

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

LNCM Pi-Factory

Create your own bitcoin lightning box!

This repository contains everything necessary to bootstrap a LNCM box for Raspberry Pi [https://www.raspberrypi.org] versions 0-3B+ based on Alpine Linux.

Alpine [https://alpinelinux.org] is a security-oriented, lightweight Linux distribution based on musl libc and Busybox.

Warning! Work in progress. While stable enough for development, this software is subject to change and will require complete reinstallation periodically.

Do not put money at stake that you are not willing to lose!

Instructions

	Download Etcher [https://www.balena.io/etcher/].

	Download latest lncm-box.img.zip [https://github.com/lncm/pi-factory/releases/download/v0.3.2/lncm-box-v0.3.2.img.zip]

	Run Etcher and follow instructions to burn lncm-box.img.zip to SD card

Your box will automatically start installing itself to SD card once it has an internet connection.

Experienced users: Alternatively, use dd to burn the lncm-box.img to SD card

Access

Note: First boot will take some time as ssh host keys are generated.

Authentication

	username: lncm

	password: chiangmai

	root password: chiangmai

Note: sudo is not installed, use su instead

Using ssh

ssh lncm@box.local

WiFi hotspot

The box provides it’s own WiFi hotspot to ease access and configuration.

	WiFi name (SSID): “LNCM-Box”

	WiFi password: “lncm box”

	IP address: 192.168.27.1

	hostname: box.local

Customization & Settings

Networking

If you have console access:

As root use wpa_passphrase tool to set wifi settings

wpa_passphrase "WiFi Name" "Password" >> /etc/wpa_supplicant/wpa_supplicant.conf

Or, run setup-interfaces if you have access to a running box.

In order to ship correct WiFi configuration, edit settings in etc/wpa_supplicant/wpa_supplicant.conf, run make_apkovl.sh and copy box.apkovl.tar.gz to SD card root directory (FAT partition).

IotWiFi Configuration

After connecting to “LNCM-Box” WiFi on your computer you can tell the box to connect to your own home WiFi network by issuing the following command:

curl -w "\n" -d '{"ssid":"YOUR-SSID-NAME", "psk":"YOUR-PASSWORD"}' \
 -H "Content-Type: application/json" \
 -X POST http://192.168.27.1:8080/connect

Alpine specific

Alpine wiki [https://wiki.alpinelinux.org/] holds further information related to system administration.

Committing changes to SD card

Initially the system is mounted read-only!

Important note: Alpine will not persist user changes upon reboot until it is installed and restarted.

Use lbu commit to persist changes. Add -v to see what is being committed.

lbu status will show changes to be committed.

Note: By default lbu commit only applies to some directories.

Package management

	apk update Update repositories

	apk upgrade Upgrade packages

	apk add Install package

	apk del Uninstall package

Init system

	rc-update add docker boot Start docker at boot

	rc-update del docker boot Remove docker from boot

	rc-update show startup services

Installation of LNCM specific components belongs in etc/init.d/lncm. The script is OpenRC [https://wiki.gentoo.org/wiki/OpenRC] compatible and must be executable, without a file name extension.

etc/apk/world contains all apk packages to be installed by LNCM’s install script.

	service -l list available services

	service docker start start docker now

	service docker stop stop docker now

The boot sequence is logged to /var/log/rc.log by default.

More information in OpenRC user guide [https://github.com/OpenRC/openrc/blob/master/user-guide]

Misc

There are various configuration tools included to help you customize to your needs:

	setup-hostname

	setup-timezone

	setup-keymap

	setup-dns

Advanced

Using nmap

Raspberry Pi’s can be easily intentified when on the same subnet by their distinct MAC address.

Using nmap you can find your Raspberry Pi like so,

sudo nmap -v -sn 192.168.0.0/24 | grep -B 2 "Raspberry Pi Foundation"

Connecting to console via serial cable

(serial TTY via TTL on uart)

Connect cable to GND, RX, TX pins, make sure you are using 3.3V and not 5V to prevent damage! With some devices RX & TX may have to be crossed.

Add enable_uart=1 to config.txt on SD card FAT partition. (may not be necessary on older models)

e.g. screen /dev/tty.usbserial-XYZ 115200

Automated builds

Use make_img.sh to create latest lncm-box.img

Auditing

Follow the steps outlined in make_img.sh to create your own image or SD card.

Re-creating apkovl.tar.gz from source

make_apkovl.sh

Unpacking apkovl from lncm-box.tar.gz

tar xzf box.apkovl.tar.gz

Creating new apkovl

lbu pkg /path/to/tar.gz will produce a tarball of current system state.

