect removal of auto-cast utf-8 (Gavin M. Roy)

	5a4bd5d - Remove unicode casting (Gavin M. Roy)

	efea53d - Remove force binary and unicode casting (Gavin M. Roy)

	e918d15 - Add methods to remove deprecation warnings from asyncore (Gavin M. Roy)

	117f62d - Add a coveragerc to ignore the auto generated pika.spec (Gavin M. Roy)

	52f4485 - Remove pypy tests from travis for now (Gavin M. Roy)

	c3aa958 - Update README.rst (Gavin M. Roy)

	3e2319f - Delete README.md (Gavin M. Roy)

	c12b0f1 - Move to RST (Gavin M. Roy)

	704f5be - Badging updates (Gavin M. Roy)

	7ae33ca - Update for coverage info (Gavin M. Roy)

	ae7ca86 - add libev_adapter_tests.py; modify .travis.yml to install libev and pyev (ml)

	f86aba5 - libev_connection: add **kwargs to _handle_event; suppress default_ioloop reuse warning (ml)

	603f1cf - async_test_base: add necessary args to _on_cconn_closed (ml)

	3422007 - add libev_adapter_tests.py (ml)

	6cbab0c - removed relative imports and importing urlparse from urllib.parse for py3+ (a-tal)

	f808464 - libev_connection: add async watcher; add optional parameters to add_timeout (ml)

	c041c80 - Remove ev all together for now (Gavin M. Roy)

	9408388 - Update the test descriptions and timeout (Gavin M. Roy)

	1b552e0 - Increase timeout (Gavin M. Roy)

	69a1f46 - Remove the pyev requirement for 2.6 testing (Gavin M. Roy)

	fe062d2 - Update package name (Gavin M. Roy)

	611ad0e - Distribute the LICENSE and README.md (#350) (Gavin M. Roy)

	df5e1d8 - Ensure that the entire frame is written using socket.sendall (#349) (Gavin M. Roy)

	69ec8cf - Move the libev install to before_install (Gavin M. Roy)

	a75f693 - Update test structure (Gavin M. Roy)

	636b424 - Update things to ignore (Gavin M. Roy)

	b538c68 - Add tox, nose.cfg, update testing config (Gavin M. Roy)

	a0e7063 - add some tests to increase coverage of pika.connection (Charles Law)

	c76d9eb - Address issue #459 (Gavin M. Roy)

	86ad2db - Raise exception if positional arg for parameters isn’t an instance of Parameters (Gavin M. Roy)

	14d08e1 - Fix for python 2.6 (Gavin M. Roy)

	bd388a3 - Use the first unused channel number addressing #404, #460 (Gavin M. Roy)

	e7676e6 - removing a debug that was left in last commit (James Mutton)

	6c93b38 - Fixing connection-closed behavior to detect on attempt to publish (James Mutton)

	c3f0356 - Initialize bytes_written in _handle_write() (Jonathan Kirsch)

	4510e95 - Fix _handle_write() may not send full frame (Jonathan Kirsch)

	12b793f - fixed Tornado Consumer example to successfully reconnect (Yang Yang)

	f074444 - remove forgotten import of ordereddict (Pedro Abranches)

	1ba0aea - fix last merge (Pedro Abranches)

	10490a6 - change timeouts structure to list to maintain scheduling order (Pedro Abranches)

	7958394 - save timeouts in ordered dict instead of dict (Pedro Abranches)

	d2746bf - URLParameters and ConnectionParameters accept unicode strings (Allard Hoeve)

	596d145 - previous fix for AttributeError made parent and child class methods identical, remove duplication (James Mutton)

	42940dd - UrlParameters Docs: fixed amqps scheme examples (Riccardo Cirimelli)

	43904ff - Dont test this in PyPy due to sort order issue (Gavin M. Roy)

	d7d293e - Don’t leave __repr__ sorting up to chance (Gavin M. Roy)

	848c594 - Add integration test to travis and fix invocation (Gavin M. Roy)

	2678275 - Add pypy to travis tests (Gavin M. Roy)

	1877f3d - Also addresses issue #419 (Gavin M. Roy)

	470c245 - Address issue #419 (Gavin M. Roy)

	ca3cb59 - Address issue #432 (Gavin M. Roy)

	a3ff6f2 - Default frame max should be AMQP FRAME_MAX (Gavin M. Roy)

	ff3d5cb - Remove max consumer tag test due to change in code. (Gavin M. Roy)

	6045dda - Catch KeyError (#437) to ensure that an exception is not raised in a race condition (Gavin M. Roy)

	0b4d53a - Address issue #441 (Gavin M. Roy)

	180e7c4 - Update license and related files (Gavin M. Roy)

	256ed3d - Added Jython support. (Erik Olof Gunnar Andersson)

	f73c141 - experimental work around for recursion issue. (Erik Olof Gunnar Andersson)

	a623f69 - Prevent #436 by iterating the keys and not the dict (Gavin M. Roy)

	755fcae - Add support for authentication_failure_close, connection.blocked (Gavin M. Roy)

	c121243 - merge upstream master (Michael Laing)

	a08dc0d - add arg to channel.basic_consume (Pedro Abranches)

	10b136d - Documentation fix (Anton Ryzhov)

	9313307 - Fixed minor markup errors. (Jorge Puente Sarrín)

	fb3e3cf - Fix the spelling of UnsupportedAMQPFieldException (Garrett Cooper)

	03d5da3 - connection.py: Propagate the force_channel keyword parameter to methods involved in channel creation (Michael Laing)

	7bbcff5 - Documentation fix for basic_publish (JuhaS)

	01dcea7 - Expose no_ack and exclusive to BlockingChannel.consume (Jeff Tang)

	d39b6aa - Fix BlockingChannel.basic_consume does not block on non-empty queues (Juhyeong Park)

	6e1d295 - fix for issue 391 and issue 307 (Qi Fan)

	d9ffce9 - Update parameters.rst (cacovsky)

	6afa41e - Add additional badges (Gavin M. Roy)

	a255925 - Fix return value on dns resolution issue (Laurent Eschenauer)

	3f7466c - libev_connection: tweak docs (Michael Laing)

	0aaed93 - libev_connection: Fix varable naming (Michael Laing)

	0562d08 - libev_connection: Fix globals warning (Michael Laing)

	22ada59 - libev_connection: use globals to track sigint and sigterm watchers as they are created globally within libev (Michael Laing)

	2649b31 - Move badge [skip ci] (Gavin M. Roy)

	f70eea1 - Remove pypy and installation attempt of pyev (Gavin M. Roy)

	f32e522 - Conditionally skip external connection adapters if lib is not installed (Gavin M. Roy)

	cce97c5 - Only install pyev on python 2.7 (Gavin M. Roy)

	ff84462 - Add travis ci support (Gavin M. Roy)

	cf971da - lib_evconnection: improve signal handling; add callback (Michael Laing)

	9adb269 - bugfix in returning a list in Py3k (Alex Chandel)

	c41d5b9 - update exception syntax for Py3k (Alex Chandel)

	c8506f1 - fix _adapter_connect (Michael Laing)

	67cb660 - Add LibevConnection to README (Michael Laing)

	1f9e72b - Propagate low-level connection errors to the AMQPConnectionError. (Bjorn Sandberg)

	e1da447 - Avoid race condition in _on_getok on successive basic_get() when clearing out callbacks (Jeff)

	7a09979 - Add support for upcoming Connection.Blocked/Unblocked (Gavin M. Roy)

	53cce88 - TwistedChannel correctly handles multi-argument deferreds. (eivanov)

	66f8ace - Use uuid when creating unique consumer tag (Perttu Ranta-aho)

	4ee2738 - Limit the growth of Channel._cancelled, use deque instead of list. (Perttu Ranta-aho)

	0369aed - fix adapter references and tweak docs (Michael Laing)

	1738c23 - retry select.select() on EINTR (Cenk Alti)

	1e55357 - libev_connection: reset internal state on reconnect (Michael Laing)

	708559e - libev adapter (Michael Laing)

	a6b7c8b - Prioritize EPollPoller and KQueuePoller over PollPoller and SelectPoller (Anton Ryzhov)

	53400d3 - Handle socket errors in PollPoller and EPollPoller Correctly check ‘select.poll’ availability (Anton Ryzhov)

	a6dc969 - Use dict.keys & items instead of iterkeys & iteritems (Alex Chandel)

