

 Navigation

 	
 index

 	
 next |

 	Phalcon 3.0.2 documentation

Welcome

Welcome to Phalcon framework. Our mission is to give you an advanced tool for developing the faster web sites and applications with PHP.

What is Phalcon

Phalcon is an open source, full stack framework for PHP written as a C-extension, optimized for high performance.
You don’t need to learn or use the C language, since the functionality is exposed as PHP classes ready for you to use.
Phalcon also is loosely coupled, allowing you to use its objects as glue components based on the needs of your application.

Phalcon is not only about performance, our goal is to make it robust, rich in features and easy to use!

Table of Contents

Installation

	Installation
	Windows
	Related Guides

	Linux/Solaris
	Debian / Ubuntu

	RPM distributions (i.e. CentOS)

	Compile from source

	Mac OS X
	Requirements

	FreeBSD

	Checking your installation

	Installation Notes
	Apache Installation Notes

	Nginx Installation Notes

	Cherokee Installation Notes

	Using PHP Built-in webserver

	Nginx Installation Notes
	Configuring Nginx for Phalcon
	Basic configuration

	Apache Installation Notes
	Configuring Apache for Phalcon
	Directory under the main Document Root

	Virtual Hosts

	Cherokee Installation Notes
	Configuring Cherokee for Phalcon

	Phalcon Developer Tools
	Download
	Installation

	Getting Available Commands

	Generating a Project Skeleton

	Generating Controllers

	Preparing Database Settings

	Generating Models

	Scaffold a CRUD

	Web Interface to Tools

	Integrating Tools with PhpStorm IDE

	Conclusion

	Phalcon Developer Tools on Linux
	Prerequisites

	Download
	Related Guides

	Phalcon Developer Tools on Mac OS X
	Prerequisites

	Download
	Related Guides

	Phalcon Developer Tools on Windows
	Prerequisites

	Download
	Adding PHP and Tools to your system PATH

	Related Guides

Tutorials

	Tutorial 1: Let’s learn by example
	File structure

	Bootstrap
	Autoloaders

	Dependency Management

	Handling the application request

	Putting everything together

	Creating a Controller

	Sending output to a view

	Designing a sign up form

	Creating a Model

	Setting a Database Connection

	Storing data using models

	Conclusion

	Tutorial 2: Introducing INVO
	Project Structure

	Routing

	Configuration

	Autoloaders

	Registering services

	Handling the Request

	Dependency Injection

	Tutorial 3: Securing INVO
	Log into the Application

	Securing the Backend
	Events Management

	Providing an ACL list

	Tutorial 4: Working with the CRUD
	The Search Form

	Performing a Search

	Creating and Updating Records

	Tutorial 5: Customizing INVO
	User Components

	Changing the Title Dynamically

	Tutorial 6: Vökuró
	Project Structure

	Load Classes and Dependencies

	Sign Up

	Tutorial 7: Creating a Simple REST API
	Defining the API

	Creating the Application

	Creating a Model

	Retrieving Data

	Inserting Data

	Updating Data

	Deleting Data

	Testing our Application

	Conclusion

	List of examples

Components

	Dependency Injection/Service Location
	Registering services in the Container
	Simple Registration

	Complex Registration

	Array Syntax

	Resolving Services
	Events

	Shared services

	Manipulating services individually

	Instantiating classes via the Service Container

	Automatic Injecting of the DI itself

	Organizing services in files

	Accessing the DI in a static way

	Factory Default DI

	Service Name Conventions

	Implementing your own DI

	The MVC Architecture
	Models

	Views

	Controllers

	Using Controllers
	Dispatch Loop

	Initializing Controllers

	Injecting Services

	Request and Response

	Session Data

	Using Services as Controllers

	Events in Controllers

	Working with Models
	Creating Models
	Public properties vs. Setters/Getters

	Understanding Records To Objects

	Finding Records
	Model Resultsets

	Filtering Resultsets

	Binding Parameters

	Initializing/Preparing fetched records

	Generating Calculations

	Creating/Updating Records
	Create/Update with Confidence

	Deleting Records

	Model Relationships
	Relationships between Models
	Unidirectional relationships

	Bidirectional relations

	Defining relationships

	Taking advantage of relationships

	Aliasing Relationships

	Magic Getters vs. Explicit methods

	Virtual Foreign Keys
	Cascade/Restrict actions

	Storing Related Records

	Operations over Resultsets
	Updating related records

	Deleting related records

	Model Events
	Events and Events Manager
	Implementing Events in the Model’s class

	Using a custom Events Manager

	Logging Low-Level SQL Statements

	Profiling SQL Statements

	Model Behaviors
	Timestampable

	SoftDelete

	Creating your own behaviors

	Using Traits as behaviors

	Models Metadata
	Caching Metadata

	Metadata Strategies
	Database Introspection Strategy

	Annotations Strategy

	Manual Metadata

	Model Transactions
	Manual Transactions

	Implicit Transactions

	Isolated Transactions

	Validating Models
	Validating Data Integrity

	Validation Messages

	Validation Failed Events

	Working with Models (Advanced)
	Hydration Modes

	Auto-generated identity columns

	Skipping Columns
	Dynamic Update

	Independent Column Mapping

	Record Snapshots

	Pointing to a different schema

	Setting multiple databases

	Injecting services into Models

	Disabling/Enabling Features

	Stand-Alone component

	Phalcon Query Language (PHQL)
	Usage Example

	Creating PHQL Queries

	Selecting Records
	Result Types

	Joins

	Aggregations

	Conditions

	Inserting Data

	Updating Data

	Deleting Data

	Creating queries using the Query Builder
	Bound Parameters

	Disallow literals in PHQL

	Escaping Reserved Words

	PHQL Lifecycle

	Using Raw SQL

	Troubleshooting

	Caching in the ORM
	Caching Resultsets

	Forcing Cache

	Caching PHQL Queries

	Reusable Related Records

	Caching Related Records

	Caching Related Records Recursively

	Caching based on Conditions

	Caching of PHQL planning

	ODM (Object-Document Mapper)
	Creating Models

	Understanding Documents To Objects

	Models in Namespaces

	Setting a Connection

	Finding Documents

	Aggregations

	Creating Updating/Records
	Validation Messages

	Validation Events and Events Manager

	Implementing a Business Rule

	Validating Data Integrity

	Deleting Records

	Validation Failed Events

	Implicit Ids vs. User Primary Keys

	Setting multiple databases

	Injecting services into Models

	Using Views
	Integrating Views with Controllers

	Hierarchical Rendering
	Using Templates

	Control Rendering Levels

	Disabling render levels

	Picking Views

	Disabling the view

	Simple Rendering

	Using Partials

	Transfer values from the controller to views

	Caching View Fragments

	Template Engines
	Creating your own Template Engine Adapter

	Changing the Template Engine

	Injecting services in View

	Stand-Alone Component
	Hierarchical Rendering

	Simple Rendering

	View Events

	View Helpers (Tags)
	Document Type of Content

	Generating Links

	Creating Forms

	Helpers to Generate Form Elements

	Making Select Boxes

	Assigning HTML attributes

	Setting Helper Values
	From Controllers

	From the Request

	Specifying values directly

	Changing dynamically the Document Title

	Static Content Helpers
	Images

	Stylesheets

	Javascript

	HTML5 elements - generic HTML helper

	Tag Service

	Creating your own helpers

	Assets Management
	Adding Resources

	Local/Remote resources

	Collections

	URL Prefixes

	Minification/Filtering
	Built-In Filters

	Custom Filters

	Custom Output

	Volt: Template Engine
	Introduction

	Activating Volt

	Basic Usage

	Variables

	Filters

	Comments

	List of Control Structures
	For

	Loop Controls

	If

	Loop Context

	Assignments

	Expressions
	Literals

	Arrays

	Math

	Comparisons

	Logic

	Other Operators

	Tests

	Macros

	Using Tag Helpers

	Functions

	View Integration
	Include

	Partial vs Include

	Template Inheritance
	Multiple Inheritance

	Autoescape mode

	Extending Volt
	Functions

	Filters

	Extensions

	Caching view fragments

	Inject Services into a Template

	Stand-alone component

	External Resources

	MVC Applications
	Single or Multi Module Applications
	Single Module

	Multi Module

	Application Events

	External Resources

	Routing
	Defining Routes
	Parameters with Names

	Short Syntax

	Mixing Array and Short Syntax

	Routing to Modules

	HTTP Method Restrictions

	Using conversors

	Groups of Routes

	Matching Routes

	Naming Routes

	Usage Examples

	Default Behavior

	Setting the default route

	Not Found Paths

	Setting default paths

	Dealing with extra/trailing slashes

	Match Callbacks

	Hostname Constraints

	URI Sources

	Testing your routes

	Annotations Router

	Registering Router instance

	Implementing your own Router

	Dispatching Controllers
	The Dispatch Loop
	Dispatch Loop Events

	Forwarding to other actions

	Preparing Parameters

	Getting Parameters

	Preparing actions
	Camelize action names

	Remove legacy extensions

	Inject model instances

	Handling Not-Found Exceptions

	Implementing your own Dispatcher

	Micro Applications
	Creating a Micro Application

	Defining routes
	Routes with Parameters

	Starting Route

	Rewrite Rules

	Working with Responses

	Making redirections

	Generating URLs for Routes

	Interacting with the Dependency Injector

	Not-Found Handler

	Models in Micro Applications

	Micro Application Events

	Middleware events

	Using Controllers as Handlers

	Returning Responses

	Rendering Views

	Error Handling

	Related Sources

	Working with Namespaces
	Setting up the framework

	Controllers in Namespaces

	Models in Namespaces

	Events Manager
	Naming Convention

	Usage Example

	Creating components that trigger Events

	Using Services From The DI

	Event Propagation/Cancellation

	Listener Priorities

	Collecting Responses

	Implementing your own EventsManager

	Request Environment
	Getting Values

	Accessing the Request from Controllers

	Uploading Files

	Working with Headers

	Returning Responses
	Working with Headers

	Making Redirections

	HTTP Cache
	Setting an Expiration Time

	Cache-Control

	E-Tag

	Cookies Management
	Basic Usage

	Encryption/Decryption of Cookies

	Generating URLs and Paths
	Setting a base URI

	Generating URIs

	Producing URLs without mod_rewrite

	Producing URLs from Volt

	Static vs. Dynamic URIs

	Implementing your own URL Generator

	Flashing Messages
	Adapters

	Usage

	Printing Messages

	Implicit Flush vs. Session

	Storing data in Session
	Starting the Session

	Storing/Retrieving data in Session

	Removing/Destroying Sessions

	Isolating Session Data between Applications

	Session Bags

	Persistent Data in Components

	Implementing your own adapters

	Filtering and Sanitizing
	Types of Built-in Filters

	Sanitizing data

	Sanitizing from Controllers

	Filtering Action Parameters

	Filtering data

	Combining Filters

	Creating your own Filters

	Complex Sanitizing and Filtering

	Implementing your own Filter

	Contextual Escaping
	Escaping HTML

	Escaping HTML Attributes

	Escaping URLs

	Escaping CSS

	Escaping JavaScript

	Validation
	Initializing Validation

	Validators

	Validation Messages

	Filtering of Data

	Validation Events

	Cancelling Validations

	Avoid validate empty values

	Recursive Validation

	Forms
	Initializing forms

	Validation

	Filtering

	Forms + Entities

	Form Elements

	Event Callbacks

	Rendering Forms

	Creating Form Elements

	Forms Manager

	External Resources

	Reading Configurations
	Native Arrays

	File Adapters

	Reading INI Files

	Merging Configurations

	Injecting Configuration Dependency

	Pagination
	Data Adapters

	Examples

	Adapters Usage

	Page Attributes

	Implementing your own adapters

	Improving Performance with Cache
	When to implement cache?

	Caching Behavior

	Caching Output Fragments

	Caching Arbitrary Data
	File Backend Example

	Memcached Backend Example

	Querying the cache

	Deleting data from the cache

	Checking cache existence

	Lifetime

	Multi-Level Cache

	Frontend Adapters
	Implementing your own Frontend adapters

	Backend Adapters
	Implementing your own Backend adapters

	File Backend Options

	Memcached Backend Options

	APC Backend Options

	Mongo Backend Options

	XCache Backend Options

	Redis Backend Options

	Security
	Password Hashing

	Cross-Site Request Forgery (CSRF) protection

	Setting up the component

	Random

	External Resources

	Encryption/Decryption
	Basic Usage

	Encryption Options

	Base64 Support

	Setting up an Encryption service

	Access Control Lists (ACL)
	Creating an ACL

	Adding Roles to the ACL

	Adding Resources

	Defining Access Controls

	Querying an ACL

	Function based access

	Objects as role name and resource name

	Roles Inheritance

	Serializing ACL lists

	ACL Events

	Implementing your own adapters

	Multi-lingual Support
	Adapters

	Component Usage

	Implementing your own adapters

	Class Autoloader
	Security Layer

	Registering Namespaces

	Registering Directories

	Registering Classes

	Registering Files

	Additional file extensions

	Modifying current strategies

	Autoloading Events

	Troubleshooting

	Logging
	Adapters

	Creating a Log

	Transactions

	Logging to Multiple Handlers

	Message Formatting
	Line Formatter

	Implementing your own formatters

	Adapters
	Stream Logger

	File Logger

	Syslog Logger

	FirePHP Logger

	Implementing your own adapters

	Annotations Parser
	Reading Annotations

	Types of Annotations

	Practical Usage
	Cache Enabler with Annotations

	Private/Public areas with Annotations

	Annotations Adapters
	Implementing your own adapters

	External Resources

	Command Line Applications
	Structure

	Creating a Bootstrap

	Tasks

	Processing action parameters

	Running tasks in a chain

	Images
	Adapters
	Implementing your own adapters

	Saving and rendering images

	Resizing images
	\Phalcon\Image::WIDTH

	\Phalcon\Image::HEIGHT

	\Phalcon\Image::NONE

	\Phalcon\Image::TENSILE

	Cropping images

	Rotating images

	Flipping images

	Sharpening images

	Adding watermarks to images

	Blurring images

	Pixelating images

	Queueing
	Putting Jobs into the Queue

	Retrieving Messages

	Database Abstraction Layer
	Database Adapters
	Implementing your own adapters

	Database Dialects
	Implementing your own dialects

	Connecting to Databases

	Setting up additional PDO options

	Finding Rows

	Binding Parameters

	Inserting/Updating/Deleting Rows

	Transactions and Nested Transactions

	Database Events

	Profiling SQL Statements

	Logging SQL Statements
	Implementing your own Logger

	Describing Tables/Views

	Creating/Altering/Dropping Tables
	Creating Tables

	Altering Tables

	Dropping Tables

	Internationalization
	Find out best available Locale

	Formatting messages based on Locale

	Locale-Sensitive comparison

	Transliteration

	Database Migrations
	Schema Dumping

	Migration Class Anatomy
	Defining Columns

	Defining Indexes

	Defining References

	Writing Migrations

	Running Migrations

	Debugging Applications
	Catching Exceptions

	Debug component

	Reflection and Introspection

	Using XDebug

	Unit testing
	Integrating PHPunit with phalcon

	The PHPunit helper file

	PHPunit.xml file

	Sample unit test

In Depth Explanations / Further Reading

	Increasing Performance: What’s next?
	Profile on the Server
	Profiling with XDebug

	Profiling with Xhprof

	Profiling SQL Statements

	Profile on the Client
	Profile with Chrome/Firefox

	Yahoo! YSlow
	Profile with Speed Tracer

	Use a recent PHP version

	Use a PHP Bytecode Cache

	Do blocking work in the background

	Google Page Speed

	Dependency Injection Explained

	Understanding How Phalcon Applications Work
	Manual bootstrapping

API

	API Indice
	Abstract class Phalcon\Acl

	Abstract class Phalcon\Acl\Adapter

	Class Phalcon\Acl\Adapter\Memory

	Class Phalcon\Acl\Exception

	Class Phalcon\Acl\Resource

	Class Phalcon\Acl\Role

	Abstract class Phalcon\Annotations\Adapter

	Class Phalcon\Annotations\Adapter\Apc

	Class Phalcon\Annotations\Adapter\Files

	Class Phalcon\Annotations\Adapter\Memory

	Class Phalcon\Annotations\Adapter\Xcache

	Class Phalcon\Annotations\Annotation

	Class Phalcon\Annotations\Collection

	Class Phalcon\Annotations\Exception

	Class Phalcon\Annotations\Reader

	Class Phalcon\Annotations\Reflection

	Abstract class Phalcon\Application

	Class Phalcon\Application\Exception

	Class Phalcon\Assets\Collection

	Class Phalcon\Assets\Exception

	Class Phalcon\Assets\Filters\Cssmin

	Class Phalcon\Assets\Filters\Jsmin

	Class Phalcon\Assets\Filters\None

	Class Phalcon\Assets\Inline

	Class Phalcon\Assets\Inline\Css

	Class Phalcon\Assets\Inline\Js

	Class Phalcon\Assets\Manager

	Class Phalcon\Assets\Resource

	Class Phalcon\Assets\Resource\Css

	Class Phalcon\Assets\Resource\Js

	Abstract class Phalcon\Cache\Backend

	Class Phalcon\Cache\Backend\Apc

	Class Phalcon\Cache\Backend\File

	Class Phalcon\Cache\Backend\Libmemcached

	Class Phalcon\Cache\Backend\Memcache

	Class Phalcon\Cache\Backend\Memory

	Class Phalcon\Cache\Backend\Mongo

	Class Phalcon\Cache\Backend\Redis

	Class Phalcon\Cache\Backend\Xcache

	Class Phalcon\Cache\Exception

	Class Phalcon\Cache\Frontend\Base64

	Class Phalcon\Cache\Frontend\Data

	Class Phalcon\Cache\Frontend\Igbinary

	Class Phalcon\Cache\Frontend\Json

	Class Phalcon\Cache\Frontend\Msgpack

	Class Phalcon\Cache\Frontend\None

	Class Phalcon\Cache\Frontend\Output

	Class Phalcon\Cache\Multiple

	Class Phalcon\Cli\Console

	Class Phalcon\Cli\Console\Exception

	Class Phalcon\Cli\Dispatcher

	Class Phalcon\Cli\Dispatcher\Exception

	Class Phalcon\Cli\Router

	Class Phalcon\Cli\Router\Exception

	Class Phalcon\Cli\Router\Route

	Class Phalcon\Cli\Task

	Class Phalcon\Config

	Class Phalcon\Config\Adapter\Ini

	Class Phalcon\Config\Adapter\Json

	Class Phalcon\Config\Adapter\Php

	Class Phalcon\Config\Adapter\Yaml

	Class Phalcon\Config\Exception

	Class Phalcon\Crypt

	Class Phalcon\Crypt\Exception

	Abstract class Phalcon\Db

	Abstract class Phalcon\Db\Adapter

	Abstract class Phalcon\Db\Adapter\Pdo

	Class Phalcon\Db\Adapter\Pdo\Mysql

	Class Phalcon\Db\Adapter\Pdo\Postgresql

	Class Phalcon\Db\Adapter\Pdo\Sqlite

	Class Phalcon\Db\Column

	Abstract class Phalcon\Db\Dialect

	Class Phalcon\Db\Dialect\Mysql

	Class Phalcon\Db\Dialect\Postgresql

	Class Phalcon\Db\Dialect\Sqlite

	Class Phalcon\Db\Exception

	Class Phalcon\Db\Index

	Class Phalcon\Db\Profiler

	Class Phalcon\Db\Profiler\Item

	Class Phalcon\Db\RawValue

	Class Phalcon\Db\Reference

	Class Phalcon\Db\Result\Pdo

	Class Phalcon\Debug

	Class Phalcon\Debug\Dump

	Class Phalcon\Debug\Exception

	Class Phalcon\Di

	Class Phalcon\Di\Exception

	Class Phalcon\Di\FactoryDefault

	Class Phalcon\Di\FactoryDefault\Cli

	Abstract class Phalcon\Di\Injectable

	Class Phalcon\Di\Service

	Class Phalcon\Di\Service\Builder

	Abstract class Phalcon\Dispatcher

	Class Phalcon\Escaper

	Class Phalcon\Escaper\Exception

	Class Phalcon\Events\Event

	Class Phalcon\Events\Exception

	Class Phalcon\Events\Manager

	Class Phalcon\Exception

	Class Phalcon\Filter

	Class Phalcon\Filter\Exception

	Abstract class Phalcon\Flash

	Class Phalcon\Flash\Direct

	Class Phalcon\Flash\Exception

	Class Phalcon\Flash\Session

	Abstract class Phalcon\Forms\Element

	Class Phalcon\Forms\Element\Check

	Class Phalcon\Forms\Element\Date

	Class Phalcon\Forms\Element\Email

	Class Phalcon\Forms\Element\File

	Class Phalcon\Forms\Element\Hidden

	Class Phalcon\Forms\Element\Numeric

	Class Phalcon\Forms\Element\Password

	Class Phalcon\Forms\Element\Radio

	Class Phalcon\Forms\Element\Select

	Class Phalcon\Forms\Element\Submit

	Class Phalcon\Forms\Element\Text

	Class Phalcon\Forms\Element\TextArea

	Class Phalcon\Forms\Exception

	Class Phalcon\Forms\Form

	Class Phalcon\Forms\Manager

	Class Phalcon\Http\Cookie

	Class Phalcon\Http\Cookie\Exception

	Class Phalcon\Http\Request

	Class Phalcon\Http\Request\Exception

	Class Phalcon\Http\Request\File

	Class Phalcon\Http\Response

	Class Phalcon\Http\Response\Cookies

	Class Phalcon\Http\Response\Exception

	Class Phalcon\Http\Response\Headers

	Class Phalcon\Image

	Abstract class Phalcon\Image\Adapter

	Class Phalcon\Image\Adapter\Gd

	Class Phalcon\Image\Adapter\Imagick

	Class Phalcon\Image\Exception

	Class Phalcon\Kernel

	Class Phalcon\Loader

	Class Phalcon\Loader\Exception

	Abstract class Phalcon\Logger

	Abstract class Phalcon\Logger\Adapter

	Class Phalcon\Logger\Adapter\File

	Class Phalcon\Logger\Adapter\Firephp

	Class Phalcon\Logger\Adapter\Stream

	Class Phalcon\Logger\Adapter\Syslog

	Class Phalcon\Logger\Exception

	Abstract class Phalcon\Logger\Formatter

	Class Phalcon\Logger\Formatter\Firephp

	Class Phalcon\Logger\Formatter\Json

	Class Phalcon\Logger\Formatter\Line

	Class Phalcon\Logger\Formatter\Syslog

	Class Phalcon\Logger\Item

	Class Phalcon\Logger\Multiple

	Class Phalcon\Mvc\Application

	Class Phalcon\Mvc\Application\Exception

	Abstract class Phalcon\Mvc\Collection

	Abstract class Phalcon\Mvc\Collection\Behavior

	Class Phalcon\Mvc\Collection\Behavior\SoftDelete

	Class Phalcon\Mvc\Collection\Behavior\Timestampable

	Class Phalcon\Mvc\Collection\Document

	Class Phalcon\Mvc\Collection\Exception

	Class Phalcon\Mvc\Collection\Manager

	Abstract class Phalcon\Mvc\Controller

	Class Phalcon\Mvc\Dispatcher

	Class Phalcon\Mvc\Dispatcher\Exception

	Class Phalcon\Mvc\Micro

	Class Phalcon\Mvc\Micro\Collection

	Class Phalcon\Mvc\Micro\Exception

	Class Phalcon\Mvc\Micro\LazyLoader

	Abstract class Phalcon\Mvc\Model

	Abstract class Phalcon\Mvc\Model\Behavior

	Class Phalcon\Mvc\Model\Behavior\SoftDelete

	Class Phalcon\Mvc\Model\Behavior\Timestampable

	Class Phalcon\Mvc\Model\Criteria

	Class Phalcon\Mvc\Model\Exception

	Class Phalcon\Mvc\Model\Manager

	Class Phalcon\Mvc\Model\Message

	Abstract class Phalcon\Mvc\Model\MetaData

	Class Phalcon\Mvc\Model\MetaData\Apc

	Class Phalcon\Mvc\Model\MetaData\Files

	Class Phalcon\Mvc\Model\MetaData\Libmemcached

	Class Phalcon\Mvc\Model\MetaData\Memcache

	Class Phalcon\Mvc\Model\MetaData\Memory

	Class Phalcon\Mvc\Model\MetaData\Redis

	Class Phalcon\Mvc\Model\MetaData\Session

	Class Phalcon\Mvc\Model\MetaData\Strategy\Annotations

	Class Phalcon\Mvc\Model\MetaData\Strategy\Introspection

	Class Phalcon\Mvc\Model\MetaData\Xcache

	Class Phalcon\Mvc\Model\Query

	Class Phalcon\Mvc\Model\Query\Builder

	Abstract class Phalcon\Mvc\Model\Query\Lang

	Class Phalcon\Mvc\Model\Query\Status

	Class Phalcon\Mvc\Model\Relation

	Abstract class Phalcon\Mvc\Model\Resultset

	Class Phalcon\Mvc\Model\Resultset\Complex

	Class Phalcon\Mvc\Model\Resultset\Simple

	Class Phalcon\Mvc\Model\Row

	Class Phalcon\Mvc\Model\Transaction

	Class Phalcon\Mvc\Model\Transaction\Exception

	Class Phalcon\Mvc\Model\Transaction\Failed

	Class Phalcon\Mvc\Model\Transaction\Manager

	Class Phalcon\Mvc\Model\ValidationFailed

	Abstract class Phalcon\Mvc\Model\Validator

	Class Phalcon\Mvc\Model\Validator\Email

	Class Phalcon\Mvc\Model\Validator\Exclusionin

	Class Phalcon\Mvc\Model\Validator\Inclusionin

	Class Phalcon\Mvc\Model\Validator\Ip

	Class Phalcon\Mvc\Model\Validator\Numericality

	Class Phalcon\Mvc\Model\Validator\PresenceOf

	Class Phalcon\Mvc\Model\Validator\Regex

	Class Phalcon\Mvc\Model\Validator\StringLength

	Class Phalcon\Mvc\Model\Validator\Uniqueness

	Class Phalcon\Mvc\Model\Validator\Url

	Class Phalcon\Mvc\Router

	Class Phalcon\Mvc\Router\Annotations

	Class Phalcon\Mvc\Router\Exception

	Class Phalcon\Mvc\Router\Group

	Class Phalcon\Mvc\Router\Route

	Class Phalcon\Mvc\Url

	Class Phalcon\Mvc\Url\Exception

	Class Phalcon\Mvc\User\Component

	Class Phalcon\Mvc\User\Module

	Class Phalcon\Mvc\User\Plugin

	Class Phalcon\Mvc\View

	Abstract class Phalcon\Mvc\View\Engine

	Class Phalcon\Mvc\View\Engine\Php

	Class Phalcon\Mvc\View\Engine\Volt

	Class Phalcon\Mvc\View\Engine\Volt\Compiler

	Class Phalcon\Mvc\View\Engine\Volt\Exception

	Class Phalcon\Mvc\View\Exception

	Class Phalcon\Mvc\View\Simple

	Abstract class Phalcon\Paginator\Adapter

	Class Phalcon\Paginator\Adapter\Model

	Class Phalcon\Paginator\Adapter\NativeArray

	Class Phalcon\Paginator\Adapter\QueryBuilder

	Class Phalcon\Paginator\Exception

	Class Phalcon\Queue\Beanstalk

	Class Phalcon\Queue\Beanstalk\Exception

	Class Phalcon\Queue\Beanstalk\Job

	Final class Phalcon\Registry

	Class Phalcon\Security

	Class Phalcon\Security\Exception

	Class Phalcon\Security\Random

	Abstract class Phalcon\Session\Adapter

	Class Phalcon\Session\Adapter\Files

	Class Phalcon\Session\Adapter\Libmemcached

	Class Phalcon\Session\Adapter\Memcache

	Class Phalcon\Session\Adapter\Redis

	Class Phalcon\Session\Bag

	Class Phalcon\Session\Exception

	Class Phalcon\Tag

	Class Phalcon\Tag\Exception

	Abstract class Phalcon\Tag\Select

	Abstract class Phalcon\Text

	Abstract class Phalcon\Translate

	Abstract class Phalcon\Translate\Adapter

	Class Phalcon\Translate\Adapter\Csv

	Class Phalcon\Translate\Adapter\Gettext

	Class Phalcon\Translate\Adapter\NativeArray

	Class Phalcon\Translate\Exception

	Class Phalcon\Translate\Interpolator\AssociativeArray

	Class Phalcon\Translate\Interpolator\IndexedArray

	Class Phalcon\Validation

	Abstract class Phalcon\Validation\CombinedFieldsValidator

	Class Phalcon\Validation\Exception

	Class Phalcon\Validation\Message

	Class Phalcon\Validation\Message\Group

	Abstract class Phalcon\Validation\Validator

	Class Phalcon\Validation\Validator\Alnum

	Class Phalcon\Validation\Validator\Alpha

	Class Phalcon\Validation\Validator\Between

	Class Phalcon\Validation\Validator\Confirmation

	Class Phalcon\Validation\Validator\CreditCard

	Class Phalcon\Validation\Validator\Date

	Class Phalcon\Validation\Validator\Digit

	Class Phalcon\Validation\Validator\Email

	Class Phalcon\Validation\Validator\ExclusionIn

	Class Phalcon\Validation\Validator\File

	Class Phalcon\Validation\Validator\Identical

	Class Phalcon\Validation\Validator\InclusionIn

	Class Phalcon\Validation\Validator\Numericality

	Class Phalcon\Validation\Validator\PresenceOf

	Class Phalcon\Validation\Validator\Regex

	Class Phalcon\Validation\Validator\StringLength

	Class Phalcon\Validation\Validator\Uniqueness

	Class Phalcon\Validation\Validator\Url

	Class Phalcon\Version

	Interface Phalcon\Acl\AdapterInterface

	Interface Phalcon\Acl\ResourceAware

	Interface Phalcon\Acl\ResourceInterface

	Interface Phalcon\Acl\RoleAware

	Interface Phalcon\Acl\RoleInterface

	Interface Phalcon\Annotations\AdapterInterface

	Interface Phalcon\Annotations\ReaderInterface

	Interface Phalcon\Assets\FilterInterface

	Interface Phalcon\Cache\BackendInterface

	Interface Phalcon\Cache\FrontendInterface

	Interface Phalcon\Cli\DispatcherInterface

	Interface Phalcon\Cli\RouterInterface

	Interface Phalcon\Cli\Router\RouteInterface

	Interface Phalcon\Cli\TaskInterface

	Interface Phalcon\CryptInterface

	Interface Phalcon\Db\AdapterInterface

	Interface Phalcon\Db\ColumnInterface

	Interface Phalcon\Db\DialectInterface

	Interface Phalcon\Db\IndexInterface

	Interface Phalcon\Db\ReferenceInterface

	Interface Phalcon\Db\ResultInterface

	Interface Phalcon\DiInterface

	Interface Phalcon\Di\InjectionAwareInterface

	Interface Phalcon\Di\ServiceInterface

	Interface Phalcon\DispatcherInterface

	Interface Phalcon\EscaperInterface

	Interface Phalcon\Events\EventInterface

	Interface Phalcon\Events\EventsAwareInterface

	Interface Phalcon\Events\ManagerInterface

	Interface Phalcon\FilterInterface

	Interface Phalcon\Filter\UserFilterInterface

	Interface Phalcon\FlashInterface

	Interface Phalcon\Forms\ElementInterface

	Interface Phalcon\Http\CookieInterface

	Interface Phalcon\Http\RequestInterface

	Interface Phalcon\Http\Request\FileInterface

	Interface Phalcon\Http\ResponseInterface

	Interface Phalcon\Http\Response\CookiesInterface

	Interface Phalcon\Http\Response\HeadersInterface

	Interface Phalcon\Image\AdapterInterface

	Interface Phalcon\Logger\AdapterInterface

	Interface Phalcon\Logger\FormatterInterface

	Interface Phalcon\Mvc\CollectionInterface

	Interface Phalcon\Mvc\Collection\BehaviorInterface

	Interface Phalcon\Mvc\Collection\ManagerInterface

	Interface Phalcon\Mvc\ControllerInterface

	Interface Phalcon\Mvc\Controller\BindModelInterface

	Interface Phalcon\Mvc\DispatcherInterface

	Interface Phalcon\Mvc\EntityInterface

	Interface Phalcon\Mvc\Micro\CollectionInterface

	Interface Phalcon\Mvc\Micro\MiddlewareInterface

	Interface Phalcon\Mvc\ModelInterface

	Interface Phalcon\Mvc\Model\BehaviorInterface

	Interface Phalcon\Mvc\Model\CriteriaInterface

	Interface Phalcon\Mvc\Model\ManagerInterface

	Interface Phalcon\Mvc\Model\MessageInterface

	Interface Phalcon\Mvc\Model\MetaDataInterface

	Interface Phalcon\Mvc\Model\MetaData\StrategyInterface

	Interface Phalcon\Mvc\Model\QueryInterface

	Interface Phalcon\Mvc\Model\Query\BuilderInterface

	Interface Phalcon\Mvc\Model\Query\StatusInterface

	Interface Phalcon\Mvc\Model\RelationInterface

	Interface Phalcon\Mvc\Model\ResultInterface

	Interface Phalcon\Mvc\Model\ResultsetInterface

	Interface Phalcon\Mvc\Model\TransactionInterface

	Interface Phalcon\Mvc\Model\Transaction\ManagerInterface

	Interface Phalcon\Mvc\Model\ValidatorInterface

	Interface Phalcon\Mvc\ModuleDefinitionInterface

	Interface Phalcon\Mvc\RouterInterface

	Interface Phalcon\Mvc\Router\GroupInterface

	Interface Phalcon\Mvc\Router\RouteInterface

	Interface Phalcon\Mvc\UrlInterface

	Interface Phalcon\Mvc\ViewBaseInterface

	Interface Phalcon\Mvc\ViewInterface

	Interface Phalcon\Mvc\View\EngineInterface

	Interface Phalcon\Paginator\AdapterInterface

	Interface Phalcon\Session\AdapterInterface

	Interface Phalcon\Session\BagInterface

	Interface Phalcon\Translate\AdapterInterface

	Interface Phalcon\Translate\InterpolatorInterface

	Interface Phalcon\ValidationInterface

	Interface Phalcon\Validation\MessageInterface

	Interface Phalcon\Validation\ValidatorInterface

Legal

	License

Previous Versions

	2.0.0 <https://docs.phalconphp.com/en/2.0.0/>

Other formats

	PDF [https://media.readthedocs.org/pdf/phalcon-php-framework-documentation/latest/phalcon-php-framework-documentation.pdf]

	HTML in one Zip [https://media.readthedocs.org/htmlzip/phalcon-php-framework-documentation/latest/phalcon-php-framework-documentation.zip]

	ePub [http://media.readthedocs.org/epub/phalcon-php-framework-documentation/latest/phalcon-php-framework-documentation.epub]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Installation

PHP extensions require a slightly different installation method to a traditional PHP-based library or framework.
You can either download a binary package for the system of your choice or build it from the sources.

Windows

To use phalcon on Windows you can download [http://phalconphp.com/en/download] a DLL library. Edit your php.ini file and then append at the end:

extension=php_phalcon.dll

Restart your webserver.

The following screencast is a step-by-step guide to install Phalcon on Windows:

 Installation on XAMPP

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Installation on XAMPP

XAMPP [https://www.apachefriends.org/download.html] is an easy to install Apache distribution containing MySQL, PHP and Perl. Once you download XAMPP, all you have to do is extract it and start using it. Below are detailed instructions on how to install Phalcon on XAMPP for Windows. Using the latest XAMPP version is highly recommended.

Download the right version of Phalcon

XAMPP is always releasing 32 bit versions of Apache and PHP. You will need to download the x86 version of Phalcon for Windows from the download section.

After downloading the Phalcon library you will have a zip file like the one shown below:

[image: ../_images/xampp-1.png]

Extract the library from the archive to get the Phalcon DLL:

[image: ../_images/xampp-2.png]

Copy the file php_phalcon.dll to the PHP extensions. If you have installed XAMPP in the C:\xampp folder, the extension needs to be in C:\xampp\php\ext

[image: ../_images/xampp-3.png]

Edit the php.ini file, it is located at C:\xampp\php\php.ini. It can be edited with Notepad or a similar program. We recommend Notepad++ to avoid issues with line endings. Append at the end of the file: extension=php_phalcon.dll and save it.

[image: ../_images/xampp-4.png]

Restart the Apache Web Server from the XAMPP Control Center. This will load the new PHP configuration.

[image: ../_images/xampp-5.png]

Open your browser to navigate to http://localhost. The XAMPP welcome page will appear. Click on the link phpinfo().

[image: ../_images/xampp-6.png]

phpinfo() will output a significant amount of information on screen about the current state of PHP. Scroll down to check if the phalcon extension has been loaded correctly.

[image: ../_images/xampp-7.png]

If you can see the phalcon version in the phpinfo() output, congrats!, You are now flying with Phalcon.

Screencast

The following screencast is a step by step guide to install Phalcon on Windows:

 Installation on WAMP

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Installation on WAMP

WampServer [http://www.wampserver.com/en/] is a Windows web development environment. It allows you to create web applications with Apache2, PHP and a MySQL database. Below are detailed instructions on how to install Phalcon on WampServer for Windows. Using the latest WampServer version is highly recommended.

Download the right version of Phalcon

WAMP has both 32 and 64 bit versions. From the download section, you can choose the Phalcon for Windows accordingly to your desired architecture.

After download the Phalcon library you will have a zip file like the one shown below:

[image: ../_images/xampp-1.png]

Extract the library from the archive to get the Phalcon DLL:

[image: ../_images/xampp-2.png]

Copy the file php_phalcon.dll to the PHP extensions. If WAMP is installed in the C:\wamp folder, the extension needs to be in C:\wamp\bin\php\php5.5.12\ext

[image: ../_images/wamp-1.png]

Edit the php.ini file, it is located at C:\wamp\bin\php\php5.5.12\php.ini. It can be edited with Notepad or a similar program. We recommend Notepad++ to avoid issues with line endings. Append at the end of the file: extension=php_phalcon.dll and save it.

[image: ../_images/wamp-2.png]

Also edit another php.ini file, which is located at C:\wamp\bin\apache\apache2.4.9\bin\php.ini. Append at the end of the file: extension=php_phalcon.dll and save it.

Restart the Apache Web Server. Do a single click on the WampServer icon at system tray. Choose “Restart All Services” from the pop-up menu. Check out that tray icon will become green again.

[image: ../_images/wamp-3.png]

Open your browser to navigate to http://localhost. The WAMP welcome page will appear. Look at the section “extensions loaded” to check if phalcon was loaded.

[image: ../_images/wamp-4.png]

Congrats!, You are now flying with Phalcon.

Related Guides

	General Installation

	Detailed Installation on XAMPP for Windows

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Apache Installation Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Apache Installation Notes

Apache [http://httpd.apache.org/] is a popular and well known web server available on many platforms.

Configuring Apache for Phalcon

The following are potential configurations you can use to setup Apache with Phalcon. These notes are primarily focused on the configuration of the mod_rewrite module allowing to use friendly URLs and the
router component. Commonly an application has the following structure:

test/
 app/
 controllers/
 models/
 views/
 public/
 css/
 img/
 js/
 index.php

Directory under the main Document Root

This being the most common case, the application is installed in any directory under the document root.
In this case, we use two .htaccess files, the first one to hide the application code forwarding all requests
to the application’s document root (public/).

test/.htaccess

<IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteRule ^$ public/ [L]
 RewriteRule ((?s).*) public/$1 [L]
</IfModule>

Now a second .htaccess file is located in the public/ directory, this re-writes all the URIs to the public/index.php file:

test/public/.htaccess

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]
</IfModule>

If you do not want to use .htaccess files you can move these configurations to the apache’s main configuration file:

<IfModule mod_rewrite.c>

 <Directory "/var/www/test">
 RewriteEngine on
 RewriteRule ^$ public/ [L]
 RewriteRule ((?s).*) public/$1 [L]
 </Directory>

 <Directory "/var/www/test/public">
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]
 </Directory>

</IfModule>

Virtual Hosts

And this second configuration allows you to install a Phalcon application in a virtual host:

<VirtualHost *:80>

 ServerAdmin admin@example.host
 DocumentRoot "/var/vhosts/test/public"
 DirectoryIndex index.php
 ServerName example.host
 ServerAlias www.example.host

 <Directory "/var/vhosts/test/public">
 Options All
 AllowOverride All
 Allow from all
 </Directory>

</VirtualHost>

Or if you are using Apache 2.4 or above:

<VirtualHost *:80>

 ServerAdmin admin@example.host
 DocumentRoot "/var/vhosts/test/public"
 DirectoryIndex index.php
 ServerName example.host
 ServerAlias www.example.host

 <Directory "/var/vhosts/test/public">
 Options All
 AllowOverride All
 Require all granted
 </Directory>

</VirtualHost>

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Nginx Installation Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Nginx Installation Notes

Nginx [http://wiki.nginx.org/Main] is a free, open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy server. Unlike traditional servers, Nginx [http://wiki.nginx.org/Main] doesn’t rely on threads to handle requests. Instead it uses a much more scalable event-driven (asynchronous) architecture. This architecture uses small, but more importantly, predictable amounts of memory under load.

The PHP-FPM [http://php-fpm.org/] (FastCGI Process Manager) is usually used to allow Nginx [http://wiki.nginx.org/Main] to process PHP files. Nowadays, PHP-FPM [http://php-fpm.org/] is bundled with any Unix PHP distribution. Phalcon + Nginx [http://wiki.nginx.org/Main] + PHP-FPM [http://php-fpm.org/] provides a powerful set of tools that offer maximum performance for your PHP applications.

Configuring Nginx for Phalcon

The following are potential configurations you can use to setup nginx with Phalcon:

Basic configuration

Using $_GET['_url'] as source of URIs:

server {
 listen 80;
 server_name localhost.dev;
 root /var/www/phalcon/public;
 index index.php index.html index.htm;
 charset utf-8;

 location / {
 try_files $uri $uri/ /index.php?_url=$uri&$args;
 }

 location ~ \.php {
 fastcgi_pass unix:/run/php-fpm/php-fpm.sock;
 fastcgi_index /index.php;

 include fastcgi_params;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 }

 location ~ /\.ht {
 deny all;
 }
}

Using $_SERVER['REQUEST_URI'] as source of URIs:

server {
 listen 80;
 server_name localhost.dev;
 root /var/www/phalcon/public;
 index index.php index.html index.htm;
 charset utf-8;

 location / {
 try_files $uri $uri/ /index.php;
 }

 location ~ \.php$ {
 try_files $uri =404;

 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index /index.php;

 include fastcgi_params;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 }

 location ~ /\.ht {
 deny all;
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Cherokee Installation Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Cherokee Installation Notes

Cherokee [http://www.cherokee-project.com/] is a high-performance web server. It is very fast, flexible and easy to configure.

Configuring Cherokee for Phalcon

Cherokee provides a friendly graphical interface to configure almost every setting available in the web server.
Start the cherokee administrator by executing with root /path-to-cherokee/sbin/cherokee-admin

[image: ../_images/cherokee-1.jpg]

Create a new virtual host by clicking on ‘vServers’, then add a new virtual server:

[image: ../_images/cherokee-2.jpg]

The recently added virtual server must appear at the left bar of the screen. In the ‘Behaviors’ tab
you will see a set of default behaviors for this virtual server. Click the ‘Rule Management’ button.
Remove those labeled as ‘Directory /cherokee_themes’ and ‘Directory /icons’:

[image: ../_images/cherokee-3.jpg]

Add the ‘PHP Language’ behavior using the wizard. This behavior allow you to run PHP applications:

[image: ../_images/cherokee-4.jpg]

Normally this behavior does not require additional settings. Add another behavior,
this time in the ‘Manual Configuration’ section. In ‘Rule Type’ choose ‘File Exists’,
then make sure the option ‘Match any file’ is enabled:

[image: ../_images/cherokee-55.jpg]

In the ‘Handler’ tab choose ‘List & Send’ as handler:

[image: ../_images/cherokee-7.jpg]

Edit the ‘Default’ behavior in order to enable the URL-rewrite engine. Change the handler to ‘Redirection’,
then add the following regular expression to the engine ^(.*)$:

[image: ../_images/cherokee-6.jpg]

Finally, make sure the behaviors have the following order:

[image: ../_images/cherokee-8.jpg]

Execute the application in a browser:

[image: ../_images/cherokee-9.jpg]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Using PHP Built-in webserver

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Using PHP Built-in webserver

As of PHP 5.4.0, you can use PHP’s on built-in [http://php.net/manual/en/features.commandline.webserver.php] web server for development.

To start the server type:

php -S localhost:8000 -t /public

If you want to rewrite the URIs to the index.php file use the following router file (.htrouter.php):

<?php
if (!file_exists(__DIR__ . '/' . $_SERVER['REQUEST_URI'])) {
 $_GET['_url'] = $_SERVER['REQUEST_URI'];
}
return false;

and then start the server from the base project directory with:

php -S localhost:8000 -t /public .htrouter.php

Then point your browser to http://localhost:8000/ to check if everything is working.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Nginx Installation Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Nginx Installation Notes

Nginx [http://wiki.nginx.org/Main] is a free, open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy server. Unlike traditional servers, Nginx [http://wiki.nginx.org/Main] doesn’t rely on threads to handle requests. Instead it uses a much more scalable event-driven (asynchronous) architecture. This architecture uses small, but more importantly, predictable amounts of memory under load.

The PHP-FPM [http://php-fpm.org/] (FastCGI Process Manager) is usually used to allow Nginx [http://wiki.nginx.org/Main] to process PHP files. Nowadays, PHP-FPM [http://php-fpm.org/] is bundled with any Unix PHP distribution. Phalcon + Nginx [http://wiki.nginx.org/Main] + PHP-FPM [http://php-fpm.org/] provides a powerful set of tools that offer maximum performance for your PHP applications.

Configuring Nginx for Phalcon

The following are potential configurations you can use to setup nginx with Phalcon:

Basic configuration

Using $_GET['_url'] as source of URIs:

server {
 listen 80;
 server_name localhost.dev;
 root /var/www/phalcon/public;
 index index.php index.html index.htm;
 charset utf-8;

 location / {
 try_files $uri $uri/ /index.php?_url=$uri&$args;
 }

 location ~ \.php {
 fastcgi_pass unix:/run/php-fpm/php-fpm.sock;
 fastcgi_index /index.php;

 include fastcgi_params;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 }

 location ~ /\.ht {
 deny all;
 }
}

Using $_SERVER['REQUEST_URI'] as source of URIs:

server {
 listen 80;
 server_name localhost.dev;
 root /var/www/phalcon/public;
 index index.php index.html index.htm;
 charset utf-8;

 location / {
 try_files $uri $uri/ /index.php;
 }

 location ~ \.php$ {
 try_files $uri =404;

 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index /index.php;

 include fastcgi_params;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 }

 location ~ /\.ht {
 deny all;
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Apache Installation Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Apache Installation Notes

Apache [http://httpd.apache.org/] is a popular and well known web server available on many platforms.

Configuring Apache for Phalcon

The following are potential configurations you can use to setup Apache with Phalcon. These notes are primarily focused on the configuration of the mod_rewrite module allowing to use friendly URLs and the
router component. Commonly an application has the following structure:

test/
 app/
 controllers/
 models/
 views/
 public/
 css/
 img/
 js/
 index.php

Directory under the main Document Root

This being the most common case, the application is installed in any directory under the document root.
In this case, we use two .htaccess files, the first one to hide the application code forwarding all requests
to the application’s document root (public/).

test/.htaccess

<IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteRule ^$ public/ [L]
 RewriteRule ((?s).*) public/$1 [L]
</IfModule>

Now a second .htaccess file is located in the public/ directory, this re-writes all the URIs to the public/index.php file:

test/public/.htaccess

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]
</IfModule>

If you do not want to use .htaccess files you can move these configurations to the apache’s main configuration file:

<IfModule mod_rewrite.c>

 <Directory "/var/www/test">
 RewriteEngine on
 RewriteRule ^$ public/ [L]
 RewriteRule ((?s).*) public/$1 [L]
 </Directory>

 <Directory "/var/www/test/public">
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]
 </Directory>

</IfModule>

Virtual Hosts

And this second configuration allows you to install a Phalcon application in a virtual host:

<VirtualHost *:80>

 ServerAdmin admin@example.host
 DocumentRoot "/var/vhosts/test/public"
 DirectoryIndex index.php
 ServerName example.host
 ServerAlias www.example.host

 <Directory "/var/vhosts/test/public">
 Options All
 AllowOverride All
 Allow from all
 </Directory>

</VirtualHost>

Or if you are using Apache 2.4 or above:

<VirtualHost *:80>

 ServerAdmin admin@example.host
 DocumentRoot "/var/vhosts/test/public"
 DirectoryIndex index.php
 ServerName example.host
 ServerAlias www.example.host

 <Directory "/var/vhosts/test/public">
 Options All
 AllowOverride All
 Require all granted
 </Directory>

</VirtualHost>

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Cherokee Installation Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Installation

Cherokee Installation Notes

Cherokee [http://www.cherokee-project.com/] is a high-performance web server. It is very fast, flexible and easy to configure.

Configuring Cherokee for Phalcon

Cherokee provides a friendly graphical interface to configure almost every setting available in the web server.
Start the cherokee administrator by executing with root /path-to-cherokee/sbin/cherokee-admin

[image: ../_images/cherokee-1.jpg]

Create a new virtual host by clicking on ‘vServers’, then add a new virtual server:

[image: ../_images/cherokee-2.jpg]

The recently added virtual server must appear at the left bar of the screen. In the ‘Behaviors’ tab
you will see a set of default behaviors for this virtual server. Click the ‘Rule Management’ button.
Remove those labeled as ‘Directory /cherokee_themes’ and ‘Directory /icons’:

[image: ../_images/cherokee-3.jpg]

Add the ‘PHP Language’ behavior using the wizard. This behavior allow you to run PHP applications:

[image: ../_images/cherokee-4.jpg]

Normally this behavior does not require additional settings. Add another behavior,
this time in the ‘Manual Configuration’ section. In ‘Rule Type’ choose ‘File Exists’,
then make sure the option ‘Match any file’ is enabled:

[image: ../_images/cherokee-55.jpg]

In the ‘Handler’ tab choose ‘List & Send’ as handler:

[image: ../_images/cherokee-7.jpg]

Edit the ‘Default’ behavior in order to enable the URL-rewrite engine. Change the handler to ‘Redirection’,
then add the following regular expression to the engine ^(.*)$:

[image: ../_images/cherokee-6.jpg]

Finally, make sure the behaviors have the following order:

[image: ../_images/cherokee-8.jpg]

Execute the application in a browser:

[image: ../_images/cherokee-9.jpg]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Developer Tools

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Phalcon Developer Tools

These tools are a collection of useful scripts to generate skeleton code. Core components of your application can be generated with
a simple command, allowing you to easily develop applications using Phalcon.

If you prefer to use the web version instead of the console, this blog post [https://blog.phalconphp.com/post/dont-like-command-line-and-consoles-no-problem] offers more information.

Download

You can download or clone a cross platform package containing the developer tools from Github [https://github.com/phalcon/phalcon-devtools].

Installation

These are detailed instructions on how to install the developer tools on different platforms:

	Phalcon Developer Tools on Windows

	Phalcon Developer Tools on Mac OS X

	Phalcon Developer Tools on Linux

Getting Available Commands

You can get a list of available commands in Phalcon tools by typing: phalcon commands

$ phalcon commands

Phalcon DevTools (3.0.0)

Available commands:
 commands (alias of: list, enumerate)
 controller (alias of: create-controller)
 module (alias of: create-module)
 model (alias of: create-model)
 all-models (alias of: create-all-models)
 project (alias of: create-project)
 scaffold (alias of: create-scaffold)
 migration (alias of: create-migration)
 webtools (alias of: create-webtools)

Generating a Project Skeleton

You can use Phalcon tools to generate pre-defined project skeletons for your applications with Phalcon framework. By default the
project skeleton generator will use mod_rewrite for Apache. Type the following command on your web server document root:

$ pwd

/Applications/MAMP/htdocs

$ phalcon create-project store

The above recommended project structure was generated:

[image: ../_images/tools-2.png]

You could add the parameter –help to get help on the usage of a certain script:

$ phalcon project --help

Phalcon DevTools (3.0.0)

Help:
 Creates a project

Usage:
 project [name] [type] [directory] [enable-webtools]

Arguments:
 help Shows this help text

Example
 phalcon project store simple

Options:
 --name Name of the new project
 --enable-webtools Determines if webtools should be enabled [optional]
 --directory=s Base path on which project will be created [optional]
 --type=s Type of the application to be generated (cli, micro, simple, modules)
 --template-path=s Specify a template path [optional]
 --use-config-ini Use a ini file as configuration file [optional]
 --trace Shows the trace of the framework in case of exception. [optional]
 --help Shows this help

Accessing the project from the web server will show you:

[image: ../_images/tools-6.png]

Generating Controllers

The command “create-controller” generates controller skeleton structures. It’s important to invoke this command inside a directory
that already has a Phalcon project.

$ phalcon create-controller --name test

The following code is generated by the script:

<?php

use Phalcon\Mvc\Controller;

class TestController extends Controller
{
 public function indexAction()
 {

 }
}

Preparing Database Settings

When a project is generated using developer tools. A configuration file can be found in app/config/config.ini To generate models
or scaffold, you will need to change the settings used to connect to your database.

Change the database section in your config.ini file:

[database]
adapter = Mysql
host = "127.0.0.1"
username = "root"
password = "secret"
dbname = "store_db"

[phalcon]
controllersDir = "../app/controllers/"
modelsDir = "../app/models/"
viewsDir = "../app/views/"
baseUri = "/store/"

Generating Models

There are several ways to create models. You can create all models from the default database connection or some selectively. Models
can have public attributes for the field representations or setters/getters can be used.

	Options:

	

	
--name=s
	Table name

	
--schema=s
	Name of the schema. [optional]

	
--namespace=s
	Model’s namespace [optional]

	
--get-set
	Attributes will be protected and have setters/getters. [optional]

	
--extends=s
	Model extends the class name supplied [optional]

	
--excludefields=l

		Excludes fields defined in a comma separated list [optional]

	
--doc
	Helps to improve code completion on IDEs [optional]

	
--directory=s
	Base path on which project will be created [optional]

	
--force
	Rewrite the model. [optional]

	
--trace
	Shows the trace of the framework in case of exception. [optional]

	
--mapcolumn
	Get some code for map columns. [optional]

	
--abstract
	Abstract Model [optional]

The simplest way to generate a model is:

$ phalcon model products

$ phalcon model --name tablename

All table fields are declared public for direct access.

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 /**
 * @var integer
 */
 public $id;

 /**
 * @var integer
 */
 public $typesId;

 /**
 * @var string
 */
 public $name;

 /**
 * @var string
 */
 public $price;

 /**
 * @var integer
 */
 public $quantity;

 /**
 * @var string
 */
 public $status;
}

By adding the –get-set you can generate the fields with protected variables and public setter/getter methods. Those methods
can help in business logic implementation within the setter/getter methods.

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 /**
 * @var integer
 */
 protected $id;

 /**
 * @var integer
 */
 protected $typesId;

 /**
 * @var string
 */
 protected $name;

 /**
 * @var string
 */
 protected $price;

 /**
 * @var integer
 */
 protected $quantity;

 /**
 * @var string
 */
 protected $status;

 /**
 * Method to set the value of field id
 *
 * @param integer $id
 */
 public function setId($id)
 {
 $this->id = $id;
 }

 /**
 * Method to set the value of field typesId
 *
 * @param integer $typesId
 */
 public function setTypesId($typesId)
 {
 $this->typesId = $typesId;
 }

 // ...

 /**
 * Returns the value of field status
 *
 * @return string
 */
 public function getStatus()
 {
 return $this->status;
 }
}

A nice feature of the model generator is that it keeps changes made by the developer between code generations. This allows the
addition or removal of fields and properties, without worrying about losing changes made to the model itself.
The following screencast shows you how it works:

 Phalcon Developer Tools on Windows

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Phalcon Developer Tools

Phalcon Developer Tools on Windows

These steps will guide you through the process of installing Phalcon Developer Tools for Windows.

Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation section for instructions.

Download

You can download a cross platform package containing the developer tools from the Download [http://phalconphp.com/download] section. Also you can clone it from Github [https://github.com/phalcon/phalcon-devtools].

On the Windows platform, you need to configure the system PATH to include Phalcon tools as well as the PHP executable. If you download the Phalcon tools as a zip archive, extract it on any path of your local drive i.e. c:\phalcon-tools. You will need this path in the steps below. Edit the file “phalcon.bat” by right clicking on the file and selecting “Edit”:

[image: ../_images/path-0.png]

Change the path to the one you installed the Phalcon tools (set PTOOLSPATH=C:phalcon-tools):

[image: ../_images/path-01.png]

Save the changes.

Adding PHP and Tools to your system PATH

Because the scripts are written in PHP, you need to install it on your machine. Depending on your PHP installation, the executable can be located in various places. Search for the file php.exe and copy the path it is located in. For instance, if using the latest WAMP stack, PHP is located in: C:\wampbin\php\php5.3.10\php.exe.

From the Windows start menu, right mouse click on the “Computer” icon and select “Properties”:

[image: ../_images/path-1.png]

Click the “Advanced” tab and then the button “Environment Variables”:

[image: ../_images/path-2.png]

At the bottom, look for the section “System variables” and edit the variable “Path”:

[image: ../_images/path-3.png]

Be very careful on this step! You need to append at the end of the long string the path where your php.exe was located and the path where Phalcon tools are installed. Use the ”;” character to separate the different paths in the variable:

[image: ../_images/path-4.png]

Accept the changes made by clicking “OK” and close the dialogs opened. From the start menu click on the option “Run”. If you can’t find this option, press “Windows Key” + “R”.

[image: ../_images/path-5.png]

Type “cmd” and press enter to open the windows command line utility:

[image: ../_images/path-6.png]

Type the commands “php -v” and “phalcon” and you will see something like this:

[image: ../_images/path-7.png]

Congratulations you now have Phalcon tools installed!

Related Guides

	Using Developer Tools

	Installation on OS X

	Installation on Linux

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Developer Tools on Mac OS X

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Phalcon Developer Tools

Phalcon Developer Tools on Mac OS X

These steps will guide you through the process of installing Phalcon Developer Tools for OS/X.

Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation section for instructions.

Download

You can download a cross platform package containing the developer tools from the Download [http://phalconphp.com/download] section. You can also clone it from Github [https://github.com/phalcon/phalcon-devtools].

Open the terminal application:

[image: ../_images/mac-1.png]

Copy & Paste the commands below in your terminal:

git clone git://github.com/phalcon/phalcon-devtools.git

Then enter the folder where the tools were cloned and execute ”. ./phalcon.sh”, (don’t forget the dot at beginning of the command):

cd phalcon-devtools/

. ./phalcon.sh

In the terminal window, type the following commands to create a symbolic link to the phalcon.php script:

ln -s ~/phalcon-tools/phalcon.php ~/phalcon-tools/phalcon

chmod +x ~/phalcon-tools/phalcon

Type the command “phalcon” and you will see something like this:

[image: ../_images/mac-5.png]

Congratulations you now have Phalcon tools installed!

Related Guides

	Using Developer Tools

	Installation on Windows

	Installation on Linux

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Developer Tools on Linux

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Phalcon Developer Tools

Phalcon Developer Tools on Linux

These steps will guide you through the process of installing Phalcon Developer Tools for Linux.

Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation
section for instructions.

Download

You can download a cross platform package containing the developer tools from the Download [http://phalconphp.com/download] section. Also you can clone it from Github [https://github.com/phalcon/phalcon-devtools].

Open a terminal and type the command below:

git clone git://github.com/phalcon/phalcon-devtools.git

[image: ../_images/linux-1.png]

Then enter the folder where the tools were cloned and execute ”. ./phalcon.sh”, (don’t forget the dot at beginning of the command):

cd phalcon-devtools/

. ./phalcon.sh

[image: ../_images/linux-2.png]

Create a symbolink link to the phalcon.php script:

ln -s ~/phalcon-devtools/phalcon.php /usr/bin/phalcon

chmod ugo+x /usr/bin/phalcon

Congratulations you now have Phalcon tools installed!

Related Guides

	Using Developer Tools

	Installation on Windows

	Installation on Mac

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Developer Tools on Linux

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Phalcon Developer Tools

Phalcon Developer Tools on Linux

These steps will guide you through the process of installing Phalcon Developer Tools for Linux.

Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation
section for instructions.

Download

You can download a cross platform package containing the developer tools from the Download [http://phalconphp.com/download] section. Also you can clone it from Github [https://github.com/phalcon/phalcon-devtools].

Open a terminal and type the command below:

git clone git://github.com/phalcon/phalcon-devtools.git

[image: ../_images/linux-1.png]

Then enter the folder where the tools were cloned and execute ”. ./phalcon.sh”, (don’t forget the dot at beginning of the command):

cd phalcon-devtools/

. ./phalcon.sh

[image: ../_images/linux-2.png]

Create a symbolink link to the phalcon.php script:

ln -s ~/phalcon-devtools/phalcon.php /usr/bin/phalcon

chmod ugo+x /usr/bin/phalcon

Congratulations you now have Phalcon tools installed!

Related Guides

	Using Developer Tools

	Installation on Windows

	Installation on Mac

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Developer Tools on Mac OS X

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Phalcon Developer Tools

Phalcon Developer Tools on Mac OS X

These steps will guide you through the process of installing Phalcon Developer Tools for OS/X.

Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation section for instructions.

Download

You can download a cross platform package containing the developer tools from the Download [http://phalconphp.com/download] section. You can also clone it from Github [https://github.com/phalcon/phalcon-devtools].

Open the terminal application:

[image: ../_images/mac-1.png]

Copy & Paste the commands below in your terminal:

git clone git://github.com/phalcon/phalcon-devtools.git

Then enter the folder where the tools were cloned and execute ”. ./phalcon.sh”, (don’t forget the dot at beginning of the command):

cd phalcon-devtools/

. ./phalcon.sh

In the terminal window, type the following commands to create a symbolic link to the phalcon.php script:

ln -s ~/phalcon-tools/phalcon.php ~/phalcon-tools/phalcon

chmod +x ~/phalcon-tools/phalcon

Type the command “phalcon” and you will see something like this:

[image: ../_images/mac-5.png]

Congratulations you now have Phalcon tools installed!

Related Guides

	Using Developer Tools

	Installation on Windows

	Installation on Linux

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Developer Tools on Windows

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	Phalcon Developer Tools

Phalcon Developer Tools on Windows

These steps will guide you through the process of installing Phalcon Developer Tools for Windows.

Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation section for instructions.

Download

You can download a cross platform package containing the developer tools from the Download [http://phalconphp.com/download] section. Also you can clone it from Github [https://github.com/phalcon/phalcon-devtools].

On the Windows platform, you need to configure the system PATH to include Phalcon tools as well as the PHP executable. If you download the Phalcon tools as a zip archive, extract it on any path of your local drive i.e. c:\phalcon-tools. You will need this path in the steps below. Edit the file “phalcon.bat” by right clicking on the file and selecting “Edit”:

[image: ../_images/path-0.png]

Change the path to the one you installed the Phalcon tools (set PTOOLSPATH=C:phalcon-tools):

[image: ../_images/path-01.png]

Save the changes.

Adding PHP and Tools to your system PATH

Because the scripts are written in PHP, you need to install it on your machine. Depending on your PHP installation, the executable can be located in various places. Search for the file php.exe and copy the path it is located in. For instance, if using the latest WAMP stack, PHP is located in: C:\wampbin\php\php5.3.10\php.exe.

From the Windows start menu, right mouse click on the “Computer” icon and select “Properties”:

[image: ../_images/path-1.png]

Click the “Advanced” tab and then the button “Environment Variables”:

[image: ../_images/path-2.png]

At the bottom, look for the section “System variables” and edit the variable “Path”:

[image: ../_images/path-3.png]

Be very careful on this step! You need to append at the end of the long string the path where your php.exe was located and the path where Phalcon tools are installed. Use the ”;” character to separate the different paths in the variable:

[image: ../_images/path-4.png]

Accept the changes made by clicking “OK” and close the dialogs opened. From the start menu click on the option “Run”. If you can’t find this option, press “Windows Key” + “R”.

[image: ../_images/path-5.png]

Type “cmd” and press enter to open the windows command line utility:

[image: ../_images/path-6.png]

Type the commands “php -v” and “phalcon” and you will see something like this:

[image: ../_images/path-7.png]

Congratulations you now have Phalcon tools installed!

Related Guides

	Using Developer Tools

	Installation on OS X

	Installation on Linux

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 1: Let’s learn by example

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 1: Let’s learn by example

Throughout this first tutorial, we’ll walk you through the creation of an application with a simple registration
form from the ground up. We will also explain the basic aspects of the framework’s behavior. If you are interested
in automatic code generation tools for Phalcon, you can check our developer tools.

The best way to use this guide is to follow each step in turn. You can get the complete code
here [https://github.com/phalcon/tutorial].

File structure

Phalcon does not impose a particular file structure for application development. Due to the fact that it is
loosely coupled, you can implement Phalcon powered applications with a file structure you are most comfortable using.

For the purposes of this tutorial and as a starting point, we suggest this very simple structure:

tutorial/
 app/
 controllers/
 models/
 views/
 public/
 css/
 img/
 js/

Note that you don’t need any “library” directory related to Phalcon. The framework is available in memory,
ready for you to use.

Before continuing, please be sure you’ve successfully installed Phalcon and have setup either Nginx, Apache or Cherokee.

Bootstrap

The first file you need to create is the bootstrap file. This file is very important; since it serves
as the base of your application, giving you control of all aspects of it. In this file you can implement
initialization of components as well as application behavior.

Ultimately, it is responsible for doing 3 things:

	Setting up the autoloader.

	Configuring the Dependency Injector.

	Handling the application request.

Autoloaders

The first part that we find in the bootstrap is registering an autoloader. This will be used to load classes as controllers and models in the application. For example we may register one or more directories of controllers increasing the flexibility of the application. In our example we have used the component Phalcon\Loader.

With it, we can load classes using various strategies but for this example we have chosen to locate classes based on predefined directories:

<?php

use Phalcon\Loader;

// ...

$loader = new Loader();

$loader->registerDirs(
 [
 "../app/controllers/",
 "../app/models/",
]
);

$loader->register();

Dependency Management

A very important concept that must be understood when working with Phalcon is its dependency injection container. It may sound complex but is actually very simple and practical.