Important notes for distributing fresh apkovl:

Remove unique and security sensitive files

rm etc/machine-id

rm etc/docker/key.json

rm etc/ssh/ssh_host_*

Rewrite /etc/resolv.conf to be network independent.

Be mindful of passwords you set.

Portable Bitcoin Node on Raspberry Pi Zero

NOTE: WORK IN PROGRESS!

NOTE_2: Only compatible with MacOS at the moment

This repo contains all setup scripts necessary to setup a portable Full Bitcoin Node.

The final setup includes:

	[x] Bitcoin Full Pruned Node available through clearnet¹ and Tor

	[x] ssh available via clearnet¹ and Tor

	[] (figured out, but not automated yet) gets internet from your phone via Bluetooth tethering

	[] creates an open hotspot called “Bitcoin”

	[] has captive portal with instructions on how to connect and sync

¹ - Clearnet availability depends completely on Pi’s ability to auto-configure the device giving it internet

Setup process

Setting Raspberry Pi Zero is 4 easy steps:

	Prepare

	Wait

	Backup

	Enjoy

Step One: Prepare

This step can take a very long time, depending on your internet connection and the speed of your microSD card. You can speed it up by downloading (or using already downloaded) official Raspbian Lite image - just drop it into the root of the repo directory and run the script as usual - make all.

[REQUIRED] WiFi credentials

This is the only required thing to do in this step. Open ./wpa_supplicant.conf from the root of this directory and replace:

	<COUNTRY> with a two-letter code of the country you will be using this RBP in (regulatory reasons ¯_(ツ)_/¯)

	<SSID> with the name of the WiFi network

	<PASSWORD> with a password to it

[OPTIONAL] Grant yourself access

The 2nd step, where the RBP bootstraps itself can take multiple hours, during which you will not be able to see what’s going on unless you specify one of the below:

password

If you input any password into ./password file it will be used as a pi and root user login password, and you’ll be able to ssh to the Pi.

If you do not input the password, a random one will be generated, and made available as part of the backup in step 3.

ssh key

If you have a id_ed25519.pub or id_rsa.pub ssh key, just drop it into the root of this repo and you’ll be able to ssh to the Pi using it, while it’s bootstrapping itself.

If you do not provide an ssh key, id_ed25519 keypair will be generated, and made available as part of the backup in step 3.

Run

After you’ve set up WiFi and perhaps granted ourself access, just run:

make all SD=/dev/disk2

Where /dev/disk2 is the SD card you want to burn your image onto.

[OPTIONAL] Other configs

You can also inspect, and change the config files before running the script preparing the microSD card:

| File name | Description
|:——————:|————-
| bitcoin.conf | this is the minimal Bitcoind config that will be used
| bitcoind_version | can be either a tag or a branch name of Bitcoin Core that will be build and installed
| bitcoind.service | is a systemd service file that will be responsible for starting Bitcoind
| bluetooth-MACs | [TODO] This will be used to specify bluetooth internet tethering devices
| hostname | you can choose how your RBP will be named, default is pi-the-box
| sshd_config | contains a minimal, and secure sshd config that will be used. Note that PasswordAuthentication yes will be changed to no if any ssh key is provided.
| torrc | contains minimal caonfig allowing Bitcoind to communicate with Tor, and allowing ssh via Tor to your Pi later (setup instructions will be provided as part of the backup in step 3).

NOTE: Changing these files might result in step 2 failing in unpredictable ways!

[PLEASE DON’T CHANGE] Scripts & Services

This is a list of scripts that will be run on your Pi. If you’re not sure what you’re doing, changing them will most definitely cause the build process to fail.

| File name | Description
|:—————————:|————-
| bt-reconnect.sh | [TODO] Runs periodically from cron and ensures that Bluetooth internet connection is still available and working
| pi-setup.service | This is a systemd service that will spawn pi-setup.sh upon first boot
| pi-setup.sh | This script runs as user pi and sets-up most of the necessary things. It will run for long hours, and during its run it records its work into /home/pi/setup.log
| pi-shutdown.service | This systemd service ensures that pi-setup.service & pi-shutdown.service run only once, and that RBP is powered off upon successful completion
| run-once.sh | This is a barebones setup script that only creates the very minimal required environment, and reboots your Pi into pi-setup.sh. During its run it records its work into /root/pre-setup.log

[Very Optional] Run_2

If you’ve decided to change some configs after you’ve already started make all - despair not, just let it finish and then run (before ever putting it into the RBP):

make write_stuff_to_boot SD=/dev/disk2

Where /dev/disk2 is your SD card. Note that you might need to manually reinsert the SD card into your computer.

