PHP Code Generator Documentation
Release

Thomas Gossmann

Jul 01, 2017

Contents

1 Quickstart 3
1.1 Installation e e e e e e e e e 3
1.2 Getting Started L e e e e e e e e e e e 3
1.3 Model e e e 5
1.4 Generator e e e e e e e e 10
1.5 BestPractiCes. e e e e 12
1.6 APL . . o e 13

PHP Code Generator Documentation, Release

This is a code generator for php code.

Contents 1

PHP Code Generator Documentation, Release

2 Contents

CHAPTER 1

Quickstart

1. Install: composer require gossi/php-code-generator

2. You need a Model
3. You need a Generator
4. Generate the code contained in the model

Contents:

Installation

Install via Composer:

{
"require": {
"gossi/php—-code—-generator": "~0"
}
}

or via CLI:

’composer require 'gossi/php-code—-generator'

Getting Started

There are two things you need to generate code.
1. A Model that contains the code structure
» PhpClass
* Phplnterface

PHP Code Generator Documentation, Release

e PhpTrait

» PhpFunction
2. A Generator

* CodeGenerator

¢ CodeFileGenerator

You can create these models and push all the data using a fluent API or read from existing code through reflection.

Here are two examples for each of those.

Generate Code

1. Simple:

<?php

use gossi\codegen\generator\CodeGenerator;
use gossi\codegen\model\PhpClass;

use gossi\codegen\model\PhpMethod;

use gossi\codegen\model\PhpParameter;

= new PhpClass();

>class
->setQualifiedName ('my\\cool\\Tool"')
—>setMethod (PhpMethod: :create ('___construct"')
—>addParameter (PhpParameter: :create ('target")
->setType('string"')
—>setDescription('Creates my Tool'")

Sgenerator = new CodeGenerator();
= Sgenerator->generate ($class);

will generate:

<?php
namespace my\cool;

class Tool {

VE S
*
* @param Starget string Creates my Tool
*/

public function ___construct ($Starget) |

}

2. From File:

<?php
use gossi\codegen\generator\CodeGenerator;
use gossi\codegen\model\PhpClass;

Sclass = PhpClass::fromFile('path/to/class.php');

Chapter 1. Quickstart

PHP Code Generator Documentation, Release

new CodeGenerator();
nerator—->generate ($class);

3. From Reflection:

<?php
use gossi\codegen\generator\CodeGenerator;
use gossi\codegen\model\PhpClass;

new \ReflectionClass('MyClass');

PhpClass::fromReflection (Sreflection->getFileName ()) ;
Sgenerator = new CodeGenerator();
Scode = Sgenerator->generate (Sclass);

Model

A model is a representation of your code, that you either read or create.

Model Overview

There are different types of models available which are explained in this section.

Structured Models

Structured models are composites and can contain other models, these are:
e PhpClass
e PhpTrait

* PhpInterface

Generateable Models

There is only a couple of models available which can be passed to a generator. These are the mentioned structured
models + PhpFunction.

Part Models
Structured models can be composed of various members. And functions and methods can itself contain zero to many
parameters. All parts are:

* PhpConstant

* PhpProperty

e PhpMethod

* PhpParameter

1.3. Model 5

PHP Code Generator Documentation, Release

Name vs. Namespace vs. Qualified Name ?

There can be a little struggle about the different names, which are name, namespace and qualified name. Every model
has a name and generateable models additionally have a namespace and qualified name. The qualified name is a
combination of namespace + name. Here is an overview:

Name Tool
Namespace my\cool
Qualified Name | my\cool\Tool

Create Models programmatically

You can create models with the provided fluent API. The functionality is demonstrated for a PhpClass but also
works accordingly for all the other generateable models.

Create your first Class

Let’s start with a simple example:

<?php
use gossi\codegen\model\PhpClass;

Sclass = new PhpClass();
Sclass—>setQualifiedName ('my\\cool\\Tool"');

which will generate an empty:

<?php
namespace my\cool;

class Tool {

Adding a Constructor

It’s better to have a constructor, so we add one:

<?php

use gossi\codegen\model\PhpClass;

use gossi\codegen\model\PhpMethod;
use gossi\codegen\model\PhpParameter;

5 = new PhpClass ('my\\cool\\Tool");

—>setMethod (PhpMethod: :create ('___construct')
—>addParameter (PhpParameter: :create ('target'")
—->setType ('string"')
—>setDescription('Creates my Tool')

you can see the fluent API in action and the snippet above will generate:

6 Chapter 1. Quickstart

PHP Code Generator Documentation, Release

<?php
namespace my\cool;

class Tool {

VEZ:
*
* @param Starget string Creates my Tool
*/

public function __ construct (Starget) {

}

Adding members

We’ve just learned how to pass a blank method, the constructor to the class. We can also add properties, constants and
of course methods. Let’s do so:

<?php

use gossi\codegen\model\PhpClass;

use gossilcodegen\model\PhpMethod;
use gossi\codegen\model\PhpParameter;
use gossi\codegen\model\PhpProperty;
use gossilcodegen\model\PhpConstant;

$Sclass = PhpClass::create('my\\cool\\Tool")

—>setMethod (PhpMethod: :create ('setDriver')

—>addParameter (PhpParameter: :create ('driver")
—>setType ('string"')

)
—->setBody ('Sthis->driver = S$driver');

)

->setProperty (PhpProperty::create ('driver')
—->setVisibility ('private')
->setType ('string')

)

—>setConstant (new PhpConstant ('FOO', 'bar'))

will generate:

<?php
namespace my\cool;

class Tool {

/ x*
*/

const = 'bar';

J ok k
* @var string
*/

private Sdriver;

/x*

1.3. Model 7

PHP Code Generator Documentation, Release

*
* @param Sdriver string
*/
public function setDriver ($driver) {
Sthis->driver = S$driver;

Declare use statements

When you put code inside a method there can be a reference to a class or interface, where you normally put the
qualified name into a use statement. So here is how you do it:

<?php

use gossi\codegen\model\PhpClass;
use gossi\codegen\model\PhpMethod;
s = new PhpClass () ;

Sc

->setName ('Tool"')
->setNamespace ('my\\cool")
—->setMethod (PhpMethod: :create ('__construct'")
->setBody ('Srequest = Request::createFromGlobals();")

)
->declareUse ('Symfony\\Component\\HttpFoundation\\Request")

which will create:

<?php
namespace my\cool;

use Symfony\Component\HttpFoundation\Request;

class Tool {

J ok k
*/
public function __construct () {
Srequest = Request::createFromGlobals () ;

Much, much more

The API has a lot more to offer and has almost full support for what you would expect to manipulate on each model,
of course everything is fluent APL

Create from existing Models

You can also read a model from existing code. Reading from a file is probably the best option here. It will parse the file
and fill up the model. Alternatively if you do have the class already loaded you can use reflection to load the model.

8 Chapter 1. Quickstart

PHP Code Generator Documentation, Release

From File

Reading from a file is the simplest way to read existing code, just like this:

<?php
use gossi\codegen\model\PhpClass;

$class = PhpClass::fromFile('path/to/MyClass.php');

Through Reflection

If you already have your class loaded, then you can use reflection to load your code:

<?php
use gossi\codegen\model\PhpClass;

Sreflection = new \ReflectionClass('MyClass');
Sclass = PhpClass::fromReflection(Sreflection->getFileName());

Also reflection is nice, there is a catch to it. You must make sure MyClass is loaded. Also all the requirements (use
statements, etc.) are loaded as well, anyway you will get an error when initializing the the reflection object.

Understanding Values

The models PhpConstant, PhpParameter and PhpProperty support values; all of them implement the
ValueInterface. Though, there is a difference between values and expressions. Values refer to language prim-
itives (string, int, float, bool and null). Additionally you can set a PhpConstant as value (the lib
understands this as a library primitive ;-). If you want more complex control over the output, you can set an expression
instead, which will be generated as is.

Some Examples:

<?php
PhpProperty: :create('foo')->setValue('hello world."');
// S$foo = 'hello world.';

PhpProperty::create('foo')->setValue (300);
// Sfoo = 300;

PhpProperty::create('foo')->setValue(3.14);
// Sfoo = 3.14;

PhpProperty: :create('foo')->setValue (false);
// Sfoo = falsey;

PhpProperty: :create('foo')->setValue (null);
// S$foo = null;

PhpProperty: :create('foo')->setValue (PhpConstant::create ('BAR"));
// Sfoo = BAR;

PhpProperty: :create('foo')->setExpression('self::MY_ _CONST');
// Sfoo = self::MY CONST;

PhpProperty::create('foo')->setExpression("['my' => 'array'l");
// Sfoo = ['my' => 'array'];

1.3. Model 9

PHP Code Generator Documentation, Release

For retrieving values there is a hasValue () method which returns t rue whether there is a value or an expression
present. To be sure what is present there is also an i sExpression () method which you can use as a second check:

<?php

brop—>hasValue ()) {
if (Sprop->isExpression()) {

// do something with an expression
} else {

// do something with a value

Generator

The package ships with two generators, which are configurable through an associative array as constructor parameter.
Alternatively if you have a project that uses the same configuration over and over again, extend the respective config
object and pass it instead of the configuration array.

<?php
use gossi\codegen\generator\CodeGenerator;

// a) new code generator with options passed as array

Sgenerator = new CodeGenerator ([
'generateDocblock' => false,

1)

// b) new code generator with options passed as object
Sgenerator = new CodeGenerator (new MyCodeGenerationConfig());

CodeGenerator
Generates code for a given model. Additionally (and by default), it will generate docblocks for all contained classes,
methods, interfaces, etc. you have prior to generating the code.