A service container is a bag where we globally store the services that our application will use to function. Each time the framework requires a component, it will ask the container using an agreed upon name for the service. Since Phalcon is a highly decoupled framework, Phalcon\Di acts as glue facilitating the integration of the different components achieving their work together in a transparent manner.

<?php

use Phalcon\Di\FactoryDefault;

// ...

// Create a DI
$di = new FactoryDefault();

Phalcon\Di\FactoryDefault is a variant of Phalcon\Di. To make things easier,
it has registered most of the components that come with Phalcon. Thus we should not register them one by one.
Later there will be no problem in replacing a factory service.

In the next part, we register the “view” service indicating the directory where the framework will find the views files.
As the views do not correspond to classes, they cannot be charged with an autoloader.

Services can be registered in several ways, but for our tutorial we’ll use an anonymous function [http://php.net/manual/en/functions.anonymous.php]:

<?php

use Phalcon\Mvc\View;

// ...

// Setup the view component
$di->set(
 "view",
 function () {
 $view = new View();

 $view->setViewsDir("../app/views/");

 return $view;
 }
);

Next we register a base URI so that all URIs generated by Phalcon include the “tutorial” folder we setup earlier.
This will become important later on in this tutorial when we use the class Phalcon\Tag
to generate a hyperlink.

<?php

use Phalcon\Mvc\Url as UrlProvider;

// ...

// Setup a base URI so that all generated URIs include the "tutorial" folder
$di->set(
 "url",
 function () {
 $url = new UrlProvider();

 $url->setBaseUri("/tutorial/");

 return $url;
 }
);

Handling the application request

In the last part of this file, we find Phalcon\Mvc\Application. Its purpose
is to initialize the request environment, route the incoming request, and then dispatch any discovered actions;
it aggregates any responses and returns them when the process is complete.

<?php

use Phalcon\Mvc\Application;

// ...

$application = new Application($di);

$response = $application->handle();

$response->send();

Putting everything together

The tutorial/public/index.php file should look like:

<?php

use Phalcon\Loader;
use Phalcon\Mvc\View;
use Phalcon\Mvc\Application;
use Phalcon\Di\FactoryDefault;
use Phalcon\Mvc\Url as UrlProvider;
use Phalcon\Db\Adapter\Pdo\Mysql as DbAdapter;

// Register an autoloader
$loader = new Loader();

$loader->registerDirs(
 [
 "../app/controllers/",
 "../app/models/",
]
);

$loader->register();

// Create a DI
$di = new FactoryDefault();

// Setup the view component
$di->set(
 "view",
 function () {
 $view = new View();

 $view->setViewsDir("../app/views/");

 return $view;
 }
);

// Setup a base URI so that all generated URIs include the "tutorial" folder
$di->set(
 "url",
 function () {
 $url = new UrlProvider();

 $url->setBaseUri("/tutorial/");

 return $url;
 }
);

$application = new Application($di);

try {
 // Handle the request
 $response = $application->handle();

 $response->send();
} catch (\Exception $e) {
 echo "Exception: ", $e->getMessage();
}

As you can see, the bootstrap file is very short and we do not need to include any additional files. We have set
ourselves a flexible MVC application in less than 30 lines of code.

Creating a Controller

By default Phalcon will look for a controller named “Index”. It is the starting point when no controller or
action has been passed in the request. The index controller (app/controllers/IndexController.php) looks like:

<?php

use Phalcon\Mvc\Controller;

class IndexController extends Controller
{
 public function indexAction()
 {
 echo "<h1>Hello!</h1>";
 }
}

The controller classes must have the suffix “Controller” and controller actions must have the suffix “Action”. If you access the application from your browser, you should see something like this:

[image: ../_images/tutorial-1.png]

Congratulations, you’re flying with Phalcon!

Sending output to a view

Sending output to the screen from the controller is at times necessary but not desirable as most purists in the MVC community will attest. Everything must be passed to the view that is responsible for outputting data on screen. Phalcon will look for a view with the same name as the last executed action inside a directory named as the last executed controller. In our case (app/views/index/index.phtml):

<?php echo "<h1>Hello!</h1>";

Our controller (app/controllers/IndexController.php) now has an empty action definition:

<?php

use Phalcon\Mvc\Controller;

class IndexController extends Controller
{
 public function indexAction()
 {

 }
}

The browser output should remain the same. The Phalcon\Mvc\View static component is automatically created when the action execution has ended. Learn more about views usage here.

Designing a sign up form

Now we will change the index.phtml view file, to add a link to a new controller named “signup”. The goal is to allow users to sign up within our application.

<?php

echo "<h1>Hello!</h1>";

echo PHP_EOL;

echo PHP_EOL;

echo $this->tag->linkTo(
 "signup",
 "Sign Up Here!"
);

The generated HTML code displays an anchor (“a”) HTML tag linking to a new controller:

<h1>Hello!</h1>

Sign Up Here!

To generate the tag we use the class Phalcon\Tag. This is a utility class that allows
us to build HTML tags with framework conventions in mind. As this class is a also a service registered in the DI
we use $this->tag to access it.

A more detailed article regarding HTML generation can be found here.

[image: ../_images/tutorial-2.png]

Here is the Signup controller (app/controllers/SignupController.php):

<?php

use Phalcon\Mvc\Controller;

class SignupController extends Controller
{
 public function indexAction()
 {

 }
}

The empty index action gives the clean pass to a view with the form definition (app/views/signup/index.phtml):

<h2>
 Sign up using this form
</h2>

<?php echo $this->tag->form("signup/register"); ?>

 <p>
 <label for="name">
 Name
 </label>

 <?php echo $this->tag->textField("name"); ?>
 </p>

 <p>
 <label for="email">
 E-Mail
 </label>

 <?php echo $this->tag->textField("email"); ?>
 </p>

 <p>
 <?php echo $this->tag->submitButton("Register"); ?>
 </p>

</form>

Viewing the form in your browser will show something like this:

[image: ../_images/tutorial-3.png]

Phalcon\Tag also provides useful methods to build form elements.

The Phalcon\Tag::form() method receives only one parameter for instance, a relative URI to a controller/action in
the application.

By clicking the “Send” button, you will notice an exception thrown from the framework, indicating that we are missing the “register” action in the controller “signup”. Our public/index.php file throws this exception:

Exception: Action “register” was not found on handler “signup”

Implementing that method will remove the exception:

<?php

use Phalcon\Mvc\Controller;

class SignupController extends Controller
{
 public function indexAction()
 {

 }

 public function registerAction()
 {

 }
}

If you click the “Send” button again, you will see a blank page. The name and email input provided by the user should be stored in a database. According to MVC guidelines, database interactions must be done through models so as to ensure clean object-oriented code.

Creating a Model

Phalcon brings the first ORM for PHP entirely written in C-language. Instead of increasing the complexity of development, it simplifies it.

Before creating our first model, we need to create a database table outside of Phalcon to map it to. A simple table to store registered users can be defined like this:

CREATE TABLE `users` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(70) NOT NULL,
 `email` varchar(70) NOT NULL,

 PRIMARY KEY (`id`)
);

A model should be located in the app/models directory (app/models/Users.php). The model maps to the “users” table:

<?php

use Phalcon\Mvc\Model;

class Users extends Model
{
 public $id;

 public $name;

 public $email;
}

Setting a Database Connection

In order to be able to use a database connection and subsequently access data through our models, we need to specify it in our bootstrap process. A database connection is just another service that our application has that can be used for several components:

<?php

use Phalcon\Db\Adapter\Pdo\Mysql as DbAdapter;

// Setup the database service
$di->set(
 "db",
 function () {
 return new DbAdapter(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "test_db",
]
);
 }
);

With the correct database parameters, our models are ready to work and interact with the rest of the application.

Storing data using models

Receiving data from the form and storing them in the table is the next step.

<?php

use Phalcon\Mvc\Controller;

class SignupController extends Controller
{
 public function indexAction()
 {

 }

 public function registerAction()
 {
 $user = new Users();

 // Store and check for errors
 $success = $user->save(
 $this->request->getPost(),
 [
 "name",
 "email",
]
);

 if ($success) {
 echo "Thanks for registering!";
 } else {
 echo "Sorry, the following problems were generated: ";

 $messages = $user->getMessages();

 foreach ($messages as $message) {
 echo $message->getMessage(), "
";
 }
 }

 $this->view->disable();
 }
}

We then instantiate the Users class, which corresponds to a User record. The class public properties map to the fields
of the record in the users table. Setting the relevant values in the new record and calling save() will store the data in the database for that record. The save() method returns a boolean value which indicates whether the storing of the data was successful or not.

The ORM automatically escapes the input preventing SQL injections so we only need to pass the request to the save() method.

Additional validation happens automatically on fields that are defined as not null (required). If we don’t enter any of the required fields in the sign up form our screen will look like this:

[image: ../_images/tutorial-4.png]

Conclusion

This is a very simple tutorial and as you can see, it’s easy to start building an application using Phalcon.
The fact that Phalcon is an extension on your web server has not interfered with the ease of development or
features available. We invite you to continue reading the manual so that you can discover additional features offered by Phalcon!

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 2: Introducing INVO

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 2: Introducing INVO

In this second tutorial, we’ll explain a more complete application in order to deepen the development with Phalcon.
INVO is one of the applications we have created as samples. INVO is a small website that allows their users to
generate invoices, and do other tasks such as manage their customers and products. You can clone its code from Github [https://github.com/phalcon/invo].

Also, INVO was made with Bootstrap [http://getbootstrap.com/] as client-side framework. Although the application does not generate
invoices, it still serves as an example to understand how the framework works.

Project Structure

Once you clone the project in your document root you’ll see the following structure:

invo/
 app/
 config/
 controllers/
 forms/
 library/
 logs/
 models/
 plugins/
 views/
 cache/
 volt/
 docs/
 public/
 css/
 fonts/
 js/
 schemas/

As you know, Phalcon does not impose a particular file structure for application development. This project
provides a simple MVC structure and a public document root.

Once you open the application in your browser http://localhost/invo you’ll see something like this:

[image: ../_images/invo-1.png]

The application is divided into two parts, a frontend, that is a public part where visitors can receive information
about INVO and request contact information. The second part is the backend, an administrative area where a
registered user can manage his/her products and customers.

Routing

INVO uses the standard route that is built-in with the Router component. These routes match the following
pattern: /:controller/:action/:params. This means that the first part of a URI is the controller, the second the
action and the rest are the parameters.

The following route /session/register executes the controller SessionController and its action registerAction.

Configuration

INVO has a configuration file that sets general parameters in the application. This file is located at
app/config/config.ini and it’s loaded in the very first lines of the application bootstrap (public/index.php):

<?php

use Phalcon\Config\Adapter\Ini as ConfigIni;

// ...

// Read the configuration
$config = new ConfigIni(
 APP_PATH . "app/config/config.ini"
);

Phalcon\Config allows us to manipulate the file in an object-oriented way.
In this example, we’re using a ini file as configuration, however, there are more adapters supported
for configuration files. The configuration file contains the following settings:

[database]
host = localhost
username = root
password = secret
name = invo

[application]
controllersDir = app/controllers/
modelsDir = app/models/
viewsDir = app/views/
pluginsDir = app/plugins/
formsDir = app/forms/
libraryDir = app/library/
baseUri = /invo/

Phalcon hasn’t any pre-defined convention settings. Sections help us to organize the options as appropriate.
In this file there are two sections to be used later “application” and “database”.

Autoloaders

The second part that appears in the bootstrap file (public/index.php) is the autoloader:

<?php

/**
 * Auto-loader configuration
 */
require APP_PATH . "app/config/loader.php";

The autoloader registers a set of directories in which the application will look for
the classes that it eventually will need.

<?php

$loader = new Phalcon\Loader();

// We're a registering a set of directories taken from the configuration file
$loader->registerDirs(
 [
 APP_PATH . $config->application->controllersDir,
 APP_PATH . $config->application->pluginsDir,
 APP_PATH . $config->application->libraryDir,
 APP_PATH . $config->application->modelsDir,
 APP_PATH . $config->application->formsDir,
]
);

$loader->register();

Note that the above code has registered the directories that were defined in the configuration file. The only
directory that is not registered is the viewsDir, because it contains HTML + PHP files but no classes.
Also, note that we have using a constant called APP_PATH, this constant is defined in the bootstrap
(public/index.php) to allow us have a reference to the root of our project:

<?php

// ...

define(
 "APP_PATH",
 realpath("..") . "/"
);

Registering services

Another file that is required in the bootstrap is (app/config/services.php). This file allow
us to organize the services that INVO does use.

<?php

/**
 * Load application services
 */
require APP_PATH . "app/config/services.php";

Service registration is achieved as in the previous tutorial, making use of a closure to lazily loads
the required components:

<?php

use Phalcon\Mvc\Url as UrlProvider;

// ...

/**
 * The URL component is used to generate all kind of URLs in the application
 */
$di->set(
 "url",
 function () use ($config) {
 $url = new UrlProvider();

 $url->setBaseUri(
 $config->application->baseUri
);

 return $url;
 }
);

We will discuss this file in depth later.

Handling the Request

If we skip to the end of the file (public/index.php), the request is finally handled by Phalcon\Mvc\Application
which initializes and executes all that is necessary to make the application run:

<?php

use Phalcon\Mvc\Application;

// ...

$application = new Application($di);

$response = $application->handle();

$response->send();

Dependency Injection

Look at the first line of the code block above, the Application class constructor is receiving the variable
$di as an argument. What is the purpose of that variable? Phalcon is a highly decoupled framework,
so we need a component that acts as glue to make everything work together. That component is Phalcon\Di.
It is a service container that also performs dependency injection and service location,
instantiating all components as they are needed by the application.

There are many ways of registering services in the container. In INVO, most services have been registered using
anonymous functions/closures. Thanks to this, the objects are instantiated in a lazy way, reducing the resources needed
by the application.

For instance, in the following excerpt the session service is registered. The anonymous function will only be
called when the application requires access to the session data:

<?php

use Phalcon\Session\Adapter\Files as Session;

// ...

// Start the session the first time a component requests the session service
$di->set(
 "session",
 function () {
 $session = new Session();

 $session->start();

 return $session;
 }
);

Here, we have the freedom to change the adapter, perform additional initialization and much more. Note that the service
was registered using the name “session”. This is a convention that will allow the framework to identify the active
service in the services container.

A request can use many services and registering each service individually can be a cumbersome task. For that reason,
the framework provides a variant of Phalcon\Di called Phalcon\Di\FactoryDefault whose task is to register
all services providing a full-stack framework.

<?php

use Phalcon\Di\FactoryDefault;

// ...

// The FactoryDefault Dependency Injector automatically registers the
// right services providing a full-stack framework
$di = new FactoryDefault();

It registers the majority of services with components provided by the framework as standard. If we need to override
the definition of some service we could just set it again as we did above with “session” or “url”.
This is the reason for the existence of the variable $di.

In next chapter, we will see how to authentication and authorization is implemented in INVO.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 3: Securing INVO

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 3: Securing INVO

In this chapter, we continue explaining how INVO is structured, we’ll talk
about the implementation of authentication, authorization using events and plugins and
an access control list (ACL) managed by Phalcon.

Log into the Application

A “log in” facility will allow us to work on backend controllers. The separation between backend controllers and
frontend ones is only logical. All controllers are located in the same directory (app/controllers/).

To enter the system, users must have a valid username and password. Users are stored in the table “users”
in the database “invo”.

Before we can start a session, we need to configure the connection to the database in the application. A service
called “db” is set up in the service container with the connection information. As with the autoloader, we are
again taking parameters from the configuration file in order to configure a service:

<?php

use Phalcon\Db\Adapter\Pdo\Mysql as DbAdapter;

// ...

// Database connection is created based on parameters defined in the configuration file
$di->set(
 "db",
 function () use ($config) {
 return new DbAdapter(
 [
 "host" => $config->database->host,
 "username" => $config->database->username,
 "password" => $config->database->password,
 "dbname" => $config->database->name,
]
);
 }
);

Here, we return an instance of the MySQL connection adapter. If needed, you could do extra actions such as adding a
logger, a profiler or change the adapter, setting it up as you want.

The following simple form (app/views/session/index.volt) requests the login information. We’ve removed
some HTML code to make the example more concise:

{{ form("session/start") }}
 <fieldset>
 <div>
 <label for="email">
 Username/Email
 </label>

 <div>
 {{ text_field("email") }}
 </div>
 </div>

 <div>
 <label for="password">
 Password
 </label>

 <div>
 {{ password_field("password") }}
 </div>
 </div>

 <div>
 {{ submit_button("Login") }}
 </div>
 </fieldset>
{{ endForm() }}

Instead of using raw PHP as the previous tutorial, we started to use Volt. This is a built-in
template engine inspired by Jinja [http://jinja.pocoo.org/] providing a simpler and friendly syntax to create templates.
It will not take too long before you become familiar with Volt.

The SessionController::startAction function (app/controllers/SessionController.php) has the task of validating the
data entered in the form including checking for a valid user in the database:

<?php

class SessionController extends ControllerBase
{
 // ...

 private function _registerSession($user)
 {
 $this->session->set(
 "auth",
 [
 "id" => $user->id,
 "name" => $user->name,
]
);
 }

 /**
 * This action authenticate and logs a user into the application
 */
 public function startAction()
 {
 if ($this->request->isPost()) {
 // Get the data from the user
 $email = $this->request->getPost("email");
 $password = $this->request->getPost("password");

 // Find the user in the database
 $user = Users::findFirst(
 [
 "(email = :email: OR username = :email:) AND password = :password: AND active = 'Y'",
 "bind" => [
 "email" => $email,
 "password" => sha1($password),
]
]
);

 if ($user !== false) {
 $this->_registerSession($user);

 $this->flash->success(
 "Welcome " . $user->name
);

 // Forward to the 'invoices' controller if the user is valid
 return $this->dispatcher->forward(
 [
 "controller" => "invoices",
 "action" => "index",
]
);
 }

 $this->flash->error(
 "Wrong email/password"
);
 }

 // Forward to the login form again
 return $this->dispatcher->forward(
 [
 "controller" => "session",
 "action" => "index",
]
);
 }
}

For the sake of simplicity, we have used “sha1 [http://php.net/manual/en/function.sha1.php]” to store the password hashes in the database, however, this algorithm is
not recommended in real applications, use “bcrypt” instead.

Note that multiple public attributes are accessed in the controller like: $this->flash, $this->request or $this->session.
These are services defined in the services container from earlier (app/config/services.php).
When they’re accessed the first time, they are injected as part of the controller.

These services are “shared”, which means that we are always accessing the same instance regardless of the place
where we invoke them.

For instance, here we invoke the “session” service and then we store the user identity in the variable “auth”:

<?php

$this->session->set(
 "auth",
 [
 "id" => $user->id,
 "name" => $user->name,
]
);

Another important aspect of this section is how the user is validated as a valid one,
first we validate whether the request has been made using method POST:

<?php

if ($this->request->isPost()) {

Then, we receive the parameters from the form:

<?php

$email = $this->request->getPost("email");
$password = $this->request->getPost("password");

Now, we have to check if there is one user with the same username or email and password:

<?php

$user = Users::findFirst(
 [
 "(email = :email: OR username = :email:) AND password = :password: AND active = 'Y'",
 "bind" => [
 "email" => $email,
 "password" => sha1($password),
]
]
);

Note, the use of ‘bound parameters’, placeholders :email: and :password: are placed where values should be,
then the values are ‘bound’ using the parameter ‘bind’. This safely replaces the values for those
columns without having the risk of a SQL injection.

If the user is valid we register it in session and forwards him/her to the dashboard:

<?php

if ($user !== false) {
 $this->_registerSession($user);

 $this->flash->success(
 "Welcome " . $user->name
);

 return $this->dispatcher->forward(
 [
 "controller" => "invoices",
 "action" => "index",
]
);
}

If the user does not exist we forward the user back again to action where the form is displayed:

<?php

return $this->dispatcher->forward(
 [
 "controller" => "session",
 "action" => "index",
]
);

Securing the Backend

The backend is a private area where only registered users have access. Therefore, it is necessary
to check that only registered users have access to these controllers. If you aren’t logged
into the application and you try to access, for example, the products controller (which is private)
you will see a screen like this:

[image: ../_images/invo-2.png]

Every time someone attempts to access any controller/action, the application verifies that the
current role (in session) has access to it, otherwise it displays a message like the above and
forwards the flow to the home page.

Now let’s find out how the application accomplishes this. The first thing to know is that
there is a component called Dispatcher. It is informed about the route
found by the Routing component. Then, it is responsible for loading the
appropriate controller and execute the corresponding action method.

Normally, the framework creates the Dispatcher automatically. In our case, we want to perform a verification
before executing the required action, checking if the user has access to it or not. To achieve this, we have
replaced the component by creating a function in the bootstrap:

<?php

use Phalcon\Mvc\Dispatcher;

// ...

/**
 * MVC dispatcher
 */
$di->set(
 "dispatcher",
 function () {
 // ...

 $dispatcher = new Dispatcher();

 return $dispatcher;
 }
);

We now have total control over the Dispatcher used in the application. Many components in the framework trigger
events that allow us to modify their internal flow of operation. As the Dependency Injector component acts as glue
for components, a new component called EventsManager allows us to intercept the events produced
by a component, routing the events to listeners.

Events Management

An EventsManager allows us to attach listeners to a particular type of event. The type that
interests us now is “dispatch”. The following code filters all events produced by the Dispatcher:

<?php

use Phalcon\Mvc\Dispatcher;
use Phalcon\Events\Manager as EventsManager;

$di->set(
 "dispatcher",
 function () {
 // Create an events manager
 $eventsManager = new EventsManager();

 // Listen for events produced in the dispatcher using the Security plugin
 $eventsManager->attach(
 "dispatch:beforeExecuteRoute",
 new SecurityPlugin()
);

 // Handle exceptions and not-found exceptions using NotFoundPlugin
 $eventsManager->attach(
 "dispatch:beforeException",
 new NotFoundPlugin()
);

 $dispatcher = new Dispatcher();

 // Assign the events manager to the dispatcher
 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

When an event called “beforeExecuteRoute” is triggered the following plugin will be notified:

<?php

/**
 * Check if the user is allowed to access certain action using the SecurityPlugin
 */
$eventsManager->attach(
 "dispatch:beforeExecuteRoute",
 new SecurityPlugin()
);

When a “beforeException” is triggered then other plugin is notified:

<?php

/**
 * Handle exceptions and not-found exceptions using NotFoundPlugin
 */
$eventsManager->attach(
 "dispatch:beforeException",
 new NotFoundPlugin()
);

SecurityPlugin is a class located at (app/plugins/SecurityPlugin.php). This class implements the method
“beforeExecuteRoute”. This is the same name as one of the events produced in the Dispatcher:

<?php

use Phalcon\Events\Event;
use Phalcon\Mvc\User\Plugin;
use Phalcon\Mvc\Dispatcher;

class SecurityPlugin extends Plugin
{
 // ...

 public function beforeExecuteRoute(Event $event, Dispatcher $dispatcher)
 {
 // ...
 }
}

The hook events always receive a first parameter that contains contextual information of the event produced ($event)
and a second one that is the object that produced the event itself ($dispatcher). It is not mandatory that
plugins extend the class Phalcon\Mvc\User\Plugin, but by doing this they gain easier access to the services
available in the application.

Now, we’re verifying the role in the current session, checking if the user has access using the ACL list.
If the user does not have access we redirect to the home screen as explained before:

<?php

use Phalcon\Acl;
use Phalcon\Events\Event;
use Phalcon\Mvc\User\Plugin;
use Phalcon\Mvc\Dispatcher;

class SecurityPlugin extends Plugin
{
 // ...

 public function beforeExecuteRoute(Event $event, Dispatcher $dispatcher)
 {
 // Check whether the "auth" variable exists in session to define the active role
 $auth = $this->session->get("auth");

 if (!$auth) {
 $role = "Guests";
 } else {
 $role = "Users";
 }

 // Take the active controller/action from the dispatcher
 $controller = $dispatcher->getControllerName();
 $action = $dispatcher->getActionName();

 // Obtain the ACL list
 $acl = $this->getAcl();

 // Check if the Role have access to the controller (resource)
 $allowed = $acl->isAllowed($role, $controller, $action);

 if (!$allowed) {
 // If he doesn't have access forward him to the index controller
 $this->flash->error(
 "You don't have access to this module"
);

 $dispatcher->forward(
 [
 "controller" => "index",
 "action" => "index",
]
);

 // Returning "false" we tell to the dispatcher to stop the current operation
 return false;
 }
 }
}

Providing an ACL list

In the above example we have obtained the ACL using the method $this->getAcl(). This method is also
implemented in the Plugin. Now we are going to explain step-by-step how we built the access control list (ACL):

<?php

use Phalcon\Acl;
use Phalcon\Acl\Role;
use Phalcon\Acl\Adapter\Memory as AclList;

// Create the ACL
$acl = new AclList();

// The default action is DENY access
$acl->setDefaultAction(
 Acl::DENY
);

// Register two roles, Users is registered users
// and guests are users without a defined identity
$roles = [
 "users" => new Role("Users"),
 "guests" => new Role("Guests"),
];

foreach ($roles as $role) {
 $acl->addRole($role);
}

Now, we define the resources for each area respectively. Controller names are resources and their actions are
accesses for the resources:

<?php

use Phalcon\Acl\Resource;

// ...

// Private area resources (backend)
$privateResources = [
 "companies" => ["index", "search", "new", "edit", "save", "create", "delete"],
 "products" => ["index", "search", "new", "edit", "save", "create", "delete"],
 "producttypes" => ["index", "search", "new", "edit", "save", "create", "delete"],
 "invoices" => ["index", "profile"],
];

foreach ($privateResources as $resourceName => $actions) {
 $acl->addResource(
 new Resource($resourceName),
 $actions
);
}

// Public area resources (frontend)
$publicResources = [
 "index" => ["index"],
 "about" => ["index"],
 "register" => ["index"],
 "errors" => ["show404", "show500"],
 "session" => ["index", "register", "start", "end"],
 "contact" => ["index", "send"],
];

foreach ($publicResources as $resourceName => $actions) {
 $acl->addResource(
 new Resource($resourceName),
 $actions
);
}

The ACL now have knowledge of the existing controllers and their related actions. Role “Users” has access to
all the resources of both frontend and backend. The role “Guests” only has access to the public area:

<?php

// Grant access to public areas to both users and guests
foreach ($roles as $role) {
 foreach ($publicResources as $resource => $actions) {
 $acl->allow(
 $role->getName(),
 $resource,
 "*"
);
 }
}

// Grant access to private area only to role Users
foreach ($privateResources as $resource => $actions) {
 foreach ($actions as $action) {
 $acl->allow(
 "Users",
 $resource,
 $action
);
 }
}

Hooray!, the ACL is now complete. In next chapter, we will see how a CRUD is implemented in Phalcon and how you
can customize it.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 4: Working with the CRUD

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 4: Working with the CRUD

Backends usually provide forms to allow users to manipulate data. Continuing the explanation of
INVO, we now address the creation of CRUDs, a very common task that Phalcon will facilitate you
using forms, validations, paginators and more.

Most options that manipulate data in INVO (companies, products and types of products) were developed
using a basic and common CRUD [http://en.wikipedia.org/wiki/Create,_read,_update_and_delete] (Create, Read, Update and Delete). Each CRUD contains the following files:

invo/
 app/
 controllers/
 ProductsController.php
 models/
 Products.php
 forms/
 ProductsForm.php
 views/
 products/
 edit.volt
 index.volt
 new.volt
 search.volt

Each controller has the following actions:

<?php

class ProductsController extends ControllerBase
{
 /**
 * The start action, it shows the "search" view
 */
 public function indexAction()
 {
 // ...
 }

 /**
 * Execute the "search" based on the criteria sent from the "index"
 * Returning a paginator for the results
 */
 public function searchAction()
 {
 // ...
 }

 /**
 * Shows the view to create a "new" product
 */
 public function newAction()
 {
 // ...
 }

 /**
 * Shows the view to "edit" an existing product
 */
 public function editAction()
 {
 // ...
 }

 /**
 * Creates a product based on the data entered in the "new" action
 */
 public function createAction()
 {
 // ...
 }

 /**
 * Updates a product based on the data entered in the "edit" action
 */
 public function saveAction()
 {
 // ...
 }

 /**
 * Deletes an existing product
 */
 public function deleteAction($id)
 {
 // ...
 }
}

The Search Form

Every CRUD starts with a search form. This form shows each field that the table has (products), allowing the user
to create a search criteria for any field. The “products” table has a relationship with the table “products_types”.
In this case, we previously queried the records in this table in order to facilitate the search by that field:

<?php

/**
 * The start action, it shows the "search" view
 */
public function indexAction()
{
 $this->persistent->searchParams = null;

 $this->view->form = new ProductsForm();
}

An instance of the ProductsForm form (app/forms/ProductsForm.php) is passed to the view.
This form defines the fields that are visible to the user:

<?php

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Hidden;
use Phalcon\Forms\Element\Select;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\PresenceOf;
use Phalcon\Validation\Validator\Numericality;

class ProductsForm extends Form
{
 /**
 * Initialize the products form
 */
 public function initialize($entity = null, $options = [])
 {
 if (!isset($options["edit"])) {
 $element = new Text("id");

 $element->setLabel("Id");

 $this->add(
 $element
);
 } else {
 $this->add(
 new Hidden("id")
);
 }

 $name = new Text("name");

 $name->setLabel("Name");

 $name->setFilters(
 [
 "striptags",
 "string",
]
);

 $name->addValidators(
 [
 new PresenceOf(
 [
 "message" => "Name is required",
]
)
]
);

 $this->add($name);

 $type = new Select(
 "profilesId",
 ProductTypes::find(),
 [
 "using" => [
 "id",
 "name",
],
 "useEmpty" => true,
 "emptyText" => "...",
 "emptyValue" => "",
]
);

 $this->add($type);

 $price = new Text("price");

 $price->setLabel("Price");

 $price->setFilters(
 [
 "float",
]
);

 $price->addValidators(
 [
 new PresenceOf(
 [
 "message" => "Price is required",
]
),
 new Numericality(
 [
 "message" => "Price is required",
]
),
]
);

 $this->add($price);
 }
}

The form is declared using an object-oriented scheme based on the elements provided by the forms component.
Every element follows almost the same structure:

<?php

// Create the element
$name = new Text("name");

// Set its label
$name->setLabel("Name");

// Before validating the element apply these filters
$name->setFilters(
 [
 "striptags",
 "string",
]
);

// Apply this validators
$name->addValidators(
 [
 new PresenceOf(
 [
 "message" => "Name is required",
]
)
]
);

// Add the element to the form
$this->add($name);

Other elements are also used in this form:

<?php

// Add a hidden input to the form
$this->add(
 new Hidden("id")
);

// ...

$productTypes = ProductTypes::find();

// Add a HTML Select (list) to the form
// and fill it with data from "product_types"
$type = new Select(
 "profilesId",
 $productTypes,
 [
 "using" => [
 "id",
 "name",
],
 "useEmpty" => true,
 "emptyText" => "...",
 "emptyValue" => "",
]
);

Note that ProductTypes::find() contains the data necessary to fill the SELECT tag using Phalcon\Tag::select().
Once the form is passed to the view, it can be rendered and presented to the user:

{{ form("products/search") }}

 <h2>
 Search products
 </h2>

 <fieldset>

 {% for element in form %}
 <div class="control-group">
 {{ element.label(["class": "control-label"]) }}

 <div class="controls">
 {{ element }}
 </div>
 </div>
 {% endfor %}

 <div class="control-group">
 {{ submit_button("Search", "class": "btn btn-primary") }}
 </div>

 </fieldset>

{{ endForm() }}

This produces the following HTML:

<form action="/invo/products/search" method="post">

 <h2>
 Search products
 </h2>

 <fieldset>

 <div class="control-group">
 <label for="id" class="control-label">Id</label>

 <div class="controls">
 <input type="text" id="id" name="id" />
 </div>
 </div>

 <div class="control-group">
 <label for="name" class="control-label">Name</label>

 <div class="controls">
 <input type="text" id="name" name="name" />
 </div>
 </div>

 <div class="control-group">
 <label for="profilesId" class="control-label">profilesId</label>

 <div class="controls">
 <select id="profilesId" name="profilesId">
 <option value="">...</option>
 <option value="1">Vegetables</option>
 <option value="2">Fruits</option>
 </select>
 </div>
 </div>

 <div class="control-group">
 <label for="price" class="control-label">Price</label>

 <div class="controls">
 <input type="text" id="price" name="price" />
 </div>
 </div>

 <div class="control-group">
 <input type="submit" value="Search" class="btn btn-primary" />
 </div>

 </fieldset>

</form>

When the form is submitted, the “search” action is executed in the controller performing the search
based on the data entered by the user.

Performing a Search

The “search” action has two behaviors. When accessed via POST, it performs a search based on the data sent from the
form but when accessed via GET it moves the current page in the paginator. To differentiate HTTP methods,
we check it using the Request component:

<?php

/**
 * Execute the "search" based on the criteria sent from the "index"
 * Returning a paginator for the results
 */
public function searchAction()
{
 if ($this->request->isPost()) {
 // Create the query conditions
 } else {
 // Paginate using the existing conditions
 }

 // ...
}

With the help of Phalcon\Mvc\Model\Criteria, we can create the search
conditions intelligently based on the data types and values sent from the form:

<?php

$query = Criteria::fromInput(
 $this->di,
 "Products",
 $this->request->getPost()
);

This method verifies which values are different from “” (empty string) and null and takes them into account to create
the search criteria:

	If the field data type is text or similar (char, varchar, text, etc.) It uses an SQL “like” operator to filter the results.

	If the data type is not text or similar, it’ll use the operator “=”.

Additionally, “Criteria” ignores all the $_POST variables that do not match any field in the table.
Values are automatically escaped using “bound parameters”.

Now, we store the produced parameters in the controller’s session bag:

<?php

$this->persistent->searchParams = $query->getParams();

A session bag, is a special attribute in a controller that persists between requests using the session service.
When accessed, this attribute injects a Phalcon\Session\Bag instance
that is independent in each controller.

Then, based on the built params we perform the query:

<?php

$products = Products::find($parameters);

if (count($products) === 0) {
 $this->flash->notice(
 "The search did not found any products"
);

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);
}

If the search doesn’t return any product, we forward the user to the index action again. Let’s pretend the
search returned results, then we create a paginator to navigate easily through them:

<?php

use Phalcon\Paginator\Adapter\Model as Paginator;

// ...

$paginator = new Paginator(
 [
 "data" => $products, // Data to paginate
 "limit" => 5, // Rows per page
 "page" => $numberPage, // Active page
]
);

// Get active page in the paginator
$page = $paginator->getPaginate();

Finally we pass the returned page to view:

<?php

$this->view->page = $page;

In the view (app/views/products/search.volt), we traverse the results corresponding to the current page,
showing every row in the current page to the user:

{% for product in page.items %}
 {% if loop.first %}
 <table>
 <thead>
 <tr>
 <th>Id</th>
 <th>Product Type</th>
 <th>Name</th>
 <th>Price</th>
 <th>Active</th>
 </tr>
 </thead>
 <tbody>
 {% endif %}

 <tr>
 <td>
 {{ product.id }}
 </td>

 <td>
 {{ product.getProductTypes().name }}
 </td>

 <td>
 {{ product.name }}
 </td>

 <td>
 {{ "%.2f"|format(product.price) }}
 </td>

 <td>
 {{ product.getActiveDetail() }}
 </td>

 <td width="7%">
 {{ link_to("products/edit/" ~ product.id, "Edit") }}
 </td>

 <td width="7%">
 {{ link_to("products/delete/" ~ product.id, "Delete") }}
 </td>
 </tr>

 {% if loop.last %}
 </tbody>
 <tbody>
 <tr>
 <td colspan="7">
 <div>
 {{ link_to("products/search", "First") }}
 {{ link_to("products/search?page=" ~ page.before, "Previous") }}
 {{ link_to("products/search?page=" ~ page.next, "Next") }}
 {{ link_to("products/search?page=" ~ page.last, "Last") }}
 {{ page.current }} of {{ page.total_pages }}
 </div>
 </td>
 </tr>
 </tbody>
 </table>
 {% endif %}
{% else %}
 No products are recorded
{% endfor %}

There are many things in the above example that worth detailing. First of all, active items
in the current page are traversed using a Volt’s ‘for’. Volt provides a simpler syntax for a PHP ‘foreach’.

{% for product in page.items %}

Which in PHP is the same as:

<?php foreach ($page->items as $product) { ?>

The whole ‘for’ block provides the following:

{% for product in page.items %}
 {% if loop.first %}
 Executed before the first product in the loop
 {% endif %}

 Executed for every product of page.items

 {% if loop.last %}
 Executed after the last product is loop
 {% endif %}
{% else %}
 Executed if page.items does not have any products
{% endfor %}

Now you can go back to the view and find out what every block is doing. Every field
in “product” is printed accordingly:

<tr>
 <td>
 {{ product.id }}
 </td>

 <td>
 {{ product.productTypes.name }}
 </td>

 <td>
 {{ product.name }}
 </td>

 <td>
 {{ "%.2f"|format(product.price) }}
 </td>

 <td>
 {{ product.getActiveDetail() }}
 </td>

 <td width="7%">
 {{ link_to("products/edit/" ~ product.id, "Edit") }}
 </td>

 <td width="7%">
 {{ link_to("products/delete/" ~ product.id, "Delete") }}
 </td>
</tr>

As we seen before using product.id is the same as in PHP as doing: $product->id,
we made the same with product.name and so on. Other fields are rendered differently,
for instance, let’s focus in product.productTypes.name. To understand this part,
we have to check the Products model (app/models/Products.php):

<?php

use Phalcon\Mvc\Model;

/**
 * Products
 */
class Products extends Model
{
 // ...

 /**
 * Products initializer
 */
 public function initialize()
 {
 $this->belongsTo(
 "product_types_id",
 "ProductTypes",
 "id",
 [
 "reusable" => true,
]
);
 }

 // ...
}

A model can have a method called initialize(), this method is called once per request and it serves
the ORM to initialize a model. In this case, “Products” is initialized by defining that this model
has a one-to-many relationship to another model called “ProductTypes”.

<?php

$this->belongsTo(
 "product_types_id",
 "ProductTypes",
 "id",
 [
 "reusable" => true,
]
);

Which means, the local attribute “product_types_id” in “Products” has an one-to-many relation to
the “ProductTypes” model in its attribute “id”. By defining this relationship we can access the name of
the product type by using:

<td>{{ product.productTypes.name }}</td>

The field “price” is printed by its formatted using a Volt filter:

<td>{{ "%.2f"|format(product.price) }}</td>

In plain PHP, this would be:

<?php echo sprintf("%.2f", $product->price) ?>

Printing whether the product is active or not uses a helper implemented in the model:

<td>{{ product.getActiveDetail() }}</td>

This method is defined in the model.

Creating and Updating Records

Now let’s see how the CRUD creates and updates records. From the “new” and “edit” views, the data entered by the user
is sent to the “create” and “save” actions that perform actions of “creating” and “updating” products, respectively.

In the creation case, we recover the data submitted and assign them to a new “Products” instance:

<?php

/**
 * Creates a product based on the data entered in the "new" action
 */
public function createAction()
{
 if (!$this->request->isPost()) {
 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);
 }

 $form = new ProductsForm();

 $product = new Products();

 $product->id = $this->request->getPost("id", "int");
 $product->product_types_id = $this->request->getPost("product_types_id", "int");
 $product->name = $this->request->getPost("name", "striptags");
 $product->price = $this->request->getPost("price", "double");
 $product->active = $this->request->getPost("active");

 // ...
}

Remember the filters we defined in the Products form? Data is filtered before being assigned to the object $product.
This filtering is optional; the ORM also escapes the input data and performs additional casting according to the column types:

<?php

// ...

$name = new Text("name");

$name->setLabel("Name");

// Filters for name
$name->setFilters(
 [
 "striptags",
 "string",
]
);

// Validators for name
$name->addValidators(
 [
 new PresenceOf(
 [
 "message" => "Name is required",
]
)
]
);

$this->add($name);

When saving, we’ll know whether the data conforms to the business rules and validations implemented
in the form ProductsForm form (app/forms/ProductsForm.php):

<?php

// ...

$form = new ProductsForm();

$product = new Products();

// Validate the input
$data = $this->request->getPost();

if (!$form->isValid($data, $product)) {
 $messages = $form->getMessages();

 foreach ($messages as $message) {
 $this->flash->error($message);
 }

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "new",
]
);
}

Finally, if the form does not return any validation message we can save the product instance:

<?php

// ...

if ($product->save() === false) {
 $messages = $product->getMessages();

 foreach ($messages as $message) {
 $this->flash->error($message);
 }

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "new",
]
);
}

$form->clear();

$this->flash->success(
 "Product was created successfully"
);

return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);

Now, in the case of updating a product, we must first present the user with the data that is currently in the edited record:

<?php

/**
 * Edits a product based on its id
 */
public function editAction($id)
{
 if (!$this->request->isPost()) {
 $product = Products::findFirstById($id);

 if (!$product) {
 $this->flash->error(
 "Product was not found"
);

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);
 }

 $this->view->form = new ProductsForm(
 $product,
 [
 "edit" => true,
]
);
 }
}

The data found is bound to the form by passing the model as first parameter. Thanks to this,
the user can change any value and then sent it back to the database through to the “save” action:

<?php

/**
 * Updates a product based on the data entered in the "edit" action
 */
public function saveAction()
{
 if (!$this->request->isPost()) {
 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);
 }

 $id = $this->request->getPost("id", "int");

 $product = Products::findFirstById($id);

 if (!$product) {
 $this->flash->error(
 "Product does not exist"
);

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);
 }

 $form = new ProductsForm();

 $data = $this->request->getPost();

 if (!$form->isValid($data, $product)) {
 $messages = $form->getMessages();

 foreach ($messages as $message) {
 $this->flash->error($message);
 }

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "new",
]
);
 }

 if ($product->save() === false) {
 $messages = $product->getMessages();

 foreach ($messages as $message) {
 $this->flash->error($message);
 }

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "new",
]
);
 }

 $form->clear();

 $this->flash->success(
 "Product was updated successfully"
);

 return $this->dispatcher->forward(
 [
 "controller" => "products",
 "action" => "index",
]
);
}

We have seen how Phalcon lets you create forms and bind data from a database in a structured way.
In next chapter, we will see how to add custom HTML elements like a menu.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 5: Customizing INVO

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 5: Customizing INVO

To finish the detailed explanation of INVO we are going to explain how to customize INVO adding UI elements
and changing the title according to the controller executed.

User Components

All the UI elements and visual style of the application has been achieved mostly through Bootstrap [http://getbootstrap.com/].
Some elements, such as the navigation bar changes according to the state of the application. For example, in the
upper right corner, the link “Log in / Sign Up” changes to “Log out” if a user is logged into the application.

This part of the application is implemented in the component “Elements” (app/library/Elements.php).

<?php

use Phalcon\Mvc\User\Component;

class Elements extends Component
{
 public function getMenu()
 {
 // ...
 }

 public function getTabs()
 {
 // ...
 }
}

This class extends the Phalcon\Mvc\User\Component. It is not imposed to extend a component with this class, but
it helps to get access more quickly to the application services. Now, we are going to register
our first user component in the services container:

<?php

// Register a user component
$di->set(
 "elements",
 function () {
 return new Elements();
 }
);

As controllers, plugins or components within a view, this component also has access to the services registered
in the container and by just accessing an attribute with the same name as a previously registered service:

<div class="navbar navbar-fixed-top">
 <div class="navbar-inner">
 <div class="container">

 INVO

 {{ elements.getMenu() }}
 </div>
 </div>
</div>

<div class="container">
 {{ content() }}

 <hr>

 <footer>
 <p>© Company 2015</p>
 </footer>
</div>

The important part is:

{{ elements.getMenu() }}

Changing the Title Dynamically

When you browse between one option and another will see that the title changes dynamically indicating where
we are currently working. This is achieved in each controller initializer:

<?php

class ProductsController extends ControllerBase
{
 public function initialize()
 {
 // Set the document title
 $this->tag->setTitle(
 "Manage your product types"
);

 parent::initialize();
 }

 // ...
}

Note, that the method parent::initialize() is also called, it adds more data to the title:

<?php

use Phalcon\Mvc\Controller;

class ControllerBase extends Controller
{
 protected function initialize()
 {
 // Prepend the application name to the title
 $this->tag->prependTitle(
 "INVO | "
);
 }

 // ...
}

Finally, the title is printed in the main view (app/views/index.volt):

<!DOCTYPE html>
<html>
 <head>
 <?php echo $this->tag->getTitle(); ?>
 </head>

 <!-- ... -->
</html>

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 6: Vökuró

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 6: Vökuró

Vökuró is another sample application you can use to learn more about Phalcon.
Vökuró is a small website that shows how to implement a security features and
management of users and permissions. You can clone its code from Github [https://github.com/phalcon/vokuro].

Project Structure

Once you clone the project in your document root you’ll see the following structure:

vokuro/
 app/
 config/
 controllers/
 forms/
 library/
 models/
 views/
 cache/
 public/
 css/
 img/
 schemas/

This project follows a quite similar structure to INVO. Once you open the application in your
browser http://localhost/vokuro you’ll see something like this:

[image: ../_images/vokuro-1.png]

The application is divided into two parts, a frontend, where visitors can sign up the service
and a backend where administrative users can manage registered users. Both frontend and backend
are combined in a single module.

Load Classes and Dependencies

This project uses Phalcon\Loader to load controllers, models, forms, etc. within the project and composer [https://getcomposer.org/]
to load the project’s dependencies. So, the first thing you have to do before execute Vökuró is
install its dependencies via composer [https://getcomposer.org/]. Assuming you have it correctly installed, type the
following command in the console:

cd vokuro
composer install

Vökuró sends emails to confirm the sign up of registered users using Swift,
the composer.json looks like:

{
 "require" : {
 "php" : ">=5.5.0",
 "ext-phalcon" : ">=3.0.0",
 "swiftmailer/swiftmailer" : "^5.4",
 "amazonwebservices/aws-sdk-for-php" : "~1.0"
 }
}

Now, there is a file called app/config/loader.php where all the auto-loading stuff is set up. At the end of
this file you can see that the composer autoloader is included enabling the application to autoload
any of the classes in the downloaded dependencies:

<?php

// ...

// Use composer autoloader to load vendor classes
require_once BASE_PATH . "/vendor/autoload.php";

Moreover, Vökuró, unlike the INVO, utilizes namespaces for controllers and models
which is the recommended practice to structure a project. This way the autoloader looks slightly
different than the one we saw before (app/config/loader.php):

<?php

use Phalcon\Loader;

$loader = new Loader();

$loader->registerNamespaces(
 [
 "Vokuro\\Models" => $config->application->modelsDir,
 "Vokuro\\Controllers" => $config->application->controllersDir,
 "Vokuro\\Forms" => $config->application->formsDir,
 "Vokuro" => $config->application->libraryDir,
]
);

$loader->register();

// ...

Instead of using registerDirectories(), we use registerNamespaces(). Every namespace points to a directory
defined in the configuration file (app/config/config.php). For instance the namespace Vokuro\Controllers
points to app/controllers so all the classes required by the application within this namespace
requires it in its definition:

<?php

namespace Vokuro\Controllers;

class AboutController extends ControllerBase
{
 // ...
}

Sign Up

First, let’s check how users are registered in Vökuró. When a user clicks the “Create an Account” button,
the controller SessionController is invoked and the action “signup” is executed:

<?php

namespace Vokuro\Controllers;

use Vokuro\Forms\SignUpForm;

class RegisterController extends ControllerBase
{
 public function signupAction()
 {
 $form = new SignUpForm();

 // ...

 $this->view->form = $form;
 }
}

This action simply pass a form instance of SignUpForm to the view, which itself is rendered to
allow the user enter the login details:

{{ form("class": "form-search") }}

 <h2>
 Sign Up
 </h2>

 <p>{{ form.label("name") }}</p>
 <p>
 {{ form.render("name") }}
 {{ form.messages("name") }}
 </p>

 <p>{{ form.label("email") }}</p>
 <p>
 {{ form.render("email") }}
 {{ form.messages("email") }}
 </p>

 <p>{{ form.label("password") }}</p>
 <p>
 {{ form.render("password") }}
 {{ form.messages("password") }}
 </p>

 <p>{{ form.label("confirmPassword") }}</p>
 <p>
 {{ form.render("confirmPassword") }}
 {{ form.messages("confirmPassword") }}
 </p>

 <p>
 {{ form.render("terms") }} {{ form.label("terms") }}
 {{ form.messages("terms") }}
 </p>

 <p>{{ form.render("Sign Up") }}</p>

 {{ form.render("csrf", ["value": security.getToken()]) }}
 {{ form.messages("csrf") }}

 <hr>

{{ endForm() }}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Tutorial 7: Creating a Simple REST API

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Tutorial 7: Creating a Simple REST API

In this tutorial, we will explain how to create a simple application that provides a RESTful [http://en.wikipedia.org/wiki/Representational_state_transfer] API using the
different HTTP methods:

	GET to retrieve and search data

	POST to add data

	PUT to update data

	DELETE to delete data

Defining the API

The API consists of the following methods:

	Method
	URL
	Action

	GET
	/api/robots
	Retrieves all robots

	GET
	/api/robots/search/Astro
	Searches for robots with ‘Astro’ in their name

	GET
	/api/robots/2
	Retrieves robots based on primary key

	POST
	/api/robots
	Adds a new robot

	PUT
	/api/robots/2
	Updates robots based on primary key

	DELETE
	/api/robots/2
	Deletes robots based on primary key

Creating the Application

As the application is so simple, we will not implement any full MVC environment to develop it. In this case,
we will use a micro application to meet our goal.

The following file structure is more than enough:

my-rest-api/
 models/
 Robots.php
 index.php
 .htaccess

First, we need an .htaccess file that contains all the rules to rewrite the URIs to the index.php file,
that is our application:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]
</IfModule>

Then, in the index.php file we create the following:

<?php

use Phalcon\Mvc\Micro;

$app = new Micro();

// Define the routes here

$app->handle();

Now we will create the routes as we defined above:

<?php

use Phalcon\Mvc\Micro;

$app = new Micro();

// Retrieves all robots
$app->get(
 "/api/robots",
 function () {

 }
);

// Searches for robots with $name in their name
$app->get(
 "/api/robots/search/{name}",
 function ($name) {

 }
);

// Retrieves robots based on primary key
$app->get(
 "/api/robots/{id:[0-9]+}",
 function ($id) {

 }
);

// Adds a new robot
$app->post(
 "/api/robots",
 function () {

 }
);

// Updates robots based on primary key
$app->put(
 "/api/robots/{id:[0-9]+}",
 function () {

 }
);

// Deletes robots based on primary key
$app->delete(
 "/api/robots/{id:[0-9]+}",
 function () {

 }
);

$app->handle();

Each route is defined with a method with the same name as the HTTP method, as first parameter we pass a route pattern,
followed by a handler. In this case, the handler is an anonymous function. The following route: '/api/robots/{id:[0-9]+}',
by example, explicitly sets that the “id” parameter must have a numeric format.

When a defined route matches the requested URI then the application executes the corresponding handler.

Creating a Model

Our API provides information about ‘robots’, these data are stored in a database. The following model allows us to
access that table in an object-oriented way. We have implemented some business rules using built-in validators
and simple validations. Doing this will give us the peace of mind that saved data meet the requirements of our
application:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Message;
use Phalcon\Mvc\Model\Validator\Uniqueness;
use Phalcon\Mvc\Model\Validator\InclusionIn;

class Robots extends Model
{
 public function validation()
 {
 // Type must be: droid, mechanical or virtual
 $this->validate(
 new InclusionIn(
 [
 "field" => "type",
 "domain" => [
 "droid",
 "mechanical",
 "virtual",
]
)
)
);

 // Robot name must be unique
 $this->validate(
 new Uniqueness(
 [
 "field" => "name",
 "message" => "The robot name must be unique",
]
)
);

 // Year cannot be less than zero
 if ($this->year < 0) {
 $this->appendMessage(
 new Message("The year cannot be less than zero")
);
 }

 // Check if any messages have been produced
 if ($this->validationHasFailed() === true) {
 return false;
 }
 }
}

Now, we must set up a connection to be used by this model and load it within our app:

<?php

use Phalcon\Loader;
use Phalcon\Mvc\Micro;
use Phalcon\Di\FactoryDefault;
use Phalcon\Db\Adapter\Pdo\Mysql as PdoMysql;

// Use Loader() to autoload our model
$loader = new Loader();

$loader->registerNamespaces(
 [
 "Store\\Toys" => __DIR__ . "/models/",
]
);

$loader->register();

$di = new FactoryDefault();

// Set up the database service
$di->set(
 "db",
 function () {
 return new PdoMysql(
 [
 "host" => "localhost",
 "username" => "asimov",
 "password" => "zeroth",
 "dbname" => "robotics",
]
);
 }
);

// Create and bind the DI to the application
$app = new Micro($di);

Retrieving Data

The first “handler” that we will implement is which by method GET returns all available robots. Let’s use PHQL to
perform this simple query returning the results as JSON:

<?php

// Retrieves all robots
$app->get(
 "/api/robots",
 function () use ($app) {
 $phql = "SELECT * FROM Store\\Toys\\Robots ORDER BY name";

 $robots = $app->modelsManager->executeQuery($phql);

 $data = [];

 foreach ($robots as $robot) {
 $data[] = [
 "id" => $robot->id,
 "name" => $robot->name,
];
 }

 echo json_encode($data);
 }
);

PHQL, allow us to write queries using a high-level, object-oriented SQL dialect that internally
translates to the right SQL statements depending on the database system we are using. The clause “use” in the
anonymous function allows us to pass some variables from the global to local scope easily.

The searching by name handler would look like:

<?php

// Searches for robots with $name in their name
$app->get(
 "/api/robots/search/{name}",
 function ($name) use ($app) {
 $phql = "SELECT * FROM Store\\Toys\\Robots WHERE name LIKE :name: ORDER BY name";

 $robots = $app->modelsManager->executeQuery(
 $phql,
 [
 "name" => "%" . $name . "%"
]
);

 $data = [];

 foreach ($robots as $robot) {
 $data[] = [
 "id" => $robot->id,
 "name" => $robot->name,
];
 }

 echo json_encode($data);
 }
);

Searching by the field “id” it’s quite similar, in this case, we’re also notifying if the robot was found or not:

<?php

use Phalcon\Http\Response;

// Retrieves robots based on primary key
$app->get(
 "/api/robots/{id:[0-9]+}",
 function ($id) use ($app) {
 $phql = "SELECT * FROM Store\\Toys\\Robots WHERE id = :id:";

 $robot = $app->modelsManager->executeQuery(
 $phql,
 [
 "id" => $id,
]
)->getFirst();

 // Create a response
 $response = new Response();

 if ($robot === false) {
 $response->setJsonContent(
 [
 "status" => "NOT-FOUND"
]
);
 } else {
 $response->setJsonContent(
 [
 "status" => "FOUND",
 "data" => [
 "id" => $robot->id,
 "name" => $robot->name
]
]
);
 }

 return $response;
 }
);

Inserting Data

Taking the data as a JSON string inserted in the body of the request, we also use PHQL for insertion:

<?php

use Phalcon\Http\Response;

// Adds a new robot
$app->post(
 "/api/robots",
 function () use ($app) {
 $robot = $app->request->getJsonRawBody();

 $phql = "INSERT INTO Store\\Toys\\Robots (name, type, year) VALUES (:name:, :type:, :year:)";

 $status = $app->modelsManager->executeQuery(
 $phql,
 [
 "name" => $robot->name,
 "type" => $robot->type,
 "year" => $robot->year,
]
);

 // Create a response
 $response = new Response();

 // Check if the insertion was successful
 if ($status->success() === true) {
 // Change the HTTP status
 $response->setStatusCode(201, "Created");

 $robot->id = $status->getModel()->id;

 $response->setJsonContent(
 [
 "status" => "OK",
 "data" => $robot,
]
);
 } else {
 // Change the HTTP status
 $response->setStatusCode(409, "Conflict");

 // Send errors to the client
 $errors = [];

 foreach ($status->getMessages() as $message) {
 $errors[] = $message->getMessage();
 }

 $response->setJsonContent(
 [
 "status" => "ERROR",
 "messages" => $errors,
]
);
 }

 return $response;
 }
);

Updating Data

The data update is similar to insertion. The “id” passed as parameter indicates what robot must be updated:

<?php

use Phalcon\Http\Response;

// Updates robots based on primary key
$app->put(
 "/api/robots/{id:[0-9]+}",
 function ($id) use ($app) {
 $robot = $app->request->getJsonRawBody();

 $phql = "UPDATE Store\\Toys\\Robots SET name = :name:, type = :type:, year = :year: WHERE id = :id:";

 $status = $app->modelsManager->executeQuery(
 $phql,
 [
 "id" => $id,
 "name" => $robot->name,
 "type" => $robot->type,
 "year" => $robot->year,
]
);

 // Create a response
 $response = new Response();

 // Check if the insertion was successful
 if ($status->success() === true) {
 $response->setJsonContent(
 [
 "status" => "OK"
]
);
 } else {
 // Change the HTTP status
 $response->setStatusCode(409, "Conflict");

 $errors = [];

 foreach ($status->getMessages() as $message) {
 $errors[] = $message->getMessage();
 }

 $response->setJsonContent(
 [
 "status" => "ERROR",
 "messages" => $errors,
]
);
 }

 return $response;
 }
);

Deleting Data

The data delete is similar to update. The “id” passed as parameter indicates what robot must be deleted:

<?php

use Phalcon\Http\Response;

// Deletes robots based on primary key
$app->delete(
 "/api/robots/{id:[0-9]+}",
 function ($id) use ($app) {
 $phql = "DELETE FROM Store\\Toys\\Robots WHERE id = :id:";

 $status = $app->modelsManager->executeQuery(
 $phql,
 [
 "id" => $id,
]
);

 // Create a response
 $response = new Response();

 if ($status->success() === true) {
 $response->setJsonContent(
 [
 "status" => "OK"
]
);
 } else {
 // Change the HTTP status
 $response->setStatusCode(409, "Conflict");

 $errors = [];

 foreach ($status->getMessages() as $message) {
 $errors[] = $message->getMessage();
 }

 $response->setJsonContent(
 [
 "status" => "ERROR",
 "messages" => $errors,
]
);
 }

 return $response;
 }
);

Testing our Application

Using curl [http://en.wikipedia.org/wiki/CURL] we’ll test every route in our application verifying its proper operation.

Obtain all the robots:

curl -i -X GET http://localhost/my-rest-api/api/robots

HTTP/1.1 200 OK
Date: Tue, 21 Jul 2015 07:05:13 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 117
Content-Type: text/html; charset=UTF-8

[{"id":"1","name":"Robotina"},{"id":"2","name":"Astro Boy"},{"id":"3","name":"Terminator"}]

Search a robot by its name:

curl -i -X GET http://localhost/my-rest-api/api/robots/search/Astro

HTTP/1.1 200 OK
Date: Tue, 21 Jul 2015 07:09:23 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 31
Content-Type: text/html; charset=UTF-8

[{"id":"2","name":"Astro Boy"}]

Obtain a robot by its id:

curl -i -X GET http://localhost/my-rest-api/api/robots/3

HTTP/1.1 200 OK
Date: Tue, 21 Jul 2015 07:12:18 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 56
Content-Type: text/html; charset=UTF-8

{"status":"FOUND","data":{"id":"3","name":"Terminator"}}

Insert a new robot:

curl -i -X POST -d '{"name":"C-3PO","type":"droid","year":1977}'
 http://localhost/my-rest-api/api/robots

HTTP/1.1 201 Created
Date: Tue, 21 Jul 2015 07:15:09 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 75
Content-Type: text/html; charset=UTF-8

{"status":"OK","data":{"name":"C-3PO","type":"droid","year":1977,"id":"4"}}

Try to insert a new robot with the name of an existing robot:

curl -i -X POST -d '{"name":"C-3PO","type":"droid","year":1977}'
 http://localhost/my-rest-api/api/robots

HTTP/1.1 409 Conflict
Date: Tue, 21 Jul 2015 07:18:28 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 63
Content-Type: text/html; charset=UTF-8

{"status":"ERROR","messages":["The robot name must be unique"]}

Or update a robot with an unknown type:

curl -i -X PUT -d '{"name":"ASIMO","type":"humanoid","year":2000}'
 http://localhost/my-rest-api/api/robots/4

HTTP/1.1 409 Conflict
Date: Tue, 21 Jul 2015 08:48:01 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 104
Content-Type: text/html; charset=UTF-8

{"status":"ERROR","messages":["Value of field 'type' must be part of
 list: droid, mechanical, virtual"]}

Finally, delete a robot:

curl -i -X DELETE http://localhost/my-rest-api/api/robots/4

HTTP/1.1 200 OK
Date: Tue, 21 Jul 2015 08:49:29 GMT
Server: Apache/2.2.22 (Unix) DAV/2
Content-Length: 15
Content-Type: text/html; charset=UTF-8

{"status":"OK"}

Conclusion

As we have seen, develop a RESTful API with Phalcon is easy. Later in the documentation we’ll explain in detail how to
use micro applications and the PHQL language.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 List of examples

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

List of examples

Following examples are full applications you can use to learn more about Phalcon and use them as base for your own websites/applications:

 	

 Phalcon's website

 	

 INVO: CRUD, Acl, Layouts and more

 Dependency Injection/Service Location

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Dependency Injection/Service Location

Before reading this section, it is wise to read the section which explains why Phalcon uses service location and dependency injection.

Phalcon\Di is a component implementing Dependency Injection and Location of services and it’s itself a container for them.

Since Phalcon is highly decoupled, Phalcon\Di is essential to integrate the different components of the framework. The developer can
also use this component to inject dependencies and manage global instances of the different classes used in the application.

Basically, this component implements the Inversion of Control [http://en.wikipedia.org/wiki/Inversion_of_control] pattern. Applying this, the objects do not receive their dependencies
using setters or constructors, but requesting a service dependency injector. This reduces the overall complexity since there is only
one way to get the required dependencies within a component.

Additionally, this pattern increases testability in the code, thus making it less prone to errors.

Registering services in the Container

The framework itself or the developer can register services. When a component A requires component B (or an instance of its class) to operate, it
can request component B from the container, rather than creating a new instance component B.

This way of working gives us many advantages:

	We can easily replace a component with one created by ourselves or a third party.

	We have full control of the object initialization, allowing us to set these objects, as needed before delivering them to components.

	We can get global instances of components in a structured and unified way.

Services can be registered using several types of definitions:

Simple Registration

As seen before, there are several ways to register services. These we call simple:

String

This type expects the name of a valid class, returning an object of the specified class, if the class is not loaded it will be instantiated using an auto-loader.
This type of definition does not allow to specify arguments for the class constructor or parameters:

<?php

// Return new Phalcon\Http\Request();
$di->set(
 "request",
 "Phalcon\\Http\\Request"
);

Class instances

This type expects an object. Due to the fact that object does not need to be resolved as it is
already an object, one could say that it is not really a dependency injection,
however it is useful if you want to force the returned dependency to always be
the same object/value:

<?php

use Phalcon\Http\Request;

// Return new Phalcon\Http\Request();
$di->set(
 "request",
 new Request()
);

Closures/Anonymous functions

This method offers greater freedom to build the dependency as desired, however, it is difficult to
change some of the parameters externally without having to completely change the definition of dependency:

<?php

use Phalcon\Db\Adapter\Pdo\Mysql as PdoMysql;

$di->set(
 "db",
 function () {
 return new PdoMysql(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "blog",
]
);
 }
);

Some of the limitations can be overcome by passing additional variables to the closure’s environment:

<?php

use Phalcon\Config;
use Phalcon\Db\Adapter\Pdo\Mysql as PdoMysql;

$config = new Config(
 [
 "host" => "127.0.0.1",
 "username" => "user",
 "password" => "pass",
 "dbname" => "my_database",
]
);

// Using the $config variable in the current scope
$di->set(
 "db",
 function () use ($config) {
 return new PdoMysql(
 [
 "host" => $config->host,
 "username" => $config->username,
 "password" => $config->password,
 "dbname" => $config->name,
]
);
 }
);

You can also access other DI services using the get() method:

<?php

use Phalcon\Config;
use Phalcon\Db\Adapter\Pdo\Mysql as PdoMysql;

$di->set(
 "config",
 function () {
 return new Config(
 [
 "host" => "127.0.0.1",
 "username" => "user",
 "password" => "pass",
 "dbname" => "my_database",
]
);
 }
);

// Using the 'config' service from the DI
$di->set(
 "db",
 function () {
 $config = $this->get("config");

 return new PdoMysql(
 [
 "host" => $config->host,
 "username" => $config->username,
 "password" => $config->password,
 "dbname" => $config->name,
]
);
 }
);

Complex Registration

If it is required to change the definition of a service without instantiating/resolving the service,
then, we need to define the services using the array syntax. Define a service using an array definition
can be a little more verbose:

<?php

use Phalcon\Logger\Adapter\File as LoggerFile;

// Register a service 'logger' with a class name and its parameters
$di->set(
 "logger",
 [
 "className" => "Phalcon\\Logger\\Adapter\\File",
 "arguments" => [
 [
 "type" => "parameter",
 "value" => "../apps/logs/error.log",
]
]
]
);

// Using an anonymous function
$di->set(
 "logger",
 function () {
 return new LoggerFile("../apps/logs/error.log");
 }
);

Both service registrations above produce the same result. The array definition however, allows for alteration of the service parameters if needed:

<?php

// Change the service class name
$di->getService("logger")->setClassName("MyCustomLogger");

// Change the first parameter without instantiating the logger
$di->getService("logger")->setParameter(
 0,
 [
 "type" => "parameter",
 "value" => "../apps/logs/error.log",
]
);

In addition by using the array syntax you can use three types of dependency injection:

Constructor Injection

This injection type passes the dependencies/arguments to the class constructor.
Let’s pretend we have the following component:

<?php

namespace SomeApp;

use Phalcon\Http\Response;

class SomeComponent
{
 /**
 * @var Response
 */
 protected $_response;

 protected $_someFlag;

 public function __construct(Response $response, $someFlag)
 {
 $this->_response = $response;
 $this->_someFlag = $someFlag;
 }
}

The service can be registered this way:

<?php

$di->set(
 "response",
 [
 "className" => "Phalcon\\Http\\Response"
]
);

$di->set(
 "someComponent",
 [
 "className" => "SomeApp\\SomeComponent",
 "arguments" => [
 [
 "type" => "service",
 "name" => "response",
],
 [
 "type" => "parameter",
 "value" => true,
],
]
]
);

The service “response” (Phalcon\Http\Response) is resolved to be passed as the first argument of the constructor,
while the second is a boolean value (true) that is passed as it is.

