
php-v8 Documentation

Bogdan Padalko

Feb 27, 2018

Contents

1 Please read 1

2 About 3

3 Hello, world! 5

4 Content 7
4.1 Getting started . 7
4.2 Performance tricks . 9
4.3 Release process . 14

i

ii

CHAPTER 1

Please read

Maintaining this project takes significant amount of time and efforts. If you like my work and want to show your
appreciation, please consider supporting me at https://www.patreon.com/pinepain.

1

https://www.patreon.com/pinepain

php-v8 Documentation

2 Chapter 1. Please read

CHAPTER 2

About

php-v8 is a PHP 7.x extension that brings V8 JavaScript engine API to PHP with some abstraction in mind and provides
an accurate native V8 C++ API implementation available from PHP.

3

https://github.com/pinepain/php-v8
https://developers.google.com/v8/intro

php-v8 Documentation

4 Chapter 2. About

CHAPTER 3

Hello, world!

<?php

use V8\{Isolate, Context, StringValue, Script};

$script = "'Hello' + ', World!'";

$isolate = new Isolate();
$context = new Context($isolate);

echo (new Script($context, new StringValue($isolate, $script)))
->run($context)
->value(), PHP_EOL;

5

php-v8 Documentation

6 Chapter 3. Hello, world!

CHAPTER 4

Content

4.1 Getting started

4.1.1 About

php-v8 is a PHP 7.x extension that brings V8 JavaScript engine API to PHP with some abstraction in mind and provides
an accurate native V8 C++ API implementation available from PHP.

Key features:

• provides up-to-date JavaScript engine with recent ECMA features supported;

• accurate native V8 C++ API implementation available from PHP;

• solid experience between native V8 C++ API and V8 API in PHP;

• no magic; no assumptions;

• does what it is asked to do;

• hides complexity with isolates and contexts scope management under the hood;

• provides a both-way interaction with PHP and V8 objects, arrays and functions;

• execution time and memory limits;

• multiple isolates and contexts at the same time;

• it works.

With this extension almost everything that the native V8 C++ API provides can be used. It provides a way to pass PHP
scalars, objects and functions to the V8 runtime and specify interactions with passed values (objects and functions
only, as scalars become js scalars too). While specific functionality will be done in PHP user space rather than in this
C/C++ extension, it lets you get into V8 hacking faster, reduces time costs and gives you a more maintainable solution.
And it doesn’t make any assumptions for you, so you stay in control, it does exactly what you ask it to do.

7

https://github.com/pinepain/php-v8
https://developers.google.com/v8/intro
http://kangax.github.io/compat-table

php-v8 Documentation

With php-v8 you can even implement NodeJs in PHP. Not sure whether anyone should/will do this anyway, but it’s
doable.

4.1.2 Demo

Here is a Hello World from V8 Getting Started developers guide page implemented in raw php-v8:

<?php declare(strict_types=1);

use V8\{
Isolate,
Context,
StringValue,
Script,

};

$isolate = new Isolate();
$context = new Context($isolate);
$source = new StringValue($isolate, "'Hello' + ', World!'");

$script = new Script($context, $source);
$result = $script->run($context);

echo $result->value(), PHP_EOL;

4.1.3 Installation

Requirements

V8

You will need a recent v8 Google JavaScript engine version installed. At this time v8 >= 6.6.313 required.

PHP

This extension is PHP7-only. It works and tested with both PHP 7.0 and PHP 7.1.

OS

This extension works and tested on x64 Linux and macOS. As of written it is Ubuntu 16.04 LTS Xenial Xerus, amd64
and macOS 10.12.5. Windows is not supported at this time.

