
Phlyty - Documentation
Release 0.1.0dev

Matthew Weier O’Phinney

August 21, 2012





CONTENTS

i



ii



Phlyty - Documentation, Release 0.1.0dev

Phlyty is a PHP microframework written on top of Zend Framework 2 components.

Contents:

CONTENTS 1

http://packages.zendframework.com/


Phlyty - Documentation, Release 0.1.0dev

2 CONTENTS



CHAPTER

ONE

OVERVIEW

Phlyty is a PHP microframework written using Zend Framework 2 components. It’s goals are:

• Route based on HTTP method and path, but allow the full spectrum of ZF2 routes.

• Allow any callable as a “controller”.

• Provide basic features and helpers surrounding flash messages, URL generation, and request/response handling.

• Provide view rendering out-of-the-box, but allow the user to plugin whatever view rendering solution they desire.

The features and API are roughly analagous to Slim Framework.

1.1 Installation

I recommend using Composer <https://getcomposer.org/>. Once you have composer, create the following
composer.json file in your project:

{
"repositories": [

{
"type": "composer",
"url": "http://packages.zendframework.com/"

}
],
"minimum-stability": "dev",
"require": {

"phly/phlyty": "dev-master",
}

}

Then run php composer.phar install to install the library. This will ensure you retrieve Phlyty and all its
dependencies.

1.2 Basic Usage

The most basic “Hello World!” example looks something like this:

use Phlyty\App;
include ’vendor/autoload.php’;

$app = new App();

3

http://packages.zendframework.com
http://www.slimframework.com


Phlyty - Documentation, Release 0.1.0dev

$app->get(’/’, function ($app) {
echo "Hello, world!";

});

$app->run();

Assuming the above is in index.php, you can fire up the PHP 5.4 development web server to test it out:

php -S 127.0.0.1:8080

If you then visit http://localhost:8080/, you’ll see your “Hello, world!” text.

1.2.1 Routing

The main Phlyty\App class contains methods for each of the main HTTP request methods, and these all have the
same API: method($route, $controller). They include:

• get()

• post()

• put()

• delete()

• options()

• patch()

All of them return a Phlyty\Route object, allowing you to further manipulate the instance – for example, to name
the route, indicate what additional HTTP methods to respond to, or to access the controller or the composed ZF2 route
object. (You can actually instantiate a ZF2 route object and pass that instead of a string for the route, which gives you
more power and flexibility!)

$app->map(’/’, function ($app) {
echo "Hello, world!";

})->name(’home’); // name the route

Alternately, you can use teh map() method. This simply creates the route, but does not assign it to a specific HTTP
method. You would then use the via() method of the route object to assign it to one or more HTTP methods:

$app->map(’/’, function ($app) {
echo "Hello, world!";

})->via(’get’, ’post’)->name(’home’); // name the route, and have it respond
// to both GET and POST requests

By default, if you pass a string as the $route argument, Phlyty\App will create a ZF2 Segment route; you can
read up on those in the ZF2 manual. In such routes, a string preceded by a colon will indicate a named variable to
capture: /resource/:id would capture an “id” value. You can have many named segments, and even optional
segments.

1.2.2 Controllers and Helpers

Your controllers can be any PHP callable. In the examples, I use closures, but any callable is accepted. The callable
will receive exactly one argument, the Phlyty\App instance.

From the App instance, you have the following helper methods available:

4 Chapter 1. Overview

http://packages.zendframework.com/docs/latest/manual/en/modules/zend.mvc.routing.html#zend-mvc-router-http-segment


Phlyty - Documentation, Release 0.1.0dev

• params() returns a Zend\Mvc\Router\RouteMatch instance, from which you can then pull values. In
the example in the previous paragraph, you can pull the “id” using $app->params()->getParam(’id’,
false).

• request() returns a Zend\Http\PhpEnvironment\Request instance. This gives you access to
headers, query, post, cookie, files, env, and system parameters. In most cases, you use getType($name,
$default); e.g. $app->request()->getQuery(’name’, ’Matthew’) would retrieve the
“name” query string value, using “Matthew” as the default.