Setter Injection

Classes may have setters to inject optional dependencies, our previous class can be changed to accept the dependencies with setters:

<?php

namespace SomeApp;

use Phalcon\Http\Response;

class SomeComponent
{
 /**
 * @var Response
 */
 protected $_response;

 protected $_someFlag;

 public function setResponse(Response $response)
 {
 $this->_response = $response;
 }

 public function setFlag($someFlag)
 {
 $this->_someFlag = $someFlag;
 }
}

A service with setter injection can be registered as follows:

<?php

$di->set(
 "response",
 [
 "className" => "Phalcon\\Http\\Response",
]
);

$di->set(
 "someComponent",
 [
 "className" => "SomeApp\\SomeComponent",
 "calls" => [
 [
 "method" => "setResponse",
 "arguments" => [
 [
 "type" => "service",
 "name" => "response",
]
]
],
 [
 "method" => "setFlag",
 "arguments" => [
 [
 "type" => "parameter",
 "value" => true,
]
]
]
]
]
);

Properties Injection

A less common strategy is to inject dependencies or parameters directly into public attributes of the class:

<?php

namespace SomeApp;

use Phalcon\Http\Response;

class SomeComponent
{
 /**
 * @var Response
 */
 public $response;

 public $someFlag;
}

A service with properties injection can be registered as follows:

<?php

$di->set(
 "response",
 [
 "className" => "Phalcon\\Http\\Response",
]
);

$di->set(
 "someComponent",
 [
 "className" => "SomeApp\\SomeComponent",
 "properties" => [
 [
 "name" => "response",
 "value" => [
 "type" => "service",
 "name" => "response",
],
],
 [
 "name" => "someFlag",
 "value" => [
 "type" => "parameter",
 "value" => true,
],
]
]
]
);

Supported parameter types include the following:

	Type
	Description
	Example

	parameter
	Represents a literal value to be passed as parameter
	["type" => "parameter", "value" => 1234]

	service
	Represents another service in the service container
	["type" => "service", "name" => "request"]

	instance
	Represents an object that must be built dynamically
	["type" => "instance", "className" => "DateTime", "arguments" => ["now"]]

Resolving a service whose definition is complex may be slightly slower than simple definitions seen previously. However,
these provide a more robust approach to define and inject services.

Mixing different types of definitions is allowed, everyone can decide what is the most appropriate way to register the services
according to the application needs.

Array Syntax

The array syntax is also allowed to register services:

<?php

use Phalcon\Di;
use Phalcon\Http\Request;

// Create the Dependency Injector Container
$di = new Di();

// By its class name
$di["request"] = "Phalcon\\Http\\Request";

// Using an anonymous function, the instance will be lazy loaded
$di["request"] = function () {
 return new Request();
};

// Registering an instance directly
$di["request"] = new Request();

// Using an array definition
$di["request"] = [
 "className" => "Phalcon\\Http\\Request",
];

In the examples above, when the framework needs to access the request data, it will ask for the service identified as ‘request’ in the container.
The container in turn will return an instance of the required service. A developer might eventually replace a component when he/she needs.

Each of the methods (demonstrated in the examples above) used to set/register a service has advantages and disadvantages. It is up to the
developer and the particular requirements that will designate which one is used.

Setting a service by a string is simple, but lacks flexibility. Setting services using an array offers a lot more flexibility, but makes the
code more complicated. The lambda function is a good balance between the two, but could lead to more maintenance than one would expect.

Phalcon\Di offers lazy loading for every service it stores. Unless the developer chooses to instantiate an object directly and store it
in the container, any object stored in it (via array, string, etc.) will be lazy loaded i.e. instantiated only when requested.

Resolving Services

Obtaining a service from the container is a matter of simply calling the “get” method. A new instance of the service will be returned:

<?php $request = $di->get("request");

Or by calling through the magic method:

<?php

$request = $di->getRequest();

Or using the array-access syntax:

<?php

$request = $di["request"];

Arguments can be passed to the constructor by adding an array parameter to the method “get”:

<?php

// new MyComponent("some-parameter", "other")
$component = $di->get(
 "MyComponent",
 [
 "some-parameter",
 "other",
]
);

Events

Phalcon\Di is able to send events to an EventsManager if it is present.
Events are triggered using the type “di”. Some events when returning boolean false could stop the active operation.
The following events are supported:

	Event Name
	Triggered
	Can stop operation?
	Triggered on

	beforeServiceResolve
	Triggered before resolve service. Listeners receive the service name and the parameters passed to it.
	No
	Listeners

	afterServiceResolve
	Triggered after resolve service. Listeners receive the service name, instance, and the parameters passed to it.
	No
	Listeners

Shared services

Services can be registered as “shared” services this means that they always will act as singletons [http://en.wikipedia.org/wiki/Singleton_pattern]. Once the service is resolved for the first time
the same instance of it is returned every time a consumer retrieve the service from the container:

<?php

use Phalcon\Session\Adapter\Files as SessionFiles;

// Register the session service as "always shared"
$di->setShared(
 "session",
 function () {
 $session = new SessionFiles();

 $session->start();

 return $session;
 }
);

// Locates the service for the first time
$session = $di->get("session");

// Returns the first instantiated object
$session = $di->getSession();

An alternative way to register shared services is to pass “true” as third parameter of “set”:

<?php

// Register the session service as "always shared"
$di->set(
 "session",
 function () {
 // ...
 },
 true
);

If a service isn’t registered as shared and you want to be sure that a shared instance will be accessed every time
the service is obtained from the DI, you can use the ‘getShared’ method:

<?php

$request = $di->getShared("request");

Manipulating services individually

Once a service is registered in the service container, you can retrieve it to manipulate it individually:

<?php

use Phalcon\Http\Request;

// Register the "request" service
$di->set("request", "Phalcon\\Http\\Request");

// Get the service
$requestService = $di->getService("request");

// Change its definition
$requestService->setDefinition(
 function () {
 return new Request();
 }
);

// Change it to shared
$requestService->setShared(true);

// Resolve the service (return a Phalcon\Http\Request instance)
$request = $requestService->resolve();

Instantiating classes via the Service Container

When you request a service to the service container, if it can’t find out a service with the same name it’ll try to load a class with
the same name. With this behavior we can replace any class by another simply by registering a service with its name:

<?php

// Register a controller as a service
$di->set(
 "IndexController",
 function () {
 $component = new Component();

 return $component;
 },
 true
);

// Register a controller as a service
$di->set(
 "MyOtherComponent",
 function () {
 // Actually returns another component
 $component = new AnotherComponent();

 return $component;
 }
);

// Create an instance via the service container
$myComponent = $di->get("MyOtherComponent");

You can take advantage of this, always instantiating your classes via the service container (even if they aren’t registered as services). The DI will
fallback to a valid autoloader to finally load the class. By doing this, you can easily replace any class in the future by implementing a definition
for it.

Automatic Injecting of the DI itself

If a class or component requires the DI itself to locate services, the DI can automatically inject itself to the instances it creates,
to do this, you need to implement the Phalcon\Di\InjectionAwareInterface in your classes:

<?php

use Phalcon\DiInterface;
use Phalcon\Di\InjectionAwareInterface;

class MyClass implements InjectionAwareInterface
{
 /**
 * @var DiInterface
 */
 protected $_di;

 public function setDi(DiInterface $di)
 {
 $this->_di = $di;
 }

 public function getDi()
 {
 return $this->_di;
 }
}

Then once the service is resolved, the $di will be passed to setDi() automatically:

<?php

// Register the service
$di->set("myClass", "MyClass");

// Resolve the service (NOTE: $myClass->setDi($di) is automatically called)
$myClass = $di->get("myClass");

Organizing services in files

You can better organize your application by moving the service registration to individual files instead of
doing everything in the application’s bootstrap:

<?php

$di->set(
 "router",
 function () {
 return include "../app/config/routes.php";
 }
);

Then in the file (”../app/config/routes.php”) return the object resolved:

<?php

$router = new MyRouter();

$router->post("/login");

return $router;

Accessing the DI in a static way

If needed you can access the latest DI created in a static function in the following way:

<?php

use Phalcon\Di;

class SomeComponent
{
 public static function someMethod()
 {
 // Get the session service
 $session = Di::getDefault()->getSession();
 }
}

Factory Default DI

Although the decoupled character of Phalcon offers us great freedom and flexibility, maybe we just simply want to use it as a full-stack
framework. To achieve this, the framework provides a variant of Phalcon\Di called Phalcon\Di\FactoryDefault. This class automatically
registers the appropriate services bundled with the framework to act as full-stack.

<?php

use Phalcon\Di\FactoryDefault;

$di = new FactoryDefault();

Service Name Conventions

Although you can register services with the names you want, Phalcon has a several naming conventions that allow it to get the
the correct (built-in) service when you need it.

	Service Name
	Description
	Default
	Shared

	dispatcher
	Controllers Dispatching Service
	Phalcon\Mvc\Dispatcher
	Yes

	router
	Routing Service
	Phalcon\Mvc\Router
	Yes

	url
	URL Generator Service
	Phalcon\Mvc\Url
	Yes

	request
	HTTP Request Environment Service
	Phalcon\Http\Request
	Yes

	response
	HTTP Response Environment Service
	Phalcon\Http\Response
	Yes

	cookies
	HTTP Cookies Management Service
	Phalcon\Http\Response\Cookies
	Yes

	filter
	Input Filtering Service
	Phalcon\Filter
	Yes

	flash
	Flash Messaging Service
	Phalcon\Flash\Direct
	Yes

	flashSession
	Flash Session Messaging Service
	Phalcon\Flash\Session
	Yes

	session
	Session Service
	Phalcon\Session\Adapter\Files
	Yes

	eventsManager
	Events Management Service
	Phalcon\Events\Manager
	Yes

	db
	Low-Level Database Connection Service
	Phalcon\Db
	Yes

	security
	Security helpers
	Phalcon\Security
	Yes

	crypt
	Encrypt/Decrypt data
	Phalcon\Crypt
	Yes

	tag
	HTML generation helpers
	Phalcon\Tag
	Yes

	escaper
	Contextual Escaping
	Phalcon\Escaper
	Yes

	annotations
	Annotations Parser
	Phalcon\Annotations\Adapter\Memory
	Yes

	modelsManager
	Models Management Service
	Phalcon\Mvc\Model\Manager
	Yes

	modelsMetadata
	Models Meta-Data Service
	Phalcon\Mvc\Model\MetaData\Memory
	Yes

	transactionManager
	Models Transaction Manager Service
	Phalcon\Mvc\Model\Transaction\Manager
	Yes

	modelsCache
	Cache backend for models cache
	None
	No

	viewsCache
	Cache backend for views fragments
	None
	No

Implementing your own DI

The Phalcon\DiInterface interface must be implemented to create your own DI replacing the one provided by Phalcon or extend the current one.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 The MVC Architecture

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

The MVC Architecture

Phalcon offers the object-oriented classes, necessary to implement the Model, View, Controller architecture
(often referred to as MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]) in your application. This design pattern is widely used by other web frameworks
and desktop applications.

MVC benefits include:

	Isolation of business logic from the user interface and the database layer

	Making it clear where different types of code belong for easier maintenance

If you decide to use MVC, every request to your application resources will be managed by the MVC architecture.
Phalcon classes are written in C language, offering a high performance approach of this pattern in a PHP based application.

Models

A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily used for
managing the rules of interaction with a corresponding database table. In most cases, each table in your database will correspond
to one model in your application. The bulk of your application’s business logic will be concentrated in the models. Learn more

Views

Views represent the user interface of your application. Views are often HTML files with embedded PHP code that perform tasks
related solely to the presentation of the data. Views handle the job of providing data to the web browser or other tool that
is used to make requests from your application. Learn more

Controllers

The controllers provide the “flow” between models and views. Controllers are responsible for processing the incoming requests
from the web browser, interrogating the models for data, and passing that data on to the views for presentation. Learn more

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Using Controllers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Using Controllers

Actions are methods on a controller that handle requests. By default all
public methods on a controller map to actions and are accessible by a URL. Actions are responsible for interpreting the request and creating
the response. Usually responses are in the form of a rendered view, but there are other ways to create responses as well.

For instance, when you access a URL like this: http://localhost/blog/posts/show/2015/the-post-title Phalcon by default will decompose each
part like this:

	Phalcon Directory
	blog

	Controller
	posts

	Action
	show

	Parameter
	2015

	Parameter
	the-post-title

In this case, the PostsController will handle this request. There is no a special location to put controllers in an application, they
could be loaded using autoloaders, so you’re free to organize your controllers as you need.

Controllers must have the suffix “Controller” while actions the suffix “Action”. A sample of a controller is as follows:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction($year, $postTitle)
 {

 }
}

Additional URI parameters are defined as action parameters, so that they can be easily accessed using local variables. A controller can
optionally extend Phalcon\Mvc\Controller. By doing this, the controller can have easy access to
the application services.

Parameters without a default value are handled as required. Setting optional values for parameters is done as usual in PHP:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction($year = 2015, $postTitle = "some default title")
 {

 }
}

Parameters are assigned in the same order as they were passed in the route. You can get an arbitrary parameter from its name in the following way:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction()
 {
 $year = $this->dispatcher->getParam("year");
 $postTitle = $this->dispatcher->getParam("postTitle");
 }
}

Dispatch Loop

The dispatch loop will be executed within the Dispatcher until there are no actions left to be executed. In the previous example only one
action was executed. Now we’ll see how the forward() method can provide a more complex flow of operation in the dispatch loop, by forwarding
execution to a different controller/action.

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction($year, $postTitle)
 {
 $this->flash->error(
 "You don't have permission to access this area"
);

 // Forward flow to another action
 $this->dispatcher->forward(
 [
 "controller" => "users",
 "action" => "signin",
]
);
 }
}

If users don’t have permission to access a certain action then they will be forwarded to the ‘signin’ action in the Users controller.

<?php

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{
 public function indexAction()
 {

 }

 public function signinAction()
 {

 }
}

There is no limit on the “forwards” you can have in your application, so long as they do not result in circular references, at which point
your application will halt. If there are no other actions to be dispatched by the dispatch loop, the dispatcher will automatically invoke
the view layer of the MVC that is managed by Phalcon\Mvc\View.

Initializing Controllers

Phalcon\Mvc\Controller offers the initialize() method, which is executed first, before any
action is executed on a controller. The use of the __construct() method is not recommended.

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public $settings;

 public function initialize()
 {
 $this->settings = [
 "mySetting" => "value",
];
 }

 public function saveAction()
 {
 if ($this->settings["mySetting"] === "value") {
 // ...
 }
 }
}

The initialize() method is only called if the ‘beforeExecuteRoute’ event is executed with success. This avoid
that application logic in the initializer cannot be executed without authorization.

If you want to execute some initialization logic just after the controller object is constructed then you can implement the
onConstruct() method:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function onConstruct()
 {
 // ...
 }
}

Be aware that onConstruct() method is executed even if the action to be executed doesn’t exist
in the controller or the user does not have access to it (according to custom control access
provided by the developer).

Injecting Services

If a controller extends Phalcon\Mvc\Controller then it has easy access to the service
container in application. For example, if we have registered a service like this:

<?php

use Phalcon\Di;

$di = new Di();

$di->set(
 "storage",
 function () {
 return new Storage(
 "/some/directory"
);
 },
 true
);

Then, we can access that service in several ways:

<?php

use Phalcon\Mvc\Controller;

class FilesController extends Controller
{
 public function saveAction()
 {
 // Injecting the service by just accessing the property with the same name
 $this->storage->save("/some/file");

 // Accessing the service from the DI
 $this->di->get("storage")->save("/some/file");

 // Another way to access the service using the magic getter
 $this->di->getStorage()->save("/some/file");

 // Another way to access the service using the magic getter
 $this->getDi()->getStorage()->save("/some/file");

 // Using the array-syntax
 $this->di["storage"]->save("/some/file");
 }
}

If you’re using Phalcon as a full-stack framework, you can read the services provided by default in the framework.

Request and Response

Assuming that the framework provides a set of pre-registered services. We explain how to interact with the HTTP environment.
The “request” service contains an instance of Phalcon\Http\Request and the “response”
contains a Phalcon\Http\Response representing what is going to be sent back to the client.

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Check if request has made with POST
 if ($this->request->isPost()) {
 // Access POST data
 $customerName = $this->request->getPost("name");
 $customerBorn = $this->request->getPost("born");
 }
 }
}

The response object is not usually used directly, but is built up before the execution of the action, sometimes - like in
an afterDispatch event - it can be useful to access the response directly:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function notFoundAction()
 {
 // Send a HTTP 404 response header
 $this->response->setStatusCode(404, "Not Found");
 }
}

Learn more about the HTTP environment in their dedicated articles request and response.

Session Data

Sessions help us maintain persistent data between requests. You can access a Phalcon\Session\Bag
from any controller to encapsulate data that needs to be persistent:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function indexAction()
 {
 $this->persistent->name = "Michael";
 }

 public function welcomeAction()
 {
 echo "Welcome, ", $this->persistent->name;
 }
}

Using Services as Controllers

Services may act as controllers, controllers classes are always requested from the services container. Accordingly,
any other class registered with its name can easily replace a controller:

<?php

// Register a controller as a service
$di->set(
 "IndexController",
 function () {
 $component = new Component();

 return $component;
 }
);

// Register a namespaced controller as a service
$di->set(
 "Backend\\Controllers\\IndexController",
 function () {
 $component = new Component();

 return $component;
 }
);

Events in Controllers

Controllers automatically act as listeners for dispatcher events, implementing methods with those event names allow
you to implement hook points before/after the actions are executed:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function beforeExecuteRoute($dispatcher)
 {
 // This is executed before every found action
 if ($dispatcher->getActionName() === "save") {
 $this->flash->error(
 "You don't have permission to save posts"
);

 $this->dispatcher->forward(
 [
 "controller" => "home",
 "action" => "index",
]
);

 return false;
 }
 }

 public function afterExecuteRoute($dispatcher)
 {
 // Executed after every found action
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Working with Models

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Working with Models

A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily used for managing
the rules of interaction with a corresponding database table. In most cases, each table in your database will correspond to one model in
your application. The bulk of your application’s business logic will be concentrated in the models.

Phalcon\Mvc\Model is the base for all models in a Phalcon application. It provides database independence, basic
CRUD functionality, advanced finding capabilities, and the ability to relate models to one another, among other services.
Phalcon\Mvc\Model avoids the need of having to use SQL statements because it translates
methods dynamically to the respective database engine operations.

Models are intended to work with the database on a high layer of abstraction. If you need to work with databases at a lower level check out the
Phalcon\Db component documentation.

Creating Models

A model is a class that extends from Phalcon\Mvc\Model. Its class name should be in camel case notation:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class RobotParts extends Model
{

}

If you’re using PHP 5.4/5.5 it is recommended you declare each column that makes part of the model in order to save
memory and reduce the memory allocation.

By default, the model “Store\Toys\RobotParts” will refer to the table “robot_parts”. If you want to manually specify another name for the mapping table,
you can use the setSource() method:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class RobotParts extends Model
{
 public function initialize()
 {
 $this->setSource("toys_robot_parts");
 }
}

The model RobotParts now maps to “toys_robot_parts” table. The initialize() method aids in setting up the model with a custom behavior i.e. a different table.

The initialize() method is only called once during the request, it’s intended to perform initializations that apply for
all instances of the model created within the application. If you want to perform initialization tasks for every instance
created you can use the onConstruct() method:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class RobotParts extends Model
{
 public function onConstruct()
 {
 // ...
 }
}

Public properties vs. Setters/Getters

Models can be implemented with properties of public scope, meaning that each property can be read/updated
from any part of the code that has instantiated that model class without any restrictions:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public $price;
}

By using getters and setters you can control which properties are visible publicly perform various transformations
to the data (which would be impossible otherwise) and also add validation rules to the data stored in the object:

<?php

namespace Store\Toys;

use InvalidArgumentException;
use Phalcon\Mvc\Model;

class Robots extends Model
{
 protected $id;

 protected $name;

 protected $price;

 public function getId()
 {
 return $this->id;
 }

 public function setName($name)
 {
 // The name is too short?
 if (strlen($name) < 10) {
 throw new InvalidArgumentException(
 "The name is too short"
);
 }

 $this->name = $name;
 }

 public function getName()
 {
 return $this->name;
 }

 public function setPrice($price)
 {
 // Negative prices aren't allowed
 if ($price < 0) {
 throw new InvalidArgumentException(
 "Price can't be negative"
);
 }

 $this->price = $price;
 }

 public function getPrice()
 {
 // Convert the value to double before be used
 return (double) $this->price;
 }
}

Public properties provide less complexity in development. However getters/setters can heavily increase the testability,
extensibility and maintainability of applications. Developers can decide which strategy is more appropriate for the
application they are creating. The ORM is compatible with both schemes of defining properties.

Underscores in property names can be problematic when using getters and setters.

If you use underscores in your property names, you must still use camel case in your getter/setter declarations for use
with magic methods. (e.g. $model->getPropertyName instead of $model->getProperty_name, $model->findByPropertyName
instead of $model->findByProperty_name, etc.). As much of the system expects camel case, and underscores are commonly
removed, it is recommended to name your properties in the manner shown throughout the documentation. You can use a
column map (as described above) to ensure proper mapping of your properties to their database counterparts.

Understanding Records To Objects

Every instance of a model represents a row in the table. You can easily access record data by reading object properties. For example,
for a table “robots” with the records:

mysql> select * from robots;
+----+------------+------------+------+
| id | name | type | year |
+----+------------+------------+------+
| 1 | Robotina | mechanical | 1972 |
| 2 | Astro Boy | mechanical | 1952 |
| 3 | Terminator | cyborg | 2029 |
+----+------------+------------+------+
3 rows in set (0.00 sec)

You could find a certain record by its primary key and then print its name:

<?php

use Store\Toys\Robots;

// Find record with id = 3
$robot = Robots::findFirst(3);

// Prints "Terminator"
echo $robot->name;

Once the record is in memory, you can make modifications to its data and then save changes:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(3);

$robot->name = "RoboCop";

$robot->save();

As you can see, there is no need to use raw SQL statements. Phalcon\Mvc\Model provides high database
abstraction for web applications.

Finding Records

Phalcon\Mvc\Model also offers several methods for querying records. The following examples will show you
how to query one or more records from a model:

<?php

use Store\Toys\Robots;

// How many robots are there?
$robots = Robots::find();
echo "There are ", count($robots), "\n";

// How many mechanical robots are there?
$robots = Robots::find("type = 'mechanical'");
echo "There are ", count($robots), "\n";

// Get and print virtual robots ordered by name
$robots = Robots::find(
 [
 "type = 'virtual'",
 "order" => "name",
]
);
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

// Get first 100 virtual robots ordered by name
$robots = Robots::find(
 [
 "type = 'virtual'",
 "order" => "name",
 "limit" => 100,
]
);
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

If you want find record by external data (such as user input) or variable data you must use Binding Parameters.

You could also use the findFirst() method to get only the first record matching the given criteria:

<?php

use Store\Toys\Robots;

// What's the first robot in robots table?
$robot = Robots::findFirst();
echo "The robot name is ", $robot->name, "\n";

// What's the first mechanical robot in robots table?
$robot = Robots::findFirst("type = 'mechanical'");
echo "The first mechanical robot name is ", $robot->name, "\n";

// Get first virtual robot ordered by name
$robot = Robots::findFirst(
 [
 "type = 'virtual'",
 "order" => "name",
]
);
echo "The first virtual robot name is ", $robot->name, "\n";

Both find() and findFirst() methods accept an associative array specifying the search criteria:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(
 [
 "type = 'virtual'",
 "order" => "name DESC",
 "limit" => 30,
]
);

$robots = Robots::find(
 [
 "conditions" => "type = ?1",
 "bind" => [
 1 => "virtual",
]
]
);

The available query options are:

	Parameter
	Description
	Example

	conditions
	Search conditions for the find operation. Is used to extract only those records that fulfill a specified criterion. By default Phalcon\Mvc\Model assumes the first parameter are the conditions.
	"conditions" => "name LIKE 'steve%'"

	columns
	Return specific columns instead of the full columns in the model. When using this option an incomplete object is returned
	"columns" => "id, name"

	bind
	Bind is used together with options, by replacing placeholders and escaping values thus increasing security
	"bind" => ["status" => "A", "type" => "some-time"]

	bindTypes
	When binding parameters, you can use this parameter to define additional casting to the bound parameters increasing even more the security
	"bindTypes" => [Column::BIND_PARAM_STR, Column::BIND_PARAM_INT]

	order
	Is used to sort the resultset. Use one or more fields separated by commas.
	"order" => "name DESC, status"

	limit
	Limit the results of the query to results to certain range
	"limit" => 10

	offset
	Offset the results of the query by a certain amount
	"offset" => 5

	group
	Allows to collect data across multiple records and group the results by one or more columns
	"group" => "name, status"

	for_update
	With this option, Phalcon\Mvc\Model reads the latest available data, setting exclusive locks on each row it reads
	"for_update" => true

	shared_lock
	With this option, Phalcon\Mvc\Model reads the latest available data, setting shared locks on each row it reads
	"shared_lock" => true

	cache
	Cache the resultset, reducing the continuous access to the relational system
	"cache" => ["lifetime" => 3600, "key" => "my-find-key"]

	hydration
	Sets the hydration strategy to represent each returned record in the result
	"hydration" => Resultset::HYDRATE_OBJECTS

If you prefer, there is also available a way to create queries in an object-oriented way, instead of using an array of parameters:

<?php

use Store\Toys\Robots;

$robots = Robots::query()
 ->where("type = :type:")
 ->andWhere("year < 2000")
 ->bind(["type" => "mechanical"])
 ->order("name")
 ->execute();

The static method query() returns a Phalcon\Mvc\Model\Criteria object that is friendly with IDE autocompleters.

All the queries are internally handled as PHQL queries. PHQL is a high-level, object-oriented and SQL-like language.
This language provide you more features to perform queries like joining other models, define groupings, add aggregations etc.

Lastly, there is the findFirstBy<property-name>() method. This method expands on the findFirst() method mentioned earlier. It allows you to quickly perform a
retrieval from a table by using the property name in the method itself and passing it a parameter that contains the data you want to search for in that column.
An example is in order, so taking our Robots model mentioned earlier:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public $price;
}

We have three properties to work with here: $id, $name and $price. So, let’s say you want to retrieve the first record in
the table with the name ‘Terminator’. This could be written like:

<?php

use Store\Toys\Robots;

$name = "Terminator";

$robot = Robots::findFirstByName($name);

if ($robot) {
 echo "The first robot with the name " . $name . " cost " . $robot->price . ".";
} else {
 echo "There were no robots found in our table with the name " . $name . ".";
}

Notice that we used ‘Name’ in the method call and passed the variable $name to it, which contains the name
we are looking for in our table. Notice also that when we find a match with our query, all the other properties
are available to us as well.

Model Resultsets

While findFirst() returns directly an instance of the called class (when there is data to be returned), the find() method returns a
Phalcon\Mvc\Model\Resultset\Simple. This is an object that encapsulates all the functionality
a resultset has like traversing, seeking specific records, counting, etc.

These objects are more powerful than standard arrays. One of the greatest features of the Phalcon\Mvc\Model\Resultset
is that at any time there is only one record in memory. This greatly helps in memory management especially when working with large amounts of data.

<?php

use Store\Toys\Robots;

// Get all robots
$robots = Robots::find();

// Traversing with a foreach
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

// Traversing with a while
$robots->rewind();

while ($robots->valid()) {
 $robot = $robots->current();

 echo $robot->name, "\n";

 $robots->next();
}

// Count the resultset
echo count($robots);

// Alternative way to count the resultset
echo $robots->count();

// Move the internal cursor to the third robot
$robots->seek(2);

$robot = $robots->current();

// Access a robot by its position in the resultset
$robot = $robots[5];

// Check if there is a record in certain position
if (isset($robots[3])) {
 $robot = $robots[3];
}

// Get the first record in the resultset
$robot = $robots->getFirst();

// Get the last record
$robot = $robots->getLast();

Phalcon’s resultsets emulate scrollable cursors, you can get any row just by accessing its position, or seeking the internal pointer
to a specific position. Note that some database systems don’t support scrollable cursors, this forces to re-execute the query
in order to rewind the cursor to the beginning and obtain the record at the requested position. Similarly, if a resultset
is traversed several times, the query must be executed the same number of times.

As storing large query results in memory could consume many resources, resultsets are obtained
from the database in chunks of 32 rows - reducing the need to re-execute the request in several cases.

Note that resultsets can be serialized and stored in a cache backend. Phalcon\Cache can help with that task. However,
serializing data causes Phalcon\Mvc\Model to retrieve all the data from the database in an array,
thus consuming more memory while this process takes place.

<?php

// Query all records from model parts
$parts = Parts::find();

// Store the resultset into a file
file_put_contents(
 "cache.txt",
 serialize($parts)
);

// Get parts from file
$parts = unserialize(
 file_get_contents("cache.txt")
);

// Traverse the parts
foreach ($parts as $part) {
 echo $part->id;
}

Filtering Resultsets

The most efficient way to filter data is setting some search criteria, databases will use indexes set on tables to return data faster.
Phalcon additionally allows you to filter the data using PHP using any resource that is not available in the database:

<?php

$customers = Customers::find();

$customers = $customers->filter(
 function ($customer) {
 // Return only customers with a valid e-mail
 if (filter_var($customer->email, FILTER_VALIDATE_EMAIL)) {
 return $customer;
 }
 }
);

Binding Parameters

Bound parameters are also supported in Phalcon\Mvc\Model. You are encouraged to use
this methodology so as to eliminate the possibility of your code being subject to SQL injection attacks.
Both string and integer placeholders are supported. Binding parameters can simply be achieved as follows:

<?php

use Store\Toys\Robots;

// Query robots binding parameters with string placeholders
// Parameters whose keys are the same as placeholders
$robots = Robots::find(
 [
 "name = :name: AND type = :type:",
 "bind" => [
 "name" => "Robotina",
 "type" => "maid",
],
]
);

// Query robots binding parameters with integer placeholders
$robots = Robots::find(
 [
 "name = ?1 AND type = ?2",
 "bind" => [
 1 => "Robotina",
 2 => "maid",
],
]
);

// Query robots binding parameters with both string and integer placeholders
// Parameters whose keys are the same as placeholders
$robots = Robots::find(
 [
 "name = :name: AND type = ?1",
 "bind" => [
 "name" => "Robotina",
 1 => "maid",
],
]
);

When using numeric placeholders, you will need to define them as integers i.e. 1 or 2. In this case “1” or “2” are considered strings
and not numbers, so the placeholder could not be successfully replaced.

Strings are automatically escaped using PDO [http://php.net/manual/en/pdo.prepared-statements.php]. This function takes into account the connection charset, so its recommended to define
the correct charset in the connection parameters or in the database configuration, as a wrong charset will produce undesired effects
when storing or retrieving data.

Additionally you can set the parameter “bindTypes”, this allows defining how the parameters should be bound according to its data type:

<?php

use Phalcon\Db\Column;
use Store\Toys\Robots;

// Bind parameters
$parameters = [
 "name" => "Robotina",
 "year" => 2008,
];

// Casting Types
$types = [
 "name" => Column::BIND_PARAM_STR,
 "year" => Column::BIND_PARAM_INT,
];

// Query robots binding parameters with string placeholders
$robots = Robots::find(
 [
 "name = :name: AND year = :year:",
 "bind" => $parameters,
 "bindTypes" => $types,
]
);

Since the default bind-type is Phalcon\Db\Column::BIND_PARAM_STR, there is no need to specify the
“bindTypes” parameter if all of the columns are of that type.

If you bind arrays in bound parameters, keep in mind, that keys must be numbered from zero:

<?php

use Store\Toys\Robots;

$array = ["a","b","c"]; // $array: [[0] => "a", [1] => "b", [2] => "c"]

unset($array[1]); // $array: [[0] => "a", [2] => "c"]

// Now we have to renumber the keys
$array = array_values($array); // $array: [[0] => "a", [1] => "c"]

$robots = Robots::find(
 [
 'letter IN ({letter:array})',
 'bind' => [
 'letter' => $array
]
]
);

Bound parameters are available for all query methods such as find() and findFirst() but also the calculation
methods like count(), sum(), average() etc.

If you’re using “finders”, bound parameters are automatically used for you:

<?php

use Store\Toys\Robots;

// Explicit query using bound parameters
$robots = Robots::find(
 [
 "name = ?0",
 "bind" => [
 "Ultron",
],
]
);

// Implicit query using bound parameters
$robots = Robots::findByName("Ultron");

Initializing/Preparing fetched records

May be the case that after obtaining a record from the database is necessary to initialise the data before
being used by the rest of the application. You can implement the afterFetch() method in a model, this event
will be executed just after create the instance and assign the data to it:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public $status;

 public function beforeSave()
 {
 // Convert the array into a string
 $this->status = join(",", $this->status);
 }

 public function afterFetch()
 {
 // Convert the string to an array
 $this->status = explode(",", $this->status);
 }

 public function afterSave()
 {
 // Convert the string to an array
 $this->status = explode(",", $this->status);
 }
}

If you use getters/setters instead of/or together with public properties, you can initialize the field once it is
accessed:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public $status;

 public function getStatus()
 {
 return explode(",", $this->status);
 }
}

Generating Calculations

Calculations (or aggregations) are helpers for commonly used functions of database systems such as COUNT, SUM, MAX, MIN or AVG.
Phalcon\Mvc\Model allows to use these functions directly from the exposed methods.

Count examples:

<?php

// How many employees are?
$rowcount = Employees::count();

// How many different areas are assigned to employees?
$rowcount = Employees::count(
 [
 "distinct" => "area",
]
);

// How many employees are in the Testing area?
$rowcount = Employees::count(
 "area = 'Testing'"
);

// Count employees grouping results by their area
$group = Employees::count(
 [
 "group" => "area",
]
);
foreach ($group as $row) {
 echo "There are ", $row->rowcount, " in ", $row->area;
}

// Count employees grouping by their area and ordering the result by count
$group = Employees::count(
 [
 "group" => "area",
 "order" => "rowcount",
]
);

// Avoid SQL injections using bound parameters
$group = Employees::count(
 [
 "type > ?0",
 "bind" => [
 $type
],
]
);

Sum examples:

<?php

// How much are the salaries of all employees?
$total = Employees::sum(
 [
 "column" => "salary",
]
);

// How much are the salaries of all employees in the Sales area?
$total = Employees::sum(
 [
 "column" => "salary",
 "conditions" => "area = 'Sales'",
]
);

// Generate a grouping of the salaries of each area
$group = Employees::sum(
 [
 "column" => "salary",
 "group" => "area",
]
);
foreach ($group as $row) {
 echo "The sum of salaries of the ", $row->area, " is ", $row->sumatory;
}

// Generate a grouping of the salaries of each area ordering
// salaries from higher to lower
$group = Employees::sum(
 [
 "column" => "salary",
 "group" => "area",
 "order" => "sumatory DESC",
]
);

// Avoid SQL injections using bound parameters
$group = Employees::sum(
 [
 "conditions" => "area > ?0",
 "bind" => [
 $area
],
]
);

Average examples:

<?php

// What is the average salary for all employees?
$average = Employees::average(
 [
 "column" => "salary",
]
);

// What is the average salary for the Sales's area employees?
$average = Employees::average(
 [
 "column" => "salary",
 "conditions" => "area = 'Sales'",
]
);

// Avoid SQL injections using bound parameters
$average = Employees::average(
 [
 "column" => "age",
 "conditions" => "area > ?0",
 "bind" => [
 $area
],
]
);

Max/Min examples:

<?php

// What is the oldest age of all employees?
$age = Employees::maximum(
 [
 "column" => "age",
]
);

// What is the oldest of employees from the Sales area?
$age = Employees::maximum(
 [
 "column" => "age",
 "conditions" => "area = 'Sales'",
]
);

// What is the lowest salary of all employees?
$salary = Employees::minimum(
 [
 "column" => "salary",
]
);

Creating/Updating Records

The Phalcon\Mvc\Model::save() method allows you to create/update records according to whether they already exist in the table
associated with a model. The save method is called internally by the create and update methods of Phalcon\Mvc\Model.
For this to work as expected it is necessary to have properly defined a primary key in the entity to determine whether a record
should be updated or created.

Also the method executes associated validators, virtual foreign keys and events that are defined in the model:

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->type = "mechanical";
$robot->name = "Astro Boy";
$robot->year = 1952;

if ($robot->save() === false) {
 echo "Umh, We can't store robots right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
} else {
 echo "Great, a new robot was saved successfully!";
}

An array could be passed to “save” to avoid assign every column manually. Phalcon\Mvc\Model will check if there are setters implemented for
the columns passed in the array giving priority to them instead of assign directly the values of the attributes:

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->save(
 [
 "type" => "mechanical",
 "name" => "Astro Boy",
 "year" => 1952,
]
);

Values assigned directly or via the array of attributes are escaped/sanitized according to the related attribute data type. So you can pass
an insecure array without worrying about possible SQL injections:

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->save($_POST);

Without precautions mass assignment could allow attackers to set any database column’s value. Only use this feature
if you want to permit a user to insert/update every column in the model, even if those fields are not in the submitted
form.

You can set an additional parameter in ‘save’ to set a whitelist of fields that only must taken into account when doing
the mass assignment:

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->save(
 $_POST,
 [
 "name",
 "type",
]
);

Create/Update with Confidence

When an application has a lot of competition, we could be expecting create a record but it is actually updated. This
could happen if we use Phalcon\Mvc\Model::save() to persist the records in the database. If we want to be absolutely
sure that a record is created or updated, we can change the save() call with create() or update():

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->type = "mechanical";
$robot->name = "Astro Boy";
$robot->year = 1952;

// This record only must be created
if ($robot->create() === false) {
 echo "Umh, We can't store robots right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
} else {
 echo "Great, a new robot was created successfully!";
}

These methods “create” and “update” also accept an array of values as parameter.

Deleting Records

The Phalcon\Mvc\Model::delete() method allows to delete a record. You can use it as follows:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(11);

if ($robot !== false) {
 if ($robot->delete() === false) {
 echo "Sorry, we can't delete the robot right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
 } else {
 echo "The robot was deleted successfully!";
 }
}

You can also delete many records by traversing a resultset with a foreach:

<?php

use Store\Toys\Robots;

$robots = Robots::find(
 "type = 'mechanical'"
);

foreach ($robots as $robot) {
 if ($robot->delete() === false) {
 echo "Sorry, we can't delete the robot right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
 } else {
 echo "The robot was deleted successfully!";
 }
}

The following events are available to define custom business rules that can be executed when a delete operation is
performed:

	Operation
	Name
	Can stop operation?
	Explanation

	Deleting
	beforeDelete
	YES
	Runs before the delete operation is made

	Deleting
	afterDelete
	NO
	Runs after the delete operation was made

With the above events can also define business rules in the models:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function beforeDelete()
 {
 if ($this->status === "A") {
 echo "The robot is active, it can't be deleted";

 return false;
 }

 return true;
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Model Relationships

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Model Relationships

Relationships between Models

There are four types of relationships: one-on-one, one-to-many, many-to-one and many-to-many. The relationship may be
unidirectional or bidirectional, and each can be simple (a one to one model) or more complex (a combination of models).
The model manager manages foreign key constraints for these relationships, the definition of these helps referential
integrity as well as easy and fast access of related records to a model. Through the implementation of relations,
it is easy to access data in related models from each record in a uniform way.

Unidirectional relationships

Unidirectional relations are those that are generated in relation to one another but not vice versa.

Bidirectional relations

The bidirectional relations build relationships in both models and each model defines the inverse relationship of the other.

Defining relationships

In Phalcon, relationships must be defined in the initialize() method of a model. The methods belongsTo(), hasOne(),
hasMany() and hasManyToMany() define the relationship between one or more fields from the current model to fields in
another model. Each of these methods requires 3 parameters: local fields, referenced model, referenced fields.

	Method
	Description

	hasMany
	Defines a 1-n relationship

	hasOne
	Defines a 1-1 relationship

	belongsTo
	Defines a n-1 relationship

	hasManyToMany
	Defines a n-n relationship

The following schema shows 3 tables whose relations will serve us as an example regarding relationships:

CREATE TABLE `robots` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(70) NOT NULL,
 `type` varchar(32) NOT NULL,
 `year` int(11) NOT NULL,
 PRIMARY KEY (`id`)
);

CREATE TABLE `robots_parts` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `robots_id` int(10) NOT NULL,
 `parts_id` int(10) NOT NULL,
 `created_at` DATE NOT NULL,
 PRIMARY KEY (`id`),
 KEY `robots_id` (`robots_id`),
 KEY `parts_id` (`parts_id`)
);

CREATE TABLE `parts` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(70) NOT NULL,
 PRIMARY KEY (`id`)
);

	The model “Robots” has many “RobotsParts”.

	The model “Parts” has many “RobotsParts”.

	The model “RobotsParts” belongs to both “Robots” and “Parts” models as a many-to-one relation.

	The model “Robots” has a relation many-to-many to “Parts” through “RobotsParts”.

Check the EER diagram to understand better the relations:

[image: ../_images/eer-1.png]

The models with their relations could be implemented as follows:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public function initialize()
 {
 $this->hasMany(
 "id",
 "RobotsParts",
 "robots_id"
);
 }
}

<?php

use Phalcon\Mvc\Model;

class Parts extends Model
{
 public $id;

 public $name;

 public function initialize()
 {
 $this->hasMany(
 "id",
 "RobotsParts",
 "parts_id"
);
 }
}

<?php

use Phalcon\Mvc\Model;

class RobotsParts extends Model
{
 public $id;

 public $robots_id;

 public $parts_id;

 public function initialize()
 {
 $this->belongsTo(
 "robots_id",
 "Store\\Toys\\Robots",
 "id"
);

 $this->belongsTo(
 "parts_id",
 "Parts",
 "id"
);
 }
}

The first parameter indicates the field of the local model used in the relationship; the second indicates the name
of the referenced model and the third the field name in the referenced model. You could also use arrays to define multiple fields in the relationship.

Many to many relationships require 3 models and define the attributes involved in the relationship:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public function initialize()
 {
 $this->hasManyToMany(
 "id",
 "RobotsParts",
 "robots_id", "parts_id",
 "Parts",
 "id"
);
 }
}

Taking advantage of relationships

When explicitly defining the relationships between models, it is easy to find related records for a particular record.

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(2);

foreach ($robot->robotsParts as $robotPart) {
 echo $robotPart->parts->name, "\n";
}

Phalcon uses the magic methods __set/__get/__call to store or retrieve related data using relationships.

By accessing an attribute with the same name as the relationship will retrieve all its related record(s).

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst();

// All the related records in RobotsParts
$robotsParts = $robot->robotsParts;

Also, you can use a magic getter:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst();

// All the related records in RobotsParts
$robotsParts = $robot->getRobotsParts();

// Passing parameters
$robotsParts = $robot->getRobotsParts(
 [
 "limit" => 5,
]
);

If the called method has a “get” prefix Phalcon\Mvc\Model will return a
findFirst()/find() result. The following example compares retrieving related results with using magic methods
and without:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(2);

// Robots model has a 1-n (hasMany)
// relationship to RobotsParts then
$robotsParts = $robot->robotsParts;

// Only parts that match conditions
$robotsParts = $robot->getRobotsParts(
 [
 "created_at = :date:",
 "bind" => [
 "date" => "2015-03-15"
]
]
);

$robotPart = RobotsParts::findFirst(1);

// RobotsParts model has a n-1 (belongsTo)
// relationship to RobotsParts then
$robot = $robotPart->robots;

Getting related records manually:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(2);

// Robots model has a 1-n (hasMany)
// relationship to RobotsParts, then
$robotsParts = RobotsParts::find(
 [
 "robots_id = :id:",
 "bind" => [
 "id" => $robot->id,
]
]
);

// Only parts that match conditions
$robotsParts = RobotsParts::find(
 [
 "robots_id = :id: AND created_at = :date:",
 "bind" => [
 "id" => $robot->id,
 "date" => "2015-03-15",
]
]
);

$robotPart = RobotsParts::findFirst(1);

// RobotsParts model has a n-1 (belongsTo)
// relationship to RobotsParts then
$robot = Robots::findFirst(
 [
 "id = :id:",
 "bind" => [
 "id" => $robotPart->robots_id,
]
]
);

The prefix “get” is used to find()/findFirst() related records. Depending on the type of relation it will use
find() or findFirst():

	Type
	Description
	Implicit Method

	Belongs-To
	Returns a model instance of the related record directly
	findFirst

	Has-One
	Returns a model instance of the related record directly
	findFirst

	Has-Many
	Returns a collection of model instances of the referenced model
	find

	Has-Many-to-Many
	Returns a collection of model instances of the referenced model, it implicitly does ‘inner joins’ with the involved models
	(complex query)

You can also use the “count” prefix to return an integer denoting the count of the related records:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst(2);

echo "The robot has ", $robot->countRobotsParts(), " parts\n";

Aliasing Relationships

To explain better how aliases work, let’s check the following example:

The “robots_similar” table has the function to define what robots are similar to others:

mysql> desc robots_similar;
+-------------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+------------------+------+-----+---------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| robots_id | int(10) unsigned | NO | MUL | NULL | |
| similar_robots_id | int(10) unsigned | NO | | NULL | |
+-------------------+------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

Both “robots_id” and “similar_robots_id” have a relation to the model Robots:

[image: ../_images/eer-2.png]

A model that maps this table and its relationships is the following:

<?php

class RobotsSimilar extends Phalcon\Mvc\Model
{
 public function initialize()
 {
 $this->belongsTo(
 "robots_id",
 "Store\\Toys\\Robots",
 "id"
);

 $this->belongsTo(
 "similar_robots_id",
 "Store\\Toys\\Robots",
 "id"
);
 }
}

Since both relations point to the same model (Robots), obtain the records related to the relationship could not be clear:

<?php

$robotsSimilar = RobotsSimilar::findFirst();

// Returns the related record based on the column (robots_id)
// Also as is a belongsTo it's only returning one record
// but the name 'getRobots' seems to imply that return more than one
$robot = $robotsSimilar->getRobots();

// but, how to get the related record based on the column (similar_robots_id)
// if both relationships have the same name?

The aliases allow us to rename both relationships to solve these problems:

<?php

use Phalcon\Mvc\Model;

class RobotsSimilar extends Model
{
 public function initialize()
 {
 $this->belongsTo(
 "robots_id",
 "Store\\Toys\\Robots",
 "id",
 [
 "alias" => "Robot",
]
);

 $this->belongsTo(
 "similar_robots_id",
 "Store\\Toys\\Robots",
 "id",
 [
 "alias" => "SimilarRobot",
]
);
 }
}

With the aliasing we can get the related records easily:

<?php

$robotsSimilar = RobotsSimilar::findFirst();

// Returns the related record based on the column (robots_id)
$robot = $robotsSimilar->getRobot();
$robot = $robotsSimilar->robot;

// Returns the related record based on the column (similar_robots_id)
$similarRobot = $robotsSimilar->getSimilarRobot();
$similarRobot = $robotsSimilar->similarRobot;

Magic Getters vs. Explicit methods

Most IDEs and editors with auto-completion capabilities can not infer the correct types when using magic getters,
instead of use the magic getters you can optionally define those methods explicitly with the corresponding
docblocks helping the IDE to produce a better auto-completion:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $id;

 public $name;

 public function initialize()
 {
 $this->hasMany(
 "id",
 "RobotsParts",
 "robots_id"
);
 }

 /**
 * Return the related "robots parts"
 *
 * @return \RobotsParts[]
 */
 public function getRobotsParts($parameters = null)
 {
 return $this->getRelated("RobotsParts", $parameters);
 }
}

Virtual Foreign Keys

By default, relationships do not act like database foreign keys, that is, if you try to insert/update a value without having a valid
value in the referenced model, Phalcon will not produce a validation message. You can modify this behavior by adding a fourth parameter
when defining a relationship.

The RobotsPart model can be changed to demonstrate this feature:

<?php

use Phalcon\Mvc\Model;

class RobotsParts extends Model
{
 public $id;

 public $robots_id;

 public $parts_id;

 public function initialize()
 {
 $this->belongsTo(
 "robots_id",
 "Store\\Toys\\Robots",
 "id",
 [
 "foreignKey" => true
]
);

 $this->belongsTo(
 "parts_id",
 "Parts",
 "id",
 [
 "foreignKey" => [
 "message" => "The part_id does not exist on the Parts model"
]
]
);
 }
}

If you alter a belongsTo() relationship to act as foreign key, it will validate that the values inserted/updated on those fields have a
valid value on the referenced model. Similarly, if a hasMany()/hasOne() is altered it will validate that the records cannot be deleted
if that record is used on a referenced model.

<?php

use Phalcon\Mvc\Model;

class Parts extends Model
{
 public function initialize()
 {
 $this->hasMany(
 "id",
 "RobotsParts",
 "parts_id",
 [
 "foreignKey" => [
 "message" => "The part cannot be deleted because other robots are using it",
]
]
);
 }
}

A virtual foreign key can be set up to allow null values as follows:

<?php

use Phalcon\Mvc\Model;

class RobotsParts extends Model
{
 public $id;

 public $robots_id;

 public $parts_id;

 public function initialize()
 {
 $this->belongsTo(
 "parts_id",
 "Parts",
 "id",
 [
 "foreignKey" => [
 "allowNulls" => true,
 "message" => "The part_id does not exist on the Parts model",
]
]
);
 }
}

Cascade/Restrict actions

Relationships that act as virtual foreign keys by default restrict the creation/update/deletion of records
to maintain the integrity of data:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Relation;

class Robots extends Model
{
 public $id;

 public $name;

 public function initialize()
 {
 $this->hasMany(
 "id",
 "Parts",
 "robots_id",
 [
 "foreignKey" => [
 "action" => Relation::ACTION_CASCADE,
]
]
);
 }
}

The above code set up to delete all the referenced records (parts) if the master record (robot) is deleted.

Storing Related Records

Magic properties can be used to store a record and its related properties:

<?php

// Create an artist
$artist = new Artists();

$artist->name = "Shinichi Osawa";
$artist->country = "Japan";

// Create an album
$album = new Albums();

$album->name = "The One";
$album->artist = $artist; // Assign the artist
$album->year = 2008;

// Save both records
$album->save();

Saving a record and its related records in a has-many relation:

<?php

// Get an existing artist
$artist = Artists::findFirst(
 "name = 'Shinichi Osawa'"
);

// Create an album
$album = new Albums();

$album->name = "The One";
$album->artist = $artist;

$songs = [];

// Create a first song
$songs[0] = new Songs();
$songs[0]->name = "Star Guitar";
$songs[0]->duration = "5:54";

// Create a second song
$songs[1] = new Songs();
$songs[1]->name = "Last Days";
$songs[1]->duration = "4:29";

// Assign the songs array
$album->songs = $songs;

// Save the album + its songs
$album->save();

Saving the album and the artist at the same time implicitly makes use of a transaction so if anything
goes wrong with saving the related records, the parent will not be saved either. Messages are
passed back to the user for information regarding any errors.

Note: Adding related entities by overloading the following methods is not possible:

	Phalcon\Mvc\Model::beforeSave()

	Phalcon\Mvc\Model::beforeCreate()

	Phalcon\Mvc\Model::beforeUpdate()

You need to overload Phalcon\Mvc\Model::save() for this to work from within a model.

Operations over Resultsets

If a resultset is composed of complete objects, the resultset is in the ability to perform operations on the records obtained in a simple manner:

Updating related records

Instead of doing this:

<?php

$parts = $robots->getParts();

foreach ($parts as $part) {
 $part->stock = 100;
 $part->updated_at = time();

 if ($part->update() === false) {
 $messages = $part->getMessages();

 foreach ($messages as $message) {
 echo $message;
 }

 break;
 }
}

you can do this:

<?php

$robots->getParts()->update(
 [
 "stock" => 100,
 "updated_at" => time(),
]
);

‘update’ also accepts an anonymous function to filter what records must be updated:

<?php

$data = [
 "stock" => 100,
 "updated_at" => time(),
];

// Update all the parts except those whose type is basic
$robots->getParts()->update(
 $data,
 function ($part) {
 if ($part->type === Part::TYPE_BASIC) {
 return false;
 }

 return true;
 }
);

Deleting related records

Instead of doing this:

<?php

$parts = $robots->getParts();

foreach ($parts as $part) {
 if ($part->delete() === false) {
 $messages = $part->getMessages();

 foreach ($messages as $message) {
 echo $message;
 }

 break;
 }
}

you can do this:

<?php

$robots->getParts()->delete();

delete() also accepts an anonymous function to filter what records must be deleted:

<?php

// Delete only whose stock is greater or equal than zero
$robots->getParts()->delete(
 function ($part) {
 if ($part->stock < 0) {
 return false;
 }

 return true;
 }
);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Model Events

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Model Events

Events and Events Manager

Models allow you to implement events that will be thrown while performing an insert/update/delete which can be used to define business rules. The following are the events supported by Phalcon\Mvc\Model and their order of execution:

	Operation
	Name
	Can stop operation?
	Explanation

	Inserting/Updating
	beforeValidation
	YES
	Is executed before the fields are validated for not nulls/empty strings or foreign keys

	Inserting
	beforeValidationOnCreate
	YES
	Is executed before the fields are validated for not nulls/empty strings or foreign keys when an insertion operation is being made

	Updating
	beforeValidationOnUpdate
	YES
	Is executed before the fields are validated for not nulls/empty strings or foreign keys when an updating operation is being made

	Inserting/Updating
	onValidationFails
	YES (already stopped)
	Is executed after an integrity validator fails

	Inserting
	afterValidationOnCreate
	YES
	Is executed after the fields are validated for not nulls/empty strings or foreign keys when an insertion operation is being made

	Updating
	afterValidationOnUpdate
	YES
	Is executed after the fields are validated for not nulls/empty strings or foreign keys when an updating operation is being made

	Inserting/Updating
	afterValidation
	YES
	Is executed after the fields are validated for not nulls/empty strings or foreign keys

	Inserting/Updating
	beforeSave
	YES
	Runs before the required operation over the database system

	Updating
	beforeUpdate
	YES
	Runs before the required operation over the database system only when an updating operation is being made

	Inserting
	beforeCreate
	YES
	Runs before the required operation over the database system only when an inserting operation is being made

	Updating
	afterUpdate
	NO
	Runs after the required operation over the database system only when an updating operation is being made

	Inserting
	afterCreate
	NO
	Runs after the required operation over the database system only when an inserting operation is being made

	Inserting/Updating
	afterSave
	NO
	Runs after the required operation over the database system

Implementing Events in the Model’s class

The easier way to make a model react to events is to implement a method with the same name of the event in the model’s class:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function beforeValidationOnCreate()
 {
 echo "This is executed before creating a Robot!";
 }
}

Events can be used to assign values before performing an operation, for example:

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 public function beforeCreate()
 {
 // Set the creation date
 $this->created_at = date("Y-m-d H:i:s");
 }

 public function beforeUpdate()
 {
 // Set the modification date
 $this->modified_in = date("Y-m-d H:i:s");
 }
}

Using a custom Events Manager

Additionally, this component is integrated with Phalcon\Events\Manager,
this means we can create listeners that run when an event is triggered.

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

class Robots extends Model
{
 public function initialize()
 {
 $eventsManager = new EventsManager();

 // Attach an anonymous function as a listener for "model" events
 $eventsManager->attach(
 "model:beforeSave",
 function (Event $event, $robot) {
 if ($robot->name === "Scooby Doo") {
 echo "Scooby Doo isn't a robot!";

 return false;
 }

 return true;
 }
);

 // Attach the events manager to the event
 $this->setEventsManager($eventsManager);
 }
}

In the example given above, the Events Manager only acts as a bridge between an object and a listener (the anonymous function).
Events will be fired to the listener when ‘robots’ are saved:

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->name = "Scooby Doo";
$robot->year = 1969;

$robot->save();

If we want all objects created in our application use the same EventsManager, then we need to assign it to the Models Manager:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

// Registering the modelsManager service
$di->setShared(
 "modelsManager",
 function () {
 $eventsManager = new EventsManager();

 // Attach an anonymous function as a listener for "model" events
 $eventsManager->attach(
 "model:beforeSave",
 function (Event $event, $model) {
 // Catch events produced by the Robots model
 if (get_class($model) === "Store\\Toys\\Robots") {
 if ($model->name === "Scooby Doo") {
 echo "Scooby Doo isn't a robot!";

 return false;
 }
 }

 return true;
 }
);

 // Setting a default EventsManager
 $modelsManager = new ModelsManager();

 $modelsManager->setEventsManager($eventsManager);

 return $modelsManager;
 }
);

If a listener returns false that will stop the operation that is executing currently.

Logging Low-Level SQL Statements

When using high-level abstraction components such as Phalcon\Mvc\Model to access a database, it is
difficult to understand which statements are finally sent to the database system. Phalcon\Mvc\Model
is supported internally by Phalcon\Db. Phalcon\Logger interacts
with Phalcon\Db, providing logging capabilities on the database abstraction layer, thus allowing us to log SQL
statements as they happen.

<?php

use Phalcon\Logger;
use Phalcon\Events\Manager;
use Phalcon\Logger\Adapter\File as FileLogger;
use Phalcon\Db\Adapter\Pdo\Mysql as Connection;

$di->set(
 "db",
 function () {
 $eventsManager = new EventsManager();

 $logger = new FileLogger("app/logs/debug.log");

 // Listen all the database events
 $eventsManager->attach(
 "db:beforeQuery",
 function ($event, $connection) use ($logger) {
 $logger->log(
 $connection->getSQLStatement(),
 Logger::INFO
);
 }
);

 $connection = new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);

 // Assign the eventsManager to the db adapter instance
 $connection->setEventsManager($eventsManager);

 return $connection;
 }
);

As models access the default database connection, all SQL statements that are sent to the database system will be logged in the file:

<?php

use Store\Toys\Robots;

$robot = new Robots();

$robot->name = "Robby the Robot";
$robot->created_at = "1956-07-21";

if ($robot->save() === false) {
 echo "Cannot save robot";
}

As above, the file app/logs/db.log will contain something like this:

[Mon, 30 Apr 12 13:47:18 -0500][DEBUG][Resource Id #77] INSERT INTO robots
(name, created_at) VALUES ('Robby the Robot', '1956-07-21')

Profiling SQL Statements

Thanks to Phalcon\Db, the underlying component of Phalcon\Mvc\Model,
it’s possible to profile the SQL statements generated by the ORM in order to analyze the performance of database operations. With
this you can diagnose performance problems and to discover bottlenecks.

<?php

use Phalcon\Db\Profiler as ProfilerDb;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Db\Adapter\Pdo\Mysql as MysqlPdo;

$di->set(
 "profiler",
 function () {
 return new ProfilerDb();
 },
 true
);

$di->set(
 "db",
 function () use ($di) {
 $eventsManager = new EventsManager();

 // Get a shared instance of the DbProfiler
 $profiler = $di->getProfiler();

 // Listen all the database events
 $eventsManager->attach(
 "db",
 function ($event, $connection) use ($profiler) {
 if ($event->getType() === "beforeQuery") {
 $profiler->startProfile(
 $connection->getSQLStatement()
);
 }

 if ($event->getType() === "afterQuery") {
 $profiler->stopProfile();
 }
 }
);

 $connection = new MysqlPdo(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);

 // Assign the eventsManager to the db adapter instance
 $connection->setEventsManager($eventsManager);

 return $connection;
 }
);

Profiling some queries:

<?php

use Store\Toys\Robots;

// Send some SQL statements to the database
Robots::find();

Robots::find(
 [
 "order" => "name",
]
);

Robots::find(
 [
 "limit" => 30,
]
);

// Get the generated profiles from the profiler
$profiles = $di->get("profiler")->getProfiles();

foreach ($profiles as $profile) {
 echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
 echo "Start Time: ", $profile->getInitialTime(), "\n";
 echo "Final Time: ", $profile->getFinalTime(), "\n";
 echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";
}

Each generated profile contains the duration in milliseconds that each instruction takes to complete as well as the generated SQL statement.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Model Behaviors

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Model Behaviors

Behaviors are shared conducts that several models may adopt in order to re-use code, the ORM provides an API to implement
behaviors in your models. Also, you can use the events and callbacks as seen before as an alternative to implement Behaviors with more freedom.

A behavior must be added in the model initializer, a model can have zero or more behaviors:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Behavior\Timestampable;

class Users extends Model
{
 public $id;

 public $name;

 public $created_at;

 public function initialize()
 {
 $this->addBehavior(
 new Timestampable(
 [
 "beforeCreate" => [
 "field" => "created_at",
 "format" => "Y-m-d",
]
]
)
);
 }
}

The following built-in behaviors are provided by the framework:

	Name
	Description

	Timestampable
	Allows to automatically update a model’s attribute saving the datetime when a record is created or updated

	SoftDelete
	Instead of permanently delete a record it marks the record as deleted changing the value of a flag column

Timestampable

This behavior receives an array of options, the first level key must be an event name indicating when the column must be assigned:

<?php

use Phalcon\Mvc\Model\Behavior\Timestampable;

public function initialize()
{
 $this->addBehavior(
 new Timestampable(
 [
 "beforeCreate" => [
 "field" => "created_at",
 "format" => "Y-m-d",
]
]
)
);
}

Each event can have its own options, ‘field’ is the name of the column that must be updated, if ‘format’ is a string it will be used
as format of the PHP’s function date [http://php.net/manual/en/function.date.php], format can also be an anonymous function providing you the free to generate any kind timestamp:

<?php

use DateTime;
use DateTimeZone;
use Phalcon\Mvc\Model\Behavior\Timestampable;

public function initialize()
{
 $this->addBehavior(
 new Timestampable(
 [
 "beforeCreate" => [
 "field" => "created_at",
 "format" => function () {
 $datetime = new Datetime(
 new DateTimeZone("Europe/Stockholm")
);

 return $datetime->format("Y-m-d H:i:sP");
 }
]
]
)
);
}

If the option ‘format’ is omitted a timestamp using the PHP’s function time [http://php.net/manual/en/function.time.php], will be used.

SoftDelete

This behavior can be used in the following way:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Behavior\SoftDelete;

class Users extends Model
{
 const DELETED = "D";

 const NOT_DELETED = "N";

 public $id;

 public $name;

 public $status;

 public function initialize()
 {
 $this->addBehavior(
 new SoftDelete(
 [
 "field" => "status",
 "value" => Users::DELETED,
]
)
);
 }
}

This behavior accepts two options: ‘field’ and ‘value’, ‘field’ determines what field must be updated and ‘value’ the value to be deleted.
Let’s pretend the table ‘users’ has the following data:

mysql> select * from users;
+----+---------+--------+
| id | name | status |
+----+---------+--------+
| 1 | Lana | N |
| 2 | Brandon | N |
+----+---------+--------+
2 rows in set (0.00 sec)

If we delete any of the two records the status will be updated instead of delete the record:

<?php

Users::findFirst(2)->delete();

The operation will result in the following data in the table:

mysql> select * from users;
+----+---------+--------+
| id | name | status |
+----+---------+--------+
| 1 | Lana | N |
| 2 | Brandon | D |
+----+---------+--------+
2 rows in set (0.01 sec)

Note that you need to specify the deleted condition in your queries to effectively ignore them as deleted records, this behavior doesn’t support that.

Creating your own behaviors

The ORM provides an API to create your own behaviors. A behavior must be a class implementing the Phalcon\Mvc\Model\BehaviorInterface.
Also, Phalcon\Mvc\Model\Behavior provides most of the methods needed to ease the implementation of behaviors.

The following behavior is an example, it implements the Blameable behavior which helps identify the user
that is performed operations over a model:

<?php

use Phalcon\Mvc\Model\Behavior;
use Phalcon\Mvc\Model\BehaviorInterface;

class Blameable extends Behavior implements BehaviorInterface
{
 public function notify($eventType, $model)
 {
 switch ($eventType) {

 case "afterCreate":
 case "afterDelete":
 case "afterUpdate":

 $userName = // ... get the current user from session

 // Store in a log the username, event type and primary key
 file_put_contents(
 "logs/blamable-log.txt",
 $userName . " " . $eventType . " " . $model->id
);

 break;

 default:
 /* ignore the rest of events */
 }
 }
}

The former is a very simple behavior, but it illustrates how to create a behavior, now let’s add this behavior to a model:

<?php

use Phalcon\Mvc\Model;

class Profiles extends Model
{
 public function initialize()
 {
 $this->addBehavior(
 new Blameable()
);
 }
}

A behavior is also capable of intercepting missing methods on your models:

<?php

use Phalcon\Tag;
use Phalcon\Mvc\Model\Behavior;
use Phalcon\Mvc\Model\BehaviorInterface;

class Sluggable extends Behavior implements BehaviorInterface
{
 public function missingMethod($model, $method, $arguments = [])
 {
 // If the method is 'getSlug' convert the title
 if ($method === "getSlug") {
 return Tag::friendlyTitle($model->title);
 }
 }
}

Call that method on a model that implements Sluggable returns a SEO friendly title:

<?php

$title = $post->getSlug();

Using Traits as behaviors

Starting from PHP 5.4 you can use Traits [http://php.net/manual/en/language.oop5.traits.php] to re-use code in your classes, this is another way to implement
custom behaviors. The following trait implements a simple version of the Timestampable behavior:

<?php

trait MyTimestampable
{
 public function beforeCreate()
 {
 $this->created_at = date("r");
 }

 public function beforeUpdate()
 {
 $this->updated_at = date("r");
 }
}

Then you can use it in your model as follows:

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 use MyTimestampable;
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Models Metadata

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Models Metadata

To speed up development Phalcon\Mvc\Model helps you to query fields and constraints from tables
related to models. To achieve this, Phalcon\Mvc\Model\MetaData is available to manage
and cache table metadata.

