
@pigi/core Documentation

Plasma Group

Mar 17, 2019

Developer Documentation

1 What is plasma-core? 3

2 Contributing 5
2.1 Contributing Guide and Code of Conduct . 5
2.2 Getting Started as a Contributor . 5

3 Architecture 7
3.1 plasma-core 101 . 7
3.2 Architecture Diagram . 7
3.3 External services . 7
3.4 Internal services . 8

4 Extending plasma-core 11
4.1 What’s missing . 11

5 Reference 13
5.1 Running a Terminal . 13
5.2 Installing Git . 13
5.3 Installing Node.js . 14

6 Plasma Chain Operator 15
6.1 Back to Basics . 15
6.2 Plasma Magic . 16
6.3 Decentralizing the Operator . 16

7 Coin ID Assignment 17
7.1 Coin IDs . 17
7.2 Denominations . 18
7.3 Examples . 18

8 Transactions Over Ranges 19
8.1 Transfers . 19
8.2 Typed and Untyped Bounds . 20
8.3 Atomic Transactions . 20
8.4 Serialization . 20

9 Proof Structure and Verification 21
9.1 What are History Proofs? . 21

i

9.2 Proof Structure . 21
9.3 Proof Verification . 22

10 Smart Contract and Exit Games 25
10.1 Keeping Track of Deposits and Exits . 25
10.2 Similarities to Plasma Cash . 26
10.3 Block-specific Transactions . 27
10.4 Per-coin Transaction Validity . 27
10.5 Transaction Verification . 27
10.6 Challenges That Immediately Block Exits . 28
10.7 Optimistic Exits and Inclusion Challenges . 29
10.8 Invalid-History Challenge . 30

11 Merkle Sum Tree Block Structure 33
11.1 Sum Tree Node Specification . 34
11.2 Parent Calculation . 34
11.3 Calculating a Branch’s Range . 34
11.4 Parsing Transfers as Leaves . 35
11.5 Branch Validity and Implicit NoTx . 36
11.6 Atomic Multisends . 37

12 JSON-RPC Calls 39
12.1 pg_getBalance . 39
12.2 pg_getBlock . 39
12.3 pg_getTransaction . 40
12.4 pg_sendTransaction . 40
12.5 pg_sendRawTransaction . 40
12.6 pg_getHeight . 41
12.7 pg_getRecentTransactions . 41
12.8 pg_getAccounts . 42
12.9 pg_getTransactionsByAddress . 42

13 ContractProvider 43
13.1 address . 43
13.2 hasAddress . 43
13.3 ready . 44
13.4 web3 . 44
13.5 plasmaChainName . 44
13.6 checkAccountUnlocked . 44
13.7 getBlock . 45
13.8 getNextBlock . 45
13.9 getCurrentBlock . 45
13.10 getOperator . 45
13.11 getTokenAddress . 46
13.12 listToken . 46
13.13 getChallengePeriod . 46
13.14 getTokenId . 47
13.15 depositValid . 47
13.16 deposit . 47
13.17 startExit . 48
13.18 finalizeExit . 48
13.19 submitBlock . 49

14 OperatorService 51
14.1 getNextBlock . 51

ii

14.2 getEthInfo . 51
14.3 getTransactions . 52
14.4 getTransaction . 52
14.5 sendTransaction . 52
14.6 submitBlock . 53

15 JSONRPCService 55
15.1 getAllMethods . 55
15.2 getMethod . 55
15.3 handle . 56
15.4 handleRawRequest . 56

16 ProofService 57
16.1 checkProof . 57

17 SyncService 59

18 ChainService 61
18.1 getBalances . 61
18.2 addDeposits . 62
18.3 getExitsWithStatus . 62
18.4 addExit . 62
18.5 pickRanges . 62
18.6 pickTransfers . 63
18.7 startExit . 63
18.8 finalizeExits . 64
18.9 sendTransaction . 64
18.10 loadState . 64
18.11 saveState . 65

19 GuardService 67

20 DBService 69
20.1 Backends . 69
20.2 get . 69
20.3 set . 70
20.4 delete . 70
20.5 exists . 70

iii

iv

@pigi/core Documentation

Hello and welcome to the documentation of Plasma Group’s plasma-core! A quick note: plasma-core is not
our Node.js client, plasma-client. Documentation for plasma-client is available at the plasma-client
docs.

Developer Documentation 1

https://plasma-client.readthedocs.io/en/latest/
https://plasma-client.readthedocs.io/en/latest/

@pigi/core Documentation

2 Developer Documentation

CHAPTER 1

What is plasma-core?

plasma-coremakes up the core of the Plasma Group node ecosystem. It contains almost all of the functionality that
a full plasma node needs. plasma-core handles things like watching Ethereum, keeping the local state up to date,
and talking to the operator. A full list of services that plasma-core provides is documented in our architecture_
page.

plasma-core is not a full plasma node! This means that you’ll need to ‘extend plasma-core‘_ to expose the full
set of necessary functionality. However, we’ve already done this for you! We’ve built out two different full plasma
nodes using plasma-core as a backend. Our most user-friendly node is plasma-extension, a full plasma node
inside a Chrome extension!

Note: plasma-extension is still under construction.

3

@pigi/core Documentation

4 Chapter 1. What is plasma-core?

CHAPTER 2

Contributing

Welcome! A huge thank you for your interest in contributing to Plasma Group. Plasma Group is an open source initia-
tive developing a simple and well designed plasma implementation. If you’re looking to contribute to plasma-core,
you’re in the right place! It’s contributors like you that make open source projects work, we really couldn’t do it with-
out you.

We don’t just need people who can contribute code. We need people who can run this code for themselves and break
it. We need people who can report bugs, request new features, and leave helpful comments. We need you!

We’re always available to answer your questions and to help you become a contributor! You can reach out to any of
the members of Plasma Group on GitHub, or send us an email at contributing@plasma.group.

Here at Plasma Group we’re trying to foster an inclusive, welcoming, and accessible open source ecosystem. The best
open source projects are those that make contributing an easy and rewarding experience. We’re trying to follow those
best practices by maintaining a series of resources for contributors to Plasma Group repositories.

If you’re a new contributor to plasma-core, please read through the following information. These resources will
help you get started and will help you better understand what we’re building.

2.1 Contributing Guide and Code of Conduct

Plasma Group follows a Contributing Guide and Code of Conduct adapted slightly from the Contributor Covenant. All
contributors are expected to read through this guide. We’re here to cultivate a welcoming and inclusive contributing
environment. Every new contributor needs to do their part to uphold our community standards.

2.2 Getting Started as a Contributor

2.2.1 Design and Architecture

Before you start contributing, please read through our Architecture document. This will give you a high-level under-
standing of what plasma-core is and what plasma-core isn’t.

5

https://plasma.io
https://github.com/orgs/plasma-group/people
mailto:contributing@plasma.group
https://github.com/plasma-group/plasma-core/blob/master/.github/CONTRIBUTING.md
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
architecture.html

@pigi/core Documentation

2.2.2 Requirements and Setup

Node.js

plasma-core is a Node.js application. You’ll need to install Node.js (and it’s corresponding package manager,
npm) for your system before continuing.

plasma-core has been tested on the following versions of Node:

• 10.14.2

If you’re having trouble getting a component of plasma-core running, please try running one of the above versions.

Packages

plasma-core makes use of several npm packages.

Install all required packages with:

2.2.3 Running Tests

plasma-core makes use of a combination of Mocha (a testing framework) and Chai (an assertion library) for
testing.

Run all tests with:

Contributors: remember to run tests before submitting a pull request! Code with passing tests makes life easier
for everyone and means your contribution can get pulled into this project faster.

6 Chapter 2. Contributing

https://nodejs.org/en/
https://mochajs.org/
https://www.chaijs.com/

CHAPTER 3

Architecture

This document describes, in detail, the architecture of plasma-core. If you’re a new contributor to plasma-core,
welcome! Hopefully this document will help you better understand how plasma-core works under the hood.

3.1 plasma-core 101

plasma-core is composed of a set of services that, when woven together, form (almost) a complete node! Each of
these services performs a very specific role. A more in-depth explanation of each individual service is available in the
Service API Reference section of our documentation.

3.2 Architecture Diagram

This diagram shows the basic architecture of plasma-core:

src/./_static/images/architecture/architecture.png

Fig. 1: PG Plasma Architecture Diagram

3.3 External services

plasma-core talks to three external services: Ethereum, the plasma chain Operator, and user applications. These
three services are outside of the scope of plasma-core. Instead, plasma-core provides interfaces through which
it can talk to and hear from these external services.

7

./_static/images/architecture/architecture.png

@pigi/core Documentation

3.3.1 ContractService

ContractService handles interactions with the plasma chain contract, like submitting deposits or starting withdrawals.
Non-contract specific Ethereum interactions are handled by ETHService.

3.3.2 ETHService

ETHService exposes the functionality necessary to read information from Ethereum. ETHService is used for non-
contract specific interactions.

