
PiCar Documentation
Release 2018

xz-group

Jan 02, 2019

Contents

1 Getting Started 3

2 Tutorials 5
2.1 Raspberry Pi Basics . 5

2.1.1 What is a Raspberry Pi? . 5
2.1.2 Setting up a Raspberry Pi with SSH . 5
2.1.3 Desktop Interface . 7
2.1.4 Password-less SSH . 8
2.1.5 Resources . 9

2.2 Arduino Basics . 9
2.2.1 What is an Arduino? . 9
2.2.2 Getting Started . 9
2.2.3 Todo . 10
2.2.4 Resources . 10

2.3 GitHub Basics . 10
2.3.1 What is GitHub? . 10
2.3.2 Getting Started . 10
2.3.3 Syncing a Fork . 12
2.3.4 Resources . 12

2.4 Linux Basics . 13
2.4.1 What is Linux? . 13
2.4.2 Getting started . 13
2.4.3 Resources . 15

2.5 Python Basics . 16
2.5.1 What is Python? . 16
2.5.2 Installation . 16
2.5.3 HelloWorld with Python . 16
2.5.4 Installing Python Modules . 17
2.5.5 Useful Modules . 17
2.5.6 Resources . 19

2.6 Read the Docs Basics . 19
2.6.1 What is Read the Docs? . 19
2.6.2 How to update the Docs? . 19
2.6.3 Resources . 20

3 Usage 21
3.1 Mechanical . 21

i

3.1.1 Design . 21
3.1.2 Assembly . 23

3.2 Electronics . 35
3.2.1 Raspberry Pi Pinout . 35
3.2.2 Overall Circuitry . 36
3.2.3 Pi and Arduino Communication . 37
3.2.4 PI and TFMini Lidar Communication . 44
3.2.5 Pi Camera Usage . 48
3.2.6 PI and IMU communication . 49
3.2.7 Installing ROS on Raspbian . 50

3.3 Software . 50
3.3.1 Socket File Transfer . 50
3.3.2 Sensors (Lidar, IMU) . 53
3.3.3 Camera data by rapid capturing . 53
3.3.4 Sensors & Camera concurrent reading using Timers . 54
3.3.5 Data Logging . 54
3.3.6 Data Analysis . 57

3.4 Datasheet . 58
3.4.1 RaspberryPi . 58

3.5 The Picar Module . 59

4 Results 63
4.1 IMU Autonomous Navigation . 63

4.1.1 Proposal . 63
4.1.2 Authors . 63
4.1.3 Links . 63

4.2 Power Management . 64
4.2.1 Proposal . 64
4.2.2 Authors . 64
4.2.3 Links . 64

4.3 Object Tracking in Low-Power Autonomous Systems . 64
4.3.1 Proposal . 64
4.3.2 Authors . 65
4.3.3 Links . 65

4.4 PiCar Mobile Movement Control . 65
4.4.1 Proposal . 65
4.4.2 Authors . 65
4.4.3 Links . 65

4.5 LIDAR Obstacle Avoidance . 65
4.5.1 Proposal . 65
4.5.2 Authors . 66
4.5.3 Links . 66

5 Changelogs 67

6 Contributors 69

ii

PiCar Documentation, Release 2018

PiCar A multi-purpose, robotic, lab-scale, open-source, wheeled, autonomous research platform created at Washing-
ton University in St. Louis

Click on Getting Started tab on the sidebar, use the search-bar or use any of the following links to get started.

Contents 1

PiCar Documentation, Release 2018

2 Contents

CHAPTER 1

Getting Started

The PiCar project is a miniature four-wheeled car powered by a Raspberry Pi 3 board. This lab-scale autonomous
research platform is easy to build and modify. A camera and LIDAR mounted on the car allows for complex computer
vision algorithms.

The PiCar GitHub Repository contains all the software and hardware source files required to duplicate the car, includ-
ing:

• Chassis 3D printing, and CAD sources.

• Raspberry Pi 3 breakout PCB to connect peripherals and draw power from LiPo battery (v1).

• Source code for intergrating sensors like the encoder, IMU, Lidar and camera

• Source code for controlling the PiCar, networking, computer vision, etc.

The purpose of this documentation is to create a full fledged, clear formal guide for using the PiCar project. It will
also serve as a place for showcasing results.

Where to begin:

1. A good place to start is to think about what you want your robot to do. The PiCar is intended to be a inexpensive
way to build a robust mobile robot capable of running complex algorithms.

2. Usage -> Mechanical has a list of parts you would need to build the PiCar. It also contains instructions on how to
assemble the PiCar.

Note: For your particular project, you may not need all the parts to assemble the PiCar.

• If the Dromida Buggy is not available, you may consider buying other similaryly sized (1/18th scale) chassis.

• If you are looking for having higher computational power, you could replace the Raspberry Pi with some-
thing like the NVidia Jetson TX2.

• You may not need the Current Sensors for your project.

• You could substitute the TFMini Lidar with a more powerful one like the YDLidar F4 or a less powerful
one like the SR05 Ultrasonic sensor.

3

https://github.com/xz-group/PiCar
usage/mechanical.html

PiCar Documentation, Release 2018

3. On the software side of things, we currently use Python 3 as the primary programming language for the
Raspberry Pi. Arduino uses Arduino C. If you are unfamiliar with any of these hardware or software, the
Tutorials section is a great place to start. The PiCar GitHub Repository contains all the code and also houses this
documentation.

4. Once the PiCar has been assembled, the Usage secrtion has information about how the different modules work and
how they can be controlled. It also has information about the PiCar Module or Class that is used for controlling
any aspect of the PiCar.

5. If you would like to add your results to the Results page, kindly let us know. For contributing directly to the project,
either by fixing or updating the codebase or documentation, kindly submit a GitHub pull request.

4 Chapter 1. Getting Started

tutorials.html
https://github.com/xz-group/PiCar
usage.html
results.html
https://github.com/xz-group/PiCar/pulls

CHAPTER 2

Tutorials

To help you get acquainted with the PiCar platform, the following tutorials will help you bring to speed about the
different components used.

2.1 Raspberry Pi Basics

A small crash course on setting up and using the Raspberry Pi (as a server, ftp storage, home-base, etc.)

2.1.1 What is a Raspberry Pi?

A Raspberry Pi is a credit card sized computer that can run Linux (and other OS) to do almost anything your computer
can do. It can be simply connected to a monitor/TV, keyboard and mouse and be used as a regular computer. Because
of its low power consumption, it is used as a web-server, file storage system, home automation system, etc. It can also
be connected to an Arduino to aid in robotics such as the PiCar.

2.1.2 Setting up a Raspberry Pi with SSH

Materials Required

• Raspberry Pi 3 B+ (older models will also work)

• Pi compatible power adapter

• Micro SD Card (with alteast 16GB of memory; you may need an SD card adapter to connect it to your computer)

• USB keyboard and mouse

• Access to a monitor + HDMI cable

• Access to your router, or a new router

• A laptop for remote access to the Pi

5

https://www.raspberrypi.org/

PiCar Documentation, Release 2018

Procedure

Note: If you are a Washington University student working on the PiCar project, you can skip to step 10 and use the
given IP address of the Pi to communicate with the Pi. However it is recommended to atleast glance through the steps
to see what was done.

1. Download the Raspbian Stretch with Desktop image.

2. Download Etcher

3. Install Raspbian OS to the Raspberry Pi:

• Insert SD card into your computer.

• Run Etcher.

• In Etcher, choose the downloaded Raspbian zip or image file.

• Choose the SD Card drive

Warning: Ensure to select the correct drive (SD Card) because it will be formatted.

• Flash the Raspbian image.

• Eject SD card and put it into the Raspberry Pi.

4. Connect the mouse, keyboard and monitor to the Raspberry Pi. Finally connect the power cable to turn on the
Raspberry Pi.

5. The default login credentials for the Raspberry Pi are:

• username: pi

• password: raspberry

6. Change the password to your liking by opening the terminal and typing:

sudo passwd pi

7. Use the following command to enable SSH (Secure Shell) which will be used to communicate to your computer
wirelessly.

sudo raspi-config

• Navigate to Interfacing Options >> SSH >> Enable

8. Connect the Pi to your router (which is connected to your company/university internet port) and reboot the Pi
using:

sudo reboot now

9. Get the local IP address of your Pi using:

hostname -I

• You will find your Pi’s local IP (eg: 192.168.1.123)

• Alternatively you can navigate to the router admin page to check the IP addresses of connected devices.

10. On your laptop, connect to the router and use the following instructions based on your OS:

6 Chapter 2. Tutorials

https://www.raspberrypi.org/downloads/raspbian/
https://etcher.io/

PiCar Documentation, Release 2018

Windows:

• Download Putty

• Run Putty

• For the hostname, use the IP address you got for the Pi (eg: pi@192.168.123), and click Open

Mac/Linux:

• Open terminal and type (using the Pi’s IP address):

ssh pi@192.168.1.123

11. Doing so will prompt you to enter the Pi’s new password. Enter it.

Note: The default port used by Pi for SSH is 22. As long as your router and Pi password are strong, the security risk
is minimized. Currently, SSH will only allow you to access the Pi when your computer and the Pi are connected to the
same router.

Note: The IP addresses of devices including the Raspberry Pi may change each time you reboot it. To solve this you
could either set up a static IP address for each Pi or create a way to email the IP to your email address.

2.1.3 Desktop Interface

Sometimes an terminal only interface does not suffice. We can alternatively connect to the Raspberry Pi using a VNC
(Virtual Network Computing) Viewer to see the ‘screen’ of the Pi.

Procedure

1. Login to the Pi as usual using SSH

2. Enable VNC by using the following command:

sudo raspi-config

• Navigate to Interfacing Options >> VNC >> Enable

3. Reboot the Pi

sudo reboot now

4. Install VNC Viewer on your laptop.

5. Open VNC viewer. Open a new connection: File >> New Connection

• Use the local IP of the Pi and the SSH port (22 by default)

• Use your credentials to login

6. You should be able to see the same screen that you saw when you initially connected to the Pi using HDMI

Note: For SSH connection to work, your laptop needs to be connected to the same WiFi (router) that the Raspberry
Pi is connected to.

2.1. Raspberry Pi Basics 7

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://raspberrypi.stackexchange.com/questions/37920/how-do-i-set-up-networking-wifi-static-ip-address
https://classes.engineering.wustl.edu/ese205/core/index.php?title=SSHing_into_your_Raspberry_Pi#Emailing_the_IP_address
https://www.realvnc.com/en/connect/download/vnc/

PiCar Documentation, Release 2018

2.1.4 Password-less SSH

For SHH via a private computer, you can use an SSH key pair to login to the server or Raspberry Pi without a password

Procedure

1. Open a new terminal window and type the following command to generate a SSH key pair. You will keep the
private key on your computer and send the public key to the server which will authenticate SSH connection
without the password.

ssh-keygen -t rsa

* Follow through the process. If key pair has been generated previously,
choose a new file name. A passphrase is not necessary.

2. The following commands will create a SSH directory on the Pi, upload the generated public key to to the Pi
and set the necessary permissions (replace <Pi IP Address>, <Pi SSH Port (defaut: 22)> and
<Pi username> with their respective names/numbers):

ssh_ip=<Pi IP Address>
ssh_port=<Pi SSH Port (defaut: 22)>
ssh_user=<Pi username>

ssh $ssh_user@$ssh_ip -p $ssh_port mkdir -p .ssh
cat ~/.ssh/id_rsa.pub | ssh $ssh_user@$ssh_ip -p $ssh_port 'cat >> .ssh/
→˓authorized_keys'
ssh $ssh_user@$ssh_ip -p $ssh_port "chmod 700 .ssh; chmod 640 .ssh/authorized_keys
→˓"

Note: You will need to enter the SSH password for the above steps. Also, there is no space between ssh_pi,
= and <Pi IP Address>, etc.