Quick guide

Docker

There is default pinepain/php-v8 docker image with basic dependencies to evaluate and play with php-v8:

docker run -it pinepain/php-v8 bash -c "php test.php"

8 Chapter 4. Content

https://chromium.googlesource.com/v8/v8/+/master/samples/hello-world.cc

php-v8 Documentation

Ubuntu

There is

$ sudo add-apt-repository -y ppa:ondrej/php
$ sudo add-apt-repository -y ppa:pinepain/php
$ sudo apt-get update -y
$ sudo apt-get install -y php7.2 php-v8
$ php --ri v8

While pinepain/php PPA targets to contain all necessary extensions with dependencies, you may find following stan-
dalone PPAs useful:

• pinepain/libv8-6.6

• pinepain/libv8-experimental

• pinepain/php-v8

OS X (homebrew)

$ brew tap homebrew/dupes
$ brew tap homebrew/php
$ brew tap pinepain/devtools
$ brew install php71 php71-v8
$ php --ri v8

For macOS php-v8 formulae and dependencies provided by pinepain/devtools tap.

Building php-v8 from sources

git clone https://github.com/pinepain/php-v8.git
cd php-v8
phpize && ./configure && make
make test

To install extension globally run

$ sudo make install

4.2 Performance tricks

If you use php-v8 extension for short-lived tasks or you have your Context likely to be long-living enough so that
V8 runtime optimizations won’t have significant impact, you can still improve your performance.

Important note: all caching techniques are V8 version-specific and platform specific, some caches won’t even work
on different CPU with different instructions set, you have to test following techniques for your environment and
infrastructure and be ready to fallback to raw, cache-less flow.

Let’s say you have an typical Hello, world! script:

4.2. Performance tricks 9

https://launchpad.net/~pinepain/+archive/ubuntu/php
https://launchpad.net/~pinepain/+archive/ubuntu/libv8-6.6
https://launchpad.net/~pinepain/+archive/ubuntu/libv8-experimental
https://launchpad.net/~pinepain/+archive/ubuntu/php-v8
https://github.com/pinepain/homebrew-devtools

php-v8 Documentation

<?php declare(strict_types=1);

use V8\{
Isolate,
Context,
StringValue,
Script,

};

$script_source_string = "function say() { return 'Hello' + ', World!'}; say()";

$isolate = new Isolate();
$context = new Context($isolate);
$source = new StringValue($isolate, $script_source_string);

$script = new Script($context, $source);
$result = $script->run($context);

echo $result->value(), PHP_EOL;

Let’s reshape it a bit to make it more suitable for further tweaks by introducing ScriptCompiler:

<?php declare(strict_types=1);

use V8\{
Isolate,
Context,
StringValue,
ScriptCompiler,

};

$script_source_string = "function say() { return 'Hello' + ', World!'}; say()";

$isolate = new Isolate();
$context = new Context($isolate);
$source_string = new StringValue($isolate, $script_source_string);
$source = new ScriptCompiler\Source($source_string);
$script = ScriptCompiler::compile($context, $source);

$result = $script->run($context);

echo $result->value(), PHP_EOL;

4.2.1 Script code cache

Using script code cache could boost your performance from 5% to 25% or even more, itlargely depends on your script
and host. On slower machines it may give you better result in terms of performance gain %%, while on faster it may
be not so large, according to performance benchmark.

<?php declare(strict_types=1);

use V8\{
Isolate,
Context,
StringValue,

(continues on next page)

10 Chapter 4. Content

php-v8 Documentation

(continued from previous page)

ScriptCompiler,
};

$script_source_string = "function say() { return 'Hello' + ', World!'}; say()";

$isolate = new Isolate();
$context = new Context($isolate);
$source_string = new StringValue($isolate, $script_source_string);
$source = new ScriptCompiler\Source($source_string);

// Generating script cache. Normally you want to cache this data somewhere else
// either on filesystem, in database or in memory. Redis could be your friend
// but don't let it be your memory hog.
$unbound_script = ScriptCompiler::compileUnboundScript($context, $source);
$cached_data = ScriptCompiler::createCodeCache($unbound_script, $source_string);

// Here we utilize script cache
$source = new ScriptCompiler\Source($source_string, null, $cached_data);
$script = ScriptCompiler::compile($context, $source, ScriptCompiler::OPTION_CONSUME_
→˓CODE_CACHE);

if ($cached_data->isRejected()) {
throw new RuntimeException('Script code cache rejected!');

}

$result = $script->run($context);

echo $result->value(), PHP_EOL;

4.2.2 Isolate startup data

Startup data can speedup your context creation by populating them with script run result. It can save from 1% to 3%,
so it’s not so effective as script code cache, however, the benchmark was done on using quite simple example, so if
you have a lot of entities that you need to bootstrap your context with, your saving may be more.