Step Two: Let RBP setup itself

This step requires a working 2.4GHz WiFi connection and will take multiple hours, after which the RBP will power off completely. If your computer is on the same network as the RBP, you’ve provided your ssh pubkey or password, and you didn’t customize the hostname, you can see logs of the progress with a simple:

ssh pi@pi-the-box.local 'tail -f -n 2000 /home/pi/setup.log'

Step Three: Backup

After RBP has completed the setup, move the SD card back to your computer.

There are two locations there that might be of special interest:

| Location | Description
|:———————————-:|————-
| /Volumes/boot/secrets.zip | Contains all secrets related with the pi: password, ssh key (if not provided one will be generated for you there), and a special ssh over Tor string (TODO: document & explain HidServAuth)
| /Volumes/boot/setup-logs/* | Contains at least two files: pre-setup.log and setup.log. In case any of the scrips was run/terminated more than once there might be more files with the same names, but unix timestamp-prefixed.

Step Four: Enjoy

[WIP] Put your card back & enjoy

Raspberry Pi Pre Init

Purpose

A program which lets you set up a Raspberry Pi solely by writing to the /boot partition (i.e. the one you can write from most computers!).

This allows you to distribute a small .zip file to set up a Raspberry Pi to do anything. You tell the user to unzip it over the top of the Pi’s boot partition - the system can set itself up perfectly on the first boot.

This package contains a single run-once.sh script that can be used to do all the setup needed. Alternatively, you can create a run-once.d and/or a on-boot.d directory and put multiple scripts in either/each. These folders will be created for you after the first boot and can be used at any time.

Trying it out

	Download and write a standard Raspbian SD card [https://www.raspberrypi.org/downloads/raspbian/], e.g. the Raspbian Stretch Lite [https://downloads.raspberrypi.org/raspbian_lite_latest].

	Copy the content of this project’s boot folder [https://github.com/RichardBronosky/pi-init2/tree/master/boot] to the microSD card’s /boot partition.

	Remove the SD card and put it into your Pi.

The Raspberry Pi should now boot several times. The first boot takes 2-5 minutes depending on your network, and which model of Raspberry Pi you use (I tested with model 3).

By default only a single simple change will be applied. A /home/pi/.bash_aliases file will be created with alias ll='ls -la in it. The boot/run-once.sh script includes several commented blocks to demonstrate how to accomplish common tasks.

Building pi-init3

You will need golang installed (I’m currently using 1.7) sudo apt install golang. Go will need to install required packages. I have tried to make this as easy as calling make reqs.

There is a Makefile in the root of this project. Calling make will compile the Go [https://golang.org/] source code and create boot/pi-init3 if it doesn’t exist. (Use make clean all to replace it.)

Alternatively, you can do the following

GOOS=linux GOARCH=arm GOARM=5 go build -o boot/pi-init3 .

How it works

This is really cool. The cmdline.txt specifies an init=/pi-init3 kernel argument to use a
custom binary in this package in place of the usual systemd init. That binary holds everything
except for the cmdline.txt file (that would be a chicken-egg problem) and the run-once.sh
which you will modify to script your desired setup.

How/Why you should incorporate this project into your Raspberry Pi project

If you have a project you expect someone to run on an RPi (especially if it would be the RPi’s single purpose) you could provide your own run-once.sh script that will clone your project, configure, and install it.

Credits

Credits go to the following projects:

	gesellix/pi-init2 [https://github.com/gesellix/pi-init2]: This is the original fork, the fork-chain taht led us here started with,

	RichardBronosky/pi-init2 [https://github.com/RichardBronosky/pi-init2]: This is a direct fork (^c^) on which this project is based on,

	PiBakery [https://github.com/davidferguson/pibakery]: A good setup-your-RBP-GUI project and a good resource to find more blocks to setup your Raspberry Pi.

Any contributions appreciated!

 This variant bootstraps a generic RBP (be it 3 or 0) with proper hostname, accesses etc, but sets up nothing-setup specific.

 This variant should contain all files specific to setting up the box on RBP3B[+]

 This variant bootstraps a generic RBP (be it 3 or 0) with proper hostname, accesses etc, and sets it up to be ready to build docker images.

 This variant should contain all things specific to RBP zero setup

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