3. Now the SSH keys have been set up. To make the connecting via SSH even faster, do the following:

cat ~/.ssh/config

• If the ~/.ssh/config file does not exist, create one using nano:

sudo nano ~/.ssh/config

• Fill it in the following format:

Host <some unique name>
Hostname <Pi IP Address>
User <Pi username>
Port <Pi SSH Port (defaut: 22)>

• Or you can use the following command:

ssh_id=<some unique name>
echo "Host $ssh_id" >> ~/.ssh/config
echo " Hostname $ssh_ip" >> ~/.ssh/config
echo " User $ssh_user" >> ~/.ssh/config
echo " Port $ssh_port" >> ~/.ssh/config

8 Chapter 2. Tutorials

PiCar Documentation, Release 2018

• Example (in ~/.ssh/config):

Host pi-server
Hostname 192.168.1.200
User pi
Port 22

• Save the file

4. Now you can SSH in to the Pi without a password using the command:

ssh pi-server # or whatever host identifier you chose

2.1.5 Resources

• Adafruit’s Raspberry Pi Tutorial

• Instructables Raspberry Pi Projects

2.2 Arduino Basics

A small crash course on the Arduino micro-controller.

2.2.1 What is an Arduino?

Arduino is an open-source electronics platform based on easy-to-use hardware and software. It’s intended for anyone
making interactive projects. We will be using the Arduino micro-controller to interface with the motor and servo(s).

2.2.2 Getting Started

Materials Required

• Arduino UNO

• UNO compatible USB cable

• A laptop or computer for programming the Arduino

Procedure

1. Download and install the Arduino IDE (Integrated development environment) for your OS

2. Launch the Arduino IDE.

3. Connect the Arduino UNO to your computer via a USB cable.

4. Go to File >> Examples >> 01. Basics >> Blink

5. Choose the correct board by navigating to Tools >> Board >> Arduino/Genuino UNO

6. Choose the correct board by navigating to Tools >> Port >> COMx (Arduino UNO) on Windows or
/dev/ttyACMx on Linux

7. Click the Upload button (arrow pointing to the right).

2.2. Arduino Basics 9

https://learn.adafruit.com/series/learn-raspberry-pi
http://www.instructables.com/howto/?sort=none&q=raspberry+pi
https://www.arduino.cc/
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.arduino.cc/en/Main/Software

PiCar Documentation, Release 2018

8. You should see that the on-board LED on the Arduino (pin 13) blinks every second.

9. You can also hook up an external LED to the GND and digital pin 13 to make the that LED blink.

10. Try changing delay(1000) to delay(3000) and see what happens

11. You have successfully completed your first Arduino program.

2.2.3 Todo

• Fetch sensor data

• Program servo

2.2.4 Resources

• LadyAda’s Arduino tutorial

• Adafruit’s Arduino tutorial

• Instructables Arduino projects

2.3 GitHub Basics

2.3.1 What is GitHub?

GitHub is a code hosting platform for version control, backups and collaboration. It lets you and others work together
on projects from anywhere.

2.3.2 Getting Started

Procedure

1. If you haven’t already, create a GitHub account.

2. On a browser, navigate to the PiCar GitHub Repository

3. Fork the repo to create a copy of the master PiCar repo on your account.

4. Under your repositories navigate to your version of the PiCar repo.

5. Clone (download) the repo to your computer

Windows

• Download and install GitHub Desktop

• Login to your GitHub account

Linux / Mac

• Copy the cloning link from your forked repo.

• Install Git:

sudo apt-get install git

10 Chapter 2. Tutorials

http://www.ladyada.net/learn/arduino/
https://learn.adafruit.com/lesson-0-getting-started
http://www.instructables.com/howto/arduino/
https://github.com/
https://github.com/
https://github.com/xz-group/PiCar
https://desktop.github.com/

PiCar Documentation, Release 2018

• Make a new directory and navigate to it:

mkdir projects/github
cd projects/github

• Clone the repo (replace <username> with your GitHub username)

git clone https://github.com/<username>/PiCar.git

6. Once you have made changes to the code or documentation, you need to commit the changes to the remote repo.

Windows

• GitHub Desktop will automatically track changes you have made to the local repo.

• Click on the pull repository icon to update your local branch with the remote branch

• Enter a commit message and hit the Commit button

• Click on the push repository icon to update the remote branch with your local branch

Linux / MacOS

• Inside the PiCar repository, using terminal:

git pull
git add *
git commit -m "your message here"

• git pull updates your local repo with the remote repo

• git add * checks your local repo for changes and aggregates them for commits

• git commit saves the new version and has a unique hash identifier

• If you want to find that hash, you can use git rev-parse --short HEAD to fetch it.

Note: It is helpful to leave useful commit messages so that other contributors can see what you have
done.

7. Push your changes to the master branch of your forked repo.

git push

• It will prompt you for your username and password, enter them.

8. Once the local changes have been pushed to remote successfully, go back to the original Picar GitHub Reposi-
tory.

9. Click on Pull Requests >> New Pull Request >> Compare against forks

10. The base fork should be xz-group/PiCar; change the headfork to <username>/PiCar

11. You can see what changes (additions and deletions) will be created with the Pull Request. Add a title and a short
description and submit the Pull Request.

12. If you are a direct contributor on the main repo, you can navigate to Picar GitHub Repository >> Pull
Requests >> Merge Pull Request as long as there are no conflicts. If you’re not a direct contribu-
tor, you will need to wait until your Pull Request is merged with the master branch.

2.3. GitHub Basics 11

https://github.com/xz-group/PiCar
https://github.com/xz-group/PiCar
https://github.com/xz-group/PiCar

PiCar Documentation, Release 2018

Note: Google and StackOverflow are your friends. Use them when you run into an issue with git (merge conflicts,
etc.).

2.3.3 Syncing a Fork

If the main branch of the repository is ahead of your forked repo, you will need to sync your repo with the main one.

1. Navigate to the directory containing your forked repo.

2. Add a new remote called upstream which essentially points to the main repository:

git remote add upstream https://github.com/xz-group/PiCar.git

3. Verify the remotes:

git remote -v

You should see something like:

origin https://github.com/username/PiCar.git (fetch)
origin https://github.com/username/PiCar.git (push)
upstream https://github.com/xz-group/PiCar.git (fetch)
upstream https://github.com/xz-group/PiCar.git (push)

4. Grab the latest version of the upstream remote:

git fetch upstream

5. Merge your local branch with upstream:

git checkout master
git merge upstream/master

Warning: If there are conflicts between your local repo due to you having changed files that have other commits
in the main repo, you will have to fix those conflicts before being able to merge.

6. Push your changes to your remote repository:

git push origin master

7. After making changes, submit a pull request as usual.

2.3.4 Resources

• GitHub Guide

• Forking repositories

• Syncing a fork

• Pushing to remote

• Do not be afraid to commit

12 Chapter 2. Tutorials

https://stackoverflow.com/
https://guides.github.com/activities/hello-world/
https://help.github.com/articles/fork-a-repo/
https://stackoverflow.com/a/19506355
https://help.github.com/articles/pushing-to-a-remote/#pushing-a-branch
http://dont-be-afraid-to-commit.readthedocs.io

PiCar Documentation, Release 2018

2.4 Linux Basics

2.4.1 What is Linux?

Linux is an open-source operating system. It is the underlying operating system on which many popular operating
systems like Android, Ubuntu, Raspbian and MacOS are based on.

2.4.2 Getting started

General Linux Commands

1. SSH into a Raspberry Pi or use a computer with Ubuntu.

2. Try out the following commands in the terminal:

Make (create) directory with name foo

mkdir foo

List Files

ls

Change directory to foo

cd

Print Working Directory

pwd

Create Python script

nano helloworld.py

Note: nano is the simplest Terminal based editor you can use. You can also use vi. If you are on the Desktop (via
HDMI or VNC), you can use graphical editors like gedit and Atom.

Within helloworld.py, type the following:

print("Helloworld!")

• Save the file using Ctrl + X >> Y >> Enter

Run the Python script

python helloworld.py

• This should output HelloWorld!

Concatenate (get contents) of a file

cat helloworld.py

• This should output print("Helloworld!")

2.4. Linux Basics 13

PiCar Documentation, Release 2018

Copy file helloworld.py to copy_of_helloworld.py

cp helloworld.py copy_of_helloworld.py

• Try ls now.

Move file (copy_of_helloworld.py) to new directory bar

mkdir bar
mv copy_of_helloworld.py bar/

Note: Sometimes, typing the entire filename or command takes too long. In cases like this you can use Tab
Completion to quickly type the commands. You write the partial file/directory name or command and press Tab to
complete it (or choose from possible options by double tapping Tab).

Note: Use the UP Arrow Key to use the fetch the previously used command.

Rename file (copy_of_helloworld.py) to (renamed_helloworld.py)

cd bar/
mv copy_of_helloworld.py renamed_helloworld.py

Go back a directory level

cd ..

Delete a file or directory

rm bar/renamed_helloworld.py
rm bar -R

Manual for a command

man rm
man sudo

Update and upgrade your Linux packages

sudo apt-get update
sudo apt-get upgrade

Note: sudo is akin to an admin. Using it will sometimes ask you to enter the user’s password.

Installing a new package like htop

sudo apt-get install htop
htop

Note: htop is a great terminal way of checking how much processing power and memory your computer is using.

Pinging a website like www.google.com

14 Chapter 2. Tutorials

PiCar Documentation, Release 2018

ping www.google.com

Show network configuration

ifconfig
iwconfig

Check date

date

Clear screen

clear

Check version of an installed package

htop -v

Get local and global IP

hostname -I
curl ifconfig.me

Disk space information

df -h

Raspberry Pi Specific Commands

Check the pinouts on the Raspberry Pi

pinout
gpio readall

Lists connected USB hardware

lsusb

Show Raspberry Pi CPU Temperature

vcgencmd measure_temp

Show CPU & GPU memory split

vcgencmd get_mem arm && vcgencmd get_mem gpu

Note: If you need more than one Terminal open at one time, and you do not want too many new Terminal windows,
you can use Ctrl + Shift + T.

2.4.3 Resources

• Digital Ocean’s Linux Intro

2.4. Linux Basics 15

https://www.digitalocean.com/community/tutorials/an-introduction-to-linux-basics

PiCar Documentation, Release 2018

• Fundamental and common Linux commands

2.5 Python Basics

2.5.1 What is Python?

Python is a programming language that lets you work quickly and integrate systems more effectively. We will be using
it for programming the Raspberry Pi, data aggregation, data transfer and data anaylsis. Python 2.7 and Python 3 are
the most popular versions of Python.

2.5.2 Installation

Windows

• Download and install the Python setup from Python Releases for Windows

• Download Eclipse or a similar IDE and follow this tutorial for setting up Python on Eclipse

Mac

• Python 2.7 comes pre-installed with the Mac OS X 10.8 +.

• To install and use other versions of Python on a Mac, use the tutorial on Using Python on a Macintosh

Linux

• Python (2.7 and 3.4) usually comes preinstalled with major distributions of Linux. You can test if Python
is installed using the following commands in the terminal:

python --version
python2 --version
python3 --version

• If you get a message saying no command found or package is missing, you can install it using:

sudo apt-get install python
sudo apt-get install python3

2.5.3 HelloWorld with Python

Create a new file called helloworld.py using the IDE for Windows/Mac or using nano on Linux and enter the
following Python code:

print("HelloWorld!")