3.3.3 OperatorService

As its name suggests, OperatorService handles all communication with the plasma chain operator. This includes
sending and receiving plasma chain transactions.

3.3.4 JSONRPCService

The JSONRPCService acts as a handler for commands sent by user applications. By default, applications must
interact directly with JSONRPCService. plasma-core can be extended to expose additional interfaces to
JSONRPCService, such as an HTTP API.

3.4 Internal services

The remaining services of plasma-core manage things internally.

3.4.1 SyncService

Possibly the most important internal service, SyncService ensures that your node always has the latest transactions.
SyncService watches Ethereum for any new plasma chain blocks and automatically pulls any necessary informa-
tion from the Operator. SyncService makes sure your balances are always up-to-date and that you can always send
transactions when you need to!

3.4.2 ChainService

ChainService is another extremely important internal service. ChainService manages plasma-core’s internal
blockchain. This includes storing any necessary transaction and block information. ChainService also handles
returning information about the stored local state with convenient wrapper functions.

3.4.3 GuardService

GuardService takes on the important role of keeping your funds safe at all times. The GuardService keeps a
constant eye on Ethereum and blocks others from trying to move funds without your permission. GuardService
queries Ethereum through the ETHService and pulls other relevant user data from ChainService.

8 Chapter 3. Architecture

services/contract.html
services/eth.html
services/eth.html
services/operator.html
specs/operator.html
services/jsonrpc.html
services/sync.html
services/chain.html
services/guard.html

@pigi/core Documentation

3.4.4 DBService

DBService simply provides a database that ChainService uses to store user data. Currently, we support
two database backends, LevelDB and an in-memory ephemeral database (EphemDB). Most services talk to
ChainService to retrieve data from DBService instead of talking to DBService directly.

3.4. Internal services 9

services/db.html
http://leveldb.org

@pigi/core Documentation

10 Chapter 3. Architecture

CHAPTER 4

Extending plasma-core

Note: This article is for developers who want to build their own full plasma nodes using plasma-core.

As explained in ‘What is plasma-core?‘_ plasma-core is just the core of our plasma node ecosystem. It’s not
really a full plasma client. In order to build out a full client that exposes all of the functionality a user will expect,
you’ll need to extend plasma-core.

To this end, plasma-core is designed to be maximally extensible. It tries to make as few decisions on your behalf
as possible. This means you can make a lot of different clients out of plasma-core! So far we’ve tested out creating
a full Node.js node and a full node inside of a Chrome extension!

4.1 What’s missing

plasma-core is missing a few key features that a user might expect. Here’s a list of what’s missing so that you
know what to expect if you want to build a full plasma node.

4.1.1 Front-facing Services

plasma-core doesn’t come with any sort of front-facing services (i.e. an HTTP server that handles JSON-RPC
requests). If you want users to be able to interact with your node software, you’ll need to implement a service like
this. We left this to node developers because different types of nodes might handle this in completely different ways.
For example, the node that we’re building inside of a Chrome extension talks to apps via Chrome’s native message
passing interface instead of over HTTP. Front-facing services need to wrap and pipe calls into JSONRPCService.

4.1.2 User interface

Because plasma-core doesn’t provide any front-facing services, it also doesn’t provide any sort of user interface.
As a node developer, you’ll probably want to create some sort of simple interface that allows users to interact with the
node. This might take the form of a CLI that sends requests to an HTTP server or a local website that connects to the
node.

11

https://plasma-extension.readthedocs.io/en/latest/
https://plasma-extension.readthedocs.io/en/latest/
https://developer.chrome.com/apps/messaging
https://developer.chrome.com/apps/messaging
services/jsonrpc.html

@pigi/core Documentation

4.1.3 Wallet Management

Private key storage and transaction signing is not handled by plasma-core. plasma-core only provides a mock
wallet for testing that should not be used in production. You will therefore have to implement your own WalletService.

However, key management is hard and you probably shouldn’t be building your own wallets. We therefore recommend
deferring this functionality to a user’s Ethereum node. This can be as easy as forwarding the necessary API calls (as
described on the WalletService documentation page) to the Ethereum node. plasma-extension uses this method
by forwarding all wallet-related activity to MetaMask.

12 Chapter 4. Extending plasma-core

services/wallet.html
services/wallet.html
https://metamask.io/

CHAPTER 5

Reference

This page provides a series of miscellaneous reference articles that can be helpful when installing Plasma Group
components.

5.1 Running a Terminal

Before you keep going, it’s probably good to become familiar with using the terminal on your computer. Here are
some resources for getting started:

• Windows: Command Prompt: What It Is and How to Use It

• MacOS: Introduction to the Mac OS X Command Line

• Linux: How to Start Using the Linux Terminal

5.2 Installing Git

git is an open source version control system. You don’t really need to know how it works, but you will need it in
order to install most Plasma Group components.

5.2.1 Windows

Atlassian has a good tutorial on installing git on Windows. It’s basically just installing an .exe and running a setup
wizard.

5.2.2 MacOS

Installing git on a Mac is pretty easy. You basically just need to type git into your terminal. If you have git
installed, you’ll see a bunch of output. Otherwise, you’ll get a pop-up asking you to install some command-line tools
(including git).

13

https://www.lifewire.com/command-prompt-2625840
https://blog.teamtreehouse.com/introduction-to-the-mac-os-x-command-line
https://www.howtogeek.com/140679/beginner-geek-how-to-start-using-the-linux-terminal/
https://www.atlassian.com/git/tutorials/install-git#windows
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

@pigi/core Documentation

5.2.3 Linux

Installing git on Linux is also pretty easy. However, the exact install process depends on your distribution. Here’s a
guide for installing git on some popular distributions.

5.3 Installing Node.js

Most of the Plasma Group apps are built in JavaScript and make use of a tool called Node.js. In order to run our tools,
you’ll need to make sure that you’ve got Node.js installed.

Here’s a list of ways to install Node.js on different operating systems:

5.3.1 Windows

If you’re on a windows computer, you can download the latest Long-term Support (LTS) version of Node.js here.
You’ll just need to install the .msi file that Node.js provides and restart your computer.

5.3.2 MacOS

You have some options if you want to install Node.js on a Mac. The simplest way is to download the .pkg file
from the Node.js downloads page. Once you’ve installed the .pkg file, run this command on your terminal to make
sure everything is working properly:

node -v

If everything is working, you should see a version number pop up that looks something like this:

v10.15.1

Homebrew

Note: If you’ve already installed Node.js with the above steps, you can skip this section!

You can also install Node.js using Homebrew. First, make sure Homebrew is up to date:

brew update

Now just install Node.js:

brew install node

5.3.3 Linux

There are different ways to install Node.js depending on your Linux distribution. Here’s an article that goes through
installing Node.js on different distributions.

14 Chapter 5. Reference

https://gist.github.com/derhuerst/1b15ff4652a867391f03#file-linux-md
https://gist.github.com/derhuerst/1b15ff4652a867391f03#file-linux-md
https://nodejs.org/en/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://brew.sh/
https://nodejs.org/en/download/package-manager/

CHAPTER 6

Plasma Chain Operator

When learning about plasma you’ll eventually run into the idea of the plasma chain ‘operator’. For the most part, the
operator is exactly what it sounds like — a single entity that’s responsible for aggregating transactions into blocks and
then publishing those blocks to some other “main” blockchain (like Ethereum). Blockchains are only usable if new
blocks are being created, so, by producing these new blocks, the operator is quite literally responsible for keeping the
whole plasma chain running.

This might be a little confusing at first. Initial reactions are usually something along the lines of, “What? Plasma
chains have operators? Aren’t blockchains supposed to be decentralized?” Well, it turns out that the answer is, as you
might’ve guessed, “Kinda.”

6.1 Back to Basics

Let’s go back to basics and talk a little bit about why most blockchains use decentralized block production mechanisms
in the first place. Blockchains are big logs of things that have happened, broken into concrete and ordered time-steps
we call blocks. Sometimes these “things that have happened” are simple - “A sent X amount of money to B” -
sometimes they’re more complex - “Kitty A mated with Kitty B and created Kitty C”. No matter what these events
are, we usually want to make sure that we have a few key properties:

1. No one should be able to re-write history.

2. No one should be blocked from making transactions.

Let’s imagine we have a blockchain run by a single person. For the sake of argument, assume that you must use the
blockchain run by that person for some reason. Well, unfortunately it’s quite easy for that person to break the first
property. If that person says “transaction X happened” and then later says “transaction X never happened”, there’s not
much you can really do. You know that the transaction happened, but the blockchain itself doesn’t.

It’s also really easy for that person to break the second property. If they don’t want you to send transactions, they can
just refuse to add any transactions that come from you. Had a bunch of money on that blockchain? Too bad, you’re
not getting it back.