• response() returns a Zend\Http\PhpEnvironment\Response instance. This allows you to manip-
ulate response headers, and to set the response body.

• flash($name, $message) lets you both set and receive flash messages.

• urlFor($route = null, array $params = [], array $options = []) allows you to
generate a URI based on the routes you’ve created. If you pass no arguments, it assumes it should use the
current route. Otherwise, you must pass a route name; as such, it’s good practice to name your routes. (Any
$params you provide will be used to replace named segments in the route.)

• pass() tells the application to move on to the next matching route, if any.

• redirect($uri, $status = 302) will redirect. Hint: use urlFor() to generate the $uri value!

• halt($status, $message = ”) halts execution immediately, and sends the provided message.

• stop() halts execution, sending the current response.

• events() accesses the composed event manager, allowing you to register listeners and trigger events.

• event() returns a Phlyty\AppEvent instance with the current route composed.

• trigger triggers an event.

• view() returns the view renderer, which should implement Phlyty\View\ViewInterface. You can
call setView() to change the view implementation. Additionally, you can always instantiate and use your
own view implementation.

• viewModel() returns a ZendViewModelModelInterface‘ implementation; by default, it’s of type
Phlyty\View\MustacheViewModel. This allows you to inject variables, set the template, etc. If
you want to use an alternate view model, either directly instantiate it, or provide a prototype instance to
setViewModelPrototype().

• render($template, $viewModel = []) will render a template and/or a view model, and place the
rendered content into the Response body.

1.2. Basic Usage 5



Phlyty - Documentation, Release 0.1.0dev

6 Chapter 1. Overview



CHAPTER

TWO

ROUTES

Routing in Phlyty is the act of matching both an HTTP request method and path information to the controller which
will handle it.

Withing Phlyty, Zend Framework 2 routes are used. By default, ZF2’s “Segment” route is used. Visit the Zend
Framework 2 documentation for full documentation of the segment route.

At its most basic, the segment route takes literal paths interspersed with named captures of the form :name, called
segments. The segment name must consist of alphanumeric characters only. Additionally, you can indicate optional
captures using brackets (“[” and “]”). These two simple rule allow using segments in creative ways:

• /calendar/event/:year-:month-:day.:format would match “/calendar/event/2012-08-19.json”,
and capture year as “2012”, month as “08”, day as “19”, and format as “json”.

• /news/:post[/:page] would match both “/news/foo-bar” as well as “/news/foo-bar/3”.

All that said, you may desire more flexibility at times.

2.1 Constraints and Defaults

For example, what if you want to add constraints to your named segments? As an example, what if “page”, or “year”,
or “month”, or “day” should only ever consist of digits?

What if you want to supply defaults for some values?

To do these things, create the ZF2 route manually, and then pass it to the appropriate HTTP-specific method of
Phlyty\App. As an example, let’s work with the “calendar” route we established above. We’ll provide both con-
straints and defaults for the route.

use Phlyty\\App;
use Zend\Mvc\Router\Http\Segment as SegmentRoute;

$route = SegmentRoute::factory(array(
’route’ => ’/calendar/event/:year-:month-:day[.:format]’,
’constraints’ => array(

’year’ => ’20\d{2}’,
’month’ => ’(0|1)\d’,
’day’ => ’(0|1|2|3)\d’,
’format’ => ’(html|json|xml)’,

),
’defaults’ => array(

’format’ => ’html’,
),

));

7

http://packages.zendframework.com/docs/latest/manual/en/modules/zend.mvc.routing.html#zend-mvc-router-http-segment
http://packages.zendframework.com/docs/latest/manual/en/modules/zend.mvc.routing.html#zend-mvc-router-http-segment


Phlyty - Documentation, Release 0.1.0dev

$app = new App();

$app->get($route, function ($app) {
// handle route here

})->name(’calendar’);

Note how we pass the SegmentRoute instance as the argument to $app->get(). This allows us to create a fully-
configured, robust route instance with constraints and defaults, while still honoring the interface that Phlyty\\App
offers.