Save and run the file. On the IDE it would be via clicking a Run Python Script button and via terminal you
need to type python helloworld.py. The output should simply be the following:

HelloWorld!

16 Chapter 2. Tutorials

https://www.raspberrypi.org/documentation/linux/usage/commands.md
https://www.python.org/
https://www.python.org/downloads/release/python-2715/
https://www.python.org/downloads/release/python-365/
https://www.python.org/downloads/windows/
https://www.eclipse.org/downloads/
https://www.rose-hulman.edu/class/csse/resources/Eclipse/eclipse-python-configuration.htm
https://docs.python.org/3/using/mac.html

PiCar Documentation, Release 2018

2.5.4 Installing Python Modules

What makes Python so powerful is the plethora of packages made to allow a programmer do a lot of things like web-
parsing, plotting, simulation, computer vision, machine learning or simply getting the weather. Use the official guide
for Installing Python Packages to get things set up.

Windows

• Use the py Python launcher in combination with the -m switch:

py -2 -m pip install SomePackage # default Python 2
py -2.7 -m pip install SomePackage # specifically Python 2.7
py -3 -m pip install SomePackage # default Python 3
py -3.4 -m pip install SomePackage # specifically Python 3.4

Mac / Linux

• Install pip which is a Python Package Installer

sudo apt-get install python-pip
sudo apt-get install python3-pip

• Install Python modules using pip:

pip2 install SomePackage # short hand installation for Python 2
pip3 install SomePackage # short hand installation for Python 2

or

python2 -m pip install SomePackage # default Python 2
python2.7 -m pip install SomePackage # specifically Python 2.7
python3 -m pip install SomePackage # default Python 3
python3.4 -m pip install SomePackage # specifically Python 3.4

Note: If you get an Permission denied while using pip, you can append the command with --user. Ex-
ample: pip install matplotlib --user. It is not recommended to use sudo to install packages using
pip.

Note: It is highly recommended to install the Python module called IPython. It significantly improves upon the
vanilla version of Python command line (terminal) interface.

2.5.5 Useful Modules

The official list of useful modules does not begin to cover the vast number of modules available for different tasks, but
it is a good place to start. Some of them are listed below:

Computer Vision

• openCV (https://pypi.org/project/opencv-python/)

2.5. Python Basics 17

https://docs.python.org/3/installing/index.html
http://ipython.org/
https://wiki.python.org/moin/UsefulModules
https://pypi.org/project/opencv-python/

PiCar Documentation, Release 2018

Cloud Intergration

• Amazon Web Services (https://aws.amazon.com/python/)

• Google Cloud (https://googlecloudplatform.github.io/google-cloud-python/)

GUIs (Graphical User Interfaces)

• PyGObject (https://pygobject.readthedocs.io/en/latest/)

• tKinter (https://docs.python.org/2/library/tkinter.html)

• wxPython (https://wxpython.org/)

Data Science & Scientific Computing

• NumPy (http://www.numpy.org/)

• SciPy (https://www.scipy.org/)

• pandas (https://pandas.pydata.org/)

• parquet (https://arrow.apache.org/docs/python/parquet.html)

Interactive Python

• IPython (http://ipython.org/)

• Jupyter Notebook (http://ipython.org/)

Games & Simulations

• Pygame (http://www.pygame.org/news.html)

• Pyglet (http://www.pyglet.org/)

Machine Learning

• TensorFlow (https://www.tensorflow.org/install/)

• Keras (https://keras.io/)

Networking

• Twisted (https://twistedmatrix.com/trac/)

Plotting & Data-visualization

• matplotlib (https://matplotlib.org/)

• seaborn (https://seaborn.pydata.org/)

• plotly (https://plot.ly/)

18 Chapter 2. Tutorials

https://aws.amazon.com/python/
https://googlecloudplatform.github.io/google-cloud-python/
https://pygobject.readthedocs.io/en/latest/
https://docs.python.org/2/library/tkinter.html
https://wxpython.org/
http://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://arrow.apache.org/docs/python/parquet.html
http://ipython.org/
http://ipython.org/
http://www.pygame.org/news.html
http://www.pyglet.org/
https://www.tensorflow.org/install/
https://keras.io/
https://twistedmatrix.com/trac/
https://matplotlib.org/
https://seaborn.pydata.org/
https://plot.ly/

PiCar Documentation, Release 2018

Web Scraping

• BeautifulSoup (https://www.crummy.com/software/BeautifulSoup/)

• Scrapy (http://www.scrapy.org/)

Miscellaneous

• pint (https://pint.readthedocs.io/en/latest/) Define, operate and manipulate physical quantities

2.5.6 Resources

• Style Guide for Python

• Automate the Boring Stuff

2.6 Read the Docs Basics

2.6.1 What is Read the Docs?

Read the Docs simplifies software documentation by automating building,versioning, and hosting of your docs for
you. We use it to keep the PiCar documentation organized and updated. If you make a significant change to the
PiCar repository or project, you are recommended to update the Read the Docs documentation for PiCar. It uses
reStructuredText file format to build the HTML files using Sphinx.

2.6.2 How to update the Docs?

1. Fork and clone the PiCar Github repository

2. Navigate to the ../readthedocs directory:

cd PiCar/docs/readthedocs

3. The documentation is currently ordered as the following:

index.rst
conf.py
chapters/
introduction.rst
tutorials.rst
usage.rst
tutorials/

raspberry_pi_tutorial.rst
arduino_tutorial.rst
github_tutorial.rst
linux_tutorial.rst
readthedocs_tutorial.rst

usage/
mechanical
electronics
software

changelogs.rst
contributors.rst

2.6. Read the Docs Basics 19

https://www.crummy.com/software/BeautifulSoup/
http://www.scrapy.org/
https://pint.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-0008/
https://automatetheboringstuff.com/chapter1/
http://docs.readthedocs.io/en/latest/index.html
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/master/
https://github.com/xz-group/PiCar

PiCar Documentation, Release 2018

4. It is recommended to use a comprehensive text editor like Atom or Sublime text. Atom can be installed by:

sudo add-apt-repository ppa:webupd8team/atom
sudo apt-get update
sudo apt-get install atom

• Atom can be launched in the ../readthedocs directory by:

atom .

Note: For more information on the different commands available for .rst type files, check out the Rest and Sphinx
memo.

5. After making a change in an .rst , go back to ../readthedocs and enter the command to build the html pages:

make html

6. To preview the changes, navigate to ../readthedocs/_build/html and open index.html in a
browser.

Note: The PiCar Read the Docs is using the sphinx_rtd_theme theme. This can be change in the ../
readthedocs/conf.y file. The version number, project name, authors, language support can be changed here
too.

Warning: ReadtheDocs is very strict with indentation and formating. Check warning messages (with the associ-
ated line number) to fix issues.

7. Once you have made changes without errors and warnings and are satisfied with the updated documentation,
submit a pull request to the latest Github branch.

Warning: You have to run make html and check the HTML output before pushing your changes, otherwise
the expected HTML changes will not be rendered.

Note: If you want to create readthedocs style documentation for an entirely new repository, or you want to test and
see how the HTML pages looks online, you will need to create a readthedocs account (either import your GitHub
account or create a new one), and import that specific repository. This ensures that when new commits are submitted,
the docs are updated automatically as well.

2.6.3 Resources

• Rest and Sphinx Memo

Note: Some of the tutorials will be in the general sense of the components, like Linux, etc., while others will specific
to the PiCar project.

20 Chapter 2. Tutorials

http://rest-sphinx-memo.readthedocs.io/en/latest/ReST.html
http://rest-sphinx-memo.readthedocs.io/en/latest/ReST.html
https://readthedocs.org/
http://rest-sphinx-memo.readthedocs.io/en/latest/ReST.html

CHAPTER 3

Usage

The project is split into three parts:

3.1 Mechanical

The mechanical documentation involves designing, 3D printing and assembling the PiCar chassis

Caution: The mechanical design and assembly of the PiCar will continue being modified over the course of the
research. The following guide reflects the earliest version of PiCar v2.0.

3.1.1 Design

For the base chassis of PiCar v2, we will be using the Dromida 1/18 Scale Buggy. To retrofit it with sensors
and micro-controllers, we will be adding some 3D printed parts.

CAD

The parts are designed using Autodesk Fusion 360. We will be splitting the chassis into three layers, connected with
spacers for better management:

Layer Zero

• Dromida buggy (without cover)

• DC Motor (drive)

• Servo (steer)

• Encoder

• ESC (Electronic Speed Controller)

21

https://www.autodesk.com/products/fusion-360

PiCar Documentation, Release 2018

Layer One

• Raspberry Pi

• Arduino

• Lipo Battery(s)

• Current sensors

• IMU (Intertial Measurement Unit)

Layer Two

• Servo (LIDAR)

• TFMini LIDAR

• PiCamera

Materials Required

Component Price
($)

Quan-
tity

Sub-
total
($)

Store Link

Dromida 1/18
Buggy 4WD RTR

99.99 1 99.99 https://www.dromida.com/surface/didc0049-bx4wd/index.php

ISC25 Rotary En-
coder

39.95 1 39.95 http://www.rotaryencoder-yumo.com/products/
isc25-series-solid-shaft-incremental-rotary-encoder-ID84.html

20T 48P 4mm bore
Pinion Gear

6.29 1 6.29 https://www.amazon.com/dp/B00A1E19VE

Arduino UNO Rev
3

24.95 1 24.95 https://www.sparkfun.com/products/11021

Raspberry Pi 3 B+ 39.95 1 39.95 https://www.sparkfun.com/products/14643
32GB MicroSD
Card

12.99 1 12.99 https://www.amazon.com/dp/B06XWN9Q99

IMU 9DoF Sensor
Stick

14.95 1 14.95 https://www.sparkfun.com/products/13944

Raspberry Pi Cam-
era Module V2

29.95 1 29.95 https://www.sparkfun.com/products/14028

TrackStar 5050kv
Motor + ESC

37.94 1 5.76 https://hobbyking.com/en_us/trackstar-1-18th-scale-12t-brushless-power-system-5050kv.
html

TowerPro SG90
Micro Servo

3.72 1 3.72 https://www.amazon.com/dp/B01608II3Q

TFMini - Micro Li-
DAR Module

39.95 1 39.95 https://www.sparkfun.com/products/14588

Turnigy 1000mAh
2S 20C LiPo

14 1 14 https://www.amazon.com/Turnigy-1000mAh-Lipo-HobbyKing-Battery/
dp/B0072AEHIC

M2.5 Standoffs
Assortment

11.89 1 11.89 https://www.amazon.com/gp/product/B01L06CUJG/

Current Sensors
(optional)

9.95 6 59.7 https://www.digikey.com/product-detail/en/
adafruit-industries-llc/1164/1528-1807-ND/6565386

To-
tal

404.04

22 Chapter 3. Usage

https://www.dromida.com/surface/didc0049-bx4wd/index.php
http://www.rotaryencoder-yumo.com/products/isc25-series-solid-shaft-incremental-rotary-encoder-ID84.html
http://www.rotaryencoder-yumo.com/products/isc25-series-solid-shaft-incremental-rotary-encoder-ID84.html
https://www.amazon.com/dp/B00A1E19VE
https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/14643
https://www.amazon.com/dp/B06XWN9Q99
https://www.sparkfun.com/products/13944
https://www.sparkfun.com/products/14028
https://hobbyking.com/en_us/trackstar-1-18th-scale-12t-brushless-power-system-5050kv.html
https://hobbyking.com/en_us/trackstar-1-18th-scale-12t-brushless-power-system-5050kv.html
https://www.amazon.com/dp/B01608II3Q
https://www.sparkfun.com/products/14588
https://www.amazon.com/Turnigy-1000mAh-Lipo-HobbyKing-Battery/dp/B0072AEHIC
https://www.amazon.com/Turnigy-1000mAh-Lipo-HobbyKing-Battery/dp/B0072AEHIC
https://www.amazon.com/gp/product/B01L06CUJG/
https://www.digikey.com/product-detail/en/adafruit-industries-llc/1164/1528-1807-ND/6565386
https://www.digikey.com/product-detail/en/adafruit-industries-llc/1164/1528-1807-ND/6565386

PiCar Documentation, Release 2018

Warning: The 7.4V LiPo battery must be used with care. Use a voltmeter or battery checker to ensure that the
battery voltage does not drop below 30%.