Sometimes it is necessary to get those attributes when working with models. You can get a metadata instance as follows:

<?php

$robot = new Robots();

// Get Phalcon\Mvc\Model\Metadata instance
$metadata = $robot->getModelsMetaData();

// Get robots fields names
$attributes = $metadata->getAttributes($robot);
print_r($attributes);

// Get robots fields data types
$dataTypes = $metadata->getDataTypes($robot);
print_r($dataTypes);

Caching Metadata

Once the application is in a production stage, it is not necessary to query the metadata of the table from the database system each
time you use the table. This could be done caching the metadata using any of the following adapters:

	Adapter
	Description
	API

	Memory
	This adapter is the default. The metadata is cached only during the request. When the request is completed, the metadata are released as part of the normal memory of the request. This adapter is perfect when the application is in development so as to refresh the metadata in each request containing the new and/or modified fields.
	Phalcon\Mvc\Model\MetaData\Memory

	Session
	This adapter stores metadata in the $_SESSION superglobal. This adapter is recommended only when the application is actually using a small number of models. The metadata are refreshed every time a new session starts. This also requires the use of session_start() to start the session before using any models.
	Phalcon\Mvc\Model\MetaData\Session

	Apc
	This adapter uses the Alternative PHP Cache (APC) [http://www.php.net/manual/en/book.apc.php] to store the table metadata. You can specify the lifetime of the metadata with options. This is the most recommended way to store metadata when the application is in production stage.
	Phalcon\Mvc\Model\MetaData\Apc

	XCache
	This adapter uses XCache [http://xcache.lighttpd.net/] to store the table metadata. You can specify the lifetime of the metadata with options. This is the most recommended way to store metadata when the application is in production stage.
	Phalcon\Mvc\Model\MetaData\Xcache

	Files
	This adapter uses plain files to store metadata. By using this adapter the disk-reading is increased but the database access is reduced.
	Phalcon\Mvc\Model\MetaData\Files

As other ORM’s dependencies, the metadata manager is requested from the services container:

<?php

use Phalcon\Mvc\Model\MetaData\Apc as ApcMetaData;

$di["modelsMetadata"] = function () {
 // Create a metadata manager with APC
 $metadata = new ApcMetaData(
 [
 "lifetime" => 86400,
 "prefix" => "my-prefix",
]
);

 return $metadata;
};

Metadata Strategies

As mentioned above the default strategy to obtain the model’s metadata is database introspection. In this strategy, the information
schema is used to know the fields in a table, its primary key, nullable fields, data types, etc.

You can change the default metadata introspection in the following way:

<?php

use Phalcon\Mvc\Model\MetaData\Apc as ApcMetaData;

$di["modelsMetadata"] = function () {
 // Instantiate a metadata adapter
 $metadata = new ApcMetaData(
 [
 "lifetime" => 86400,
 "prefix" => "my-prefix",
]
);

 // Set a custom metadata introspection strategy
 $metadata->setStrategy(
 new MyIntrospectionStrategy()
);

 return $metadata;
};

Database Introspection Strategy

This strategy doesn’t require any customization and is implicitly used by all the metadata adapters.

Annotations Strategy

This strategy makes use of annotations to describe the columns in a model:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 /**
 * @Primary
 * @Identity
 * @Column(type="integer", nullable=false)
 */
 public $id;

 /**
 * @Column(type="string", length=70, nullable=false)
 */
 public $name;

 /**
 * @Column(type="string", length=32, nullable=false)
 */
 public $type;

 /**
 * @Column(type="integer", nullable=false)
 */
 public $year;
}

Annotations must be placed in properties that are mapped to columns in the mapped source. Properties without the @Column annotation
are handled as simple class attributes.

The following annotations are supported:

	Name
	Description

	Primary
	Mark the field as part of the table’s primary key

	Identity
	The field is an auto_increment/serial column

	Column
	This marks an attribute as a mapped column

The annotation @Column supports the following parameters:

	Name
	Description

	type
	The column’s type (string, integer, decimal, boolean)

	length
	The column’s length if any

	nullable
	Set whether the column accepts null values or not

The annotations strategy could be set up this way:

<?php

use Phalcon\Mvc\Model\MetaData\Apc as ApcMetaData;
use Phalcon\Mvc\Model\MetaData\Strategy\Annotations as StrategyAnnotations;

$di["modelsMetadata"] = function () {
 // Instantiate a metadata adapter
 $metadata = new ApcMetaData(
 [
 "lifetime" => 86400,
 "prefix" => "my-prefix",
]
);

 // Set a custom metadata database introspection
 $metadata->setStrategy(
 new StrategyAnnotations()
);

 return $metadata;
};

Manual Metadata

Phalcon can obtain the metadata for each model automatically without the developer must set them manually
using any of the introspection strategies presented above.

The developer also has the option of define the metadata manually. This strategy overrides
any strategy set in the metadata manager. New columns added/modified/removed to/from the mapped
table must be added/modified/removed also for everything to work properly.

The following example shows how to define the metadata manually:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Db\Column;
use Phalcon\Mvc\Model\MetaData;

class Robots extends Model
{
 public function metaData()
 {
 return array(
 // Every column in the mapped table
 MetaData::MODELS_ATTRIBUTES => [
 "id",
 "name",
 "type",
 "year",
],

 // Every column part of the primary key
 MetaData::MODELS_PRIMARY_KEY => [
 "id",
],

 // Every column that isn't part of the primary key
 MetaData::MODELS_NON_PRIMARY_KEY => [
 "name",
 "type",
 "year",
],

 // Every column that doesn't allows null values
 MetaData::MODELS_NOT_NULL => [
 "id",
 "name",
 "type",
],

 // Every column and their data types
 MetaData::MODELS_DATA_TYPES => [
 "id" => Column::TYPE_INTEGER,
 "name" => Column::TYPE_VARCHAR,
 "type" => Column::TYPE_VARCHAR,
 "year" => Column::TYPE_INTEGER,
],

 // The columns that have numeric data types
 MetaData::MODELS_DATA_TYPES_NUMERIC => [
 "id" => true,
 "year" => true,
],

 // The identity column, use boolean false if the model doesn't have
 // an identity column
 MetaData::MODELS_IDENTITY_COLUMN => "id",

 // How every column must be bound/casted
 MetaData::MODELS_DATA_TYPES_BIND => [
 "id" => Column::BIND_PARAM_INT,
 "name" => Column::BIND_PARAM_STR,
 "type" => Column::BIND_PARAM_STR,
 "year" => Column::BIND_PARAM_INT,
],

 // Fields that must be ignored from INSERT SQL statements
 MetaData::MODELS_AUTOMATIC_DEFAULT_INSERT => [
 "year" => true,
],

 // Fields that must be ignored from UPDATE SQL statements
 MetaData::MODELS_AUTOMATIC_DEFAULT_UPDATE => [
 "year" => true,
],

 // Default values for columns
 MetaData::MODELS_DEFAULT_VALUES => [
 "year" => "2015",
],

 // Fields that allow empty strings
 MetaData::MODELS_EMPTY_STRING_VALUES => [
 "name" => true,
],
);
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Model Transactions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Model Transactions

When a process performs multiple database operations, it might be important that each step is completed successfully so that data integrity can
be maintained. Transactions offer the ability to ensure that all database operations have been executed successfully before the data
is committed to the database.

Transactions in Phalcon allow you to commit all operations if they were executed successfully or rollback all operations if something went wrong.

Manual Transactions

If an application only uses one connection and the transactions aren’t very complex, a transaction can be
created by just moving the current connection into transaction mode and then commit or rollback the operation whether it is successful or not:

<?php

use Phalcon\Mvc\Controller;

class RobotsController extends Controller
{
 public function saveAction()
 {
 // Start a transaction
 $this->db->begin();

 $robot = new Robots();

 $robot->name = "WALL·E";
 $robot->created_at = date("Y-m-d");

 // The model failed to save, so rollback the transaction
 if ($robot->save() === false) {
 $this->db->rollback();
 return;
 }

 $robotPart = new RobotParts();

 $robotPart->robots_id = $robot->id;
 $robotPart->type = "head";

 // The model failed to save, so rollback the transaction
 if ($robotPart->save() === false) {
 $this->db->rollback();

 return;
 }

 // Commit the transaction
 $this->db->commit();
 }
}

Implicit Transactions

Existing relationships can be used to store records and their related instances, this kind of operation
implicitly creates a transaction to ensure that data is correctly stored:

<?php

$robotPart = new RobotParts();

$robotPart->type = "head";

$robot = new Robots();

$robot->name = "WALL·E";
$robot->created_at = date("Y-m-d");
$robot->robotPart = $robotPart;

// Creates an implicit transaction to store both records
$robot->save();

Isolated Transactions

Isolated transactions are executed in a new connection ensuring that all the generated SQL,
virtual foreign key checks and business rules are isolated from the main connection.
This kind of transaction requires a transaction manager that globally manages each
transaction created ensuring that they are correctly rolled back/committed before ending the request:

<?php

use Phalcon\Mvc\Model\Transaction\Failed as TxFailed;
use Phalcon\Mvc\Model\Transaction\Manager as TxManager;

try {
 // Create a transaction manager
 $manager = new TxManager();

 // Request a transaction
 $transaction = $manager->get();

 $robot = new Robots();

 $robot->setTransaction($transaction);

 $robot->name = "WALL·E";
 $robot->created_at = date("Y-m-d");

 if ($robot->save() === false) {
 $transaction->rollback(
 "Cannot save robot"
);
 }

 $robotPart = new RobotParts();

 $robotPart->setTransaction($transaction);

 $robotPart->robots_id = $robot->id;
 $robotPart->type = "head";

 if ($robotPart->save() === false) {
 $transaction->rollback(
 "Cannot save robot part"
);
 }

 // Everything's gone fine, let's commit the transaction
 $transaction->commit();
} catch (TxFailed $e) {
 echo "Failed, reason: ", $e->getMessage();
}

Transactions can be used to delete many records in a consistent way:

<?php

use Phalcon\Mvc\Model\Transaction\Failed as TxFailed;
use Phalcon\Mvc\Model\Transaction\Manager as TxManager;

try {
 // Create a transaction manager
 $manager = new TxManager();

 // Request a transaction
 $transaction = $manager->get();

 // Get the robots to be deleted
 $robots = Robots::find(
 "type = 'mechanical'"
);

 foreach ($robots as $robot) {
 $robot->setTransaction($transaction);

 // Something's gone wrong, we should rollback the transaction
 if ($robot->delete() === false) {
 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 $transaction->rollback(
 $message->getMessage()
);
 }
 }
 }

 // Everything's gone fine, let's commit the transaction
 $transaction->commit();

 echo "Robots were deleted successfully!";
} catch (TxFailed $e) {
 echo "Failed, reason: ", $e->getMessage();
}

Transactions are reused no matter where the transaction object is retrieved. A new transaction is generated only when a commit() or rollback()
is performed. You can use the service container to create the global transaction manager for the entire application:

<?php

use Phalcon\Mvc\Model\Transaction\Manager as TransactionManager

$di->setShared(
 "transactions",
 function () {
 return new TransactionManager();
 }
);

Then access it from a controller or view:

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
 public function saveAction()
 {
 // Obtain the TransactionsManager from the services container
 $manager = $this->di->getTransactions();

 // Or
 $manager = $this->transactions;

 // Request a transaction
 $transaction = $manager->get();

 // ...
 }
}

While a transaction is active, the transaction manager will always return the same transaction across the application.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Validating Models

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Validating Models

Validating Data Integrity

Phalcon\Mvc\Model provides several events to validate data and implement business rules. The special “validation”
event allows us to call built-in validators over the record. Phalcon exposes a few built-in validators that can be used at this stage of validation.

The following example shows how to use it:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;
use Phalcon\Validation;
use Phalcon\Validation\Validator\Uniqueness;
use Phalcon\Validation\Validator\InclusionIn;

class Robots extends Model
{
 public function validation()
 {
 $validator = new Validation();

 $validator->add(
 "type",
 new InclusionIn(
 [
 "domain" => [
 "Mechanical",
 "Virtual",
]
]
)
);

 $validator->add(
 "name",
 new Uniqueness(
 [
 "message" => "The robot name must be unique",
]
)
);

 return $this->validate($validator);
 }
}

The above example performs a validation using the built-in validator “InclusionIn”. It checks the value of the field “type” in a domain list. If
the value is not included in the method then the validator will fail and return false.

For more information on validators, see the Validation documentation.

The idea of creating validators is make them reusable between several models. A validator can also be as simple as:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Message;

class Robots extends Model
{
 public function validation()
 {
 if ($this->type === "Old") {
 $message = new Message(
 "Sorry, old robots are not allowed anymore",
 "type",
 "MyType"
);

 $this->appendMessage($message);

 return false;
 }

 return true;
 }
}

Validation Messages

Phalcon\Mvc\Model has a messaging subsystem that provides a flexible way to output or store the
validation messages generated during the insert/update processes.

Each message is an instance of Phalcon\Mvc\Model\Message and the set of
messages generated can be retrieved with the getMessages() method. Each message provides extended information like the field name that
generated the message or the message type:

<?php

if ($robot->save() === false) {
 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo "Message: ", $message->getMessage();
 echo "Field: ", $message->getField();
 echo "Type: ", $message->getType();
 }
}

Phalcon\Mvc\Model can generate the following types of validation messages:

	Type
	Description

	PresenceOf
	Generated when a field with a non-null attribute on the database is trying to insert/update a null value

	ConstraintViolation
	Generated when a field part of a virtual foreign key is trying to insert/update a value that doesn’t exist in the referenced model

	InvalidValue
	Generated when a validator failed because of an invalid value

	InvalidCreateAttempt
	Produced when a record is attempted to be created but it already exists

	InvalidUpdateAttempt
	Produced when a record is attempted to be updated but it doesn’t exist

The getMessages() method can be overridden in a model to replace/translate the default messages generated automatically by the ORM:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function getMessages()
 {
 $messages = [];

 foreach (parent::getMessages() as $message) {
 switch ($message->getType()) {
 case "InvalidCreateAttempt":
 $messages[] = "The record cannot be created because it already exists";
 break;

 case "InvalidUpdateAttempt":
 $messages[] = "The record cannot be updated because it doesn't exist";
 break;

 case "PresenceOf":
 $messages[] = "The field " . $message->getField() . " is mandatory";
 break;
 }
 }

 return $messages;
 }
}

Validation Failed Events

Another type of events are available when the data validation process finds any inconsistency:

	Operation
	Name
	Explanation

	Insert or Update
	notSaved
	Triggered when the INSERT or UPDATE operation fails for any reason

	Insert, Delete or Update
	onValidationFails
	Triggered when any data manipulation operation fails

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Working with Models (Advanced)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Working with Models (Advanced)

Hydration Modes

As mentioned previously, resultsets are collections of complete objects, this means that every returned result is an object
representing a row in the database. These objects can be modified and saved again to persistence:

<?php

use Store\Toys\Robots;

$robots = Robots::find();

// Manipulating a resultset of complete objects
foreach ($robots as $robot) {
 $robot->year = 2000;

 $robot->save();
}

Sometimes records are obtained only to be presented to a user in read-only mode, in these cases it may be useful
to change the way in which records are represented to facilitate their handling. The strategy used to represent objects
returned in a resultset is called ‘hydration mode’:

<?php

use Phalcon\Mvc\Model\Resultset;
use Store\Toys\Robots;

$robots = Robots::find();

// Return every robot as an array
$robots->setHydrateMode(
 Resultset::HYDRATE_ARRAYS
);

foreach ($robots as $robot) {
 echo $robot["year"], PHP_EOL;
}

// Return every robot as a stdClass
$robots->setHydrateMode(
 Resultset::HYDRATE_OBJECTS
);

foreach ($robots as $robot) {
 echo $robot->year, PHP_EOL;
}

// Return every robot as a Robots instance
$robots->setHydrateMode(
 Resultset::HYDRATE_RECORDS
);

foreach ($robots as $robot) {
 echo $robot->year, PHP_EOL;
}

Hydration mode can also be passed as a parameter of ‘find’:

<?php

use Phalcon\Mvc\Model\Resultset;
use Store\Toys\Robots;

$robots = Robots::find(
 [
 "hydration" => Resultset::HYDRATE_ARRAYS,
]
);

foreach ($robots as $robot) {
 echo $robot["year"], PHP_EOL;
}

Auto-generated identity columns

Some models may have identity columns. These columns usually are the primary key of the mapped table. Phalcon\Mvc\Model
can recognize the identity column omitting it in the generated SQL INSERT, so the database system can generate an auto-generated value for it.
Always after creating a record, the identity field will be registered with the value generated in the database system for it:

<?php

$robot->save();

echo "The generated id is: ", $robot->id;

Phalcon\Mvc\Model is able to recognize the identity column. Depending on the database system, those columns may be
serial columns like in PostgreSQL or auto_increment columns in the case of MySQL.

PostgreSQL uses sequences to generate auto-numeric values, by default, Phalcon tries to obtain the generated value from the sequence “table_field_seq”,
for example: robots_id_seq, if that sequence has a different name, the getSequenceName() method needs to be implemented:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function getSequenceName()
 {
 return "robots_sequence_name";
 }
}

Skipping Columns

To tell Phalcon\Mvc\Model that always omits some fields in the creation and/or update of records in order
to delegate the database system the assignation of the values by a trigger or a default:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 // Skips fields/columns on both INSERT/UPDATE operations
 $this->skipAttributes(
 [
 "year",
 "price",
]
);

 // Skips only when inserting
 $this->skipAttributesOnCreate(
 [
 "created_at",
]
);

 // Skips only when updating
 $this->skipAttributesOnUpdate(
 [
 "modified_in",
]
);
 }
}

This will ignore globally these fields on each INSERT/UPDATE operation on the whole application.
If you want to ignore different attributes on different INSERT/UPDATE operations, you can specify the second parameter (boolean) - true
for replacement. Forcing a default value can be done in the following way:

<?php

use Store\Toys\Robots;

use Phalcon\Db\RawValue;

$robot = new Robots();

$robot->name = "Bender";
$robot->year = 1999;
$robot->created_at = new RawValue("default");

$robot->create();

A callback also can be used to create a conditional assignment of automatic default values:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;
use Phalcon\Db\RawValue;

class Robots extends Model
{
 public function beforeCreate()
 {
 if ($this->price > 10000) {
 $this->type = new RawValue("default");
 }
 }
}

Never use a Phalcon\Db\RawValue to assign external data (such as user input)
or variable data. The value of these fields is ignored when binding parameters to the query.
So it could be used to attack the application injecting SQL.

Dynamic Update

SQL UPDATE statements are by default created with every column defined in the model (full all-field SQL update).
You can change specific models to make dynamic updates, in this case, just the fields that had changed
are used to create the final SQL statement.

In some cases this could improve the performance by reducing the traffic between the application and the database server,
this specially helps when the table has blob/text fields:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 $this->useDynamicUpdate(true);
 }
}

Independent Column Mapping

The ORM supports an independent column map, which allows the developer to use different column names in the model to the ones in
the table. Phalcon will recognize the new column names and will rename them accordingly to match the respective columns in the database.
This is a great feature when one needs to rename fields in the database without having to worry about all the queries
in the code. A change in the column map in the model will take care of the rest. For example:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public $code;

 public $theName;

 public $theType;

 public $theYear;

 public function columnMap()
 {
 // Keys are the real names in the table and
 // the values their names in the application
 return [
 "id" => "code",
 "the_name" => "theName",
 "the_type" => "theType",
 "the_year" => "theYear",
];
 }
}

Then you can use the new names naturally in your code:

<?php

use Store\Toys\Robots;

// Find a robot by its name
$robot = Robots::findFirst(
 "theName = 'Voltron'"
);

echo $robot->theName, "\n";

// Get robots ordered by type
$robot = Robots::find(
 [
 "order" => "theType DESC",
]
);

foreach ($robots as $robot) {
 echo "Code: ", $robot->code, "\n";
}

// Create a robot
$robot = new Robots();

$robot->code = "10101";
$robot->theName = "Bender";
$robot->theType = "Industrial";
$robot->theYear = 2999;

$robot->save();

Take into consideration the following the next when renaming your columns:

	References to attributes in relationships/validators must use the new names

	Refer the real column names will result in an exception by the ORM

The independent column map allow you to:

	Write applications using your own conventions

	Eliminate vendor prefixes/suffixes in your code

	Change column names without change your application code

Record Snapshots

Specific models could be set to maintain a record snapshot when they’re queried. You can use this feature to implement auditing or just to know what
fields are changed according to the data queried from the persistence:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 $this->keepSnapshots(true);
 }
}

When activating this feature the application consumes a bit more of memory to keep track of the original values obtained from the persistence.
In models that have this feature activated you can check what fields changed:

<?php

use Store\Toys\Robots;

// Get a record from the database
$robot = Robots::findFirst();

// Change a column
$robot->name = "Other name";

var_dump($robot->getChangedFields()); // ["name"]

var_dump($robot->hasChanged("name")); // true

var_dump($robot->hasChanged("type")); // false

Pointing to a different schema

If a model is mapped to a table that is in a different schemas/databases than the default. You can use the setSchema() method to define that:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 $this->setSchema("toys");
 }
}

Setting multiple databases

In Phalcon, all models can belong to the same database connection or have an individual one. Actually, when
Phalcon\Mvc\Model needs to connect to the database it requests the “db” service
in the application’s services container. You can overwrite this service setting it in the initialize() method:

<?php

use Phalcon\Db\Adapter\Pdo\Mysql as MysqlPdo;
use Phalcon\Db\Adapter\Pdo\PostgreSQL as PostgreSQLPdo;

// This service returns a MySQL database
$di->set(
 "dbMysql",
 function () {
 return new MysqlPdo(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);
 }
);

// This service returns a PostgreSQL database
$di->set(
 "dbPostgres",
 function () {
 return new PostgreSQLPdo(
 [
 "host" => "localhost",
 "username" => "postgres",
 "password" => "",
 "dbname" => "invo",
]
);
 }
);

Then, in the initialize() method, we define the connection service for the model:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 $this->setConnectionService("dbPostgres");
 }
}

But Phalcon offers you more flexibility, you can define the connection that must be used to ‘read’ and for ‘write’. This is specially useful
to balance the load to your databases implementing a master-slave architecture:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 $this->setReadConnectionService("dbSlave");

 $this->setWriteConnectionService("dbMaster");
 }
}

The ORM also provides Horizontal Sharding facilities, by allowing you to implement a ‘shard’ selection
according to the current query conditions:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 /**
 * Dynamically selects a shard
 *
 * @param array $intermediate
 * @param array $bindParams
 * @param array $bindTypes
 */
 public function selectReadConnection($intermediate, $bindParams, $bindTypes)
 {
 // Check if there is a 'where' clause in the select
 if (isset($intermediate["where"])) {
 $conditions = $intermediate["where"];

 // Choose the possible shard according to the conditions
 if ($conditions["left"]["name"] === "id") {
 $id = $conditions["right"]["value"];

 if ($id > 0 && $id < 10000) {
 return $this->getDI()->get("dbShard1");
 }

 if ($id > 10000) {
 return $this->getDI()->get("dbShard2");
 }
 }
 }

 // Use a default shard
 return $this->getDI()->get("dbShard0");
 }
}

The selectReadConnection() method is called to choose the right connection, this method intercepts any new
query executed:

<?php

use Store\Toys\Robots;

$robot = Robots::findFirst('id = 101');

Injecting services into Models

You may be required to access the application services within a model, the following example explains how to do that:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function notSaved()
 {
 // Obtain the flash service from the DI container
 $flash = $this->getDI()->getFlash();

 $messages = $this->getMessages();

 // Show validation messages
 foreach ($messages as $message) {
 $flash->error($message);
 }
 }
}

The “notSaved” event is triggered every time that a “create” or “update” action fails. So we’re flashing the validation messages
obtaining the “flash” service from the DI container. By doing this, we don’t have to print messages after each save.

Disabling/Enabling Features

In the ORM we have implemented a mechanism that allow you to enable/disable specific features or options globally on the fly.
According to how you use the ORM you can disable that you aren’t using. These options can also be temporarily disabled if required:

<?php

use Phalcon\Mvc\Model;

Model::setup(
 [
 "events" => false,
 "columnRenaming" => false,
]
);

The available options are:

	Option
	Description
	Default

	events
	Enables/Disables callbacks, hooks and event notifications from all the models
	true

	columnRenaming
	Enables/Disables the column renaming
	true

	notNullValidations
	The ORM automatically validate the not null columns present in the mapped table
	true

	virtualForeignKeys
	Enables/Disables the virtual foreign keys
	true

	phqlLiterals
	Enables/Disables literals in the PHQL parser
	true

	lateStateBinding
	Enables/Disables late state binding of the Mvc\Model::cloneResultMap() method
	false

Stand-Alone component

Using Phalcon\Mvc\Model in a stand-alone mode can be demonstrated below:

<?php

use Phalcon\Di;
use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Manager as ModelsManager;
use Phalcon\Db\Adapter\Pdo\Sqlite as Connection;
use Phalcon\Mvc\Model\Metadata\Memory as MetaData;

$di = new Di();

// Setup a connection
$di->set(
 "db",
 new Connection(
 [
 "dbname" => "sample.db",
]
)
);

// Set a models manager
$di->set(
 "modelsManager",
 new ModelsManager()
);

// Use the memory meta-data adapter or other
$di->set(
 "modelsMetadata",
 new MetaData()
);

// Create a model
class Robots extends Model
{

}

// Use the model
echo Robots::count();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Phalcon Query Language (PHQL)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Phalcon Query Language (PHQL)

Phalcon Query Language, PhalconQL or simply PHQL is a high-level, object-oriented SQL dialect that allows to write queries using a
standardized SQL-like language. PHQL is implemented as a parser (written in C) that translates syntax in that of the target RDBMS.

To achieve the highest performance possible, Phalcon provides a parser that uses the same technology as SQLite [http://en.wikipedia.org/wiki/Lemon_Parser_Generator]. This technology
provides a small in-memory parser with a very low memory footprint that is also thread-safe.

The parser first checks the syntax of the pass PHQL statement, then builds an intermediate representation of the statement and
finally it converts it to the respective SQL dialect of the target RDBMS.

In PHQL, we’ve implemented a set of features to make your access to databases more secure:

	Bound parameters are part of the PHQL language helping you to secure your code

	PHQL only allows one SQL statement to be executed per call preventing injections

	PHQL ignores all SQL comments which are often used in SQL injections

	PHQL only allows data manipulation statements, avoiding altering or dropping tables/databases by mistake or externally without authorization

	PHQL implements a high-level abstraction allowing you to handle tables as models and fields as class attributes

Usage Example

To better explain how PHQL works consider the following example. We have two models “Cars” and “Brands”:

<?php

use Phalcon\Mvc\Model;

class Cars extends Model
{
 public $id;

 public $name;

 public $brand_id;

 public $price;

 public $year;

 public $style;

 /**
 * This model is mapped to the table sample_cars
 */
 public function getSource()
 {
 return "sample_cars";
 }

 /**
 * A car only has a Brand, but a Brand have many Cars
 */
 public function initialize()
 {
 $this->belongsTo("brand_id", "Brands", "id");
 }
}

And every Car has a Brand, so a Brand has many Cars:

<?php

use Phalcon\Mvc\Model;

class Brands extends Model
{
 public $id;

 public $name;

 /**
 * The model Brands is mapped to the "sample_brands" table
 */
 public function getSource()
 {
 return "sample_brands";
 }

 /**
 * A Brand can have many Cars
 */
 public function initialize()
 {
 $this->hasMany("id", "Cars", "brand_id");
 }
}

Creating PHQL Queries

PHQL queries can be created just by instantiating the class Phalcon\Mvc\Model\Query:

<?php

use Phalcon\Mvc\Model\Query;

// Instantiate the Query
$query = new Query(
 "SELECT * FROM Cars",
 $this->getDI()
);

// Execute the query returning a result if any
$cars = $query->execute();

From a controller or a view, it’s easy to create/execute them using an injected models manager:

<?php

// Executing a simple query
$query = $this->modelsManager->createQuery("SELECT * FROM Cars");
$cars = $query->execute();

// With bound parameters
$query = $this->modelsManager->createQuery("SELECT * FROM Cars WHERE name = :name:");
$cars = $query->execute(
 [
 "name" => "Audi",
]
);

Or simply execute it:

<?php

// Executing a simple query
$cars = $this->modelsManager->executeQuery(
 "SELECT * FROM Cars"
);

// Executing with bound parameters
$cars = $this->modelsManager->executeQuery(
 "SELECT * FROM Cars WHERE name = :name:",
 [
 "name" => "Audi",
]
);

Selecting Records

As the familiar SQL, PHQL allows querying of records using the SELECT statement we know, except that instead of specifying tables, we use the models classes:

<?php

$query = $manager->createQuery(
 "SELECT * FROM Cars ORDER BY Cars.name"
);

$query = $manager->createQuery(
 "SELECT Cars.name FROM Cars ORDER BY Cars.name"
);

Classes in namespaces are also allowed:

<?php

$phql = "SELECT * FROM Formula\Cars ORDER BY Formula\Cars.name";
$query = $manager->createQuery($phql);

$phql = "SELECT Formula\Cars.name FROM Formula\Cars ORDER BY Formula\Cars.name";
$query = $manager->createQuery($phql);

$phql = "SELECT c.name FROM Formula\Cars c ORDER BY c.name";
$query = $manager->createQuery($phql);

Most of the SQL standard is supported by PHQL, even nonstandard directives such as LIMIT:

<?php

$phql = "SELECT c.name FROM Cars AS c WHERE c.brand_id = 21 ORDER BY c.name LIMIT 100";

$query = $manager->createQuery($phql);

Result Types

Depending on the type of columns we query, the result type will vary. If you retrieve a single whole object, then the object returned is
a Phalcon\Mvc\Model\Resultset\Simple. This kind of resultset is a set of complete model objects:

<?php

$phql = "SELECT c.* FROM Cars AS c ORDER BY c.name";

$cars = $manager->executeQuery($phql);

foreach ($cars as $car) {
 echo "Name: ", $car->name, "\n";
}

This is exactly the same as:

<?php

$cars = Cars::find(
 [
 "order" => "name"
]
);

foreach ($cars as $car) {
 echo "Name: ", $car->name, "\n";
}

Complete objects can be modified and re-saved in the database because they represent a complete record of the associated table. There are
other types of queries that do not return complete objects, for example:

<?php

$phql = "SELECT c.id, c.name FROM Cars AS c ORDER BY c.name";

$cars = $manager->executeQuery($phql);

foreach ($cars as $car) {
 echo "Name: ", $car->name, "\n";
}

We are only requesting some fields in the table, therefore those cannot be considered an entire object, so the returned object is
still a resultset of type Phalcon\Mvc\Model\Resultset\Simple. However, each element is a standard
object that only contain the two columns that were requested.

These values that don’t represent complete objects are what we call scalars. PHQL allows you to query all types of scalars: fields, functions, literals, expressions, etc..:

<?php

$phql = "SELECT CONCAT(c.id, ' ', c.name) AS id_name FROM Cars AS c ORDER BY c.name";

$cars = $manager->executeQuery($phql);

foreach ($cars as $car) {
 echo $car->id_name, "\n";
}

As we can query complete objects or scalars, we can also query both at once:

<?php

$phql = "SELECT c.price*0.16 AS taxes, c.* FROM Cars AS c ORDER BY c.name";

$result = $manager->executeQuery($phql);

The result in this case is an object Phalcon\Mvc\Model\Resultset\Complex.
This allows access to both complete objects and scalars at once:

<?php

foreach ($result as $row) {
 echo "Name: ", $row->cars->name, "\n";
 echo "Price: ", $row->cars->price, "\n";
 echo "Taxes: ", $row->taxes, "\n";
}

Scalars are mapped as properties of each “row”, while complete objects are mapped as properties with the name of its related model.

Joins

It’s easy to request records from multiple models using PHQL. Most kinds of Joins are supported. As we defined
relationships in the models, PHQL adds these conditions automatically:

<?php

$phql = "SELECT Cars.name AS car_name, Brands.name AS brand_name FROM Cars JOIN Brands";

$rows = $manager->executeQuery($phql);

foreach ($rows as $row) {
 echo $row->car_name, "\n";
 echo $row->brand_name, "\n";
}

By default, an INNER JOIN is assumed. You can specify the type of JOIN in the query:

<?php

$phql = "SELECT Cars.*, Brands.* FROM Cars INNER JOIN Brands";
$rows = $manager->executeQuery($phql);

$phql = "SELECT Cars.*, Brands.* FROM Cars LEFT JOIN Brands";
$rows = $manager->executeQuery($phql);

$phql = "SELECT Cars.*, Brands.* FROM Cars LEFT OUTER JOIN Brands";
$rows = $manager->executeQuery($phql);

$phql = "SELECT Cars.*, Brands.* FROM Cars CROSS JOIN Brands";
$rows = $manager->executeQuery($phql);

It is also possible to manually set the conditions of the JOIN:

<?php

$phql = "SELECT Cars.*, Brands.* FROM Cars INNER JOIN Brands ON Brands.id = Cars.brands_id";

$rows = $manager->executeQuery($phql);

Also, the joins can be created using multiple tables in the FROM clause:

<?php

$phql = "SELECT Cars.*, Brands.* FROM Cars, Brands WHERE Brands.id = Cars.brands_id";

$rows = $manager->executeQuery($phql);

foreach ($rows as $row) {
 echo "Car: ", $row->cars->name, "\n";
 echo "Brand: ", $row->brands->name, "\n";
}

If an alias is used to rename the models in the query, those will be used to name the attributes in the every row of the result:

<?php

$phql = "SELECT c.*, b.* FROM Cars c, Brands b WHERE b.id = c.brands_id";

$rows = $manager->executeQuery($phql);

foreach ($rows as $row) {
 echo "Car: ", $row->c->name, "\n";
 echo "Brand: ", $row->b->name, "\n";
}

When the joined model has a many-to-many relation to the ‘from’ model, the intermediate model is implicitly added to the generated query:

<?php

$phql = "SELECT Artists.name, Songs.name FROM Artists " .
 "JOIN Songs WHERE Artists.genre = 'Trip-Hop'";

$result = $this->modelsManager->executeQuery($phql);

This code executes the following SQL in MySQL:

SELECT `artists`.`name`, `songs`.`name` FROM `artists`
INNER JOIN `albums` ON `albums`.`artists_id` = `artists`.`id`
INNER JOIN `songs` ON `albums`.`songs_id` = `songs`.`id`
WHERE `artists`.`genre` = 'Trip-Hop'

Aggregations

The following examples show how to use aggregations in PHQL:

<?php

// How much are the prices of all the cars?
$phql = "SELECT SUM(price) AS summatory FROM Cars";
$row = $manager->executeQuery($phql)->getFirst();
echo $row['summatory'];

// How many cars are by each brand?
$phql = "SELECT Cars.brand_id, COUNT(*) FROM Cars GROUP BY Cars.brand_id";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {
 echo $row->brand_id, ' ', $row["1"], "\n";
}

// How many cars are by each brand?
$phql = "SELECT Brands.name, COUNT(*) FROM Cars JOIN Brands GROUP BY 1";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {
 echo $row->name, ' ', $row["1"], "\n";
}

$phql = "SELECT MAX(price) AS maximum, MIN(price) AS minimum FROM Cars";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {
 echo $row["maximum"], ' ', $row["minimum"], "\n";
}

// Count distinct used brands
$phql = "SELECT COUNT(DISTINCT brand_id) AS brandId FROM Cars";
$rows = $manager->executeQuery($phql);
foreach ($rows as $row) {
 echo $row->brandId, "\n";
}

Conditions

Conditions allow us to filter the set of records we want to query. The WHERE clause allows to do that:

<?php

// Simple conditions
$phql = "SELECT * FROM Cars WHERE Cars.name = 'Lamborghini Espada'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.price > 10000";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE TRIM(Cars.name) = 'Audi R8'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.name LIKE 'Ferrari%'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.name NOT LIKE 'Ferrari%'";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.price IS NULL";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.id IN (120, 121, 122)";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.id NOT IN (430, 431)";
$cars = $manager->executeQuery($phql);

$phql = "SELECT * FROM Cars WHERE Cars.id BETWEEN 1 AND 100";
$cars = $manager->executeQuery($phql);

Also, as part of PHQL, prepared parameters automatically escape the input data, introducing more security:

<?php

$phql = "SELECT * FROM Cars WHERE Cars.name = :name:";
$cars = $manager->executeQuery(
 $phql,
 [
 "name" => "Lamborghini Espada"
]
);

$phql = "SELECT * FROM Cars WHERE Cars.name = ?0";
$cars = $manager->executeQuery(
 $phql,
 [
 0 => "Lamborghini Espada"
]
);

Inserting Data

With PHQL it’s possible to insert data using the familiar INSERT statement:

<?php

// Inserting without columns
$phql = "INSERT INTO Cars VALUES (NULL, 'Lamborghini Espada', "
 . "7, 10000.00, 1969, 'Grand Tourer')";
$manager->executeQuery($phql);

// Specifying columns to insert
$phql = "INSERT INTO Cars (name, brand_id, year, style) "
 . "VALUES ('Lamborghini Espada', 7, 1969, 'Grand Tourer')";
$manager->executeQuery($phql);

// Inserting using placeholders
$phql = "INSERT INTO Cars (name, brand_id, year, style) "
 . "VALUES (:name:, :brand_id:, :year:, :style)";
$manager->executeQuery(
 $phql,
 [
 "name" => "Lamborghini Espada",
 "brand_id" => 7,
 "year" => 1969,
 "style" => "Grand Tourer",
]
);

Phalcon doesn’t only transform the PHQL statements into SQL. All events and business rules defined
in the model are executed as if we created individual objects manually. Let’s add a business rule
on the model cars. A car cannot cost less than $ 10,000:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Message;

class Cars extends Model
{
 public function beforeCreate()
 {
 if ($this->price < 10000) {
 $this->appendMessage(
 new Message("A car cannot cost less than $ 10,000")
);

 return false;
 }
 }
}

If we made the following INSERT in the models Cars, the operation will not be successful
because the price does not meet the business rule that we implemented. By checking the
status of the insertion we can print any validation messages generated internally:

<?php

$phql = "INSERT INTO Cars VALUES (NULL, 'Nissan Versa', 7, 9999.00, 2015, 'Sedan')";

$result = $manager->executeQuery($phql);

if ($result->success() === false) {
 foreach ($result->getMessages() as $message) {
 echo $message->getMessage();
 }
}

Updating Data

Updating rows is very similar than inserting rows. As you may know, the instruction to
update records is UPDATE. When a record is updated the events related to the update operation
will be executed for each row.

<?php

// Updating a single column
$phql = "UPDATE Cars SET price = 15000.00 WHERE id = 101";
$manager->executeQuery($phql);

// Updating multiples columns
$phql = "UPDATE Cars SET price = 15000.00, type = 'Sedan' WHERE id = 101";
$manager->executeQuery($phql);

// Updating multiples rows
$phql = "UPDATE Cars SET price = 7000.00, type = 'Sedan' WHERE brands_id > 5";
$manager->executeQuery($phql);

// Using placeholders
$phql = "UPDATE Cars SET price = ?0, type = ?1 WHERE brands_id > ?2";
$manager->executeQuery(
 $phql,
 [
 0 => 7000.00,
 1 => 'Sedan',
 2 => 5,
]
);

An UPDATE statement performs the update in two phases:

	First, if the UPDATE has a WHERE clause it retrieves all the objects that match these criteria,

	Second, based on the queried objects it updates/changes the requested attributes storing them to the relational database

This way of operation allows that events, virtual foreign keys and validations take part of the updating process.
In summary, the following code:

<?php

$phql = "UPDATE Cars SET price = 15000.00 WHERE id > 101";

$result = $manager->executeQuery($phql);

if ($result->success() === false) {
 $messages = $result->getMessages();

 foreach ($messages as $message) {
 echo $message->getMessage();
 }
}

is somewhat equivalent to:

<?php

$messages = null;

$process = function () use (&$messages) {
 $cars = Cars::find("id > 101");

 foreach ($cars as $car) {
 $car->price = 15000;

 if ($car->save() === false) {
 $messages = $car->getMessages();

 return false;
 }
 }

 return true;
};

$success = $process();

Deleting Data

When a record is deleted the events related to the delete operation will be executed for each row:

<?php

// Deleting a single row
$phql = "DELETE FROM Cars WHERE id = 101";
$manager->executeQuery($phql);

// Deleting multiple rows
$phql = "DELETE FROM Cars WHERE id > 100";
$manager->executeQuery($phql);

// Using placeholders
$phql = "DELETE FROM Cars WHERE id BETWEEN :initial: AND :final:";
$manager->executeQuery(
 $phql,
 [
 "initial" => 1,
 "final" => 100,
]
);

DELETE operations are also executed in two phases like UPDATEs. To check if the deletion produces
any validation messages you should check the status code returned:

<?php

// Deleting multiple rows
$phql = "DELETE FROM Cars WHERE id > 100";

$result = $manager->executeQuery($phql);

if ($result->success() === false) {
 $messages = $result->getMessages();

 foreach ($messages as $message) {
 echo $message->getMessage();
 }
}

Creating queries using the Query Builder

A builder is available to create PHQL queries without the need to write PHQL statements, also providing IDE facilities:

<?php

// Getting a whole set
$robots = $this->modelsManager->createBuilder()
 ->from("Robots")
 ->join("RobotsParts")
 ->orderBy("Robots.name")
 ->getQuery()
 ->execute();

// Getting the first row
$robots = $this->modelsManager->createBuilder()
 ->from("Robots")
 ->join("RobotsParts")
 ->orderBy("Robots.name")
 ->getQuery()
 ->getSingleResult();

That is the same as:

<?php

$phql = "SELECT Robots.* FROM Robots JOIN RobotsParts p ORDER BY Robots.name LIMIT 20";

$result = $manager->executeQuery($phql);

More examples of the builder:

<?php

// 'SELECT Robots.* FROM Robots';
$builder->from("Robots");

// 'SELECT Robots.*, RobotsParts.* FROM Robots, RobotsParts';
$builder->from(
 [
 "Robots",
 "RobotsParts",
]
);

// 'SELECT * FROM Robots';
$phql = $builder->columns("*")
 ->from("Robots");

// 'SELECT id FROM Robots';
$builder->columns("id")
 ->from("Robots");

// 'SELECT id, name FROM Robots';
$builder->columns(["id", "name"])
 ->from("Robots");

// 'SELECT Robots.* FROM Robots WHERE Robots.name = "Voltron"';
$builder->from("Robots")
 ->where("Robots.name = 'Voltron'");

// 'SELECT Robots.* FROM Robots WHERE Robots.id = 100';
$builder->from("Robots")
 ->where(100);

// 'SELECT Robots.* FROM Robots WHERE Robots.type = "virtual" AND Robots.id > 50';
$builder->from("Robots")
 ->where("type = 'virtual'")
 ->andWhere("id > 50");

// 'SELECT Robots.* FROM Robots WHERE Robots.type = "virtual" OR Robots.id > 50';
$builder->from("Robots")
 ->where("type = 'virtual'")
 ->orWhere("id > 50");

// 'SELECT Robots.* FROM Robots GROUP BY Robots.name';
$builder->from("Robots")
 ->groupBy("Robots.name");

// 'SELECT Robots.* FROM Robots GROUP BY Robots.name, Robots.id';
$builder->from("Robots")
 ->groupBy(["Robots.name", "Robots.id"]);

// 'SELECT Robots.name, SUM(Robots.price) FROM Robots GROUP BY Robots.name';
$builder->columns(["Robots.name", "SUM(Robots.price)"])
 ->from("Robots")
 ->groupBy("Robots.name");

// 'SELECT Robots.name, SUM(Robots.price) FROM Robots GROUP BY Robots.name HAVING SUM(Robots.price) > 1000';
$builder->columns(["Robots.name", "SUM(Robots.price)"])
 ->from("Robots")
 ->groupBy("Robots.name")
 ->having("SUM(Robots.price) > 1000");

// 'SELECT Robots.* FROM Robots JOIN RobotsParts';
$builder->from("Robots")
 ->join("RobotsParts");

// 'SELECT Robots.* FROM Robots JOIN RobotsParts AS p';
$builder->from("Robots")
 ->join("RobotsParts", null, "p");

// 'SELECT Robots.* FROM Robots JOIN RobotsParts ON Robots.id = RobotsParts.robots_id AS p';
$builder->from("Robots")
 ->join("RobotsParts", "Robots.id = RobotsParts.robots_id", "p");

// 'SELECT Robots.* FROM Robots
// JOIN RobotsParts ON Robots.id = RobotsParts.robots_id AS p
// JOIN Parts ON Parts.id = RobotsParts.parts_id AS t';
$builder->from("Robots")
 ->join("RobotsParts", "Robots.id = RobotsParts.robots_id", "p")
 ->join("Parts", "Parts.id = RobotsParts.parts_id", "t");

// 'SELECT r.* FROM Robots AS r';
$builder->addFrom("Robots", "r");

// 'SELECT Robots.*, p.* FROM Robots, Parts AS p';
$builder->from("Robots")
 ->addFrom("Parts", "p");

// 'SELECT r.*, p.* FROM Robots AS r, Parts AS p';
$builder->from(["r" => "Robots"])
 ->addFrom("Parts", "p");

// 'SELECT r.*, p.* FROM Robots AS r, Parts AS p';
$builder->from(["r" => "Robots", "p" => "Parts"]);

// 'SELECT Robots.* FROM Robots LIMIT 10';
$builder->from("Robots")
 ->limit(10);

// 'SELECT Robots.* FROM Robots LIMIT 10 OFFSET 5';
$builder->from("Robots")
 ->limit(10, 5);

// 'SELECT Robots.* FROM Robots WHERE id BETWEEN 1 AND 100';
$builder->from("Robots")
 ->betweenWhere("id", 1, 100);

// 'SELECT Robots.* FROM Robots WHERE id IN (1, 2, 3)';
$builder->from("Robots")
 ->inWhere("id", [1, 2, 3]);

// 'SELECT Robots.* FROM Robots WHERE id NOT IN (1, 2, 3)';
$builder->from("Robots")
 ->notInWhere("id", [1, 2, 3]);

// 'SELECT Robots.* FROM Robots WHERE name LIKE '%Art%';
$builder->from("Robots")
 ->where("name LIKE :name:", ["name" => "%" . $name . "%"]);

// 'SELECT r.* FROM Store\Robots WHERE r.name LIKE '%Art%';
$builder->from(['r' => 'Store\Robots'])
 ->where("r.name LIKE :name:", ["name" => "%" . $name . "%"]);

Bound Parameters

Bound parameters in the query builder can be set as the query is constructed or past all at once when executing:

<?php

// Passing parameters in the query construction
$robots = $this->modelsManager->createBuilder()
 ->from("Robots")
 ->where("name = :name:", ["name" => $name])
 ->andWhere("type = :type:", ["type" => $type])
 ->getQuery()
 ->execute();

// Passing parameters in query execution
$robots = $this->modelsManager->createBuilder()
 ->from("Robots")
 ->where("name = :name:")
 ->andWhere("type = :type:")
 ->getQuery()
 ->execute(["name" => $name, "type" => $type]);

Disallow literals in PHQL

Literals can be disabled in PHQL, this means that directly using strings, numbers and boolean values in PHQL strings
will be disallowed. If PHQL statements are created embedding external data on them, this could open the application
to potential SQL injections:

<?php

$login = 'voltron';

$phql = "SELECT * FROM Models\Users WHERE login = '$login'";

$result = $manager->executeQuery($phql);

If $login is changed to ' OR '' = ', the produced PHQL is:

SELECT * FROM Models\Users WHERE login = '' OR '' = ''

Which is always true no matter what the login stored in the database is.

If literals are disallowed strings can be used as part of a PHQL statement, thus an exception
will be thrown forcing the developer to use bound parameters. The same query can be written in a
secure way like this:

<?php

$phql = "SELECT Robots.* FROM Robots WHERE Robots.name = :name:";

$result = $manager->executeQuery(
 $phql,
 [
 "name" => $name,
]
);

You can disallow literals in the following way:

<?php

use Phalcon\Mvc\Model;

Model::setup(
 [
 "phqlLiterals" => false
]
);

Bound parameters can be used even if literals are allowed or not. Disallowing them is just
another security decision a developer could take in web applications.

Escaping Reserved Words

PHQL has a few reserved words, if you want to use any of them as attributes or models names, you need to escape those
words using the cross-database escaping delimiters ‘[‘ and ‘]’:

<?php

$phql = "SELECT * FROM [Update]";
$result = $manager->executeQuery($phql);

$phql = "SELECT id, [Like] FROM Posts";
$result = $manager->executeQuery($phql);

The delimiters are dynamically translated to valid delimiters depending on the database system where the application is currently running on.

PHQL Lifecycle

Being a high-level language, PHQL gives developers the ability to personalize and customize different aspects in order to suit their needs.
The following is the life cycle of each PHQL statement executed:

	The PHQL is parsed and converted into an Intermediate Representation (IR) which is independent of the SQL implemented by database system

	The IR is converted to valid SQL according to the database system associated to the model

	PHQL statements are parsed once and cached in memory. Further executions of the same statement result in a slightly faster execution

Using Raw SQL

A database system could offer specific SQL extensions that aren’t supported by PHQL, in this case, a raw SQL can be appropriate:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Resultset\Simple as Resultset;

class Robots extends Model
{
 public static function findByCreateInterval()
 {
 // A raw SQL statement
 $sql = "SELECT * FROM robots WHERE id > 0";

 // Base model
 $robot = new Robots();

 // Execute the query
 return new Resultset(
 null,
 $robot,
 $robot->getReadConnection()->query($sql)
);
 }
}

If Raw SQL queries are common in your application a generic method could be added to your model:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Resultset\Simple as Resultset;

class Robots extends Model
{
 public static function findByRawSql($conditions, $params = null)
 {
 // A raw SQL statement
 $sql = "SELECT * FROM robots WHERE $conditions";

 // Base model
 $robot = new Robots();

 // Execute the query
 return new Resultset(
 null,
 $robot,
 $robot->getReadConnection()->query($sql, $params)
);
 }
}

The above findByRawSql could be used as follows:

<?php

$robots = Robots::findByRawSql(
 "id > ?",
 [
 10
]
);

Troubleshooting

Some things to keep in mind when using PHQL:

	Classes are case-sensitive, if a class is not defined with the same name as it was created this could lead to an unexpected behavior in operating systems with case-sensitive file systems such as Linux.

	Correct charset must be defined in the connection to bind parameters with success.

	Aliased classes aren’t replaced by full namespaced classes since this only occurs in PHP code and not inside strings.

	If column renaming is enabled avoid using column aliases with the same name as columns to be renamed, this may confuse the query resolver.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Caching in the ORM

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Caching in the ORM

Every application is different, we could have models whose data change frequently and others that rarely change.
Accessing database systems is often one of the most common bottlenecks in terms of performance. This is due to
the complex connection/communication processes that PHP must do in each request to obtain data from the database.
Therefore, if we want to achieve good performance we need to add some layers of caching where the
application requires it.

This chapter explains the possible points where it is possible to implement caching to improve performance.
The framework gives you the tools to implement the cache where you demand of it according to the architecture
of your application.

Caching Resultsets

A well established technique to avoid continuously accessing to the database is to cache resultsets that don’t change
frequently using a system with faster access (usually memory).

When Phalcon\Mvc\Model requires a service to cache resultsets, it will
request it to the Dependency Injector Container with the convention name “modelsCache”.

As Phalcon provides a component to cache any kind of data, we’ll explain how to integrate it with Models.
First, you must register it as a service in the services container:

<?php

use Phalcon\Cache\Frontend\Data as FrontendData;
use Phalcon\Cache\Backend\Memcache as BackendMemcache;

// Set the models cache service
$di->set(
 "modelsCache",
 function () {
 // Cache data for one day by default
 $frontCache = new FrontendData(
 [
 "lifetime" => 86400,
]
);

 // Memcached connection settings
 $cache = new BackendMemcache(
 $frontCache,
 [
 "host" => "localhost",
 "port" => "11211",
]
);

 return $cache;
 }
);

You have complete control in creating and customizing the cache before being used by registering the service
as an anonymous function. Once the cache setup is properly defined you could cache resultsets as follows:

<?php

// Get products without caching
$products = Products::find();

// Just cache the resultset. The cache will expire in 1 hour (3600 seconds)
$products = Products::find(
 [
 "cache" => [
 "key" => "my-cache",
],
]
);

// Cache the resultset for only for 5 minutes
$products = Products::find(
 [
 "cache" => [
 "key" => "my-cache",
 "lifetime" => 300,
],
]
);

// Use the 'cache' service from the DI instead of 'modelsCache'
$products = Products::find(
 [
 "cache" => [
 "key" => "my-cache",
 "cacheService" => "cache",
],
]
);

Caching could be also applied to resultsets generated using relationships:

<?php

// Query some post
$post = Post::findFirst();

// Get comments related to a post, also cache it
$comments = $post->getComments(
 [
 "cache" => [
 "key" => "my-key",
],
]
);

// Get comments related to a post, setting lifetime
$comments = $post->getComments(
 [
 "cache" => [
 "key" => "my-key",
 "lifetime" => 3600,
],
]
);

When a cached resultset needs to be invalidated, you can simply delete it from the cache using the previously specified key.

Note that not all resultsets should be cached. Results that change very frequently should not be cached since they
are invalidated very quickly and caching in that case impacts performance. Additionally, large datasets that
do not change frequently could be cached, but that is a decision that the developer has to make based on the
available caching mechanism and whether the performance impact to simply retrieve that data in the
first place is acceptable.

Forcing Cache

Earlier we saw how Phalcon\Mvc\Model integrates with the caching component provided by the framework. To make a record/resultset
cacheable we pass the key ‘cache’ in the array of parameters:

<?php

// Cache the resultset for only for 5 minutes
$products = Products::find(
 [
 "cache" => [
 "key" => "my-cache",
 "lifetime" => 300,
],
]
);

This gives us the freedom to cache specific queries, however if we want to cache globally every query performed over the model,
we can override the find()/:code:`findFirst() method to force every query to be cached:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 /**
 * Implement a method that returns a string key based
 * on the query parameters
 */
 protected static function _createKey($parameters)
 {
 $uniqueKey = [];

 foreach ($parameters as $key => $value) {
 if (is_scalar($value)) {
 $uniqueKey[] = $key . ":" . $value;
 } elseif (is_array($value)) {
 $uniqueKey[] = $key . ":[" . self::_createKey($value) . "]";
 }
 }

 return join(",", $uniqueKey);
 }

 public static function find($parameters = null)
 {
 // Convert the parameters to an array
 if (!is_array($parameters)) {
 $parameters = [$parameters];
 }

 // Check if a cache key wasn't passed
 // and create the cache parameters
 if (!isset($parameters["cache"])) {
 $parameters["cache"] = [
 "key" => self::_createKey($parameters),
 "lifetime" => 300,
];
 }

 return parent::find($parameters);
 }

 public static function findFirst($parameters = null)
 {
 // ...
 }
}

Accessing the database is several times slower than calculating a cache key. You’re free to implement any
key generation strategy you find to better for your needs. Note that a good key avoids collisions as much as possible -
meaning that different keys should return unrelated records.

This gives you full control on how the cache should be implemented for each model. If this strategy is common to several models
you can create a base class for all of them:

<?php

use Phalcon\Mvc\Model;

class CacheableModel extends Model
{
 protected static function _createKey($parameters)
 {
 // ... Create a cache key based on the parameters
 }

 public static function find($parameters = null)
 {
 // ... Custom caching strategy
 }

 public static function findFirst($parameters = null)
 {
 // ... Custom caching strategy
 }
}

Then use this class as base class for each ‘Cacheable’ model:

<?php

class Robots extends CacheableModel
{

}

Caching PHQL Queries

Regardless of the syntax we used to create them, all queries in the ORM are handled internally using PHQL.
This language gives you much more freedom to create all kinds of queries. Of course these queries can be cached:

<?php

$phql = "SELECT * FROM Cars WHERE name = :name:";

$query = $this->modelsManager->createQuery($phql);

$query->cache(
 [
 "key" => "cars-by-name",
 "lifetime" => 300,
]
);

$cars = $query->execute(
 [
 "name" => "Audi",
]
);

Reusable Related Records

Some models may have relationships with other models. This allows us to easily check the records that relate to instances in memory:

<?php

// Get some invoice
$invoice = Invoices::findFirst();

// Get the customer related to the invoice
$customer = $invoice->customer;

// Print his/her name
echo $customer->name, "\n";

This example is very simple, a customer is queried and can be used as required, for example, to show its name.
This also applies if we retrieve a set of invoices to show customers that correspond to these invoices:

<?php

// Get a set of invoices
// SELECT * FROM invoices;
$invoices = Invoices::find();

foreach ($invoices as $invoice) {
 // Get the customer related to the invoice
 // SELECT * FROM customers WHERE id = ?;
 $customer = $invoice->customer;

 // Print his/her name
 echo $customer->name, "\n";
}

A customer may have one or more bills so, in this example, the same customer record may be unnecessarily queried several times.
To avoid this, we could mark the relationship as reusable; by doing so, we tell the ORM to automatically reuse
the records from memory instead of re-querying them again and again:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 public function initialize()
 {
 $this->belongsTo(
 "customers_id",
 "Customer",
 "id",
 [
 "reusable" => true,
]
);
 }
}

Note that this type of cache works in memory only, this means that cached data are released when the request is terminated.

Caching Related Records

When a related record is queried, the ORM internally builds the appropriate condition and gets the required records using find()/findFirst()
in the target model according to the following table:

	Type
	Description
	Implicit Method

	Belongs-To
	Returns a model instance of the related record directly
	findFirst()

	Has-One
	Returns a model instance of the related record directly
	findFirst()

	Has-Many
	Returns a collection of model instances of the referenced model
	find()

This means that when you get a related record you could intercept how the data is obtained by implementing the corresponding method:

<?php

// Get some invoice
$invoice = Invoices::findFirst();

// Get the customer related to the invoice
$customer = $invoice->customer; // Invoices::findFirst("...");

// Same as above
$customer = $invoice->getCustomer(); // Invoices::findFirst("...");

Accordingly, we could replace the findFirst() method in the Invoices model and implement the cache we consider most appropriate:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 public static function findFirst($parameters = null)
 {
 // ... Custom caching strategy
 }
}

Caching Related Records Recursively

In this scenario, we assume that every time we query a result we also retrieve their associated records.
If we store the records found together with their related entities perhaps we could reduce a bit the overhead required
to obtain all entities:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 protected static function _createKey($parameters)
 {
 // ... Create a cache key based on the parameters
 }

 protected static function _getCache($key)
 {
 // Returns data from a cache
 }

 protected static function _setCache($key, $results)
 {
 // Stores data in the cache
 }

 public static function find($parameters = null)
 {
 // Create a unique key
 $key = self::_createKey($parameters);

 // Check if there are data in the cache
 $results = self::_getCache($key);

 // Valid data is an object
 if (is_object($results)) {
 return $results;
 }

 $results = [];

 $invoices = parent::find($parameters);

 foreach ($invoices as $invoice) {
 // Query the related customer
 $customer = $invoice->customer;

 // Assign it to the record
 $invoice->customer = $customer;

 $results[] = $invoice;
 }

 // Store the invoices in the cache + their customers
 self::_setCache($key, $results);

 return $results;
 }

 public function initialize()
 {
 // Add relations and initialize other stuff
 }
}

Getting the invoices from the cache already obtains the customer data in just one hit, reducing the overall overhead of the operation.
Note that this process can also be performed with PHQL following an alternative solution:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 public function initialize()
 {
 // Add relations and initialize other stuff
 }

 protected static function _createKey($conditions, $params)
 {
 // ... Create a cache key based on the parameters
 }

 public function getInvoicesCustomers($conditions, $params = null)
 {
 $phql = "SELECT Invoices.*, Customers.* FROM Invoices JOIN Customers WHERE " . $conditions;

 $query = $this->getModelsManager()->executeQuery($phql);

 $query->cache(
 [
 "key" => self::_createKey($conditions, $params),
 "lifetime" => 300,
]
);

 return $query->execute($params);
 }

}

Caching based on Conditions

In this scenario, the cache is implemented differently depending on the conditions received.
We might decide that the cache backend should be determined by the primary key:

	Type
	Cache Backend

	1 - 10000
	mongo1

	10000 - 20000
	mongo2

	> 20000
	mongo3

The easiest way to achieve this is by adding a static method to the model that chooses the right cache to be used:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public static function queryCache($initial, $final)
 {
 if ($initial >= 1 && $final < 10000) {
 $service = "mongo1";
 } elseif ($initial >= 10000 && $final <= 20000) {
 $service = "mongo2";
 } elseif ($initial > 20000) {
 $service = "mongo3";
 }

 return self::find(
 [
 "id >= " . $initial . " AND id <= " . $final,
 "cache" => [
 "service" => $service,
],
]
);
 }
}

This approach solves the problem, however, if we want to add other parameters such orders or conditions we would have to create
a more complicated method. Additionally, this method does not work if the data is obtained using related records or a find()/findFirst():

<?php

$robots = Robots::find("id < 1000");
$robots = Robots::find("id > 100 AND type = 'A'");
$robots = Robots::find("(id > 100 AND type = 'A') AND id < 2000");

$robots = Robots::find(
 [
 "(id > ?0 AND type = 'A') AND id < ?1",
 "bind" => [100, 2000],
 "order" => "type",
]
);

To achieve this we need to intercept the intermediate representation (IR) generated by the PHQL parser and
thus customize the cache everything possible:

The first is create a custom builder, so we can generate a totally customized query:

<?php

use Phalcon\Mvc\Model\Query\Builder as QueryBuilder;

class CustomQueryBuilder extends QueryBuilder
{
 public function getQuery()
 {
 $query = new CustomQuery($this->getPhql());

 $query->setDI($this->getDI());

 return $query;
 }
}

Instead of directly returning a Phalcon\Mvc\Model\Query, our custom builder returns a CustomQuery instance,
this class looks like:

<?php

use Phalcon\Mvc\Model\Query as ModelQuery;

class CustomQuery extends ModelQuery
{
 /**
 * The execute method is overridden
 */
 public function execute($params = null, $types = null)
 {
 // Parse the intermediate representation for the SELECT
 $ir = $this->parse();

 // Check if the query has conditions
 if (isset($ir["where"])) {
 // The fields in the conditions can have any order
 // We need to recursively check the conditions tree
 // to find the info we're looking for
 $visitor = new CustomNodeVisitor();

 // Recursively visits the nodes
 $visitor->visit($ir["where"]);

 $initial = $visitor->getInitial();
 $final = $visitor->getFinal();

 // Select the cache according to the range
 // ...

 // Check if the cache has data
 // ...
 }

 // Execute the query
 $result = $this->_executeSelect($ir, $params, $types);

 // Cache the result
 // ...

 return $result;
 }
}

Implementing a helper (CustomNodeVisitor) that recursively checks the conditions looking for fields that
tell us the possible range to be used in the cache:

<?php

class CustomNodeVisitor
{
 protected $_initial = 0;

 protected $_final = 25000;

 public function visit($node)
 {
 switch ($node["type"]) {
 case "binary-op":
 $left = $this->visit($node["left"]);
 $right = $this->visit($node["right"]);

 if (!$left || !$right) {
 return false;
 }

 if ($left === "id") {
 if ($node["op"] === ">") {
 $this->_initial = $right;
 }

 if ($node["op"] === "=") {
 $this->_initial = $right;
 }

 if ($node["op"] === ">=") {
 $this->_initial = $right;
 }

 if ($node["op"] === "<") {
 $this->_final = $right;
 }

 if ($node["op"] === "<=") {
 $this->_final = $right;
 }
 }

 break;

 case "qualified":
 if ($node["name"] === "id") {
 return "id";
 }

 break;

 case "literal":
 return $node["value"];

 default:
 return false;
 }
 }

 public function getInitial()
 {
 return $this->_initial;
 }

 public function getFinal()
 {
 return $this->_final;
 }
}

Finally, we can replace the find method in the Robots model to use the custom classes we’ve created:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public static function find($parameters = null)
 {
 if (!is_array($parameters)) {
 $parameters = [$parameters];
 }

 $builder = new CustomQueryBuilder($parameters);

 $builder->from(get_called_class());

 $query = $builder->getQuery();

 if (isset($parameters["bind"])) {
 return $query->execute($parameters["bind"]);
 } else {
 return $query->execute();
 }
 }
}

Caching of PHQL planning

As well as most moderns database systems PHQL internally caches the execution plan,
if the same statement is executed several times PHQL reuses the previously generated plan
improving performance, for a developer to take better advantage of this is highly recommended
build all your SQL statements passing variable parameters as bound parameters:

<?php

for ($i = 1; $i <= 10; $i++) {
 $phql = "SELECT * FROM Store\Robots WHERE id = " . $i;

 $robots = $this->modelsManager->executeQuery($phql);

 // ...
}

In the above example, ten plans were generated increasing the memory usage and processing in the application.
Rewriting the code to take advantage of bound parameters reduces the processing by both ORM and database system:

<?php

$phql = "SELECT * FROM Store\Robots WHERE id = ?0";

for ($i = 1; $i <= 10; $i++) {
 $robots = $this->modelsManager->executeQuery(
 $phql,
 [
 $i,
]
);

 // ...
}

Performance can be also improved reusing the PHQL query:

<?php

$phql = "SELECT * FROM Store\Robots WHERE id = ?0";

$query = $this->modelsManager->createQuery($phql);

for ($i = 1; $i <= 10; $i++) {
 $robots = $query->execute(
 $phql,
 [
 $i,
]
);

 // ...
}

Execution plans for queries involving prepared statements [http://en.wikipedia.org/wiki/Prepared_statement] are also cached by most database systems
reducing the overall execution time, also protecting your application against SQL Injections [http://en.wikipedia.org/wiki/SQL_injection].

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 ODM (Object-Document Mapper)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

ODM (Object-Document Mapper)

In addition to its ability to map tables in relational databases, Phalcon can map documents from NoSQL databases.
The ODM offers a CRUD functionality, events, validations among other services.

Due to the absence of SQL queries and planners, NoSQL databases can see real improvements in performance using the Phalcon approach.
Additionally, there are no SQL building reducing the possibility of SQL injections.

The following NoSQL databases are supported:

	Name
	Description

	MongoDB [http://www.mongodb.org/]
	MongoDB is a scalable, high-performance, open source NoSQL database.

Creating Models

A model is a class that extends from Phalcon\Mvc\Collection. It must be placed in the models directory. A model
file must contain a single class; its class name should be in camel case notation:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{

}

If you’re using PHP 5.4/5.5 is recommended declare each column that makes part of the model in order to save
memory and reduce the memory allocation.