You could extend this to provide tree routes, literal routes, and more; basically, any route type Zend Framework 2
provides may be used.

For more information on ZF2 routes, please visit the ZF2 routes documentation.

8 Chapter 2. Routes

http://zf2.readthedocs.org/en/latest/modules/zend.mvc.routing.html


CHAPTER

THREE

CONTROLLERS

Controllers are simply any PHP callable. Controllers will receive exactly one argument, the Phlyty\App instance
that invokes the controller.

Controllers can thus be:

• anonymous functions, closures, or lambdas

• named functions

• static class methods

• instance methods

• functors (classes defining __invoke())

This also means you can define and configure your controllers where you want.

3.1 Anonymous Function

Anonymous functions are functions not assigned to a variable, and defined in-place. Using an anonymous function is
perhaps the easiest way to define a controller.

$app->get(’/’, function ($app) {
// do work here

});

3.2 Closures

Closures are anonymous functions that import variables from the current scope into the scope of the function. This is
done using the use directive when declaring the function.

$config = include ’config.php’;
$app->get(’/’, function ($app) use ($config) {

// You can access $config now.
// Do work here.

});

9



Phlyty - Documentation, Release 0.1.0dev

3.3 Lambdas

Lambdas are anonymous functions or closures that are assigned to a variable; this allows using them in multiple
contexts, as well as passing them around by variable.

// As a normal lambda
$lambda = function ($app) {

// Do work here.
};
$app->get(’/’, $lambda);

// As a closure
$config = include ’config.php’;
$lambda = function ($app) use ($config) {

// You can access $config now.
// Do work here.

});
$app->get(’/’, $lambda);

3.4 Named Functions

You can also declare functions either in the global namespace or within a user-defined namespace, and pass the string
function name.

namespace My
{

function home($app)
{

// do work here
}

}

$app->get(’/’, ’My\\home’);

3.5 Static Class Methods

Static class methods may also be used. You may pass these either in the form of [$className, $method] or
ClassName::method.

namespace My
{

class Hello
{

public static function world($app)
{

// do work here...
}

}
}

// Using array callback notation
$app->get(’/hello/:name’, [’My\Hello’, ’world’]);

10 Chapter 3. Controllers



Phlyty - Documentation, Release 0.1.0dev

// Using string callback notation
$app->get(’/hello/:name’, ’My\Hello::world’);

3.6 Instance Methods

A typical PHP instance method callback can be used. This is great for situations where you have configurable stateful
behavior.

namespace My
{

class Hello
{

protected $config;

public function __construct($config)
{

$this->config = $config;
}

public static function world($app)
{

// do work here...
}

}
}

$config = include ’config.php’;
$hello = new My\Hello($config);

// Using array callback notation
$app->get(’/hello/:name’, [$hello, ’world’]);

3.7 Functors

“Functors” are objects that define the magic method __invoke, and can thus be called as if they are a function.
(Interesting trivia: this is basically how the PHP internal class Closure works.) In such an object, you’d simply have
a single method that could act as a controller, the __invoke() method. You must instantiate a functor for it to work
as such, however.

namespace My
{

class Hello
{

protected $config;

public function __construct($config)
{

$this->config = $config;
}

public static function __invoke($app)
{

// do work here...