Note: If the 48P 20T 4mm bore Pinion Gear cannot be found, buy a 48P 20T Pinion Gear and use a drill to
create a 4mm bore (shaft diamater).

3.1.2 Assembly

Tools Required:

• Dremel kit (with drill and sanding bits)

• Screw drivers

• Pliers

1. Download the Fusion 360 CAD files, convert them to STL and 3D print them.

• Encoder Mount: https://a360.co/2DUNNK6

• First Layer: https://a360.co/2RquoDs

• Second Layer: https://a360.co/2OBMGmP

• Camera: https://a360.co/2QQB4dp

2. For PiCar v2.0, the Dromida 1/18th Scale Buggy was used:

Fig. 1: Dromida 1/18th Scale Buggy

3.1. Mechanical 23

https://a360.co/2DUNNK6
https://a360.co/2RquoDs
https://a360.co/2OBMGmP
https://a360.co/2QQB4dp

PiCar Documentation, Release 2018

3. Remove the plastic covering and unplug the NiMh battery. We will be using a LiPo battery to power the PiCar.

Fig. 2: Buggy with plastic casing and battery removed

4. Unscrew, and remove the rear gear covering and the plastic spline that goes along the center of the car.

5. Unscrew the plastic cover for the ESC (Electronic Speed Controller). Unplug the motor and servo connectors from
the ESC. Remove the motor from the car. Do not remove the servo.

6. Unscrew the metallic motor mount. Pull out the plastic ‘pillar’ on the left of the rear gear.

7. Since we are using a rotary encoder for the low level speed controller, we need to ensure that the encoder
meshes with the rear gear. Using the dremel and a sanding tool, carefully clear away the plastic from the gear as
shown.

Ensure that the encoder with its pinion gear meshes with the rear gear and is not blocked by the plastic casing.

8. Screw in the printed encoder mount to the encoder and place it on the chassis as shown in the figure:

Ensure that the rear gear rotates along with the encoder gear with little to no friction. Holding the encoder in
place, using a long narrow tipped screwdriver or nail or drill-bit, mark where the mounting holes would go. Drill 2mm
holes in those points and mount the encoder either by using screws on the bottom of the chassis (recommened),
or from the top.

9. Replace the Dromida motor with the TrackStar Motor. Screw the motor mount back in.

10. Now we are going to begin adding the layers that hold the electronics. Drill 2mm holes as specified in the following
figure:

24 Chapter 3. Usage

PiCar Documentation, Release 2018

Fig. 3: Rear gear covering and spine removed

3.1. Mechanical 25

PiCar Documentation, Release 2018

Fig. 4: ESC removed

26 Chapter 3. Usage

PiCar Documentation, Release 2018

Fig. 5: Motor removed

3.1. Mechanical 27

PiCar Documentation, Release 2018

Fig. 6: Plastic cleared away for meshing Encoder

28 Chapter 3. Usage

PiCar Documentation, Release 2018

Fig. 7: Placed the encoder

3.1. Mechanical 29

PiCar Documentation, Release 2018

Fig. 8: Replaced the default motor with the TrackStar motor.

30 Chapter 3. Usage

PiCar Documentation, Release 2018

Fig. 9: Drilled holes to mount the first printed layer

3.1. Mechanical 31

PiCar Documentation, Release 2018

Note: It may be more convenient to use the corner mounting holes as a guide to mark the locations of the holes on
the base.

11. Connect the TrackStar ESC to the motor using the color coded wires. Reattach the spine:

Fig. 10: ESC connected

12. Before we mount the printed first layer to the car using spacers, it may help to mount the IMU,
Raspberry Pi, and the Arduino to the first layer.

Pre-requisites for this step:

• Create a common GND and +5V channel (we used a broken off piece from a small breadboard)

• Wire the IMU and mount it to the first layer using a screw.

• Mount the Arduino and Raspberry Pi in their respective positions using spacers.

Post-requisites for this step:

• Connect the steering servo, ESC and the encoder to the Raspberry Pi using us-
age/electronics.html

• Mount the printed first layer to the chassis using spacers (preferably metal ones)

13. Mount the printed second layer to the chassis using the spacers.

14. Again, using usage/electronics.html as a guide, complete the electrical assembly for the second layer.

This includes:

• Connecting a relay that acts as a kill switch

• Connecting the SPI / I2C communication between the Raspberry Pi and the Arduino

• Connecting the IMU to the Raspberry Pi

Now the PiCar is usable, and should look like this:

32 Chapter 3. Usage

electronics.html
electronics.html
electronics.html

PiCar Documentation, Release 2018

Fig. 11: First Layer Setup

Fig. 12: Second Layer Setup

3.1. Mechanical 33

PiCar Documentation, Release 2018

Fig. 13: PiCar: Side View

Fig. 14: PiCar: Isometric View

34 Chapter 3. Usage

PiCar Documentation, Release 2018

15. Once the base PiCar has been built, you can add the Lidar, PiCamera, etc. using the 3D printed mounts, and
wire them accordingly.

Ending notes:

• The LiPo battery sits in the first layer, behind the microcontrollers.

• For the time being, we are using a compact power bank to power the Raspberry Pi, which in
turn powers the Arduino via USB.

3.2 Electronics

The electronics section will deal with interfacing the Raspberry Pi and Arduino with the sensors and actuators.

3.2.1 Raspberry Pi Pinout

The Pi pinout image is often used as a reference because the GPIO pins on the board are often labelled.

3.2. Electronics 35

PiCar Documentation, Release 2018

3.2.2 Overall Circuitry

Wiring Simple

Wiring Schematics

36 Chapter 3. Usage

PiCar Documentation, Release 2018

Warning: The circuits are always prone to change, use with caution.

3.2.3 Pi and Arduino Communication

There are three commonly used to communicate between the Arduino and the Raspberry Pi.

1. I2C

2. SPI

3. Serial

Note: Most teams who used the PiCar platform recommended using Serial communication for its ease of use.

I2C Method

The code is from here, with slight changes to accommodate Python 3 instead of Python 2.

3.2. Electronics 37

https://oscarliang.com/raspberry-pi-arduino-connected-i2c/

PiCar Documentation, Release 2018

Wiring

Rasberry Pi 3 arduino Uno
GND GND
SDA (pin3) SDA (The pin above AREF)
SCL (pin5) SCL (The pin above SDA)

And you can power arduino by usb on pi or on your labtop

Upload Arduino code to Arduino board

The testing code is:

1 #include <Wire.h>
2 #define SLAVE_ADDRESS 0x04
3 int number = 0;
4 int state = 0;
5

6 void setup() {
7 pinMode(13, OUTPUT);
8 Serial.begin(9600);
9

10 // initialize i2c as slave
11 Wire.begin(SLAVE_ADDRESS);
12

13 // define callbacks for i2c communication
14 Wire.onReceive(receiveData);
15 Wire.onRequest(sendData);
16 Serial.println("Ready!");
17 }
18

19 void loop() {
20 delay(100);

(continues on next page)

38 Chapter 3. Usage

PiCar Documentation, Release 2018

(continued from previous page)

21 }
22

23 // callback for received data
24 void receiveData(int byteCount){
25 while(Wire.available()) {
26 number = Wire.read();
27 Serial.print("data received: ");
28 Serial.println(number);
29 if (number == 1){
30 if (state == 0){
31 digitalWrite(13, HIGH); // set the LED on
32 state = 1;
33 }
34 else{
35 digitalWrite(13, LOW); // set the LED off
36 state = 0;
37 }
38 }
39 }
40 }
41

42 // callback for sending data
43 void sendData(){
44 Wire.write(number);
45 }

Run the python code on the Raspberry Pi

The testing code is:

1 import smbus
2 import time
3

4 bus = smbus.SMBus(1)
5

6 # This is the address we setup in the Arduino Program
7 address = 0x04
8

9 def writeNumber(value):
10 bus.write_byte(address, value)
11 return -1
12

13 def readNumber():
14 number = bus.read_byte(address)
15 return number
16

17 while True:
18 var = int(input("Enter 1 ^ ^ 9: "))
19 if not var:
20 continue
21

22 writeNumber(var)
23 print("RPI: Hi Arduino, I sent you ", var)
24 # sleep one second for debug
25 time.sleep(1)
26

27 number = readNumber()

(continues on next page)

3.2. Electronics 39

PiCar Documentation, Release 2018

(continued from previous page)

28 print("Arduino: Hey RPI, I received a digit ", number)
29 print()

See Also:

• SMBus Package

Tip: To open i2c bus0 on raspberry pi, you need to change the file /boot/config.txt

Under the i2c section, the txt should be

#Uncomment some or all of these to enable the optional hardware interfaces

dtparam=i2c_arm=on

dtparam=i2c_vc=on

dtparam=i2c_baudrate=1000000

#dtparam=i2s=on

device_tree_param=i2c0=on

device_tree_param=i2c=on

dtparam=spi=on

Then you can use the bus0 for i2c.

SPI Method

Wiring

Rasberry Pi 3 Arduino UNO
GND GND
MOSI (Pin 19) MOSI (Pin 11)
MISO (Pin 21) MISO (Pin 12)
SCLK (Pin 23) SCLK (Pin 13)
cell0 (Pin 24) SS (Pin 10)

and you can choose to power the arduino using USB cable on Pi or on your laptop.

SPI on arduino

First the MISO pin has to be defined as an output pin. All other pins are configured automatically as input pins if the
SPI is enabled:

pinMode(MISO, OUTPUT);

Second the SPI enable bit needs to be set:

SPCR |= _BV(SPE);

Reading and writing of SPI data is performed through SPDR. Programmatically you can treat SPDR as you would a
variable. To read the contents of SDPR, it can either be accessed directly, or another variable can be set equal to it:

40 Chapter 3. Usage

https://pypi.org/project/smbus-cffi/

PiCar Documentation, Release 2018

i = SPDR;

To load the data register with a value to transmit back to the master, the statement is reversed:

SPDR = i;

At the hardware level SPDR includes both an 8-bit shift register and an 8-bit receive buffer. When the slave is receiving
data, that data is shifted into the shift register one bit at a time while the original 8-bits in the register are shifted back
to the master. When a complete byte has been shifted into the register, that byte is then copied into the receive buffer.
The receive buffer won’t be updated again until the next complete byte is received.

Note: This means if the pi(master) wants to read from arduino(slave), it has to send something first !!