15

@pigi/core Documentation

6.2 Plasma Magic

The problems with blockchains run by a single person are why blockchains usually have fancy mechanisms that ensure
that it’s extremely expensive to rewrite history. It’s also why blockchains usually have lots of different people who
can create blocks – no single person can stop someone from making transactions. So why can we have a single person
running plasma chain? It’s because we cheat (sort of).

In plasma world, we get the first property by taking advantage of the “main blockchain” that we were talking about
earlier. Plasma chain operators need to publish a block “commitment” (sort of like a very compressed version of the
block) to the main blockchain for every block they produce. A smart contract on the main blockchain ensures that the
operator can never publish the same block twice. As long as the main blockchain has the first property, so does the
plasma chain! There’s no way for the operator to re-write history unless they can re-write history on the main chain.

The second property (blocking users from transacting) is where things get interesting. Unfortunately, it’s still possible
for the operator to censor transactions from anyone they want. However, this is where the magic of plasma comes in.
Plasma chains are designed in a way that no matter what, a user can always withdraw their money from the plasma
chain back to the main chain. Even if the operator is actively trying to steal money from you, you’ll still be able to get
it back. Being censored obviously isn’t great, but it’s not as bad when you can always take your money somewhere
else.

6.3 Decentralizing the Operator

The one thing that wasn’t really mentioned here is the fact that the “operator” can actually consist of multiple people
making decisions about what blocks to publish. This could be as simple as a having a few designed people who take
turns making blocks, or as complex as a Proof-of-Stake system that selects block producers randomly. Either way,
it’s complicated than just having a single person run everything, but it’s probably the way to go for projects that want
to get rid of censorship. At the same time, it tends to be unimportant research-wise whether the operator is a single
person or many people. As a result, you’ll often see people just assuming the operator is a single person for simplicity.

16 Chapter 6. Plasma Chain Operator

CHAPTER 7

Coin ID Assignment

This explains the process by which assets deposited into our plasma chain are assigned unique identifiers.

You usually won’t have to think about these things when you’re interacting with a PG plasma chains. Most of this is
handled automagically by plasma-utils or plasma-js-lib. The exact byte-per-byte binary representations of
all data structures for each structure can be found in our schemas.

7.1 Coin IDs

The base unit of any asset on our chain is the “coin”. Just like coins in Plasma Cash, these coins are non-fungible. Each
coin is given a unique 16 byte identifier, Coin ID. Coin IDs are assigned to assets in deposit-order on a per-asset
(ERC 20/ETH) basis.

Note that all assets in the chain share the same ID-space, even if they’re different ERC20s or ETH. This means that
transactions across all asset classes (which we refer to as the tokenType or token) share the same tree. This
decision was made primarily as an optimization to make the transaction tree as small as possible. However, it’s
important because it introduces some added complexity to coin IDs.

7.1.1 Token Type

The first 4 bytes of a coin’s ID refer to the tokenType of a coin. tokenType is assigned to a given token depending
on when that token was listed in the smart contract. We give ETH a tokenType of 00000000.

7.1.2 Token ID

The next 12 bytes of the ID represents the actual ID of that specific token. Note that two different coins can have the
same “Token ID” as long as they have a different tokenType.

17

https://github.com/plasma-group/plasma-utils/tree/master/src/serialization/schemas
https://github.com/plasma-group/plasma-contracts/blob/master/contracts/PlasmaChain.vy

@pigi/core Documentation

7.2 Denominations

The base denomination of each asset is automatically drawn from the asset’s smart contract. If it’s an ERC20, we look
at the decimals variable. If no decimals is available, we set the denomination to “1”. The base denomination of
ETH is wei.

7.3 Examples

7.3.1 ETH Deposit

Let’s say a user deposits 2 wei into the plasma chain contract. That user will be given spending rights for two coins,
00000000000000000000000000000000 and 00000000000000000000000000000001. The total coins
received per deposit is precisely (amount of token deposited)/(minimum token denomination).

7.3.2 ERC20 Deposit

Let’s say that the tokenType for DAI is 00000001` and the base denomination
is ``0.1 DAI. If the first user to deposit DAi deposits 0.5 DAI, they’ll re-
cieve the coins 0x00000001000000000000000000000000 up to and including coin
0x00000001000000000000000000000004.

18 Chapter 7. Coin ID Assignment

CHAPTER 8

Transactions Over Ranges

Our plasma design introduces an new construction that allows users to transact over ranges of coins, rather than simply
transacting single coins at a time. This page explains how we achieve that.

8.1 Transfers

A transaction consists of a specified block number and an array of Transfer objects. These Transfer objects describe
the actual details of the transaction, including which ranges are being sent and to whom.

From the schema in plasma-utils:

const TransferSchema = new Schema({
sender: {
type: Address,
required: true

},
recipient: {
type: Address,
required: true

},
token: {

type: Number,
length: 4,
required: true

},
start: {

type: Number,
length: 12,
required: true

},
end: {

type: Number,
length: 12,

(continues on next page)

19

https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/serialization.html#transferschema

@pigi/core Documentation

(continued from previous page)

required: true
}

(Note that length is in bytes)

We can see that each Transfer in a Transaction specifies a tokenType, start, end, sender, and recipient.

8.2 Typed and Untyped Bounds

One thing to note above is that the start and end values are 12 bytes and not 16 bytes like the Coin ID. This is
because these values are “untyped” - they don’t take the tokenType into account. We can calculate the “typed” values
by concatenating the token field to either start or end. This design choice was made for API simplicity.

8.3 Atomic Transactions

The Transaction schema contains an array of Transfer objects. This means that a transaction can describe several
transfers at the same time. Multiple transfers in the same transaction are all atomically executed if any only if the
entire transaction is included and valid. This will form the basis for both decentralized exchange and defragmentation
in later releases.

8.4 Serialization

plasma-utils implements a custom serialization library for the above data structures. Both the JSON-RPC API
and the smart contract use byte arrays as encoded by the serializer.

Our encoding scheme is quite simple. The encoded version of a piece of data structure is the concatenation of each
its values. Because each value has a fixed number of bytes defined by a schema, we can decode by slicing off the
appropriate number of bytes. The choice to use a custom scheme instead of an existing one (like RLP encoding) was
made to reduce smart contract complexity.

For encodings which involve variable-sized arrays, like Transaction objects which contain 1 or more Transfer objects,
we prepend a single byte that represents the number of array elements.

20 Chapter 8. Transactions Over Ranges

https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#SignedTransaction
specs/coin-assignment.html
https://plasma-utils.readthedocs.io/en/latest/models.html#SignedTransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/serialization.html
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-RLP
https://plasma-utils.readthedocs.io/en/latest/models.html#SignedTransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer

CHAPTER 9

Proof Structure and Verification

9.1 What are History Proofs?

Unlike traditional blockchain nodes, our full plasma nodes don’t store every single transaction. Instead, they only ever
need to store information relevant to assets they own. This means that when you’re receiving an asset, you don’t have
all of the information necessary to know that the person sending that asset is, in fact, the true owner. The sender
needs to explicitly prove to the recipient that the sender actually owns the asset being sent.

Currently, the sender needs to give the recipient a list of every single transaction that has ever moved the asset
around. The sender also needs to provide proof that they’re not omitting any transactions. Once the recipient
checks this proof, they can see the whole chain of custody for the asset and be convinced that the sender is the
current owner. Generally, we call this proof a “history proof” because it tells the recipient about the history of an
asset.

This page describes the methodology plasma-core follows to verify these history proofs.

9.2 Proof Structure

History proofs consist of a set of Deposits a long list of relevant Transactions with corresponding TransactionProofs.
Here we’ll discuss all of the various components of the proof.

9.2.1 Deposits

Deposits form the beginning of each history proof. An asset’s history always starts from the point at which it was
created. When we’re talking about a range, we might need to provide more than one deposit.

Let’s look at an example. Imagine that a sender is trying to create a proof for the range (0, 100). The range (0,
25) was created in deposit #1, and the range (25, 100) was created in deposit #2. The sender must provide these
two deposits as part of the proof.

21

https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
specs/transactions.html#ranges

@pigi/core Documentation

9.2.2 Transaction Proofs

A TransactionProof contains all the necessary information to check the validity of a given Transaction. Namely, it is
simply an array of TransferProof objects (described below). A given TransactionProof is valid if and only if all its
TransferProofs are valid.

9.2.3 Transfer Proofs

A TransferProof contains all the necessary information required to check that a specific Transfer inside of a Transaction
is valid. This includes:

• The Merkle tree branch that shows the transaction was included in a block.

• The position of the Merkle tree in which the transaction was included.

• The “parsed sum” for that transaction - a special value necessary to verify the Merkle proof.

• The transaction signature from the sender of the transfer.

Here’s the schema taken right from plasma-utils:

const TransferProofSchema = new Schema({
parsedSum: {
type: Number,
length: 16

},
leafIndex: {
type: Number,
length: 16

},
signature: {
type: SignatureSchema

},
inclusionProof: {
type: [Bytes],
length: 48

}
})

Note that the inclusionProof is a variable-length array whose size depends on the depth of the tree.

