

 Navigation

 	
 index

 	
 next |

 	PHPDiff 1.0 documentation

PHPDiff’s documentation

Contents:

	Two-way diff
	Examples

	Three-way diffs
	Weave merge

	Three-way merge

	Examples

	Diff structure
	Diff change blocks

	Longest Common Subsequence

	Custom comparison
	Example

	Custom Sequencing strategy
	Example

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PHPDiff 1.0 documentation

Two-way diff

Two-way diffs are the simplest diffs there are. It simply produces a change set between two documents. You can create
two-way diffs by using the Differ class.

Examples

The example below shows a how to create a simple diff between two documents:

use CHItA\PHPDiff\DifferBase;
use CHItA\PHPDiff\Differ;

$differ = new Differ();
$diff = $differ->diff(
 array('a', 'b', 'b', 'a', 'c', 'b', 'b', 'a'),
 array('a', 'b', 'a', 'c', 'c', 'c', 'c', 'a', 'd')
);

// $diff will contain an array with the following structure:
//
// array(
// array(
// 'type' => DifferBase::UNCHANGED,
// array('a', 'b')
//),
// array(
// 'type' => DifferBase::REMOVED,
// array('b')
//),
// array(
// 'type' => DifferBase::UNCHANGED,
// array('a', 'c')
//),
// array(
// array(
// 'type' => DifferBase::REMOVED,
// array('b', 'b')
//),
// array(
// 'type' => DifferBase::ADDED,
// array('c', 'c', 'c')
//)
//),
// array(
// 'type' => DifferBase::UNCHANGED,
// array('a')
//),
// array(
// 'type' => DifferBase::ADDED,
// array('d')
//)
//)

Note

For more information about the diff structure generated by the library, please read the
Diff structure section.

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PHPDiff 1.0 documentation

Three-way diffs

Three-way diffs are the set of changes between a parent and two child documents. There are multiple algorithms for
computing three-way diffs which are producing different results. PHPDiff implements the Weave merge and Three-way merge
algorithms out of the box, while providing an interface for creating other implementations as well.

Weave merge is the default three-way merge implementation provided by this library, however, it can be easily changed
either by providing an other three-way diff algorithm implementation in Differ3‘s constructor, or by calling the
setter function on that class.

Description of the algorithms can be found on Wikipedia <https://en.wikipedia.org/wiki/Merge_(version_control)>.

Weave merge

Weave merge is a simple algorithm, which produces a diff that contains all units that are present in both modified
versions of the files, and none that were deleted from either of them.

This algorithm only produces a merge conflict when the order of the units in the merged documents cannot be determined.

Three-way merge

Three-way merge is maybe the most common three-way merge algorithm out there. It basically produces an output which
contains all the changes that are present in either of the modified versions of the document, however, when both
documents containing changes at the same place, it produces a conflict.

Examples

Simple three-way diff example, using the three-way merge algorithm:

use CHItA\PHPDiff\Diff3Algorithm\ThreeWayMerge;
use CHItA\PHPDiff\Differ;
use CHItA\PHPDiff\Differ3;
use CHItA\PHPDiff\DifferBase;
use CHItA\PHPDiff\LongestCommonSubsequence\Algorithm\Hirschberg;

$differ = new Differ3(
 new ThreeWayMerge(new Differ(null, new Hirschberg()))
);
$diff = $differ->diff(
 array('a', 'b', 'c', 'd', 'e', 'f'), // Original document
 array('a', 'b', 'w', 'x', 'y', 'e'), // Modified 1
 array('a', 'q', 'r', 's', 'b', 'f') // Modified two
);

// $diff will contain an array with the following structure:
//
// array(
// array(
// 'type' => DifferBase::UNCHANGED,
// array('a')
//),
// array(
// 'type' => DifferBase::ADDED,
// array('q', 'r', 's')
//),
// array(
// 'type' => DifferBase::UNCHANGED,
// array('b')
//),
// array(
// array(
// 'type' => DifferBase::REMOVED,
// array('c', 'd', 'e', 'f')
//),
// array(
// 'type' => DifferBase::ADDED,
// array('w', 'x', 'y')
//)
//)
//)

Note

For more information about the diff structure generated by the library, please read the
Diff structure section.

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PHPDiff 1.0 documentation

Diff structure

The library returns diffs in an array. These arrays contain the changes, which are grouped by the type of the changes
in the following format:

array(
 $change1,
 $change2,
)

Note

Where $changeN can be any of the change blocks listed below.

