

PHP Test Generator (PTG) Manual

[image: Latest Stable Version] [https://packagist.org/packages/niko9911/test-generator] [image: Minimum PHP Version] [https://php.net/] [image: Build Status] [https://php-test-generator.readthedocs.io/en/latest] [image: MIT License] [https://gitlab.com/niko9911/php-test-generator/blob/master/LICENSE]

Edition for PHP Test Generator (PTG) latest. Updated on Feb 13, 2019.

PHP Test Generator (PTG) is a core component to create test cases based on project files.
PHP Test Generator (PTG) comes with templates for PHPUnit by default and supports latest
PHPUnit versions fully. Mocking is made with Mockery. Creating new templates are made
easy and you can extend it easily at any times.

PHP Test Generator is referred as PTG later on the docs.

By Niko Granö

This work is licensed under the MIT License [https://gitlab.com/niko9911/php-test-generator/blob/master/LICENSE].

Contents:

	1. Goals

	2. Installation
	Requirements

	Composer

	Optional packages

	3. Commands
	Create Tests Command

	Global Commands and Options

	4. Configuration
	Configuration File

	Available Global Tags

	Available Global Options

	Available Templates

Templates

	1. PHPUnit
	Available Tags

	Available Options

	Configuration

	Example Output

Appendix

	1. Contributing to PHP Test Generator
	Contributor Code of Conduct

	Workflow

	Coding Guidelines

	Using PHP Test Generator from a Git checkout

	Running PHP Test Generator’s test suite

	Reporting issues

	2. Contributor Code of Conduct

	3. Copyright

1. Goals

PHP Test Generator was developed with the following goals in mind:

	Easily maintainable code base.

	Be independent and modular as possible.

	Have simple install process (composer).

	Have easily extendable templates.

	Integrate easily with other than PHPUnit testing frameworks.

	Have an easy to use command-line operation.

	Have external configuration file.

	Generate stubs to speed up development, not perfect tests.

2. Installation

Requirements

Note

PTG requires at least PHP 7.1 (or later).

PTG latest requires PHP 7.1; using the latest version of PHP is highly
recommended. PTG has been confirmed to be working on latest PHP 7.3.

PTG requires the json [https://php.net/manual/en/json.installation.php] and
tokenizer [http://php.net/manual/en/tokenizer.installation.php]
extensions, which are normally enabled by default. PTG needs also
mbstring [https://php.net/manual/en/mbstring.installation.php], but this
is not mandatory.

PTG also requires the
pcre [http://php.net/manual/en/pcre.installation.php],
reflection [http://php.net/manual/en/reflection.installation.php],
and spl [http://php.net/manual/en/spl.installation.php]
extensions. These standard extensions are enabled by default and cannot be
disabled without patching PHP’s build system and/or C sources.

Composer

Simply add a (development-time) dependency on
niko9911/php-test-generator to your project’s
composer.json file if you use Composer [https://getcomposer.org/] to manage the
dependencies of your project:

composer require --dev niko9911/php-test-generator ^|version|

Optional packages

Currently there is no optional packages available. Optional packages are supposed
to provide additional features such as templates for different kind of templates
or support for other testing frameworks or usages than PHPUnit.

3. Commands

Currently following commands are available.

	Command

	Short Description

	create-tests

	Will create Unit Tests stubs based on configuration.

Create Tests Command

Will create Unit Tests stubs based on configuration.
Configuration is automatically detected or manually
given path to it by using optional parameters.

Example usage:

testGen create-tests

Available Options:

	Option

	Short Description

	-c, –config=CONFIG

	Path to configuration. Defaults to current working directory and tries
to find first .php_testgen, .php_testgen.dist in given order.

Global Commands and Options

As tool is based on Symfony Console you can use default commands to get more information like
testGen -h or testGen [command] -h

4. Configuration

PTG can be only configured via using external configuration file.
PTG will try find configuration file in following order:

	Read Option parameter --config path/to/config.php (-c ...).

	Try find .php_testgen in current working directory.

	try find .php_testgen.dist in current working directory.

If .php_testgen and .php_testgen.dist exist at same time
.php_testgen will be used as source for the configuration.
This way you can override configuration locally if needed.