	5c1b0d0 - Use print function syntax, in examples (Alex Chandel)

	ac9f87a - Fixed a typo in the name of the Asyncore Connection adapter (Guruprasad)

	dfbba50 - Fixed bug mentioned in Issue #357 (Erik Andersson)

	c906a2d - Drop additional flags when getting info for the hostnames, log errors (#352) (Gavin M. Roy)

	baf23dd - retry poll() on EINTR (Cenk Alti)

	7cd8762 - Address ticket #352 catching an error when socket.getprotobyname fails (Gavin M. Roy)

	6c3ec75 - Prep for 0.9.14 (Gavin M. Roy)

	dae7a99 - Bump to 0.9.14p0 (Gavin M. Roy)

	620edc7 - Use default port and virtual host if omitted in URLParameters (Issue #342) (Gavin M. Roy)

	42a8787 - Move the exception handling inside the while loop (Gavin M. Roy)

	10e0264 - Fix connection back pressure detection issue #347 (Gavin M. Roy)

	0bfd670 - Fixed mistake in commit 3a19d65. (Erik Andersson)

	da04bc0 - Fixed Unknown state on disconnect error message generated when closing connections. (Erik Andersson)

	3a19d65 - Alternative solution to fix #345. (Erik Andersson)

	abf9fa8 - switch to sendall to send entire frame (Dustin Koupal)

	9ce8ce4 - Fixed the async publisher example to work with reconnections (Raphaël De Giusti)

	511028a - Fix typo in TwistedChannel docstring (cacovsky)

	8b69e5a - calls self._adapter_disconnect() instead of self.disconnect() which doesn’t actually exist #294 (Mark Unsworth)

	06a5cf8 - add NullHandler to prevent logging warnings (Cenk Alti)

	f404a9a - Fix #337 cannot start ioloop after stop (Ralf Nyren)

0.9.13 - 2013-05-15

0.9.13 [https://github.com/pika/pika/compare/0.9.12...0.9.13]

Major Changes

	IPv6 Support with thanks to Alessandro Tagliapietra for initial prototype

	Officially remove support for <= Python 2.5 even though it was broken already

	Drop pika.simplebuffer.SimpleBuffer in favor of the Python stdlib collections.deque object

	New default object for receiving content is a “bytes” object which is a str wrapper in Python 2, but paves way for Python 3 support

	New “Raw” mode for frame decoding content frames (#334) addresses issues #331, #229 added by Garth Williamson

	Connection and Disconnection logic refactored, allowing for cleaner separation of protocol logic and socket handling logic as well as connection state management

	New “on_open_error_callback” argument in creating connection objects and new Connection.add_on_open_error_callback method

	New Connection.connect method to cleanly allow for reconnection code

	Support for all AMQP field types, using protocol specified signed/unsigned unpacking

Backwards Incompatible Changes

	Method signature for creating connection objects has new argument “on_open_error_callback” which is positionally before “on_close_callback”

	Internal callback variable names in connection.Connection have been renamed and constants used. If you relied on any of these callbacks outside of their internal use, make sure to check out the new constants.

	Connection._connect method, which was an internal only method is now deprecated and will raise a DeprecationWarning. If you relied on this method, your code needs to change.

	pika.simplebuffer has been removed

Bugfixes

	BlockingConnection consumer generator does not free buffer when exited (#328)

	Unicode body payloads in the blocking adapter raises exception (#333)

	Support “b” short-short-int AMQP data type (#318)

	Docstring type fix in adapters/select_connection (#316) fix by Rikard Hultén

	IPv6 not supported (#309)

	Stop the HeartbeatChecker when connection is closed (#307)

	Unittest fix for SelectConnection (#336) fix by Erik Andersson

	Handle condition where no connection or socket exists but SelectConnection needs a timeout for retrying a connection (#322)

	TwistedAdapter lagging behind BaseConnection changes (#321) fix by Jan Urbański

Other

	Refactored documentation

	Added Twisted Adapter example (#314) by nolinksoft

0.9.12 - 2013-03-18

0.9.12 [https://github.com/pika/pika/compare/0.9.11...0.9.12]

Bugfixes

	New timeout id hashing was not unique

0.9.11 - 2013-03-17

0.9.11 [https://github.com/pika/pika/compare/0.9.10...0.9.11]

Bugfixes

	Address inconsistent channel close callback documentation and add the signature
change to the TwistedChannel class (#305)

	Address a missed timeout related internal data structure name change
introduced in the SelectConnection 0.9.10 release. Update all connection
adapters to use same signature and docstring (#306).

0.9.10 - 2013-03-16

0.9.10 [https://github.com/pika/pika/compare/0.9.9...0.9.10]

Bugfixes

	Fix timeout in twisted adapter (Submitted by cellscape)

	Fix blocking_connection poll timer resolution to milliseconds (Submitted by cellscape)

	Fix channel._on_close() without a method frame (Submitted by Richard Boulton)

	Addressed exception on close (Issue #279 - fix by patcpsc)

	‘messages’ not initialized in BlockingConnection.cancel() (Issue #289 - fix by Mik Kocikowski)

	Make queue_unbind behave like queue_bind (Issue #277)

	Address closing behavioral issues for connections and channels (Issue #275)

	Pass a Method frame to Channel._on_close in Connection._on_disconnect (Submitted by Jan Urbański)

	Fix channel closed callback signature in the Twisted adapter (Submitted by Jan Urbański)

	Don’t stop the IOLoop on connection close for in the Twisted adapter (Submitted by Jan Urbański)

	Update the asynchronous examples to fix reconnecting and have it work

	Warn if the socket was closed such as if RabbitMQ dies without a Close frame

	Fix URLParameters ssl_options (Issue #296)

	Add state to BlockingConnection addressing (Issue #301)

	Encode unicode body content prior to publishing (Issue #282)

	Fix an issue with unicode keys in BasicProperties headers key (Issue #280)

	Change how timeout ids are generated (Issue #254)

	Address post close state issues in Channel (Issue #302)

** Behavior changes **

	Change core connection communication behavior to prefer outbound writes over reads, addressing a recursion issue

	Update connection on close callbacks, changing callback method signature

	Update channel on close callbacks, changing callback method signature

	Give more info in the ChannelClosed exception

	Change the constructor signature for BlockingConnection, block open/close callbacks

	Disable the use of add_on_open_callback/add_on_close_callback methods in BlockingConnection

0.9.9 - 2013-01-29

0.9.9 [https://github.com/pika/pika/compare/0.9.8...0.9.9]

Bugfixes

	Only remove the tornado_connection.TornadoConnection file descriptor from the IOLoop if it’s still open (Issue #221)

	Allow messages with no body (Issue #227)

	Allow for empty routing keys (Issue #224)

	Don’t raise an exception when trying to send a frame to a closed connection (Issue #229)

	Only send a Connection.CloseOk if the connection is still open. (Issue #236 - Fix by noleaf)

	Fix timeout threshold in blocking connection - (Issue #232 - Fix by Adam Flynn)

	Fix closing connection while a channel is still open (Issue #230 - Fix by Adam Flynn)

	Fixed misleading warning and exception messages in BaseConnection (Issue #237 - Fix by Tristan Penman)

	Pluralised and altered the wording of the AMQPConnectionError exception (Issue #237 - Fix by Tristan Penman)

	Fixed _adapter_disconnect in TornadoConnection class (Issue #237 - Fix by Tristan Penman)

	Fixing hang when closing connection without any channel in BlockingConnection (Issue #244 - Fix by Ales Teska)

	Remove the process_timeouts() call in SelectConnection (Issue #239)

	Change the string validation to basestring for host connection parameters (Issue #231)

	Add a poller to the BlockingConnection to address latency issues introduced in Pika 0.9.8 (Issue #242)

	reply_code and reply_text is not set in ChannelException (Issue #250)

	Add the missing constraint parameter for Channel._on_return callback processing (Issue #257 - Fix by patcpsc)

	Channel callbacks not being removed from callback manager when channel is closed or deleted (Issue #261)

0.9.8 - 2012-11-18

0.9.8 [https://github.com/pika/pika/compare/0.9.7...0.9.8]

Bugfixes

	Channel.queue_declare/BlockingChannel.queue_declare not setting up callbacks property for empty queue name (Issue #218)