By default model “Robots” will refer to the collection “robots”. If you want to manually specify another name for the mapping collection,
you can use the setSource() method:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function initialize()
 {
 $this->setSource("the_robots");
 }
}

Understanding Documents To Objects

Every instance of a model represents a document in the collection. You can easily access collection data by reading object properties. For example,
for a collection “robots” with the documents:

$ mongo test
MongoDB shell version: 1.8.2
connecting to: test
> db.robots.find()
{ "_id" : ObjectId("508735512d42b8c3d15ec4e1"), "name" : "Astro Boy", "year" : 1952,
 "type" : "mechanical" }
{ "_id" : ObjectId("5087358f2d42b8c3d15ec4e2"), "name" : "Bender", "year" : 1999,
 "type" : "mechanical" }
{ "_id" : ObjectId("508735d32d42b8c3d15ec4e3"), "name" : "Wall-E", "year" : 2008 }
>

Models in Namespaces

Namespaces can be used to avoid class name collision. In this case it is necessary to indicate the name of the related collection using the setSource() method:

<?php

namespace Store\Toys;

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function initialize()
 {
 $this->setSource("robots");
 }
}

You could find a certain document by its ID and then print its name:

<?php

// Find record with _id = "5087358f2d42b8c3d15ec4e2"
$robot = Robots::findById("5087358f2d42b8c3d15ec4e2");

// Prints "Bender"
echo $robot->name;

Once the record is in memory, you can make modifications to its data and then save changes:

<?php

$robot = Robots::findFirst(
 [
 [
 "name" => "Astro Boy",
]
]
);

$robot->name = "Voltron";

$robot->save();

Setting a Connection

Connections are retrieved from the services container. By default, Phalcon tries to find the connection in a service called “mongo”:

<?php

// Simple database connection to localhost
$di->set(
 "mongo",
 function () {
 $mongo = new MongoClient();

 return $mongo->selectDB("store");
 },
 true
);

// Connecting to a domain socket, falling back to localhost connection
$di->set(
 "mongo",
 function () {
 $mongo = new MongoClient(
 "mongodb:///tmp/mongodb-27017.sock,localhost:27017"
);

 return $mongo->selectDB("store");
 },
 true
);

Finding Documents

As Phalcon\Mvc\Collection relies on the Mongo PHP extension you have the same facilities
to query documents and convert them transparently to model instances:

<?php

// How many robots are there?
$robots = Robots::find();
echo "There are ", count($robots), "\n";

// How many mechanical robots are there?
$robots = Robots::find(
 [
 [
 "type" => "mechanical",
]
]
);
echo "There are ", count($robots), "\n";

// Get and print mechanical robots ordered by name upward
$robots = Robots::find(
 [
 [
 "type" => "mechanical",
],
 "sort" => [
 "name" => 1,
],
]
);

foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

// Get first 100 mechanical robots ordered by name
$robots = Robots::find(
 [
 [
 "type" => "mechanical",
],
 "sort" => [
 "name" => 1,
],
 "limit" => 100,
]
);

foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

You could also use the findFirst() method to get only the first record matching the given criteria:

<?php

// What's the first robot in robots collection?
$robot = Robots::findFirst();
echo "The robot name is ", $robot->name, "\n";

// What's the first mechanical robot in robots collection?
$robot = Robots::findFirst(
 [
 [
 "type" => "mechanical",
]
]
);
echo "The first mechanical robot name is ", $robot->name, "\n";

Both find() and findFirst() methods accept an associative array specifying the search criteria:

<?php

// First robot where type = "mechanical" and year = "1999"
$robot = Robots::findFirst(
 [
 "conditions" => [
 "type" => "mechanical",
 "year" => "1999",
],
]
);

// All virtual robots ordered by name downward
$robots = Robots::find(
 [
 "conditions" => [
 "type" => "virtual",
],
 "sort" => [
 "name" => -1,
],
]
);

The available query options are:

	Parameter
	Description
	Example

	conditions
	Search conditions for the find operation. Is used to extract only those records that fulfill a specified criterion. By default Phalcon_model assumes the first parameter are the conditions.
	"conditions" => array('$gt' => 1990)

	fields
	Returns specific columns instead of the full fields in the collection. When using this option an incomplete object is returned
	"fields" => array('name' => true)

	sort
	It’s used to sort the resultset. Use one or more fields as each element in the array, 1 means ordering upwards, -1 downward
	"sort" => array("name" => -1, "status" => 1)

	limit
	Limit the results of the query to results to certain range
	"limit" => 10

	skip
	Skips a number of results
	"skip" => 50

If you have experience with SQL databases, you may want to check the SQL to Mongo Mapping Chart [http://www.php.net/manual/en/mongo.sqltomongo.php].

Aggregations

A model can return calculations using aggregation framework [http://docs.mongodb.org/manual/applications/aggregation/] provided by Mongo. The aggregated values are calculate without having to use MapReduce.
With this option is easy perform tasks such as totaling or averaging field values:

<?php

$data = Article::aggregate(
 [
 [
 "\$project" => [
 "category" => 1,
],
],
 [
 "\$group" => [
 "_id" => [
 "category" => "\$category"
],
 "id" => [
 "\$max" => "\$_id",
],
],
],
]
);

Creating Updating/Records

The Phalcon\Mvc\Collection::save() method allows you to create/update documents according to whether they already exist in the collection
associated with a model. The save() method is called internally by the create and update methods of Phalcon\Mvc\Collection.

Also the method executes associated validators and events that are defined in the model:

<?php

$robot = new Robots();

$robot->type = "mechanical";
$robot->name = "Astro Boy";
$robot->year = 1952;

if ($robot->save() === false) {
 echo "Umh, We can't store robots right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
} else {
 echo "Great, a new robot was saved successfully!";
}

The “_id” property is automatically updated with the MongoId [http://www.php.net/manual/en/class.mongoid.php] object created by the driver:

<?php

$robot->save();

echo "The generated id is: ", $robot->getId();

Validation Messages

Phalcon\Mvc\Collection has a messaging subsystem that provides a flexible way to output or store the
validation messages generated during the insert/update processes.

Each message consists of an instance of the class Phalcon\Mvc\Model\Message. The set of
messages generated can be retrieved with the method getMessages(). Each message provides extended information like the field name that
generated the message or the message type:

<?php

if ($robot->save() === false) {
 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo "Message: ", $message->getMessage();
 echo "Field: ", $message->getField();
 echo "Type: ", $message->getType();
 }
}

Validation Events and Events Manager

Models allow you to implement events that will be thrown when performing an insert or update. They help define business rules for a
certain model. The following are the events supported by Phalcon\Mvc\Collection and their order of execution:

	Operation
	Name
	Can stop operation?
	Explanation

	Inserting/Updating
	beforeValidation
	YES
	Is executed before the validation process and the final insert/update to the database

	Inserting
	beforeValidationOnCreate
	YES
	Is executed before the validation process only when an insertion operation is being made

	Updating
	beforeValidationOnUpdate
	YES
	Is executed before the fields are validated for not nulls or foreign keys when an updating operation is being made

	Inserting/Updating
	onValidationFails
	YES (already stopped)
	Is executed before the validation process only when an insertion operation is being made

	Inserting
	afterValidationOnCreate
	YES
	Is executed after the validation process when an insertion operation is being made

	Updating
	afterValidationOnUpdate
	YES
	Is executed after the validation process when an updating operation is being made

	Inserting/Updating
	afterValidation
	YES
	Is executed after the validation process

	Inserting/Updating
	beforeSave
	YES
	Runs before the required operation over the database system

	Updating
	beforeUpdate
	YES
	Runs before the required operation over the database system only when an updating operation is being made

	Inserting
	beforeCreate
	YES
	Runs before the required operation over the database system only when an inserting operation is being made

	Updating
	afterUpdate
	NO
	Runs after the required operation over the database system only when an updating operation is being made

	Inserting
	afterCreate
	NO
	Runs after the required operation over the database system only when an inserting operation is being made

	Inserting/Updating
	afterSave
	NO
	Runs after the required operation over the database system

To make a model to react to an event, we must to implement a method with the same name of the event:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function beforeValidationOnCreate()
 {
 echo "This is executed before creating a Robot!";
 }
}

Events can be useful to assign values before performing an operation, for example:

<?php

use Phalcon\Mvc\Collection;

class Products extends Collection
{
 public function beforeCreate()
 {
 // Set the creation date
 $this->created_at = date("Y-m-d H:i:s");
 }

 public function beforeUpdate()
 {
 // Set the modification date
 $this->modified_in = date("Y-m-d H:i:s");
 }
}

Additionally, this component is integrated with Phalcon\Events\Manager, this means we can create
listeners that run when an event is triggered.

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$eventsManager = new EventsManager();

// Attach an anonymous function as a listener for "model" events
$eventsManager->attach(
 "collection:beforeSave",
 function (Event $event, $robot) {
 if ($robot->name === "Scooby Doo") {
 echo "Scooby Doo isn't a robot!";

 return false;
 }

 return true;
 }
);

$robot = new Robots();

$robot->setEventsManager($eventsManager);

$robot->name = "Scooby Doo";
$robot->year = 1969;

$robot->save();

In the example given above the EventsManager only acted as a bridge between an object and a listener (the anonymous function). If we want all
objects created in our application use the same EventsManager, then we need to assign this to the Models Manager:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Mvc\Collection\Manager as CollectionManager;

// Registering the collectionManager service
$di->set(
 "collectionManager",
 function () {
 $eventsManager = new EventsManager();

 // Attach an anonymous function as a listener for "model" events
 $eventsManager->attach(
 "collection:beforeSave",
 function (Event $event, $model) {
 if (get_class($model) === "Robots") {
 if ($model->name === "Scooby Doo") {
 echo "Scooby Doo isn't a robot!";

 return false;
 }
 }

 return true;
 }
);

 // Setting a default EventsManager
 $modelsManager = new CollectionManager();

 $modelsManager->setEventsManager($eventsManager);

 return $modelsManager;
 },
 true
);

Implementing a Business Rule

When an insert, update or delete is executed, the model verifies if there are any methods with the names of the events listed in the table above.

We recommend that validation methods are declared protected to prevent that business logic implementation from being exposed publicly.

The following example implements an event that validates the year cannot be smaller than 0 on update or insert:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function beforeSave()
 {
 if ($this->year < 0) {
 echo "Year cannot be smaller than zero!";

 return false;
 }
 }
}

Some events return false as an indication to stop the current operation. If an event doesn’t return anything,
Phalcon\Mvc\Collection will assume a true value.

Validating Data Integrity

Phalcon\Mvc\Collection provides several events to validate data and implement business rules. The special “validation”
event allows us to call built-in validators over the record. Phalcon exposes a few built-in validators that can be used at this stage of validation.

The following example shows how to use it:

<?php

use Phalcon\Mvc\Collection;
use Phalcon\Mvc\Model\Validator\InclusionIn;
use Phalcon\Mvc\Model\Validator\Numericality;

class Robots extends Collection
{
 public function validation()
 {
 $this->validate(
 new InclusionIn(
 [
 "field" => "type",
 "message" => "Type must be: mechanical or virtual",
 "domain" => [
 "Mechanical",
 "Virtual",
],
]
)
);

 $this->validate(
 new Numericality(
 [
 "field" => "price",
 "message" => "Price must be numeric",
]
)
);

 return $this->validationHasFailed() !== true;
 }
}

The example given above performs a validation using the built-in validator “InclusionIn”. It checks the value of the field “type” in a domain list. If
the value is not included in the method, then the validator will fail and return false. The following built-in validators are available:

	Name
	Explanation

	Phalcon\Mvc\Model\Validator\Email
	Validates that field contains a valid email format

	Phalcon\Mvc\Model\Validator\Exclusionin
	Validates that a value is not within a list of possible values

	Phalcon\Mvc\Model\Validator\Inclusionin
	Validates that a value is within a list of possible values

	Phalcon\Mvc\Model\Validator\Numericality
	Validates that a field has a numeric format

	Phalcon\Mvc\Model\Validator\Regex
	Validates that the value of a field matches a regular expression

	Phalcon\Mvc\Model\Validator\StringLength
	Validates the length of a string

In addition to the built-in validators, you can create your own validators:

<?php

use Phalcon\Mvc\Model\Validator as CollectionValidator;

class UrlValidator extends CollectionValidator
{
 public function validate($model)
 {
 $field = $this->getOption("field");

 $value = $model->$field;

 $filtered = filter_var($value, FILTER_VALIDATE_URL);

 if (!$filtered) {
 $this->appendMessage(
 "The URL is invalid",
 $field,
 "UrlValidator"
);

 return false;
 }

 return true;
 }
}

Adding the validator to a model:

<?php

use Phalcon\Mvc\Collection;

class Customers extends Collection
{
 public function validation()
 {
 $this->validate(
 new UrlValidator(
 [
 "field" => "url",
]
)
);

 if ($this->validationHasFailed() === true) {
 return false;
 }
 }
}

The idea of creating validators is to make them reusable across several models. A validator can also be as simple as:

<?php

use Phalcon\Mvc\Collection;
use Phalcon\Mvc\Model\Message as ModelMessage;

class Robots extends Collection
{
 public function validation()
 {
 if ($this->type === "Old") {
 $message = new ModelMessage(
 "Sorry, old robots are not allowed anymore",
 "type",
 "MyType"
);

 $this->appendMessage($message);

 return false;
 }

 return true;
 }
}

Deleting Records

The Phalcon\Mvc\Collection::delete() method allows you to delete a document. You can use it as follows:

<?php

$robot = Robots::findFirst();

if ($robot !== false) {
 if ($robot->delete() === false) {
 echo "Sorry, we can't delete the robot right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
 } else {
 echo "The robot was deleted successfully!";
 }
}

You can also delete many documents by traversing a resultset with a foreach loop:

<?php

$robots = Robots::find(
 [
 [
 "type" => "mechanical",
]
]
);

foreach ($robots as $robot) {
 if ($robot->delete() === false) {
 echo "Sorry, we can't delete the robot right now: \n";

 $messages = $robot->getMessages();

 foreach ($messages as $message) {
 echo $message, "\n";
 }
 } else {
 echo "The robot was deleted successfully!";
 }
}

The following events are available to define custom business rules that can be executed when a delete operation is performed:

	Operation
	Name
	Can stop operation?
	Explanation

	Deleting
	beforeDelete
	YES
	Runs before the delete operation is made

	Deleting
	afterDelete
	NO
	Runs after the delete operation was made

Validation Failed Events

Another type of events is available when the data validation process finds any inconsistency:

	Operation
	Name
	Explanation

	Insert or Update
	notSave
	Triggered when the insert/update operation fails for any reason

	Insert, Delete or Update
	onValidationFails
	Triggered when any data manipulation operation fails

Implicit Ids vs. User Primary Keys

By default Phalcon\Mvc\Collection assumes that the _id attribute is automatically generated using MongoIds [http://www.php.net/manual/en/class.mongoid.php].
If a model uses custom primary keys this behavior can be overridden:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function initialize()
 {
 $this->useImplicitObjectIds(false);
 }
}

Setting multiple databases

In Phalcon, all models can belong to the same database connection or have an individual one. Actually, when
Phalcon\Mvc\Collection needs to connect to the database it requests the “mongo” service
in the application’s services container. You can overwrite this service setting it in the initialize method:

<?php

// This service returns a mongo database at 192.168.1.100
$di->set(
 "mongo1",
 function () {
 $mongo = new MongoClient(
 "mongodb://scott:nekhen@192.168.1.100"
);

 return $mongo->selectDB("management");
 },
 true
);

// This service returns a mongo database at localhost
$di->set(
 "mongo2",
 function () {
 $mongo = new MongoClient(
 "mongodb://localhost"
);

 return $mongo->selectDB("invoicing");
 },
 true
);

Then, in the initialize() method, we define the connection service for the model:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function initialize()
 {
 $this->setConnectionService("mongo1");
 }
}

Injecting services into Models

You may be required to access the application services within a model, the following example explains how to do that:

<?php

use Phalcon\Mvc\Collection;

class Robots extends Collection
{
 public function notSave()
 {
 // Obtain the flash service from the DI container
 $flash = $this->getDI()->getShared("flash");

 $messages = $this->getMessages();

 // Show validation messages
 foreach ($messages as $message) {
 $flash->error(
 (string) $message
);
 }
 }
}

The “notSave” event is triggered whenever a “creating” or “updating” action fails. We’re flashing the validation messages
obtaining the “flash” service from the DI container. By doing this, we don’t have to print messages after each saving.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Using Views

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Using Views

Views represent the user interface of your application. Views are often HTML files with embedded PHP code that perform tasks
related solely to the presentation of the data. Views handle the job of providing data to the web browser or other tool that
is used to make requests from your application.

Phalcon\Mvc\View and Phalcon\Mvc\View\Simple
are responsible for the managing the view layer of your MVC application.

Integrating Views with Controllers

Phalcon automatically passes the execution to the view component as soon as a particular controller has completed its cycle. The view component
will look in the views folder for a folder named as the same name of the last controller executed and then for a file named as the last action
executed. For instance, if a request is made to the URL http://127.0.0.1/blog/posts/show/301, Phalcon will parse the URL as follows:

	Server Address
	127.0.0.1

	Phalcon Directory
	blog

	Controller
	posts

	Action
	show

	Parameter
	301

The dispatcher will look for a “PostsController” and its action “showAction”. A simple controller file for this example:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction($postId)
 {
 // Pass the $postId parameter to the view
 $this->view->postId = $postId;
 }
}

The setVar() method allows us to create view variables on demand so that they can be used in the view template. The example above demonstrates
how to pass the $postId parameter to the respective view template.

Hierarchical Rendering

Phalcon\Mvc\View supports a hierarchy of files and is the default component for view rendering in Phalcon.
This hierarchy allows for common layout points (commonly used views), as well as controller named folders defining respective view templates.

This component uses by default PHP itself as the template engine, therefore views should have the .phtml extension.
If the views directory is app/views then view component will find automatically for these 3 view files.

	Name
	File
	Description

	Action View
	app/views/posts/show.phtml
	This is the view related to the action. It only will be shown when the “show” action was executed.

	Controller Layout
	app/views/layouts/posts.phtml
	This is the view related to the controller. It only will be shown for every action executed within the controller “posts”. All the code implemented in the layout will be reused for all the actions in this controller.

	Main Layout
	app/views/index.phtml
	This is main action it will be shown for every controller or action executed within the application.

You are not required to implement all of the files mentioned above. Phalcon\Mvc\View will simply move to the
next view level in the hierarchy of files. If all three view files are implemented, they will be processed as follows:

<!-- app/views/posts/show.phtml -->

<h3>This is show view!</h3>

<p>I have received the parameter <?php echo $postId; ?></p>

<!-- app/views/layouts/posts.phtml -->

<h2>This is the "posts" controller layout!</h2>

<?php echo $this->getContent(); ?>

<!-- app/views/index.phtml -->
<html>
 <head>
 <title>Example</title>
 </head>
 <body>

 <h1>This is main layout!</h1>

 <?php echo $this->getContent(); ?>

 </body>
</html>

Note the lines where the method $this->getContent() was called. This method instructs Phalcon\Mvc\View
on where to inject the contents of the previous view executed in the hierarchy. For the example above, the output will be:

[image: ../_images/views-1.png]

The generated HTML by the request will be:

<!-- app/views/index.phtml -->
<html>
 <head>
 <title>Example</title>
 </head>
 <body>

 <h1>This is main layout!</h1>

 <!-- app/views/layouts/posts.phtml -->

 <h2>This is the "posts" controller layout!</h2>

 <!-- app/views/posts/show.phtml -->

 <h3>This is show view!</h3>

 <p>I have received the parameter 101</p>

 </body>
</html>

Using Templates

Templates are views that can be used to share common view code. They act as controller layouts, so you need to place them in the layouts directory.

Templates can be rendered before the layout (using $this->view->setTemplateBefore()) or they can be rendered after the layout (using this->view->setTemplateAfter()). In the following example the template (layouts/common.phtml) is rendered after the main layout (layouts/posts.phtml):

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function initialize()
 {
 $this->view->setTemplateAfter("common");
 }

 public function lastAction()
 {
 $this->flash->notice(
 "These are the latest posts"
);
 }
}

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>
 <head>
 <title>Blog's title</title>
 </head>
 <body>
 <?php echo $this->getContent(); ?>
 </body>
</html>

<!-- app/views/layouts/common.phtml -->

<ul class="menu">
 Home
 Articles
 Contact us

<div class="content"><?php echo $this->getContent(); ?></div>

<!-- app/views/layouts/posts.phtml -->

<h1>Blog Title</h1>

<?php echo $this->getContent(); ?>

<!-- app/views/posts/last.phtml -->

<article>
 <h2>This is a title</h2>
 <p>This is the post content</p>
</article>

<article>
 <h2>This is another title</h2>
 <p>This is another post content</p>
</article>

The final output will be the following:

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>
 <head>
 <title>Blog's title</title>
 </head>
 <body>

 <!-- app/views/layouts/common.phtml -->

 <ul class="menu">
 Home
 Articles
 Contact us

 <div class="content">

 <!-- app/views/layouts/posts.phtml -->

 <h1>Blog Title</h1>

 <!-- app/views/posts/last.phtml -->

 <article>
 <h2>This is a title</h2>
 <p>This is the post content</p>
 </article>

 <article>
 <h2>This is another title</h2>
 <p>This is another post content</p>
 </article>

 </div>

 </body>
</html>

If we had used $this->view->setTemplateBefore("common"), this would be the final output:

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>
 <head>
 <title>Blog's title</title>
 </head>
 <body>

 <!-- app/views/layouts/posts.phtml -->

 <h1>Blog Title</h1>

 <!-- app/views/layouts/common.phtml -->

 <ul class="menu">
 Home
 Articles
 Contact us

 <div class="content">

 <!-- app/views/posts/last.phtml -->

 <article>
 <h2>This is a title</h2>
 <p>This is the post content</p>
 </article>

 <article>
 <h2>This is another title</h2>
 <p>This is another post content</p>
 </article>

 </div>

 </body>
</html>

Control Rendering Levels

As seen above, Phalcon\Mvc\View supports a view hierarchy. You might need to control the level of rendering
produced by the view component. The method Phalcon\Mvc\View::setRenderLevel() offers this functionality.

This method can be invoked from the controller or from a superior view layer to interfere with the rendering process.

<?php

use Phalcon\Mvc\View;
use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function findAction()
 {
 // This is an Ajax response so it doesn't generate any kind of view
 $this->view->setRenderLevel(
 View::LEVEL_NO_RENDER
);

 // ...
 }

 public function showAction($postId)
 {
 // Shows only the view related to the action
 $this->view->setRenderLevel(
 View::LEVEL_ACTION_VIEW
);
 }
}

The available render levels are:

	Class Constant
	Description
	Order

	LEVEL_NO_RENDER
	Indicates to avoid generating any kind of presentation.
	

	LEVEL_ACTION_VIEW
	Generates the presentation to the view associated to the action.
	1

	LEVEL_BEFORE_TEMPLATE
	Generates presentation templates prior to the controller layout.
	2

	LEVEL_LAYOUT
	Generates the presentation to the controller layout.
	3

	LEVEL_AFTER_TEMPLATE
	Generates the presentation to the templates after the controller layout.
	4

	LEVEL_MAIN_LAYOUT
	Generates the presentation to the main layout. File views/index.phtml
	5

Disabling render levels

You can permanently or temporarily disable render levels. A level could be permanently disabled if it isn’t used at all in the whole application:

<?php

use Phalcon\Mvc\View;

$di->set(
 "view",
 function () {
 $view = new View();

 // Disable several levels
 $view->disableLevel(
 [
 View::LEVEL_LAYOUT => true,
 View::LEVEL_MAIN_LAYOUT => true,
]
);

 return $view;
 },
 true
);

Or disable temporarily in some part of the application:

<?php

use Phalcon\Mvc\View;
use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function findAction()
 {
 $this->view->disableLevel(
 View::LEVEL_MAIN_LAYOUT
);
 }
}

Picking Views

As mentioned above, when Phalcon\Mvc\View is managed by Phalcon\Mvc\Application
the view rendered is the one related with the last controller and action executed. You could override this by using the Phalcon\Mvc\View::pick() method:

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
 public function listAction()
 {
 // Pick "views-dir/products/search" as view to render
 $this->view->pick("products/search");

 // Pick "views-dir/books/list" as view to render
 $this->view->pick(
 [
 "books",
]
);

 // Pick "views-dir/products/search" as view to render
 $this->view->pick(
 [
 1 => "search",
]
);
 }
}

Disabling the view

If your controller doesn’t produce any output in the view (or not even have one) you may disable the view component avoiding unnecessary processing:

<?php

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{
 public function closeSessionAction()
 {
 // Close session
 // ...

 // Disable the view to avoid rendering
 $this->view->disable();
 }
}

Alternatively, you can return false to produce the same effect:

<?php

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{
 public function closeSessionAction()
 {
 // ...

 // Disable the view to avoid rendering
 return false;
 }
}

You can return a ‘response’ object to avoid disable the view manually:

<?php

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{
 public function closeSessionAction()
 {
 // Close session
 // ...

 // A HTTP Redirect
 return $this->response->redirect("index/index");
 }
}

Simple Rendering

Phalcon\Mvc\View\Simple is an alternative component to Phalcon\Mvc\View.
It keeps most of the philosophy of Phalcon\Mvc\View but lacks of a hierarchy of files which is, in fact,
the main feature of its counterpart.

This component allows the developer to have control of when a view is rendered and its location.
In addition, this component can leverage of view inheritance available in template engines such
as Volt and others.

The default component must be replaced in the service container:

<?php

use Phalcon\Mvc\View\Simple as SimpleView;

$di->set(
 "view",
 function () {
 $view = new SimpleView();

 $view->setViewsDir("../app/views/");

 return $view;
 },
 true
);

Automatic rendering must be disabled in Phalcon\Mvc\Application (if needed):

<?php

use Exception;
use Phalcon\Mvc\Application;

try {
 $application = new Application($di);

 $application->useImplicitView(false);

 $response = $application->handle();

 $response->send();
} catch (Exception $e) {
 echo $e->getMessage();
}

To render a view it’s necessary to call the render method explicitly indicating the relative path to the view you want to display:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends \Controller
{
 public function indexAction()
 {
 // Render 'views-dir/index.phtml'
 echo $this->view->render("index");

 // Render 'views-dir/posts/show.phtml'
 echo $this->view->render("posts/show");

 // Render 'views-dir/index.phtml' passing variables
 echo $this->view->render(
 "index",
 [
 "posts" => Posts::find(),
]
);

 // Render 'views-dir/posts/show.phtml' passing variables
 echo $this->view->render(
 "posts/show",
 [
 "posts" => Posts::find(),
]
);
 }
}

This is different to Phalcon\Mvc\View who’s render() method uses controllers and actions as parameters:

<?php

$params = [
 "posts" => Posts::find(),
];

// Phalcon\Mvc\View
$view = new \Phalcon\Mvc\View();
echo $view->render("posts", "show", $params);

// Phalcon\Mvc\View\Simple
$simpleView = new \Phalcon\Mvc\View\Simple();
echo $simpleView->render("posts/show", $params);

Using Partials

Partial templates are another way of breaking the rendering process into simpler more manageable chunks that can be reused by different
parts of the application. With a partial, you can move the code for rendering a particular piece of a response to its own file.

One way to use partials is to treat them as the equivalent of subroutines: as a way to move details out of a view so that your code can be more easily understood. For example, you might have a view that looks like this:

<div class="top"><?php $this->partial("shared/ad_banner"); ?></div>

<div class="content">
 <h1>Robots</h1>

 <p>Check out our specials for robots:</p>
 ...
</div>

<div class="footer"><?php $this->partial("shared/footer"); ?></div>

The partial() method does accept a second parameter as an array of variables/parameters that only will exists in the scope of the partial:

<?php $this->partial("shared/ad_banner", ["id" => $site->id, "size" => "big"]); ?>

Transfer values from the controller to views

Phalcon\Mvc\View is available in each controller using the view variable ($this->view). You can
use that object to set variables directly to the view from a controller action by using the setVar() method.

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction()
 {
 $user = Users::findFirst();
 $posts = $user->getPosts();

 // Pass all the username and the posts to the views
 $this->view->setVar("username", $user->username);
 $this->view->setVar("posts", $posts;

 // Using the magic setter
 $this->view->username = $user->username;
 $this->view->posts = $posts;

 // Passing more than one variable at the same time
 $this->view->setVars(
 [
 "username" => $user->username,
 "posts" => $posts,
]
);
 }
}

A variable with the name of the first parameter of setVar() will be created in the view, ready to be used. The variable can be of any type,
from a simple string, integer etc. variable to a more complex structure such as array, collection etc.

<h1>
 {{ username }}'s Posts
</h1>

<div class="post">
<?php

 foreach ($posts as $post) {
 echo "<h2>", $post->title, "</h2>";
 }

?>
</div>

Caching View Fragments

Sometimes when you develop dynamic websites and some areas of them are not updated very often, the output is exactly
the same between requests. Phalcon\Mvc\View offers caching a part or the whole
rendered output to increase performance.

Phalcon\Mvc\View integrates with Phalcon\Cache to provide an easier way
to cache output fragments. You could manually set the cache handler or set a global handler:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function showAction()
 {
 // Cache the view using the default settings
 $this->view->cache(true);
 }

 public function showArticleAction()
 {
 // Cache this view for 1 hour
 $this->view->cache(
 [
 "lifetime" => 3600,
]
);
 }

 public function resumeAction()
 {
 // Cache this view for 1 day with the key "resume-cache"
 $this->view->cache(
 [
 "lifetime" => 86400,
 "key" => "resume-cache",
]
);
 }

 public function downloadAction()
 {
 // Passing a custom service
 $this->view->cache(
 [
 "service" => "myCache",
 "lifetime" => 86400,
 "key" => "resume-cache",
]
);
 }
}

When we do not define a key to the cache, the component automatically creates one using an MD5 [http://php.net/manual/en/function.md5.php] hash of the name of the controller and view currently being rendered in the format of “controller/view”.
It is a good practice to define a key for each action so you can easily identify the cache associated with each view.

When the View component needs to cache something it will request a cache service from the services container.
The service name convention for this service is “viewCache”:

<?php

use Phalcon\Cache\Frontend\Output as OutputFrontend;
use Phalcon\Cache\Backend\Memcache as MemcacheBackend;

// Set the views cache service
$di->set(
 "viewCache",
 function () {
 // Cache data for one day by default
 $frontCache = new OutputFrontend(
 [
 "lifetime" => 86400,
]
);

 // Memcached connection settings
 $cache = new MemcacheBackend(
 $frontCache,
 [
 "host" => "localhost",
 "port" => "11211",
]
);

 return $cache;
 }
);

The frontend must always be Phalcon\Cache\Frontend\Output and the service ‘viewCache’ must be registered as
always open (not shared) in the services container (DI).

When using views, caching can be used to prevent controllers from needing to generate view data on each request.

To achieve this we must identify uniquely each cache with a key. First we verify that the cache does not exist or has
expired to make the calculations/queries to display data in the view:

<?php

use Phalcon\Mvc\Controller;

class DownloadController extends Controller
{
 public function indexAction()
 {
 // Check whether the cache with key "downloads" exists or has expired
 if ($this->view->getCache()->exists("downloads")) {
 // Query the latest downloads
 $latest = Downloads::find(
 [
 "order" => "created_at DESC",
]
);

 $this->view->latest = $latest;
 }

 // Enable the cache with the same key "downloads"
 $this->view->cache(
 [
 "key" => "downloads",
]
);
 }
}

The PHP alternative site [https://github.com/phalcon/php-site] is an example of implementing the caching of fragments.

Template Engines

Template Engines help designers to create views without the use of a complicated syntax. Phalcon includes a powerful and fast templating engine
called Volt.

Additionally, Phalcon\Mvc\View allows you to use other template engines instead of plain PHP or Volt.

Using a different template engine, usually requires complex text parsing using external PHP libraries in order to generate the final output
for the user. This usually increases the number of resources that your application will use.

If an external template engine is used, Phalcon\Mvc\View provides exactly the same view hierarchy and it’s
still possible to access the API inside these templates with a little more effort.

This component uses adapters, these help Phalcon to speak with those external template engines in a unified way, let’s see how to do that integration.

Creating your own Template Engine Adapter

There are many template engines, which you might want to integrate or create one of your own. The first step to start using an external template engine is create an adapter for it.

A template engine adapter is a class that acts as bridge between Phalcon\Mvc\View and the template engine itself.
Usually it only needs two methods implemented: __construct() and render(). The first one receives the Phalcon\Mvc\View
instance that creates the engine adapter and the DI container used by the application.

The method render() accepts an absolute path to the view file and the view parameters set using $this->view->setVar(). You could read or require it
when it’s necessary.

<?php

use Phalcon\DiInterface;
use Phalcon\Mvc\Engine;

class MyTemplateAdapter extends Engine
{
 /**
 * Adapter constructor
 *
 * @param \Phalcon\Mvc\View $view
 * @param \Phalcon\Di $di
 */
 public function __construct($view, DiInterface $di)
 {
 // Initialize here the adapter
 parent::__construct($view, $di);
 }

 /**
 * Renders a view using the template engine
 *
 * @param string $path
 * @param array $params
 */
 public function render($path, $params)
 {
 // Access view
 $view = $this->_view;

 // Access options
 $options = $this->_options;

 // Render the view
 // ...
 }
}

Changing the Template Engine

You can replace the template engine completely or use more than one template engine at the same time. The method Phalcon\Mvc\View::registerEngines()
accepts an array containing data that define the template engines. The key of each engine is an extension that aids in distinguishing one from another.
Template files related to the particular engine must have those extensions.

The order that the template engines are defined with Phalcon\Mvc\View::registerEngines() defines the relevance of execution. If
Phalcon\Mvc\View finds two views with the same name but different extensions, it will only render the first one.

If you want to register a template engine or a set of them for each request in the application. You could register it when the view service is created:

<?php

use Phalcon\Mvc\View;

// Setting up the view component
$di->set(
 "view",
 function () {
 $view = new View();

 // A trailing directory separator is required
 $view->setViewsDir("../app/views/");

 // Set the engine
 $view->registerEngines(
 [
 ".my-html" => "MyTemplateAdapter",
]
);

 // Using more than one template engine
 $view->registerEngines(
 [
 ".my-html" => "MyTemplateAdapter",
 ".phtml" => "Phalcon\\Mvc\\View\\Engine\\Php",
]
);

 return $view;
 },
 true
);

There are adapters available for several template engines on the Phalcon Incubator [https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Mvc/View/Engine]

Injecting services in View

Every view executed is included inside a Phalcon\Di\Injectable instance, providing easy access
to the application’s service container.

The following example shows how to write a jQuery ajax request [http://api.jquery.com/jQuery.ajax/] using a URL with the framework conventions.
The service “url” (usually Phalcon\Mvc\Url) is injected in the view by accessing a property with the same name:

<script type="text/javascript">

$.ajax({
 url: "<?php echo $this->url->get("cities/get"); ?>"
})
.done(function () {
 alert("Done!");
});

</script>

Stand-Alone Component

All the components in Phalcon can be used as glue components individually because they are loosely coupled to each other:

Hierarchical Rendering

Using Phalcon\Mvc\View in a stand-alone mode can be demonstrated below:

<?php

use Phalcon\Mvc\View;

$view = new View();

// A trailing directory separator is required
$view->setViewsDir("../app/views/");

// Passing variables to the views, these will be created as local variables
$view->setVar("someProducts", $products);
$view->setVar("someFeatureEnabled", true);

// Start the output buffering
$view->start();

// Render all the view hierarchy related to the view products/list.phtml
$view->render("products", "list");

// Finish the output buffering
$view->finish();

echo $view->getContent();

A short syntax is also available:

<?php

use Phalcon\Mvc\View;

$view = new View();

echo $view->getRender(
 "products",
 "list",
 [
 "someProducts" => $products,
 "someFeatureEnabled" => true,
],
 function ($view) {
 // Set any extra options here

 $view->setViewsDir("../app/views/");

 $view->setRenderLevel(
 View::LEVEL_LAYOUT
);
 }
);

Simple Rendering

Using Phalcon\Mvc\View\Simple in a stand-alone mode can be demonstrated below:

<?php

use Phalcon\Mvc\View\Simple as SimpleView;

$view = new SimpleView();

// A trailing directory separator is required
$view->setViewsDir("../app/views/");

// Render a view and return its contents as a string
echo $view->render("templates/welcomeMail");

// Render a view passing parameters
echo $view->render(
 "templates/welcomeMail",
 [
 "email" => $email,
 "content" => $content,
]
);

View Events

Phalcon\Mvc\View and Phalcon\Mvc\View\Simple are able to send events to an EventsManager if it is present. Events are triggered using the type “view”. Some events when returning boolean false could stop the active operation. The following events are supported:

	Event Name
	Triggered
	Can stop operation?

	beforeRender
	Triggered before starting the render process
	Yes

	beforeRenderView
	Triggered before rendering an existing view
	Yes

	afterRenderView
	Triggered after rendering an existing view
	No

	afterRender
	Triggered after completing the render process
	No

	notFoundView
	Triggered when a view was not found
	No

The following example demonstrates how to attach listeners to this component:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Mvc\View;

$di->set(
 "view",
 function () {
 // Create an events manager
 $eventsManager = new EventsManager();

 // Attach a listener for type "view"
 $eventsManager->attach(
 "view",
 function (Event $event, $view) {
 echo $event->getType(), " - ", $view->getActiveRenderPath(), PHP_EOL;
 }
);

 $view = new View();

 $view->setViewsDir("../app/views/");

 // Bind the eventsManager to the view component
 $view->setEventsManager($eventsManager);

 return $view;
 },
 true
);

The following example shows how to create a plugin that clean/repair the HTML produced by the render process using Tidy [http://www.php.net/manual/en/book.tidy.php]:

<?php

use Phalcon\Events\Event;

class TidyPlugin
{
 public function afterRender(Event $event, $view)
 {
 $tidyConfig = [
 "clean" => true,
 "output-xhtml" => true,
 "show-body-only" => true,
 "wrap" => 0,
];

 $tidy = tidy_parse_string(
 $view->getContent(),
 $tidyConfig,
 "UTF8"
);

 $tidy->cleanRepair();

 $view->setContent(
 (string) $tidy
);
 }
}

// Attach the plugin as a listener
$eventsManager->attach(
 "view:afterRender",
 new TidyPlugin()
);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 View Helpers (Tags)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

View Helpers (Tags)

Writing and maintaining HTML markup can quickly become a tedious task because of the naming conventions and numerous attributes that have to
be taken into consideration. Phalcon deals with this complexity by offering Phalcon\Tag, which in turn offers
view helpers to generate HTML markup.

This component can be used in a plain HTML+PHP view or in a Volt template.

This guide is not intended to be a complete documentation of available helpers and their arguments. Please visit
the Phalcon\Tag page in the API for a complete reference.

Document Type of Content

Phalcon provides Phalcon\Tag::setDoctype() helper to set document type of the content. Document type setting may affect HTML output produced by other tag helpers.
For example, if you set XHTML document type family, helpers that return or output HTML tags will produce self-closing tags to follow valid XHTML standard.

Available document type constants in Phalcon\Tag namespace are:

	Constant
	Document type

	HTML32
	HTML 3.2

	HTML401_STRICT
	HTML 4.01 Strict

	HTML401_TRANSITIONAL
	HTML 4.01 Transitional

	HTML401_FRAMESET
	HTML 4.01 Frameset

	HTML5
	HTML 5

	XHTML10_STRICT
	XHTML 1.0 Strict

	XHTML10_TRANSITIONAL
	XHTML 1.0 Transitional

	XHTML10_FRAMESET
	XHTML 1.0 Frameset

	XHTML11
	XHTML 1.1

	XHTML20
	XHTML 2.0

	XHTML5
	XHTML 5

Setting document type.

<?php

use Phalcon\Tag;

$this->tag->setDoctype(Tag::HTML401_STRICT);

?>

Getting document type.

<?= $this->tag->getDoctype() ?>
<html>
<!-- your HTML code -->
</html>

The following HTML will be produced.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<!-- your HTML code -->
</html>

Volt syntax:

{{ get_doctype() }}
<html>
<!-- your HTML code -->
</html>

Generating Links

A real common task in any web application or website is to produce links that allow us to navigate from one page to another.
When they are internal URLs we can create them in the following manner:

<!-- for the default route -->
<?= $this->tag->linkTo("products/search", "Search") ?>

<!-- with CSS attributes -->
<?= $this->tag->linkTo(["products/edit/10", "Edit", "class" => "edit-btn"]) ?>

<!-- for a named route -->
<?= $this->tag->linkTo([["for" => "show-product", "title" => 123, "name" => "carrots"], "Show"]) ?>

Actually, all produced URLs are generated by the component Phalcon\Mvc\Url (or service “url” failing)

Same links generated with Volt:

<!-- for the default route -->
{{ link_to("products/search", "Search") }}

<!-- for a named route -->
{{ link_to(["for": "show-product", "id": 123, "name": "carrots"], "Show") }}

<!-- for a named route with a HTML class -->
{{ link_to(["for": "show-product", "id": 123, "name": "carrots"], "Show", "class": "edit-btn") }}

Creating Forms

Forms in web applications play an essential part in retrieving user input. The following example shows how to implement a simple search form using view helpers:

<!-- Sending the form by method POST -->
<?= $this->tag->form("products/search") ?>
 <label for="q">Search:</label>

 <?= $this->tag->textField("q") ?>

 <?= $this->tag->submitButton("Search") ?>
<?= $this->tag->endForm() ?>

<!-- Specifying another method or attributes for the FORM tag -->
<?= $this->tag->form(["products/search", "method" => "get"]); ?>
 <label for="q">Search:</label>

 <?= $this->tag->textField("q"); ?>

 <?= $this->tag->submitButton("Search"); ?>
<?= $this->tag->endForm() ?>

This last code will generate the following HTML:

<form action="/store/products/search/" method="get">
 <label for="q">Search:</label>

 <input type="text" id="q" value="" name="q" />

 <input type="submit" value="Search" />
</form>

Same form generated in Volt:

<!-- Specifying another method or attributes for the FORM tag -->
{{ form("products/search", "method": "get") }}
 <label for="q">Search:</label>

 {{ text_field("q") }}

 {{ submit_button("Search") }}
{{ endForm() }}

Phalcon also provides a form builder to create forms in an object-oriented manner.

Helpers to Generate Form Elements

Phalcon provides a series of helpers to generate form elements such as text fields, buttons and more. The first parameter of each helper is always the name of the element to be generated. When the form is submitted, the name will be passed along with the form data. In a controller you can get these values using the same name by using the getPost() and getQuery() methods on the request object ($this->request).

<?php echo $this->tag->textField("username") ?>

<?php echo $this->tag->textArea(
 [
 "comment",
 "This is the content of the text-area",
 "cols" => "6",
 "rows" => 20,
]
) ?>

<?php echo $this->tag->passwordField(
 [
 "password",
 "size" => 30,
]
) ?>

<?php echo $this->tag->hiddenField(
 [
 "parent_id",
 "value" => "5",
]
) ?>

Volt syntax:

{{ text_field("username") }}

{{ text_area("comment", "This is the content", "cols": "6", "rows": 20) }}

{{ password_field("password", "size": 30) }}

{{ hidden_field("parent_id", "value": "5") }}

Making Select Boxes

Generating select boxes (select box) is easy, especially if the related data is stored in PHP associative arrays. The helpers for select elements are Phalcon\Tag::select() and Phalcon\Tag::selectStatic().
Phalcon\Tag::select() has been was specifically designed to work with Phalcon\Mvc\Model, while Phalcon\Tag::selectStatic() can with PHP arrays.

<?php

$products = Products::find("type = 'vegetables'");

// Using data from a resultset
echo $this->tag->select(
 [
 "productId",
 $products,
 "using" => [
 "id",
 "name",
]
]
);

// Using data from an array
echo $this->tag->selectStatic(
 [
 "status",
 [
 "A" => "Active",
 "I" => "Inactive",
]
]
);

The following HTML will generated:

<select id="productId" name="productId">
 <option value="101">Tomato</option>
 <option value="102">Lettuce</option>
 <option value="103">Beans</option>
</select>

<select id="status" name="status">
 <option value="A">Active</option>
 <option value="I">Inactive</option>
</select>

You can add an “empty” option to the generated HTML:

<?php

$products = Products::find("type = 'vegetables'");

// Creating a Select Tag with an empty option
echo $this->tag->select(
 [
 "productId",
 $products,
 "using" => [
 "id",
 "name",
],
 "useEmpty" => true,
]
);

Produces this HTML:

<select id="productId" name="productId">
 <option value="">Choose..</option>
 <option value="101">Tomato</option>
 <option value="102">Lettuce</option>
 <option value="103">Beans</option>
</select>

<?php

$products = Products::find("type = 'vegetables'");

// Creating a Select Tag with an empty option with default text
echo $this->tag->select(
 [
 "productId",
 $products,
 "using" => [
 "id",
 "name",
],
 "useEmpty" => true,
 "emptyText" => "Please, choose one...",
 "emptyValue" => "@",
]
);

<select id="productId" name="productId">
 <option value="@">Please, choose one..</option>
 <option value="101">Tomato</option>
 <option value="102">Lettuce</option>
 <option value="103">Beans</option>
</select>

Volt syntax for above example:

{# Creating a Select Tag with an empty option with default text #}
{{ select('productId', products, 'using': ['id', 'name'],
 'useEmpty': true, 'emptyText': 'Please, choose one...', 'emptyValue': '@') }}

Assigning HTML attributes

All the helpers accept an array as their first parameter which can contain additional HTML attributes for the element generated.

<?php $this->tag->textField(
 [
 "price",
 "size" => 20,
 "maxlength" => 30,
 "placeholder" => "Enter a price",
]
) ?>

or using Volt:

{{ text_field("price", "size": 20, "maxlength": 30, "placeholder": "Enter a price") }}

The following HTML is generated:

<input type="text" name="price" id="price" size="20" maxlength="30"
 placeholder="Enter a price" />

Setting Helper Values

From Controllers

It is a good programming principle for MVC frameworks to set specific values for form elements in the view.
You can set those values directly from the controller using Phalcon\Tag::setDefault().
This helper preloads a value for any helpers present in the view. If any helper in the view has
a name that matches the preloaded value, it will use it, unless a value is directly assigned on the helper in the view.

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
 public function indexAction()
 {
 $this->tag->setDefault("color", "Blue");
 }
}

At the view, a selectStatic helper matches the same index used to preset the value. In this case “color”:

<?php

echo $this->tag->selectStatic(
 [
 "color",
 [
 "Yellow" => "Yellow",
 "Blue" => "Blue",
 "Red" => "Red",
]
]
);

This will generate the following select tag with the value “Blue” selected:

<select id="color" name="color">
 <option value="Yellow">Yellow</option>
 <option value="Blue" selected="selected">Blue</option>
 <option value="Red">Red</option>
</select>

From the Request

A special feature that the Phalcon\Tag helpers have is that they keep the values
of form helpers between requests. This way you can easily show validation messages without losing entered data.

Specifying values directly

Every form helper supports the parameter “value”. With it you can specify a value for the helper directly.
When this parameter is present, any preset value using setDefault() or via request will be ignored.

Changing dynamically the Document Title

Phalcon\Tag offers helpers to change dynamically the document title from the controller.
The following example demonstrates just that:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function initialize()
 {
 $this->tag->setTitle("Your Website");
 }

 public function indexAction()
 {
 $this->tag->prependTitle("Index of Posts - ");
 }
}

<html>
 <head>
 <?php echo $this->tag->getTitle(); ?>
 </head>

 <body>

 </body>
</html>

The following HTML will generated:

<html>
 <head>
 <title>Index of Posts - Your Website</title>
 </head>

 <body>

 </body>
</html>

Static Content Helpers

Phalcon\Tag also provide helpers to generate tags such as script, link or img. They aid in quick and easy generation of the static resources of your application

Images

<?php

// Generate
echo $this->tag->image("img/hello.gif");

// Generate
echo $this->tag->image(
 [
 "img/hello.gif",
 "alt" => "alternative text",
]
);

Volt syntax:

{# Generate #}
{{ image("img/hello.gif") }}

{# Generate #}
{{ image("img/hello.gif", "alt": "alternative text") }}

Stylesheets

<?php

// Generate <link rel="stylesheet" href="http://fonts.googleapis.com/css?family=Rosario" type="text/css">
echo $this->tag->stylesheetLink("http://fonts.googleapis.com/css?family=Rosario", false);

// Generate <link rel="stylesheet" href="/your-app/css/styles.css" type="text/css">
echo $this->tag->stylesheetLink("css/styles.css");

Volt syntax:

{# Generate <link rel="stylesheet" href="http://fonts.googleapis.com/css?family=Rosario" type="text/css"> #}
{{ stylesheet_link("http://fonts.googleapis.com/css?family=Rosario", false) }}

{# Generate <link rel="stylesheet" href="/your-app/css/styles.css" type="text/css"> #}
{{ stylesheet_link("css/styles.css") }}

Javascript

<?php

// Generate <script src="http://localhost/javascript/jquery.min.js" type="text/javascript"></script>
echo $this->tag->javascriptInclude("http://localhost/javascript/jquery.min.js", false);

// Generate <script src="/your-app/javascript/jquery.min.js" type="text/javascript"></script>
echo $this->tag->javascriptInclude("javascript/jquery.min.js");

Volt syntax:

{# Generate <script src="http://localhost/javascript/jquery.min.js" type="text/javascript"></script> #}
{{ javascript_include("http://localhost/javascript/jquery.min.js", false) }}

{# Generate <script src="/your-app/javascript/jquery.min.js" type="text/javascript"></script> #}
{{ javascript_include("javascript/jquery.min.js") }}

HTML5 elements - generic HTML helper

Phalcon offers a generic HTML helper that allows the generation of any kind of HTML element. It is up to the developer to produce a valid HTML element name to the helper.

<?php

// Generate
// <canvas id="canvas1" width="300" class="cnvclass">
// This is my canvas
// </canvas>
echo $this->tag->tagHtml("canvas", ["id" => "canvas1", "width" => "300", "class" => "cnvclass"], false, true, true);
echo "This is my canvas";
echo $this->tag->tagHtmlClose("canvas");

Volt syntax:

{# Generate
<canvas id="canvas1" width="300" class="cnvclass">
This is my canvas
</canvas> #}
{{ tag_html("canvas", ["id": "canvas1", width": "300", "class": "cnvclass"], false, true, true) }}
 This is my canvas
{{ tag_html_close("canvas") }}

Tag Service

Phalcon\Tag is available via the ‘tag’ service, this means you can access it from any part
of the application where the services container is located:

<?php echo $this->tag->linkTo("pages/about", "About") ?>

You can easily add new helpers to a custom component replacing the service ‘tag’ in the services container:

<?php

use Phalcon\Tag;

class MyTags extends Tag
{
 // ...

 // Create a new helper
 public static function myAmazingHelper($parameters)
 {
 // ...
 }

 // Override an existing method
 public static function textField($parameters)
 {
 // ...
 }
}

Then change the definition of the service ‘tag’:

<?php

$di["tag"] = function () {
 return new MyTags();
};

Creating your own helpers

You can easily create your own helpers. First, start by creating a new folder within the same directory as your controllers and models. Give it a title that is relative to what you are creating. For our example here, we can call it “customhelpers”. Next we will create a new file titled MyTags.php within this new directory. At this point, we have a structure that looks similar to : /app/customhelpers/MyTags.php. In MyTags.php, we will extend the Phalcon\Tag and implement your own helper. Below is a simple example of a custom helper:

<?php

use Phalcon\Tag;

class MyTags extends Tag
{
 /**
 * Generates a widget to show a HTML5 audio tag
 *
 * @param array
 * @return string
 */
 public static function audioField($parameters)
 {
 // Converting parameters to array if it is not
 if (!is_array($parameters)) {
 $parameters = [$parameters];
 }

 // Determining attributes "id" and "name"
 if (!isset($parameters[0])) {
 $parameters[0] = $parameters["id"];
 }

 $id = $parameters[0];

 if (!isset($parameters["name"])) {
 $parameters["name"] = $id;
 } else {
 if (!$parameters["name"]) {
 $parameters["name"] = $id;
 }
 }

 // Determining widget value,
 // \Phalcon\Tag::setDefault() allows to set the widget value
 if (isset($parameters["value"])) {
 $value = $parameters["value"];

 unset($parameters["value"]);
 } else {
 $value = self::getValue($id);
 }

 // Generate the tag code
 $code = '<audio id="' . $id . '" value="' . $value . '" ';

 foreach ($parameters as $key => $attributeValue) {
 if (!is_integer($key)) {
 $code.= $key . '="' . $attributeValue . '" ';
 }
 }

 $code.=" />";

 return $code;
 }
}

After creating our custom helper, we will autoload the new directory that contains our helper class from our “index.php” located in the public directory.

<?php

use Phalcon\Loader;
use Phalcon\Mvc\Application;
use Phalcon\Di\FactoryDefault();
use Phalcon\Exception as PhalconException;

try {
 $loader = new Loader();

 $loader->registerDirs(
 [
 "../app/controllers",
 "../app/models",
 "../app/customhelpers", // Add the new helpers folder
]
);

 $loader->register();

 $di = new FactoryDefault();

 // Assign our new tag a definition so we can call it
 $di->set(
 "MyTags",
 function () {
 return new MyTags();
 }
);

 $application = new Application($di);

 $response = $application->handle();

 $response->send();
} catch (PhalconException $e) {
 echo "PhalconException: ", $e->getMessage();
}

Now you are ready to use your new helper within your views:

<body>

 <?php

 echo MyTags::audioField(
 [
 "name" => "test",
 "id" => "audio_test",
 "src" => "/path/to/audio.mp3",
]
);

 ?>

</body>

In next chapter, we’ll talk about Volt a faster template engine for PHP, where you can use a
more friendly syntax for using helpers provided by Phalcon\Tag.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Assets Management

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Assets Management

Phalcon\Assets is a component that allows you to manage static resources
such as CSS stylesheets or JavaScript libraries in a web application.

Phalcon\Assets\Manager is available in the services
container, so you can add resources from any part of the application where the container
is available.

Adding Resources

Assets supports two built-in resources: CSS and JavaScripts. You can create other
resources if you need. The assets manager internally stores two default collections
of resources - one for JavaScript and another for CSS.

You can easily add resources to these collections like follows:

<?php

use Phalcon\Mvc\Controller;

class IndexController extends Controller
{
 public function index()
 {
 // Add some local CSS resources
 $this->assets->addCss("css/style.css");
 $this->assets->addCss("css/index.css");

 // And some local JavaScript resources
 $this->assets->addJs("js/jquery.js");
 $this->assets->addJs("js/bootstrap.min.js");
 }
}

Then in a view, these resources can be printed:

<html>
 <head>
 <title>Some amazing website</title>

 <?php $this->assets->outputCss(); ?>
 </head>

 <body>
 <!-- ... -->

 <?php $this->assets->outputJs(); ?>
 </body>
<html>

Volt syntax:

<html>
 <head>
 <title>Some amazing website</title>

 {{ assets.outputCss() }}
 </head>

 <body>
 <!-- ... -->

 {{ assets.outputJs() }}
 </body>
<html>

For better pageload performance, it is recommended to place JavaScript at the end of the HTML instead of in the <head>.

Local/Remote resources

Local resources are those who are provided by the same application and they’re located in the document root
of the application. URLs in local resources are generated by the ‘url’ service, usually
Phalcon\Mvc\Url.

Remote resources are those such as common libraries like jQuery, Bootstrap, etc. that are provided by a CDN.

The second parameter of addCss() and addJs() says whether the resource is local or not (true is local, false is remote). By default, the assets manager will assume the resource is local:

<?php

public function indexAction()
{
 // Add some local CSS resources
 $this->assets->addCss("//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/bootstrap-combined.min.css", false);
 $this->assets->addCss("css/style.css", true);
 $this->assets->addCss("css/extra.css");
}

Collections

Collections group resources of the same type. The assets manager implicitly creates two collections: css and js.
You can create additional collections to group specific resources to make it easier to place those resources in the views:

<?php

// Javascripts in the header
$headerCollection = $this->assets->collection("header");

$headerCollection->addJs("js/jquery.js");
$headerCollection->addJs("js/bootstrap.min.js");

// Javascripts in the footer
$footerCollection = $this->assets->collection("footer");

$footerCollection->addJs("js/jquery.js");
$footerCollection->addJs("js/bootstrap.min.js");

Then in the views:

<html>
 <head>
 <title>Some amazing website</title>

 <?php $this->assets->outputJs("header"); ?>
 </head>

 <body>
 <!-- ... -->

 <?php $this->assets->outputJs("footer"); ?>
 </body>
<html>

Volt syntax:

<html>
 <head>
 <title>Some amazing website</title>

 {{ assets.outputCss("header") }}
 </head>

 <body>
 <!-- ... -->

 {{ assets.outputJs("footer") }}
 </body>
<html>

URL Prefixes

Collections can be URL-prefixed, this enables you to easily change from one server to another at any moment:

<?php

$footerCollection = $this->assets->collection("footer");

if ($config->environment === "development") {
 $footerCollection->setPrefix("/");
} else {
 $footerCollection->setPrefix("http:://cdn.example.com/");
}

$footerCollection->addJs("js/jquery.js");
$footerCollection->addJs("js/bootstrap.min.js");

A chainable syntax is available too:

<?php

$headerCollection = $assets
 ->collection("header")
 ->setPrefix("http://cdn.example.com/")
 ->setLocal(false)
 ->addJs("js/jquery.js")
 ->addJs("js/bootstrap.min.js");

Minification/Filtering

Phalcon\Assets provides built-in minification of JavaScript and CSS resources. You can create a collection of
resources instructing the Assets Manager which ones must be filtered and which ones must be left as they are.
In addition to the above, Jsmin by Douglas Crockford is part of the core extension offering minification of JavaScript files
for maximum performance. In the CSS land, CSSMin by Ryan Day is also available to minify CSS files:

The following example shows how to minify a collection of resources:

<?php

$manager

 // These JavaScripts are located in the page's bottom
 ->collection("jsFooter")

 // The name of the final output
 ->setTargetPath("final.js")

 // The script tag is generated with this URI
 ->setTargetUri("production/final.js")

 // This is a remote resource that does not need filtering
 ->addJs("code.jquery.com/jquery-1.10.0.min.js", false, false)

 // These are local resources that must be filtered
 ->addJs("common-functions.js")
 ->addJs("page-functions.js")

 // Join all the resources in a single file
 ->join(true)

 // Use the built-in Jsmin filter
 ->addFilter(
 new Phalcon\Assets\Filters\Jsmin()
)

 // Use a custom filter
 ->addFilter(
 new MyApp\Assets\Filters\LicenseStamper()
);

A collection can contain JavaScript or CSS
resources but not both. Some resources may be remote, that is, they’re obtained by HTTP from a remote source
for further filtering. It is recommended to convert the external resources to local for better performance.

As seen above, the addJs() method is used to add resources to the collection, the second parameter indicates
whether the resource is external or not and the third parameter indicates whether the resource should
be filtered or left as is:

<?php

// These Javascripts are located in the page's bottom
$jsFooterCollection = $manager->collection("jsFooter");

// This a remote resource that does not need filtering
$jsFooterCollection->addJs("code.jquery.com/jquery-1.10.0.min.js", false, false);

// These are local resources that must be filtered
$jsFooterCollection->addJs("common-functions.js");
$jsFooterCollection->addJs("page-functions.js");

Filters are registered in the collection, multiple filters are allowed, content in resources are filtered
in the same order as filters were registered:

<?php

// Use the built-in Jsmin filter
$jsFooterCollection->addFilter(
 new Phalcon\Assets\Filters\Jsmin()
);

// Use a custom filter
$jsFooterCollection->addFilter(
 new MyApp\Assets\Filters\LicenseStamper()
);

Note that both built-in and custom filters can be transparently applied to collections.
The last step is to decide if all the resources in the collection must be joined into a single file or serve each of them
individually. To tell the collection that all resources must be joined you can use the join() method.

If resources are going to be joined, we need also to define which file will be used to store the resources
and which URI will be used to show it. These settings are set up with setTargetPath() and setTargetUri():

<?php

$jsFooterCollection->join(true);

// The name of the final file path
$jsFooterCollection->setTargetPath("public/production/final.js");

// The script HTML tag is generated with this URI
$jsFooterCollection->setTargetUri("production/final.js");

Built-In Filters

Phalcon provides 2 built-in filters to minify both JavaScript and CSS, their C-backend provide
the minimum overhead to perform this task:

	Filter
	Description

	Phalcon\Assets\Filters\Jsmin
	Minifies JavaScript by removing unnecessary characters that are ignored by Javascript interpreters/compilers

	Phalcon\Assets\Filters\Cssmin
	Minifies CSS by removing unnecessary characters that are already ignored by browsers

Custom Filters

In addition to the built-in filters, you can create your own filters. These can take advantage of existing
and more advanced tools like YUI [http://yui.github.io/yuicompressor/], Sass [http://sass-lang.com/], Closure [https://developers.google.com/closure/compiler/?hl=fr], etc.:

<?php

use Phalcon\Assets\FilterInterface;

/**
 * Filters CSS content using YUI
 *
 * @param string $contents
 * @return string
 */
class CssYUICompressor implements FilterInterface
{
 protected $_options;

 /**
 * CssYUICompressor constructor
 *
 * @param array $options
 */
 public function __construct(array $options)
 {
 $this->_options = $options;
 }

 /**
 * Do the filtering
 *
 * @param string $contents
 *
 * @return string
 */
 public function filter($contents)
 {
 // Write the string contents into a temporal file
 file_put_contents("temp/my-temp-1.css", $contents);

 system(
 $this->_options["java-bin"] .
 " -jar " .
 $this->_options["yui"] .
 " --type css " .
 "temp/my-temp-file-1.css " .
 $this->_options["extra-options"] .
 " -o temp/my-temp-file-2.css"
);

 // Return the contents of file
 return file_get_contents("temp/my-temp-file-2.css");
 }
}

Usage:

<?php

// Get some CSS collection
$css = $this->assets->get("head");

// Add/Enable the YUI compressor filter in the collection
$css->addFilter(
 new CssYUICompressor(
 [
 "java-bin" => "/usr/local/bin/java",
 "yui" => "/some/path/yuicompressor-x.y.z.jar",
 "extra-options" => "--charset utf8",
]
)
);

In a previous example, we used a custom filter called LicenseStamper:

<?php

use Phalcon\Assets\FilterInterface;

/**
 * Adds a license message to the top of the file
 *
 * @param string $contents
 *
 * @return string
 */
class LicenseStamper implements FilterInterface
{
 /**
 * Do the filtering
 *
 * @param string $contents
 * @return string
 */
 public function filter($contents)
 {
 $license = "/* (c) 2015 Your Name Here */";

 return $license . PHP_EOL . PHP_EOL . $contents;
 }
}

Custom Output

The outputJs() and outputCss() methods are available to generate the necessary HTML code according to each type of resources.
You can override this method or print the resources manually in the following way:

<?php

use Phalcon\Tag;

$jsCollection = $this->assets->collection("js");

foreach ($jsCollection as $resource) {
 echo Tag::javascriptInclude(
 $resource->getPath()
);
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Volt: Template Engine

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Volt: Template Engine

Volt is an ultra-fast and designer friendly templating language written in C for PHP. It provides you a set of
helpers to write views in an easy way. Volt is highly integrated with other components of Phalcon,
just as you can use it as a stand-alone component in your applications.

[image: ../_images/volt.jpg]

Volt is inspired by Jinja [http://jinja.pocoo.org/], originally created by Armin Ronacher [https://github.com/mitsuhiko]. Therefore many developers will be in familiar
territory using the same syntax they have been using with similar template engines. Volt’s syntax and features
have been enhanced with more elements and of course with the performance that developers have been
accustomed to while working with Phalcon.

Introduction

Volt views are compiled to pure PHP code, so basically they save the effort of writing PHP code manually:

{# app/views/products/show.volt #}

{% block last_products %}

{% for product in products %}
 * Name: {{ product.name|e }}
 {% if product.status === "Active" %}
 Price: {{ product.price + product.taxes/100 }}
 {% endif %}
{% endfor %}

{% endblock %}

Activating Volt

As with other templating engines, you may register Volt in the view component, using a new extension or
reusing the standard .phtml:

<?php

use Phalcon\Mvc\View;
use Phalcon\Mvc\View\Engine\Volt;

// Register Volt as a service
$di->set(
 "voltService",
 function ($view, $di) {
 $volt = new Volt($view, $di);

 $volt->setOptions(
 [
 "compiledPath" => "../app/compiled-templates/",
 "compiledExtension" => ".compiled",
]
);

 return $volt;
 }
);

// Register Volt as template engine
$di->set(
 "view",
 function () {
 $view = new View();

 $view->setViewsDir("../app/views/");

 $view->registerEngines(
 [
 ".volt" => "voltService",
]
);

 return $view;
 }
);

Use the standard ”.phtml” extension:

<?php

$view->registerEngines(
 [
 ".phtml" => "voltService",
]
);

You don’t have to specify the Volt Service in the DI; you can also use the Volt engine with the default settings:

<?php

$view->registerEngines(
 [
 ".volt" => "Phalcon\\Mvc\\View\\Engine\\Volt",
]
);

If you do not want to reuse Volt as a service, you can pass an anonymous function to register the engine instead of a service name:

<?php

use Phalcon\Mvc\View;
use Phalcon\Mvc\View\Engine\Volt;

// Register Volt as template engine with an anonymous function
$di->set(
 "view",
 function () {
 $view = new \Phalcon\Mvc\View();

 $view->setViewsDir("../app/views/");

 $view->registerEngines(
 [
 ".volt" => function ($view, $di) {
 $volt = new Volt($view, $di);

 // Set some options here

 return $volt;
 }
]
);

 return $view;
 }
);

The following options are available in Volt:

	Option
	Description
	Default

	compiledPath
	A writable path where the compiled PHP templates will be placed
	./

	compiledExtension
	An additional extension appended to the compiled PHP file
	.php

	compiledSeparator
	Volt replaces the directory separators / and \ by this separator in order to create a single file in the compiled directory
	%%

	stat
	Whether Phalcon must check if exists differences between the template file and its compiled path
	true

	compileAlways
	Tell Volt if the templates must be compiled in each request or only when they change
	false

	prefix
	Allows to prepend a prefix to the templates in the compilation path
	null

	autoescape
	Enables globally autoescape of HTML
	false

The compilation path is generated according to the above options, if the developer wants total freedom defining the compilation path,
an anonymous function can be used to generate it, this function receives the relative path to the template in the
views directory. The following examples show how to change the compilation path dynamically:

<?php

// Just append the .php extension to the template path
// leaving the compiled templates in the same directory
$volt->setOptions(
 [
 "compiledPath" => function ($templatePath) {
 return $templatePath . ".php";
 }
]
);

// Recursively create the same structure in another directory
$volt->setOptions(
 [
 "compiledPath" => function ($templatePath) {
 $dirName = dirname($templatePath);

 if (!is_dir("cache/" . $dirName)) {
 mkdir("cache/" . $dirName);
 }

 return "cache/" . $dirName . "/". $templatePath . ".php";
 }
]
);

Basic Usage

A view consists of Volt code, PHP and HTML. A set of special delimiters is available to enter into
Volt mode. {% ... %} is used to execute statements such as for-loops or assign values and {{ ... }},
prints the result of an expression to the template.