3.6. Instance Methods 11



Phlyty - Documentation, Release 0.1.0dev

}
}

}

$config = include ’config.php’;
$hello = new My\Hello($config);

// As a functor
$app->get(’/hello/:name’, $hello);

12 Chapter 3. Controllers



CHAPTER

FOUR

HELPERS

Phlyty ships with a number of built-in helper methods in the Phlyty\App class. These fall under roughly four
categories:

• Workflow-related helpers (halt, stop, pass, redirect, events, event, trigger, getLog)

• HTTP-related helpers (request, response)

• Route-related helpers (params, urlFor)

• View-related helpers (view, viewModel, render, flash)

4.1 Workflow Helpers

Workflow helpers shape the flow of the application. They allow you to return from execution early, either because the
response is ready, or because we know an error condition has occurred; redirect to another URI; pass on execution to
another route and controller; or work with events.

halt($status, $message=”) Halts execution immediately, setting the response status to $status, and, if
$message is provided, setting the response body to that message. No further code will be executed in the
controller following this call.

$name = $app->params(’name’, false);
if (!$name) {

$app->halt(500, ’Missing name; cannot continue execution’);
}
// do something with $name now...

stop() Halts execution, sending the response as it currently exists. You might call this if you wanted to return a file
download, for instance.

$image = $app->params(’image’, false);
if ($image && file_exists($image)) {

$stream = fopen($image, ’r’);
$out = fopen(’php://output’, ’w’);
stream_copy_to_stream($stream, $out);
$app->response()->setBody($out);
$app->stop();

}
// show some error message here...

pass() Tells the application that no more processing of this controller should be done, but that it should continue
iterating through routes to look for another one that matches the current URI.

13



Phlyty - Documentation, Release 0.1.0dev

$app->get(’/:locale’, function ($app) {
$locale = $app->params()->getParam(’locale’, ’en_US’);
Locale::setDefault($locale);
$app->pass();

});

$app->get(’/[:locale]’, function ($app) {
// This matches the previous route, which means when pass() is
// called by the previous controller, this route will be matched
// and this controller invoked.
//
// Display home page

});

redirect($url, $status = 302) Sets the response status code to $status and the Location header to
$url, and immediately halts execution and sends the response. Any code following the call in the controller
will not be executed.

$app->get(’/user/:username’, function ($app) {
$username = $app->params()->getParam(’username’, false);
if (!$username) {

$this->redirect(’/login’);
}
// Code below here will only execute if we did not redirect

});

events() Returns a Zend\EventManager\EventManager instance. This allows you to attach event listeners
as well as trigger events. See the section on events for more information.

$app->events()->attach(’route’, function ($e) use ($app) {
$route = $e->getRoute();
if (!in_array($route->getName(), [’profile’, ’comment’, ’post’]) {

return;
}

// check if we have an authenticated user, and throw an exception
// otherwise
// ...

}, -10); // registering to execute after routing finishes

event() Returns a new Phlyty\AppEvent instance with the target set to the Phlyty\App instance, and the
route populated with the currently matched route.

trigger($name, array $params = []) Trigger the named event, optionally passing parameters to com-
pose in the Phlyty\\AppEvent instance.

$app->get(’/’, function ($app) {
$app->trigger(’homepage’, $app->params()->getParams());

});

getLog() Gets the currently registered Zend\Log\Logger instance, lazy-loading one if none is present. You
will need to attach writers to the log instance, and then invoke one or more logging methods.

$logger = $app->getLog()
$logger->addWriter(’stream’, [

’stream’ => ’php://stderr’,
’log_separator’ => "\n",

]);
$logger->info(’This is an informational message’);

14 Chapter 4. Helpers



Phlyty - Documentation, Release 0.1.0dev

4.2 HTTP-Related Helpers

A web application is really about receiving an HTTP request, deciding what to do with it, and returning an HTTP
response back to the client. In Phlyty\App, the request and response objects help you with this.

request() Returns the request object. See the ZF2 Zend\Http\PhpEnvironment\Request documentation for more
details.