	Channel.queue_bind/BlockingChannel.queue_bind not allowing empty routing key

	Connection._on_connection_closed calling wrong method in Channel (Issue #219)

	Fix tx_commit and tx_rollback bugs in BlockingChannel (Issue #217)

0.9.7 - 2012-11-11

0.9.7 [https://github.com/pika/pika/compare/0.9.6...0.9.7]

New features

	generator based consumer in BlockingChannel (See Using the BlockingChannel.consume generator to consume messages for example)

Changes

	BlockingChannel._send_method will only wait if explicitly told to

Bugfixes

	Added the exchange “type” parameter back but issue a DeprecationWarning

	Dont require a queue name in Channel.queue_declare()

	Fixed KeyError when processing timeouts (Issue # 215 - Fix by Raphael De Giusti)

	Don’t try and close channels when the connection is closed (Issue #216 - Fix by Charles Law)

	Dont raise UnexpectedFrame exceptions, log them instead

	Handle multiple synchronous RPC calls made without waiting for the call result (Issues #192, #204, #211)

	Typo in docs (Issue #207 Fix by Luca Wehrstedt)

	Only sleep on connection failure when retry attempts are > 0 (Issue #200)

	Bypass _rpc method and just send frames for Basic.Ack, Basic.Nack, Basic.Reject (Issue #205)

0.9.6 - 2012-10-29

0.9.6 [https://github.com/pika/pika/compare/0.9.5...0.9.6]

New features

	URLParameters

	BlockingChannel.start_consuming() and BlockingChannel.stop_consuming()

	Delivery Confirmations

	Improved unittests

Major bugfix areas

	Connection handling

	Blocking functionality in the BlockingConnection

	SSL

	UTF-8 Handling

Removals

	pika.reconnection_strategies

	pika.channel.ChannelTransport

	pika.log

	pika.template

	examples directory

0.9.5 - 2011-03-29

0.9.5 [https://github.com/pika/pika/compare/0.9.4...0.9.5]

Changelog

	Scope changes with adapter IOLoops and CallbackManager allowing for cleaner, multi-threaded operation

	Add support for Confirm.Select with channel.Channel.confirm_delivery()

	Add examples of delivery confirmation to examples (demo_send_confirmed.py)

	Update uses of log.warn with warning.warn for TCP Back-pressure alerting

	License boilerplate updated to simplify license text in source files

	Increment the timeout in select_connection.SelectPoller reducing CPU utilization

	Bug fix in Heartbeat frame delivery addressing issue #35

	Remove abuse of pika.log.method_call through a majority of the code

	Rename of key modules: table to data, frames to frame

	Cleanup of frame module and related classes

	Restructure of tests and test runner

	Update functional tests to respect RABBITMQ_HOST, RABBITMQ_PORT environment variables

	Bug fixes to reconnection_strategies module

	Fix the scale of timeout for PollPoller to be specified in milliseconds

	Remove mutable default arguments in RPC calls

	Add data type validation to RPC calls

	Move optional credentials erasing out of connection.Connection into credentials module

	Add support to allow for additional external credential types

	Add a NullHandler to prevent the ‘No handlers could be found for logger “pika”’ error message when not using pika.log in a client app at all.

	Clean up all examples to make them easier to read and use

	Move documentation into its own repository https://github.com/pika/documentation

	channel.py

	Move channel.MAX_CHANNELS constant from connection.CHANNEL_MAX

	Add default value of None to ChannelTransport.rpc

	Validate callback and acceptable replies parameters in ChannelTransport.RPC

	Remove unused connection attribute from Channel

	connection.py

	Remove unused import of struct

	Remove direct import of pika.credentials.PlainCredentials
- Change to import pika.credentials

	Move CHANNEL_MAX to channel.MAX_CHANNELS

	Change ConnectionParameters initialization parameter heartbeat to boolean

	Validate all inbound parameter types in ConnectionParameters

	Remove the Connection._erase_credentials stub method in favor of letting the Credentials object deal with that itself.

	Warn if the credentials object intends on erasing the credentials and a reconnection strategy other than NullReconnectionStrategy is specified.

	Change the default types for callback and acceptable_replies in Connection._rpc

	Validate the callback and acceptable_replies data types in Connection._rpc

	adapters.blocking_connection.BlockingConnection

	Addition of _adapter_disconnect to blocking_connection.BlockingConnection

	Add timeout methods to BlockingConnection addressing issue #41

	BlockingConnection didn’t allow you register more than one consumer callback because basic_consume was overridden to block immediately. New behavior allows you to do so.

	Removed overriding of base basic_consume and basic_cancel methods. Now uses underlying Channel versions of those methods.

	Added start_consuming() method to BlockingChannel to start the consumption loop.

	Updated stop_consuming() to iterate through all the registered consumers in self._consumers and issue a basic_cancel.

 Python Module Index

 .

 		 	

 		
 .	

 	
 	
 pika.adapters.blocking_connection	

 	
 	
 pika.adapters.select_connection	

 	
 	
 pika.adapters.twisted_connection	

 	
 	
 pika.channel	

 	
 	
 pika.credentials	

 	
 	
 pika.exceptions	

 	
 	
 pika.spec	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	Access (class in pika.spec)

 	Access.Request (class in pika.spec)

 	Access.RequestOk (class in pika.spec)

 	add_callback() (pika.channel.Channel method)

 	add_callback_threadsafe() (pika.adapters.blocking_connection.BlockingConnection method)

 	add_on_cancel_callback() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.channel.Channel method)

 	add_on_close_callback() (pika.adapters.select_connection.SelectConnection method)

 	(pika.channel.Channel method)

 	(pika.connection.Connection method)

 	add_on_connection_blocked_callback() (pika.adapters.blocking_connection.BlockingConnection method)

 	(pika.adapters.select_connection.SelectConnection method)

 	(pika.connection.Connection method)

 	add_on_connection_unblocked_callback() (pika.adapters.blocking_connection.BlockingConnection method)

 	(pika.adapters.select_connection.SelectConnection method)

 	(pika.connection.Connection method)

 	
 	add_on_flow_callback() (pika.channel.Channel method)

 	add_on_open_callback() (pika.adapters.select_connection.SelectConnection method)

 	(pika.connection.Connection method)

 	add_on_open_error_callback() (pika.adapters.select_connection.SelectConnection method)

 	(pika.connection.Connection method)

 	add_on_return_callback() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	AMQPChannelError

 	AMQPConnectionError

 	AMQPError

 	AMQPHeartbeatTimeout

 	AuthenticationError

B

 	
 	Basic (class in pika.spec)

 	Basic.Ack (class in pika.spec)

 	Basic.Cancel (class in pika.spec)

 	Basic.CancelOk (class in pika.spec)

 	Basic.Consume (class in pika.spec)

 	Basic.ConsumeOk (class in pika.spec)

 	Basic.Deliver (class in pika.spec)

 	Basic.Get (class in pika.spec)

 	Basic.GetEmpty (class in pika.spec)

 	Basic.GetOk (class in pika.spec)

 	Basic.Nack (class in pika.spec)

 	Basic.Publish (class in pika.spec)

 	Basic.Qos (class in pika.spec)

 	Basic.QosOk (class in pika.spec)

 	Basic.Recover (class in pika.spec)

 	Basic.RecoverAsync (class in pika.spec)

 	Basic.RecoverOk (class in pika.spec)

 	Basic.Reject (class in pika.spec)

 	Basic.Return (class in pika.spec)

 	basic_ack() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_cancel() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_consume() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	
 	basic_get() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_nack (pika.adapters.blocking_connection.BlockingConnection attribute)

 	(pika.adapters.select_connection.SelectConnection attribute)

 	(pika.connection.Connection attribute)

 	basic_nack() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_nack_supported (pika.adapters.blocking_connection.BlockingConnection attribute)

 	basic_publish() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_qos() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_recover() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	basic_reject() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	BasicProperties (class in pika.spec)

 	blocked_connection_timeout (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	BlockingChannel (class in pika.adapters.blocking_connection)

 	BlockingConnection (class in pika.adapters.blocking_connection)

 	BodyTooLongError

C

 	
 	call_later() (pika.adapters.blocking_connection.BlockingConnection method)

 	callback_deferred() (pika.adapters.twisted_connection.TwistedChannel method)

 	cancel() (pika.adapters.blocking_connection.BlockingChannel method)

 	Channel (class in pika.channel)