Below is a minimal template that illustrates a few basics:

{# app/views/posts/show.phtml #}
<!DOCTYPE html>
<html>
 <head>
 <title>{{ title }} - An example blog</title>
 </head>
 <body>

 {% if show_navigation %}
 <ul id="navigation">
 {% for item in menu %}

 {{ item.caption }}

 {% endfor %}

 {% endif %}

 <h1>{{ post.title }}</h1>

 <div class="content">
 {{ post.content }}
 </div>

 </body>
</html>

Using Phalcon\Mvc\View you can pass variables from the controller to the views.
In the above example, four variables were passed to the view: show_navigation, menu, title and post:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function showAction()
 {
 $post = Post::findFirst();
 $menu = Menu::findFirst();

 $this->view->show_navigation = true;
 $this->view->menu = $menu;
 $this->view->title = $post->title;
 $this->view->post = $post;

 // Or...

 $this->view->setVar("show_navigation", true);
 $this->view->setVar("menu", $menu);
 $this->view->setVar("title", $post->title);
 $this->view->setVar("post", $post);
 }
}

Variables

Object variables may have attributes which can be accessed using the syntax: foo.bar.
If you are passing arrays, you have to use the square bracket syntax: foo['bar']

{{ post.title }} {# for $post->title #}
{{ post['title'] }} {# for $post['title'] #}

Filters

Variables can be formatted or modified using filters. The pipe operator | is used to apply filters to
variables:

{{ post.title|e }}
{{ post.content|striptags }}
{{ name|capitalize|trim }}

The following is the list of available built-in filters in Volt:

	Filter
	Description

	e
	Applies Phalcon\Escaper->escapeHtml() to the value

	escape
	Applies Phalcon\Escaper->escapeHtml() to the value

	escape_css
	Applies Phalcon\Escaper->escapeCss() to the value

	escape_js
	Applies Phalcon\Escaper->escapeJs() to the value

	escape_attr
	Applies Phalcon\Escaper->escapeHtmlAttr() to the value

	trim
	Applies the trim [http://php.net/manual/en/function.trim.php] PHP function to the value. Removing extra spaces

	left_trim
	Applies the ltrim [http://php.net/manual/en/function.ltrim.php] PHP function to the value. Removing extra spaces

	right_trim
	Applies the rtrim [http://php.net/manual/en/function.rtrim.php] PHP function to the value. Removing extra spaces

	striptags
	Applies the striptags [http://php.net/manual/en/function.striptags.php] PHP function to the value. Removing HTML tags

	slashes
	Applies the slashes [http://php.net/manual/en/function.slashes.php] PHP function to the value. Escaping values

	stripslashes
	Applies the stripslashes [http://php.net/manual/en/function.stripslashes.php] PHP function to the value. Removing escaped quotes

	capitalize
	Capitalizes a string by applying the ucwords [http://php.net/manual/en/function.ucwords.php] PHP function to the value

	lower
	Change the case of a string to lowercase

	upper
	Change the case of a string to uppercase

	length
	Counts the string length or how many items are in an array or object

	nl2br
	Changes newlines \n by line breaks (
). Uses the PHP function nl2br [http://php.net/manual/en/function.nl2br.php]

	sort
	Sorts an array using the PHP function asort [http://php.net/manual/en/function.asort.php]

	keys
	Returns the array keys using array_keys [http://php.net/manual/en/function.array-keys.php]

	join
	Joins the array parts using a separator join [http://php.net/manual/en/function.join.php]

	format
	Formats a string using sprintf [http://php.net/manual/en/function.sprintf.php].

	json_encode
	Converts a value into its JSON [http://php.net/manual/en/function.json-encode.php] representation

	json_decode
	Converts a value from its JSON [http://php.net/manual/en/function.json-encode.php] representation to a PHP representation

	abs
	Applies the abs [http://php.net/manual/en/function.abs.php] PHP function to a value.

	url_encode
	Applies the urlencode [http://php.net/manual/en/function.urlencode.php] PHP function to the value

	default
	Sets a default value in case that the evaluated expression is empty
(is not set or evaluates to a falsy value)

	convert_encoding
	Converts a string from one charset to another

Examples:

{# e or escape filter #}
{{ "<h1>Hello<h1>"|e }}
{{ "<h1>Hello<h1>"|escape }}

{# trim filter #}
{{ " hello "|trim }}

{# striptags filter #}
{{ "<h1>Hello<h1>"|striptags }}

{# slashes filter #}
{{ "'this is a string'"|slashes }}

{# stripslashes filter #}
{{ "\'this is a string\'"|stripslashes }}

{# capitalize filter #}
{{ "hello"|capitalize }}

{# lower filter #}
{{ "HELLO"|lower }}

{# upper filter #}
{{ "hello"|upper }}

{# length filter #}
{{ "robots"|length }}
{{ [1, 2, 3]|length }}

{# nl2br filter #}
{{ "some\ntext"|nl2br }}

{# sort filter #}
{% set sorted = [3, 1, 2]|sort %}

{# keys filter #}
{% set keys = ['first': 1, 'second': 2, 'third': 3]|keys %}

{# join filter #}
{% set joined = "a".."z"|join(",") %}

{# format filter #}
{{ "My real name is %s"|format(name) }}

{# json_encode filter #}
{% set encoded = robots|json_encode %}

{# json_decode filter #}
{% set decoded = '{"one":1,"two":2,"three":3}'|json_decode %}

{# url_encode filter #}
{{ post.permanent_link|url_encode }}

{# convert_encoding filter #}
{{ "désolé"|convert_encoding('utf8', 'latin1') }}

Comments

Comments may also be added to a template using the {# ... #} delimiters. All text inside them is just ignored in the final output:

{# note: this is a comment
 {% set price = 100; %}
#}

List of Control Structures

Volt provides a set of basic but powerful control structures for use in templates:

For

Loop over each item in a sequence. The following example shows how to traverse a set of “robots” and print his/her name:

<h1>Robots</h1>

 {% for robot in robots %}

 {{ robot.name|e }}

 {% endfor %}

for-loops can also be nested:

<h1>Robots</h1>
{% for robot in robots %}
 {% for part in robot.parts %}
 Robot: {{ robot.name|e }} Part: {{ part.name|e }}

 {% endfor %}
{% endfor %}

You can get the element “keys” as in the PHP counterpart using the following syntax:

{% set numbers = ['one': 1, 'two': 2, 'three': 3] %}

{% for name, value in numbers %}
 Name: {{ name }} Value: {{ value }}
{% endfor %}

An “if” evaluation can be optionally set:

{% set numbers = ['one': 1, 'two': 2, 'three': 3] %}

{% for value in numbers if value < 2 %}
 Value: {{ value }}
{% endfor %}

{% for name, value in numbers if name !== 'two' %}
 Name: {{ name }} Value: {{ value }}
{% endfor %}

If an ‘else’ is defined inside the ‘for’, it will be executed if the expression in the iterator result in zero iterations:

<h1>Robots</h1>
{% for robot in robots %}
 Robot: {{ robot.name|e }} Part: {{ part.name|e }}

{% else %}
 There are no robots to show
{% endfor %}

Alternative syntax:

<h1>Robots</h1>
{% for robot in robots %}
 Robot: {{ robot.name|e }} Part: {{ part.name|e }}

{% elsefor %}
 There are no robots to show
{% endfor %}

Loop Controls

The ‘break’ and ‘continue’ statements can be used to exit from a loop or force an iteration in the current block:

{# skip the even robots #}
{% for index, robot in robots %}
 {% if index is even %}
 {% continue %}
 {% endif %}
 ...
{% endfor %}

{# exit the foreach on the first even robot #}
{% for index, robot in robots %}
 {% if index is even %}
 {% break %}
 {% endif %}
 ...
{% endfor %}

If

As PHP, an “if” statement checks if an expression is evaluated as true or false:

<h1>Cyborg Robots</h1>

 {% for robot in robots %}
 {% if robot.type === "cyborg" %}
 {{ robot.name|e }}
 {% endif %}
 {% endfor %}

The else clause is also supported:

<h1>Robots</h1>

 {% for robot in robots %}
 {% if robot.type === "cyborg" %}
 {{ robot.name|e }}
 {% else %}
 {{ robot.name|e }} (not a cyborg)
 {% endif %}
 {% endfor %}

The ‘elseif’ control flow structure can be used together with if to emulate a ‘switch’ block:

{% if robot.type === "cyborg" %}
 Robot is a cyborg
{% elseif robot.type === "virtual" %}
 Robot is virtual
{% elseif robot.type === "mechanical" %}
 Robot is mechanical
{% endif %}

Loop Context

A special variable is available inside ‘for’ loops providing you information about

	Variable
	Description

	loop.index
	The current iteration of the loop. (1 indexed)

	loop.index0
	The current iteration of the loop. (0 indexed)

	loop.revindex
	The number of iterations from the end of the loop (1 indexed)

	loop.revindex0
	The number of iterations from the end of the loop (0 indexed)

	loop.first
	True if in the first iteration.

	loop.last
	True if in the last iteration.

	loop.length
	The number of items to iterate

{% for robot in robots %}
 {% if loop.first %}
 <table>
 <tr>
 <th>#</th>
 <th>Id</th>
 <th>Name</th>
 </tr>
 {% endif %}
 <tr>
 <td>{{ loop.index }}</td>
 <td>{{ robot.id }}</td>
 <td>{{ robot.name }}</td>
 </tr>
 {% if loop.last %}
 </table>
 {% endif %}
{% endfor %}

Assignments

Variables may be changed in a template using the instruction “set”:

{% set fruits = ['Apple', 'Banana', 'Orange'] %}

{% set name = robot.name %}

Multiple assignments are allowed in the same instruction:

{% set fruits = ['Apple', 'Banana', 'Orange'], name = robot.name, active = true %}

Additionally, you can use compound assignment operators:

{% set price += 100.00 %}

{% set age *= 5 %}

The following operators are available:

	Operator
	Description

	=
	Standard Assignment

	+=
	Addition assignment

	-=
	Subtraction assignment

	*=
	Multiplication assignment

	/=
	Division assignment

Expressions

Volt provides a basic set of expression support, including literals and common operators.

A expression can be evaluated and printed using the ‘{{‘ and ‘}}’ delimiters:

{{ (1 + 1) * 2 }}

If an expression needs to be evaluated without be printed the ‘do’ statement can be used:

{% do (1 + 1) * 2 %}

Literals

The following literals are supported:

	Filter
	Description

	“this is a string”
	Text between double quotes or single quotes are handled as strings

	100.25
	Numbers with a decimal part are handled as doubles/floats

	100
	Numbers without a decimal part are handled as integers

	false
	Constant “false” is the boolean false value

	true
	Constant “true” is the boolean true value

	null
	Constant “null” is the Null value

Arrays

Whether you’re using PHP 5.3 or >= 5.4 you can create arrays by enclosing a list of values in square brackets:

{# Simple array #}
{{ ['Apple', 'Banana', 'Orange'] }}

{# Other simple array #}
{{ ['Apple', 1, 2.5, false, null] }}

{# Multi-Dimensional array #}
{{ [[1, 2], [3, 4], [5, 6]] }}

{# Hash-style array #}
{{ ['first': 1, 'second': 4/2, 'third': '3'] }}

Curly braces also can be used to define arrays or hashes:

{% set myArray = {'Apple', 'Banana', 'Orange'} %}
{% set myHash = {'first': 1, 'second': 4/2, 'third': '3'} %}

Math

You may make calculations in templates using the following operators:

	Operator
	Description

	+
	Perform an adding operation. {{ 2 + 3 }} returns 5

	-
	Perform a substraction operation {{ 2 - 3 }} returns -1

	*
	Perform a multiplication operation {{ 2 * 3 }} returns 6

	/
	Perform a division operation {{ 10 / 2 }} returns 5

	%
	Calculate the remainder of an integer division {{ 10 % 3 }} returns 1

Comparisons

The following comparison operators are available:

	Operator
	Description

	==
	Check whether both operands are equal

	!=
	Check whether both operands aren’t equal

	<>
	Check whether both operands aren’t equal

	>
	Check whether left operand is greater than right operand

	<
	Check whether left operand is less than right operand

	<=
	Check whether left operand is less or equal than right operand

	>=
	Check whether left operand is greater or equal than right operand

	===
	Check whether both operands are identical

	!==
	Check whether both operands aren’t identical

Logic

Logic operators are useful in the “if” expression evaluation to combine multiple tests:

	Operator
	Description

	or
	Return true if the left or right operand is evaluated as true

	and
	Return true if both left and right operands are evaluated as true

	not
	Negates an expression

	(expr)
	Parenthesis groups expressions

Other Operators

Additional operators seen the following operators are available:

	Operator
	Description

	~
	Concatenates both operands {{ "hello " ~ "world" }}

	|
	Applies a filter in the right operand to the left {{ "hello"|uppercase }}

	..
	Creates a range {{ 'a'..'z' }} {{ 1..10 }}

	is
	Same as == (equals), also performs tests

	in
	To check if an expression is contained into other expressions if "a" in "abc"

	is not
	Same as != (not equals)

	'a' ? 'b' : 'c'
	Ternary operator. The same as the PHP ternary operator

	++
	Increments a value

	--
	Decrements a value

The following example shows how to use operators:

{% set robots = ['Voltron', 'Astro Boy', 'Terminator', 'C3PO'] %}

{% for index in 0..robots|length %}
 {% if robots[index] is defined %}
 {{ "Name: " ~ robots[index] }}
 {% endif %}
{% endfor %}

Tests

Tests can be used to test if a variable has a valid expected value. The operator “is” is used to perform the tests:

{% set robots = ['1': 'Voltron', '2': 'Astro Boy', '3': 'Terminator', '4': 'C3PO'] %}

{% for position, name in robots %}
 {% if position is odd %}
 {{ name }}
 {% endif %}
{% endfor %}

The following built-in tests are available in Volt:

	Test
	Description

	defined
	Checks if a variable is defined (isset())

	empty
	Checks if a variable is empty

	even
	Checks if a numeric value is even

	odd
	Checks if a numeric value is odd

	numeric
	Checks if value is numeric

	scalar
	Checks if value is scalar (not an array or object)

	iterable
	Checks if a value is iterable. Can be traversed by a “for” statement

	divisibleby
	Checks if a value is divisible by other value

	sameas
	Checks if a value is identical to other value

	type
	Checks if a value is of the specified type

More examples:

{% if robot is defined %}
 The robot variable is defined
{% endif %}

{% if robot is empty %}
 The robot is null or isn't defined
{% endif %}

{% for key, name in [1: 'Voltron', 2: 'Astroy Boy', 3: 'Bender'] %}
 {% if key is even %}
 {{ name }}
 {% endif %}
{% endfor %}

{% for key, name in [1: 'Voltron', 2: 'Astroy Boy', 3: 'Bender'] %}
 {% if key is odd %}
 {{ name }}
 {% endif %}
{% endfor %}

{% for key, name in [1: 'Voltron', 2: 'Astroy Boy', 'third': 'Bender'] %}
 {% if key is numeric %}
 {{ name }}
 {% endif %}
{% endfor %}

{% set robots = [1: 'Voltron', 2: 'Astroy Boy'] %}
{% if robots is iterable %}
 {% for robot in robots %}
 ...
 {% endfor %}
{% endif %}

{% set world = "hello" %}
{% if world is sameas("hello") %}
 {{ "it's hello" }}
{% endif %}

{% set external = false %}
{% if external is type('boolean') %}
 {{ "external is false or true" }}
{% endif %}

Macros

Macros can be used to reuse logic in a template, they act as PHP functions, can receive parameters and return values:

{# Macro "display a list of links to related topics" #}
{%- macro related_bar(related_links) %}

 {%- for link in related_links %}

 {{ link.text }}

 {%- endfor %}

{%- endmacro %}

{# Print related links #}
{{ related_bar(links) }}

<div>This is the content</div>

{# Print related links again #}
{{ related_bar(links) }}

When calling macros, parameters can be passed by name:

{%- macro error_messages(message, field, type) %}
 <div>
 {{ type }}
 {{ field }}
 {{ message }}
 </div>
{%- endmacro %}

{# Call the macro #}
{{ error_messages('type': 'Invalid', 'message': 'The name is invalid', 'field': 'name') }}

Macros can return values:

{%- macro my_input(name, class) %}
 {% return text_field(name, 'class': class) %}
{%- endmacro %}

{# Call the macro #}
{{ '<p>' ~ my_input('name', 'input-text') ~ '</p>' }}

And receive optional parameters:

{%- macro my_input(name, class="input-text") %}
 {% return text_field(name, 'class': class) %}
{%- endmacro %}

{# Call the macro #}
{{ '<p>' ~ my_input('name') ~ '</p>' }}
{{ '<p>' ~ my_input('name', 'input-text') ~ '</p>' }}

Using Tag Helpers

Volt is highly integrated with Phalcon\Tag, so it’s easy to use the helpers provided by that component in a Volt template:

{{ javascript_include("js/jquery.js") }}

{{ form('products/save', 'method': 'post') }}

 <label for="name">Name</label>
 {{ text_field("name", "size": 32) }}

 <label for="type">Type</label>
 {{ select("type", productTypes, 'using': ['id', 'name']) }}

 {{ submit_button('Send') }}

{{ end_form() }}

The following PHP is generated:

<?php echo Phalcon\Tag::javascriptInclude("js/jquery.js") ?>

<?php echo Phalcon\Tag::form(array('products/save', 'method' => 'post')); ?>

 <label for="name">Name</label>
 <?php echo Phalcon\Tag::textField(array('name', 'size' => 32)); ?>

 <label for="type">Type</label>
 <?php echo Phalcon\Tag::select(array('type', $productTypes, 'using' => array('id', 'name'))); ?>

 <?php echo Phalcon\Tag::submitButton('Send'); ?>

{{ end_form() }}

To call a Phalcon\Tag helper, you only need to call an uncamelized version of the method:

	Method
	Volt function

	Phalcon\Tag::linkTo
	link_to

	Phalcon\Tag::textField
	text_field

	Phalcon\Tag::passwordField
	password_field

	Phalcon\Tag::hiddenField
	hidden_field

	Phalcon\Tag::fileField
	file_field

	Phalcon\Tag::checkField
	check_field

	Phalcon\Tag::radioField
	radio_field

	Phalcon\Tag::dateField
	date_field

	Phalcon\Tag::emailField
	email_field

	Phalcon\Tag::numericField
	numeric_field

	Phalcon\Tag::submitButton
	submit_button

	Phalcon\Tag::selectStatic
	select_static

	Phalcon\Tag::select
	select

	Phalcon\Tag::textArea
	text_area

	Phalcon\Tag::form
	form

	Phalcon\Tag::endForm
	end_form

	Phalcon\Tag::getTitle
	get_title

	Phalcon\Tag::stylesheetLink
	stylesheet_link

	Phalcon\Tag::javascriptInclude
	javascript_include

	Phalcon\Tag::image
	image

	Phalcon\Tag::friendlyTitle
	friendly_title

Functions

The following built-in functions are available in Volt:

	Name
	Description

	content
	Includes the content produced in a previous rendering stage

	get_content
	Same as content

	partial
	Dynamically loads a partial view in the current template

	super
	Render the contents of the parent block

	time
	Calls the PHP function with the same name

	date
	Calls the PHP function with the same name

	dump
	Calls the PHP function var_dump()

	version
	Returns the current version of the framework

	constant
	Reads a PHP constant

	url
	Generate a URL using the ‘url’ service

View Integration

Also, Volt is integrated with Phalcon\Mvc\View, you can play with the view hierarchy and include partials as well:

{{ content() }}

<!-- Simple include of a partial -->
<div id="footer">{{ partial("partials/footer") }}</div>

<!-- Passing extra variables -->
<div id="footer">{{ partial("partials/footer", ['links': links]) }}</div>

A partial is included in runtime, Volt also provides “include”, this compiles the content of a view and returns its contents
as part of the view which was included:

{# Simple include of a partial #}
<div id="footer">
 {% include "partials/footer" %}
</div>

{# Passing extra variables #}
<div id="footer">
 {% include "partials/footer" with ['links': links] %}
</div>

Include

‘include’ has a special behavior that will help us improve performance a bit when using Volt, if you specify the extension
when including the file and it exists when the template is compiled, Volt can inline the contents of the template in the parent
template where it’s included. Templates aren’t inlined if the ‘include’ have variables passed with ‘with’:

{# The contents of 'partials/footer.volt' is compiled and inlined #}
<div id="footer">
 {% include "partials/footer.volt" %}
</div>

Partial vs Include

Keep the following points in mind when choosing to use the “partial” function or “include”:

	‘Partial’ allows you to include templates made in Volt and in other template engines as well

	‘Partial’ allows you to pass an expression like a variable allowing to include the content of other view dynamically

	‘Partial’ is better if the content that you have to include changes frequently

	‘Include’ copies the compiled content into the view which improves the performance

	‘Include’ only allows to include templates made with Volt

	‘Include’ requires an existing template at compile time

Template Inheritance

With template inheritance you can create base templates that can be extended by others templates allowing to reuse code. A base template
define blocks than can be overridden by a child template. Let’s pretend that we have the following base template:

{# templates/base.volt #}
<!DOCTYPE html>
<html>
 <head>
 {% block head %}
 <link rel="stylesheet" href="style.css" />
 {% endblock %}

 <title>{% block title %}{% endblock %} - My Webpage</title>
 </head>

 <body>
 <div id="content">{% block content %}{% endblock %}</div>

 <div id="footer">
 {% block footer %}© Copyright 2015, All rights reserved.{% endblock %}
 </div>
 </body>
</html>

From other template we could extend the base template replacing the blocks:

{% extends "templates/base.volt" %}

{% block title %}Index{% endblock %}

{% block head %}<style type="text/css">.important { color: #336699; }</style>{% endblock %}

{% block content %}
 <h1>Index</h1>
 <p class="important">Welcome on my awesome homepage.</p>
{% endblock %}

Not all blocks must be replaced at a child template, only those that are needed. The final output produced will be the following:

<!DOCTYPE html>
<html>
 <head>
 <style type="text/css">.important { color: #336699; }</style>

 <title>Index - My Webpage</title>
 </head>

 <body>
 <div id="content">
 <h1>Index</h1>
 <p class="important">Welcome on my awesome homepage.</p>
 </div>

 <div id="footer">
 © Copyright 2015, All rights reserved.
 </div>
 </body>
</html>

Multiple Inheritance

Extended templates can extend other templates. The following example illustrates this:

{# main.volt #}
<!DOCTYPE html>
<html>
 <head>
 <title>Title</title>
 </head>

 <body>
 {% block content %}{% endblock %}
 </body>
</html>

Template “layout.volt” extends “main.volt”

{# layout.volt #}
{% extends "main.volt" %}

{% block content %}

 <h1>Table of contents</h1>

{% endblock %}

Finally a view that extends “layout.volt”:

{# index.volt #}
{% extends "layout.volt" %}

{% block content %}

 {{ super() }}

 Some option
 Some other option

{% endblock %}

Rendering “index.volt” produces:

<!DOCTYPE html>
<html>
 <head>
 <title>Title</title>
 </head>

 <body>

 <h1>Table of contents</h1>

 Some option
 Some other option

 </body>
</html>

Note the call to the function super(). With that function it’s possible to render the contents of the parent block.

As partials, the path set to “extends” is a relative path under the current views directory (i.e. app/views/).

By default, and for performance reasons, Volt only checks for changes in the children templates
to know when to re-compile to plain PHP again, so it is recommended initialize Volt with the option
'compileAlways' => true. Thus, the templates are compiled always taking into account changes in
the parent templates.

Autoescape mode

You can enable auto-escaping of all variables printed in a block using the autoescape mode:

Manually escaped: {{ robot.name|e }}

{% autoescape true %}
 Autoescaped: {{ robot.name }}
 {% autoescape false %}
 No Autoescaped: {{ robot.name }}
 {% endautoescape %}
{% endautoescape %}

Extending Volt

Unlike other template engines, Volt itself is not required to run the compiled templates.
Once the templates are compiled there is no dependence on Volt. With performance independence in mind,
Volt only acts as a compiler for PHP templates.

The Volt compiler allow you to extend it adding more functions, tests or filters to the existing ones.

Functions

Functions act as normal PHP functions, a valid string name is required as function name.
Functions can be added using two strategies, returning a simple string or using an anonymous
function. Always is required that the chosen strategy returns a valid PHP string expression:

<?php

use Phalcon\Mvc\View\Engine\Volt;

$volt = new Volt($view, $di);

$compiler = $volt->getCompiler();

// This binds the function name 'shuffle' in Volt to the PHP function 'str_shuffle'
$compiler->addFunction("shuffle", "str_shuffle");

Register the function with an anonymous function. This case we use $resolvedArgs to pass the arguments exactly
as were passed in the arguments:

<?php

$compiler->addFunction(
 "widget",
 function ($resolvedArgs, $exprArgs) {
 return "MyLibrary\\Widgets::get(" . $resolvedArgs . ")";
 }
);

Treat the arguments independently and unresolved:

<?php

$compiler->addFunction(
 "repeat",
 function ($resolvedArgs, $exprArgs) use ($compiler) {
 // Resolve the first argument
 $firstArgument = $compiler->expression($exprArgs[0]['expr']);

 // Checks if the second argument was passed
 if (isset($exprArgs[1])) {
 $secondArgument = $compiler->expression($exprArgs[1]['expr']);
 } else {
 // Use '10' as default
 $secondArgument = '10';
 }

 return "str_repeat(" . $firstArgument . ", " . $secondArgument . ")";
 }
);

Generate the code based on some function availability:

<?php

$compiler->addFunction(
 "contains_text",
 function ($resolvedArgs, $exprArgs) {
 if (function_exists("mb_stripos")) {
 return "mb_stripos(" . $resolvedArgs . ")";
 } else {
 return "stripos(" . $resolvedArgs . ")";
 }
 }
);

Built-in functions can be overridden adding a function with its name:

<?php

// Replace built-in function dump
$compiler->addFunction("dump", "print_r");

Filters

A filter has the following form in a template: leftExpr|name(optional-args). Adding new filters
is similar as seen with the functions:

<?php

// This creates a filter 'hash' that uses the PHP function 'md5'
$compiler->addFilter("hash", "md5");

<?php

$compiler->addFilter(
 "int",
 function ($resolvedArgs, $exprArgs) {
 return "intval(" . $resolvedArgs . ")";
 }
);

Built-in filters can be overridden adding a function with its name:

<?php

// Replace built-in filter 'capitalize'
$compiler->addFilter("capitalize", "lcfirst");

Extensions

With extensions the developer has more flexibility to extend the template engine, and override the compilation
of a specific instruction, change the behavior of an expression or operator, add functions/filters, and more.

An extension is a class that implements the events triggered by Volt as a method of itself.

For example, the class below allows to use any PHP function in Volt:

<?php

class PhpFunctionExtension
{
 /**
 * This method is called on any attempt to compile a function call
 */
 public function compileFunction($name, $arguments)
 {
 if (function_exists($name)) {
 return $name . "(". $arguments . ")";
 }
 }
}

The above class implements the method ‘compileFunction’ which is invoked before any attempt to compile a function call in any
template. The purpose of the extension is to verify if a function to be compiled is a PHP function allowing to call it
from the template. Events in extensions must return valid PHP code, this will be used as result of the compilation
instead of the one generated by Volt. If an event doesn’t return an string the compilation is done using the default
behavior provided by the engine.

The following compilation events are available to be implemented in extensions:

	Event/Method
	Description

	compileFunction
	Triggered before trying to compile any function call in a template

	compileFilter
	Triggered before trying to compile any filter call in a template

	resolveExpression
	Triggered before trying to compile any expression. This allows the developer to override operators

	compileStatement
	Triggered before trying to compile any expression. This allows the developer to override any statement

Volt extensions must be in registered in the compiler making them available in compile time:

<?php

// Register the extension in the compiler
$compiler->addExtension(
 new PhpFunctionExtension()
);

Caching view fragments

With Volt it’s easy cache view fragments. This caching improves performance preventing
that the contents of a block from being executed by PHP each time the view is displayed:

{% cache "sidebar" %}
 <!-- generate this content is slow so we are going to cache it -->
{% endcache %}

Setting a specific number of seconds:

{# cache the sidebar by 1 hour #}
{% cache "sidebar" 3600 %}
 <!-- generate this content is slow so we are going to cache it -->
{% endcache %}

Any valid expression can be used as cache key:

{% cache ("article-" ~ post.id) 3600 %}

 <h1>{{ post.title }}</h1>

 <p>{{ post.content }}</p>

{% endcache %}

The caching is done by the Phalcon\Cache component via the view component.
Learn more about how this integration works in the section “Caching View Fragments”.

Inject Services into a Template

If a service container (DI) is available for Volt, you can use the services by only accessing the name of the service in the template:

{# Inject the 'flash' service #}
<div id="messages">{{ flash.output() }}</div>

{# Inject the 'security' service #}
<input type="hidden" name="token" value="{{ security.getToken() }}">

Stand-alone component

Using Volt in a stand-alone mode can be demonstrated below:

<?php

use Phalcon\Mvc\View\Engine\Volt\Compiler as VoltCompiler;

// Create a compiler
$compiler = new VoltCompiler();

// Optionally add some options
$compiler->setOptions(
 [
 // ...
]
);

// Compile a template string returning PHP code
echo $compiler->compileString(
 "{{ 'hello' }}"
);

// Compile a template in a file specifying the destination file
$compiler->compileFile(
 "layouts/main.volt",
 "cache/layouts/main.volt.php"
);

// Compile a template in a file based on the options passed to the compiler
$compiler->compile(
 "layouts/main.volt"
);

// Require the compiled templated (optional)
require $compiler->getCompiledTemplatePath();

External Resources

	A bundle for Sublime/Textmate is available here [https://github.com/phalcon/volt-sublime-textmate]

	Album-O-Rama [http://album-o-rama.phalconphp.com] is a sample application using Volt as template engine, [Album-O-Rama on Github [https://github.com/phalcon/album-o-rama]]

	Our website [http://phalconphp.com] is running using Volt as template engine, [Our website on Github [https://github.com/phalcon/website]]

	Phosphorum [http://forum.phalconphp.com], the Phalcon’s forum, also uses Volt, [Phosphorum on Github [https://github.com/phalcon/forum]]

	Vökuró [http://vokuro.phalconphp.com], is another sample application that use Volt, [Vökuró on Github [https://github.com/phalcon/vokuro]]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 MVC Applications

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

MVC Applications

All the hard work behind orchestrating the operation of MVC in Phalcon is normally done by
Phalcon\Mvc\Application. This component encapsulates all the complex
operations required in the background, instantiating every component needed and integrating it with the
project, to allow the MVC pattern to operate as desired.

Single or Multi Module Applications

With this component you can run various types of MVC structures:

Single Module

Single MVC applications consist of one module only. Namespaces can be used but are not necessary.
An application like this would have the following file structure:

single/
 app/
 controllers/
 models/
 views/
 public/
 css/
 img/
 js/

If namespaces are not used, the following bootstrap file could be used to orchestrate the MVC flow:

<?php

use Phalcon\Loader;
use Phalcon\Mvc\View;
use Phalcon\Mvc\Application;
use Phalcon\Di\FactoryDefault;

$loader = new Loader();

$loader->registerDirs(
 [
 "../apps/controllers/",
 "../apps/models/",
]
);

$loader->register();

$di = new FactoryDefault();

// Registering the view component
$di->set(
 "view",
 function () {
 $view = new View();

 $view->setViewsDir("../apps/views/");

 return $view;
 }
);

$application = new Application($di);

try {
 $response = $application->handle();

 $response->send();
} catch (\Exception $e) {
 echo $e->getMessage();
}

If namespaces are used, the following bootstrap can be used:

<?php

use Phalcon\Loader;
use Phalcon\Mvc\View;
use Phalcon\Mvc\Dispatcher;
use Phalcon\Mvc\Application;
use Phalcon\Di\FactoryDefault;

$loader = new Loader();

// Use autoloading with namespaces prefixes
$loader->registerNamespaces(
 [
 "Single\\Controllers" => "../apps/controllers/",
 "Single\\Models" => "../apps/models/",
]
);

$loader->register();

$di = new FactoryDefault();

// Register the default dispatcher's namespace for controllers
$di->set(
 "dispatcher",
 function () {
 $dispatcher = new Dispatcher();

 $dispatcher->setDefaultNamespace("Single\\Controllers");

 return $dispatcher;
 }
);

// Register the view component
$di->set(
 "view",
 function () {
 $view = new View();

 $view->setViewsDir("../apps/views/");

 return $view;
 }
);

$application = new Application($di);

try {
 $response = $application->handle();

 $response->send();
} catch (\Exception $e) {
 echo $e->getMessage();
}

Multi Module

A multi-module application uses the same document root for more than one module. In this case the following file structure can be used:

multiple/
 apps/
 frontend/
 controllers/
 models/
 views/
 Module.php
 backend/
 controllers/
 models/
 views/
 Module.php
 public/
 css/
 img/
 js/

Each directory in apps/ have its own MVC structure. A Module.php is present to configure specific settings of each module like autoloaders or custom services:

<?php

namespace Multiple\Backend;

use Phalcon\Loader;
use Phalcon\Mvc\View;
use Phalcon\DiInterface;
use Phalcon\Mvc\Dispatcher;
use Phalcon\Mvc\ModuleDefinitionInterface;

class Module implements ModuleDefinitionInterface
{
 /**
 * Register a specific autoloader for the module
 */
 public function registerAutoloaders(DiInterface $di = null)
 {
 $loader = new Loader();

 $loader->registerNamespaces(
 [
 "Multiple\\Backend\\Controllers" => "../apps/backend/controllers/",
 "Multiple\\Backend\\Models" => "../apps/backend/models/",
]
);

 $loader->register();
 }

 /**
 * Register specific services for the module
 */
 public function registerServices(DiInterface $di)
 {
 // Registering a dispatcher
 $di->set(
 "dispatcher",
 function () {
 $dispatcher = new Dispatcher();

 $dispatcher->setDefaultNamespace("Multiple\\Backend\\Controllers");

 return $dispatcher;
 }
);

 // Registering the view component
 $di->set(
 "view",
 function () {
 $view = new View();

 $view->setViewsDir("../apps/backend/views/");

 return $view;
 }
);
 }
}

A special bootstrap file is required to load a multi-module MVC architecture:

<?php

use Phalcon\Mvc\Router;
use Phalcon\Mvc\Application;
use Phalcon\Di\FactoryDefault;

$di = new FactoryDefault();

// Specify routes for modules
// More information how to set the router up https://docs.phalconphp.com/en/latest/reference/routing.html
$di->set(
 "router",
 function () {
 $router = new Router();

 $router->setDefaultModule("frontend");

 $router->add(
 "/login",
 [
 "module" => "backend",
 "controller" => "login",
 "action" => "index",
]
);

 $router->add(
 "/admin/products/:action",
 [
 "module" => "backend",
 "controller" => "products",
 "action" => 1,
]
);

 $router->add(
 "/products/:action",
 [
 "controller" => "products",
 "action" => 1,
]
);

 return $router;
 }
);

// Create an application
$application = new Application($di);

// Register the installed modules
$application->registerModules(
 [
 "frontend" => [
 "className" => "Multiple\\Frontend\\Module",
 "path" => "../apps/frontend/Module.php",
],
 "backend" => [
 "className" => "Multiple\\Backend\\Module",
 "path" => "../apps/backend/Module.php",
]
]
);

try {
 // Handle the request
 $response = $application->handle();

 $response->send();
} catch (\Exception $e) {
 echo $e->getMessage();
}

If you want to maintain the module configuration in the bootstrap file you can use an anonymous function to register the module:

<?php

use Phalcon\Mvc\View;

// Creating a view component
$view = new View();

// Set options to view component
// ...

// Register the installed modules
$application->registerModules(
 [
 "frontend" => function ($di) use ($view) {
 $di->setShared(
 "view",
 function () use ($view) {
 $view->setViewsDir("../apps/frontend/views/");

 return $view;
 }
);
 },
 "backend" => function ($di) use ($view) {
 $di->setShared(
 "view",
 function () use ($view) {
 $view->setViewsDir("../apps/backend/views/");

 return $view;
 }
);
 }
]
);

When Phalcon\Mvc\Application have modules registered, always is
necessary that every matched route returns a valid module. Each registered module has an associated class
offering functions to set the module itself up. Each module class definition must implement two
methods: registerAutoloaders() and registerServices(), they will be called by
Phalcon\Mvc\Application according to the module to be executed.

Application Events

Phalcon\Mvc\Application is able to send events to the EventsManager
(if it is present). Events are triggered using the type “application”. The following events are supported:

	Event Name
	Triggered

	boot
	Executed when the application handles its first request

	beforeStartModule
	Before initialize a module, only when modules are registered

	afterStartModule
	After initialize a module, only when modules are registered

	beforeHandleRequest
	Before execute the dispatch loop

	afterHandleRequest
	After execute the dispatch loop

The following example demonstrates how to attach listeners to this component:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$eventsManager = new EventsManager();

$application->setEventsManager($eventsManager);

$eventsManager->attach(
 "application",
 function (Event $event, $application) {
 // ...
 }
);

External Resources

	MVC examples on Github [https://github.com/phalcon/mvc]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Routing

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Routing

The router component allows you to define routes that are mapped to controllers or handlers that should receive
the request. A router simply parses a URI to determine this information. The router has two modes: MVC
mode and match-only mode. The first mode is ideal for working with MVC applications.

Defining Routes

Phalcon\Mvc\Router provides advanced routing capabilities. In MVC mode,
you can define routes and map them to controllers/actions that you require. A route is defined as follows:

<?php

use Phalcon\Mvc\Router;

// Create the router
$router = new Router();

// Define a route
$router->add(
 "/admin/users/my-profile",
 [
 "controller" => "users",
 "action" => "profile",
]
);

// Another route
$router->add(
 "/admin/users/change-password",
 [
 "controller" => "users",
 "action" => "changePassword",
]
);

$router->handle();

The first parameter of the add() method is the pattern you want to match and, optionally, the second parameter is a set of paths.
In this case, if the URI is /admin/users/my-profile, then the “users” controller with its action “profile”
will be executed. It’s important to remember that the router does not execute the controller and action, it only collects this
information to inform the correct component (ie. Phalcon\Mvc\Dispatcher)
that this is the controller/action it should execute.

An application can have many paths and defining routes one by one can be a cumbersome task. In these cases we can
create more flexible routes:

<?php

use Phalcon\Mvc\Router;

// Create the router
$router = new Router();

// Define a route
$router->add(
 "/admin/:controller/a/:action/:params",
 [
 "controller" => 1,
 "action" => 2,
 "params" => 3,
]
);

In the example above, we’re using wildcards to make a route valid for many URIs. For example, by accessing the
following URL (/admin/users/a/delete/dave/301) would produce:

	Controller
	users

	Action
	delete

	Parameter
	dave

	Parameter
	301

The add() method receives a pattern that can optionally have predefined placeholders and regular expression
modifiers. All the routing patterns must start with a forward slash character (/). The regular expression syntax used
is the same as the PCRE regular expressions [http://www.php.net/manual/en/book.pcre.php]. Note that, it is not necessary to add regular expression
delimiters. All route patterns are case-insensitive.

The second parameter defines how the matched parts should bind to the controller/action/parameters. Matching
parts are placeholders or subpatterns delimited by parentheses (round brackets). In the example given above, the
first subpattern matched (:controller) is the controller part of the route, the second the action and so on.

These placeholders help writing regular expressions that are more readable for developers and easier
to understand. The following placeholders are supported:

	Placeholder
	Regular Expression
	Usage

	/:module
	/([a-zA-Z0-9_\-]+)
	Matches a valid module name with alpha-numeric characters only

	/:controller
	/([a-zA-Z0-9_\-]+)
	Matches a valid controller name with alpha-numeric characters only

	/:action
	/([a-zA-Z0-9_]+)
	Matches a valid action name with alpha-numeric characters only

	/:params
	(/.*)*
	Matches a list of optional words separated by slashes. Only use this placeholder at the end of a route

	/:namespace
	/([a-zA-Z0-9_\-]+)
	Matches a single level namespace name

	/:int
	/([0-9]+)
	Matches an integer parameter

Controller names are camelized, this means that characters (-) and (_) are removed and the next character
is uppercased. For instance, some_controller is converted to SomeController.

Since you can add many routes as you need using the add() method, the order in which routes are added indicate
their relevance, latest routes added have more relevance than first added. Internally, all defined routes
are traversed in reverse order until Phalcon\Mvc\Router finds the
one that matches the given URI and processes it, while ignoring the rest.

Parameters with Names

The example below demonstrates how to define names to route parameters:

<?php

$router->add(
 "/news/([0-9]{4})/([0-9]{2})/([0-9]{2})/:params",
 [
 "controller" => "posts",
 "action" => "show",
 "year" => 1, // ([0-9]{4})
 "month" => 2, // ([0-9]{2})
 "day" => 3, // ([0-9]{2})
 "params" => 4, // :params
]
);

In the above example, the route doesn’t define a “controller” or “action” part. These parts are replaced
with fixed values (“posts” and “show”). The user will not know the controller that is really dispatched
by the request. Inside the controller, those named parameters can be accessed as follows:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction()
 {
 // Get "year" parameter
 $year = $this->dispatcher->getParam("year");

 // Get "month" parameter
 $month = $this->dispatcher->getParam("month");

 // Get "day" parameter
 $day = $this->dispatcher->getParam("day");

 // ...
 }
}

Note that the values of the parameters are obtained from the dispatcher. This happens because it is the
component that finally interacts with the drivers of your application. Moreover, there is also another
way to create named parameters as part of the pattern:

<?php

$router->add(
 "/documentation/{chapter}/{name}.{type:[a-z]+}",
 [
 "controller" => "documentation",
 "action" => "show",
]
);

You can access their values in the same way as before:

<?php

use Phalcon\Mvc\Controller;

class DocumentationController extends Controller
{
 public function showAction()
 {
 // Get "name" parameter
 $name = $this->dispatcher->getParam("name");

 // Get "type" parameter
 $type = $this->dispatcher->getParam("type");

 // ...
 }
}

Short Syntax

If you don’t like using an array to define the route paths, an alternative syntax is also available.
The following examples produce the same result:

<?php

// Short form
$router->add(
 "/posts/{year:[0-9]+}/{title:[a-z\-]+}",
 "Posts::show"
);

// Array form
$router->add(
 "/posts/([0-9]+)/([a-z\-]+)",
 [
 "controller" => "posts",
 "action" => "show",
 "year" => 1,
 "title" => 2,
]
);

Mixing Array and Short Syntax

Array and short syntax can be mixed to define a route, in this case note that named parameters automatically
are added to the route paths according to the position on which they were defined:

<?php

// First position must be skipped because it is used for
// the named parameter 'country'
$router->add(
 "/news/{country:[a-z]{2}}/([a-z+])/([a-z\-+])",
 [
 "section" => 2, // Positions start with 2
 "article" => 3,
]
);

Routing to Modules

You can define routes whose paths include modules. This is specially suitable to multi-module applications.
It’s possible define a default route that includes a module wildcard:

<?php

use Phalcon\Mvc\Router;

$router = new Router(false);

$router->add(
 "/:module/:controller/:action/:params",
 [
 "module" => 1,
 "controller" => 2,
 "action" => 3,
 "params" => 4,
]
);

In this case, the route always must have the module name as part of the URL. For example, the following
URL: /admin/users/edit/sonny, will be processed as:

	Module
	admin

	Controller
	users

	Action
	edit

	Parameter
	sonny

Or you can bind specific routes to specific modules:

<?php

$router->add(
 "/login",
 [
 "module" => "backend",
 "controller" => "login",
 "action" => "index",
]
);

$router->add(
 "/products/:action",
 [
 "module" => "frontend",
 "controller" => "products",
 "action" => 1,
]
);

Or bind them to specific namespaces:

<?php

$router->add(
 "/:namespace/login",
 [
 "namespace" => 1,
 "controller" => "login",
 "action" => "index",
]
);

Namespaces/class names must be passed separated:

<?php

$router->add(
 "/login",
 [
 "namespace" => "Backend\\Controllers",
 "controller" => "login",
 "action" => "index",
]
);

HTTP Method Restrictions

When you add a route using simply add(), the route will be enabled for any HTTP method. Sometimes we can restrict a route to a specific method,
this is especially useful when creating RESTful applications:

<?php

// This route only will be matched if the HTTP method is GET
$router->addGet(
 "/products/edit/{id}",
 "Products::edit"
);

// This route only will be matched if the HTTP method is POST
$router->addPost(
 "/products/save",
 "Products::save"
);

// This route will be matched if the HTTP method is POST or PUT
$router->add(
 "/products/update",
 "Products::update"
)->via(
 [
 "POST",
 "PUT",
]
);

Using conversors

Conversors allow you to freely transform the route’s parameters before passing them to the dispatcher.
The following examples show how to use them:

<?php

// The action name allows dashes, an action can be: /products/new-ipod-nano-4-generation
$route = $router->add(
 "/products/{slug:[a-z\-]+}",
 [
 "controller" => "products",
 "action" => "show",
]
);

$route->convert(
 "slug",
 function ($slug) {
 // Transform the slug removing the dashes
 return str_replace("-", "", $slug);
 }
);

Another use case for conversors is binding a model into a route. This allows the model to be passed into the defined action directly:

<?php

// This example works off the assumption that the ID is being used as parameter in the url: /products/4
$route = $router->add(
 "/products/{id}",
 [
 "controller" => "products",
 "action" => "show",
]
);

$route->convert(
 "id",
 function ($id) {
 // Fetch the model
 return Product::findFirstById($id);
 }
);

Groups of Routes

If a set of routes have common paths they can be grouped to easily maintain them:

<?php

use Phalcon\Mvc\Router;
use Phalcon\Mvc\Router\Group as RouterGroup;

$router = new Router();

// Create a group with a common module and controller
$blog = new RouterGroup(
 [
 "module" => "blog",
 "controller" => "index",
]
);

// All the routes start with /blog
$blog->setPrefix("/blog");

// Add a route to the group
$blog->add(
 "/save",
 [
 "action" => "save",
]
);

// Add another route to the group
$blog->add(
 "/edit/{id}",
 [
 "action" => "edit",
]
);

// This route maps to a controller different than the default
$blog->add(
 "/blog",
 [
 "controller" => "blog",
 "action" => "index",
]
);

// Add the group to the router
$router->mount($blog);

You can move groups of routes to separate files in order to improve the organization and code reusing in the application:

<?php

use Phalcon\Mvc\Router\Group as RouterGroup;

class BlogRoutes extends RouterGroup
{
 public function initialize()
 {
 // Default paths
 $this->setPaths(
 [
 "module" => "blog",
 "namespace" => "Blog\\Controllers",
]
);

 // All the routes start with /blog
 $this->setPrefix("/blog");

 // Add a route to the group
 $this->add(
 "/save",
 [
 "action" => "save",
]
);

 // Add another route to the group
 $this->add(
 "/edit/{id}",
 [
 "action" => "edit",
]
);

 // This route maps to a controller different than the default
 $this->add(
 "/blog",
 [
 "controller" => "blog",
 "action" => "index",
]
);
 }
}

Then mount the group in the router:

<?php

// Add the group to the router
$router->mount(
 new BlogRoutes()
);

Matching Routes

A valid URI must be passed to the Router so that it can process it and find a matching route.
By default, the routing URI is taken from the $_GET["_url"] variable that is created by the rewrite engine
module. A couple of rewrite rules that work very well with Phalcon are:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]

In this configuration, any requests to files or folders that don’t exist will be sent to index.php.

The following example shows how to use this component in stand-alone mode:

<?php

use Phalcon\Mvc\Router;

// Creating a router
$router = new Router();

// Define routes here if any
// ...

// Taking URI from $_GET["_url"]
$router->handle();

// Or Setting the URI value directly
$router->handle("/employees/edit/17");

// Getting the processed controller
echo $router->getControllerName();

// Getting the processed action
echo $router->getActionName();

// Get the matched route
$route = $router->getMatchedRoute();

Naming Routes

Each route that is added to the router is stored internally as a Phalcon\Mvc\Router\Route object.
That class encapsulates all the details of each route. For instance, we can give a name to a path to identify it uniquely in our application.
This is especially useful if you want to create URLs from it.

<?php

$route = $router->add(
 "/posts/{year}/{title}",
 "Posts::show"
);

$route->setName("show-posts");

Then, using for example the component Phalcon\Mvc\Url we can build routes from its name:

<?php

// Returns /posts/2012/phalcon-1-0-released
echo $url->get(
 [
 "for" => "show-posts",
 "year" => "2012",
 "title" => "phalcon-1-0-released",
]
);

Usage Examples

The following are examples of custom routes:

<?php

// Matches "/system/admin/a/edit/7001"
$router->add(
 "/system/:controller/a/:action/:params",
 [
 "controller" => 1,
 "action" => 2,
 "params" => 3,
]
);

// Matches "/es/news"
$router->add(
 "/([a-z]{2})/:controller",
 [
 "controller" => 2,
 "action" => "index",
 "language" => 1,
]
);

// Matches "/es/news"
$router->add(
 "/{language:[a-z]{2}}/:controller",
 [
 "controller" => 2,
 "action" => "index",
]
);

// Matches "/admin/posts/edit/100"
$router->add(
 "/admin/:controller/:action/:int",
 [
 "controller" => 1,
 "action" => 2,
 "id" => 3,
]
);

// Matches "/posts/2015/02/some-cool-content"
$router->add(
 "/posts/([0-9]{4})/([0-9]{2})/([a-z\-]+)",
 [
 "controller" => "posts",
 "action" => "show",
 "year" => 1,
 "month" => 2,
 "title" => 4,
]
);

// Matches "/manual/en/translate.adapter.html"
$router->add(
 "/manual/([a-z]{2})/([a-z\.]+)\.html",
 [
 "controller" => "manual",
 "action" => "show",
 "language" => 1,
 "file" => 2,
]
);

// Matches /feed/fr/le-robots-hot-news.atom
$router->add(
 "/feed/{lang:[a-z]+}/{blog:[a-z\-]+}\.{type:[a-z\-]+}",
 "Feed::get"
);

// Matches /api/v1/users/peter.json
$router->add(
 "/api/(v1|v2)/{method:[a-z]+}/{param:[a-z]+}\.(json|xml)",
 [
 "controller" => "api",
 "version" => 1,
 "format" => 4,
]
);

Beware of characters allowed in regular expression for controllers and namespaces. As these
become class names and in turn they’re passed through the file system could be used by attackers to
read unauthorized files. A safe regular expression is: /([a-zA-Z0-9_\-]+)

Default Behavior

Phalcon\Mvc\Router has a default behavior that provides a very simple routing that
always expects a URI that matches the following pattern: /:controller/:action/:params

For example, for a URL like this http://phalconphp.com/documentation/show/about.html, this router will translate it as follows:

	Controller
	documentation

	Action
	show

	Parameter
	about.html

If you don’t want the router to have this behavior, you must create the router passing false as the first parameter:

<?php

use Phalcon\Mvc\Router;

// Create the router without default routes
$router = new Router(false);

Setting the default route

When your application is accessed without any route, the ‘/’ route is used to determine what paths must be used to show the initial page
in your website/application:

<?php

$router->add(
 "/",
 [
 "controller" => "index",
 "action" => "index",
]
);

Not Found Paths

If none of the routes specified in the router are matched, you can define a group of paths to be used in this scenario:

<?php

// Set 404 paths
$router->notFound(
 [
 "controller" => "index",
 "action" => "route404",
]
);

This is typically for an Error 404 page.

Setting default paths

It’s possible to define default values for the module, controller or action. When a route is missing any of
those paths they can be automatically filled by the router:

<?php

// Setting a specific default
$router->setDefaultModule("backend");
$router->setDefaultNamespace("Backend\\Controllers");
$router->setDefaultController("index");
$router->setDefaultAction("index");

// Using an array
$router->setDefaults(
 [
 "controller" => "index",
 "action" => "index",
]
);

Dealing with extra/trailing slashes

Sometimes a route could be accessed with extra/trailing slashes.
Those extra slashes would lead to produce a not-found status in the dispatcher.
You can set up the router to automatically remove the slashes from the end of handled route:

<?php

use Phalcon\Mvc\Router;

$router = new Router();

// Remove trailing slashes automatically
$router->removeExtraSlashes(true);

Or, you can modify specific routes to optionally accept trailing slashes:

<?php

// The [/]{0,1} allows this route to have optionally have a trailing slash
$router->add(
 "/{language:[a-z]{2}}/:controller[/]{0,1}",
 [
 "controller" => 2,
 "action" => "index",
]
);

Match Callbacks

Sometimes, routes should only be matched if they meet specific conditions.
You can add arbitrary conditions to routes using the beforeMatch() callback.
If this function return false, the route will be treated as non-matched:

<?php

$route = $router->add("/login",
 [
 "module" => "admin",
 "controller" => "session",
]
);

$route->beforeMatch(
 function ($uri, $route) {
 // Check if the request was made with Ajax
 if (isset($_SERVER["HTTP_X_REQUESTED_WITH"]) && $_SERVER["HTTP_X_REQUESTED_WITH"] === "XMLHttpRequest") {
 return false;
 }

 return true;
 }
);

You can re-use these extra conditions in classes:

<?php

class AjaxFilter
{
 public function check()
 {
 return $_SERVER["HTTP_X_REQUESTED_WITH"] === "XMLHttpRequest";
 }
}

And use this class instead of the anonymous function:

<?php

$route = $router->add(
 "/get/info/{id}",
 [
 "controller" => "products",
 "action" => "info",
]
);

$route->beforeMatch(
 [
 new AjaxFilter(),
 "check"
]
);

As of Phalcon 3, there is another way to check this:

<?php

$route = $router->add(
 "/login",
 [
 "module" => "admin",
 "controller" => "session",
]
);

$route->beforeMatch(
 function ($uri, $route) {
 /**
 * @var string $uri
 * @var \Phalcon\Mvc\Router\Route $route
 * @var \Phalcon\DiInterface $this
 * @var \Phalcon\Http\Request $request
 */
 $request = $this->getShared("request");

 // Check if the request was made with Ajax
 return $request->isAjax();
 }
);

Hostname Constraints

The router allows you to set hostname constraints, this means that specific routes or a group of routes can be restricted
to only match if the route also meets the hostname constraint:

<?php

$route = $router->add(
 "/login",
 [
 "module" => "admin",
 "controller" => "session",
 "action" => "login",
]
);

$route->setHostName("admin.company.com");

The hostname can also be passed as a regular expressions:

<?php

$route = $router->add(
 "/login",
 [
 "module" => "admin",
 "controller" => "session",
 "action" => "login",
]
);

$route->setHostName("([a-z]+).company.com");

In groups of routes you can set up a hostname constraint that apply for every route in the group:

<?php

use Phalcon\Mvc\Router\Group as RouterGroup;

// Create a group with a common module and controller
$blog = new RouterGroup(
 [
 "module" => "blog",
 "controller" => "posts",
]
);

// Hostname restriction
$blog->setHostName("blog.mycompany.com");

// All the routes start with /blog
$blog->setPrefix("/blog");

// Default route
$blog->add(
 "/",
 [
 "action" => "index",
]
);

// Add a route to the group
$blog->add(
 "/save",
 [
 "action" => "save",
]
);

// Add another route to the group
$blog->add(
 "/edit/{id}",
 [
 "action" => "edit",
]
);

// Add the group to the router
$router->mount($blog);

URI Sources

By default the URI information is obtained from the $_GET["_url"] variable, this is passed by the Rewrite-Engine to
Phalcon, you can also use $_SERVER["REQUEST_URI"] if required:

<?php

use Phalcon\Mvc\Router;

// ...

// Use $_GET["_url"] (default)
$router->setUriSource(
 Router::URI_SOURCE_GET_URL
);

// Use $_SERVER["REQUEST_URI"]
$router->setUriSource(
 Router::URI_SOURCE_SERVER_REQUEST_URI
);

Or you can manually pass a URI to the handle() method:

<?php

$router->handle("/some/route/to/handle");

Testing your routes

Since this component has no dependencies, you can create a file as shown below to test your routes:

<?php

use Phalcon\Mvc\Router;

// These routes simulate real URIs
$testRoutes = [
 "/",
 "/index",
 "/index/index",
 "/index/test",
 "/products",
 "/products/index/",
 "/products/show/101",
];

$router = new Router();

// Add here your custom routes
// ...

// Testing each route
foreach ($testRoutes as $testRoute) {
 // Handle the route
 $router->handle($testRoute);

 echo "Testing ", $testRoute, "
";

 // Check if some route was matched
 if ($router->wasMatched()) {
 echo "Controller: ", $router->getControllerName(), "
";
 echo "Action: ", $router->getActionName(), "
";
 } else {
 echo "The route wasn't matched by any route
";
 }

 echo "
";
}

Annotations Router

This component provides a variant that’s integrated with the annotations service. Using this strategy
you can write the routes directly in the controllers instead of adding them in the service registration:

<?php

use Phalcon\Mvc\Router\Annotations as RouterAnnotations;

$di["router"] = function () {
 // Use the annotations router. We're passing false as we don't want the router to add its default patterns
 $router = new RouterAnnotations(false);

 // Read the annotations from ProductsController if the URI starts with /api/products
 $router->addResource("Products", "/api/products");

 return $router;
};

The annotations can be defined in the following way:

<?php

/**
 * @RoutePrefix("/api/products")
 */
class ProductsController
{
 /**
 * @Get(
 * "/"
 *)
 */
 public function indexAction()
 {

 }

 /**
 * @Get(
 * "/edit/{id:[0-9]+}",
 * name="edit-robot"
 *)
 */
 public function editAction($id)
 {

 }

 /**
 * @Route(
 * "/save",
 * methods={"POST", "PUT"},
 * name="save-robot"
 *)
 */
 public function saveAction()
 {

 }

 /**
 * @Route(
 * "/delete/{id:[0-9]+}",
 * methods="DELETE",
 * conversors={
 * id="MyConversors::checkId"
 * }
 *)
 */
 public function deleteAction($id)
 {

 }

 public function infoAction($id)
 {

 }
}

Only methods marked with valid annotations are used as routes. List of annotations supported:

	Name
	Description
	Usage

	RoutePrefix
	A prefix to be prepended to each route URI. This annotation must be placed at the class’ docblock
	@RoutePrefix("/api/products")

	Route
	This annotation marks a method as a route. This annotation must be placed in a method docblock
	@Route("/api/products/show")

	Get
	This annotation marks a method as a route restricting the HTTP method to GET
	@Get("/api/products/search")

	Post
	This annotation marks a method as a route restricting the HTTP method to POST
	@Post("/api/products/save")

	Put
	This annotation marks a method as a route restricting the HTTP method to PUT
	@Put("/api/products/save")

	Delete
	This annotation marks a method as a route restricting the HTTP method to DELETE
	@Delete("/api/products/delete/{id}")

	Options
	This annotation marks a method as a route restricting the HTTP method to OPTIONS
	@Option("/api/products/info")

For annotations that add routes, the following parameters are supported:

	Name
	Description
	Usage

	methods
	Define one or more HTTP method that route must meet with
	@Route("/api/products", methods={"GET", "POST"})

	name
	Define a name for the route
	@Route("/api/products", name="get-products")

	paths
	An array of paths like the one passed to Phalcon\Mvc\Router::add()
	@Route("/posts/{id}/{slug}", paths={module="backend"})

	conversors
	A hash of conversors to be applied to the parameters
	@Route("/posts/{id}/{slug}", conversors={id="MyConversor::getId"})

If you’re using modules in your application, it is better use the addModuleResource() method:

<?php

use Phalcon\Mvc\Router\Annotations as RouterAnnotations;

$di["router"] = function () {
 // Use the annotations router
 $router = new RouterAnnotations(false);

 // Read the annotations from Backend\Controllers\ProductsController if the URI starts with /api/products
 $router->addModuleResource("backend", "Products", "/api/products");

 return $router;
};

Registering Router instance

You can register router during service registration with Phalcon dependency injector to make it available inside the controllers.

You need to add code below in your bootstrap file (for example index.php or app/config/services.php if you use Phalcon Developer Tools [http://phalconphp.com/en/download/tools])

<?php

/**
 * Add routing capabilities
 */
$di->set(
 "router",
 function () {
 require __DIR__ . "/../app/config/routes.php";

 return $router;
 }
);

You need to create app/config/routes.php and add router initialization code, for example:

<?php

use Phalcon\Mvc\Router;

$router = new Router();

$router->add(
 "/login",
 [
 "controller" => "login",
 "action" => "index",
]
);

$router->add(
 "/products/:action",
 [
 "controller" => "products",
 "action" => 1,
]
);

return $router;

Implementing your own Router

The Phalcon\Mvc\RouterInterface interface must be implemented to create your own router replacing
the one provided by Phalcon.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Dispatching Controllers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Dispatching Controllers

Phalcon\Mvc\Dispatcher is the component responsible for instantiating controllers and executing the required actions
on them in an MVC application. Understanding its operation and capabilities helps us get more out of the services provided by the framework.

The Dispatch Loop

This is an important process that has much to do with the MVC flow itself, especially with the controller part. The work occurs within the controller
dispatcher. The controller files are read, loaded, and instantiated. Then the required actions are executed. If an action forwards the flow to another
controller/action, the controller dispatcher starts again. To better illustrate this, the following example shows approximately the process performed
within Phalcon\Mvc\Dispatcher:

<?php

// Dispatch loop
while (!$finished) {
 $finished = true;

 $controllerClass = $controllerName . "Controller";

 // Instantiating the controller class via autoloaders
 $controller = new $controllerClass();

 // Execute the action
 call_user_func_array(
 [
 $controller,
 $actionName . "Action"
],
 $params
);

 // '$finished' should be reloaded to check if the flow was forwarded to another controller
 $finished = true;
}

The code above lacks validations, filters and additional checks, but it demonstrates the normal flow of operation in the dispatcher.

Dispatch Loop Events

Phalcon\Mvc\Dispatcher is able to send events to an EventsManager if it is present. Events are triggered using the type “dispatch”. Some events when returning boolean false could stop the active operation. The following events are supported:

	Event Name
	Triggered
	Can stop operation?
	Triggered on

	beforeDispatchLoop
	Triggered before entering in the dispatch loop. At this point the dispatcher don’t know if the controller or the actions to be executed exist. The Dispatcher only knows the information passed by the Router.
	Yes
	Listeners

	beforeDispatch
	Triggered after entering in the dispatch loop. At this point the dispatcher don’t know if the controller or the actions to be executed exist. The Dispatcher only knows the information passed by the Router.
	Yes
	Listeners

	beforeExecuteRoute
	Triggered before executing the controller/action method. At this point the dispatcher has been initialized the controller and know if the action exist.
	Yes
	Listeners/Controllers

	initialize
	Allow to globally initialize the controller in the request
	No
	Controllers

	afterExecuteRoute
	Triggered after executing the controller/action method. As operation cannot be stopped, only use this event to make clean up after execute the action
	No
	Listeners/Controllers

	beforeNotFoundAction
	Triggered when the action was not found in the controller
	Yes
	Listeners

	beforeException
	Triggered before the dispatcher throws any exception
	Yes
	Listeners

	afterDispatch
	Triggered after executing the controller/action method. As operation cannot be stopped, only use this event to make clean up after execute the action
	Yes
	Listeners

	afterDispatchLoop
	Triggered after exiting the dispatch loop
	No
	Listeners

The INVO tutorial shows how to take advantage of dispatching events implementing a security filter with Acl

The following example demonstrates how to attach listeners to this component:

<?php

use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$di->set(
 "dispatcher",
 function () {
 // Create an event manager
 $eventsManager = new EventsManager();

 // Attach a listener for type "dispatch"
 $eventsManager->attach(
 "dispatch",
 function (Event $event, $dispatcher) {
 // ...
 }
);

 $dispatcher = new MvcDispatcher();

 // Bind the eventsManager to the view component
 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 },
 true
);

An instantiated controller automatically acts as a listener for dispatch events, so you can implement methods as callbacks:

<?php

use Phalcon\Mvc\Controller;
use Phalcon\Mvc\Dispatcher;

class PostsController extends Controller
{
 public function beforeExecuteRoute(Dispatcher $dispatcher)
 {
 // Executed before every found action
 }

 public function afterExecuteRoute(Dispatcher $dispatcher)
 {
 // Executed after every found action
 }
}

Note

Methods on event listeners accept an Phalcon\Events\Event object as their first parameter - methods in controllers do not.

Forwarding to other actions

The dispatch loop allows us to forward the execution flow to another controller/action. This is very useful to check if the user can
access to certain options, redirect users to other screens or simply reuse code.

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction($year, $postTitle)
 {
 // ... Store some product and forward the user

 // Forward flow to the index action
 $this->dispatcher->forward(
 [
 "controller" => "posts",
 "action" => "index",
]
);
 }
}

Keep in mind that making a “forward” is not the same as making a HTTP redirect. Although they apparently got the same result.
The “forward” doesn’t reload the current page, all the redirection occurs in a single request, while the HTTP redirect needs two requests
to complete the process.

More forwarding examples:

<?php

// Forward flow to another action in the current controller
$this->dispatcher->forward(
 [
 "action" => "search"
]
);

// Forward flow to another action in the current controller
// passing parameters
$this->dispatcher->forward(
 [
 "action" => "search",
 "params" => [1, 2, 3]
]
);

A forward action accepts the following parameters:

	Parameter
	Triggered

	controller
	A valid controller name to forward to.

	action
	A valid action name to forward to.

	params
	An array of parameters for the action

	namespace
	A valid namespace name where the controller is part of

Preparing Parameters

Thanks to the hooks points provided by Phalcon\Mvc\Dispatcher you can easily
adapt your application to any URL schema:

For example, you want your URLs look like: http://example.com/controller/key1/value1/key2/value

Parameters by default are passed as they come in the URL to actions, you can transform them to the desired schema:

<?php

use Phalcon\Dispatcher;
use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$di->set(
 "dispatcher",
 function () {
 // Create an EventsManager
 $eventsManager = new EventsManager();

 // Attach a listener
 $eventsManager->attach(
 "dispatch:beforeDispatchLoop",
 function (Event $event, $dispatcher) {
 $params = $dispatcher->getParams();

 $keyParams = [];

 // Use odd parameters as keys and even as values
 foreach ($params as $i => $value) {
 if ($i & 1) {
 // Previous param
 $key = $params[$i - 1];

 $keyParams[$key] = $value;
 }
 }

 // Override parameters
 $dispatcher->setParams($keyParams);
 }
);

 $dispatcher = new MvcDispatcher();

 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

If the desired schema is: http://example.com/controller/key1:value1/key2:value, the following code is required:

<?php

use Phalcon\Dispatcher;
use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$di->set(
 "dispatcher",
 function () {
 // Create an EventsManager
 $eventsManager = new EventsManager();

 // Attach a listener
 $eventsManager->attach(
 "dispatch:beforeDispatchLoop",
 function (Event $event, $dispatcher) {
 $params = $dispatcher->getParams();

 $keyParams = [];

 // Explode each parameter as key,value pairs
 foreach ($params as $number => $value) {
 $parts = explode(":", $value);

 $keyParams[$parts[0]] = $parts[1];
 }

 // Override parameters
 $dispatcher->setParams($keyParams);
 }
);

 $dispatcher = new MvcDispatcher();

 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

Getting Parameters

When a route provides named parameters you can receive them in a controller, a view or any other component that extends
Phalcon\Di\Injectable.