Configuration File

Configuration in PTG works by creating PHP file which will return instance on ConfigurationBuilder.
Any other return than ConfigurationBuilder will result ConfigurationError and script will not run.

Example quick configuration:

<?php

declare(strict_types=1);

use Lamia\\TestGenerator\Domain\Builder\ConfigurationBuilder as Config;
use Lamia\\TestGenerator\Domain\Configuration\DirectoryConfigurationEntity as Directory;

return (new Config())
 ->setTemplate(Config::TEMPLATE_PHPUNIT)
 ->addDirectory(new Directory('src', 'tests/src/unit', [], [], ['integration','config', 'etc'], true))
 ->addDirectory(new Directory('lib', 'tests/lib/unit', [], [], ['stubs'], false));

Directory Object Explained:

new Directory(
 string sourceDirectory,
 string testDirectory,
 Lamia\\TestGenerator\Domain\Tag[] Tags,
 Lamia\\TestGenerator\Domain\Option[] Options,
 string[] ExcludedDirectories,
 bool AutoTag
);

Available Global Tags

For full list of available tags, please consult correct template section.
Global Tags available are following:

	Tag

	Usage

	Description

	Lamia\TestGenerator\Domain\Tag\Custom::class

	new Custom(string $name, string $value);

	Adds custom tag into every function doc.

Available Global Options

For full list of available options, please consult correct template section.
Global Options available are following:

	Options

	Usage

	Description

	None

	None

	None

Available Templates

Here is available templates for now.
If you have template to submit, please create PR to add it to the list.

	Template

	Alias

	Description

	\Lamia\TestGenerator\Template\PhpUnit\Template::class

	Config::TEMPLATE_PHPUNIT

	Default Template for PHPUnit.

*) Requires extra Composer Package to be installed.

1. PHPUnit

This is template for PHPUnit. It will create basic structure to get started with PHPUnit.
Some tests generated with this template might work without any problems, but most of the
automatically generated code will not work and will need manual fixes.

Available Tags

These tags can be used only if the template is PHPUnit.
PHPUnit template will provide following tags:

Available Options

These options can be used only if the template is PHPUnit.
PHPUnit template will provide following options:

	Options

	Usage

	Description

	Lamia\TestGenerator\Template\PhpUnit\Domain\Option\CustomExtend::class

	new (string $class);

	Custom class to extend. Must be TestCase at last.

	Lamia\TestGenerator\Template\PhpUnit\Domain\Option\:CustomFaker:class

	new (string $faker);

	Custom command to call faker. Must return \Faker\Generator:class

	Lamia\TestGenerator\Template\PhpUnit\Domain\Option\NamespaceGrouper::class

	new (bool $enabled = true);

	Add @groups for every namespace part.

	Lamia\TestGenerator\Template\PhpUnit\Domain\Option\UseCovers::class

	new (string $enabled = true);

	Adds @covers tag to the function to prevent false positive coverage.

	Lamia\TestGenerator\Template\PhpUnit\Domain\Option\UseCoversDefault::class

	new (bool $enabled = true);

	Adds @defaultCovers to enable shorthands for the class.

Configuration

Example quick configuration based on default configuration:

<?php

declare(strict_types=1);

use Lamia\TestGenerator\Domain\Builder\ConfigurationBuilder as Config;
use Lamia\TestGenerator\Domain\Configuration\DirectoryConfigurationEntity as Directory;

$srcTags = [];
$srcTags[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Tag\Author('Niko');
$srcTags[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Tag\Ticket('SMT-593');

$libTags = [];
$libTags[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Tag\Group('Integration');
$libTags[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Tag\Ticket('INT-31');

$srcOpt = [];
$srcOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\CustomFaker('$this->getFaker()');
$srcOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\UseCovers(true);
$srcOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\UseCoversDefault(true);
$srcOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\NamespaceGrouper(true);

$libOpt = [];
$libOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\CustomExtend(\Vendor\Project\Tests\AbstractUnitTest::class);
$libOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\UseCovers(true);
$libOpt[] = new \Lamia\TestGenerator\Template\PhpUnit\Domain\Option\UseCoversDefault(true);

return (new Config())
 ->setTemplate(Config::TEMPLATE_PHPUNIT)
 ->addDirectory(new Directory('src', 'tests/src/unit', $srcTags, $srcOpt, ['config', 'etc'], true))
 ->addDirectory(new Directory('lib', 'tests/lib/unit', $libTags, $libOpt, ['stubs'], false));