 	(class in pika.spec)

 	channel() (pika.adapters.blocking_connection.BlockingConnection method)

 	(pika.adapters.select_connection.SelectConnection method)

 	(pika.adapters.twisted_connection.TwistedProtocolConnection method)

 	(pika.connection.Connection method)

 	Channel.Close (class in pika.spec)

 	Channel.CloseOk (class in pika.spec)

 	Channel.Flow (class in pika.spec)

 	Channel.FlowOk (class in pika.spec)

 	Channel.Open (class in pika.spec)

 	Channel.OpenOk (class in pika.spec)

 	channel_max (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	channel_number (pika.adapters.blocking_connection.BlockingChannel attribute)

 	ChannelClosed

 	ChannelClosedByBroker

 	ChannelClosedByClient

 	ChannelError

 	ChannelWrongStateError

 	CLASS (pika.spec.BasicProperties attribute)

 	client_properties (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	ClosableDeferredQueue (class in pika.adapters.twisted_connection)

 	close() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.blocking_connection.BlockingConnection method)

 	(pika.adapters.select_connection.SelectConnection method)

 	(pika.adapters.twisted_connection.ClosableDeferredQueue method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	(pika.connection.Connection method)

 	Confirm (class in pika.spec)

 	Confirm.Select (class in pika.spec)

 	Confirm.SelectOk (class in pika.spec)

 	confirm_delivery() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	
 	Connection (class in pika.connection)

 	(class in pika.spec)

 	connection (pika.adapters.blocking_connection.BlockingChannel attribute)

 	Connection.Blocked (class in pika.spec)

 	Connection.Close (class in pika.spec)

 	Connection.CloseOk (class in pika.spec)

 	Connection.Open (class in pika.spec)

 	Connection.OpenOk (class in pika.spec)

 	Connection.Secure (class in pika.spec)

 	Connection.SecureOk (class in pika.spec)

 	Connection.Start (class in pika.spec)

 	Connection.StartOk (class in pika.spec)

 	Connection.Tune (class in pika.spec)

 	Connection.TuneOk (class in pika.spec)

 	Connection.Unblocked (class in pika.spec)

 	connection_attempts (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	ConnectionBlockedTimeout

 	ConnectionClosed

 	ConnectionClosedByBroker

 	ConnectionClosedByClient

 	connectionMade() (pika.adapters.twisted_connection.TwistedProtocolConnection method)

 	ConnectionOpenAborted

 	ConnectionParameters (class in pika.connection)

 	connectionReady() (pika.adapters.twisted_connection.TwistedProtocolConnection method)

 	ConnectionWrongStateError

 	consume() (pika.adapters.blocking_connection.BlockingChannel method)

 	consumer_cancel_notify (pika.adapters.blocking_connection.BlockingConnection attribute)

 	(pika.adapters.select_connection.SelectConnection attribute)

 	(pika.connection.Connection attribute)

 	consumer_cancel_notify_supported (pika.adapters.blocking_connection.BlockingConnection attribute)

 	consumer_tags (pika.adapters.blocking_connection.BlockingChannel attribute)

 	(pika.channel.Channel attribute)

 	ConsumerCancelled

 	create_connection() (pika.adapters.select_connection.SelectConnection class method)

 	credentials (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

D

 	
 	decode() (pika.spec.Access.Request method)

 	(pika.spec.Access.RequestOk method)

 	(pika.spec.Basic.Ack method)

 	(pika.spec.Basic.Cancel method)

 	(pika.spec.Basic.CancelOk method)

 	(pika.spec.Basic.Consume method)

 	(pika.spec.Basic.ConsumeOk method)

 	(pika.spec.Basic.Deliver method)

 	(pika.spec.Basic.Get method)

 	(pika.spec.Basic.GetEmpty method)

 	(pika.spec.Basic.GetOk method)

 	(pika.spec.Basic.Nack method)

 	(pika.spec.Basic.Publish method)

 	(pika.spec.Basic.Qos method)

 	(pika.spec.Basic.QosOk method)

 	(pika.spec.Basic.Recover method)

 	(pika.spec.Basic.RecoverAsync method)

 	(pika.spec.Basic.RecoverOk method)

 	(pika.spec.Basic.Reject method)

 	(pika.spec.Basic.Return method)

 	(pika.spec.BasicProperties method)

 	(pika.spec.Channel.Close method)

 	(pika.spec.Channel.CloseOk method)

 	(pika.spec.Channel.Flow method)

 	(pika.spec.Channel.FlowOk method)

 	(pika.spec.Channel.Open method)

 	(pika.spec.Channel.OpenOk method)

 	(pika.spec.Confirm.Select method)

 	(pika.spec.Confirm.SelectOk method)

 	(pika.spec.Connection.Blocked method)

 	(pika.spec.Connection.Close method)

 	(pika.spec.Connection.CloseOk method)

 	(pika.spec.Connection.Open method)

 	(pika.spec.Connection.OpenOk method)

 	(pika.spec.Connection.Secure method)

 	(pika.spec.Connection.SecureOk method)

 	(pika.spec.Connection.Start method)

 	(pika.spec.Connection.StartOk method)

 	(pika.spec.Connection.Tune method)

 	(pika.spec.Connection.TuneOk method)

 	(pika.spec.Connection.Unblocked method)

 	(pika.spec.Exchange.Bind method)

 	(pika.spec.Exchange.BindOk method)

 	(pika.spec.Exchange.Declare method)

 	(pika.spec.Exchange.DeclareOk method)

 	(pika.spec.Exchange.Delete method)

 	(pika.spec.Exchange.DeleteOk method)

 	(pika.spec.Exchange.Unbind method)

 	(pika.spec.Exchange.UnbindOk method)

 	(pika.spec.Queue.Bind method)

 	(pika.spec.Queue.BindOk method)

 	(pika.spec.Queue.Declare method)

 	(pika.spec.Queue.DeclareOk method)

 	(pika.spec.Queue.Delete method)

 	(pika.spec.Queue.DeleteOk method)

 	(pika.spec.Queue.Purge method)

 	(pika.spec.Queue.PurgeOk method)

 	(pika.spec.Queue.Unbind method)

 	(pika.spec.Queue.UnbindOk method)

 	(pika.spec.Tx.Commit method)

 	(pika.spec.Tx.CommitOk method)

 	(pika.spec.Tx.Rollback method)

 	(pika.spec.Tx.RollbackOk method)

 	(pika.spec.Tx.Select method)

 	(pika.spec.Tx.SelectOk method)

 	
 	DuplicateConsumerTag

 	DuplicateGetOkCallback

E

 	
 	encode() (pika.spec.Access.Request method)

 	(pika.spec.Access.RequestOk method)

 	(pika.spec.Basic.Ack method)

 	(pika.spec.Basic.Cancel method)

 	(pika.spec.Basic.CancelOk method)

 	(pika.spec.Basic.Consume method)

 	(pika.spec.Basic.ConsumeOk method)

 	(pika.spec.Basic.Deliver method)

 	(pika.spec.Basic.Get method)

 	(pika.spec.Basic.GetEmpty method)

 	(pika.spec.Basic.GetOk method)

 	(pika.spec.Basic.Nack method)

 	(pika.spec.Basic.Publish method)

 	(pika.spec.Basic.Qos method)

 	(pika.spec.Basic.QosOk method)

 	(pika.spec.Basic.Recover method)

 	(pika.spec.Basic.RecoverAsync method)

 	(pika.spec.Basic.RecoverOk method)

 	(pika.spec.Basic.Reject method)

 	(pika.spec.Basic.Return method)

 	(pika.spec.BasicProperties method)

 	(pika.spec.Channel.Close method)

 	(pika.spec.Channel.CloseOk method)

 	(pika.spec.Channel.Flow method)

 	(pika.spec.Channel.FlowOk method)

 	(pika.spec.Channel.Open method)

 	(pika.spec.Channel.OpenOk method)

 	(pika.spec.Confirm.Select method)

 	(pika.spec.Confirm.SelectOk method)

 	(pika.spec.Connection.Blocked method)

 	(pika.spec.Connection.Close method)

 	(pika.spec.Connection.CloseOk method)

 	(pika.spec.Connection.Open method)

 	(pika.spec.Connection.OpenOk method)

 	(pika.spec.Connection.Secure method)

 	(pika.spec.Connection.SecureOk method)

 	(pika.spec.Connection.Start method)