<?php declare(strict_types=1);

use V8\{
Isolate,
Context,
StringValue,
ScriptCompiler,
StartupData,

};

$script_source_string = "function say() { return 'Hello' + ', World!'}; say()";

// Same here, you are likely want to store it in some quick and cheap to access
→˓storage
$startup_data = StartupData::createFromSource($script_source_string);

$isolate = new Isolate($startup_data);
$context = new Context($isolate);
$source_string = new StringValue($isolate, $script_source_string);
$source = new ScriptCompiler\Source($source_string);

(continues on next page)

4.2. Performance tricks 11

php-v8 Documentation

(continued from previous page)

$script = ScriptCompiler::compile($context, $source);

$result = $script->run($context);

echo $result->value(), PHP_EOL;

4.2.3 Combining both approaches

Combining both techniques is you friend in boosting performance:

<?php declare(strict_types=1);

use V8\{
Isolate,
Context,
StringValue,
ScriptCompiler,
StartupData,

};

$script_source_string = "function say() { return 'Hello' + ', World!'}; say()";

$startup_data = StartupData::createFromSource($script_source_string);

$isolate = new Isolate($startup_data);
$context = new Context($isolate);
$source_string = new StringValue($isolate, $script_source_string);
$source = new ScriptCompiler\Source($source_string);

$unbound_script = ScriptCompiler::compileUnboundScript($context, $source);
$cached_data = ScriptCompiler::createCodeCache($unbound_script, $source_string);

$source = new ScriptCompiler\Source($source_string, null, $cached_data);
$script = ScriptCompiler::compile($context, $source, ScriptCompiler::OPTION_CONSUME_
→˓CODE_CACHE);

if ($cached_data->isRejected()) {
throw new RuntimeException('Script code cache rejected!');

}

$script = ScriptCompiler::compile($context, $source);

$result = $script->run($context);

echo $result->value(), PHP_EOL;

4.2.4 Benchmarks

Note, that your mileage may varies so you are highly encouraged to run benchmarks located under project’s root
/pref folder by yourself on your hardware, in your infra and even with your js script.

12 Chapter 4. Content

php-v8 Documentation

From Ubuntu in Docker on macOS

4 cores, 16Gb memory

php -v
PHP 7.2.2-3+ubuntu16.04.1+deb.sury.org+1 (cli) (built: Feb 6 2018 16:11:23) (NTS)
Copyright (c) 1997-2018 The PHP Group
Zend Engine v3.2.0, Copyright (c) 1998-2018 Zend Technologies

with Zend OPcache v7.2.2-3+ubuntu16.04.1+deb.sury.org+1, Copyright (c) 1999-2018,
→˓by Zend Technologies

php --ri v8
V8 support => enabled
Version => v0.2.1-master-dev
Revision => 5d7c3e4
Compiled => Feb 25 2018 @ 11:29:00

V8 Engine Compiled Version => 6.6.313
V8 Engine Linked Version => 6.6.313

Less is better

subject mode stdev rstdev diff (less is better)
Cold Isolate, no code cache 3,602.599us 49.778us 1.38% +26.98%
Cold Isolate, with code cache 2,885.638us 39.775us 1.36% +2.86%
Warm Isolate, no code cache 3,489.959us 44.036us 1.27% +22.46%
Warm Isolate, with code cache 2,813.156us 43.351us 1.53% 0.00%

From macOS host

4 cores, 16Gb memory

$ php -v
PHP 7.2.2 (cli) (built: Feb 1 2018 11:50:40) (NTS)
Copyright (c) 1997-2018 The PHP Group
Zend Engine v3.2.0, Copyright (c) 1998-2018 Zend Technologies

with Zend OPcache v7.2.2, Copyright (c) 1999-2018, by Zend Technologies

$ php --ri v8
V8 support => enabled
Version => v0.2.1-master-dev
Revision => 5d7c3e4
Compiled => Feb 25 2018 @ 11:42:00