9.3 Proof Verification

The process of verifying a proof for an incoming transaction involves applying each proof element to the current
“verified” state, starting with the deposits. If any proof element doesn’t result in a valid state transition, we simply
ignore that element and go onto the next. At the very end, we check that each of the transfers in the incoming
transaction is part of the verified state.

9.3.1 Snapshot Objects

We keep track of the current owner of a range using an object called a Snapshot. Quite simply, a Snapshot represents
the verified owner of a range at a block:

22 Chapter 9. Proof Structure and Verification

https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction

@pigi/core Documentation

{
start: number,
end: number,
block: number,
owner: address

}

9.3.2 Checking for Exits

Before doing anything else, the verifier must check that the ranges being received have no pending or finalized exits.
If any part of the received ranges have pending or finalized exits, the transaction should be rejected.

9.3.3 Applying Deposits

Every received range has to come from a corresponding deposit. A deposit record consists of its token, start,
end, depositer, and blockNumber.

For each deposit record, the verifier must double-check with Ethereum to verify that the claimed deposit did in-
deed occur. The verifier must then add a verified Snapshot for each valid deposit, where snapshot.owner =
deposit.depositer.

9.3.4 Applying Transactions

Next, the verifier must apply all given TransactionProofs and update the set of verified Snapshots accordingly. For
each Transaction and corresponding TransactionProof, the verifier must first perform the following validation steps:

1. Check that the transaction encoding is well-formed.

2. For each Transfer in the Transaction:

1. Check that the Transfer has a corresponding Signature_ created by transfer.sender.

2. Check that the Transfer was included in the plasma block using the inclusionProof, leafIndex, and
parsedSum.

3. Calculate the implicitStart and implicitEnd of the Transfer, and verify that implicitStart <=
transfer.start < transfer.end <= implicitEnd.

If any of the above checks fail, the transaction must be ignored and the verifier should continue onto the next transac-
tion.

If all of the checks are successful, the verifier must apply each Transfer to the verified state:

1. For each Transfer in the Transaction, do the following:

1. Break the Transfer into implicit components ([implicitStart, typedStart],
[typedEnd, implicitEnd]) and explicit components ([typedStart, typedEnd]).

2. For each component:

1. Find all verified Snapshots that overlap with the component.

2. For each Snapshot that overlaps:

2. Remove the Snapshot from the verified state.

3. Split the Snapshot into overlapping and non-overlapping components.

4. Re-insert any non-overlapping components into the verified state.

9.3. Proof Verification 23

https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer

@pigi/core Documentation

5. If snapshot.block === transaction.blockNumber - 1 and
snapshot.owner === component.sender || component.
implicit:

1. Increment snapshot.block.

2. Set snapshot.owner = transfer.sender.

6. Insert the overlapping snapshot back into the verified state.

9.3.5 Verifying Transactions

Once all Deposits and Transactions have been applied to the verified state, the verifier can check the validity of the
incoming transaction. The verifier must check that for each Transfer in the Transaction, there exists some Snapshot in
the verified state such that:

1. snapshot.owner === transfer.recipient.

2. snapshot.start <= transfer.typedStart.

3. snapshot.end >= transfer.typedEnd.

If this condition is true for each Transfer in the Transaction, the proof can be accepted.

24 Chapter 9. Proof Structure and Verification

https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#transfer
https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction

CHAPTER 10

Smart Contract and Exit Games

The proof for a chain of custody isn’t useful unless it can also be passed to the main chain to keep funds secure. The
mechanism which accepts proofs on-chain is the core of plasma’s security model. We usually call this mechanism an
“exit game”.

When a user wants to move their money from plasma chain back to Ethereum, they start an “exit”. However, the user
doesn’t get their funds immediately. Instead, each exit has to stand a “dispute period”.

During the dispute period, users may submit “challenges” which claim the money being withdrawn isn’t rightfully
owned by the person who started the exit. If the person who started the exit does in fact own the money, they are
always able to calculate and present a “challenge response” which closes the challenge. If there are no outstanding
disputes at the end of the dispute period, the user can finalize their exit and receive the money.

The goal of the exit game is to keep user assets secure, even in the case of a malicious operator. Particularly, there are
three main attacks which we must mitigate:

• Data withholding: the operator may publish a root hash to the contract, but not tell anybody what the contents
of the block are.

• Invalid transactions: the operator may include a transaction in a block whose sender was not the previous
recipient in the chain of custody.

• Censorship: the operator may refuse to publish any transactions from a specific user.

In all of these cases, the challenge/response protocol of the exit game ensures that these behaviors do not allow theft.
Importantly, we also ensure that each challenge can be closed in at most one response.

10.1 Keeping Track of Deposits and Exits

10.1.1 Deposits Mapping

Each time a new set of coins is deposited, the contract updates a mapping that contains deposit structs.

From the contract:

25

@pigi/core Documentation

struct deposit:
untypedStart: uint256
depositer: address
precedingPlasmaBlockNumber: uint256

Note that this struct contains neither the untypedEnd or tokenType for the deposit. That’s because the contract
uses those values as the keys in a mapping of mappings. For example, to access the depositer of a given deposit, we
can query deposits directly:

someDepositer: address = self.deposits[tokenType][untypedEnd].depositer

This choice was made to save gas and to simplify the smart contract. Namely, it means that we don’t need to store any
sort of deposit ID in order to reference a deposit.

10.1.2 Exitable Ranges Mapping

The contract also needs to keep track of finalized exits in order prevent multiple exits on the same range. This is a
little trickier because exits don’t occur in order like deposits do, and it’d be too expensive to search through a giant list
of exits.

Our contract implements a constant-sized solution, which instead stores a list of “exitable ranges”. This list is updated
as new exits occur.

From the smart contract:

struct exitableRange:
untypedStart: uint256
isSet: bool

Again, we use a double-nested mapping with keys tokenType and untypedEnd so that we may call self.
exitable[tokenType][untpyedEnd].untypedStart to access the start of the range. Note that Vyper
returns 0 for all unset mapping keys, so we need an isSet bool so that users may not “trick” the contract by passing
an unset exitableRange.

The contract’s self.exitable ranges are split and deleted based on successful calls to finalizeExit via a
helper function called removeFromExitable. Note that exits on a previously exited range do not even need to be
challenged; they’ll never pass the checkRangeExitable function called in finalizeExit. You can find that
code here.

10.2 Similarities to Plasma Cash

At heart, the exit games in our spec are very similar to the original Plasma Cash design. Exits are initiated with calls
to:

beginExit(tokenType: uint256, blockNumber: uint256, untypedStart: uint256,
→˓untypedEnd: uint256) -> uint256

All exit challenges specify a particular coin ID, and a Plasma Cash-style challenge game is carried out on that particular
coin. Only a single coin needs to be proven invalid to cancel the entire exit.

Both exits and challenges are assigned a unique exitID and challengeID. These IDs are assigned in order based
on an incrementing challengeNonce and exitNonce.

26 Chapter 10. Smart Contract and Exit Games

https://github.com/plasma-group/plasma-contracts/blob/068954a8584e4168daf38ebeaa3257ec08caa5aa/contracts/PlasmaChain.vy#L380

@pigi/core Documentation

10.3 Block-specific Transactions

In the original Plasma Cash spec, the exiter is required to specify both the exited transaction and its previous “parent”
transaction to prevent the “in-flight” attack. This attack occurs when the operator delays inclusion of a valid transaction
and then inserts an invalid transaction before the valid one.

This poses a problem for our range-based schemes because a transaction may have multiple parents. For example, if
Alice sends (0, 50) to Carol, and Bob sends (50, 100) to Carol, Carol can now send (0, 100) to Dave. If
Dave wants to exit (0, 100), he would need to specify both (0, 50) and (50, 100) as parents.

If a range has dozens or even hundreds of parents, it becomes basically impossible to publish all of these parents on
chain. Instead, we opted for a simpler alternative in which each transaction specifies the block in which it should be
included. If the transaction is included in a different block, it’s no longer valid. This solves the in-flight attack because
it becomes impossible for the operator to delay inclusion of the transaction.

This does, unfortunately, introduce one downside – if a transaction isn’t included in the specified block (for whatever
reason), it needs to be re-signed and re-submitted. Hopefully this won’t happen too often in practice, but it’s something
to think about.

For those interested in a formal writeup and safety proof for this scheme, it’s worth giving this great post a look.

10.4 Per-coin Transaction Validity

An unintuitive property of our exit games worth that’s noting up front is that a certain transaction might be “valid” for
some of the coins in its range, but not for others.

For example, imagine that Alice sends (0, 100) to Bob, who in turn sends (50, 100) to Carol. Carol doesn’t
need to verify that Alice was the rightful owner of the full (0, 100). Carol only needs an assurance that Alice
owned (50, 100) –the part of the custody chain which applies to Carol’s range.