 	(pika.spec.Connection.StartOk method)

 	(pika.spec.Connection.Tune method)

 	(pika.spec.Connection.TuneOk method)

 	(pika.spec.Connection.Unblocked method)

 	(pika.spec.Exchange.Bind method)

 	(pika.spec.Exchange.BindOk method)

 	(pika.spec.Exchange.Declare method)

 	(pika.spec.Exchange.DeclareOk method)

 	(pika.spec.Exchange.Delete method)

 	(pika.spec.Exchange.DeleteOk method)

 	(pika.spec.Exchange.Unbind method)

 	(pika.spec.Exchange.UnbindOk method)

 	(pika.spec.Queue.Bind method)

 	(pika.spec.Queue.BindOk method)

 	(pika.spec.Queue.Declare method)

 	(pika.spec.Queue.DeclareOk method)

 	(pika.spec.Queue.Delete method)

 	(pika.spec.Queue.DeleteOk method)

 	(pika.spec.Queue.Purge method)

 	(pika.spec.Queue.PurgeOk method)

 	(pika.spec.Queue.Unbind method)

 	(pika.spec.Queue.UnbindOk method)

 	(pika.spec.Tx.Commit method)

 	(pika.spec.Tx.CommitOk method)

 	(pika.spec.Tx.Rollback method)

 	(pika.spec.Tx.RollbackOk method)

 	(pika.spec.Tx.Select method)

 	(pika.spec.Tx.SelectOk method)

 	
 	Exchange (class in pika.spec)

 	Exchange.Bind (class in pika.spec)

 	Exchange.BindOk (class in pika.spec)

 	Exchange.Declare (class in pika.spec)

 	Exchange.DeclareOk (class in pika.spec)

 	Exchange.Delete (class in pika.spec)

 	Exchange.DeleteOk (class in pika.spec)

 	Exchange.Unbind (class in pika.spec)

 	Exchange.UnbindOk (class in pika.spec)

 	exchange_bind() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	exchange_declare() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	exchange_delete() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	exchange_exchange_bindings (pika.adapters.blocking_connection.BlockingConnection attribute)

 	(pika.adapters.select_connection.SelectConnection attribute)

 	(pika.connection.Connection attribute)

 	exchange_exchange_bindings_supported (pika.adapters.blocking_connection.BlockingConnection attribute)

 	exchange_unbind() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

F

 	
 	FLAG_APP_ID (pika.spec.BasicProperties attribute)

 	FLAG_CLUSTER_ID (pika.spec.BasicProperties attribute)

 	FLAG_CONTENT_ENCODING (pika.spec.BasicProperties attribute)

 	FLAG_CONTENT_TYPE (pika.spec.BasicProperties attribute)

 	FLAG_CORRELATION_ID (pika.spec.BasicProperties attribute)

 	FLAG_DELIVERY_MODE (pika.spec.BasicProperties attribute)

 	FLAG_EXPIRATION (pika.spec.BasicProperties attribute)

 	FLAG_HEADERS (pika.spec.BasicProperties attribute)

 	FLAG_MESSAGE_ID (pika.spec.BasicProperties attribute)

 	
 	FLAG_PRIORITY (pika.spec.BasicProperties attribute)

 	FLAG_REPLY_TO (pika.spec.BasicProperties attribute)

 	FLAG_TIMESTAMP (pika.spec.BasicProperties attribute)

 	FLAG_TYPE (pika.spec.BasicProperties attribute)

 	FLAG_USER_ID (pika.spec.BasicProperties attribute)

 	flow() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	frame_max (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

G

 	
 	get() (pika.adapters.twisted_connection.ClosableDeferredQueue method)

 	get_body() (pika.spec.Access.Request method)

 	(pika.spec.Access.RequestOk method)

 	(pika.spec.Basic.Ack method)

 	(pika.spec.Basic.Cancel method)

 	(pika.spec.Basic.CancelOk method)

 	(pika.spec.Basic.Consume method)

 	(pika.spec.Basic.ConsumeOk method)

 	(pika.spec.Basic.Deliver method)

 	(pika.spec.Basic.Get method)

 	(pika.spec.Basic.GetEmpty method)

 	(pika.spec.Basic.GetOk method)

 	(pika.spec.Basic.Nack method)

 	(pika.spec.Basic.Publish method)

 	(pika.spec.Basic.Qos method)

 	(pika.spec.Basic.QosOk method)

 	(pika.spec.Basic.Recover method)

 	(pika.spec.Basic.RecoverAsync method)

 	(pika.spec.Basic.RecoverOk method)

 	(pika.spec.Basic.Reject method)

 	(pika.spec.Basic.Return method)

 	(pika.spec.Channel.Close method)

 	(pika.spec.Channel.CloseOk method)

 	(pika.spec.Channel.Flow method)

 	(pika.spec.Channel.FlowOk method)

 	(pika.spec.Channel.Open method)

 	(pika.spec.Channel.OpenOk method)

 	(pika.spec.Confirm.Select method)

 	(pika.spec.Confirm.SelectOk method)

 	(pika.spec.Connection.Blocked method)

 	(pika.spec.Connection.Close method)

 	(pika.spec.Connection.CloseOk method)

 	(pika.spec.Connection.Open method)

 	(pika.spec.Connection.OpenOk method)

 	(pika.spec.Connection.Secure method)

 	(pika.spec.Connection.SecureOk method)

 	(pika.spec.Connection.Start method)

 	(pika.spec.Connection.StartOk method)

 	(pika.spec.Connection.Tune method)

 	(pika.spec.Connection.TuneOk method)

 	(pika.spec.Connection.Unblocked method)

 	(pika.spec.Exchange.Bind method)

 	(pika.spec.Exchange.BindOk method)

 	(pika.spec.Exchange.Declare method)

 	(pika.spec.Exchange.DeclareOk method)

 	(pika.spec.Exchange.Delete method)

 	(pika.spec.Exchange.DeleteOk method)

 	(pika.spec.Exchange.Unbind method)

 	(pika.spec.Exchange.UnbindOk method)

 	(pika.spec.Queue.Bind method)

 	(pika.spec.Queue.BindOk method)

 	(pika.spec.Queue.Declare method)

 	(pika.spec.Queue.DeclareOk method)

 	(pika.spec.Queue.Delete method)

 	(pika.spec.Queue.DeleteOk method)

 	(pika.spec.Queue.Purge method)

 	(pika.spec.Queue.PurgeOk method)

 	(pika.spec.Queue.Unbind method)

 	(pika.spec.Queue.UnbindOk method)

 	(pika.spec.Tx.Commit method)

 	(pika.spec.Tx.CommitOk method)

 	(pika.spec.Tx.Rollback method)

 	(pika.spec.Tx.RollbackOk method)

 	(pika.spec.Tx.Select method)

 	(pika.spec.Tx.SelectOk method)

 	
 	get_properties() (pika.spec.Access.Request method)

 	(pika.spec.Access.RequestOk method)

 	(pika.spec.Basic.Ack method)

 	(pika.spec.Basic.Cancel method)

 	(pika.spec.Basic.CancelOk method)

 	(pika.spec.Basic.Consume method)

 	(pika.spec.Basic.ConsumeOk method)

 	(pika.spec.Basic.Deliver method)

 	(pika.spec.Basic.Get method)

 	(pika.spec.Basic.GetEmpty method)

 	(pika.spec.Basic.GetOk method)

 	(pika.spec.Basic.Nack method)

 	(pika.spec.Basic.Publish method)

 	(pika.spec.Basic.Qos method)

 	(pika.spec.Basic.QosOk method)

 	(pika.spec.Basic.Recover method)

 	(pika.spec.Basic.RecoverAsync method)

 	(pika.spec.Basic.RecoverOk method)

 	(pika.spec.Basic.Reject method)

 	(pika.spec.Basic.Return method)

 	(pika.spec.Channel.Close method)

 	(pika.spec.Channel.CloseOk method)

 	(pika.spec.Channel.Flow method)

 	(pika.spec.Channel.FlowOk method)

 	(pika.spec.Channel.Open method)

 	(pika.spec.Channel.OpenOk method)

 	(pika.spec.Confirm.Select method)

 	(pika.spec.Confirm.SelectOk method)

 	(pika.spec.Connection.Blocked method)

 	(pika.spec.Connection.Close method)

 	(pika.spec.Connection.CloseOk method)