Code:

code on arduino

/***
SPI_Hello_Raspi
Configures Arduino as an SPI slave and demonstrates
bidirectional communication with an Raspberry Pi SPI master

**/

#include <SPI.h>

byte c = 0;

/***
Setup SPI in slave mode (1) define MISO pin as output (2) set
enable bit of the SPI configuration register

**/

void setup (void)
{

Serial.begin(9600);
pinMode(MISO, OUTPUT);
SPCR |= _BV(SPE);

}

/***
Loop until the SPI End of Transmission Flag (SPIF) is set
indicating a byte has been received. When a byte is
received, load the byte,print it, and put 0x08 into SPDR for pi
to read

**/

void loop (void)
{

if((SPSR & (1 << SPIF)) != 0)
{
//arduino should receive 3 and 4
//and send 8 to pi
c = SPDR;
Serial.print("we received: ");

(continues on next page)

3.2. Electronics 41

PiCar Documentation, Release 2018

(continued from previous page)

Serial.println(c);
SPDR = 8;

}

}

Python code on Pi(make sure you have pigpio installed and running by sudo pigpiod in terminal):

#!/usr/bin/env python

import time,pigpio

#open spi
pi = pigpio.pi()

if not pi.connected:
exit(0)

h = pi.spi_open(0, 40000)

#function for communicating with arduino
def communicate():

while True:
#first send byts to arduino
pi.spi_write(h,b'\x03\x04')

#sleep 1 second and read 1 byte
time.sleep(1)
#pi shoudl receive 0x08, which is sent from arduino
#spi_read returns a tuple, first is the number of bytes read,
#second is the byte array contains the bytes
(count,data) = pi.spi_read(h,1)
#at the same time for reading, arduino will receive 1 byte, which is 0x00
#Why? remember in order to read, the pi has to send something to the arduino

→˓first !
#By default, it will write 0 to arduino in order to read.
print("we get %s" % data)

if __name__ == '__main__':
try:

communicate()
except:

pi.spi_close(h)
pi.stop()

The arduino should continueously print 3,4 and 0 (for pi reading purpose) and pi should receive and print 0x08.

Resources

• Pi_Arduino_SPI_communication

42 Chapter 3. Usage

http://robotics.hobbizine.com/raspiduino.html

PiCar Documentation, Release 2018

Serial Method

Wiring

Connect arduino USB port to one of the USB port on raspberry pi

Code

The code is under PiCar/src/Pi_Arduino_Communication/serial

On python side, it will continuously ask you to input a float, send it to arduino.

On arduino side, once the float is sent, it will recive the data and then send it back to pi.

Difference compared with I2C and SPI

As Serial communication is well studied, we are able to send and read block of bytes on pi side.

As a result, it is much more convenient to send data more than 1 byte (discussed in next section).

Sending more than one byte between Pi and Arduino

Reason

The above basic communication (i2c,spi) allows us to send one byte between pi and arduino. However, if we want to
send data that is more than one byte, such as float, the above method does not work. We first thought this is a well
developed problem, and there should be easy function being called to send block of data. However, the truth is that as
far as we searched, none of the proposed solution works. We come out this example for sending float between pi and
arduino. If you want to develop data other than float, you are welcomed to do so.

Wiring

Same as I2C section or SPI section did

Code

The code for this is under PiCar/src/Pi_Arduino_Communication each subfolder(i2c,spi,serial) contains
two files, .ino file should run on arduino, and .py file should run on raspberry pi.

Note: The key for communication is to write a simple protocol, and split a float into 4 bytes, so we can send 1 byte
each time.

I2C by GPIO(General-purpose input/output)

Reason

Sometimes, we may want to save I2C pin to other device, or we may want to connect multiple arduino to raspberry pi.
In this sections, we will use GPIO pins to connect our arduino by i2c.

Wiring

Rasberry Pi 3 Arduino UNO
GND GND
Pin 19 SDA (pin above AREF)
Pin 13 SCL (pin above SDA)

And you can power Arduino in whatever way you want.

3.2. Electronics 43

PiCar Documentation, Release 2018

Code

The arduino code is the same as above (I2C section)

The following is the code on Pi, make sure you have pigpio installed and running.

import pigpio
import time

pi = pigpio.pi()
address = 0x04

SDA = 19
SCL = 13

def communication():

while True:
connection = pi.bb_i2c_open(SDA,SCL,9600)
var = int(input("Enter 1 ^ ^ 9: "))
if not var:

continue
pi.bb_i2c_zip(SDA,[4,address,0x02,0x07,0x01,var,0x03,0x00])
print("RPI: Hi Arduino, I sent you ", var)

time.sleep(1)

number = pi.bb_i2c_zip(SDA,[4,address,0x02,0x06,0x01,0x03,0x00])
print("Arduino: Hey RPI, I received a digit ", number)
print()

pi.bb_i2c_close(SDA)

if __name__ == '__main__':
try:

communication()
except:

pi.bb_i2c_close(SDA)

Resources

• pigpio documentation

3.2.4 PI and TFMini Lidar Communication

Setup

To search for available serial ports, enter the following command in terminal:

dmesg | grep tty

If the output looks like:

44 Chapter 3. Usage

http://abyz.me.uk/rpi/pigpio/python.html

PiCar Documentation, Release 2018

pi@raspberrypi:~ $ dmesg | grep tty
[0.000000] Kernel command line: 8250.nr_uarts=1 bcm2708_fb.fbwidth=1824 bcm2708_
→˓fb.fbheight=984 bcm2708_fb.fbswap=1 dma.dmachans=0x7f35
bcm2709.boardrev=0xa02082 bcm2709.serial=0x11f38c9c bcm2709.uart_clock=48000000
→˓smsc95xx.macaddr=B8:27:EB:F3:8C:9C vc_mem.mem_base=0x3dc00000
vc_mem.mem_size=0x3f000000 dwc_otg.lpm_enable=0 console=tty1 console=ttyS0,115200
→˓root=/dev/mmcblk0p7 rootfstype=ext4 elevator=deadline
fsck.repair=yes rootwait splash plymouth.ignore-serial-consoles
[0.001365] console [tty1] enabled
[0.343313] console [ttyS0] disabled
[0.343481] 3f215040.uart: ttyS0 at MMIO 0x3f215040 (irq = 59, base_baud =
→˓31250000) is a 16550
[1.078177] console [ttyS0] enabled
[2.210431] 3f201000.uart: ttyAMA0 at MMIO 0x3f201000 (irq = 87, base_baud = 0) is
→˓a PL011 rev2
[3.527349] systemd[1]: Expecting device dev-ttyS0.device...
[4.653975] systemd[1]: Starting system-serial\x2dgetty.slice.
[4.669517] systemd[1]: Created slice system-serial\x2dgetty.slice.

The console needs to be disabled on the serial port ttyAMA0.

To do so, run the configuration command

sudo raspi-config

and navigate to option 5, Interfacing Options. Choose P6, Serial.

When prompted, answer No to “Would you like a login shell to be accessible over serial?” and Yes to “Would you like
the seria port hardware to be enabled?”.

Enter the following command to reboot and search for available ports again:

sudo reboot
dmesg | grep tty

The output now should look like:

pi@raspberrypi:~ $ dmesg | grep tty
[0.000000] Kernel command line: 8250.nr_uarts=1 bcm2708_fb.fbwidth=1824 bcm2708_
→˓fb.fbheight=984 bcm2708_fb.fbswap=1
dma.dmachans=0x7f35 bcm2709.boardrev=0xa02082 bcm2709.serial=0x11f38c9c bcm2709.uart_
→˓clock=48000000
smsc95xx.macaddr=B8:27:EB:F3:8C:9C vc_mem.mem_base=0x3dc00000 vc_mem.mem_
→˓size=0x3f000000 dwc_otg.lpm_enable=0
console=tty1 root=/dev/mmcblk0p7 rootfstype=ext4 elevator=deadline fsck.repair=yes
→˓rootwait splash plymouth.ignore-serial-consoles
[0.001345] console [tty1] enabled
[0.343464] 3f215040.uart: ttyS0 at MMIO 0x3f215040 (irq = 59, base_baud =
→˓31250000) is a 16550
[1.146776] 3f201000.uart: ttyAMA0 at MMIO 0x3f201000 (irq = 87, base_baud = 0) is
→˓a PL011 rev2

3.2. Electronics 45

PiCar Documentation, Release 2018

Wiring

Rasberry Pi 3 TFmini
+5V 5V (RED)
GND GND (BLACK)
TXD0 (pin8) RX (WHITE)
RXD0 (pin10) TX (GREEN)

Note: the white wire on TFmini Lidar is used to write command to it. If we just want to read from it, we can leave
the white wire not connected.

Code

1 # tfmini.py
2 # supports Python 2
3 # prints distance from sensor
4

5 #coding: utf-8
6 import serial
7 import time
8 ser = serial.Serial("/dev/ttyS0", 115200)
9

10 def getTFminiData():
11 while True:
12 count = ser.in_waiting
13 #count = 0
14 #print(count)
15 if count > 8:
16 recv = ser.read(9)
17 ser.reset_input_buffer()
18 if recv[0] == 'Y' and recv[1] == 'Y': # 0x59 is 'Y'
19 low = int(recv[2].encode('hex'), 16)
20 high = int(recv[3].encode('hex'), 16)
21 distance = low + high * 256
22 print('distance is: ')
23 print(distance)
24 time.sleep(1)
25

26 if __name__ == '__main__':
27 try:
28 if ser.is_open == False:
29 ser.open()
30 getTFminiData()
31 except KeyboardInterrupt: # Ctrl+C
32 if ser != None:
33 ser.close()

1 # tfmini_2.py
2 # supports Python 2 or Python 3
3 # prints distance and strength from sensor
4

5 #coding: utf-8

(continues on next page)

46 Chapter 3. Usage

PiCar Documentation, Release 2018

(continued from previous page)

6 import serial
7 import time
8

9 ser = serial.Serial("/dev/ttyS0", 115200)
10

11 def getTFminiData():
12 while True:
13 #time.sleep(0.1)
14 count = ser.in_waiting
15 if count > 8:
16 recv = ser.read(9)
17 ser.reset_input_buffer()
18 # type(recv), 'str' in python2(recv[0] = 'Y'), 'bytes' in python3(recv[0]

→˓= 89)
19 # type(recv[0]), 'str' in python2, 'int' in python3
20

21 if recv[0] == 0x59 and recv[1] == 0x59: #python3
22 distance = recv[2] + recv[3] * 256
23 strength = recv[4] + recv[5] * 256
24 print('(', distance, ',', strength, ')')
25 ser.reset_input_buffer()
26

27 if recv[0] == 'Y' and recv[1] == 'Y': #python2
28 lowD = int(recv[2].encode('hex'), 16)
29 highD = int(recv[3].encode('hex'), 16)
30 lowS = int(recv[4].encode('hex'), 16)
31 highS = int(recv[5].encode('hex'), 16)
32 distance = lowD + highD * 256
33 strength = lowS + highS * 256
34 print(distance, strength)
35

36 # you can also distinguish python2 and python3:
37 #import sys
38 #sys.version[0] == '2' #True, python2
39 #sys.version[0] == '3' #True, python3
40

41

42 if __name__ == '__main__':
43 try:
44 if ser.is_open == False:
45 ser.open()
46 getTFminiData()
47 except KeyboardInterrupt: # Ctrl+C
48 if ser != None:
49 ser.close()

Use GPIO pin for reading

If we connect TX (green wire on TFmini Lidar) to the GPIO pin23, we can use it as a simulative port and read from it.