Though the transaction to Dave might in a sense be “invalid” if Alice didn’t own (0, 50), the smart contract doesn’t
care for the purposes of disputes on exits for the coins (50, 100). As long as the received coins are valid, invalid
transactions on any other coins don’t matter.

This is a very important requirement to preserve the size of light client proofs. If Carol had to check the full (0,
100), she might also have to check an overlapping parent of (0, 10000), and then all of its parents, and so on.
This “cascading” effect could massively increase the size of proofs if transactions were very interdependent.

Note that this property also applies to atomic multisends, in which multiple ranges are swapped. If Alice trades 1 ETH
for Bob’s 1 DAI, it is Alice’s responsibility to check that Bob owns the 1 DAI before signing. However, after, if Bob
then sends the 1 ETH to Carol, Carol need not verify that Bob owned the 1 DAI, only that Alice owned the 1 ETH she
sent to Bob. Alice incurred the risk, so Carol doesn’t have to.

From the standpoint of the smart contract, this property is a direct consequence of challenges always being submitted
for a particular coinID within the exit.

10.5 Transaction Verification

Only funds that came from valid transactions can be withdrawn. We can check the validity of a transaction at the
contract level via:

def checkTransactionProofAndGetTypedTransfer(
transactionEncoding: bytes[277],
transactionProofEncoding: bytes[1749],

(continues on next page)

10.3. Block-specific Transactions 27

https://ethresear.ch/t/plasma-cash-with-smaller-exit-procedure-and-a-general-approach-to-safety-proofs/1942

@pigi/core Documentation

(continued from previous page)

transferIndex: int128
) -> (

address, # transfer.to
address, # transfer.from
uint256, # transfer.start (typed)
uint256, # transfer.end (typed)
uint256 # transaction.blockNumber

)

An important feature here is the transferIndex argument. Remember that a transaction may contain multiple
transfers and that the transaction must be included in the tree once for each transfer. However, since challenges refer
to a specific coinID, only a single transfer will be relevant. As a result, challengers and responders have to give a
transferIndex –a reference to the index of the relevant transfer.

Once we decode the TransactionProof, we can check the relevant TransferProof:

def checkTransferProofAndGetTypedBounds(
leafHash: bytes32,
blockNum: uint256,
transferProof: bytes[1749]

) -> (uint256, uint256)

10.6 Challenges That Immediately Block Exits

Two kinds of challenges immediately cancel exits: those that show a specific coin is already spent, and those that show
an exit comes before the deposit.

10.6.1 Spent-Coin Challenge

This challenge is used to demonstrate that coins being withdrawn have already been spent.

@public
def challengeSpentCoin(
exitID: uint256,
coinID: uint256,
transferIndex: int128,
transactionEncoding: bytes[277],
transactionProofEncoding: bytes[1749],

)

It uses checkTransactionProofAndGetTypedTransfer and then checks the following:

1. The challenged coinID lies within the specified exit.

2. The challenged coinID lies within the typedStart and typedEnd of the transferIndex``th
element of ``transaction.transfers.

3. The plasmaBlockNumber of the challenge is greater than that of the exit.

4. The transfer.sender is the exiter.

The introduction of atomic swaps does mean one thing: the spent coin challenge period must be strictly less than
others. There’s an edge case in which the operator withholds an atomic swap between two or more parties. Those
parties must exit their coins from before the swap because they don’t know if the swap was included. If the swap was

28 Chapter 10. Smart Contract and Exit Games

@pigi/core Documentation

not included, then these exits will finalize successfully. However, if the swap was included, then operator can submit
a Spent-Coin Challenge and block these exits.

If we allowed the operator to submit this challenge at the last minute, we’d be creating a race condition in which the
parties have no time to use the newly revealed information to cancel other exits. Thus, the timeout is made shorter
(1/2) than the regular challenge window, eliminating “last-minute response” attacks.

10.6.2 Before-Deposit Challenge

This challenge is used to demonstrate that an exit comes from a plasmaBlockNumber earlier than the coin’s
deposit.

@public
def challengeBeforeDeposit(
exitID: uint256,
coinID: uint256,
depositUntypedEnd: uint256

)

The contract looks up self.deposits[self.exits[exitID].tokenType][depositUntypedEnd].
precedingPlasmaBlockNumber and checks that it’s is later than the exit’s block number. If so, it cancels the
exit immediately.

10.7 Optimistic Exits and Inclusion Challenges

Our contract allows an exit to occur without actually checking that the transaction referenced in the exit was included
in the plasma chain. This is called an “optimistic exit,” and allows us to reduce gas costs for users who are behaving
honestly. However, this means that it’s possible for someone start an exit from a transaction that never happened.

As a result, we expose a way for someone to challenge this type of exit:

@public
def challengeInclusion(exitID: uint256)

Then, the user who started the exit can respond by showing that the transaction or deposit from which they are exiting
really did happen:

@public
def respondTransactionInclusion(
challengeID: uint256,
transferIndex: int128,
transactionEncoding: bytes[277],
transactionProofEncoding: bytes[1749],

)
...
@public
def respondDepositInclusion(
challengeID: uint256,
depositEnd: uint256

)

We need this special second case so that users can withdraw money even if the operator is censoring all transactions
after their deposit.

10.7. Optimistic Exits and Inclusion Challenges 29

@pigi/core Documentation

Both responses cancel the challenge if: 1. The deposit or transaction was indeed at the exit’s plasma block number.
2. The depositer or recipient is indeed the exiter. 3. The start and end of the exit were within the deposit or transfer’s
start and end

10.8 Invalid-History Challenge

The Invalid-History Challenge is the most complex challenge-response game in both vanilla Plasma Cash and this
spec. This part of the protocol mitigates the attack in which the operator includes an forged “invalid” transaction
whose sender is not the previous recipient.

Effectively, this challenge allows the rightful owner of a coin to request that the exiter provide a proof that the owner
has spent their funds. The idea here is that if the rightful owner really is the rightful owner, then the exiter will not be
able to provide such a transaction.

Both invalid history challenges and responses can be either deposits or transactions.

10.8.1 Challenging

There are two ways to challenge, depending on the current rightful owner:

@public
def challengeInvalidHistoryWithTransaction(
exitID: uint256,
coinID: uint256,
transferIndex: int128,
transactionEncoding: bytes[277],
transactionProofEncoding: bytes[1749]

)

and

@public
def challengeInvalidHistoryWithDeposit(
exitID: uint256,
coinID: uint256,
depositUntypedEnd: uint256

)

Both of these methods call an additional method, challengeInvalidHistory:

@private
def challengeInvalidHistory(
exitID: uint256,
coinID: uint256,
claimant: address,
typedStart: uint256,
typedEnd: uint256,
blockNumber: uint256

)

This method does the legwork of checking that the coinID is within the challenged exit, and that the blockNumber
is earlier than the exit.

30 Chapter 10. Smart Contract and Exit Games

@pigi/core Documentation

10.8.2 Responding

Of course it’s also possible for someone to submit a fraudulent Invalid-History Challenge. Therefore we give exiters
two ways to respond to this type of challenge.

The first is to respond with a transaction showing that the challenger did, in fact, spend their money:

@public
def respondInvalidHistoryTransaction(
challengeID: uint256,
transferIndex: int128,
transactionEncoding: bytes[277],
transactionProofEncoding: bytes[1749],

)

The smart contract then performs the following checks: 1. The transferIndex``th ``Transfer in the
transactionEncoding covers the challenged coinID. 2. The transferIndex``th ``transfer.
sender was indeed the claimant for that invalid history challenge. 3. The transaction’s plasma block number lies
between the invalid history challenge and the exit.

The second response is to show the challenge came before the coins were actually deposited-making the challenge
invalid. This is similar to a challengeBeforeDeposit, but for the exit itself.

@public
def respondInvalidHistoryDeposit(
challengeID: uint256,
depositUntypedEnd: uint256

)

In this case, there is no check on the sender being the challenge recipient, since the challenge was invalid. So the
contract just needs to check: 1. The deposit covers the challenged coinID. 2. The deposit’s plasma block number
lies between the challenge and the exit.

If all of these conditions are true, the exit is cancelled.

10.8. Invalid-History Challenge 31

@pigi/core Documentation

32 Chapter 10. Smart Contract and Exit Games

CHAPTER 11

Merkle Sum Tree Block Structure

One of the most important improvements Plasma Cash introduced was “light proofs.” Previously, plasma constructions
required that users download the entire plasma chain to ensure safety of their funds. With Plasma Cash, they only have
to download the branches of a Merkle tree relevant to their own funds.

This was accomplished by introducing a new transaction validity condition: transactions of a particular coinID are only
valid at the coinIDth leaf in the Merkle tree. Thus, it is sufficient to download just that branch to be confident no valid
transaction exists for that coin. The problem with this scheme is that transactions are “stuck” at this denomination: if
you want to transact multiple coins, you need multiple transactions, one at each leaf.