 	(pika.spec.Connection.Open method)

 	(pika.spec.Connection.OpenOk method)

 	(pika.spec.Connection.Secure method)

 	(pika.spec.Connection.SecureOk method)

 	(pika.spec.Connection.Start method)

 	(pika.spec.Connection.StartOk method)

 	(pika.spec.Connection.Tune method)

 	(pika.spec.Connection.TuneOk method)

 	(pika.spec.Connection.Unblocked method)

 	(pika.spec.Exchange.Bind method)

 	(pika.spec.Exchange.BindOk method)

 	(pika.spec.Exchange.Declare method)

 	(pika.spec.Exchange.DeclareOk method)

 	(pika.spec.Exchange.Delete method)

 	(pika.spec.Exchange.DeleteOk method)

 	(pika.spec.Exchange.Unbind method)

 	(pika.spec.Exchange.UnbindOk method)

 	(pika.spec.Queue.Bind method)

 	(pika.spec.Queue.BindOk method)

 	(pika.spec.Queue.Declare method)

 	(pika.spec.Queue.DeclareOk method)

 	(pika.spec.Queue.Delete method)

 	(pika.spec.Queue.DeleteOk method)

 	(pika.spec.Queue.Purge method)

 	(pika.spec.Queue.PurgeOk method)

 	(pika.spec.Queue.Unbind method)

 	(pika.spec.Queue.UnbindOk method)

 	(pika.spec.Tx.Commit method)

 	(pika.spec.Tx.CommitOk method)

 	(pika.spec.Tx.Rollback method)

 	(pika.spec.Tx.RollbackOk method)

 	(pika.spec.Tx.Select method)

 	(pika.spec.Tx.SelectOk method)

 	get_waiting_message_count() (pika.adapters.blocking_connection.BlockingChannel method)

H

 	
 	has_content() (in module pika.spec)

 	heartbeat (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	
 	host (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

I

 	
 	IncompatibleProtocolError

 	INDEX (pika.spec.Access attribute)

 	(pika.spec.Access.Request attribute)

 	(pika.spec.Access.RequestOk attribute)

 	(pika.spec.Basic attribute)

 	(pika.spec.Basic.Ack attribute)

 	(pika.spec.Basic.Cancel attribute)

 	(pika.spec.Basic.CancelOk attribute)

 	(pika.spec.Basic.Consume attribute)

 	(pika.spec.Basic.ConsumeOk attribute)

 	(pika.spec.Basic.Deliver attribute)

 	(pika.spec.Basic.Get attribute)

 	(pika.spec.Basic.GetEmpty attribute)

 	(pika.spec.Basic.GetOk attribute)

 	(pika.spec.Basic.Nack attribute)

 	(pika.spec.Basic.Publish attribute)

 	(pika.spec.Basic.Qos attribute)

 	(pika.spec.Basic.QosOk attribute)

 	(pika.spec.Basic.Recover attribute)

 	(pika.spec.Basic.RecoverAsync attribute)

 	(pika.spec.Basic.RecoverOk attribute)

 	(pika.spec.Basic.Reject attribute)

 	(pika.spec.Basic.Return attribute)

 	(pika.spec.BasicProperties attribute)

 	(pika.spec.Channel attribute)

 	(pika.spec.Channel.Close attribute)

 	(pika.spec.Channel.CloseOk attribute)

 	(pika.spec.Channel.Flow attribute)

 	(pika.spec.Channel.FlowOk attribute)

 	(pika.spec.Channel.Open attribute)

 	(pika.spec.Channel.OpenOk attribute)

 	(pika.spec.Confirm attribute)

 	(pika.spec.Confirm.Select attribute)

 	(pika.spec.Confirm.SelectOk attribute)

 	(pika.spec.Connection attribute)

 	(pika.spec.Connection.Blocked attribute)

 	(pika.spec.Connection.Close attribute)

 	(pika.spec.Connection.CloseOk attribute)

 	(pika.spec.Connection.Open attribute)

 	(pika.spec.Connection.OpenOk attribute)

 	(pika.spec.Connection.Secure attribute)

 	(pika.spec.Connection.SecureOk attribute)

 	(pika.spec.Connection.Start attribute)

 	(pika.spec.Connection.StartOk attribute)

 	(pika.spec.Connection.Tune attribute)

 	(pika.spec.Connection.TuneOk attribute)

 	(pika.spec.Connection.Unblocked attribute)

 	(pika.spec.Exchange attribute)

 	(pika.spec.Exchange.Bind attribute)

 	(pika.spec.Exchange.BindOk attribute)

 	(pika.spec.Exchange.Declare attribute)

 	(pika.spec.Exchange.DeclareOk attribute)

 	(pika.spec.Exchange.Delete attribute)

 	(pika.spec.Exchange.DeleteOk attribute)

 	(pika.spec.Exchange.Unbind attribute)

 	(pika.spec.Exchange.UnbindOk attribute)

 	(pika.spec.Queue attribute)

 	(pika.spec.Queue.Bind attribute)

 	(pika.spec.Queue.BindOk attribute)

 	(pika.spec.Queue.Declare attribute)

 	(pika.spec.Queue.DeclareOk attribute)

 	(pika.spec.Queue.Delete attribute)

 	(pika.spec.Queue.DeleteOk attribute)

 	(pika.spec.Queue.Purge attribute)

 	(pika.spec.Queue.PurgeOk attribute)

 	(pika.spec.Queue.Unbind attribute)

 	(pika.spec.Queue.UnbindOk attribute)

 	(pika.spec.Tx attribute)

 	(pika.spec.Tx.Commit attribute)

 	(pika.spec.Tx.CommitOk attribute)

 	(pika.spec.Tx.Rollback attribute)

 	(pika.spec.Tx.RollbackOk attribute)

 	(pika.spec.Tx.Select attribute)

 	(pika.spec.Tx.SelectOk attribute)

 	
 	InvalidChannelNumber

 	InvalidFieldTypeException

 	InvalidFrameError

 	ioloop (pika.adapters.select_connection.SelectConnection attribute)

 	is_closed (pika.adapters.blocking_connection.BlockingChannel attribute)

 	(pika.adapters.blocking_connection.BlockingConnection attribute)

 	(pika.adapters.select_connection.SelectConnection attribute)

 	(pika.adapters.twisted_connection.TwistedChannel attribute)

 	(pika.channel.Channel attribute)

 	(pika.connection.Connection attribute)

 	is_closing (pika.adapters.select_connection.SelectConnection attribute)

 	(pika.adapters.twisted_connection.TwistedChannel attribute)

 	(pika.channel.Channel attribute)

 	(pika.connection.Connection attribute)

 	is_open (pika.adapters.blocking_connection.BlockingChannel attribute)

 	(pika.adapters.blocking_connection.BlockingConnection attribute)

 	(pika.adapters.select_connection.SelectConnection attribute)

 	(pika.adapters.twisted_connection.TwistedChannel attribute)

 	(pika.channel.Channel attribute)

 	(pika.connection.Connection attribute)

L

 	
 	locale (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	
 	logPrefix() (pika.adapters.twisted_connection.TwistedProtocolConnection method)

M

 	
 	MethodNotImplemented

N

 	
 	NackError

 	NAME (pika.spec.Access attribute)

 	(pika.spec.Access.Request attribute)

 	(pika.spec.Access.RequestOk attribute)

 	(pika.spec.Basic attribute)

 	(pika.spec.Basic.Ack attribute)

 	(pika.spec.Basic.Cancel attribute)

 	(pika.spec.Basic.CancelOk attribute)

 	(pika.spec.Basic.Consume attribute)

 	(pika.spec.Basic.ConsumeOk attribute)

 	(pika.spec.Basic.Deliver attribute)

 	(pika.spec.Basic.Get attribute)

 	(pika.spec.Basic.GetEmpty attribute)

 	(pika.spec.Basic.GetOk attribute)

 	(pika.spec.Basic.Nack attribute)

 	(pika.spec.Basic.Publish attribute)

 	(pika.spec.Basic.Qos attribute)

 	(pika.spec.Basic.QosOk attribute)

 	(pika.spec.Basic.Recover attribute)

 	(pika.spec.Basic.RecoverAsync attribute)

 	(pika.spec.Basic.RecoverOk attribute)

 	(pika.spec.Basic.Reject attribute)

 	(pika.spec.Basic.Return attribute)