Diff change blocks

Unchanged block is used when all of the two (or three) documents have the same units in common.

array(
 'type' => DifferBase::UNCHANGED,
 array('all', 'common', 'units', 'until', 'the', 'next', 'change type')
)

Added block is used when the original version did not contain some units that are present in the modified version(s).

array(
 'type' => DifferBase::ADDED,
 array('all', 'common', 'units', 'until', 'the', 'next', 'change type')
)

Removed block is used when the original version did contain some units that are not present in the modified version(s).

array(
 'type' => DifferBase::REMOVED,
 array('all', 'common', 'units', 'until', 'the', 'next', 'change type')
)

Edit block is used when the modified version(s) contain both additions and deletions compared to the original version.

array(
 array(
 'type' => DifferBase::REMOVED,
 array('removed', 'units')
),
 array(
 'type' => DifferBase::ADDED,
 array('added', 'units')
)
)

Conflict block is used when a merge conflict cannot be resolved. This could only occur in three-way diffs. Note that
because these units are neither present nor removed from the document, in general no removed lines are returned before
this block (even where some units are removed from both modified versions).

array(
 'type' => DifferBase::CONFLICT,
 array('conflicting', 'units', 'in', 'version1'),
 array('conflicting', 'units', 'in', 'version2'),
)

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PHPDiff 1.0 documentation

Longest Common Subsequence

To generate diffs we solve the longest common subsequence problem for the documents to determine which lines are the ones
that did not changed.

This library provides two implementations out of the box for the longest common subsequence problem, one that is time
efficient (dynamic programming approach) and another that is memory efficient (Hirschberg’s algorithm).

There is also an option to implement a strategy that selects the solver based on the inputs. For this, you need to
implement the CHItA\PHPDiff\LongestCommonSubsequence\Strategy\StrategyInterface.

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PHPDiff 1.0 documentation

Custom comparison

By implementing CHItA\PHPDiff\Comparison\ComparisonInterface, you may add a custom data comparison implementation
to the algorithm. This could be useful if you would like to compare the trimmed versions of the units for example.

Warning

Comparison algorithm never alters the content of the passed elements. Any manipulation of the input data in the
comparison algorithm will not be present in the output.

However, please be aware that when you use this option, the returned units from two-way diffs will contain the units
from the modified version (second parameter of the Differ::diff() method). Please also note, that when using custom
comparisons with three-way diffs, the units in the output could be from either of the modified documents.

Example

An example comparison algorithm that trims whitespaces from the end of the units before comparing them.

use CHItA\PHPDiff\Comparison\ComparisonInterface;

class TrimCompare implements ComparisonInterface
{
 public function compare($value1, $value2)
 {
 return rtrim($value1) === rtrim($value2);
 }
}

use CHItA\PHPDiff\DifferBase;
use CHItA\PHPDiff\Differ;

$differ = new Differ();
$differ->setComparisonAlgorithm(new TrimCompare());
$diff = $differ->diff(
 array('a', 'b', 'b', 'c'),
 array(' a', 'b ', 'b ', 'c')
);

// $diff will contain an array with the following structure:
//
// array(
// array(
// array(
// 'type' => DifferBase::REMOVED,
// array('a')
//),
// array(
// 'type' => DifferBase::ADDED,
// array(' a')
//)
//),
// array(
// 'type' => DifferBase::UNCHANGED,
// array('b ', 'b ', 'c')
//)
//)

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	PHPDiff 1.0 documentation

Custom Sequencing strategy

By default, the diff algorithms expect arrays as the input, in which case it is assumed, that each element of the array
is a unit (an element of the sequence and a single letter of the alphabet which the sequence is generated from).

However, you can implement CHItA\PHPDiff\SequencingStrategy\SequencingStrategyInterface and handle any type of input
yourself.

Example

In the example below, the sequence is generated from a string where the units are the bytes of the string (ascii
characters).

use CHItA\PHPDiff\SequencingStrategy\SequencingStrategyInterface;

class MySequencer implements SequencingStrategyInterface
{
 public function getSequence($dataSet)
 {
 return str_split($dataSet);
 }
}

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	PHPDiff 1.0 documentation

Index

 Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		PHPDiff 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Máté Bartus.
 Created using Sphinx 1.3.5.

_static/minus.png