// Getting query string (aka GET) parameters
$query = $app->request()->getQuery();
$single = $app->request()->getQuery($name, $default);

// Getting POST parameters
$post = $app->request()->getPost();
$single = $app->request()->getPost($name, $default);

// Getting headers
$headers = $app->request()->getHeaders();
$header = $app->request()->getHeader($name, $default);
$value = $header->getFieldValue();

// Getting ENV values
$values = $app->request()->getEnv();
$value = $app->request()->getEnv($name, $default);

// Getting $_SERVER values
$values = $app->request()->getServer();
$value = $app->request()->getServer($name, $default);

// Get the URI
$uri = $app->request()->getUri(); // Zend\Uri\Uri object
$uri = $app->request()->getUriString(); // string

// Get the Cookie header
$cookies = $app->request()->getCookie();
$cookie = $cookie[$cookieName];

// Testing request type
$app->request()->isXmlHttpRequest();
$app->request()->isGet();
$app->request()->isPost();
$app->request()->isPut();
$app->request()->isDelete();
$app->request()->isOptions();
$app->request()->isPatch();

// Set the base url
// This is a nice way to run your app in a subdirectory.
$app->request()->setBaseUrl(’/~matthew/sites/foo’);

response() Returns the response object. See the ZF2 Zend\Http\PhpEnvironment\Response documentation for
more details.

// Setting a header
$app->response()->getHeader()->addHeaderLine($name, $value);

// Setting the status code
$app->response()->setStatusCode(201);

4.2. HTTP-Related Helpers 15

http://packages.zendframework.com/docs/latest/apidoc/classes/Zend.Http.PhpEnvironment.Request.html
http://packages.zendframework.com/docs/latest/apidoc/classes/Zend.Http.PhpEnvironment.Response.html


Phlyty - Documentation, Release 0.1.0dev

// Setting the response body
$app->response()->setContent($content);

4.3 Route-Related Helpers

The main purpose of a microframework is to map URL paths to their handlers. Once you have, there are two principal
route-related activities you will be performing in most requests: you will need to access parameters matched in the
URL, and you will need to generate URLs based on the routes you’ve defined.

params() Returns the Zend\Mvc\Router\RouteMatch instance returned by the route that matched the URL. The
API is roughly as follows:

$params = $app->params();
$single = $params->getParam(’single’, ’default value’);
$array = $params->getParams();

urlFor($route = null, array $params = [], array $options = []) Generates a URL
based on the named $route, using $params to fill in named segments in the URL, and any route-specific
generation $options provided. If $route is not present, it will assume the current matched route; if
$params is not present, any defaults used when creating the route will be used.

If a base URL is present in the request, it will be prepended to the generated URL.

$app->get(’/blog[/:year[/:month[/:day]]]’, function ($app) {
// ...

})->name(’blog-by-date’);

$url = $app->urlFor(’blog-by-date, [
’year’ => 2012,
’month’ => ’08’,
’day’ => 21,

]); // "/blog/2012/08/21"

4.4 View-Related Helpers

The goal of a controller is to produce a response to return to the client. In most cases, that response will contain
some content. In web applications, this is typically referred to as a “View” (from the design pattern “Model-View-
Controller”, or “MVC”). Typically, the “view” is functionality that renders a template.

Phlyty provides helpers for setting and retrieving the view object that will be used to render templates, as well as a
method for actually rendering a named template using the current view object. Other helpers allow you to set a “view
model” – an object that encapsulates the data you wish to represent in the view – as well as retrieve instances of that
view model. Finally, Phlyty provides functionality for setting and retrieving “flash” messages – messages you wish
to present in the view layer – but most likely on a subsequent page (typically following a redirect – for instance, to
indicate that a record was updated).

• View-related helpers (view, viewModel, render, flash)

setView(Phlyty\View\ViewInterface $view) Sets the view object. The ViewInterface defines
simply a method render($template, $viewModel = []).

view() Retrieves the current view object, which should implement the ViewInterface. By default, this is
Phlyty\View\MustacheView, which is an implementation that utilizes phly_mustache, a Mustache im-
plementation.

