

Synopsis

Find the position of the first occurrence of a substring in a string

	
int strpos(string $heystack, mixed $needle, [, mixed $offset=0])

	

Or

	
strpos(string haystack, mixed value[, integer offset=0])

	

	Parameters:	
	haystack (string) – String being searched

	needle – String being searched for

	offset (integer) – Search offset from beginning of string

	Return type:	Position of needle

Description

Find the numeric position of the first occurrence of $needle in the $haystack string.

Parameters

	$haystack

	The string to search in.

	$needle

	If $needle is not a string, it is converted to an integer and applied as the ordinal value of a character.

	$offset

	If specified, search will start this number of characters counted from the beginning of the string. Unlike strrpos and strripos, the offset cannot be negative.

Return values

Returns the position of where the needle exists relative to the beginning of the $haystack string (independent of offset). Also note that string positions start at 0, and not 1.
Returns FALSE if the needle was not found.

Warning

This function may return Boolean FALSE, but may also return a non-Boolean value which evaluates to FALSE. Please read the section on Booleans for more information. Use the === operator for testing the return value of this function.

Changelog

	Version
	Description

	5.2.6
	Something cool happened

	5.2.2
	If the $offset parameter indicates the position of a negative truncation or beyond, false is returned. Other versions get the string from start.

Examples

Using ===

Code:

<?php
$mystring = 'abc';
$findme = 'a';
$pos = strpos($mystring, $findme);

// Note our use of ===. Simply == would not work as expected
// because the position of 'a' was the 0th (first) character.
if ($pos === false) {
 echo "The string '$findme' was not found in the string '$mystring'";
} else {
 echo "The string '$findme' was found in the string '$mystring'";
 echo " and exists at position $pos";
}
?>

Using !==

Code:

<?php
$mystring = 'abc';
$findme = 'a';
$pos = strpos($mystring, $findme);

// The !== operator can also be used. Using != would not work as expected
// because the position of 'a' is 0. The statement (0 != false) evaluates
// to false.
if ($pos !== false) {
 echo "The string '$findme' was found in the string '$mystring'";
 echo " and exists at position $pos";
} else {
 echo "The string '$findme' was not found in the string '$mystring'";
}
?>

Using an offset

Code:

<?php
// We can search for the character, ignoring anything before the offset
$newstring = 'abcdef abcdef';
$pos = strpos($newstring, 'a', 1); // $pos = 7, not 0
?>

Notes

Note

This function is binary-safe.

See also

	stripos

	strrpos

	strripos

	strstr

	strpbrk

	substr

	preg_match

Index

 S

S

 	
 	strpos() (built-in function)

 nav.xhtml

 Table of Contents

 		Synopsis

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/file.png