Example Output

<?php

declare(strict_types=1);

namespace Vendor\Project\Tests\Unit\User;

use Vendor\Project\User\UserId;
use Vendor\Project\User\SupportNumber;
use Vendor\Project\Exception\User\Account\CountryException;
use Vendor\Project\Tests\AbstractUnitTest;

final class UserTest extends AbstractUnitTest
{
 /** @var UserId */
 private $id;

 /** @var SupportNumber */
 private $SupportNumber;

 /** @var string */
 private $country;

 /** @var DateTimeImmutable */
 private $updated;

 public function setUp(): void
 {
 $this->id = \Mockery::mock(UserId::class);
 $this->SupportNumber = \Mockery::mock(SupportNumber::class);
 $this->country = $this->getFaker()->word;
 $this->updated = \Mockery::mock(\DateTimeImmutable::class);
 }

 /**
 * @testdox Will test class Account function __construct.
 * @throws CountryException
 * @return Account
 * @group Vendor
 * @group Project
 * @group User
 * @author Niko
 * @ticket SMT-593
 * @covers Account::__construct
 * @small
 */
 public function test__construct(): Account
 {
 $class = new Account(
 $this->id,
 $this->SupportNumber,
 $this->country,
 $this->updated
);
 $this->addToAssertionCount(1);

 return $class;
 }

 /**
 * @testdox Will test class Account function __construct for exception CountryException.
 * @throws CountryException
 * @return void
 * @group Vendor
 * @group Project
 * @group User
 * @author Niko
 * @ticket SMT-593
 * @covers Account::__construct
 * @expectedException CountryException
 * @small
 */
 public function test__constructCountryException(): void
 {
 $this->markTestSkipped('TODO: Implement Test::__constructCountryException().');
 // TODO: Please implement this manually to trigger given exception!

 new Account();
 }

 /**
 * @testdox Will test class Account function id.
 * @param Account $class
 * @return void
 * @group Vendor
 * @group Project
 * @group User
 * @author Niko
 * @ticket SMT-593
 * @covers Account::id
 * @depends test__construct
 * @small
 */
 public function testId(Account $class): void
 {
 $this->assertEquals($this->id, $class->id());
 }

 /**
 * @testdox Will test class Account function SupportNumber.
 * @param Account $class
 * @return void
 * @group Vendor
 * @group Project
 * @group User
 * @author Niko
 * @ticket SMT-593
 * @covers Account::supportNumber
 * @depends test__construct
 * @small
 */
 public function testSupportNumber(Account $class): void
 {
 $this->assertEquals($this->SupportNumber, $class->supportNumber());
 }

 /**
 * @testdox Will test class Account function country.
 * @param Account $class
 * @return void
 * @group Vendor
 * @group Project
 * @group User
 * @author Niko
 * @ticket SMT-593
 * @covers Account::country
 * @depends test__construct
 * @small
 */
 public function testCountry(Account $class): void
 {
 $this->assertEquals($this->country, $class->country());
 }

 /**
 * @testdox Will test class Account function updated.
 * @param Account $class
 * @return void
 * @group Vendor
 * @group Project
 * @group User
 * @author Niko
 * @ticket SMT-593
 * @covers Account::updated
 * @depends test__construct
 * @small
 */
 public function testUpdated(Account $class): void
 {
 $this->assertEquals($this->updated, $class->updated());
 }
}

1. Contributing to PHP Test Generator

Contributor Code of Conduct

Please note that this project is released with a :ref`code_of_conduct`. By participating in this project you agree to abide by its
terms.

Workflow

	Fork the project.

	Make your bug fix or feature addition.

	Add tests for it. This is important so we don’t break it in a future
version unintentionally.

	Send a pull request. Bonus points for topic branches.

Please make sure that you have set up your user name and email
address [https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup] for use with Git. Strings such as
silly nick name <root@localhost> look really stupid in the commit
history of a project.