Unfortunately, if we put the range-based transactions into branches of a regular Merkle tree, light proofs would become
insecure. This is because having one branch does not guarantee that others don’t intersect:

src/specs/../_static/images/overlapping-branches.png

Leaves 4 and 6 both describe transactions over the range (3,4). Having one branch DOES NOT guarantee that the
other doesn’t exist.

With a regular Merkle tree, the only way to guarantee no other branches intersect is to download them all and check.
But that’s no longer a light proof!

At the heart of our plasma implementation is a new block structure, and an accompanying new transaction validity
condition, which allows us to get light proofs for range-based transactions. The block structure is called a Merkle sum
tree, where next to each hash is a sum value.

The new validity condition uses the sum values for a particular branch to compute a a start and end range. This
calculation is specially crafted so that it is impossible for two branches’ computed ranges to overlap. A transfer is
only valid if its own range is within that range, so this gets us back our light clients!

This section will specify the exact spec of the sum tree, what the range calculation actually is, and how we actually
construct a tree which satisfies the range calculation. For a more detailed background and motivation on the research
which led us to this spec, feel free check out this post.

33

@pigi/core Documentation

We have written two implementations of the plasma Merkle sum tree: one done in a database for the operator, and
another in-memory for testing in plasma-utils.

11.1 Sum Tree Node Specification

Each node in the Merkle sum tree is 48 bytes, as follows:

[32 byte hash][16 byte sum]

It’s not a coincidence that the sum’s 16 bytes length is the same as a coinID! We have two helper
properties, .hash and .sum, which pull out these two parts. For example, for some node =
0x1b2e79791f28c27ed669f257397e1deb3e522cf1f27024c161b619d276a25315ffffffffffffffffffffffffffffffff,
we have node.hash == 0x1b2e79791f28c27ed669f257397e1deb3e522cf1f27024c161b619d276a25315
and node.sum == 0xffffffffffffffffffffffffffffffff.

11.2 Parent Calculation

In a regular Merkle tree, we construct a binary tree of hash nodes, up to a single root node. Specifying the sum tree
format is a simple matter of defining the parent(left, right) calculation function which accepts the two siblings as
arguments. For example, a regular Merkle sum tree has: .. code-block:: javascript

parent = function (left, right) { return Sha3(left.concat(right)) }

Where Sha3 is the hash function and concat appends the two values together. To create a merkle sum tree, the
parent function must also concatenate the result of an addition operation on its children’s own ‘‘su

parent = function (left, right) { return Sha3(left.concat(right)).concat(left.sum +
→˓right.sum) }

For example, we might have

parent(0xabc...0001, 0xdef...0002) === hash(0xabc...0001.
concat(0xdef...0002)).concat(0001 + 0002) === 0x123...0003

Note that the parent.hash is a commitment to each sibling.sum as well as the hashes: we hash the full 96
bytes of both.

11.3 Calculating a Branch’s Range

The reason we use a merkle sum tree is because it allows us to calculate a specific range which a branch describes,
and be 100% confident that no other valid branches exist which overlap that range.

We calculate this range by adding up a leftSum and rightSum going up the branch. Initializing both to 0, at each
parent verification, if the leaf lies somewhere under the left child, we take rightSum += right.sum, and if
the leaf is under the right, we add leftSum += left.sum.

Then, the range the branch describes is (leftSum, root.sum - rightSum). See the following example:

src/specs/../_static/images/basic-branch-range-calc.png

34 Chapter 11. Merkle Sum Tree Block Structure

@pigi/core Documentation

In this example, branch 6’s valid range is [21+3, 36-5) == [24, 31). Notice that 31-24=7, which is the
sum value for leaf 6! Similarly, branch 5’s valid range is [21, 36-(7+5)) == [21, 24). Notice that its end is
the same as branch 6’s start!

If you play around with it, you’ll see that it’s impossible to construct a Merkle sum tree with two different branches
covering the same range. At some level of the tree, the sum would have to be broken! Go ahead, try to “trick” leaf 5
or 6 by making another branch that intersects the range (4.5,6). Filling in only the ‘‘?‘‘s in grey boxes:

src/specs/../_static/images/try-to-fake.png

You’ll see it’s always impossible at some level of the tree:

src/specs/../_static/images/cant-fake.png

This is how we get light clients. We call the branch range bounds the implicitStart and implicitEnd, because
they are calculated “implicitly” from the inclusion proof. We have a branch checker implemented in plasma-utils
via calculateRootAndBounds() for testing and client-side proof checking:

let leftSum = new BigNum(0) let rightSum = new BigNum(0) for (let i = 0; i < inclusionProof.length; i++) {

let encodedSibling = inclusionProof[i] if (path[i] === ‘0’) {

computedNode = PlasmaMerkleSumTree.parent(computedNode, sibling) rightSum = right-
Sum.add(sibling.sum)

} else { computedNode = PlasmaMerkleSumTree.parent(sibling, computedNode) leftSum = left-
Sum.add(sibling.sum)

}

}

as well as in Vyper for the smart contract via checkTransferProofAndGetTypedBounds in
PlasmaChain.vy

11.4 Parsing Transfers as Leaves

In a regular merkle tree, we construct the bottom layer of nodes by hashing the “leaves”:

11.4. Parsing Transfers as Leaves 35

@pigi/core Documentation

In our case, we want the leaves to be the transactions of ranges of coins. More specifically, we actually want ‘Trans-
fer‘s–signatures don’t need to be included, they can be stored by the clients and submitted to the smart contract
separately. (For more details on objects and serialization, see the serialization section.)

So–the hashing is straightforward–but what should the bottom nodes’ .sum values be?

Given some txA with a single transferA, what should the sum value be? It turns out, _not_ just transferA.
end - transferA.start. The reason for this is that it might screw up other branches’ ranges if the transfers are
not touching. We need to “pad” the sum values to account for this gap, or the root.sum will be too small.

Interestingly, this is a non-deterministic choice because you can pad either the node to the right or left of the gap.
We’ve chosen the following “left-aligned” scheme for parsing leaves into blocks:

src/specs/../_static/images/leaf-parsing.png

We call the bottommost .sum value the parsedSum for that branch, and the TransferProof schema includes
a .parsedSum value which is used to reconstruct the bottom node.

11.5 Branch Validity and Implicit NoTx

Thus, the validity condition for a branch as checked by the smart contract is as follows: implicitStart <=
transfer.start < transfer.end <= implicitEnd . Note that, in the original design of the sum tree
in Plasma Cashflow, some leaves were filled with NoTx to represent that ranges were not transacted. With this
format, any coins which are not transacted are simply those between (implicitStart, transfer.start)

36 Chapter 11. Merkle Sum Tree Block Structure

@pigi/core Documentation

and (transfer.end, implicitEnd). The smart contract guarantees that no coins in these ranges can be used
in any challenge or response to an exit.

11.6 Atomic Multisends

Often (to support transaction fees and exchange) transactions require multiple transfers to occur or not, atomically,
to be valid. The effect is that a valid transaction needs to be included once for each of its .transfers-each with
a valid sum in relation to that particular transfer.typedStart and .typedEnd. However, for each of these
inclusions, it’s still the hash of the full UnsignedTransaction-NOT the individual Transfer- that is parsed to
the bottom .hash.

11.6. Atomic Multisends 37

@pigi/core Documentation

38 Chapter 11. Merkle Sum Tree Block Structure

CHAPTER 12

JSON-RPC Calls

12.1 pg_getBalance

pg_getBalance

Returns the balance of a specific account.

12.1.1 Parameters

1. address - string: Address of the account to query.

12.1.2 Returns

Array: A list of token balances in the form (token, balance).

12.2 pg_getBlock

pg_getBlock

Pulls the hash of the block at a specific height.

12.2.1 Parameters

1. block - number: Number of the block to query.

39

@pigi/core Documentation

12.2.2 Returns

string: The block hash.

12.3 pg_getTransaction

pg_getTransaction

Pulls information about a specific transaction.

12.3.1 Parameters

1. hash - string: The hash of the transaction.

12.3.2 Returns

SignedTransaction: The specified transaction.

12.4 pg_sendTransaction

pg_sendTransaction

Sends a transaction to the node to be processed.

12.4.1 Parameters

1. transaction - Object:

• from - string: Address from which the transaction was sent.

• to - string: Address to which the transaction was sent.

• token - string: ID of the token to be sent.

• value - number: Value of tokens to be sent.

12.4.2 Returns

string: The transaction receipt.

12.5 pg_sendRawTransaction

40 Chapter 12. JSON-RPC Calls

@pigi/core Documentation

pg_sendRawTransaction

Sends an encoded SignedTransaction to the node to be processed.

12.5.1 Parameters

1. transaction - string: Encoded signed transaction.

12.5.2 Returns

string: The transaction receipt.

12.6 pg_getHeight

pg_getHeight

Returns the current plasma block height.