 	(pika.spec.BasicProperties attribute)

 	(pika.spec.Channel attribute)

 	(pika.spec.Channel.Close attribute)

 	(pika.spec.Channel.CloseOk attribute)

 	(pika.spec.Channel.Flow attribute)

 	(pika.spec.Channel.FlowOk attribute)

 	(pika.spec.Channel.Open attribute)

 	(pika.spec.Channel.OpenOk attribute)

 	(pika.spec.Confirm attribute)

 	(pika.spec.Confirm.Select attribute)

 	(pika.spec.Confirm.SelectOk attribute)

 	(pika.spec.Connection attribute)

 	(pika.spec.Connection.Blocked attribute)

 	(pika.spec.Connection.Close attribute)

 	(pika.spec.Connection.CloseOk attribute)

 	(pika.spec.Connection.Open attribute)

 	(pika.spec.Connection.OpenOk attribute)

 	(pika.spec.Connection.Secure attribute)

 	(pika.spec.Connection.SecureOk attribute)

 	(pika.spec.Connection.Start attribute)

 	(pika.spec.Connection.StartOk attribute)

 	(pika.spec.Connection.Tune attribute)

 	(pika.spec.Connection.TuneOk attribute)

 	(pika.spec.Connection.Unblocked attribute)

 	(pika.spec.Exchange attribute)

 	(pika.spec.Exchange.Bind attribute)

 	(pika.spec.Exchange.BindOk attribute)

 	(pika.spec.Exchange.Declare attribute)

 	(pika.spec.Exchange.DeclareOk attribute)

 	(pika.spec.Exchange.Delete attribute)

 	(pika.spec.Exchange.DeleteOk attribute)

 	(pika.spec.Exchange.Unbind attribute)

 	(pika.spec.Exchange.UnbindOk attribute)

 	(pika.spec.Queue attribute)

 	(pika.spec.Queue.Bind attribute)

 	(pika.spec.Queue.BindOk attribute)

 	(pika.spec.Queue.Declare attribute)

 	(pika.spec.Queue.DeclareOk attribute)

 	(pika.spec.Queue.Delete attribute)

 	(pika.spec.Queue.DeleteOk attribute)

 	(pika.spec.Queue.Purge attribute)

 	(pika.spec.Queue.PurgeOk attribute)

 	(pika.spec.Queue.Unbind attribute)

 	(pika.spec.Queue.UnbindOk attribute)

 	(pika.spec.Tx attribute)

 	(pika.spec.Tx.Commit attribute)

 	(pika.spec.Tx.CommitOk attribute)

 	(pika.spec.Tx.Rollback attribute)

 	(pika.spec.Tx.RollbackOk attribute)

 	(pika.spec.Tx.Select attribute)

 	(pika.spec.Tx.SelectOk attribute)

 	
 	NoFreeChannels

O

 	
 	open() (pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

P

 	
 	pika.adapters.blocking_connection (module)

 	pika.adapters.select_connection (module)

 	pika.adapters.twisted_connection (module)

 	pika.channel (module)

 	pika.credentials (module)

 	pika.exceptions (module)

 	pika.spec (module)

 	port (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	
 	ProbableAccessDeniedError

 	ProbableAuthenticationError

 	process_data_events() (pika.adapters.blocking_connection.BlockingConnection method)

 	ProtocolSyntaxError

 	ProtocolVersionMismatch

 	publisher_confirms (pika.adapters.blocking_connection.BlockingConnection attribute)

 	(pika.adapters.select_connection.SelectConnection attribute)

 	(pika.connection.Connection attribute)

 	publisher_confirms_supported (pika.adapters.blocking_connection.BlockingConnection attribute)

 	put() (pika.adapters.twisted_connection.ClosableDeferredQueue method)

Q

 	
 	Queue (class in pika.spec)

 	Queue.Bind (class in pika.spec)

 	Queue.BindOk (class in pika.spec)

 	Queue.Declare (class in pika.spec)

 	Queue.DeclareOk (class in pika.spec)

 	Queue.Delete (class in pika.spec)

 	Queue.DeleteOk (class in pika.spec)

 	Queue.Purge (class in pika.spec)

 	Queue.PurgeOk (class in pika.spec)

 	Queue.Unbind (class in pika.spec)

 	Queue.UnbindOk (class in pika.spec)

 	queue_bind() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	
 	queue_declare() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	queue_delete() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	queue_purge() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	queue_unbind() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

R

 	
 	ReentrancyError

 	remove_timeout() (pika.adapters.blocking_connection.BlockingConnection method)

 	reply_code (pika.exceptions.ChannelClosed attribute)

 	(pika.exceptions.ConnectionClosed attribute)

 	
 	reply_text (pika.exceptions.ChannelClosed attribute)

 	(pika.exceptions.ConnectionClosed attribute)

 	retry_delay (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

S

 	
 	SelectConnection (class in pika.adapters.select_connection)

 	ShortStringTooLong

 	sleep() (pika.adapters.blocking_connection.BlockingConnection method)

 	socket_timeout (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	ssl_options (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	stack_timeout (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	start_consuming() (pika.adapters.blocking_connection.BlockingChannel method)

 	stop_consuming() (pika.adapters.blocking_connection.BlockingChannel method)

 	StreamLostError

 	synchronous (pika.spec.Access.Request attribute)

 	(pika.spec.Access.RequestOk attribute)

 	(pika.spec.Basic.Ack attribute)

 	(pika.spec.Basic.Cancel attribute)

 	(pika.spec.Basic.CancelOk attribute)

 	(pika.spec.Basic.Consume attribute)

 	(pika.spec.Basic.ConsumeOk attribute)

 	(pika.spec.Basic.Deliver attribute)

 	(pika.spec.Basic.Get attribute)

 	(pika.spec.Basic.GetEmpty attribute)

 	(pika.spec.Basic.GetOk attribute)

 	(pika.spec.Basic.Nack attribute)

 	(pika.spec.Basic.Publish attribute)

 	(pika.spec.Basic.Qos attribute)

 	(pika.spec.Basic.QosOk attribute)

 	(pika.spec.Basic.Recover attribute)

 	(pika.spec.Basic.RecoverAsync attribute)

 	(pika.spec.Basic.RecoverOk attribute)

 	(pika.spec.Basic.Reject attribute)

 	(pika.spec.Basic.Return attribute)

 	(pika.spec.Channel.Close attribute)

 	(pika.spec.Channel.CloseOk attribute)

 	(pika.spec.Channel.Flow attribute)

 	(pika.spec.Channel.FlowOk attribute)

 	(pika.spec.Channel.Open attribute)

 	(pika.spec.Channel.OpenOk attribute)

 	(pika.spec.Confirm.Select attribute)

 	(pika.spec.Confirm.SelectOk attribute)

 	(pika.spec.Connection.Blocked attribute)

 	(pika.spec.Connection.Close attribute)

 	(pika.spec.Connection.CloseOk attribute)

 	(pika.spec.Connection.Open attribute)

 	(pika.spec.Connection.OpenOk attribute)

 	(pika.spec.Connection.Secure attribute)

 	(pika.spec.Connection.SecureOk attribute)

 	(pika.spec.Connection.Start attribute)

 	(pika.spec.Connection.StartOk attribute)

 	(pika.spec.Connection.Tune attribute)

 	(pika.spec.Connection.TuneOk attribute)

 	(pika.spec.Connection.Unblocked attribute)

 	(pika.spec.Exchange.Bind attribute)

 	(pika.spec.Exchange.BindOk attribute)

 	(pika.spec.Exchange.Declare attribute)

 	(pika.spec.Exchange.DeclareOk attribute)

 	(pika.spec.Exchange.Delete attribute)

 	(pika.spec.Exchange.DeleteOk attribute)

 	(pika.spec.Exchange.Unbind attribute)

 	(pika.spec.Exchange.UnbindOk attribute)

 	(pika.spec.Queue.Bind attribute)

 	(pika.spec.Queue.BindOk attribute)

 	(pika.spec.Queue.Declare attribute)

 	(pika.spec.Queue.DeclareOk attribute)

 	(pika.spec.Queue.Delete attribute)

 	(pika.spec.Queue.DeleteOk attribute)

 	(pika.spec.Queue.Purge attribute)

 	(pika.spec.Queue.PurgeOk attribute)

 	(pika.spec.Queue.Unbind attribute)