Pull requests for bug fixes must be based on the current stable branch
whereas pull requests for new features must be based on the master
branch.

We are trying to keep backwards compatibility breaks in PHP Test
Generator to an absolute minimum. Please take this into account when
proposing changes.

Due to time constraints, we are not always able to respond as quickly as
we would like. Please do not take delays personal and feel free to
remind us if you feel that we forgot to respond.

Coding Guidelines

This project comes with a configuration file and an executable for
php-cs-fixer [https://github.com/FriendsOfPHP/PHP-CS-Fixer] (.php_cs.dist) that you can use to (re)format your
source code for compliance with this project’s coding guidelines:

vendor/bin/php-cs-fixer fix

Using PHP Test Generator from a Git checkout

The following commands can be used to perform the initial checkout of
PHP Test Generator:

git clone https://gitlab.com/niko9911/php-test-generator.git ptg

cd ptg

Retrieve PHP Test Generator’s dependencies using Composer [https://getcomposer.org/]:

composer install

The testGen script can be used to invoke the PHP Test Generator test
runner:

./testGen --version

Running PHP Test Generator’s test suite

After following the steps shown above, PHP Test Generator’s test suite
is run like this:

vendor/bin/phpunit

Reporting issues

Please use report all tickets to:

	General problems/Documentation [https://gitlab.com/niko9911/php-test-generator]

2. Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of
fostering an open and welcoming community, we pledge to respect all
peoplewho contribute through reporting issues, posting feature requests,
updating documentation, submitting pull requests or patches, and other
activities.

We are committed to making participation in this project a
harassment-free experience for everyone, regardless of level of
experience, gender, gender identity and expression, sexual orientation,
disability, personal appearance, body size, race, ethnicity, age,
religion, or nationality.

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery

	Personal attacks

	Trolling or insulting/derogatory comments

	Public or private harassment

	Publishing other’s private information, such as physical or
electronic addresses, without explicit permission

	Other unethical or unprofessional conduct

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves
to fairly and consistently applying these principles to every aspect of
managing this project. Project maintainers who do not follow or enforce
the Code of Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by contacting the project maintainer at
niko9911@ironlions.fi. All complaints will be reviewed and investigated
and will result in a response that is deemed necessary and appropriate
to the circumstances. Maintainers are obligated to maintain
confidentiality with regard to the reporter of an incident.

This Code of Conduct is adapted from the Contributor Covenant [https://contributor-covenant.org],
version 1.3.0, available at
https://contributor-covenant.org/version/1/3/0/

3. Copyright

 Copyright (c) 2019 Niko Granö.

 This work is licensed under the MIT License.

 A summary of the license is given below, followed by the full legal text.

 ! Summary is not a license !
 Full legal text is always legally used in case of
 conflicts between summary and license itself.

 Basically, you can do whatever you want as long as you include the
 original copyright and license notice in any copy of the software/source.

 | CAN | CANNOT | MUST |
 ⊢---------------------+---------------+---------------------⊣
 | COMMERCIAL USE | HOLD LIABLE | INCLUDE COPYRIGHT |
 | MODIFY | | INCLUDE LICENSE |
 | DISTRIBUTE | | |
 | SUBLICENSE | | |
 | PRIVATE USE | | |

 MIT License

 Copyright (c) 2019 Niko Granö

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in all
 copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 SOFTWARE.

===

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 PHP Test Generator (PTG) Manual

 		
 Goals

 		
 Installation

 		
 Requirements

 		
 Composer

 		
 Optional packages

 		
 Commands

 		
 Create Tests Command

 		
 Global Commands and Options

 		
 Configuration

 		
 Configuration File

 		
 Available Global Tags

 		
 Available Global Options

 		
 Available Templates

 		
 PHPUnit

 		
 Available Tags

 		
 Available Options

 		
 Configuration

 		
 Example Output

 		
 Contributing to PHP Test Generator

 		
 Contributor Code of Conduct

 		
 Workflow

 		
 Coding Guidelines

 		
 Using PHP Test Generator from a Git checkout

 		
 Running PHP Test Generator’s test suite

 		
 Reporting issues

 		
 Contributor Code of Conduct

 		
 Copyright

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