-*- coding: utf-8 -*
import pigpio
import time

RX = 23

(continues on next page)

3.2. Electronics 47

PiCar Documentation, Release 2018

(continued from previous page)

pi = pigpio.pi()
pi.set_mode(RX, pigpio.INPUT)
pi.bb_serial_read_open(RX, 115200)

def getTFminiData():
while True:
#print("#############")
time.sleep(0.05) #change the value if needed
(count, recv) = pi.bb_serial_read(RX)
if count > 8:

for i in range(0, count-9):
if recv[i] == 89 and recv[i+1] == 89: # 0x59 is 89
checksum = 0
for j in range(0, 8):
checksum = checksum + recv[i+j]

checksum = checksum % 256
if checksum == recv[i+8]:

distance = recv[i+2] + recv[i+3] * 256
strength = recv[i+4] + recv[i+5] * 256
if distance <= 1200 and strength < 2000:
print(distance, strength)

#else:
raise ValueError('distance error: %d' % distance)

#i = i + 9

if __name__ == '__main__':
try:
getTFminiData()

except:
pi.bb_serial_read_close(RX)
pi.stop()

In this way, we can save the TX port for other device, or connect multiple lidars to raspberry pi

Resources

• Read and write from serial port with Raspberry Pi

• TFmini-RaspberryPi

3.2.5 Pi Camera Usage

Connection

Install the Raspberry Pi Camera module by inserting the cable into the Raspberry Pi. The cable slots into the connector
situated between the Ethernet and HDMI ports, with the silver connectors facing the HDMI port.

Capture an image

sudo raspistill -o image.jpg

48 Chapter 3. Usage

http://www.instructables.com/id/Read-and-write-from-serial-port-with-Raspberry-Pi/
https://github.com/TFmini/TFmini-RaspberryPi

PiCar Documentation, Release 2018

Record a video for 10 seconds

sudo raspivid -o video.h264 -t 10000

Resources

• How to install/use the pi camera

• python code and rapid capturing

3.2.6 PI and IMU communication

I2C Method by LSM9DS1 Library

Setup

In order to use the LSM9DS1 Library, we need to install WiringPi first. Enter the following command in Pi terminal:

sudo apt-get install libi2c-dev
git clone git://git.drogon.net/wiringPi
cd wiringPi
git pull origin
./build

Then we can install the LSM9DS1 Library:

git clone https://github.com/akimach/LSM9DS1_RaspberryPi_Library.git
cd LSM9DS1_RaspberryPi_Library
make
sudo make install

To test it, we can run the python sample code inside the library once we connect the IMU:

cd LSM9DS1_RaspberryPi_Library/example
sudo python LSM9DS1_Basic_I2C.py

Wiring

RPI IMU
3.3v (Pin1) Vcc
SDA (Pin3) SDA
SCL (Pin5) SCL
GND (Pin6) Gnd

Resources

• LSM9DS1_RaspberryPi_Library

3.2. Electronics 49

https://thepihut.com/blogs/raspberry-pi-tutorials/16021420-how-to-install-use-the-raspberry-pi-camera
http://picar.readthedocs.io/en/latest/chapters/usage/software.html
https://github.com/akimach/LSM9DS1_RaspberryPi_Library

PiCar Documentation, Release 2018

I2C Method

The example code for this section in the PiCar/src/pi/imu.

To compile, use the command:

gcc -o <programname> runi2c.c -lm

Wiring:

same as above did

The connection is by SMBUS.

For RPI, go to /usr/include/linux, replace i2c_dev.h with the header file in the repository

(Method ‘enableIMU’ needs further development to enable IMU configuration setting)

See Also:

• IMU datasheet

Resources

• I2C SPI Reference page

Contributors: Jerry Kong, Shadi Davari, Josh Jin

3.2.7 Installing ROS on Raspbian

This is how you build something.

3.3 Software

The software section will document all the heavy duty programming programming aspects of the project. There may
be some overlap with the Electronics section.

3.3.1 Socket File Transfer

Basic File Transfer

Server side

1 import socket # Import socket module
2

3 port = 60000 # Reserve a port for your service.
4 s = socket.socket() # Create a socket object
5 host = socket.gethostbyaddr("your IP static IP if under same Wi-Fi")[0] # Get

→˓local machine name
6 s.bind((host, port)) # Bind to the port
7 s.listen(5) # Now wait for client connection.

(continues on next page)

50 Chapter 3. Usage

https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf/
https://learn.sparkfun.com/tutorials/i2c

PiCar Documentation, Release 2018

(continued from previous page)

8

9 print ('Server listening....'.encode('ascii'))
10

11 while True:
12 conn, addr = s.accept() # Establish connection with client.
13 print ('Got connection from', addr)
14 data = conn.recv(1024)
15 print('Server received', repr(data))
16

17 filename='your file name'
18 f = open(filename,'rb')
19 l = f.read(1024)
20 while (l):
21 conn.send(l)
22 print('Sent ',repr(l))
23 l = f.read(1024) #alter this to control data sending rate
24 f.close()
25

26 print('Done sending')
27 conn.close()

Client side

1 import socket # Import socket module
2

3 s = socket.socket() # Create a socket object
4 host = 'your ip address' # Get local machine name
5 port = 60000 # Reserve a port for your service.
6

7 s.connect((host, port))
8 s.send("Hello server!".encode('ascii'))
9

10 with open('received_file', 'wb') as f:
11 print ('file opened')
12 while True:
13 print('receiving data...')
14 data = s.recv(1024) #must be identical to the data rate at server

→˓side
15 print('data=%s', (data))
16 if not data:
17 break
18 # write data to a file
19 f.write(data)
20

21 f.close()
22 print('Successfully get the file')
23 s.close()
24 print('connection closed')

Advanced Folder Transfer

Creator: Jerry Kong

To meet our need of a neat and organized data structure, this script is created. It has the capability to transfer the

3.3. Software 51

PiCar Documentation, Release 2018

entire folder to another remote desktop, no matter whether it is on a Windows System or Unix system. The script rests
in PiCar/src/Logging To use the script, first set-up the IP addresses like in the basic version, change the root
variable to the root folder name. Place the script at the same level as the root folder. Start the server script and then
start the client script. The folder would then be transferred. A better protocol could be implemented, since the protocol
being used now is not really efficient.

Wi-Fi Router Settings

Creator: Jerry Kong

This section is dedicated to users who are not familiar with Wi-Fi network setting, TCP protocol and wireless connec-
tion

To establish communication between two machine we need to know their IP address. Moreover, to provide a consistent
network experience, a machine would have many ports to receive connections of different forms, with other devices.
Thus we also need to agree on the port that two machines establish the connection on. However, depending on
different internet environment and different ways of connection (Wi-Fi or ethernet), the IP address would also vary.
With this section, you would get a sense of how this complicated system works and hopefully learn how to cope with
“Connection fails” error when you are using the script.

IP Address

IP’s full name is Internet Protocol. It’s a scheme that specifies how computers find each other in the pool of Internet.
The rules behind it is complicated, but the most important thing is that it serves as an identification for modern devices
connected to Internet.

IPv4 vs IPv6

As a protocal, IP would have different versions, the latest version is version 6 and thus called IPv6. While IPv6 is
stronger and has a larger pool of Internet, the older version IPv4 is not obsolete. The logic behind the two protocals
are the same, hence we would now stick with IPv4, since it has a more concise format. (XXX.XX.XX.XXX)

Wi-Fi vs Ethernet

Wi-Fi is more convenient while wired connection (ethernet) offer steadiness and low latency. However, it is important
to note that a computer connected to Wi-Fi does not have an IP, or at least, an acknowledged IP. The Wi-Fi or the
router serves as a broadcaster and spread the connection from the ethernet to multiple machines, but they have the
same IP address. The router can identify each machine by the IP address it assigns to the machine, but the machine
can’t use that address as the identification on the internet. Conclusively, machines under the same Wi-Fi build up a
small intranet where these machines can identify each other by the address they are assigned, but once outside Wi-Fi
network they are no longer acknowledged.

See Setup static IP address for RaspberryPi , so a machine would be assigned the same IP address when connected to
the Wi-Fi.

TCP

TCP, Transmission Control Protocol, is a higher level protocol that enables data sending via the connection established
by IP. Socket, a method based on TCP is typical method used for data transfer.

52 Chapter 3. Usage

https://www.raspberrypi.org/forums/viewtopic.php?t=191140

PiCar Documentation, Release 2018

Port Forwarding

With the knowledge about address in mind we could start the connection once we have the right port. It is easy to do
so if both machines are on Internet or under the same Wi-Fi, since they can identify with each other. Just pick up an
empty port and they are good to go. However, we do want to establish connection between two machines even if one
is on Wi-Fi and the other is on Internet. To do so, we use port forwarding. With port forwarding, a client can find the
address of the router and use the port that is forwarded to connect with the machine.

For example, the address of the router is 172.10.10.111, and a machine under the Wi-Fi is assigned static IP
192.168.1.188. The routher and the machine agree on that the connection to the port 30000 of the routher
would be forwarded to the port 6000 of the machine and vice versa. Thus a laptop could setup a connection with
172.10.10.111 on port 30000 to connect the port 6000 on machine with static IP 192.168.1.188.

See How to setup port forwarding

3.3.2 Sensors (Lidar, IMU)

Setup

Make sure you have alreadly connected TFmini Lidar and IMU as TFmini Lidar , IMU by LSM9DS1 did, and down-
load the corresponding libraries.

Code

Under sub-directory PiCar/src/pi/IMU_Lidar

Steps

1. Download the repository and connect sensors correctly

2. Run the python script Lidar_IMU_read_optimize.py

3. After the program ends, you should see two csv files under the same directory. One records the time between
two consecutive reads, and the other one contains data from sensors in the format: timestamp, distance,
accelaration in x,y,z, angular velocity in x,y,z

3.3.3 Camera data by rapid capturing

Connection

Connect the camera correctly as mentioned in Getting started with picamera

Code

1 import time
2 import picamera
3 import datetime
4

5 frames = 20
6

7 def filenames():

(continues on next page)

3.3. Software 53

https://www.howtogeek.com/66214/how-to-forward-ports-on-your-router/
/usage/electronics.html#pi-and-tfmini-lidar-communication
/usage/electronics.html#pi-and-imu-communication
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera

PiCar Documentation, Release 2018

(continued from previous page)

8 frame = 0
9 while frame < frames:

10 current = datetime.datetime.now()
11 yield '%s.jpg' % current
12 frame += 1
13

14 with picamera.PiCamera(resolution=(480,480), framerate=100) as camera:
15 camera.start_preview()
16 # Give the camera some warm-up time
17 time.sleep(2)
18 start = time.time()
19 camera.capture_sequence(filenames(), use_video_port=True)
20 finish = time.time()
21 print('Captured %d frames at %.2ffps, in %f seconds' % (
22 frames,
23 frames / (finish - start), (finish - start)))

This will give you real time and fps.

Resources

• PiCamera Module

• Rapid capture and processing

3.3.4 Sensors & Camera concurrent reading using Timers

Connection

Connect the IMU, TFmini Lidar, and PiCamera as before.

Code

The code for this part is under directory PiCar/src/pi/pythonTimer

Resources

• Python multiprocessing–Process-based Parallelism

• Python threading timer object

3.3.5 Data Logging

Version Alpha (Camera data, IMU data, LiDar Data)

Creator : Jerry Kong

Ensure to correctly connect all electronics.