 	(pika.spec.Queue.UnbindOk attribute)

 	(pika.spec.Tx.Commit attribute)

 	(pika.spec.Tx.CommitOk attribute)

 	(pika.spec.Tx.Rollback attribute)

 	(pika.spec.Tx.RollbackOk attribute)

 	(pika.spec.Tx.Select attribute)

 	(pika.spec.Tx.SelectOk attribute)

T

 	
 	tcp_options (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

 	TwistedChannel (class in pika.adapters.twisted_connection)

 	TwistedProtocolConnection (class in pika.adapters.twisted_connection)

 	Tx (class in pika.spec)

 	Tx.Commit (class in pika.spec)

 	Tx.CommitOk (class in pika.spec)

 	Tx.Rollback (class in pika.spec)

 	Tx.RollbackOk (class in pika.spec)

 	Tx.Select (class in pika.spec)

 	
 	Tx.SelectOk (class in pika.spec)

 	tx_commit() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	tx_rollback() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

 	tx_select() (pika.adapters.blocking_connection.BlockingChannel method)

 	(pika.adapters.twisted_connection.TwistedChannel method)

 	(pika.channel.Channel method)

U

 	
 	UnexpectedFrameError

 	UnroutableError

 	
 	UnsupportedAMQPFieldException

 	URLParameters (class in pika.connection)

V

 	
 	virtual_host (pika.connection.ConnectionParameters attribute)

 	(pika.connection.URLParameters attribute)

Asyncio Consumer

The following example implements a consumer using the Asyncio adapter for the Asyncio library [https://docs.python.org/3/library/asyncio.html] that will respond to RPC
commands sent from RabbitMQ. For example, it will reconnect if RabbitMQ closes
the connection and will shutdown if RabbitMQ cancels the consumer or closes the
channel. While it may look intimidating, each method is very short and
represents a individual actions that a consumer can do.

Asyncio Consumer Example [https://github.com/pika/pika/blob/master/examples/asyncio_consumer_example.py]

Direct reply-to example

The following example demonstrates the use of the RabbitMQ “Direct reply-to” feature via pika.BlockingConnection. See https://www.rabbitmq.com/direct-reply-to.html for more info about this feature.

direct_reply_to.py:

-*- coding: utf-8 -*-

"""
This example demonstrates the RabbitMQ "Direct reply-to" usage via
`pika.BlockingConnection`. See https://www.rabbitmq.com/direct-reply-to.html
for more info about this feature.
"""
import pika

SERVER_QUEUE = 'rpc.server.queue'

def main():
 """ Here, Client sends "Marco" to RPC Server, and RPC Server replies with
 "Polo".

 NOTE Normally, the server would be running separately from the client, but
 in this very simple example both are running in the same thread and sharing
 connection and channel.

 """
 with pika.BlockingConnection() as conn:
 channel = conn.channel()

 # Set up server

 channel.queue_declare(queue=SERVER_QUEUE,
 exclusive=True,
 auto_delete=True)
 channel.basic_consume(SERVER_QUEUE, on_server_rx_rpc_request)

 # Set up client

 # NOTE Client must create its consumer and publish RPC requests on the
 # same channel to enable the RabbitMQ broker to make the necessary
 # associations.
 #
 # Also, client must create the consumer *before* starting to publish the
 # RPC requests.
 #
 # Client must create its consumer with auto_ack=True, because the reply-to
 # queue isn't real.

 channel.basic_consume('amq.rabbitmq.reply-to',
 on_client_rx_reply_from_server,
 auto_ack=True)
 channel.basic_publish(
 exchange='',
 routing_key=SERVER_QUEUE,
 body='Marco',
 properties=pika.BasicProperties(reply_to='amq.rabbitmq.reply-to'))

 channel.start_consuming()

def on_server_rx_rpc_request(ch, method_frame, properties, body):
 print('RPC Server got request: %s' % body)

 ch.basic_publish('', routing_key=properties.reply_to, body='Polo')

 ch.basic_ack(delivery_tag=method_frame.delivery_tag)

 print('RPC Server says good bye')

def on_client_rx_reply_from_server(ch, method_frame, properties, body):
 print('RPC Client got reply: %s' % body)

 # NOTE A real client might want to make additional RPC requests, but in this
 # simple example we're closing the channel after getting our first reply
 # to force control to return from channel.start_consuming()
 print('RPC Client says bye')
 ch.close()

Ensuring well-behaved connection with heartbeat and blocked-connection timeouts

This example demonstrates explicit setting of heartbeat and blocked connection timeouts.

Starting with RabbitMQ 3.5.5, the broker’s default heartbeat timeout decreased from 580 seconds to 60 seconds. As a result, applications that perform lengthy processing in the same thread that also runs their Pika connection may experience unexpected dropped connections due to heartbeat timeout. Here, we specify an explicit lower bound for heartbeat timeout.

When RabbitMQ broker is running out of certain resources, such as memory and disk space, it may block connections that are performing resource-consuming operations, such as publishing messages. Once a connection is blocked, RabbitMQ stops reading from that connection’s socket, so no commands from the client will get through to the broker on that connection until the broker unblocks it. A blocked connection may last for an indefinite period of time, stalling the connection and possibly resulting in a hang (e.g., in BlockingConnection) until the connection is unblocked. Blocked Connection Timeout is intended to interrupt (i.e., drop) a connection that has been blocked longer than the given timeout value.

Example of configuring heartbeat and blocked-connection timeouts:

import pika

def main():

 # NOTE: These parameters work with all Pika connection types
 params = pika.ConnectionParameters(heartbeat=600,
 blocked_connection_timeout=300)

 conn = pika.BlockingConnection(params)

 chan = conn.channel()

 chan.basic_publish('', 'my-alphabet-queue', "abc")

 # If publish causes the connection to become blocked, then this conn.close()
 # would hang until the connection is unblocked, if ever. However, the
 # blocked_connection_timeout connection parameter would interrupt the wait,
 # resulting in ConnectionClosed exception from BlockingConnection (or the
 # on_connection_closed callback call in an asynchronous adapter)
 conn.close()

if __name__ == '__main__':
 main()

asyncio Connection Adapter

Be sure to check out the asynchronous examples including the asyncio specific consumer example.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Introduction to Pika

 		
 Introduction to Pika

 		
 IO and Event Looping

 		
 Continuation-Passing Style

 		
 Credentials

 		
 Connection Parameters

 		
 TCP Backpressure

 		
 Core Class and Module Documentation

 		
 Usage Examples

 		
 Using URLParameters

 		
 Example Connection URLS

 		
 Connecting to RabbitMQ with Callback-Passing Style

 		
 Example Code

 		
 Using the Blocking Connection to get a message from RabbitMQ

 		
 Using the Blocking Connection to consume messages from RabbitMQ

 		
 Using the Blocking Connection with connection recovery with multiple hosts

 		
 Using the BlockingChannel.consume generator to consume messages

 		
 Comparing Message Publishing with BlockingConnection and SelectConnection

 		
 Using Delivery Confirmations with the BlockingConnection

 		
 Ensuring message delivery with the mandatory flag

 		
 Asynchronous consumer example

 		
 Asynchronous publisher example

 		
 Twisted Consumer Example

 		
 Tornado Consumer

 		
 TLS parameters example

 		
 TLS parameters example

 		
 Frequently Asked Questions

 		
 Contributors

 		
 Version History

 		
 1.1.0 2019-07-16

 		
 1.0.1 2019-04-12

 		
 1.0.0 2019-03-26

 		
 0.13.1 2019-02-04

 		
 0.13.0 2019-01-17

 		
 0.12.0 2018-06-19

 		
 0.11.2 2017-11-30

 		
 0.11.1 2017-11-27

 		
 0.11.0 2017-07-29

 		
 0.10.0 2015-09-02

 		
 0.10.0b2 2015-07-15

 		
 0.10.0b1 2015-07-10

 		
 0.9.14 - 2014-07-11

 		
 0.9.13 - 2013-05-15

 		
 0.9.12 - 2013-03-18

 		
 0.9.11 - 2013-03-17

 		
 0.9.10 - 2013-03-16

 		
 0.9.9 - 2013-01-29

 		
 0.9.8 - 2012-11-18

 		
 0.9.7 - 2012-11-11

 		
 0.9.6 - 2012-10-29

 		
 0.9.5 - 2011-03-29

_static/up.png