V8 Engine Compiled Version => 6.6.313
V8 Engine Linked Version => 6.6.313

subject mode stdev rstdev diff (less is better)
Cold Isolate, no code cache 8,732.585us 97.889us 1.11% +6.90%
Cold Isolate, with code cache 8,290.880us 141.583us 1.69% +1.78%
Warm Isolate, no code cache 8,722.684us 104.547us 1.19% +6.68%
Warm Isolate, with code cache 8,194.924us 70.345us 0.85% 0.00%

4.2. Performance tricks 13

php-v8 Documentation

4.3 Release process

Here you can find basics to the release process

4.3.1 Release php-v8

GitHub release

1. Make sure current state is ready for release:

• All relevant PR merged and issues closed.

• Build passed.

2. Prepare release notes by creating release draft on github.

3. Update PHP_V8_VERSION to have desired version and set PHP_V8_REVISION to release in php_v8.h.

4. Run ./scripts/refresh-package-xml.php -f to update package.xmlwith proper php-v8 ver-
sion and update directories and files tree.

5. Update package.xml <notes> with release notes. Keep eye on special characters to properly escape them,
e.g. > should be written as > instead.

6. Commit all changes with Prepare X.Y.Z release commit message.

7. Push this commit and make sure it will pass the build.

8. Tag it with vX.Y.Z tag and push. Create github release from a draft prepared in step above.

9. Close relevant milestone, if any.

10. Run ./scripts/subsplit.sh to update php-v8-stubs which are available in a separate read-only repository to match
packagist and composer expectations.

PECL release

1. Run pecl package in your build machine (it’s normally vagrant box used for php-v8 development). It
should create v8-X.Y.Z.tgz file.

2. Log in to PECL and upload file from previous step at https://pecl.php.net/release-upload.php. Verify that release
info is accurate and confirm release.

Ubuntu PPA release

1. Copy targeted libv8-X.Y build to php ppa without rebuild, just copy.

2. Make sure you have proper PHP and php-v8 PPA dependencies set in https://launchpad.net/~pinepain/
+archive/ubuntu/php-v8/+edit-dependencies

3. Make sure you have proper php-v8 version set in packaging/Dockerfile under V8 constant.

4. In packaging/php-v8/Makefile set proper VERSION=X.Y.Z

5. Make sure you have valid libv8 dependency in packaging/php-v8/debian/control file.

6. Commit changes with build php-v8 commit message and wait until libv8 PPA build done.

7. Copy php-v8 packages to pinepain/php PPA, do not rebuild, just copy.

8. After they get copied, feels free to remove old libv8 packages from pinepain/php ppa.

14 Chapter 4. Content

https://pecl.php.net/release-upload.php
https://launchpad.net/~pinepain/+archive/ubuntu/php-v8/+edit-dependencies
https://launchpad.net/~pinepain/+archive/ubuntu/php-v8/+edit-dependencies

php-v8 Documentation

macOS Homebrew release

1. Update php7*-v8 formula one by one to have proper depends_on 'v8@X.Y' and
v8_prefix=Formula['v8@X.Y'].opt_prefix values.

2. If you want to rebuild existent version, add/increment revision in formula body.

3. If version has already been published to bintray and you absolutely sure it needs to be re-built without revision.
bump, you will need to delete such version from bintray first.

TODO: docker release

After all

1. Update js-sandbox .travis.yml and .scrutinizer.yml to refer to new php-v8 version and to relevant
libv8 PPA and packages.

2. Update PHP_V8_VERSION to the next version and set PHP_V8_REVISION to dev in php_v8.h.

3. Commit changes with Back to dev [skip ci] message and push them to master.

4.3.2 Release libv8

We will start with building Ubuntu PPA first as it used in further CI process to validate that php-v8 is not broken.