54 Chapter 3. Usage

https://picamera.readthedocs.io/en/release-1.13/
https://picamera.readthedocs.io/en/release-1.13/recipes2.html#rapid-capture-and-processing
https://docs.python.org/3.4/library/multiprocessing.html?highlight=process
https://docs.python.org/3/library/threading.html#timer-objects

PiCar Documentation, Release 2018

Code

The code could be found in‘‘ PiCar/src/pi/IMU_Lidar‘‘, you can find the method to enable IMU library here

IMPORTANT: If you have gone through the process before 06/18/2018, make sure you execute all steps again,
few more functions and wrappers are added to the library

Run the script, a folder under the same directory would be generated, its name would be the starting timestamp of the
script.

The file itself contains several straight forward methods that can be used to get data from IMU LiDar. The method it
uses to take pictures is currently only viable within the script.

The IMU setting functions can’t be used outside the script.

If called from command line or python shell, the script would place the image capturing and data logging proceses
into two different cores on RaspberryPi

Use the command line option, you can bring up the usage page

python Lidar_IMU_data_optimize_delta.py -h

The script is based on delta timing (timers) method. A constant value of 0.0007 is subtracted from the period to
maintain a consistent reading frequency.

Precision defines the minimum time that the script goes to check the diffrence between the last time and current time
and consequently defines within what time difference that measures of LiDar and IMU occur simultaneously.

A great part of the codes are from Josh Jin’s sensor/camera reading code

Version Beta (Magnetic reading added to IMU)

Creator : Jerry Kong

The code could be found in PiCar/src/pi/IMU_Lidar, the socket_server_client.py file is a integrated and important
part of this data logging script, to learn more about socket folder sending, take a look at ‘ socket based file sending
<http://picar.readthedocs.io/en/latest/chapters/usage/software.html#advanced-folder-transfer>‘_

Endless mode is implemented. User could stop the experiment with KeyboardInterrupt, the logging file and camera
file would still be saved

Using -i command line input, we could run the script in endless mode (i.e. the duration would be set to 1000 seconds,
we could stop the program by using KeyboardInterrupt(Ctrl + C))

Logging file sending module is integarted into the logging script. After the multiprocessing finished (loggind and
filming), the script would start a raw socket server and a client on another computer could use the client side script to
receive the logging file.

The script could either be called from the terminal or from other script by calling the funtion getSensorAndCamera.

‘-s’ command line argument and save parameter for getSensorAndCamera is implemented so that users can decide
whether they want the logging file to be saved locally.

For installation and usage see the previous section

Version Beta 2.0 (Code re-organization, Process, self contained, PMU reading)

Creator : Jerry Kong

The code could be found in PiCar/src/pi/IMU_Lidar, device_int is the main file

3.3. Software 55

http://picar.readthedocs.io/en/latest/chapters/usage/electronics.html#pi-and-imu-communication
https://docs.python.org/2.4/lib/timer-objects.html
http://picar.readthedocs.io/en/latest/chapters/usage/software.html#advanced-folder-transfer

PiCar Documentation, Release 2018

The code is factor out and classified in an interface-oriented manner(i.e. the objects are put into class by its interface)

The class structure is:

device
|-----camera
|-----sensor

|-----pmucounter
|-----IMU
|-----LiDar

Instead of its different class structure, the parameter for the main function is also different

getSensorAndCamera(host='192.168.1.121',port=6000,save=False,duration=5,endless=False,
→˓trAccRate=6,trGyroRate=6,

trMagRate=7,accScale=2,gyroScale=245,magScale=4,cameraFreq=5,
→˓imuRate=50,lidarRate=50,precision=0.001,tm=[])

Currently, to stop the sending process, a remote desktop must reach to the Server

To pass a new device outside the file to the function, see the sample code below

import device_int
from multiprocessing import Process

class currentSensor(device_int.sensor):

def __init__(self, name="CS"):
self.name = name
self.type = "currentSensor"
self.__conn = currentSensorCommunicationPort

def detect(self):
return self.__conn.is_available()

def getFieldSize(self):
"""
return a int
"""
return 1

def getHeader(self):
"""
return a list
"""
return ["current"]

def getValue(self):
"""
return the sensor reading
"""
return [self.__conn.getCurrent()]

cs = currentSensor()

currentTimer = device_int.Timer(cs, currentSensor_read_period)

p = Process(target = device_int.getSensorAndCamera, args = (host,port,save,duration,
→˓endless,trAccRate,trGyroRate,

(continues on next page)

56 Chapter 3. Usage

PiCar Documentation, Release 2018

(continued from previous page)

trMagRate,accScale,gyroScale,magScale,cameraFreq,imuRate,
→˓lidarRate,precision,[currentTimer]))

p.start()
#do some operation
p.terminate()

3.3.6 Data Analysis

Creator: Feiyang Jin

Data and photo synchronization

Once we get all data/photo from one experiment and save somewhere, we would like to synchronize them.

As camera speed is much slower than sensors speed, the sychronization is not perfect.

Algorithm: first match each photo to a row of data based on timestamp(best fit), then for unmatched data, find
its previous closed photo and take it.

Note: This algorithm is a work in progress. If you have better strategy, please contact me.

The code is called sync_time.py under PiCar/src/dataAnalysis, and all raw data/photo are under
data_photo under same directory.

Result: The python programe will output a csv file in the same directory, the format is
[data1][data2]. [matched_photo]

Display Synchronized Data and Photo

The sychronized csv file provides us unlimited possibility. The following image shows the display site we built.

3.3. Software 57

PiCar Documentation, Release 2018

Source for this website is under PiCar/src/dataAnalysis/Display, the html requires you to upload the
sychronized csv file, and then give you all the magic.

Note: You will need to install chart.js first; for papaParse.js, I include the package for you.

3.4 Datasheet

3.4.1 RaspberryPi

RaspberryPi 3 B+

This section documents some information about the PI 3 MODEL B+ our team is using for easier reference.

Check CPU information:

lscpu

For the model we are using:

Architecture armv7l
Byte Order Little Endian
CPU(s) 4
On-line CPU(s) list 0-3
Thread(s) per core 1
Core(s) per socket 4
Socket(s) 1
Model 4
Model name ARMv7 Processor rev 4 (v7l)
CPU max MHz 1400.0000
CPU min MHz 600.0000
BogoMIPS 38.40
Flags half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

Important: Notice that the list says that the memory architecture is armv7l. However, on the raspberrypi
3 B+ official site, it says that the architecture is armv8. The diffrence is probably caused by the OS that the
RaspberryPi is using(Raspbian). It is by default a 32bit system, and armv7 is 32bit while armv8 is 64bit, causing
the architecture to adapt to 32bit

For more information about this model, click here

Based on armv7l, the memory architecture for this model is:

L1-instruction Cache 32-bytes cache line size 16 KB 2-way set-associative Cache
L1-data Cache 64-bytes cache line size 16 KB 4-way set-associative cache
L2 Cache 128 KB in size

(However, in RaspberryPi, L2 Cache is devoted to GPU, the benefit and necessity of enabling it to data cache needs
further exploration)

Contributor: Jerry Kong

58 Chapter 3. Usage

https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

PiCar Documentation, Release 2018

3.5 The Picar Module

class picar.device(name=’D’)
Base class for all Devices

whoAmI()
A function that could be called to tell what device it is

class picar.sensor(name=’S’)
Base class for all Sensors

detect()
A sensor should implement this method to tell if the sensor is currently available

getConn()
The connection could be returned by this function

getFieldSize()
A sensor should implement this method to return the field size requested by the sensor in logging file

getHeader()
A sensor should implement this method to return the header of it requested field in a list

getValue()
A sensor should implement this method to return values in a list

setConn(conn)
A sensor’s connection should be able to be reset by this function

whoAmI()
A function that could be called to tell what device it is

class picar.pmucounter(name=’P’)
PMU (Performance Monitoring Unit) reader

detect()
A sensor should implement this method to tell if the sensor is currently available

getConn()
The connection could be returned by this function

getFieldSize()
A sensor should implement this method to return the field size requested by the sensor in logging file

getHeader()
A sensor should implement this method to return the header of it requested field in a list

getValue()
A sensor should implement this method to return values in a list

setConn(conn)
A sensor’s connection should be able to be reset by this function

whoAmI()
A function that could be called to tell what device it is

class picar.IMU(name=’I’)
This class for IMU sensor

calibrate()
A wrapper for IMU calibration

3.5. The Picar Module 59

PiCar Documentation, Release 2018

detect()
This function tests if accel, gyro and mag are all available

getConn()
The connection could be returned by this function

getFieldSize()
Field size = 9

getHeader()
Header: AccelX, AccelY, AccelZ, GyroX, GyroY, GyroZ, MagX, MagY, MagZ

getValue()
Return a 9-elements list containing all IMU reading

setConn(conn)

Parameters conn – an IMU object created by imu library

setIMUScale(aScl=2, gScl=245, mScl=4)
Scale for IMU_SETUP

Available rate for accel : 2, 4, 8, 16

Available rate for gyro : 245, 500, 2000

Available rate for mag : 4, 8, 12, 16

(Value set other than these value might cause IMU to crush)

setIMUodr(aRate=6, gRate=6, mRate=7)
Output rate setter for IMU

Available rate for accel : 1 = 10 Hz 4 = 238 Hz

2 = 50 Hz 5 = 476 Hz

3 = 119 Hz 6 = 952 Hz

Available rate for gyro : 1 = 14.9 4 = 238

2 = 59.5 5 = 476

3 = 119 6 = 952

Available rate for mag : 0 = 0.625 Hz 4 = 10 Hz

1 = 1.25 Hz 5 = 20 Hz

2 = 2.5 Hz 6 = 40 Hz

3 = 5 Hz 7 = 80 Hz

whoAmI()
A function that could be called to tell what device it is

class picar.LiDar(name=’L’)

detect()
A sensor should implement this method to tell if the sensor is currently available

getConn()
The connection could be returned by this function

getFieldSize()
FieldSize = 1

60 Chapter 3. Usage

PiCar Documentation, Release 2018

getHeader()
Header : LiDar

getValue()
Return a 1 element list

setConn(conn)

Parameters conn – a serial port

whoAmI()
A function that could be called to tell what device it is

class picar.Camera(name=’C’, res=(480, 480), fr=40)

capture(gen, *args)

Parameters

• gen – a filename generator that has timing functionality

• *args – contains all the arguments gen needs

setFrameRate(fr)

Parameters fr – int in Hz

setRes(res)

Parameters res – resolution (length,width) in a tuple

whoAmI()
A function that could be called to tell what device it is

class picar.Timer(kit, gap)
A Timer class that helps get delta timing for a sensor

read(t)

Parameters t – current time to be compared with the time kept by the object

class picar.Killer(state)
A elegant killer, to make sure the process and subprocesses functions as expected

picar.pre_exec()
Easy to use function to prevent the subprocess to receive KeyboardInterrupt

picar.filenames(alive, duration, cameraFreq, beginTime)
Filename generator: Used with Camera class to generate a series of filename for the picture to be stored at

Parameters

• alive – The global variable keeping the state of the program and processes

• duration – Experiment duration

• cameraFreq – Camera Frequency

• beginTime – root directory as a timestamp

picar.getCamera(gen, alive, duration, cameraFreq, beginTime)
The filming function executed in a different core :param gen: the filenames generator :param alive: the global
variable to track the state in the main function :param duration: the elapse time for the test :param cameraFreq:
the cameraFrequncy in Hz :param beginTime: (string) the directory of the root folder for the logging files

3.5. The Picar Module 61

PiCar Documentation, Release 2018

picar.getSensor(alive, rowList, duration, precision, datafile, timers)
The data logging function executed in a different core :param alive: the global variable to track the state in the
main function :param rowList: a list stores timestamp and logging data :param duration: the elapse time for the
test :param precision: the gap between two visit of the script to sensors :param datafile: file name of the datafile
:param timers: a list of timers holding sensors

picar.getSensorAndCamera(host=’192.168.1.121’, port=6000, save=False, duration=5, end-
less=False, trAccRate=6, trGyroRate=6, trMagRate=7, accScale=2,
gyroScale=245, magScale=4, cameraFreq=5, imuRate=50, lidar-
Rate=50, precision=0.001, tm=[])

A easy to use logging version supporting camera data logging, IMU reading, Lidar reading

62 Chapter 3. Usage

CHAPTER 4

Results

The PiCar platform has been used in many research project. This page gives a comprehensive list of different results
that were achieved.