¢ Class: gossil\codegen\generator\CodeGenerator

* Config: gossi\codegen\config\CodeGeneratorConfig

* Options:

10 Chapter 1. Quickstart

PHP Code Generator Documentation, Release

Key Type Default Description

Value
generate- boolean true enables docblock generation prior to code
Docblock generation
generateEmpty- | boolean true allows generation of empty docblocks
Docblock
generateScalar- boolean false generates scalar type hints, e.g. in
TypeHints method/function parameters (PHP 7)
generateReturn- | boolean false generates scalar type hints for return values
TypeHints (PHP 7)
enableSorting boolean true Enables sorting
useState- booleanlstringlClosurelCordpfaator Sorting mechanism for use statements
mentSorting
constantSorting booleanlstring|ClosurelCordpfaator Sorting mechanism for constants
propertySorting booleanlstring|ClosurelComdpfaator Sorting mechanism for properties
methodSorting booleanlstring|lClosurelCordpfaator Sorting mechanism for methods

Note: when generateDocblock is setto false then generateEmptyDocblock is false as well.
Note 2: For sorting ...

— ... astring will used to find a comparator with that name (at the moment there is only default).

— ... with a boolean you can disable sorting for a particular member

— ... you can pass in your own \Closure for comparison

— ... you can pass in a Comparator for comparison

* Example:

<?php
use gossi\codegen\generator\CodeGenerator;

// will set every option to true, because of the defaults

Sgenerator = new CodeGenerator ([
'generateScalarTypeHints' => true,
'generateReturnTypeHints' => true

1)

scode = $generator->generate ($myClass);

CodeFileGenerator

Generates a complete php file with the given model inside. Especially useful when creating PSR-4 compliant code,
which you are about to dump into a file. It extends the CodeGenerator and as such inherits all its benefits.

* Class: gossi\codegen\generator\CodeFileGenerator
* Config: gossi\codegen\config\CodeFileGeneratorConfig

* Options: Same options as CodeGenerator plus:

1.4. Generator 11

https://phootwork.github.io/lang/comparison/

PHP Code Generator Documentation, Release

Key Type Default Description
Value

headerCom- | nulllstringlDocblaail A comment, that will be put after the <?php statement
ment
header- nulllstring|Docblackl A docblock that will be positioned after the possible header
Docblock comment
blankLin- boolean true Places an empty line at the end of the generated file
eAtEnd
declare- boolean false Whether or not a declare (strict_types=1); is
StrictTypes placed at the top of the file (PHP 7)

Note: declareStrictTypes sets generateScalarTypeHints and

generateReturnTypeHints to true.

* Example:

<?php
use gossi\codegen\generator\CodeFileGenerator;

Sgenerator = new CodeGenerator ([

'headerComment' => 'This will be placed at the top, woo',
'headerDocblock' => 'Full documentation mode confirmed!"',
'declareStrictTypes' => true

1)

$code = $generator->generate ($myClass);

Best Practices

The code generator was written with some thoughts in mind. See for yourself, if they are useful for you, too.

Template system for Code Bodies

It is useful to use some kind of template system to load the contents for your bodies. The template system can also be
used to replace variables in the templates.

Hack in Traits

Let’s assume you generate a php class. This class will be used in your desired framework as it serves a specific purpose
in there. It possible needs to fulfill an interface or some abstract methods and your generated code will also take care
of this - wonderful. Now imagine the programmer wants to change the code your code generation tools created. Once
you run the code generation tools again his changes probably got overwritten, which would be bad.

Here is the trick: First we declare the generated class as “host” class:

Host Class Generated Trait

uses

12 Chapter 1. Quickstart

PHP Code Generator Documentation, Release

Your generated code will target the trait, where you can savely overwrite code. However, you must make sure the trait
will be used from the host class and also generate the host class, if it doesn’t exist. So here are the steps following this
paradigm:

1. Create the trait
2. Check if the host class exists
(a) if it exists, load it
(b) if not, create it
3. Add the trait to the host class
4. Generate the host class code

That way, the host class will be user-land code and the developer can write his own code there. The code generation
tools will keep that code intact, so it won’t be destroyed when code generation tools run again. If you want to give the
programmer more freedom offer him hook methods in the host class, that - if he wants to - can overwrite with his own
logic.

Format in Post-Processing

After generating code is finished, it can happen that (especially) bodies are formatted ugly. Thus just run the suggested
code formatter after generating the code. Can be found on github gossi/php-code-formatter.

API

API is available at https://gossi.github.io/php-code- generator/api/master

1.6. API 13

https://github.com/gossi/php-code-formatter
https://gossi.github.io/php-code-generator/api/master

	Quickstart
	Installation
	Getting Started
	Model
	Generator
	Best Practices
	API