16 Chapter 4. Helpers

http://packages.zendframework.com/docs/latest/apidoc/classes/Zend.Mvc.Router.RouteMatch.html
http://weierophinney.github.com/phly_mustache
http://mustache.github.com
http://mustache.github.com


Phlyty - Documentation, Release 0.1.0dev

setViewModelPrototype($model) Allows specifying a prototype object to use for view models. The object
provided will be cloned when retrieved later.

$model = new stdClass();
$app->setViewModelPrototype($model);

viewModel() Retrieves a clone of the currently registered view model object. By default, if none has been regis-
tered, an instance of Phlyty\View\MustacheView is provided.

$model = $app->viewModel();
$model->foo = $bar;
$model->bindHelper(’bar’, function () {

return $this->__escaper()->escapeHtml($this->foo) . ’!’;
});

render($template, $viewModel = []) Renders a named $template using the currently registered
view object, and passing the specified $viewModel, if any. It is up to the view object to resolve the tem-
plate name to a resource it may use, and to determine how to utilize the $viewModel provided.

Once the content is rendered, it’s injected as the content of the response object.

$app->render(’pages/foo’, $model);

flash($name, $message = null) Create or retrieve a flash message. Flash messages expire after a single
“hop”; in other words, after more than one page visit, the flash message will disappear. If you pass just a $name
to flash(), it will attempt to retrieve the message; passing a $message to it will set it.

By default, the MustacheViewModel composes the $app instance, allowing you to retrieve flash messages.
As an example, you could do the following to create a view variable for retrieving a formatted message:

$model = $app->viewModel();
$model->bindHelper(’messages’, function () {

$message = $this->__app()->flash(’foo’);
if (empty($message)) {

return ’’;
}
return sprint(

’<div class="flash">%s</div>’,
$this->__escaper()->escapeHtml($message)

);
});

For more about views, see the section on Views.

4.4. View-Related Helpers 17



Phlyty - Documentation, Release 0.1.0dev

18 Chapter 4. Helpers



CHAPTER

FIVE

EVENTS

Phlyty\App composes a Zend\EventManager\EventManager instance. This allows you to trigger events, and attach
listeners to events. It also allows the application to trigger events – and for you as a developer to write listeners for
those events.

To attach to an event, you simply call attach(); the first argument is the event name, the second is a valid PHP
callable, usually a closure.

$events = $app->events();

$events->attach(’do’, function ($e) {
echo "I’ve been triggered!";

});

$events->trigger(’do’); // "I’ve been triggered!"

The EventManager allows you to specify the priority at which a listener is triggered. This allows you to order
listeners – but, more importantly, it allows you to decide when a listener is triggered in relation to the default listeners.
This is important when you consider that the application triggers a number of events; many of these have listeners
registered by default in the application, at the default priority. This means:

• If you register with a higher (positive) priority, the listener will be triggered earlier.

• If you register with a lower (negative) priority, the listener will be triggered later.

The priority argument comes after the listener argument.

$events = $app->events();

$events->attach(’do’, function ($e) {
echo "Default priority\n";

});
$events->attach(’do’, function ($e) {

echo "Low priority\n";
}, -100);
$events->attach(’do’, function ($e) {

echo "High priority\n";
}, 100);

$events->trigger(’do’);

/* output:
High priority
Default priority
Low priority
\*/

19

http://zf2.readthedocs.org/en/latest/modules/zend.event-manager.event-manager.html


Phlyty - Documentation, Release 0.1.0dev

5.1 Defined Events

As noted previously, the application triggers several events, some of which have default handlers defined.

begin Triggered at the very beginning of run().

route Triggered during routing. A default route listener is defined and registered with default priority.

halt Triggered when halt() is invoked.

404 Triggered if no route matches the current URL.

501 Triggered if a controller bound to a route cannot be invoked (usually because it’s not a valid callable).

500 Triggered when an exception is raised anywhere during run().

finish Triggered immediately prior to sending the response.

5.2 Use Cases

You may attach to any of these events in order to alter the application work flow.