12.6.1 Returns

number: The current block height.

12.7 pg_getRecentTransactions

pg_getRecentTransactions

Returns the most recent transactions. Because there are a lot of transactions in each block, this method is paginated.

12.7.1 Parameters

1. start - number: Start of the range of recent transactions to return.

2. end - number: End of range of recent transactions to return.

12.7.2 Returns

Array<SignedTransaction>: A list of SignedTransaction objects.

12.6. pg_getHeight 41

https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction
https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction

@pigi/core Documentation

12.8 pg_getAccounts

pg_getAccounts

Returns a list of all available accounts.

12.8.1 Returns

Array<string>: A list of account addresses.

12.9 pg_getTransactionsByAddress

pg_getTransactionsByAddress

Returns the latest transactions by an address. This method is paginated and requires a start and end. Limited to a
total of 25 transactions at a time.

12.9.1 Parameters

1. address - ``string: The address to query.

2. start - number: Start of the range of recent transactions to return.

3. end - number: End of range of recent transactions to return.

12.9.2 Returns

Array<SignedTransaction>: A list of SignedTransaction objects.

42 Chapter 12. JSON-RPC Calls

https://plasma-utils.readthedocs.io/en/latest/models.html#signedtransaction

CHAPTER 13

ContractProvider

ContractProvider is a wrapper that interacts with the plasma chain smart contract.

13.1 address

contract.address

Returns the contract’s address.

13.1.1 Returns

string: Address of the connected contract.

13.2 hasAddress

contract.hasAddress

Whether or not the contract has an address.

13.2.1 Returns

boolean: true if the contract is ready to be used, false otherwise.

43

@pigi/core Documentation

13.3 ready

contract.ready

Whether or not the contract is ready to be used.

13.3.1 Returns

boolean: true if hte contract is ready, false otherwise.

13.4 web3

contract.web3

Returns the web3 instance being used by the contract.

13.4.1 Returns

Web3: Contract’s web3 instance.

13.5 plasmaChainName

contract.plasmaChainName

Name of the plasma chain this contract is connected to.

13.5.1 Returns

string: Plasma chain name.

13.6 checkAccountUnlocked

contract.checkAccountUnlocked(address)

Checks whether an account is unlocked and attempts to unlock it if not.

13.6.1 Parameters

1. address - string: Address of the account to check.

44 Chapter 13. ContractProvider

@pigi/core Documentation

13.7 getBlock

contract.getBlock(block)

Queries the hash of a given block.

13.7.1 Parameters

1. block - number: Number of the block to query.

13.7.2 Returns

Promise<string>: Root hash of the block with that number.

13.8 getNextBlock

contract.getNextBlock()

Returns the number of the next block that will be submitted.

13.8.1 Returns

Promise<number>: Next block number.

13.9 getCurrentBlock

contract.getCurrentBlock()

Returns the number of the last block to be submitted.

13.9.1 Returns

Promise<number>: Last block number.

13.10 getOperator

contract.getOperator()

Returns the address of the operator.

13.7. getBlock 45

@pigi/core Documentation

13.10.1 Returns

Promise<string>: Plasma chain operator address.

13.11 getTokenAddress

contract.getTokenAddress(token)

Returns the address for a given token ID.

13.11.1 Parameters

1. token - string: A token ID.

13.11.2 Returns

Promise<string>: Address of the contract for that token.

13.12 listToken

contract.listToken(tokenAddress)

Lists a token with the given address so that it can be deposited.

13.12.1 Parameters

1. tokenAddress - string: Address of the token to list.

13.12.2 Returns

EthereumTransaction: The Ethereum transaction result.

13.13 getChallengePeriod

contract.getChallengePeriod()

Returns the current challenge period in number of blocks.

46 Chapter 13. ContractProvider

@pigi/core Documentation

13.13.1 Returns

Promise<number>: Challenge period.

13.14 getTokenId

contract.getTokenId(tokenAddress)

Gets the token ID for a specific token.

13.14.1 Parameters

1. tokenAddress - string: Token contract address.

13.14.2 Returns

Promise<string>: ID of the token.

13.15 depositValid

contract.depositValid(deposit)

Checks whether a Deposit actually exists. Used when checking transaction proofs.

13.15.1 Parameters

1. deposit - Deposit: A Deposit to validate.

13.15.2 Returns

boolean: true if the deposit exists, false otherwise.

13.16 deposit

contract.deposit(address, token, amount)

Deposits some value of a token to the plasma smart contract.

13.14. getTokenId 47

@pigi/core Documentation

13.16.1 Parameters

1. address - string: Address to deposit with. 1. token - string: Address of the token to deposit. 2. amount
- number: Amount to deposit.

13.16.2 Returns

EthereumTransaction: An Ethereum transaction receipt.

13.17 startExit

contract.startExit(block, token, start, end, owner)

Starts an exit for a user. Exits can only be started on transfers, meaning you need to specify the block in which the
transfer was received.

13.17.1 Parameters

1. block - BigNum: Block in which the transfer was received.

2. token - BigNum: Token to be exited.

3. start - BigNum: Starts of the range received in the transfer.

4. end - BigNum: End of the range received in the transfer.

5. owner - string: Address to withdraw from.

13.17.2 Returns

EthereumTransaction: Exit transaction receipt.

13.18 finalizeExit

contract.finalizeExit(exitId, exitableEnd, owner)

Finalizes an exit for a user.

13.18.1 Parameters

1. exitId - string: ID of the exit to finalize.

2. exitableEnd - BigNum: The “exitable end” for that exit.

3. owner - string: Address that owns the exit.

48 Chapter 13. ContractProvider

@pigi/core Documentation

13.18.2 Returns

EthereumTransaction: Finalization transaction receipt.

13.19 submitBlock

contract.submitBlock(hash)

Submits a block with the given hash. Will only work if the operator’s account is unlocked and available to the node.

13.19.1 Parameters

1. hash - string: Hash of the block to submit.

13.19.2 Returns

EthereumTransaction: Block submission transaction receipt.

13.19. submitBlock 49

@pigi/core Documentation

50 Chapter 13. ContractProvider

CHAPTER 14

OperatorService

OperatorService handles all interaction with the operator. This includes things like sending transactions and
pulling any pending transactions.

14.1 getNextBlock

operator.getNextBlock()

Returns the next block that will be submitted.

14.1.1 Returns

Promise<number>: Next block number.

14.2 getEthInfo

operator.getEthInfo()

Returns information about the smart contract.

14.2.1 Returns

Promise<Object>: Smart contract info.

51

specs/operator.html

@pigi/core Documentation

14.3 getTransactions

operator.getTransactions(address, startBlock, endBlock)

Returns a list of transactions received by an address between two blocks.

14.3.1 Parameters

1. address - string: Address to query.

2. startBlock - number: Block to query from.

3. endBlock - number: Block to query to.

14.3.2 Returns

Promise<Array>: List of encoded transactions.

14.4 getTransaction

operator.getTransaction(encoded)

Returns a transaction proof for a given transaction.

14.4.1 Parameters

1. encoded - string: The encoded transaction.

14.4.2 Returns

Promise<Object>: Proof information for the transaction.

14.5 sendTransaction

operator.sendTransaction(transaction)

Sends a SignedTransaction_ to the operator.

14.5.1 Parameters

1. transaction - string: The encoded SignedTransaction_.

52 Chapter 14. OperatorService

@pigi/core Documentation

14.5.2 Returns

Promise<string>: The transaction receipt.

14.6 submitBlock

operator.submitBlock()

Attempts to have the operator submit a new block. Won’t work if the operator is properly configured, but used for
testing.

14.6. submitBlock 53

@pigi/core Documentation

54 Chapter 14. OperatorService

CHAPTER 15

JSONRPCService

JSONRPCService handles incoming JSON-RPC method calls. A full list of methods is documented at the JSON-
RPC Methods Specification. Note that JSONRPCService does not expose any form of external interface (such as
an HTTP server). Full nodes should implement these services so that users can interact with the node. For more
information about these external services, see our document on extending plasma-core.

15.1 getAllMethods

jsonrpc.getAllMethods()

Returns all available RPC methods.

15.1.1 Returns

Object: All subdispatcher methods as a single object in the form { name: methodref }.

15.2 getMethod

jsonrpc.getMethod(name)

Returns a method by its name.

15.2.1 Parameters

1. name - string: Name of the method.

55

specs/jsonrpc.html
specs/jsonrpc.html
extending-plasma-core.html

@pigi/core Documentation

15.2.2 Returns

Function: A reference to the method with that name.

15.3 handle

jsonrpc.handle(method, params = [])

Calls a method with the given name and params.

15.3.1 Parameters

1. method - string: Name of the method to call.

2. params - Array: An array of parameters.

15.3.2 Returns

Promise<any>: The result of the method call.

15.4 handleRawRequest

jsonrpc.handleRawRequest(request)

Handles a raw JSON-RPC request.