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Get the post's title passed in the URL as parameter
 // or prepared in an event
 $title = $this->dispatcher->getParam("title");

 // Get the post's year passed in the URL as parameter
 // or prepared in an event also filtering it
 $year = $this->dispatcher->getParam("year", "int");

 // ...
 }
}

Preparing actions

You can also define an arbitrary schema for actions before be dispatched.

Camelize action names

If the original URL is: http://example.com/admin/products/show-latest-products,
and for example you want to camelize ‘show-latest-products’ to ‘ShowLatestProducts’,
the following code is required:

<?php

use Phalcon\Text;
use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$di->set(
 "dispatcher",
 function () {
 // Create an EventsManager
 $eventsManager = new EventsManager();

 // Camelize actions
 $eventsManager->attach(
 "dispatch:beforeDispatchLoop",
 function (Event $event, $dispatcher) {
 $dispatcher->setActionName(
 Text::camelize($dispatcher->getActionName())
);
 }
);

 $dispatcher = new MvcDispatcher();

 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

Remove legacy extensions

If the original URL always contains a ‘.php’ extension:

http://example.com/admin/products/show-latest-products.php
http://example.com/admin/products/index.php

You can remove it before dispatch the controller/action combination:

<?php

use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

$di->set(
 "dispatcher",
 function () {
 // Create an EventsManager
 $eventsManager = new EventsManager();

 // Remove extension before dispatch
 $eventsManager->attach(
 "dispatch:beforeDispatchLoop",
 function (Event $event, $dispatcher) {
 $action = $dispatcher->getActionName();

 // Remove extension
 $action = preg_replace("/\.php$/", "", $action);

 // Override action
 $dispatcher->setActionName($action);
 }
);

 $dispatcher = new MvcDispatcher();

 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

Inject model instances

In this example, the developer wants to inspect the parameters that an action will receive in order to dynamically
inject model instances.

The controller looks like:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 /**
 * Shows posts
 *
 * @param \Posts $post
 */
 public function showAction(Posts $post)
 {
 $this->view->post = $post;
 }
}

Method ‘showAction’ receives an instance of the model Posts, the developer could inspect this
before dispatch the action preparing the parameter accordingly:

<?php

use Exception;
use Phalcon\Mvc\Model;
use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use ReflectionMethod;

$di->set(
 "dispatcher",
 function () {
 // Create an EventsManager
 $eventsManager = new EventsManager();

 $eventsManager->attach(
 "dispatch:beforeDispatchLoop",
 function (Event $event, $dispatcher) {
 // Possible controller class name
 $controllerName = $dispatcher->getControllerClass();

 // Possible method name
 $actionName = $dispatcher->getActiveMethod();

 try {
 // Get the reflection for the method to be executed
 $reflection = new ReflectionMethod($controllerName, $actionName);

 $parameters = $reflection->getParameters();

 // Check parameters
 foreach ($parameters as $parameter) {
 // Get the expected model name
 $className = $parameter->getClass()->name;

 // Check if the parameter expects a model instance
 if (is_subclass_of($className, Model::class)) {
 $model = $className::findFirstById($dispatcher->getParams()[0]);

 // Override the parameters by the model instance
 $dispatcher->setParams([$model]);
 }
 }
 } catch (Exception $e) {
 // An exception has occurred, maybe the class or action does not exist?
 }
 }
);

 $dispatcher = new MvcDispatcher();

 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

The above example has been simplified for academic purposes.
A developer can improve it to inject any kind of dependency or model in actions before be executed.

From 3.0.x onwards the dispatcher also comes with an option to handle this internally for all models passed into a controller action.

use Phalcon\Mvc\Dispatcher;

$dispatcher = new Dispatcher();

$dispatcher->setModelBinding(true);

return $dispatcher;

It also introduces a new interface Phalcon\Mvc\Controller\BindModelInterface which allows you to define the controllers associated model
to allow model binding in base controllers.

For example, you have a base CrudController which your PostsController extends from. Your CrudController looks something like this:

use Phalcon\Mvc\Controller;
use Phalcon\Mvc\Model;

class CrudController extends Controller
{
 /**
 * Show action
 *
 * @param Model $model
 */
 public function showAction(Model $model)
 {
 $this->view->model = $model;
 }
}

In your PostsController you need to define which model the controller is associated with. This is done by implementing the Phalcon\Mvc\Controller\BindModelInterface
which will add the getModelName() method from which you can return the model name.

use Phalcon\Mvc\Controller\BindModelInterface;
use Models\Posts;

class PostsController extends CrudController implements BindModelInterface
{
 public static function getModelName()
 {
 return Posts::class;
 }
}

By declaring the model associated with the PostsController the dispatcher can check the controller for the getModelName() method before passing
the defined model into the parent show action.

If your project structure does not use any parent controller you can of course still bind the model directly into the controller action:

use Phalcon\Mvc\Controller;
use Models\Posts;

class PostsController extends Controller
{
 /**
 * Shows posts
 *
 * @param Posts $post
 */
 public function showAction(Posts $post)
 {
 $this->view->post = $post;
 }
}

Currently the dispatchers internal model binding will only use the models primary key to perform a findFirst() on.
An example route for the above would be /posts/show/{1}

Handling Not-Found Exceptions

Using the EventsManager it’s possible to insert a hook point before the dispatcher throws an exception when the controller/action combination wasn’t found:

<?php

use Exception;
use Phalcon\Dispatcher;
use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Mvc\Dispatcher\Exception as DispatchException;

$di->setShared(
 "dispatcher",
 function () {
 // Create an EventsManager
 $eventsManager = new EventsManager();

 // Attach a listener
 $eventsManager->attach(
 "dispatch:beforeException",
 function (Event $event, $dispatcher, Exception $exception) {
 // Handle 404 exceptions
 if ($exception instanceof DispatchException) {
 $dispatcher->forward(
 [
 "controller" => "index",
 "action" => "show404",
]
);

 return false;
 }

 // Alternative way, controller or action doesn't exist
 switch ($exception->getCode()) {
 case Dispatcher::EXCEPTION_HANDLER_NOT_FOUND:
 case Dispatcher::EXCEPTION_ACTION_NOT_FOUND:
 $dispatcher->forward(
 [
 "controller" => "index",
 "action" => "show404",
]
);

 return false;
 }
 }
);

 $dispatcher = new MvcDispatcher();

 // Bind the EventsManager to the dispatcher
 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
 }
);

Of course, this method can be moved onto independent plugin classes, allowing more than one class
take actions when an exception is produced in the dispatch loop:

<?php

use Exception;
use Phalcon\Events\Event;
use Phalcon\Mvc\Dispatcher;
use Phalcon\Mvc\Dispatcher\Exception as DispatchException;

class ExceptionsPlugin
{
 public function beforeException(Event $event, Dispatcher $dispatcher, Exception $exception)
 {
 // Default error action
 $action = "show503";

 // Handle 404 exceptions
 if ($exception instanceof DispatchException) {
 $action = "show404";
 }

 $dispatcher->forward(
 [
 "controller" => "index",
 "action" => $action,
]
);

 return false;
 }
}

Only exceptions produced by the dispatcher and exceptions produced in the executed action
are notified in the ‘beforeException’ events. Exceptions produced in listeners or
controller events are redirected to the latest try/catch.

Implementing your own Dispatcher

The Phalcon\Mvc\DispatcherInterface interface must be implemented to create your own dispatcher
replacing the one provided by Phalcon.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Micro Applications

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Micro Applications

With Phalcon you can create “Micro-Framework like” applications. By doing this, you only need to write a minimal amount of
code to create a PHP application. Micro applications are suitable to implement small applications, APIs and
prototypes in a practical way.

<?php

use Phalcon\Mvc\Micro;

$app = new Micro();

$app->get(
 "/say/welcome/{name}",
 function ($name) {
 echo "<h1>Welcome $name!</h1>";
 }
);

$app->handle();

Creating a Micro Application

Phalcon\Mvc\Micro is the class responsible for implementing a micro application.

<?php

use Phalcon\Mvc\Micro;

$app = new Micro();

Defining routes

After instantiating the object, you will need to add some routes. Phalcon\Mvc\Router manages routing internally.
Routes must always start with /. A HTTP method constraint is optionally required when defining routes, so as to instruct
the router to match only if the request also matches the HTTP methods. The following example shows how to define
a route for the method GET:

<?php

$app->get(
 "/say/hello/{name}",
 function ($name) {
 echo "<h1>Hello! $name</h1>";
 }
);

The “get” method indicates that the associated HTTP method is GET. The route /say/hello/{name} also has a parameter {$name} that is passed
directly to the route handler (the anonymous function). Handlers are executed when a route is matched. A handler could be
any callable item in the PHP userland. The following example shows how to define different types of handlers:

<?php

// With a function
function say_hello($name) {
 echo "<h1>Hello! $name</h1>";
}

$app->get(
 "/say/hello/{name}",
 "say_hello"
);

// With a static method
$app->get(
 "/say/hello/{name}",
 "SomeClass::someSayMethod"
);

// With a method in an object
$myController = new MyController();
$app->get(
 "/say/hello/{name}",
 [
 $myController,
 "someAction"
]
);

// Anonymous function
$app->get(
 "/say/hello/{name}",
 function ($name) {
 echo "<h1>Hello! $name</h1>";
 }
);

Phalcon\Mvc\Micro provides a set of methods to define the HTTP method (or methods)
which the route is constrained for:

<?php

// Matches if the HTTP method is GET
$app->get(
 "/api/products",
 "get_products"
);

// Matches if the HTTP method is POST
$app->post(
 "/api/products/add",
 "add_product"
);

// Matches if the HTTP method is PUT
$app->put(
 "/api/products/update/{id}",
 "update_product"
);

// Matches if the HTTP method is DELETE
$app->delete(
 "/api/products/remove/{id}",
 "delete_product"
);

// Matches if the HTTP method is OPTIONS
$app->options(
 "/api/products/info/{id}",
 "info_product"
);

// Matches if the HTTP method is PATCH
$app->patch(
 "/api/products/update/{id}",
 "info_product"
);

// Matches if the HTTP method is GET or POST
$app->map(
 "/repos/store/refs",
 "action_product"
)->via(
 [
 "GET",
 "POST",
]
);

To access the HTTP method data $app needs to be passed into the closure:

<?php

// Matches if the HTTP method is POST
$app->post(
 "/api/products/add",
 function () use ($app) {
 echo $app->request->getPost("productID");
 }
);

Routes with Parameters

Defining parameters in routes is very easy as demonstrated above. The name of the parameter has to be enclosed in brackets. Parameter
formatting is also available using regular expressions to ensure consistency of data. This is demonstrated in the example below:

<?php

// This route have two parameters and each of them have a format
$app->get(
 "/posts/{year:[0-9]+}/{title:[a-zA-Z\-]+}",
 function ($year, $title) {
 echo "<h1>Title: $title</h1>";
 echo "<h2>Year: $year</h2>";
 }
);

Starting Route

Normally, the starting route in an application is the route /, and it will more frequent to be accessed by the method GET.
This scenario is coded as follows:

<?php

// This is the start route
$app->get(
 "/",
 function () {
 echo "<h1>Welcome!</h1>";
 }
);

Rewrite Rules

The following rules can be used together with Apache to rewrite the URis:

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^((?s).*)$ index.php?_url=/$1 [QSA,L]
</IfModule>

Working with Responses

You are free to produce any kind of response in a handler: directly make an output, use a template engine, include a view,
return a json, etc.:

<?php

// Direct output
$app->get(
 "/say/hello",
 function () {
 echo "<h1>Hello! $name</h1>";
 }
);

// Requiring another file
$app->get(
 "/show/results",
 function () {
 require "views/results.php";
 }
);

// Returning JSON
$app->get(
 "/get/some-json",
 function () {
 echo json_encode(
 [
 "some",
 "important",
 "data",
]
);
 }
);

In addition to that, you have access to the service “response”, with which you can manipulate better the
response:

<?php

$app->get(
 "/show/data",
 function () use ($app) {
 // Set the Content-Type header
 $app->response->setContentType("text/plain");

 $app->response->sendHeaders();

 // Print a file
 readfile("data.txt");
 }
);

Or create a response object and return it from the handler:

<?php

$app->get(
 "/show/data",
 function () {
 // Create a response
 $response = new Phalcon\Http\Response();

 // Set the Content-Type header
 $response->setContentType("text/plain");

 // Pass the content of a file
 $response->setContent(file_get_contents("data.txt"));

 // Return the response
 return $response;
 }
);

Making redirections

Redirections could be performed to forward the execution flow to another route:

<?php

// This route makes a redirection to another route
$app->post("/old/welcome",
 function () use ($app) {
 $app->response->redirect("new/welcome");

 $app->response->sendHeaders();
 }
);

$app->post("/new/welcome",
 function () use ($app) {
 echo "This is the new Welcome";
 }
);

Generating URLs for Routes

Phalcon\Mvc\Url can be used to produce URLs based on the defined routes. You need to set up a name for the route;
by this way the “url” service can produce the corresponding URL:

<?php

// Set a route with the name "show-post"
$app->get(
 "/blog/{year}/{title}",
 function ($year, $title) use ($app) {
 // ... Show the post here
 }
)->setName("show-post");

// Produce a URL somewhere
$app->get(
 "/",
 function () use ($app) {
 echo 'url->get(
 [
 "for" => "show-post",
 "title" => "php-is-a-great-framework",
 "year" => 2015
]
), '">Show the post';
 }
);

Interacting with the Dependency Injector

In the micro application, a Phalcon\Di\FactoryDefault services container is created implicitly; additionally you
can create outside the application a container to manipulate its services:

<?php

use Phalcon\Mvc\Micro;
use Phalcon\Di\FactoryDefault;
use Phalcon\Config\Adapter\Ini as IniConfig;

$di = new FactoryDefault();

$di->set(
 "config",
 function () {
 return new IniConfig("config.ini");
 }
);

$app = new Micro();

$app->setDI($di);

$app->get(
 "/",
 function () use ($app) {
 // Read a setting from the config
 echo $app->config->app_name;
 }
);

$app->post(
 "/contact",
 function () use ($app) {
 $app->flash->success("Yes!, the contact was made!");
 }
);

The array-syntax is allowed to easily set/get services in the internal services container:

<?php

use Phalcon\Mvc\Micro;
use Phalcon\Db\Adapter\Pdo\Mysql as MysqlAdapter;

$app = new Micro();

// Setup the database service
$app["db"] = function () {
 return new MysqlAdapter(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "test_db"
]
);
};

$app->get(
 "/blog",
 function () use ($app) {
 $news = $app["db"]->query("SELECT * FROM news");

 foreach ($news as $new) {
 echo $new->title;
 }
 }
);

Not-Found Handler

When a user tries to access a route that is not defined, the micro application will try to execute the “Not-Found” handler.
An example of that behavior is below:

<?php

$app->notFound(
 function () use ($app) {
 $app->response->setStatusCode(404, "Not Found");

 $app->response->sendHeaders();

 echo "This is crazy, but this page was not found!";
 }
);

Models in Micro Applications

Models can be used transparently in Micro Applications, only is required an autoloader to load models:

<?php

$loader = new \Phalcon\Loader();

$loader->registerDirs(
 [
 __DIR__ . "/models/"
]
)->register();

$app = new \Phalcon\Mvc\Micro();

$app->get(
 "/products/find",
 function () {
 $products = Products::find();

 foreach ($products as $product) {
 echo $product->name, "
";
 }
 }
);

$app->handle();

Micro Application Events

Phalcon\Mvc\Micro is able to send events to the EventsManager (if it is present).
Events are triggered using the type “micro”. The following events are supported:

	Event Name
	Triggered
	Can stop operation?

	beforeHandleRoute
	The main method is just called, at this point the application doesn’t know if there is some matched route
	Yes

	beforeExecuteRoute
	A route has been matched and it contains a valid handler, at this point the handler has not been executed
	Yes

	afterExecuteRoute
	Triggered after running the handler
	No

	beforeNotFound
	Triggered when any of the defined routes match the requested URI
	Yes

	afterHandleRoute
	Triggered after completing the whole process in a successful way
	Yes

In the following example, we explain how to control the application security using events:

<?php

use Phalcon\Mvc\Micro;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

// Create a events manager
$eventsManager = new EventsManager();

$eventsManager->attach(
 "micro:beforeExecuteRoute",
 function (Event $event, $app) {
 if ($app->session->get("auth") === false) {
 $app->flashSession->error("The user isn't authenticated");

 $app->response->redirect("/");

 $app->response->sendHeaders();

 // Return (false) stop the operation
 return false;
 }
 }
);

$app = new Micro();

// Bind the events manager to the app
$app->setEventsManager($eventsManager);

Middleware events

In addition to the events manager, events can be added using the methods ‘before’, ‘after’ and ‘finish’:

<?php

$app = new Phalcon\Mvc\Micro();

// Executed before every route is executed
// Return false cancels the route execution
$app->before(
 function () use ($app) {
 if ($app["session"]->get("auth") === false) {
 $app["flashSession"]->error("The user isn't authenticated");

 $app["response"]->redirect("/error");

 // Return false stops the normal execution
 return false;
 }

 return true;
 }
);

$app->map(
 "/api/robots",
 function () {
 return [
 "status" => "OK",
];
 }
);

$app->after(
 function () use ($app) {
 // This is executed after the route is executed
 echo json_encode($app->getReturnedValue());
 }
);

$app->finish(
 function () use ($app) {
 // This is executed when the request has been served
 }
);

You can call the methods several times to add more events of the same type:

<?php

$app->finish(
 function () use ($app) {
 // First 'finish' middleware
 }
);

$app->finish(
 function () use ($app) {
 // Second 'finish' middleware
 }
);

Code for middlewares can be reused using separate classes:

<?php

use Phalcon\Mvc\Micro\MiddlewareInterface;

/**
 * CacheMiddleware
 *
 * Caches pages to reduce processing
 */
class CacheMiddleware implements MiddlewareInterface
{
 public function call($application)
 {
 $cache = $application["cache"];
 $router = $application["router"];

 $key = preg_replace("/^[a-zA-Z0-9]/", "", $router->getRewriteUri());

 // Check if the request is cached
 if ($cache->exists($key)) {
 echo $cache->get($key);

 return false;
 }

 return true;
 }
}

Then add the instance to the application:

<?php

$app->before(
 new CacheMiddleware()
);

The following middleware events are available:

	Event Name
	Triggered
	Can stop operation?

	before
	Before executing the handler. It can be used to control the access to the application
	Yes

	after
	Executed after the handler is executed. It can be used to prepare the response
	No

	finish
	Executed after sending the response. It can be used to perform clean-up
	No

Using Controllers as Handlers

Medium applications using the Mvc\Micro approach may require organize handlers in controllers.
You can use Phalcon\Mvc\Micro\Collection to group handlers that belongs to controllers:

<?php

use Phalcon\Mvc\Micro\Collection as MicroCollection;

$posts = new MicroCollection();

// Set the main handler. ie. a controller instance
$posts->setHandler(
 new PostsController()
);

// Set a common prefix for all routes
$posts->setPrefix("/posts");

// Use the method 'index' in PostsController
$posts->get("/", "index");

// Use the method 'show' in PostsController
$posts->get("/show/{slug}", "show");

$app->mount($posts);

The controller ‘PostsController’ might look like this:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function index()
 {
 // ...
 }

 public function show($slug)
 {
 // ...
 }
}

In the above example the controller is directly instantiated, Collection also have the ability to lazy-load controllers, this option
provide better performance loading controllers only if the related routes are matched:

<?php

$posts->setHandler("PostsController", true);
$posts->setHandler("Blog\Controllers\PostsController", true);

Returning Responses

Handlers may return raw responses using Phalcon\Http\Response or a component that implements the relevant interface.
When responses are returned by handlers they are automatically sent by the application.

<?php

use Phalcon\Mvc\Micro;
use Phalcon\Http\Response;

$app = new Micro();

// Return a response
$app->get(
 "/welcome/index",
 function () {
 $response = new Response();

 $response->setStatusCode(401, "Unauthorized");

 $response->setContent("Access is not authorized");

 return $response;
 }
);

Rendering Views

Phalcon\Mvc\View\Simple can be used to render views, the following example shows how to do that:

<?php

$app = new Phalcon\Mvc\Micro();

$app["view"] = function () {
 $view = new \Phalcon\Mvc\View\Simple();

 $view->setViewsDir("app/views/");

 return $view;
};

// Return a rendered view
$app->get(
 "/products/show",
 function () use ($app) {
 // Render app/views/products/show.phtml passing some variables
 echo $app["view"]->render(
 "products/show",
 [
 "id" => 100,
 "name" => "Artichoke"
]
);
 }
);

Please note that this code block uses Phalcon\Mvc\View\Simple which uses relative paths instead of controllers and actions.
If you would like to use Phalcon\Mvc\View\Simple instead, you will need to change the parameters of the render() method:

<?php

$app = new Phalcon\Mvc\Micro();

$app["view"] = function () {
 $view = new \Phalcon\Mvc\View();

 $view->setViewsDir("app/views/");

 return $view;
};

// Return a rendered view
$app->get(
 "/products/show",
 function () use ($app) {
 // Render app/views/products/show.phtml passing some variables
 echo $app["view"]->render(
 "products",
 "show",
 [
 "id" => 100,
 "name" => "Artichoke"
]
);
 }
);

Error Handling

A proper response can be generated if an exception is raised in a micro handler:

<?php

$app = new Phalcon\Mvc\Micro();

$app->get(
 "/",
 function () {
 throw new \Exception("An error");
 }
);

$app->error(
 function ($exception) {
 echo "An error has occurred";
 }
);

If the handler returns “false” the exception is stopped.

Related Sources

	Creating a Simple REST API is a tutorial that explains how to create a micro application to implement a RESTful web service.

	Stickers Store [http://store.phalconphp.com] is a very simple micro-application making use of the micro-mvc approach [Github [https://github.com/phalcon/store]].

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Working with Namespaces

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Working with Namespaces

Namespaces [http://php.net/manual/en/language.namespaces.php] can be used to avoid class name collisions; this means that if you have two controllers in an application with the same name,
a namespace can be used to differentiate them. Namespaces are also useful for creating bundles or modules.

Setting up the framework

Using namespaces has some implications when loading the appropriate controller. To adjust the framework behavior to namespaces is necessary
to perform one or all of the following tasks:

Use an autoload strategy that takes into account the namespaces, for example with Phalcon\Loader:

<?php

$loader->registerNamespaces(
 [
 "Store\\Admin\\Controllers" => "../bundles/admin/controllers/",
 "Store\\Admin\\Models" => "../bundles/admin/models/",
]
);

Specify it in the routes as a separate parameter in the route’s paths:

<?php

$router->add(
 "/admin/users/my-profile",
 [
 "namespace" => "Store\\Admin",
 "controller" => "Users",
 "action" => "profile",
]
);

Passing it as part of the route:

<?php

$router->add(
 "/:namespace/admin/users/my-profile",
 [
 "namespace" => 1,
 "controller" => "Users",
 "action" => "profile",
]
);

If you are only working with the same namespace for every controller in your application, then you can define a default namespace
in the Dispatcher, by doing this, you don’t need to specify a full class name in the router path:

<?php

use Phalcon\Mvc\Dispatcher;

// Registering a dispatcher
$di->set(
 "dispatcher",
 function () {
 $dispatcher = new Dispatcher();

 $dispatcher->setDefaultNamespace(
 "Store\\Admin\\Controllers"
);

 return $dispatcher;
 }
);

Controllers in Namespaces

The following example shows how to implement a controller that use namespaces:

<?php

namespace Store\Admin\Controllers;

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{
 public function indexAction()
 {

 }

 public function profileAction()
 {

 }
}

Models in Namespaces

Take the following into consideration when using models in namespaces:

<?php

namespace Store\Models;

use Phalcon\Mvc\Model;

class Robots extends Model
{

}

If models have relationships they must include the namespace too:

<?php

namespace Store\Models;

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public function initialize()
 {
 $this->hasMany(
 "id",
 "Store\\Models\\Parts",
 "robots_id",
 [
 "alias" => "parts",
]
);
 }
}

In PHQL you must write the statements including namespaces:

<?php

$phql = "SELECT r.* FROM Store\Models\Robots r JOIN Store\Models\Parts p";

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Events Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Events Manager

The purpose of this component is to intercept the execution of most of the other components of the framework by creating “hook points”. These hook
points allow the developer to obtain status information, manipulate data or change the flow of execution during the process of a component.

Naming Convention

Phalcon events use namespaces to avoid naming collisions. Each component in Phalcon occupies a different event namespace and you are free to create
your own as you see fit. Event names are formatted as “component:event”. For example, as Phalcon\Db occupies the “db”
namespace, its “afterQuery” event’s full name is “db:afterQuery”.

When attaching event listeners to the events manager, you can use “component” to catch all events from that component (eg. “db” to catch all of the
Phalcon\Db events) or “component:event” to target a specific event (eg. “db:afterQuery”).

Usage Example

In the following example, we will use the EventsManager to listen for the “afterQuery” event produced in a MySQL connection managed by
Phalcon\Db:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Db\Adapter\Pdo\Mysql as DbAdapter;

$eventsManager = new EventsManager();

$eventsManager->attach(
 "db:afterQuery",
 function (Event $event, $connection) {
 echo $connection->getSQLStatement();
 }
);

$connection = new DbAdapter(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);

// Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

// Send a SQL command to the database server
$connection->query(
 "SELECT * FROM products p WHERE p.status = 1"
);

Now every time a query is executed, the SQL statement will be echoed out. The first parameter passed to the lambda function contains contextual
information about the event that is running, the second is the source of the event (in this case: the connection itself). A third parameter may
also be specified which will contain arbitrary data specific to the event.

You must explicitly set the Events Manager to a component using the setEventsManager() method in order for that component to trigger events. You can create a new Events Manager instance for each component or you can set the same Events Manager to multiple components as the naming convention will avoid conflicts.

Instead of using lambda functions, you can use event listener classes instead. Event listeners also allow you to listen to multiple events. In
this example, we will implement the Phalcon\Db\Profiler to detect the SQL statements that are taking longer
to execute than expected:

<?php

use Phalcon\Db\Profiler;
use Phalcon\Events\Event;
use Phalcon\Logger;
use Phalcon\Logger\Adapter\File;

class MyDbListener
{
 protected $_profiler;

 protected $_logger;

 /**
 * Creates the profiler and starts the logging
 */
 public function __construct()
 {
 $this->_profiler = new Profiler();
 $this->_logger = new Logger("../apps/logs/db.log");
 }

 /**
 * This is executed if the event triggered is 'beforeQuery'
 */
 public function beforeQuery(Event $event, $connection)
 {
 $this->_profiler->startProfile(
 $connection->getSQLStatement()
);
 }

 /**
 * This is executed if the event triggered is 'afterQuery'
 */
 public function afterQuery(Event $event, $connection)
 {
 $this->_logger->log(
 $connection->getSQLStatement(),
 Logger::INFO
);

 $this->_profiler->stopProfile();
 }

 public function getProfiler()
 {
 return $this->_profiler;
 }
}

Attaching an event listener to the events manager is as simple as:

<?php

// Create a database listener
$dbListener = new MyDbListener();

// Listen all the database events
$eventsManager->attach(
 "db",
 $dbListener
);

The resulting profile data can be obtained from the listener:

<?php

// Send a SQL command to the database server
$connection->execute(
 "SELECT * FROM products p WHERE p.status = 1"
);

foreach ($dbListener->getProfiler()->getProfiles() as $profile) {
 echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
 echo "Start Time: ", $profile->getInitialTime(), "\n";
 echo "Final Time: ", $profile->getFinalTime(), "\n";
 echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";
}

Creating components that trigger Events

You can create components in your application that trigger events to an EventsManager. As a consequence, there may exist listeners
that react to these events when generated. In the following example we’re creating a component called “MyComponent”.
This component is EventsManager aware (it implements Phalcon\Events\EventsAwareInterface); when its someTask() method is executed it triggers two events to any listener in the EventsManager:

<?php

use Phalcon\Events\EventsAwareInterface;
use Phalcon\Events\Manager as EventsManager;

class MyComponent implements EventsAwareInterface
{
 protected $_eventsManager;

 public function setEventsManager(EventsManager $eventsManager)
 {
 $this->_eventsManager = $eventsManager;
 }

 public function getEventsManager()
 {
 return $this->_eventsManager;
 }

 public function someTask()
 {
 $this->_eventsManager->fire("my-component:beforeSomeTask", $this);

 // Do some task
 echo "Here, someTask\n";

 $this->_eventsManager->fire("my-component:afterSomeTask", $this);
 }
}

Notice that in this example, we’re using the “my-component” event namespace. Now we need to create an event listener for this component:

<?php

use Phalcon\Events\Event;

class SomeListener
{
 public function beforeSomeTask(Event $event, $myComponent)
 {
 echo "Here, beforeSomeTask\n";
 }

 public function afterSomeTask(Event $event, $myComponent)
 {
 echo "Here, afterSomeTask\n";
 }
}

Now let’s make everything work together:

<?php

use Phalcon\Events\Manager as EventsManager;

// Create an Events Manager
$eventsManager = new EventsManager();

// Create the MyComponent instance
$myComponent = new MyComponent();

// Bind the eventsManager to the instance
$myComponent->setEventsManager($eventsManager);

// Attach the listener to the EventsManager
$eventsManager->attach(
 "my-component",
 new SomeListener()
);

// Execute methods in the component
$myComponent->someTask();

As someTask() is executed, the two methods in the listener will be executed, producing the following output:

Here, beforeSomeTask
Here, someTask
Here, afterSomeTask

Additional data may also be passed when triggering an event using the third parameter of fire():

<?php

$eventsManager->fire("my-component:afterSomeTask", $this, $extraData);

In a listener the third parameter also receives this data:

<?php

use Phalcon\Events\Event;

// Receiving the data in the third parameter
$eventsManager->attach(
 "my-component",
 function (Event $event, $component, $data) {
 print_r($data);
 }
);

// Receiving the data from the event context
$eventsManager->attach(
 "my-component",
 function (Event $event, $component) {
 print_r($event->getData());
 }
);

Using Services From The DI

By extending Phalcon\Mvc\User\Plugin, you can access services from the DI, just like you would in a controller:

<?php

use Phalcon\Events\Event;
use Phalcon\Mvc\User\Plugin;

class SomeListener extends Plugin
{
 public function beforeSomeTask(Event $event, $myComponent)
 {
 echo "Here, beforeSomeTask\n";

 $this->logger->debug(
 "beforeSomeTask has been triggered";
);
 }

 public function afterSomeTask(Event $event, $myComponent)
 {
 echo "Here, afterSomeTask\n";

 $this->logger->debug(
 "afterSomeTask has been triggered";
);
 }
}

Event Propagation/Cancellation

Many listeners may be added to the same event manager. This means that for the same type of event, many listeners can be notified.
The listeners are notified in the order they were registered in the EventsManager. Some events are cancelable, indicating that
these may be stopped preventing other listeners from being notified about the event:

<?php

use Phalcon\Events\Event;

$eventsManager->attach(
 "db",
 function (Event $event, $connection) {
 // We stop the event if it is cancelable
 if ($event->isCancelable()) {
 // Stop the event, so other listeners will not be notified about this
 $event->stop();
 }

 // ...
 }
);

By default, events are cancelable - even most of the events produced by the framework are cancelables. You can fire a not-cancelable event
by passing false in the fourth parameter of fire():

<?php

$eventsManager->fire("my-component:afterSomeTask", $this, $extraData, false);

Listener Priorities

When attaching listeners you can set a specific priority. With this feature you can attach listeners indicating the order
in which they must be called:

<?php

$eventsManager->enablePriorities(true);

$eventsManager->attach("db", new DbListener(), 150); // More priority
$eventsManager->attach("db", new DbListener(), 100); // Normal priority
$eventsManager->attach("db", new DbListener(), 50); // Less priority

Collecting Responses

The events manager can collect every response returned by every notified listener. This example explains how it works:

<?php

use Phalcon\Events\Manager as EventsManager;

$eventsManager = new EventsManager();

// Set up the events manager to collect responses
$eventsManager->collectResponses(true);

// Attach a listener
$eventsManager->attach(
 "custom:custom",
 function () {
 return "first response";
 }
);

// Attach a listener
$eventsManager->attach(
 "custom:custom",
 function () {
 return "second response";
 }
);

// Fire the event
$eventsManager->fire("custom:custom", null);

// Get all the collected responses
print_r($eventsManager->getResponses());

The above example produces:

Array ([0] => first response [1] => second response)

Implementing your own EventsManager

The Phalcon\Events\ManagerInterface interface must be implemented to create your own
EventsManager replacing the one provided by Phalcon.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Request Environment

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Request Environment

Every HTTP request (usually originated by a browser) contains additional information regarding the request such as header data,
files, variables, etc. A web based application needs to parse that information so as to provide the correct
response back to the requester. Phalcon\Http\Request encapsulates the
information of the request, allowing you to access it in an object-oriented way.

<?php

use Phalcon\Http\Request;

// Getting a request instance
$request = new Request();

// Check whether the request was made with method POST
if ($request->isPost()) {
 // Check whether the request was made with Ajax
 if ($request->isAjax()) {
 echo "Request was made using POST and AJAX";
 }
}

Getting Values

PHP automatically fills the superglobal arrays $_GET and $_POST depending on the type of the request. These arrays
contain the values present in forms submitted or the parameters sent via the URL. The variables in the arrays are
never sanitized and can contain illegal characters or even malicious code, which can lead to SQL injection [http://en.wikipedia.org/wiki/SQL_injection] or
Cross Site Scripting (XSS) [http://en.wikipedia.org/wiki/Cross-site_scripting] attacks.

Phalcon\Http\Request allows you to access the values stored in the $_REQUEST,
$_GET and $_POST arrays and sanitize or filter them with the ‘filter’ service, (by default
Phalcon\Filter). The following examples offer the same behavior:

<?php

use Phalcon\Filter;

$filter = new Filter();

// Manually applying the filter
$email = $filter->sanitize($_POST["user_email"], "email");

// Manually applying the filter to the value
$email = $filter->sanitize($request->getPost("user_email"), "email");

// Automatically applying the filter
$email = $request->getPost("user_email", "email");

// Setting a default value if the param is null
$email = $request->getPost("user_email", "email", "some@example.com");

// Setting a default value if the param is null without filtering
$email = $request->getPost("user_email", null, "some@example.com");

Accessing the Request from Controllers

The most common place to access the request environment is in an action of a controller. To access the
Phalcon\Http\Request object from a controller you will need to use
the $this->request public property of the controller:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Check if request has made with POST
 if ($this->request->isPost()) {
 // Access POST data
 $customerName = $this->request->getPost("name");
 $customerBorn = $this->request->getPost("born");
 }
 }
}

Uploading Files

Another common task is file uploading. Phalcon\Http\Request offers
an object-oriented way to achieve this task:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function uploadAction()
 {
 // Check if the user has uploaded files
 if ($this->request->hasFiles()) {
 $files = $this->request->getUploadedFiles();

 // Print the real file names and sizes
 foreach ($files as $file) {
 // Print file details
 echo $file->getName(), " ", $file->getSize(), "\n";

 // Move the file into the application
 $file->moveTo(
 "files/" . $file->getName()
);
 }
 }
 }
}

Each object returned by Phalcon\Http\Request::getUploadedFiles() is an instance of the
Phalcon\Http\Request\File class. Using the $_FILES superglobal
array offers the same behavior. Phalcon\Http\Request\File encapsulates
only the information related to each file uploaded with the request.

Working with Headers

As mentioned above, request headers contain useful information that allow us to send the proper response back to
the user. The following examples show usages of that information:

<?php

// Get the Http-X-Requested-With header
$requestedWith = $request->getHeader("HTTP_X_REQUESTED_WITH");

if ($requestedWith === "XMLHttpRequest") {
 echo "The request was made with Ajax";
}

// Same as above
if ($request->isAjax()) {
 echo "The request was made with Ajax";
}

// Check the request layer
if ($request->isSecure()) {
 echo "The request was made using a secure layer";
}

// Get the servers's IP address. ie. 192.168.0.100
$ipAddress = $request->getServerAddress();

// Get the client's IP address ie. 201.245.53.51
$ipAddress = $request->getClientAddress();

// Get the User Agent (HTTP_USER_AGENT)
$userAgent = $request->getUserAgent();

// Get the best acceptable content by the browser. ie text/xml
$contentType = $request->getAcceptableContent();

// Get the best charset accepted by the browser. ie. utf-8
$charset = $request->getBestCharset();

// Get the best language accepted configured in the browser. ie. en-us
$language = $request->getBestLanguage();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Returning Responses

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Returning Responses

Part of the HTTP cycle is returning responses to clients. Phalcon\Http\Response is the Phalcon
component designed to achieve this task. HTTP responses are usually composed by headers and body. The following is an example of basic usage:

<?php

use Phalcon\Http\Response;

// Getting a response instance
$response = new Response();

// Set status code
$response->setStatusCode(404, "Not Found");

// Set the content of the response
$response->setContent("Sorry, the page doesn't exist");

// Send response to the client
$response->send();

If you are using the full MVC stack there is no need to create responses manually. However, if you need to return a response
directly from a controller’s action follow this example:

<?php

use Phalcon\Http\Response;
use Phalcon\Mvc\Controller;

class FeedController extends Controller
{
 public function getAction()
 {
 // Getting a response instance
 $response = new Response();

 $feed = // ... Load here the feed

 // Set the content of the response
 $response->setContent(
 $feed->asString()
);

 // Return the response
 return $response;
 }
}

Working with Headers

Headers are an important part of the HTTP response. It contains useful information about the response state like the HTTP status,
type of response and much more.

You can set headers in the following way:

<?php

// Setting a header by its name
$response->setHeader("Content-Type", "application/pdf");
$response->setHeader("Content-Disposition", 'attachment; filename="downloaded.pdf"');

// Setting a raw header
$response->setRawHeader("HTTP/1.1 200 OK");

A Phalcon\Http\Response\Headers bag internally manages headers. This class
retrieves the headers before sending it to client:

<?php

// Get the headers bag
$headers = $response->getHeaders();

// Get a header by its name
$contentType = $headers->get("Content-Type");

Making Redirections

With Phalcon\Http\Response you can also execute HTTP redirections:

<?php

// Redirect to the default URI
$response->redirect();

// Redirect to the local base URI
$response->redirect("posts/index");

// Redirect to an external URL
$response->redirect("http://en.wikipedia.org", true);

// Redirect specifying the HTTP status code
$response->redirect("http://www.example.com/new-location", true, 301);

All internal URIs are generated using the ‘url’ service (by default Phalcon\Mvc\Url). This example demonstrates
how you can redirect using a route you have defined in your application:

<?php

// Redirect based on a named route
return $response->redirect(
 [
 "for" => "index-lang",
 "lang" => "jp",
 "controller" => "index",
]
);

Note that a redirection doesn’t disable the view component, so if there is a view associated with the current action it
will be executed anyway. You can disable the view from a controller by executing $this->view->disable();

HTTP Cache

One of the easiest ways to improve the performance in your applications and reduce the traffic is using HTTP Cache.
Most modern browsers support HTTP caching and is one of the reasons why many websites are currently fast.

HTTP Cache can be altered in the following header values sent by the application when serving a page for the first time:

	Expires: With this header the application can set a date in the future or the past telling the browser when the page must expire.

	Cache-Control: This header allows to specify how much time a page should be considered fresh in the browser.

	Last-Modified: This header tells the browser which was the last time the site was updated avoiding page re-loads

	ETag: An etag is a unique identifier that must be created including the modification timestamp of the current page

Setting an Expiration Time

The expiration date is one of the easiest and most effective ways to cache a page in the client (browser).
Starting from the current date we add the amount of time the page will be stored
in the browser cache. Until this date expires no new content will be requested from the server:

<?php

$expiryDate = new DateTime();
$expiryDate->modify("+2 months");

$response->setExpires($expiryDate);

The Response component automatically shows the date in GMT timezone as expected in an Expires header.

If we set this value to a date in the past the browser will always refresh the requested page:

<?php

$expiryDate = new DateTime();
$expiryDate->modify("-10 minutes");

$response->setExpires($expiryDate);

Browsers rely on the client’s clock to assess if this date has passed or not. The client clock can be modified to
make pages expire and this may represent a limitation for this cache mechanism.

Cache-Control

This header provides a safer way to cache the pages served. We simply must specify a time in seconds telling the browser
how long it must keep the page in its cache:

<?php

// Starting from now, cache the page for one day
$response->setHeader("Cache-Control", "max-age=86400");

The opposite effect (avoid page caching) is achieved in this way:

<?php

// Never cache the served page
$response->setHeader("Cache-Control", "private, max-age=0, must-revalidate");

E-Tag

An “entity-tag” or “E-tag” is a unique identifier that helps the browser realize if the page has changed or not between two requests.
The identifier must be calculated taking into account that this must change if the previously served content has changed:

<?php

// Calculate the E-Tag based on the modification time of the latest news
$mostRecentDate = News::maximum(
 [
 "column" => "created_at"
]
);

$eTag = md5($mostRecentDate);

// Send an E-Tag header
$response->setHeader("E-Tag", $eTag);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Cookies Management

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Cookies Management

Cookies [http://en.wikipedia.org/wiki/HTTP_cookie] are a very useful way to store small pieces of data on the client’s machine that can be retrieved even
if the user closes his/her browser. Phalcon\Http\Response\Cookies
acts as a global bag for cookies. Cookies are stored in this bag during the request execution and are sent
automatically at the end of the request.

Basic Usage

You can set/get cookies by just accessing the ‘cookies’ service in any part of the application where services can be
accessed:

<?php

use Phalcon\Mvc\Controller;

class SessionController extends Controller
{
 public function loginAction()
 {
 // Check if the cookie has previously set
 if ($this->cookies->has("remember-me")) {
 // Get the cookie
 $rememberMeCookie = $this->cookies->get("remember-me");

 // Get the cookie's value
 $value = $rememberMeCookie->getValue();
 }
 }

 public function startAction()
 {
 $this->cookies->set(
 "remember-me",
 "some value",
 time() + 15 * 86400
);
 }

 public function logoutAction()
 {
 $rememberMeCookie = $this->cookies->get("remember-me");

 // Delete the cookie
 $rememberMeCookie->delete();
 }
}

Encryption/Decryption of Cookies

By default, cookies are automatically encrypted before being sent to the client and are decrypted when retrieved from the user.
This protection prevents unauthorized users to see the cookies’ contents in the client (browser).
Despite this protection, sensitive data should not be stored in cookies.

You can disable encryption in the following way:

<?php

use Phalcon\Http\Response\Cookies;

$di->set(
 "cookies",
 function () {
 $cookies = new Cookies();

 $cookies->useEncryption(false);

 return $cookies;
 }
);

If you wish to use encryption, a global key must be set in the ‘crypt’ service:

<?php

use Phalcon\Crypt;

$di->set(
 "crypt",
 function () {
 $crypt = new Crypt();

 $crypt->setKey('#1dj8$=dp?.ak//j1V$'); // Use your own key!

 return $crypt;
 }
);

Sending cookies data without encryption to clients including complex objects structures, resultsets,
service information, etc. could expose internal application details that could be used by an attacker
to attack the application. If you do not want to use encryption, we highly recommend you only send very
basic cookie data like numbers or small string literals.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Generating URLs and Paths

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Generating URLs and Paths

Phalcon\Mvc\Url is the component responsible of generate URLs in a Phalcon application. It’s
capable of produce independent URLs based on routes.

Setting a base URI

Depending of which directory of your document root your application is installed, it may have a base URI or not.

For example, if your document root is /var/www/htdocs and your application is installed in /var/www/htdocs/invo then your
baseUri will be /invo/. If you are using a VirtualHost or your application is installed on the document root, then your baseUri is /.
Execute the following code to know the base URI detected by Phalcon:

<?php

use Phalcon\Mvc\Url;

$url = new Url();

echo $url->getBaseUri();

By default, Phalcon automatically may detect your baseUri, but if you want to increase the performance of your application
is recommended setting up it manually:

<?php

use Phalcon\Mvc\Url;

$url = new Url();

// Setting a relative base URI
$url->setBaseUri("/invo/");

// Setting a full domain as base URI
$url->setBaseUri("//my.domain.com/");

// Setting a full domain as base URI
$url->setBaseUri("http://my.domain.com/my-app/");

Usually, this component must be registered in the Dependency Injector container, so you can set up it there:

<?php

use Phalcon\Mvc\Url;

$di->set(
 "url",
 function () {
 $url = new Url();

 $url->setBaseUri("/invo/");

 return $url;
 }
);

Generating URIs

If you are using the Router with its default behavior. Your application is able to match routes based on the
following pattern: /:controller/:action/:params. Accordingly it is easy to create routes that satisfy that pattern (or any other
pattern defined in the router) passing a string to the method “get”:

<?php echo $url->get("products/save"); ?>

Note that isn’t necessary to prepend the base URI. If you have named routes you can easily change it creating it dynamically.
For Example if you have the following route:

<?php

$router->add(
 "/blog/{year}/{month}/{title}",
 [
 "controller" => "posts",
 "action" => "show",
]
)->setName("show-post");

A URL can be generated in the following way:

<?php

// This produces: /blog/2015/01/some-blog-post
$url->get(
 [
 "for" => "show-post",
 "year" => "2015",
 "month" => "01",
 "title" => "some-blog-post",
]
);

Producing URLs without mod_rewrite

You can use this component also to create URLs without mod_rewrite:

<?php

use Phalcon\Mvc\Url;

$url = new Url();

// Pass the URI in $_GET["_url"]
$url->setBaseUri("/invo/index.php?_url=/");

// This produce: /invo/index.php?_url=/products/save
echo $url->get("products/save");

You can also use $_SERVER["REQUEST_URI"]:

<?php

use Phalcon\Mvc\Url;

$url = new Url();

// Pass the URI in $_GET["_url"]
$url->setBaseUri("/invo/index.php?_url=/");

// Pass the URI using $_SERVER["REQUEST_URI"]
$url->setBaseUri("/invo/index.php/");

In this case, it’s necessary to manually handle the required URI in the Router:

<?php

use Phalcon\Mvc\Router;

$router = new Router();

// ... Define routes

$uri = str_replace($_SERVER["SCRIPT_NAME"], "", $_SERVER["REQUEST_URI"]);

$router->handle($uri);

The produced routes would look like:

<?php

// This produce: /invo/index.php/products/save
echo $url->get("products/save");

Producing URLs from Volt

The function “url” is available in volt to generate URLs using this component:

Edit

Generate static routes:

<link rel="stylesheet" href="{{ static_url("css/style.css") }}" type="text/css" />

Static vs. Dynamic URIs

This component allow you to set up a different base URI for static resources in the application:

<?php

use Phalcon\Mvc\Url;

$url = new Url();

// Dynamic URIs are
$url->setBaseUri("/");

// Static resources go through a CDN
$url->setStaticBaseUri("http://static.mywebsite.com/");

Phalcon\Tag will request both dynamical and static URIs using this component.

Implementing your own URL Generator

The Phalcon\Mvc\UrlInterface interface must be implemented to create your own URL
generator replacing the one provided by Phalcon.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Flashing Messages

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Flashing Messages

Flash messages are used to notify the user about the state of actions he/she made or simply show information to the users.
These kinds of messages can be generated using this component.

Adapters

This component makes use of adapters to define the behavior of the messages after being passed to the Flasher:

	Adapter
	Description
	API

	Direct
	Directly outputs the messages passed to the flasher
	Phalcon\Flash\Direct

	Session
	Temporarily stores the messages in session, then messages can be printed in the next request
	Phalcon\Flash\Session

Usage

Usually the Flash Messaging service is requested from the services container.
If you’re using Phalcon\Di\FactoryDefault
then Phalcon\Flash\Direct is automatically registered as “flash” service and
Phalcon\Flash\Session is automatically registered as “flashSession” service.
You can also manually register it:

<?php

use Phalcon\Flash\Direct as FlashDirect;
use Phalcon\Flash\Session as FlashSession;

// Set up the flash service
$di->set(
 "flash",
 function () {
 return new FlashDirect();
 }
);

// Set up the flash session service
$di->set(
 "flashSession",
 function () {
 return new FlashSession();
 }
);

This way, you can use it in controllers or views:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 $this->flash->success("The post was correctly saved!");
 }
}

There are four built-in message types supported:

<?php

$this->flash->error("too bad! the form had errors");

$this->flash->success("yes!, everything went very smoothly");

$this->flash->notice("this a very important information");

$this->flash->warning("best check yo self, you're not looking too good.");

You can also add messages with your own types using the message() method:

<?php

$this->flash->message("debug", "this is debug message, you don't say");

Printing Messages

Messages sent to the flash service are automatically formatted with HTML:

<div class="errorMessage">too bad! the form had errors</div>

<div class="successMessage">yes!, everything went very smoothly</div>

<div class="noticeMessage">this a very important information</div>

<div class="warningMessage">best check yo self, you're not looking too good.</div>

As you can see, CSS classes are added automatically to the :code:`<div>`s. These classes allow you to define the graphical presentation
of the messages in the browser. The CSS classes can be overridden, for example, if you’re using Twitter Bootstrap, classes can be configured as:

<?php

use Phalcon\Flash\Direct as FlashDirect;

// Register the flash service with custom CSS classes
$di->set(
 "flash",
 function () {
 $flash = new FlashDirect(
 [
 "error" => "alert alert-danger",
 "success" => "alert alert-success",
 "notice" => "alert alert-info",
 "warning" => "alert alert-warning",
]
);

 return $flash;
 }
);

Then the messages would be printed as follows:

<div class="alert alert-danger">too bad! the form had errors</div>

<div class="alert alert-success">yes!, everything went very smoothly</div>

<div class="alert alert-info">this a very important information</div>

<div class="alert alert-warning">best check yo self, you're not looking too good.</div>

Implicit Flush vs. Session

Depending on the adapter used to send the messages, it could be producing output directly, or be temporarily storing the messages in session to be shown later.
When should you use each? That usually depends on the type of redirection you do after sending the messages. For example,
if you make a “forward” is not necessary to store the messages in session, but if you do a HTTP redirect then, they need to be stored in session:

<?php

use Phalcon\Mvc\Controller;

class ContactController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Store the post

 // Using direct flash
 $this->flash->success("Your information was stored correctly!");

 // Forward to the index action
 return $this->dispatcher->forward(
 [
 "action" => "index"
]
);
 }
}

Or using a HTTP redirection:

<?php

use Phalcon\Mvc\Controller;

class ContactController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Store the post

 // Using session flash
 $this->flashSession->success("Your information was stored correctly!");

 // Make a full HTTP redirection
 return $this->response->redirect("contact/index");
 }
}

In this case you need to manually print the messages in the corresponding view:

<!-- app/views/contact/index.phtml -->

<p><?php $this->flashSession->output() ?></p>

The attribute ‘flashSession’ is how the flash was previously set into the dependency injection container.
You need to start the session first to successfully use the flashSession messenger.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Storing data in Session

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Storing data in Session

The session component provides object-oriented wrappers to access session data.

Reasons to use this component instead of raw-sessions:

	You can easily isolate session data across applications on the same domain

	Intercept where session data is set/get in your application

	Change the session adapter according to the application needs

Starting the Session

Some applications are session-intensive, almost any action that performs requires access to session data. There are others who access session data casually.
Thanks to the service container, we can ensure that the session is accessed only when it’s clearly needed:

<?php

use Phalcon\Session\Adapter\Files as Session;

// Start the session the first time when some component request the session service
$di->setShared(
 "session",
 function () {
 $session = new Session();

 $session->start();

 return $session;
 }
);

Storing/Retrieving data in Session

From a controller, a view or any other component that extends Phalcon\Di\Injectable you can access the session service
and store items and retrieve them in the following way:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function indexAction()
 {
 // Set a session variable
 $this->session->set("user-name", "Michael");
 }

 public function welcomeAction()
 {
 // Check if the variable is defined
 if ($this->session->has("user-name")) {
 // Retrieve its value
 $name = $this->session->get("user-name");
 }
 }

}

Removing/Destroying Sessions

It’s also possible remove specific variables or destroy the whole session:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function removeAction()
 {
 // Remove a session variable
 $this->session->remove("user-name");
 }

 public function logoutAction()
 {
 // Destroy the whole session
 $this->session->destroy();
 }
}

Isolating Session Data between Applications

Sometimes a user can use the same application twice, on the same server, in the same session. Surely, if we use variables in session,
we want that every application have separate session data (even though the same code and same variable names). To solve this, you can add a
prefix for every session variable created in a certain application:

<?php

use Phalcon\Session\Adapter\Files as Session;

// Isolating the session data
$di->set(
 "session",
 function () {
 // All variables created will prefixed with "my-app-1"
 $session = new Session(
 [
 "uniqueId" => "my-app-1",
]
);

 $session->start();

 return $session;
 }
);

Adding a unique ID is not necessary.

Session Bags

Phalcon\Session\Bag is a component that helps separating session data into “namespaces”.
Working by this way you can easily create groups of session variables into the application. By only setting the variables in the “bag”,
it’s automatically stored in session:

<?php

use Phalcon\Session\Bag as SessionBag;

$user = new SessionBag("user");

$user->setDI($di);

$user->name = "Kimbra Johnson";
$user->age = 22;

Persistent Data in Components

Controller, components and classes that extends Phalcon\Di\Injectable may inject
a Phalcon\Session\Bag. This class isolates variables for every class.
Thanks to this you can persist data between requests in every class in an independent way.

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function indexAction()
 {
 // Create a persistent variable "name"
 $this->persistent->name = "Laura";
 }

 public function welcomeAction()
 {
 if (isset($this->persistent->name)) {
 echo "Welcome, ", $this->persistent->name;
 }
 }
}

In a component:

<?php

use Phalcon\Mvc\Controller;

class Security extends Component
{
 public function auth()
 {
 // Create a persistent variable "name"
 $this->persistent->name = "Laura";
 }

 public function getAuthName()
 {
 return $this->persistent->name;
 }
}

The data added to the session ($this->session) are available throughout the application, while persistent ($this->persistent)
can only be accessed in the scope of the current class.

Implementing your own adapters

The Phalcon\Session\AdapterInterface interface must be implemented in order to create your own session adapters or extend the existing ones.

There are more adapters available for this components in the Phalcon Incubator [https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Session/Adapter]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Filtering and Sanitizing

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Filtering and Sanitizing

Sanitizing user input is a critical part of software development. Trusting or neglecting to sanitize user input could lead to unauthorized
access to the content of your application, mainly user data, or even the server your application is hosted on.

[image: ../_images/sql.png]

Full image (from xkcd) [http://xkcd.com/327/]

The Phalcon\Filter component provides a set of commonly used filters and data sanitizing helpers. It provides object-oriented wrappers around the PHP filter extension.

Types of Built-in Filters

The following are the built-in filters provided by this component:

	Name
	Description

	string
	Strip tags and escapes HTML entities, including single and double quotes.

	email
	Remove all characters except letters, digits and !#$%&*+-/=?^_`{|}~@.[].

	int
	Remove all characters except digits, plus and minus sign.

	float
	Remove all characters except digits, dot, plus and minus sign.

	alphanum
	Remove all characters except [a-zA-Z0-9]

	striptags
	Applies the strip_tags [http://www.php.net/manual/en/function.strip-tags.php] function

	trim
	Applies the trim [http://www.php.net/manual/en/function.trim.php] function

	lower
	Applies the strtolower [http://www.php.net/manual/en/function.strtolower.php] function

	upper
	Applies the strtoupper [http://www.php.net/manual/en/function.strtoupper.php] function

Sanitizing data

Sanitizing is the process which removes specific characters from a value, that are not required or desired by the user or application.
By sanitizing input we ensure that application integrity will be intact.

<?php

use Phalcon\Filter;

$filter = new Filter();

// Returns "someone@example.com"
$filter->sanitize("some(one)@exa\mple.com", "email");

// Returns "hello"
$filter->sanitize("hello<<", "string");

// Returns "100019"
$filter->sanitize("!100a019", "int");

// Returns "100019.01"
$filter->sanitize("!100a019.01a", "float");

Sanitizing from Controllers

You can access a Phalcon\Filter object from your controllers when accessing GET or POST input data
(through the request object). The first parameter is the name of the variable to be obtained; the second is the filter to be applied on it.

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Sanitizing price from input
 $price = $this->request->getPost("price", "double");

 // Sanitizing email from input
 $email = $this->request->getPost("customerEmail", "email");
 }
}

Filtering Action Parameters

The next example shows you how to sanitize the action parameters within a controller action:

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
 public function indexAction()
 {

 }

 public function showAction($productId)
 {
 $productId = $this->filter->sanitize($productId, "int");
 }
}

Filtering data

In addition to sanitizing, Phalcon\Filter also provides filtering by removing or modifying input data to
the format we expect.

<?php

use Phalcon\Filter;

$filter = new Filter();

// Returns "Hello"
$filter->sanitize("<h1>Hello</h1>", "striptags");

// Returns "Hello"
$filter->sanitize(" Hello ", "trim");

Combining Filters

You can also run multiple filters on a string at the same time by passing an array of filter identifiers as the second parameter:

<?php

use Phalcon\Filter;

$filter = new Filter();

// Returns "Hello"
$filter->sanitize(
 " <h1> Hello </h1> ",
 [
 "striptags",
 "trim",
]
);

Creating your own Filters

You can add your own filters to Phalcon\Filter. The filter function could be an anonymous function:

<?php

use Phalcon\Filter;

$filter = new Filter();

// Using an anonymous function
$filter->add(
 "md5",
 function ($value) {
 return preg_replace("/[^0-9a-f]/", "", $value);
 }
);

// Sanitize with the "md5" filter
$filtered = $filter->sanitize($possibleMd5, "md5");

Or, if you prefer, you can implement the filter in a class:

<?php

use Phalcon\Filter;

class IPv4Filter
{
 public function filter($value)
 {
 return filter_var($value, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4);
 }
}

$filter = new Filter();

// Using an object
$filter->add(
 "ipv4",
 new IPv4Filter()
);

// Sanitize with the "ipv4" filter
$filteredIp = $filter->sanitize("127.0.0.1", "ipv4");

Complex Sanitizing and Filtering

PHP itself provides an excellent filter extension you can use. Check out its documentation: Data Filtering at PHP Documentation [http://www.php.net/manual/en/book.filter.php]

Implementing your own Filter

The Phalcon\FilterInterface interface must be implemented to create your own filtering service
replacing the one provided by Phalcon.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Contextual Escaping

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Contextual Escaping

Websites and web applications are vulnerable to XSS [https://www.owasp.org/index.php/XSS] attacks and although PHP provides escaping functionality, in some contexts
it is not sufficient/appropriate. Phalcon\Escaper provides contextual escaping and is written in Zephir, providing
the minimal overhead when escaping different kinds of texts.

We designed this component based on the XSS (Cross Site Scripting) Prevention Cheat Sheet [https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet] created by the OWASP [https://www.owasp.org].

Additionally, this component relies on mbstring [http://php.net/manual/en/book.mbstring.php] to support almost any charset.

To illustrate how this component works and why it is important, consider the following example:

<?php

use Phalcon\Escaper;

// Document title with malicious extra HTML tags
$maliciousTitle = "</title><script>alert(1)</script>";

// Malicious CSS class name
$className = ";`(";

// Malicious CSS font name
$fontName = "Verdana\"</style>";

// Malicious Javascript text
$javascriptText = "';</script>Hello";

// Create an escaper
$e = new Escaper();

?>

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>
 <?php echo $e->escapeHtml($maliciousTitle); ?>
 </title>

 <style type="text/css">
 .<?php echo $e->escapeCss($className); ?> {
 font-family: "<?php echo $e->escapeCss($fontName); ?>";
 color: red;
 }
 </style>

 </head>

 <body>

 <div class='<?php echo $e->escapeHtmlAttr($className); ?>'>
 hello
 </div>

 <script>
 var some = '<?php echo $e->escapeJs($javascriptText); ?>';
 </script>

 </body>
</html>

Which produces the following:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>
 </title><script>alert(1)</script>
 </title>

 <style type="text/css">
 .\3c \2f style\3e {
 font-family: "Verdana\22 \3c \2f style\3e";
 color: red;
 }
 </style>

 </head>

 <body>

 <div class='< / style> '>
 hello
 </div>

 <script>
 var some = '\x27\x3b\x3c\2fscript\x3eHello';
 </script>

 </body>
</html>

Every text was escaped according to its context. Use the appropriate context is important to avoid XSS attacks.

Escaping HTML

The most common situation when inserting unsafe data is between HTML tags:

<div class="comments">
 <!-- Escape untrusted data here! -->
</div>

You can escape those data using the escapeHtml method:

<div class="comments">
 <?php echo $e->escapeHtml('></div><h1>myattack</h1>'); ?>
</div>

Which produces:

<div class="comments">
 ></div><h1>myattack</h1>
</div>

Escaping HTML Attributes

Escaping HTML attributes is different from escaping HTML content. The escaper works by changing every non-alphanumeric
character to the form. This kind of escaping is intended to most simpler attributes excluding complex ones like ‘href’ or ‘url’:

<table width="Escape untrusted data here!">
 <tr>
 <td>
 Hello
 </td>
 </tr>
</table>

You can escape a HTML attribute by using the escapeHtmlAttr method:

<table width="<?php echo $e->escapeHtmlAttr('"><h1>Hello</table'); ?>">
 <tr>
 <td>
 Hello
 </td>
 </tr>
</table>

Which produces:

<table width=""><h1>Hello</table">
 <tr>
 <td>
 Hello
 </td>
 </tr>
</table>

Escaping URLs

Some HTML attributes like ‘href’ or ‘url’ need to be escaped differently:

 Some link

You can escape a HTML attribute by using the escapeUrl method:

<a href="<?php echo $e->escapeUrl('"><script>alert(1)</script>">
 Some link

Which produces:

 Some link

Escaping CSS

CSS identifiers/values can be escaped too:

 Some link

You can escape a CSS identifiers/value by using the escapeCss method:

<a style="color: <?php echo $e->escapeCss('"><script>alert(1)</script>">
 Some link

Which produces:

 Some link

Escaping JavaScript

Strings to be inserted into JavaScript code also must be properly escaped:

<script>
 document.title = 'Escape untrusted data here';
</script>

You can escape JavaScript code by using the escapeJs method:

<script>
 document.title = '<?php echo $e->escapeJs("'; alert(100); var x='"); ?>';
</script>

<script>
 document.title = '\x27; alert(100); var x\x3d\x27';
</script>

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Validation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Validation

Phalcon\Validation is an independent validation component that validates an arbitrary set of data.
This component can be used to implement validation rules on data objects that do not belong to a model or collection.

The following example shows its basic usage:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\PresenceOf;

$validation = new Validation();

$validation->add(
 "name",
 new PresenceOf(
 [
 "message" => "The name is required",
]
)
);

$validation->add(
 "email",
 new PresenceOf(
 [
 "message" => "The e-mail is required",
]
)
);

$validation->add(
 "email",
 new Email(
 [
 "message" => "The e-mail is not valid",
]
)
);

$messages = $validation->validate($_POST);

if (count($messages)) {
 foreach ($messages as $message) {
 echo $message, "
";
 }
}

The loosely-coupled design of this component allows you to create your own validators along with the ones provided by the framework.

Initializing Validation

Validation chains can be initialized in a direct manner by just adding validators to the Phalcon\Validation object.
You can put your validations in a separate file for better re-use code and organization:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\PresenceOf;

class MyValidation extends Validation
{
 public function initialize()
 {
 $this->add(
 "name",
 new PresenceOf(
 [
 "message" => "The name is required",
]
)
);

 $this->add(
 "email",
 new PresenceOf(
 [
 "message" => "The e-mail is required",
]
)
);

 $this->add(
 "email",
 new Email(
 [
 "message" => "The e-mail is not valid",
]
)
);
 }
}

Then initialize and use your own validator:

<?php

$validation = new MyValidation();

$messages = $validation->validate($_POST);

if (count($messages)) {
 foreach ($messages as $message) {
 echo $message, "
";
 }
}

Validators

Phalcon exposes a set of built-in validators for this component:

	Class
	Explanation

	Phalcon\Validation\Validator\Alnum
	Validates that a field’s value is only alphanumeric character(s).

	Phalcon\Validation\Validator\Alpha
	Validates that a field’s value is only alphabetic character(s).

	Phalcon\Validation\Validator\Date
	Validates that a field’s value is a valid date.

	Phalcon\Validation\Validator\Digit
	Validates that a field’s value is only numeric character(s).

	Phalcon\Validation\Validator\File
	Validates that a field’s value is a correct file.

	Phalcon\Validation\Validator\Uniqueness
	Validates that a field’s value is unique in the related model.

	Phalcon\Validation\Validator\Numericality
	Validates that a field’s value is a valid numeric value.

	Phalcon\Validation\Validator\PresenceOf
	Validates that a field’s value is not null or empty string.

	Phalcon\Validation\Validator\Identical
	Validates that a field’s value is the same as a specified value

	Phalcon\Validation\Validator\Email
	Validates that field contains a valid email format

	Phalcon\Validation\Validator\ExclusionIn
	Validates that a value is not within a list of possible values

	Phalcon\Validation\Validator\InclusionIn
	Validates that a value is within a list of possible values

	Phalcon\Validation\Validator\Regex
	Validates that the value of a field matches a regular expression

	Phalcon\Validation\Validator\StringLength
	Validates the length of a string

	Phalcon\Validation\Validator\Between
	Validates that a value is between two values

	Phalcon\Validation\Validator\Confirmation
	Validates that a value is the same as another present in the data

	Phalcon\Validation\Validator\Url
	Validates that field contains a valid URL

	Phalcon\Validation\Validator\CreditCard
	Validates a credit card number

The following example explains how to create additional validators for this component:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Message;
use Phalcon\Validation\Validator;

class IpValidator extends Validator
{
 /**
 * Executes the validation
 *
 * @param Phalcon\Validation $validator
 * @param string $attribute
 * @return boolean
 */
 public function validate(Validation $validator, $attribute)
 {
 $value = $validator->getValue($attribute);

 if (!filter_var($value, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4 | FILTER_FLAG_IPV6)) {
 $message = $this->getOption("message");

 if (!$message) {
 $message = "The IP is not valid";
 }

 $validator->appendMessage(
 new Message($message, $attribute, "Ip")
);

 return false;
 }

 return true;
 }
}

It is important that validators return a valid boolean value indicating if the validation was successful or not.