5.2.1 Error Pages

As an example, if you wish to display a 404 page for your application, you might register a listener as follows:

$app->events()->attach(’404’, function ($e) {
$app = $e->getTarget();
$app->render(’404’);

});

You could do similarly for 500 and 501 errors.

5.2.2 Caching

You could implement a quick-and-dirty caching layer using the “begin” and “finish” events.

// Assume we’ve instantiated $cache prior to this
$app->events()->attach(’begin’, function ($e) use ($cache) {

$app = $e->getTarget();
$req = $app->request();
if (!$req->isGet()) {

return;
}

$url = $req->getUriString();
$data = $cache->get($url);
if (!$data) {

return;
}

$app->response()->setContent($data);
$app->response()->send();
exit();

}, 1000); // register at high priority

20 Chapter 5. Events



Phlyty - Documentation, Release 0.1.0dev

$app->events()->attach(’finish’, function ($e) use ($cache) {
$app = $e->getTarget();
if (!$app->request()->isGet()) {

return;
}
if (!$app->response()->isOk()) {

return;
}

$url = $app->request()->getUriString();
$data = $app->response()->getContent();
$cache->save($url, $data);

}, -1000); // register at low priority

The above would look for a cache entry matching the current URI, but only if we have a GET request. If a cache entry
is found, we set the response content with the data, send it, and exit immediately.

Otherwise, when the request is finished, we check if we had a successful GET request, and, if so, save the response
body into the cache using the current request URI.

5.2. Use Cases 21



Phlyty - Documentation, Release 0.1.0dev

22 Chapter 5. Events



CHAPTER

SIX

VIEWS

Views are the presentation layer of the application. Typically, you will use a templating engine to create the presenta-
tion, though Phlyty makes no assumptions about what or how that engine works. It only requires that you provide a
class implementing Phlyty\View\ViewInterface that provides a render method; it is then up to you to pass
the two arguments to that method on to your templating engine in order to obtain a representation.

If the above does not suit your needs, you can, of course, always instantiate your own view objects and use them as
you see fit in the application.

6.1 The ViewInterface

The ViewInterface is a trivial definition:

namespace Phlyty\View;

interface ViewInterface
{

/**
* Render a template, optionally passing a view model/variables

*
* @param string $template

* @param mixed $viewModel

* @return string
\*/
public function render($template, $viewModel = []);

}

6.2 Mustache Integration

Phlyty uses phly_mustache <http://weierophinney.github.com/phly_mustache by default, and provides some conve-
nience classes and functionality around this templating engine.

First, it provides Phlyty\View\MustacheView. This is a simple extension of Phly\Mustache\Mustache
that alters the render() method to make it suit the ViewInterface.

Second, it provides Phlyty\View\MustacheViewModel. This class can simplify creation of your view models
by providing several convenience features. First, it composes the application instance, as well as an instance of
Zend\Escaper\Escaper. These allow you to access any application helpers you might want when providing
your view representation, as well as context-specific escaping mechanisms (for instance, to escape CSS, JavaScript,
HTML attributes, etc.). Additionally, it provides a convenience method, bindHelper(), which allows you to create

23



Phlyty - Documentation, Release 0.1.0dev

closures as model properties, and have them bound to the model instance; this allows the closures to have access to
the model via $this, and thus access the application and escaper instances, as well as all properties.

The application instance is available via the pseudo-magic method __app(), and the escaper via __escaper().

$model = $app->viewModel();
$model->route = ’bar’;
$model->bindHelper(’link’, function () {

return $this->__app()->urlFor($this->route);
});

The template might look like this:

You should <a href="{{link}}">visit</a>

24 Chapter 6. Views



CHAPTER

SEVEN

API DOCS

API docs are available.

25



Phlyty - Documentation, Release 0.1.0dev

26 Chapter 7. Api docs



CHAPTER

EIGHT

GETTING HELP

• Issue Tracker <https://github.com/weierophinney/phlyty>

27



Phlyty - Documentation, Release 0.1.0dev

28 Chapter 8. Getting help



CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

29