15.4.1 Parameters

1. request - Object: A JSON-RPC request object.

15.4.2 Returns

Promise<Object>: A JSON-RPC response object.

56 Chapter 15. JSONRPCService

https://www.jsonrpc.org/specification#request_object
https://www.jsonrpc.org/specification#request_object
https://www.jsonrpc.org/specification#response_object

CHAPTER 16

ProofService

ProofService handles checking the validity of transactions. In the Plasma Group plasma chain design, each client
only receives transactions that are relevant to that client. The client then needs to check that the received transaction is
actually valid. This is carried out via a transaction proof attached to each transaction. If you’re interested in learning
more about transaction proofs, check out our more detailed transaction proof specification document.

16.1 checkProof

proofService.checkProof(transaction, proof)

Checks the validity of a transaction using the given proof.

16.1.1 Parameters

1. transaction - Object: A Transaction object.

2. deposits - Array<Deposit>: An array of Deposits. 2. proof - Object: A Proof object.

16.1.2 Returns

Promise<boolean>: true if the transaction is valid, false otherwise.

57

specs/proofs.html
specs/transactions.html#transaction-object
specs/proofs.html#proof-object

@pigi/core Documentation

58 Chapter 16. ProofService

CHAPTER 17

SyncService

SyncService makes sure that the client’s wallet is always synchronized. This service automatically pulls any
pending transactions and keeps transaction proofs up to date.

59

specs/proofs.html

@pigi/core Documentation

60 Chapter 17. SyncService

CHAPTER 18

ChainService

ChainService does most of the heavy lifting when it comes to receiving and sending transactions. This service
handles processing new transactions and computing the latest state.

18.1 getBalances

chain.getBalances(address)

Returns a list of balances for a user.

18.1.1 Parameters

1. address - string: Address of the user to query.

18.1.2 Returns

Promise<Object>: An object where keys are tokens and values are the balances.

18.1.3 Example

const balances = await chain.getBalances(address)
console.log(balances)
> { '0': '1194501', '1': '919ff01' }

61

@pigi/core Documentation

18.2 addDeposits

chain.addDeposits(deposits)

Applies a series of deposits to the state.

18.2.1 Parameters

1. deposits - Array<Deposit>: An array of Deposit objects to apply.

18.3 getExitsWithStatus

chain.getExitsWithStatus(address)

Returns any exits started by a specific user. Identifies exits that are finalized or ready to be finalized.

18.3.1 Parameters

1. address - string: Address of the user to query.

18.3.2 Returns

Array<Exit>: An array of Exits started by the user.

18.4 addExit

chain.addExit(exit)

Applies an exit to the local state. Internally, sends the exited range to the zero address.

18.4.1 Parameters

1. exit - Exit: An Exit to apply.

18.5 pickRanges

chain.pickRanges(address, token, amount)

Picks the best ranges to use for a transaction.

62 Chapter 18. ChainService

@pigi/core Documentation

18.5.1 Parameters

1. address - string: Address sending the transaction.

2. token - BigNum: ID of the token being sent.

3. amoun - BigNum: Amount of the token being sent.

18.5.2 Returns

Array<Range>: Best ranges for the transaction.

18.6 pickTransfers

chain.pickTransfers(address, token, amount)

Picks the best Transfers to use for an exit. This is currently necessary because of a quirk in how we’re processing exits.

18.6.1 Parameters

1. address - string: Address sending the transaction.

2. token - BigNum: ID of the token being sent.

3. amoun - BigNum: Amount of the token being sent.

18.6.2 Returns

Array<Range>: Best ranges for the transaction.

18.7 startExit

chain.startExit(address, token, amount)

Attempts to start an exit for a user. May submit more than one exit if neccessary to withdraw the entire amount.

18.7.1 Parameters

1. address - string: Account to withdraw from.

2. token - BigNum: ID of the token to exit.

3. amount - BigNum: Amount to exit.

18.6. pickTransfers 63

@pigi/core Documentation

18.7.2 Returns

Array<String>: An array of Ethereum transaction hashes.

18.8 finalizeExits

chain.finalizeExits(address)

Attempts to finalize all pending exits for an account.

18.8.1 Parameters

1. address - string: Address to finalize exits for.

18.8.2 Returns

Array<String>: An array of Etheruem transaction hashes.

18.9 sendTransaction

chain.sendTransaction(transaction)

Sends a transaction to the operator.

18.9.1 Parameters

1. transaction - Transaction: Transaction to be sent.

18.9.2 Returns

string: The transaction receipt.

18.10 loadState

chain.loadState()

Loads the current head state as a SnapshotManager.

64 Chapter 18. ChainService

specs/transactions.html#transaction-object

@pigi/core Documentation

18.10.1 Returns

SnapshotManager: The current head state.

18.11 saveState

chain.saveState(stateManager)

Saves the current head state from a SnapshotManager.

18.11.1 Parameters

1. stateManager - SnapshotManager: A SnapshotManager to save.

18.11. saveState 65

@pigi/core Documentation

66 Chapter 18. ChainService

CHAPTER 19

GuardService

GuardService ensures that user funds always remain safe. This service watches Ethereum and blocks any invalid
withdrawals of a user’s assets. If you’d like to understand more about invalid withdrawals, we’ve provided a detailed
article.

67

@pigi/core Documentation

68 Chapter 19. GuardService

CHAPTER 20

DBService

DBService handles all interaction with the user’s local database. Currently, all services talk to ChainService to
interact with the database instead of talking with DBService directly.

20.1 Backends

plasma-core uses key-value store when storing information in the database. plasma-core provides serveral
different backends for DBService depending on the user’s preference. DBService supports:

1. EphemDBProvider, an in-memory database (mostly for testing).

2. LevelDBProvider, a wrapper for LevelDB.

20.2 get

db.get(key)

Returns the value stored at the given key.

20.2.1 Parameters

1. key - String: The key to query.

69

services/chain.html
https://en.wikipedia.org/wiki/Key-value_database
http://leveldb.org/

@pigi/core Documentation

20.2.2 Returns

any: The value stored at that key.

20.3 set

db.set(key, value)

Stores a value at the given key.

20.3.1 Parameters

1. key - String: The key to set.

2. value - any: The value to store.

20.4 delete

db.delete(key)

Deletes the value at a given key.

20.4.1 Parameters

1. key - String: The key to delete.

20.5 exists

db.exists(key)

Checks if a given key is set.

20.5.1 Parameters

1. key - String: The key to check.

20.5.2 Returns

boolean: true if the key exists, false otherwise.

70 Chapter 20. DBService

	What is plasma-core?
	Contributing
	Contributing Guide and Code of Conduct
	Getting Started as a Contributor

	Architecture
	plasma-core 101
	Architecture Diagram
	External services
	Internal services

	Extending plasma-core
	What’s missing

	Reference
	Running a Terminal
	Installing Git
	Installing Node.js

	Plasma Chain Operator
	Back to Basics
	Plasma Magic
	Decentralizing the Operator

	Coin ID Assignment
	Coin IDs
	Denominations
	Examples

	Transactions Over Ranges
	Transfers
	Typed and Untyped Bounds
	Atomic Transactions
	Serialization

	Proof Structure and Verification
	What are History Proofs?
	Proof Structure
	Proof Verification

	Smart Contract and Exit Games
	Keeping Track of Deposits and Exits
	Similarities to Plasma Cash
	Block-specific Transactions
	Per-coin Transaction Validity
	Transaction Verification
	Challenges That Immediately Block Exits
	Optimistic Exits and Inclusion Challenges
	Invalid-History Challenge

	Merkle Sum Tree Block Structure
	Sum Tree Node Specification
	Parent Calculation
	Calculating a Branch’s Range
	Parsing Transfers as Leaves
	Branch Validity and Implicit NoTx
	Atomic Multisends

	JSON-RPC Calls
	pg_getBalance
	pg_getBlock
	pg_getTransaction
	pg_sendTransaction
	pg_sendRawTransaction
	pg_getHeight
	pg_getRecentTransactions
	pg_getAccounts
	pg_getTransactionsByAddress

	ContractProvider
	address
	hasAddress
	ready
	web3
	plasmaChainName
	checkAccountUnlocked
	getBlock
	getNextBlock
	getCurrentBlock
	getOperator
	getTokenAddress
	listToken
	getChallengePeriod
	getTokenId
	depositValid
	deposit
	startExit
	finalizeExit
	submitBlock

	OperatorService
	getNextBlock
	getEthInfo
	getTransactions
	getTransaction
	sendTransaction
	submitBlock

	JSONRPCService
	getAllMethods
	getMethod
	handle
	handleRawRequest

	ProofService
	checkProof

	SyncService
	ChainService
	getBalances
	addDeposits
	getExitsWithStatus
	addExit
	pickRanges
	pickTransfers
	startExit
	finalizeExits
	sendTransaction
	loadState
	saveState

	GuardService
	DBService
	Backends
	get
	set
	delete
	exists