To track v8 changes you can use these links:

• https://github.com/v8/v8/commits/master/include/v8.h - to keep track on v8 upstream changes

• https://omahaproxy.appspot.com/ - to keep track v8 channel(version) heads and what version is used in chrome

Building libv8

1. Skip this step if you are updating v8 patch release version. To bump minor v8 version (e.g. from 6.3 to 6.4),
create new libv8-X.Y PPA for new version. As V8 could be build for i386 but only from amd64, which is
not how PPA works, it’s also make sense to keep new PPA amd64-only. Also we don’t use i386 so we don’t
want to worry about it.

2. Update libv8 Makefile (packaging/libv8/Makefile) with new libv8 version by setting proper values in
GIT_VERSION=X.Y.Z and NAME=libv8-X.Y variables.

3. Commit changes with build libv8 commit message and wait until libv8 PPA build done.

4. Don’t forget to update libv8 >= <new X.Y.Z version> dependency for php-v8 PPA in
packaging/php-v8/debian/control and also change php-v8 PPA repository dependency to in-
clude new libv8-X.Y PPA (https://launchpad.net/~pinepain/+archive/ubuntu/php-v8/+edit-dependencies),
it’s done by looking for ppa by full name, e.g. pinepain/libv8-X.Y.

After libv8 PPA build done

1. Copy fresh libv8-X.Y build packages from libv8-experimental (default target for all libv8 builds we
trigger) to it libv8-X.Y PPA. Do not rebuild, just copy binaries.

2. Wait for packages copied and published!

3. Build pinepain/libv8 docker image, tag it with the relevant v8 full version and push to Docker Hub.

4. You may want to set proper V8 version in php-v8 by updating it in .travis.yml.

4.3. Release process 15

https://github.com/pinepain/js-sandbox
https://github.com/v8/v8/commits/master/include/v8.h
https://omahaproxy.appspot.com/
https://launchpad.net/~pinepain/+archive/ubuntu/php-v8/+edit-dependencies
https://github.com/pinepain/dockerfiles/tree/master/libv8

php-v8 Documentation

5. Make sure you have proper php-v8 version set in packaging/Dockerfile under V8 constant.

After docker images rebuilt/published

1. Update min required libv8 version in php-v8 config.m4, V8_MIN_API_VERSION_STR=X.Y.Z.

2. If there was new docker images published, update reference to them in php-v8 .travis.yml and in php-v8
Dockerfile, and set proper V8 and TAG value there.

3. Update reference to v8@X.Y in php-v8 CMakeLists.txt on minor version bump.

4. Also, update references to v8 version in php-v8/scripts/provision/provision.sh, it’s normally could be done by
replacing old version with new, e.g. 6.3 => 6.4.

5. On every version bump update php-v8 README.md file with proper min v8 version required/tested.

6. If you use vagrant, re-provision your local development environment at this step to fetch/add new libv8
version. It’s generally a good idea to remove old libv8 versions as well and remove their PPA from apt
sources list at this point.

7. Make sure you tested php-v8 locally first before pushing to remote, upgrading v8 could be tricky as it may
break BC even in patch releases (that’s why we started to have separate PPAs for minor version to somehow
couple with this issue in minor releases).

8. Note, that doing all this in a separate branch and merging that later into master is a nice and safe idea (note, you
may skip PR overhead and do fast-forward merge locally to master).

9. Commit message should state that it is v8 version bump, e.g. Require libv8 >= X.Y.Z

10. Push changes and make sure build is green. If not, fix code/update tests and repeat.

Building packages for macOS Homebrew

1. Skip this step if you are updating v8 patch release version. If it is a minor version bump, create new v8@X.Y
formula.

2. Skip this step if you are updating v8 patch release version. Create new v8:X.Y Package on bintray for it.

3. Remove/reset formula revision if it is version bump and not rebuild.

4. Build v8@X.Y (locally or with TravisCI if it provides relevant macOS version) and publish.

16 Chapter 4. Content

https://github.com/pinepain/php-v8
https://github.com/pinepain/php-v8
https://github.com/pinepain/php-v8
https://github.com/pinepain/php-v8
https://github.com/pinepain/php-v8
https://github.com/pinepain/php-v8
https://github.com/pinepain/php-v8

	Please read
	About
	Hello, world!
	Content
	Getting started
	Performance tricks
	Release process