4.1 IMU Autonomous Navigation

4.1.1 Proposal

There are three main objectives of our research:

1. Building a working PiCar to carry out experiments

2. Investigating IMU data

3. Design algorithms for self-driving navigation

First, working PiCar has to be built so that an autonomous driving system can be implemented. After the
system has been implemented, IMU data then can be collected and explored through experiments. Finally,
algorithms of locating the current location of the car based on IMU data can be developed.

4.1.2 Authors

• Sam Chai

• Moira Feng

4.1.3 Links

[Report] [Presentation] [Code]

63

../../../../reports/IMU-Navigation_Sam_Moira_2018/IMU-Navigation_Sam_Moira_2018.pptx
../../../../reports/IMU-Navigation_Sam_Moira_2018/IMU-Navigation_Sam_Moira_2018.zip

PiCar Documentation, Release 2018

4.2 Power Management

4.2.1 Proposal

There are many industrial robotics platforms, from large to small scale, from autonomous to manual
manipulation. However, only a few studies the power monitoring and management. However, this filed
will become increasingly important when robots are given more functionalities for various tasks desired.
In this regard, the battery life could become an important criterion to judge whether a robot is suitable for
the task.

By studying each electric component’s power consumption, we can build a mathematical performance
model and guide the user to decide which mode is supposed to operate to obtain a better performance. We
believe, this model could also be used in the performance prediction field, which potentially saves more
energy based on the same platform. Therefore, the success experiment could be extremely valuable for
the industry.

4.2.2 Authors

• Yunshen Huang

4.2.3 Links

[Report]

4.3 Object Tracking in Low-Power Autonomous Systems

4.3.1 Proposal

Computer vision algorithms are typically reserved for platforms that can handle the computational work-
load needed to process the huge amount of data in images and videos. The recent surge in artificial
intelligence, machine learning, and computer vision have guided the development of powerful processors
that can quickly and more efficiently handle the computationally intensive algorithms. For this project, I
aimed to go against the grain and implement computer vision and artificial intelligence on a Raspberry Pi,
a low-power IoT device that is the on-board processor for a small autonomous vehicle project called the
PiCar.

The first part of the project was the development and implementation of a real-time control algorithm
using optical flow and machine learning to successfully navigate randomly generated obstacle fields. The
processing was done entirely on a Raspberry Pi 3 and the video stream was provided from the standard
Raspberry Pi camera module. The algorithm worked in the following manner:

1. Read images from video stream

2. Detect features using Shi-Tomasi corner detection

3. Calculate optical flow vectors

4. Calculate time to contact (TTC) for each tracked point (x,y)

5. Cluster three dimensional data (x,y,TTC) using DBSCAN

6. Sort clusters by lowest TTC

7. Calculate servomotor angle and motor PWM

64 Chapter 4. Results

PiCar Documentation, Release 2018

8. Send signal to motor-controller via SPI

4.3.2 Authors

• William Luer

4.3.3 Links

[Report] [Code]

4.4 PiCar Mobile Movement Control

4.4.1 Proposal

This report is aimed at introducing new researchers to the findings and progress made on the PiCar Project
as of July, 2018 regarding the movement control of the PiCar. This report will cover the currently imple-
mented features of the PiCar, including semi-automated movement, a killswitch, real-time user control
using WASD on a keyboard, a replay function, and data collection. Additionally, the last section of the
report covers known issues with the PiCar which includes inaccurate servo controls and noisy Inertial
Measurement Unit (IMU) data.

Note: While uploading the Arduino program, if there is an issue with the Simpletimer library, download the
Simpletimer.h file from the Official Arduino Codebase, and place it in the same folder as the WASD.ino file.

4.4.2 Authors

• Hayden Sierra

• Daniel Kelly

4.4.3 Links

[Report] [Video 1] [Video 2]

4.5 LIDAR Obstacle Avoidance

4.5.1 Proposal

Object tracking and obstacle avoidance are two key features for a robot with mechanical movability and
visual detection functionality. They are associated with many hot application fields such as path followers
and self-driving cars. With the big picture in mind, we chose to implement those basic functions on
the PiCar, a Raspberry Pi powered and wheeled robotic car, as a research project. By implementing the
obstacle avoidance and the object tracking features onto the car, we aim to create powerful and practical
algorithms that enable the car to follow a certain object wisely without crashing into any obstacles.

4.4. PiCar Mobile Movement Control 65

https://github.com/willluer
https://github.com/xz-group/PiCar/tree/master/src/pi/computer_vision
http://playground.arduino.cc/Code/SimpleTimer
https://www.youtube.com/watch?v=rVKRBl99Qow
https://www.youtube.com/watch?v=RHe-8m1kZ9I

PiCar Documentation, Release 2018

4.5.2 Authors

• Amelia Ma

• Chufan Chen

4.5.3 Links

[Report] [Website]

66 Chapter 4. Results

https://sites.wustl.edu/498picar/

CHAPTER 5

Changelogs

v2.0 (latest)

• Changed chassis design to make PiCar more robust

• Added single encoder with DC motor for closed loop

• Incorporated LIDAR and IMU

• Added comprehensive ReadtheDocs documentation

v1.0 (Github)

• Designed and built entirely 3D printable chassis

• Used brushless DC motor, ESC and servo for steering and driving

• Designed and assembled PCB for power management, reading hall effect sensors and IMU data

• Used camera with optical flow computer vision algorithm for tracking

67

https://github.com/xz-group/PiCar
https://github.com/xz-group/PiCar/tree/v1.0

PiCar Documentation, Release 2018

68 Chapter 5. Changelogs

CHAPTER 6

Contributors

The PiCar project was successful due to the significant contributions of all its current and past members.

Current Team

• Advisor(s):

– Dr. Xuan ‘Silvia’ Zhang

– Dr. Christopher D. Gill

• Team Members:

– An Zou

– Adith Boloor

– Feiyang Jin

Former Team

• Advisor(s):

– Dr. Humberto Gonzalez

• Team Members:

– Andrew O’Sullivan

– Daniel Kelly

– Hayden Sierra

– Jacob Cytron

– Jeffrey Gu

– Jerry Kong

– John Fordice

– Karina N. Martinez-Reyes

– Kristen Koyanagi

69

https://github.com/xz-group
http://www.cse.wustl.edu/~cdgill/
https://github.com/ajboloor
https://github.com/FeiyangJin
https://github.com/hgonzale
https://www.andrewosullivan.com/
https://github.com/daniel-kelly-32
https://github.com/Yruhere88
https://github.com/jcytron
https://github.com/jguc17
https://github.com/woodcutter1998
https://github.com/kmrtnz
https://github.com/kristenkoyanagi

PiCar Documentation, Release 2018

– Matt Kollada

– Meizhi Wang

– Moira Feng

– Patrick Naughton

– Reese Frerichs

– Sam Chai

– Shadi Davari

– William Luer

– Yak Fishman

70 Chapter 6. Contributors

https://github.com/mkollada
https://github.com/wmeizhi
https://github.com/patricknaughton01
https://github.com/shadidavari
https://github.com/willluer

Index

C
calibrate() (picar.IMU method), 59
Camera (class in picar), 61
capture() (picar.Camera method), 61

D
detect() (picar.IMU method), 59
detect() (picar.LiDar method), 60
detect() (picar.pmucounter method), 59
detect() (picar.sensor method), 59
device (class in picar), 59

F
filenames() (in module picar), 61

G
getCamera() (in module picar), 61
getConn() (picar.IMU method), 60
getConn() (picar.LiDar method), 60
getConn() (picar.pmucounter method), 59
getConn() (picar.sensor method), 59
getFieldSize() (picar.IMU method), 60
getFieldSize() (picar.LiDar method), 60
getFieldSize() (picar.pmucounter method), 59
getFieldSize() (picar.sensor method), 59
getHeader() (picar.IMU method), 60
getHeader() (picar.LiDar method), 60
getHeader() (picar.pmucounter method), 59
getHeader() (picar.sensor method), 59
getSensor() (in module picar), 61
getSensorAndCamera() (in module picar), 62
getValue() (picar.IMU method), 60
getValue() (picar.LiDar method), 61
getValue() (picar.pmucounter method), 59
getValue() (picar.sensor method), 59

I
IMU (class in picar), 59

K
Killer (class in picar), 61

L
LiDar (class in picar), 60

P
pmucounter (class in picar), 59
pre_exec() (in module picar), 61

R
read() (picar.Timer method), 61

S
sensor (class in picar), 59
setConn() (picar.IMU method), 60
setConn() (picar.LiDar method), 61
setConn() (picar.pmucounter method), 59
setConn() (picar.sensor method), 59
setFrameRate() (picar.Camera method), 61
setIMUodr() (picar.IMU method), 60
setIMUScale() (picar.IMU method), 60
setRes() (picar.Camera method), 61

T
Timer (class in picar), 61

W
whoAmI() (picar.Camera method), 61
whoAmI() (picar.device method), 59
whoAmI() (picar.IMU method), 60
whoAmI() (picar.LiDar method), 61
whoAmI() (picar.pmucounter method), 59
whoAmI() (picar.sensor method), 59

71

	Getting Started
	Tutorials
	Raspberry Pi Basics
	What is a Raspberry Pi?
	Setting up a Raspberry Pi with SSH
	Desktop Interface
	Password-less SSH
	Resources

	Arduino Basics
	What is an Arduino?
	Getting Started
	Todo
	Resources

	GitHub Basics
	What is GitHub?
	Getting Started
	Syncing a Fork
	Resources

	Linux Basics
	What is Linux?
	Getting started
	Resources

	Python Basics
	What is Python?
	Installation
	HelloWorld with Python
	Installing Python Modules
	Useful Modules
	Resources

	Read the Docs Basics
	What is Read the Docs?
	How to update the Docs?
	Resources

	Usage
	Mechanical
	Design
	Assembly

	Electronics
	Raspberry Pi Pinout
	Overall Circuitry
	Pi and Arduino Communication
	PI and TFMini Lidar Communication
	Pi Camera Usage
	PI and IMU communication
	Installing ROS on Raspbian

	Software
	Socket File Transfer
	Sensors (Lidar, IMU)
	Camera data by rapid capturing
	Sensors & Camera concurrent reading using Timers
	Data Logging
	Data Analysis

	Datasheet
	RaspberryPi

	The Picar Module

	Results
	IMU Autonomous Navigation
	Proposal
	Authors
	Links

	Power Management
	Proposal
	Authors
	Links

	Object Tracking in Low-Power Autonomous Systems
	Proposal
	Authors
	Links

	PiCar Mobile Movement Control
	Proposal
	Authors
	Links

	LIDAR Obstacle Avoidance
	Proposal
	Authors
	Links

	Changelogs
	Contributors