Validation Messages

Phalcon\Validation has a messaging subsystem that provides a flexible way to output or store the
validation messages generated during the validation processes.

Each message consists of an instance of the class Phalcon\Validation\Message. The set of
messages generated can be retrieved with the getMessages() method. Each message provides extended information like the attribute that
generated the message or the message type:

<?php

$messages = $validation->validate();

if (count($messages)) {
 foreach ($messages as $message) {
 echo "Message: ", $message->getMessage(), "\n";
 echo "Field: ", $message->getField(), "\n";
 echo "Type: ", $message->getType(), "\n";
 }
}

You can pass a ‘message’ parameter to change/translate the default message in each validator:

<?php

use Phalcon\Validation\Validator\Email;

$validation->add(
 "email",
 new Email(
 [
 "message" => "The e-mail is not valid",
]
)
);

By default, the getMessages() method returns all the messages generated during validation. You can filter messages
for a specific field using the filter() method:

<?php

$messages = $validation->validate();

if (count($messages)) {
 // Filter only the messages generated for the field 'name'
 $filteredMessages = $messages->filter("name");

 foreach ($filteredMessages as $message) {
 echo $message;
 }
}

Filtering of Data

Data can be filtered prior to the validation ensuring that malicious or incorrect data is not validated.

<?php

use Phalcon\Validation;

$validation = new Validation();

$validation->add(
 "name",
 new PresenceOf(
 [
 "message" => "The name is required",
]
)
);

$validation->add(
 "email",
 new PresenceOf(
 [
 "message" => "The email is required",
]
)
);

// Filter any extra space
$validation->setFilters("name", "trim");
$validation->setFilters("email", "trim");

Filtering and sanitizing is performed using the filter component. You can add more filters to this
component or use the built-in ones.

Validation Events

When validations are organized in classes, you can implement the beforeValidation() and afterValidation() methods to perform additional checks, filters, clean-up, etc. If the beforeValidation() method returns false the validation is automatically
cancelled:

<?php

use Phalcon\Validation;

class LoginValidation extends Validation
{
 public function initialize()
 {
 // ...
 }

 /**
 * Executed before validation
 *
 * @param array $data
 * @param object $entity
 * @param Phalcon\Validation\Message\Group $messages
 * @return bool
 */
 public function beforeValidation($data, $entity, $messages)
 {
 if ($this->request->getHttpHost() !== "admin.mydomain.com") {
 $messages->appendMessage(
 new Message("Only users can log on in the administration domain")
);

 return false;
 }

 return true;
 }

 /**
 * Executed after validation
 *
 * @param array $data
 * @param object $entity
 * @param Phalcon\Validation\Message\Group $messages
 */
 public function afterValidation($data, $entity, $messages)
 {
 // ... Add additional messages or perform more validations
 }
}

Cancelling Validations

By default all validators assigned to a field are tested regardless if one of them have failed or not. You can change
this behavior by telling the validation component which validator may stop the validation:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Regex;
use Phalcon\Validation\Validator\PresenceOf;

$validation = new Validation();

$validation->add(
 "telephone",
 new PresenceOf(
 [
 "message" => "The telephone is required",
 "cancelOnFail" => true,
]
)
);

$validation->add(
 "telephone",
 new Regex(
 [
 "message" => "The telephone is required",
 "pattern" => "/\+44 [0-9]+/",
]
)
);

$validation->add(
 "telephone",
 new StringLength(
 [
 "messageMinimum" => "The telephone is too short",
 "min" => 2,
]
)
);

The first validator has the option ‘cancelOnFail’ with a value of true, therefore if that validator fails the remaining
validators in the chain are not executed.

If you are creating custom validators you can dynamically stop the validation chain by setting the ‘cancelOnFail’ option:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Message;
use Phalcon\Validation\Validator;

class MyValidator extends Validator
{
 /**
 * Executes the validation
 *
 * @param Phalcon\Validation $validator
 * @param string $attribute
 * @return boolean
 */
 public function validate(Validation $validator, $attribute)
 {
 // If the attribute value is name we must stop the chain
 if ($attribute === "name") {
 $validator->setOption("cancelOnFail", true);
 }

 // ...
 }
}

Avoid validate empty values

You can pass the option ‘allowEmpty’ to all the built-in validators to avoid the validation to be performed if an empty value is passed:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Regex;

$validation = new Validation();

$validation->add(
 "telephone",
 new Regex(
 [
 "message" => "The telephone is required",
 "pattern" => "/\+44 [0-9]+/",
 "allowEmpty" => true,
]
)
);

Recursive Validation

You can also run Validation instances within another via the afterValidation() method. In this example, validating the CompanyValidation instance will also check the PhoneValidation instance:

<?php

use Phalcon\Validation;

class CompanyValidation extends Validation
{
 /**
 * @var PhoneValidation
 */
 protected $phoneValidation;

 public function initialize()
 {
 $this->phoneValidation = new PhoneValidation();
 }

 public function afterValidation($data, $entity, $messages)
 {
 $phoneValidationMessages = $this->phoneValidation->validate(
 $data["phone"]
);

 $messages->appendMessages(
 $phoneValidationMessages
);
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Forms

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Forms

Phalcon\Forms is a component that aids you in the creation and maintenance of forms in web applications.

The following example shows its basic usage:

<?php

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Select;

$form = new Form();

$form->add(
 new Text(
 "name"
)
);

$form->add(
 new Text(
 "telephone"
)
);

$form->add(
 new Select(
 "telephoneType",
 [
 "H" => "Home",
 "C" => "Cell",
]
)
);

Forms can be rendered based on the form definition:

<h1>
 Contacts
</h1>

<form method="post">

 <p>
 <label>
 Name
 </label>

 <?php echo $form->render("name"); ?>
 </p>

 <p>
 <label>
 Telephone
 </label>

 <?php echo $form->render("telephone"); ?>
 </p>

 <p>
 <label>
 Type
 </label>

 <?php echo $form->render("telephoneType"); ?>
 </p>

 <p>
 <input type="submit" value="Save" />
 </p>

</form>

Each element in the form can be rendered as required by the developer. Internally,
Phalcon\Tag is used to produce the correct HTML for each element and you can pass additional HTML attributes as the second parameter of render():

<p>
 <label>
 Name
 </label>

 <?php echo $form->render("name", ["maxlength" => 30, "placeholder" => "Type your name"]); ?>
</p>

HTML attributes also can be set in the element’s definition:

<?php

$form->add(
 new Text(
 "name",
 [
 "maxlength" => 30,
 "placeholder" => "Type your name",
]
)
);

Initializing forms

As seen before, forms can be initialized outside the form class by adding elements to it. You can re-use code or organize your form
classes implementing the form in a separated file:

<?php

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Select;

class ContactForm extends Form
{
 public function initialize()
 {
 $this->add(
 new Text(
 "name"
)
);

 $this->add(
 new Text(
 "telephone"
)
);

 $this->add(
 new Select(
 "telephoneType",
 TelephoneTypes::find(),
 [
 "using" => [
 "id",
 "name",
]
]
)
);
 }
}

Phalcon\Forms\Form extends Phalcon\Di\Injectable
so you have access to the application services if needed:

<?php

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Hidden;

class ContactForm extends Form
{
 /**
 * This method returns the default value for field 'csrf'
 */
 public function getCsrf()
 {
 return $this->security->getToken();
 }

 public function initialize()
 {
 // Set the same form as entity
 $this->setEntity($this);

 // Add a text element to capture the 'email'
 $this->add(
 new Text(
 "email"
)
);

 // Add a text element to put a hidden CSRF
 $this->add(
 new Hidden(
 "csrf"
)
);
 }
}

The associated entity added to the form in the initialization and custom user options are passed to the form constructor:

<?php

use Phalcon\Forms\Form;
use Phalcon\Forms\Element\Text;
use Phalcon\Forms\Element\Hidden;

class UsersForm extends Form
{
 /**
 * Forms initializer
 *
 * @param Users $user
 * @param array $options
 */
 public function initialize(Users $user, array $options)
 {
 if ($options["edit"]) {
 $this->add(
 new Hidden(
 "id"
)
);
 } else {
 $this->add(
 new Text(
 "id"
)
);
 }

 $this->add(
 new Text(
 "name"
)
);
 }
}

In the form’s instantiation you must use:

<?php

$form = new UsersForm(
 new Users(),
 [
 "edit" => true,
]
);

Validation

Phalcon forms are integrated with the validation component to offer instant validation. Built-in or
custom validators could be set to each element:

<?php

use Phalcon\Forms\Element\Text;
use Phalcon\Validation\Validator\PresenceOf;
use Phalcon\Validation\Validator\StringLength;

$name = new Text(
 "name"
);

$name->addValidator(
 new PresenceOf(
 [
 "message" => "The name is required",
]
)
);

$name->addValidator(
 new StringLength(
 [
 "min" => 10,
 "messageMinimum" => "The name is too short",
]
)
);

$form->add($name);

Then you can validate the form according to the input entered by the user:

<?php

if (!$form->isValid($_POST)) {
 $messages = $form->getMessages();

 foreach ($messages as $message) {
 echo $message, "
";
 }
}

Validators are executed in the same order as they were registered.

By default messages generated by all the elements in the form are joined so they can be traversed using a single foreach,
you can change this behavior to get the messages separated by the field:

<?php

foreach ($form->getMessages(false) as $attribute => $messages) {
 echo "Messages generated by ", $attribute, ":", "\n";

 foreach ($messages as $message) {
 echo $message, "
";
 }
}

Or get specific messages for an element:

<?php

$messages = $form->getMessagesFor("name");

foreach ($messages as $message) {
 echo $message, "
";
}

Filtering

A form is also able to filter data before it is validated. You can set filters in each element:

<?php

use Phalcon\Forms\Element\Text;

$name = new Text(
 "name"
);

// Set multiple filters
$name->setFilters(
 [
 "string",
 "trim",
]
);

$form->add($name);

$email = new Text(
 "email"
);

// Set one filter
$email->setFilters(
 "email"
);

$form->add($email);

Learn more about filtering in Phalcon by reading the Filter documentation.

Forms + Entities

An entity such as a model/collection/plain instance or just a plain PHP class can be linked to the form in order to set default values
in the form’s elements or assign the values from the form to the entity easily:

<?php

$robot = Robots::findFirst();

$form = new Form($robot);

$form->add(
 new Text(
 "name"
)
);

$form->add(
 new Text(
 "year"
)
);

Once the form is rendered if there is no default values assigned to the elements it will use the ones provided by the entity:

<?php echo $form->render("name"); ?>

You can validate the form and assign the values from the user input in the following way:

<?php

$form->bind($_POST, $robot);

// Check if the form is valid
if ($form->isValid()) {
 // Save the entity
 $robot->save();
}

Setting up a plain class as entity also is possible:

<?php

class Preferences
{
 public $timezone = "Europe/Amsterdam";

 public $receiveEmails = "No";
}

Using this class as entity, allows the form to take the default values from it:

<?php

$form = new Form(
 new Preferences()
);

$form->add(
 new Select(
 "timezone",
 [
 "America/New_York" => "New York",
 "Europe/Amsterdam" => "Amsterdam",
 "America/Sao_Paulo" => "Sao Paulo",
 "Asia/Tokyo" => "Tokyo",
]
)
);

$form->add(
 new Select(
 "receiveEmails",
 [
 "Yes" => "Yes, please!",
 "No" => "No, thanks",
]
)
);

Entities can implement getters, which have a higher precedence than public properties. These methods
give you more freedom to produce values:

<?php

class Preferences
{
 public $timezone;

 public $receiveEmails;

 public function getTimezone()
 {
 return "Europe/Amsterdam";
 }

 public function getReceiveEmails()
 {
 return "No";
 }
}

Form Elements

Phalcon provides a set of built-in elements to use in your forms, all these elements are located in the Phalcon\Forms\Element namespace:

	Name
	Description

	Phalcon\Forms\Element\Text
	Generate INPUT[type=text] elements

	Phalcon\Forms\Element\Password
	Generate INPUT[type=password] elements

	Phalcon\Forms\Element\Select
	Generate SELECT tag (combo lists) elements based on choices

	Phalcon\Forms\Element\Check
	Generate INPUT[type=check] elements

	Phalcon\Forms\Element\TextArea
	Generate TEXTAREA elements

	Phalcon\Forms\Element\Hidden
	Generate INPUT[type=hidden] elements

	Phalcon\Forms\Element\File
	Generate INPUT[type=file] elements

	Phalcon\Forms\Element\Date
	Generate INPUT[type=date] elements

	Phalcon\Forms\Element\Numeric
	Generate INPUT[type=number] elements

	Phalcon\Forms\Element\Submit
	Generate INPUT[type=submit] elements

Event Callbacks

Whenever forms are implemented as classes, the callbacks: beforeValidation() and afterValidation() can be implemented
in the form’s class to perform pre-validations and post-validations:

<?php

use Phalcon\Forms\Form;

class ContactForm extends Form
{
 public function beforeValidation()
 {

 }
}

Rendering Forms

You can render the form with total flexibility, the following example shows how to render each element using a standard procedure:

<?php

<form method="post">
 <?php

 // Traverse the form
 foreach ($form as $element) {
 // Get any generated messages for the current element
 $messages = $form->getMessagesFor(
 $element->getName()
);

 if (count($messages)) {
 // Print each element
 echo '<div class="messages">';

 foreach ($messages as $message) {
 echo $message;
 }

 echo "</div>";
 }

 echo "<p>";

 echo '<label for="', $element->getName(), '">', $element->getLabel(), "</label>";

 echo $element;

 echo "</p>";
 }

 ?>

 <input type="submit" value="Send" />
</form>

Or reuse the logic in your form class:

<?php

use Phalcon\Forms\Form;

class ContactForm extends Form
{
 public function initialize()
 {
 // ...
 }

 public function renderDecorated($name)
 {
 $element = $this->get($name);

 // Get any generated messages for the current element
 $messages = $this->getMessagesFor(
 $element->getName()
);

 if (count($messages)) {
 // Print each element
 echo '<div class="messages">';

 foreach ($messages as $message) {
 echo $this->flash->error($message);
 }

 echo "</div>";
 }

 echo "<p>";

 echo '<label for="', $element->getName(), '">', $element->getLabel(), "</label>";

 echo $element;

 echo "</p>";
 }
}

In the view:

<?php

echo $element->renderDecorated("name");

echo $element->renderDecorated("telephone");

Creating Form Elements

In addition to the form elements provided by Phalcon you can create your own custom elements:

<?php

use Phalcon\Forms\Element;

class MyElement extends Element
{
 public function render($attributes = null)
 {
 $html = // ... Produce some HTML

 return $html;
 }
}

Forms Manager

This component provides a forms manager that can be used by the developer to register forms and access them via the service locator:

<?php

use Phalcon\Forms\Manager as FormsManager;

$di["forms"] = function () {
 return new FormsManager();
};

Forms are added to the forms manager and referenced by a unique name:

<?php

$this->forms->set(
 "login",
 new LoginForm()
);

Using the unique name, forms can be accessed in any part of the application:

<?php

$loginForm = $this->forms->get("login");

echo $loginForm->render();

External Resources

	Vökuró [http://vokuro.phalconphp.com], is a sample application that uses the forms builder to create and manage forms, [Github [https://github.com/phalcon/vokuro]]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Reading Configurations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Reading Configurations

Phalcon\Config is a component used to convert configuration files of various formats (using adapters) into
PHP objects for use in an application.

Native Arrays

The first example shows how to convert native arrays into Phalcon\Config objects. This option offers the best performance since no files are
read during this request.

<?php

use Phalcon\Config;

$settings = [
 "database" => [
 "adapter" => "Mysql",
 "host" => "localhost",
 "username" => "scott",
 "password" => "cheetah",
 "dbname" => "test_db"
],
 "app" => [
 "controllersDir" => "../app/controllers/",
 "modelsDir" => "../app/models/",
 "viewsDir" => "../app/views/"
],
 "mysetting" => "the-value"
];

$config = new Config($settings);

echo $config->app->controllersDir, "\n";
echo $config->database->username, "\n";
echo $config->mysetting, "\n";

If you want to better organize your project you can save the array in another file and then read it.

<?php

use Phalcon\Config;

require "config/config.php";

$config = new Config($settings);

File Adapters

The adapters available are:

	Class
	Description

	Phalcon\Config\Adapter\Ini
	Uses INI files to store settings. Internally the adapter uses the PHP function parse_ini_file.

	Phalcon\Config\Adapter\Json
	Uses JSON files to store settings.

	Phalcon\Config\Adapter\Php
	Uses PHP multidimensional arrays to store settings. This adapter offers the best performance.

	Phalcon\Config\Adapter\Yaml
	Uses YAML files to store settings.

Reading INI Files

Ini files are a common way to store settings. Phalcon\Config uses the optimized PHP function parse_ini_file to read these files. Files sections are parsed into sub-settings for easy access.

[database]
adapter = Mysql
host = localhost
username = scott
password = cheetah
dbname = test_db

[phalcon]
controllersDir = "../app/controllers/"
modelsDir = "../app/models/"
viewsDir = "../app/views/"

[models]
metadata.adapter = "Memory"

You can read the file as follows:

<?php

use Phalcon\Config\Adapter\Ini as ConfigIni;

$config = new ConfigIni("path/config.ini");

echo $config->phalcon->controllersDir, "\n";
echo $config->database->username, "\n";
echo $config->models->metadata->adapter, "\n";

Merging Configurations

Phalcon\Config can recursively merge the properties of one configuration object into another.
New properties are added and existing properties are updated.

<?php

use Phalcon\Config;

$config = new Config(
 [
 "database" => [
 "host" => "localhost",
 "dbname" => "test_db",
],
 "debug" => 1,
]
);

$config2 = new Config(
 [
 "database" => [
 "dbname" => "production_db",
 "username" => "scott",
 "password" => "secret",
],
 "logging" => 1,
]
);

$config->merge($config2);

print_r($config);

The above code produces the following:

Phalcon\Config Object
(
 [database] => Phalcon\Config Object
 (
 [host] => localhost
 [dbname] => production_db
 [username] => scott
 [password] => secret
)
 [debug] => 1
 [logging] => 1
)

There are more adapters available for this components in the Phalcon Incubator [https://github.com/phalcon/incubator]

Injecting Configuration Dependency

You can inject configuration dependency to controller allowing us to use Phalcon\Config inside Phalcon\Mvc\Controller. To be able to do that, add following code inside your dependency injector script.

<?php

use Phalcon\Di\FactoryDefault;
use Phalcon\Config;

// Create a DI
$di = new FactoryDefault();

$di->set(
 "config",
 function () {
 $configData = require "config/config.php";

 return new Config($configData);
 }
);

Now in your controller you can access your configuration by using dependency injection feature using name config like following code:

<?php

use Phalcon\Mvc\Controller;

class MyController extends Controller
{
 private function getDatabaseName()
 {
 return $this->config->database->dbname;
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Pagination

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Pagination

The process of pagination takes place when we need to present big groups of arbitrary data gradually. Phalcon\Paginator offers a
fast and convenient way to split these sets of data into browsable pages.

Data Adapters

This component makes use of adapters to encapsulate different sources of data:

	Adapter
	Description

	Phalcon\Paginator\Adapter\NativeArray
	Use a PHP array as source data

	Phalcon\Paginator\Adapter\Model
	Use a Phalcon\Mvc\Model\Resultset object as source data. Since PDO doesn’t support scrollable cursors this adapter shouldn’t be used to paginate a large number of records

	Phalcon\Paginator\Adapter\QueryBuilder
	Use a Phalcon\Mvc\Model\Query\Builder object as source data

Examples

In the example below, the paginator will use the result of a query from a model as its source data, and limit the displayed data to 10 records per page:

<?php

use Phalcon\Paginator\Adapter\Model as PaginatorModel;

// Current page to show
// In a controller/component this can be:
// $this->request->getQuery("page", "int"); // GET
// $this->request->getPost("page", "int"); // POST
$currentPage = (int) $_GET["page"];

// The data set to paginate
$robots = Robots::find();

// Create a Model paginator, show 10 rows by page starting from $currentPage
$paginator = new PaginatorModel(
 [
 "data" => $robots,
 "limit" => 10,
 "page" => $currentPage,
]
);

// Get the paginated results
$page = $paginator->getPaginate();

The $currentPage variable controls the page to be displayed. The $paginator->getPaginate() returns a $page
object that contains the paginated data. It can be used for generating the pagination:

<table>
 <tr>
 <th>Id</th>
 <th>Name</th>
 <th>Type</th>
 </tr>
 <?php foreach ($page->items as $item) { ?>
 <tr>
 <td><?php echo $item->id; ?></td>
 <td><?php echo $item->name; ?></td>
 <td><?php echo $item->type; ?></td>
 </tr>
 <?php } ?>
</table>

The $page object also contains navigation data:

First
<a href="/robots/search?page=<?= $page->before; ?>">Previous
<a href="/robots/search?page=<?= $page->next; ?>">Next
<a href="/robots/search?page=<?= $page->last; ?>">Last

<?php echo "You are in page ", $page->current, " of ", $page->total_pages; ?>

Adapters Usage

An example of the source data that must be used for each adapter:

<?php

use Phalcon\Paginator\Adapter\Model as PaginatorModel;
use Phalcon\Paginator\Adapter\NativeArray as PaginatorArray;
use Phalcon\Paginator\Adapter\QueryBuilder as PaginatorQueryBuilder;

// Passing a resultset as data
$paginator = new PaginatorModel(
 [
 "data" => Products::find(),
 "limit" => 10,
 "page" => $currentPage,
]
);

// Passing an array as data
$paginator = new PaginatorArray(
 [
 "data" => [
 ["id" => 1, "name" => "Artichoke"],
 ["id" => 2, "name" => "Carrots"],
 ["id" => 3, "name" => "Beet"],
 ["id" => 4, "name" => "Lettuce"],
 ["id" => 5, "name" => ""],
],
 "limit" => 2,
 "page" => $currentPage,
]
);

// Passing a QueryBuilder as data

$builder = $this->modelsManager->createBuilder()
 ->columns("id, name")
 ->from("Robots")
 ->orderBy("name");

$paginator = new PaginatorQueryBuilder(
 [
 "builder" => $builder,
 "limit" => 20,
 "page" => 1,
]
);

Page Attributes

The $page object has the following attributes:

	Attribute
	Description

	items
	The set of records to be displayed at the current page

	current
	The current page

	before
	The previous page to the current one

	next
	The next page to the current one

	last
	The last page in the set of records

	total_pages
	The number of pages

	total_items
	The number of items in the source data

Implementing your own adapters

The Phalcon\Paginator\AdapterInterface interface must be implemented in order to create your own paginator adapters or extend the existing ones:

<?php

use Phalcon\Paginator\AdapterInterface as PaginatorInterface;

class MyPaginator implements PaginatorInterface
{
 /**
 * Adapter constructor
 *
 * @param array $config
 */
 public function __construct($config);

 /**
 * Set the current page number
 *
 * @param int $page
 */
 public function setCurrentPage($page);

 /**
 * Returns a slice of the resultset to show in the pagination
 *
 * @return stdClass
 */
 public function getPaginate();
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Improving Performance with Cache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Improving Performance with Cache

Phalcon provides the Phalcon\Cache class allowing faster access to frequently used or already processed data.
Phalcon\Cache is written in C, achieving higher performance and reducing the overhead when getting items from the backends.
This class uses an internal structure of frontend and backend components. Front-end components act as input sources or
interfaces, while backend components offer storage options to the class.

When to implement cache?

Although this component is very fast, implementing it in cases that are not needed could lead to a loss of performance rather than gain.
We recommend you check this cases before using a cache:

	You are making complex calculations that every time return the same result (changing infrequently)

	You are using a lot of helpers and the output generated is almost always the same

	You are accessing database data constantly and these data rarely change

NOTE Even after implementing the cache, you should check the hit ratio of your cache over a period of time. This can easily
be done, especially in the case of Memcache or Apc, with the relevant tools that the backends provide.

Caching Behavior

The caching process is divided into 2 parts:

	Frontend: This part is responsible for checking if a key has expired and perform additional transformations to the data before storing and after retrieving them from the backend-

	Backend: This part is responsible for communicating, writing/reading the data required by the frontend.

Caching Output Fragments

An output fragment is a piece of HTML or text that is cached as is and returned as is. The output is automatically captured
from the ob_* functions or the PHP output so that it can be saved in the cache. The following example demonstrates such usage.
It receives the output generated by PHP and stores it into a file. The contents of the file are refreshed every 172800 seconds (2 days).

The implementation of this caching mechanism allows us to gain performance by not executing the helper Phalcon\Tag::linkTo()
call whenever this piece of code is called.

<?php

use Phalcon\Tag;
use Phalcon\Cache\Backend\File as BackFile;
use Phalcon\Cache\Frontend\Output as FrontOutput;

// Create an Output frontend. Cache the files for 2 days
$frontCache = new FrontOutput(
 [
 "lifetime" => 172800,
]
);

// Create the component that will cache from the "Output" to a "File" backend
// Set the cache file directory - it's important to keep the "/" at the end of
// the value for the folder
$cache = new BackFile(
 $frontCache,
 [
 "cacheDir" => "../app/cache/",
]
);

// Get/Set the cache file to ../app/cache/my-cache.html
$content = $cache->start("my-cache.html");

// If $content is null then the content will be generated for the cache
if ($content === null) {
 // Print date and time
 echo date("r");

 // Generate a link to the sign-up action
 echo Tag::linkTo(
 [
 "user/signup",
 "Sign Up",
 "class" => "signup-button",
]
);

 // Store the output into the cache file
 $cache->save();
} else {
 // Echo the cached output
 echo $content;
}

NOTE In the example above, our code remains the same, echoing output to the user as it has been doing before. Our cache component
transparently captures that output and stores it in the cache file (when the cache is generated) or it sends it back to the user
pre-compiled from a previous call, thus avoiding expensive operations.

Caching Arbitrary Data

Caching just data is equally important for your application. Caching can reduce database load by reusing commonly used (but not updated) data,
thus speeding up your application.

File Backend Example

One of the caching adapters is ‘File’. The only key area for this adapter is the location of where the cache files will be stored.
This is controlled by the cacheDir option which must have a backslash at the end of it.

<?php

use Phalcon\Cache\Backend\File as BackFile;
use Phalcon\Cache\Frontend\Data as FrontData;

// Cache the files for 2 days using a Data frontend
$frontCache = new FrontData(
 [
 "lifetime" => 172800,
]
);

// Create the component that will cache "Data" to a "File" backend
// Set the cache file directory - important to keep the "/" at the end of
// the value for the folder
$cache = new BackFile(
 $frontCache,
 [
 "cacheDir" => "../app/cache/",
]
);

$cacheKey = "robots_order_id.cache";

// Try to get cached records
$robots = $cache->get($cacheKey);

if ($robots === null) {
 // $robots is null because of cache expiration or data does not exist
 // Make the database call and populate the variable
 $robots = Robots::find(
 [
 "order" => "id",
]
);

 // Store it in the cache
 $cache->save($cacheKey, $robots);
}

// Use $robots :)
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

Memcached Backend Example

The above example changes slightly (especially in terms of configuration) when we are using a Memcached backend.

<?php

use Phalcon\Cache\Frontend\Data as FrontData;
use Phalcon\Cache\Backend\Libmemcached as BackMemCached;

// Cache data for one hour
$frontCache = new FrontData(
 [
 "lifetime" => 3600,
]
);

// Create the component that will cache "Data" to a "Memcached" backend
// Memcached connection settings
$cache = new BackMemCached(
 $frontCache,
 [
 "servers" => [
 [
 "host" => "127.0.0.1",
 "port" => "11211",
 "weight" => "1",
]
]
]
);

$cacheKey = "robots_order_id.cache";

// Try to get cached records
$robots = $cache->get($cacheKey);

if ($robots === null) {
 // $robots is null because of cache expiration or data does not exist
 // Make the database call and populate the variable
 $robots = Robots::find(
 [
 "order" => "id",
]
);

 // Store it in the cache
 $cache->save($cacheKey, $robots);
}

// Use $robots :)
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

Querying the cache

The elements added to the cache are uniquely identified by a key. In the case of the File backend, the key is the
actual filename. To retrieve data from the cache, we just have to call it using the unique key. If the key does
not exist, the get method will return null.

<?php

// Retrieve products by key "myProducts"
$products = $cache->get("myProducts");

If you want to know which keys are stored in the cache you could call the queryKeys method:

<?php

// Query all keys used in the cache
$keys = $cache->queryKeys();

foreach ($keys as $key) {
 $data = $cache->get($key);

 echo "Key=", $key, " Data=", $data;
}

// Query keys in the cache that begins with "my-prefix"
$keys = $cache->queryKeys("my-prefix");

Deleting data from the cache

There are times where you will need to forcibly invalidate a cache entry (due to an update in the cached data).
The only requirement is to know the key that the data have been stored with.

<?php

// Delete an item with a specific key
$cache->delete("someKey");

$keys = $cache->queryKeys();

// Delete all items from the cache
foreach ($keys as $key) {
 $cache->delete($key);
}

Checking cache existence

It is possible to check if a cache already exists with a given key:

<?php

if ($cache->exists("someKey")) {
 echo $cache->get("someKey");
} else {
 echo "Cache does not exists!";
}

Lifetime

A “lifetime” is a time in seconds that a cache could live without expire. By default, all the created caches use the lifetime set in the frontend creation.
You can set a specific lifetime in the creation or retrieving of the data from the cache:

Setting the lifetime when retrieving:

<?php

$cacheKey = "my.cache";

// Setting the cache when getting a result
$robots = $cache->get($cacheKey, 3600);

if ($robots === null) {
 $robots = "some robots";

 // Store it in the cache
 $cache->save($cacheKey, $robots);
}

Setting the lifetime when saving:

<?php

$cacheKey = "my.cache";

$robots = $cache->get($cacheKey);

if ($robots === null) {
 $robots = "some robots";

 // Setting the cache when saving data
 $cache->save($cacheKey, $robots, 3600);
}

Multi-Level Cache

This feature of the cache component, allows the developer to implement a multi-level cache. This new feature is very useful
because you can save the same data in several cache locations with different lifetimes, reading first from the one with
the faster adapter and ending with the slowest one until the data expires:

<?php

use Phalcon\Cache\Multiple;
use Phalcon\Cache\Backend\Apc as ApcCache;
use Phalcon\Cache\Backend\File as FileCache;
use Phalcon\Cache\Frontend\Data as DataFrontend;
use Phalcon\Cache\Backend\Memcache as MemcacheCache;

$ultraFastFrontend = new DataFrontend(
 [
 "lifetime" => 3600,
]
);

$fastFrontend = new DataFrontend(
 [
 "lifetime" => 86400,
]
);

$slowFrontend = new DataFrontend(
 [
 "lifetime" => 604800,
]
);

// Backends are registered from the fastest to the slower
$cache = new Multiple(
 [
 new ApcCache(
 $ultraFastFrontend,
 [
 "prefix" => "cache",
]
),
 new MemcacheCache(
 $fastFrontend,
 [
 "prefix" => "cache",
 "host" => "localhost",
 "port" => "11211",
]
),
 new FileCache(
 $slowFrontend,
 [
 "prefix" => "cache",
 "cacheDir" => "../app/cache/",
]
),
]
);

// Save, saves in every backend
$cache->save("my-key", $data);

Frontend Adapters

The available frontend adapters that are used as interfaces or input sources to the cache are:

	Adapter
	Description

	Phalcon\Cache\Frontend\Output
	Read input data from standard PHP output

	Phalcon\Cache\Frontend\Data
	It’s used to cache any kind of PHP data (big arrays, objects, text, etc). Data is serialized before stored in the backend.

	Phalcon\Cache\Frontend\Base64
	It’s used to cache binary data. The data is serialized using base64_encode before be stored in the backend.

	Phalcon\Cache\Frontend\Json
	Data is encoded in JSON before be stored in the backend. Decoded after be retrieved. This frontend is useful to share data with other languages or frameworks.

	Phalcon\Cache\Frontend\Igbinary
	It’s used to cache any kind of PHP data (big arrays, objects, text, etc). Data is serialized using IgBinary before be stored in the backend.

	Phalcon\Cache\Frontend\None
	It’s used to cache any kind of PHP data without serializing them.

Implementing your own Frontend adapters

The Phalcon\Cache\FrontendInterface interface must be implemented in order to create your own frontend adapters or extend the existing ones.

Backend Adapters

The backend adapters available to store cache data are:

	Adapter
	Description
	Info
	Required Extensions

	Phalcon\Cache\Backend\File
	Stores data to local plain files
	
	

	Phalcon\Cache\Backend\Memcache
	Stores data to a memcached server
	Memcached [http://www.php.net/memcache]
	memcache [http://pecl.php.net/package/memcache]

	Phalcon\Cache\Backend\Apc
	Stores data to the Alternative PHP Cache (APC)
	APC [http://php.net/apc]
	APC extension [http://pecl.php.net/package/APC]

	Phalcon\Cache\Backend\Mongo
	Stores data to Mongo Database
	MongoDb [http://mongodb.org/]
	Mongo [http://pecl.php.net/package/mongo]

	Phalcon\Cache\Backend\Xcache
	Stores data in XCache
	XCache [http://xcache.lighttpd.net/]
	xcache extension [http://pecl.php.net/package/xcache]

	Phalcon\Cache\Backend\Redis
	Stores data in Redis
	Redis [http://redis.io/]
	redis extension [http://pecl.php.net/package/redis]

Implementing your own Backend adapters

The Phalcon\Cache\BackendInterface interface must be implemented in order to create your own backend adapters or extend the existing ones.

File Backend Options

This backend will store cached content into files in the local server. The available options for this backend are:

	Option
	Description

	prefix
	A prefix that is automatically prepended to the cache keys

	cacheDir
	A writable directory on which cached files will be placed

Memcached Backend Options

This backend will store cached content on a memcached server. The available options for this backend are:

	Option
	Description

	prefix
	A prefix that is automatically prepended to the cache keys

	host
	memcached host

	port
	memcached port

	persistent
	create a persistent connection to memcached?

APC Backend Options

This backend will store cached content on Alternative PHP Cache (APC [http://php.net/apc]). The available options for this backend are:

	Option
	Description

	prefix
	A prefix that is automatically prepended to the cache keys

Mongo Backend Options

This backend will store cached content on a MongoDB server. The available options for this backend are:

	Option
	Description

	prefix
	A prefix that is automatically prepended to the cache keys

	server
	A MongoDB connection string

	db
	Mongo database name

	collection
	Mongo collection in the database

XCache Backend Options

This backend will store cached content on XCache (XCache [http://xcache.lighttpd.net/]). The available options for this backend are:

	Option
	Description

	prefix
	A prefix that is automatically prepended to the cache keys

Redis Backend Options

This backend will store cached content on a Redis server (Redis [http://redis.io/]). The available options for this backend are:

	Option
	Description

	prefix
	A prefix that is automatically prepended to the cache keys

	host
	Redis host

	port
	Redis port

	auth
	Password to authenticate to a password-protected Redis server

	persistent
	Create a persistent connection to Redis

	index
	The index of the Redis database to use

There are more adapters available for this components in the Phalcon Incubator [https://github.com/phalcon/incubator]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Security

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Security

This component aids the developer in common security tasks such as password hashing and Cross-Site Request Forgery protection (CSRF).

Password Hashing

Storing passwords in plain text is a bad security practice. Anyone with access to the database will immediately have access to all user
accounts thus being able to engage in unauthorized activities. To combat that, many applications use the familiar one way hashing methods
“md5 [http://php.net/manual/en/function.md5.php]” and “sha1 [http://php.net/manual/en/function.sha1.php]”. However, hardware evolves each day, and becomes faster, these algorithms are becoming vulnerable
to brute force attacks. These attacks are also known as rainbow tables [http://en.wikipedia.org/wiki/Rainbow_table].

To solve this problem we can use hash algorithms as bcrypt [http://en.wikipedia.org/wiki/Bcrypt]. Why bcrypt? Thanks to its “Eksblowfish [http://en.wikipedia.org/wiki/Bcrypt#Algorithm]” key setup algorithm
we can make the password encryption as “slow” as we want. Slow algorithms make the process to calculate the real
password behind a hash extremely difficult if not impossible. This will protect your for a long time from a
possible attack using rainbow tables.

This component gives you the ability to use this algorithm in a simple way:

<?php

use Phalcon\Mvc\Controller;

class UsersController extends Controller
{
 public function registerAction()
 {
 $user = new Users();

 $login = $this->request->getPost("login");
 $password = $this->request->getPost("password");

 $user->login = $login;

 // Store the password hashed
 $user->password = $this->security->hash($password);

 $user->save();
 }
}

We saved the password hashed with a default work factor. A higher work factor will make the password less vulnerable as
its encryption will be slow. We can check if the password is correct as follows:

<?php

use Phalcon\Mvc\Controller;

class SessionController extends Controller
{
 public function loginAction()
 {
 $login = $this->request->getPost("login");
 $password = $this->request->getPost("password");

 $user = Users::findFirstByLogin($login);
 if ($user) {
 if ($this->security->checkHash($password, $user->password)) {
 // The password is valid
 }
 } else {
 // To protect against timing attacks. Regardless of whether a user exists or not, the script will take roughly the same amount as it will always be computing a hash.
 $this->security->hash(rand());
 }

 // The validation has failed
 }
}

The salt is generated using pseudo-random bytes with the PHP’s function openssl_random_pseudo_bytes [http://php.net/manual/en/function.openssl-random-pseudo-bytes.php] so is required to have the openssl [http://php.net/manual/en/book.openssl.php] extension loaded.

Cross-Site Request Forgery (CSRF) protection

This is another common attack against web sites and applications. Forms designed to perform tasks such as user registration or adding comments
are vulnerable to this attack.

The idea is to prevent the form values from being sent outside our application. To fix this, we generate a random nonce [http://en.wikipedia.org/wiki/Cryptographic_nonce] (token) in each
form, add the token in the session and then validate the token once the form posts data back to our application by comparing the stored
token in the session to the one submitted by the form:

<?php echo Tag::form('session/login') ?>

 <!-- Login and password inputs ... -->

 <input type="hidden" name="<?php echo $this->security->getTokenKey() ?>"
 value="<?php echo $this->security->getToken() ?>"/>

</form>

Then in the controller’s action you can check if the CSRF token is valid:

<?php

use Phalcon\Mvc\Controller;

class SessionController extends Controller
{
 public function loginAction()
 {
 if ($this->request->isPost()) {
 if ($this->security->checkToken()) {
 // The token is OK
 }
 }
 }
}

Remember to add a session adapter to your Dependency Injector, otherwise the token check won’t work:

<?php

$di->setShared(
 "session",
 function () {
 $session = new \Phalcon\Session\Adapter\Files();

 $session->start();

 return $session;
 }
);

Adding a captcha [http://www.google.com/recaptcha] to the form is also recommended to completely avoid the risks of this attack.

Setting up the component

This component is automatically registered in the services container as ‘security’, you can re-register it
to setup its options:

<?php

use Phalcon\Security;

$di->set(
 "security",
 function () {
 $security = new Security();

 // Set the password hashing factor to 12 rounds
 $security->setWorkFactor(12);

 return $security;
 },
 true
);

Random

The Phalcon\Security\Random class makes it really easy to generate lots of types of random data.

<?php

use Phalcon\Security\Random;

$random = new Random();

// ...
$bytes = $random->bytes();

// Generate a random hex string of length $len.
$hex = $random->hex($len);

// Generate a random base64 string of length $len.
$base64 = $random->base64($len);

// Generate a random URL-safe base64 string of length $len.
$base64Safe = $random->base64Safe($len);

// Generate a UUID (version 4). See https://en.wikipedia.org/wiki/Universally_unique_identifier
$uuid = $random->uuid();

// Generate a random integer between 0 and $n.
$number = $random->number($n);

External Resources

	Vökuró [http://vokuro.phalconphp.com], is a sample application that uses the Security component for avoid CSRF and password hashing, [Github [https://github.com/phalcon/vokuro]]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Encryption/Decryption

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Encryption/Decryption

Phalcon provides encryption facilities via the Phalcon\Crypt component.
This class offers simple object-oriented wrappers to the openssl [http://www.php.net/manual/en/book.openssl.php] PHP’s encryption library.

By default, this component provides secure encryption using AES-256-CFB.

You must use a key length corresponding to the current algorithm.
For the algorithm used by default it is 32 bytes.

Basic Usage

This component is designed to provide a very simple usage:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

$key = "This is a secret key (32 bytes).";
$text = "This is the text that you want to encrypt.";

$encrypted = $crypt->encrypt($text, $key);

echo $crypt->decrypt($encrypted, $key);

You can use the same instance to encrypt/decrypt several times:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

$texts = [
 "my-key" => "This is a secret text",
 "other-key" => "This is a very secret",
];

foreach ($texts as $key => $text) {
 // Perform the encryption
 $encrypted = $crypt->encrypt($text, $key);

 // Now decrypt
 echo $crypt->decrypt($encrypted, $key);
}

Encryption Options

The following options are available to change the encryption behavior:

	Name
	Description

	Cipher
	The cipher is one of the encryption algorithms supported by openssl. You can see a list here [http://www.php.net/manual/en/function.openssl-get-cipher-methods.php]

Example:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

// Use blowfish
$crypt->setCipher("bf-cbc");

$key = "le password";
$text = "This is a secret text";

echo $crypt->encrypt($text, $key);

Base64 Support

In order for encryption to be properly transmitted (emails) or displayed (browsers) base64 [http://www.php.net/manual/en/function.base64-encode.php] encoding is usually applied to encrypted texts:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

$key = "le password";
$text = "This is a secret text";

$encrypt = $crypt->encryptBase64($text, $key);

echo $crypt->decryptBase64($encrypt, $key);

Setting up an Encryption service

You can set up the encryption component in the services container in order to use it from any part of the application:

<?php

use Phalcon\Crypt;

$di->set(
 "crypt",
 function () {
 $crypt = new Crypt();

 // Set a global encryption key
 $crypt->setKey(
 "%31.1e$i86e$f!8jz"
);

 return $crypt;
 },
 true
);

Then, for example, in a controller you can use it as follows:

<?php

use Phalcon\Mvc\Controller;

class SecretsController extends Controller
{
 public function saveAction()
 {
 $secret = new Secrets();

 $text = $this->request->getPost("text");

 $secret->content = $this->crypt->encrypt($text);

 if ($secret->save()) {
 $this->flash->success(
 "Secret was successfully created!"
);
 }
 }
}

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Access Control Lists (ACL)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Access Control Lists (ACL)

Phalcon\Acl provides an easy and lightweight management of ACLs as well as the permissions
attached to them. Access Control Lists [http://en.wikipedia.org/wiki/Access_control_list] (ACL) allow an application to control access to its areas and the underlying
objects from requests. You are encouraged to read more about the ACL methodology so as to be familiar with its concepts.

In summary, ACLs have roles and resources. Resources are objects which abide by the permissions defined to them by
the ACLs. Roles are objects that request access to resources and can be allowed or denied access by the ACL mechanism.

Creating an ACL

This component is designed to initially work in memory. This provides ease of use and speed in accessing every aspect of the list. The Phalcon\Acl constructor takes as its first parameter an adapter used to retrieve the information related to the control list. An example using the memory adapter is below:

<?php

use Phalcon\Acl\Adapter\Memory as AclList;

$acl = new AclList();

By default Phalcon\Acl allows access to action on resources that have not yet been defined. To increase the security level of the access list we can define a “deny” level as a default access level.

<?php

use Phalcon\Acl;

// Default action is deny access
$acl->setDefaultAction(
 Acl::DENY
);

Adding Roles to the ACL

A role is an object that can or cannot access certain resources in the access list. As an example, we will define roles as groups of people in an organization. The Phalcon\Acl\Role class is available to create roles in a more structured way. Let’s add some roles to our recently created list:

<?php

use Phalcon\Acl\Role;

// Create some roles.
// The first parameter is the name, the second parameter is an optional description.
$roleAdmins = new Role("Administrators", "Super-User role");
$roleGuests = new Role("Guests");

// Add "Guests" role to ACL
$acl->addRole($roleGuests);

// Add "Designers" role to ACL without a Phalcon\Acl\Role
$acl->addRole("Designers");

As you can see, roles are defined directly without using an instance.

Adding Resources

Resources are objects where access is controlled. Normally in MVC applications resources refer to controllers. Although this is not mandatory, the Phalcon\Acl\Resource class can be used in defining resources. It’s important to add related actions or operations to a resource so that the ACL can understand what it should to control.

<?php

use Phalcon\Acl\Resource;

// Define the "Customers" resource
$customersResource = new Resource("Customers");

// Add "customers" resource with a couple of operations

$acl->addResource(
 $customersResource,
 "search"
);

$acl->addResource(
 $customersResource,
 [
 "create",
 "update",
]
);

Defining Access Controls

Now that we have roles and resources, it’s time to define the ACL (i.e. which roles can access which resources). This part is very important especially taking into consideration your default access level “allow” or “deny”.

<?php

// Set access level for roles into resources

$acl->allow("Guests", "Customers", "search");

$acl->allow("Guests", "Customers", "create");

$acl->deny("Guests", "Customers", "update");

The allow() method designates that a particular role has granted access to a particular resource. The deny() method does the opposite.

Querying an ACL

Once the list has been completely defined. We can query it to check if a role has a given permission or not.

<?php

// Check whether role has access to the operations

// Returns 0
$acl->isAllowed("Guests", "Customers", "edit");

// Returns 1
$acl->isAllowed("Guests", "Customers", "search");

// Returns 1
$acl->isAllowed("Guests", "Customers", "create");

Function based access

Also you can add as 4th parameter your custom function which must return boolean value. It will be called when you use isAllowed() method. You can pass parameters as associative array to isAllowed() method as 4th argument where key is parameter name in our defined function.

<?php
// Set access level for role into resources with custom function
$acl->allow(
 "Guests",
 "Customers",
 "search",
 function ($a) {
 return $a % 2 === 0;
 }
);

// Check whether role has access to the operation with custom function

// Returns true
$acl->isAllowed(
 "Guests",
 "Customers",
 "search",
 [
 "a" => 4,
]
);

// Returns false
$acl->isAllowed(
 "Guests",
 "Customers",
 "search",
 [
 "a" => 3,
]
);

Also if you don’t provide any parameters in isAllowed() method then default behaviour will be Acl::ALLOW. You can change it by using method setNoArgumentsDefaultAction().

use Phalcon\Acl;

<?php
// Set access level for role into resources with custom function
$acl->allow(
 "Guests",
 "Customers",
 "search",
 function ($a) {
 return $a % 2 === 0;
 }
);

// Check whether role has access to the operation with custom function

// Returns true
$acl->isAllowed(
 "Guests",
 "Customers",
 "search"
);

// Change no arguments default action
$acl->setNoArgumentsDefaultAction(
 Acl::DENY
);

// Returns false
$acl->isAllowed(
 "Guests",
 "Customers",
 "search"
);

Objects as role name and resource name

You can pass objects as roleName and resourceName. Your classes must implement Phalcon\Acl\RoleAware for roleName and Phalcon\Acl\ResourceAware for resourceName.

Our UserRole class

<?php

use Phalcon\Acl\RoleAware;

// Create our class which will be used as roleName
class UserRole implements RoleAware
{
 protected $id;

 protected $roleName;

 public function __construct($id, $roleName)
 {
 $this->id = $id;
 $this->roleName = $roleName;
 }

 public function getId()
 {
 return $this->id;
 }

 // Implemented function from RoleAware Interface
 public function getRoleName()
 {
 return $this->roleName;
 }
}

And our ModelResource class

<?php

use Phalcon\Acl\ResourceAware;

// Create our class which will be used as resourceName
class ModelResource implements ResourceAware
{
 protected $id;

 protected $resourceName;

 protected $userId;

 public function __construct($id, $resourceName, $userId)
 {
 $this->id = $id;
 $this->resourceName = $resourceName;
 $this->userId = $userId;
 }

 public function getId()
 {
 return $this->id;
 }

 public function getUserId()
 {
 return $this->userId;
 }

 // Implemented function from ResourceAware Interface
 public function getResourceName()
 {
 return $this->resourceName;
 }
}

Then you can use them in isAllowed() method.

<?php

use UserRole;
use ModelResource;

// Set access level for role into resources
$acl->allow("Guests", "Customers", "search");
$acl->allow("Guests", "Customers", "create");
$acl->deny("Guests", "Customers", "update");

// Create our objects providing roleName and resourceName

$customer = new ModelResource(
 1,
 "Customers",
 2
);

$designer = new UserRole(
 1,
 "Designers"
);

$guest = new UserRole(
 2,
 "Guests"
);

$anotherGuest = new UserRole(
 3,
 "Guests"
);

// Check whether our user objects have access to the operation on model object

// Returns false
$acl->isAllowed(
 $designer,
 $customer,
 "search"
);

// Returns true
$acl->isAllowed(
 $guest,
 $customer,
 "search"
);

// Returns true
$acl->isAllowed(
 $anotherGuest,
 $customer,
 "search"
);

Also you can access those objects in your custom function in allow() or deny(). They are automatically bind to parameters by type in function.

<?php

use UserRole;
use ModelResource;

// Set access level for role into resources with custom function
$acl->allow(
 "Guests",
 "Customers",
 "search",
 function (UserRole $user, ModelResource $model) { // User and Model classes are necessary
 return $user->getId == $model->getUserId();
 }
);

$acl->allow(
 "Guests",
 "Customers",
 "create"
);

$acl->deny(
 "Guests",
 "Customers",
 "update"
);

// Create our objects providing roleName and resourceName

$customer = new ModelResource(
 1,
 "Customers",
 2
);

$designer = new UserRole(
 1,
 "Designers"
);

$guest = new UserRole(
 2,
 "Guests"
);

$anotherGuest = new UserRole(
 3,
 "Guests"
);

// Check whether our user objects have access to the operation on model object

// Returns false
$acl->isAllowed(
 $designer,
 $customer,
 "search"
);

// Returns true
$acl->isAllowed(
 $guest,
 $customer,
 "search"
);

// Returns false
$acl->isAllowed(
 $anotherGuest,
 $customer,
 "search"
);

You can still add any custom parameters to function and pass associative array in isAllowed() method. Also order doesn’t matter.

Roles Inheritance

You can build complex role structures using the inheritance that Phalcon\Acl\Role provides. Roles can inherit from other roles, thus allowing access to supersets or subsets of resources. To use role inheritance, you need to pass the inherited role as the second parameter of the method call, when adding that role in the list.

<?php

use Phalcon\Acl\Role;

// ...

// Create some roles

$roleAdmins = new Role("Administrators", "Super-User role");

$roleGuests = new Role("Guests");

// Add "Guests" role to ACL
$acl->addRole($roleGuests);

// Add "Administrators" role inheriting from "Guests" its accesses
$acl->addRole($roleAdmins, $roleGuests);

Serializing ACL lists

To improve performance Phalcon\Acl instances can be serialized and stored in APC, session, text files or a database table
so that they can be loaded at will without having to redefine the whole list. You can do that as follows:

<?php

use Phalcon\Acl\Adapter\Memory as AclList;

// ...

// Check whether ACL data already exist
if (!is_file("app/security/acl.data")) {
 $acl = new AclList();

 // ... Define roles, resources, access, etc

 // Store serialized list into plain file
 file_put_contents(
 "app/security/acl.data",
 serialize($acl)
);
} else {
 // Restore ACL object from serialized file
 $acl = unserialize(
 file_get_contents("app/security/acl.data")
);
}

// Use ACL list as needed
if ($acl->isAllowed("Guests", "Customers", "edit")) {
 echo "Access granted!";
} else {
 echo "Access denied :(";
}

It’s recommended to use the Memory adapter during development and use one of the other adapters in production.

ACL Events

Phalcon\Acl is able to send events to a EventsManager if it’s present. Events
are triggered using the type “acl”. Some events when returning boolean false could stop the active operation. The following events are supported:

	Event Name
	Triggered
	Can stop operation?

	beforeCheckAccess
	Triggered before checking if a role/resource has access
	Yes

	afterCheckAccess
	Triggered after checking if a role/resource has access
	No

The following example demonstrates how to attach listeners to this component:

<?php

use Phalcon\Acl\Adapter\Memory as AclList;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;

// ...

// Create an event manager
$eventsManager = new EventsManager();

// Attach a listener for type "acl"
$eventsManager->attach(
 "acl:beforeCheckAccess",
 function (Event $event, $acl) {
 echo $acl->getActiveRole();

 echo $acl->getActiveResource();

 echo $acl->getActiveAccess();
 }
);

$acl = new AclList();

// Setup the $acl
// ...

// Bind the eventsManager to the ACL component
$acl->setEventsManager($eventsManager);

Implementing your own adapters

The Phalcon\Acl\AdapterInterface interface must be implemented in order
to create your own ACL adapters or extend the existing ones.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Multi-lingual Support

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Multi-lingual Support

The component Phalcon\Translate aids in creating multilingual applications.
Applications using this component, display content in different languages, based on the user’s chosen language supported by the application.

Adapters

This component makes use of adapters to read translation messages from different sources in a unified way.

	Adapter
	Description

	Phalcon\Translate\Adapter\NativeArray
	Uses PHP arrays to store the messages. This is the best option in terms of performance.

Component Usage

Translation strings are stored in files. The structure of these files could vary depending of the adapter used. Phalcon gives you the freedom
to organize your translation strings. A simple structure could be:

app/messages/en.php
app/messages/es.php
app/messages/fr.php
app/messages/zh.php

Each file contains an array of the translations in a key/value manner. For each translation file, keys are unique. The same array is used in
different files, where keys remain the same and values contain the translated strings depending on each language.

<?php

// app/messages/en.php
$messages = [
 "hi" => "Hello",
 "bye" => "Good Bye",
 "hi-name" => "Hello %name%",
 "song" => "This song is %song%",
];

<?php

// app/messages/fr.php
$messages = [
 "hi" => "Bonjour",
 "bye" => "Au revoir",
 "hi-name" => "Bonjour %name%",
 "song" => "La chanson est %song%",
];

Implementing the translation mechanism in your application is trivial but depends on how you wish to implement it. You can use an
automatic detection of the language from the user’s browser or you can provide a settings page where the user can select their language.

A simple way of detecting the user’s language is to parse the $_SERVER['HTTP_ACCEPT_LANGUAGE'] contents, or if you wish, access it
directly by calling $this->request->getBestLanguage() from an action/controller:

<?php

use Phalcon\Mvc\Controller;
use Phalcon\Translate\Adapter\NativeArray;

class UserController extends Controller
{
 protected function getTranslation()
 {
 // Ask browser what is the best language
 $language = $this->request->getBestLanguage();

 $translationFile = "app/messages/" . $language . ".php";

 // Check if we have a translation file for that lang
 if (file_exists($translationFile)) {
 require $translationFile;
 } else {
 // Fallback to some default
 require "app/messages/en.php";
 }

 // Return a translation object
 return new NativeArray(
 [
 "content" => $messages,
]
);
 }

 public function indexAction()
 {
 $this->view->name = "Mike";
 $this->view->t = $this->getTranslation();
 }
}

The _getTranslation() method is available for all actions that require translations. The $t variable is passed to the views, and with it,
we can translate strings in that layer:

<!-- welcome -->
<!-- String: hi => 'Hello' -->
<p><?php echo $t->_("hi"), " ", $name; ?></p>

The _() method is returning the translated string based on the index passed. Some strings need to incorporate placeholders for
calculated data i.e. Hello %name%. These placeholders can be replaced with passed parameters in the _() method. The passed parameters
are in the form of a key/value array, where the key matches the placeholder name and the value is the actual data to be replaced:

<!-- welcome -->
<!-- String: hi-name => 'Hello %name%' -->
<p><?php echo $t->_("hi-name", ["name" => $name]); ?></p>

Some applications implement multilingual on the URL such as http://www.mozilla.org/es-ES/firefox/. Phalcon can implement
this by using a Router.

Implementing your own adapters

The Phalcon\Translate\AdapterInterface interface must be implemented
in order to create your own translate adapters or extend the existing ones:

<?php

use Phalcon\Translate\AdapterInterface;

class MyTranslateAdapter implements AdapterInterface
{
 /**
 * Adapter constructor
 *
 * @param array $data
 */
 public function __construct($options);

 /**
 * Returns the translation string of the given key
 *
 * @param string $translateKey
 * @param array $placeholders
 * @return string
 */
 public function _($translateKey, $placeholders = null);

 /**
 * Returns the translation related to the given key
 *
 * @param string $index
 * @param array $placeholders
 * @return string
 */
 public function query($index, $placeholders = null);

 /**
 * Check whether is defined a translation key in the internal array
 *
 * @param string $index
 * @return bool
 */
 public function exists($index);
}

There are more adapters available for this components in the Phalcon Incubator [https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Translate/Adapter]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Autoloader

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Class Autoloader

Phalcon\Loader allows you to load project classes automatically,
based on some predefined rules. Since this component is written in C, it provides the lowest overhead in
reading and interpreting external PHP files.

The behavior of this component is based on the PHP’s capability of autoloading classes [http://www.php.net/manual/en/language.oop5.autoload.php]. If a class that does
not yet exist is used in any part of the code, a special handler will try to load it.
Phalcon\Loader serves as the special handler for this operation.
By loading classes on a need-to-load basis, the overall performance is increased since the only file
reads that occur are for the files needed. This technique is called lazy initialization [http://en.wikipedia.org/wiki/Lazy_initialization].

With this component you can load files from other projects or vendors, this autoloader is PSR-0 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md] and PSR-4 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4.md] compliant.

Phalcon\Loader offers four options to autoload classes. You can use them one at a time or combine them.

Security Layer

Phalcon\Loader offers a security layer sanitizing by default class names avoiding possible inclusion of unauthorized files.
Consider the following example:

<?php

// Basic autoloader
spl_autoload_register(
 function ($className) {
 $filepath = $className . ".php";

 if (file_exists($filepath)) {
 require $filepath;
 }
 }
);

The above auto-loader lacks any kind of security. If a function mistakenly launches the auto-loader and
a malicious prepared string is used as parameter this would allow to execute any file accessible by the application:

<?php

// This variable is not filtered and comes from an insecure source
$className = "../processes/important-process";

// Check if the class exists triggering the auto-loader
if (class_exists($className)) {
 // ...
}

If ‘../processes/important-process.php’ is a valid file, an external user could execute the file without
authorization.

To avoid these or most sophisticated attacks, Phalcon\Loader removes invalid characters from the class name,
reducing the possibility of being attacked.

Registering Namespaces

If you’re organizing your code using namespaces, or using external libraries which do, the registerNamespaces() method provides the autoloading mechanism. It
takes an associative array; the keys are namespace prefixes and their values are directories where the classes are located in. The namespace
separator will be replaced by the directory separator when the loader tries to find the classes. Always remember to add a trailing slash at
the end of the paths.

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some namespaces
$loader->registerNamespaces(
 [
 "Example\Base" => "vendor/example/base/",
 "Example\Adapter" => "vendor/example/adapter/",
 "Example" => "vendor/example/",
]
);

// Register autoloader
$loader->register();

// The required class will automatically include the
// file vendor/example/adapter/Some.php
$some = new \Example\Adapter\Some();

Registering Directories

The third option is to register directories, in which classes could be found. This option is not recommended in terms of performance,
since Phalcon will need to perform a significant number of file stats on each folder, looking for the file with the same name as the class.
It’s important to register the directories in relevance order. Remember always add a trailing slash at the end of the paths.

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some directories
$loader->registerDirs(
 [
 "library/MyComponent/",
 "library/OtherComponent/Other/",
 "vendor/example/adapters/",
 "vendor/example/",
]
);

// Register autoloader
$loader->register();

// The required class will automatically include the file from
// the first directory where it has been located
// i.e. library/OtherComponent/Other/Some.php
$some = new \Some();

Registering Classes

The last option is to register the class name and its path. This autoloader can be very useful when the folder convention of the
project does not allow for easy retrieval of the file using the path and the class name. This is the fastest method of autoloading.
However the more your application grows, the more classes/files need to be added to this autoloader, which will effectively make
maintenance of the class list very cumbersome and it is not recommended.

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some classes
$loader->registerClasses(
 [
 "Some" => "library/OtherComponent/Other/Some.php",
 "Example\Base" => "vendor/example/adapters/Example/BaseClass.php",
]
);

// Register autoloader
$loader->register();

// Requiring a class will automatically include the file it references
// in the associative array
// i.e. library/OtherComponent/Other/Some.php
$some = new \Some();

Registering Files

You can also registers files that are “non-classes” hence needing a “require”. This is very useful for including files that only have functions:

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some classes
$loader->registerFiles(
 [
 "functions.php",
 "arrayFunctions.php",
]
);

// Register autoloader
$loader->register();

These files are automatically loaded in the register() method.

Additional file extensions

Some autoloading strategies such as “prefixes”, “namespaces” or “directories” automatically append the “php” extension at the end of the checked file. If you
are using additional extensions you could set it with the method “setExtensions”. Files are checked in the order as it were defined:

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Set file extensions to check
$loader->setExtensions(
 [
 "php",
 "inc",
 "phb",
]
);

Modifying current strategies

Additional auto-loading data can be added to existing values by passing “true” as the second parameter:

<?php

// Adding more directories
$loader->registerDirs(
 [
 "../app/library/",
 "../app/plugins/",
],
 true
);

Autoloading Events

In the following example, the EventsManager is working with the class loader, allowing us to obtain debugging information regarding the flow of operation:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Loader;

$eventsManager = new EventsManager();

$loader = new Loader();

$loader->registerNamespaces(
 [
 "Example\\Base" => "vendor/example/base/",
 "Example\\Adapter" => "vendor/example/adapter/",
 "Example" => "vendor/example/",
]
);

// Listen all the loader events
$eventsManager->attach(
 "loader:beforeCheckPath",
 function (Event $event, Loader $loader) {
 echo $loader->getCheckedPath();
 }
);

$loader->setEventsManager($eventsManager);

$loader->register();

Some events when returning boolean false could stop the active operation. The following events are supported:

	Event Name
	Triggered
	Can stop operation?

	beforeCheckClass
	Triggered before starting the autoloading process
	Yes

	pathFound
	Triggered when the loader locate a class
	No

	afterCheckClass
	Triggered after finish the autoloading process. If this event is launched the autoloader didn’t find the class file
	No

Troubleshooting

Some things to keep in mind when using the universal autoloader:

	Auto-loading process is case-sensitive, the class will be loaded as it is written in the code

	Strategies based on namespaces/prefixes are faster than the directories strategy

	If a cache bytecode like APC [http://php.net/manual/en/book.apc.php] is installed this will used to retrieve the requested file (an implicit caching of the file is performed)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Logging

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Logging

Phalcon\Logger is a component whose purpose is to provide logging services for applications. It offers logging to different backends using different adapters. It also offers transaction logging, configuration options, different formats and filters. You can use the Phalcon\Logger for every logging need your application has, from debugging processes to tracing application flow.

Adapters

This component makes use of adapters to store the logged messages. The use of adapters allows for a common logging interface
which provides the ability to easily switch backends if necessary. The adapters supported are:

	Adapter
	Description

	Phalcon\Logger\Adapter\File
	Logs to a plain text file

	Phalcon\Logger\Adapter\Stream
	Logs to a PHP Streams

	Phalcon\Logger\Adapter\Syslog
	Logs to the system logger

	Phalcon\Logger\Adapter\FirePHP
	Logs to the FirePHP

Creating a Log

The example below shows how to create a log and add messages to it:

<?php

use Phalcon\Logger;
use Phalcon\Logger\Adapter\File as FileAdapter;

$logger = new FileAdapter("app/logs/test.log");

// These are the different log levels available:

$logger->critical(
 "This is a critical message"
);

$logger->emergency(
 "This is an emergency message"
);

$logger->debug(
 "This is a debug message"
);

$logger->error(
 "This is an error message"
);

$logger->info(
 "This is an info message"
);

$logger->notice(
 "This is a notice message"
);

$logger->warning(
 "This is a warning message"
);

$logger->alert(
 "This is an alert message"
);

// You can also use the log() method with a Logger constant:
$logger->log(
 "This is another error message",
 Logger::ERROR
);

// If no constant is given, DEBUG is assumed.
$logger->log(
 "This is a message"
);

The log generated is below:

[Tue, 28 Jul 15 22:09:02 -0500][CRITICAL] This is a critical message
[Tue, 28 Jul 15 22:09:02 -0500][EMERGENCY] This is an emergency message
[Tue, 28 Jul 15 22:09:02 -0500][DEBUG] This is a debug message
[Tue, 28 Jul 15 22:09:02 -0500][ERROR] This is an error message
[Tue, 28 Jul 15 22:09:02 -0500][INFO] This is an info message
[Tue, 28 Jul 15 22:09:02 -0500][NOTICE] This is a notice message
[Tue, 28 Jul 15 22:09:02 -0500][WARNING] This is a warning message
[Tue, 28 Jul 15 22:09:02 -0500][ALERT] This is an alert message
[Tue, 28 Jul 15 22:09:02 -0500][ERROR] This is another error message
[Tue, 28 Jul 15 22:09:02 -0500][DEBUG] This is a message

You can also set a log level using the setLogLevel() method. This method takes a Logger constant and will only save log messages that are as important or more important than the constant:

<?php

use Phalcon\Logger;
use Phalcon\Logger\Adapter\File as FileAdapter;

$logger = new FileAdapter("app/logs/test.log");

$logger->setLogLevel(
 Logger::CRITICAL
);

In the example above, only critical and emergency messages will get saved to the log. By default, everything is saved.

Transactions

Logging data to an adapter i.e. File (file system) is always an expensive operation in terms of performance. To combat that, you
can take advantage of logging transactions. Transactions store log data temporarily in memory and later on write the data to the
relevant adapter (File in this case) in a single atomic operation.

<?php

use Phalcon\Logger\Adapter\File as FileAdapter;

// Create the logger
$logger = new FileAdapter("app/logs/test.log");

// Start a transaction
$logger->begin();

// Add messages

$logger->alert(
 "This is an alert"
);

$logger->error(
 "This is another error"
);

// Commit messages to file
$logger->commit();

Logging to Multiple Handlers

Phalcon\Logger can send messages to multiple handlers with a just single call:

<?php

use Phalcon\Logger;
use Phalcon\Logger\Multiple as MultipleStream;
use Phalcon\Logger\Adapter\File as FileAdapter;
use Phalcon\Logger\Adapter\Stream as StreamAdapter;

$logger = new MultipleStream();

$logger->push(
 new FileAdapter("test.log")
);

$logger->push(
 new StreamAdapter("php://stdout")
);

$logger->log(
 "This is a message"
);

$logger->log(
 "This is an error",
 Logger::ERROR
);

$logger->error(
 "This is another error"
);

The messages are sent to the handlers in the order they were registered.

Message Formatting

This component makes use of ‘formatters’ to format messages before sending them to the backend. The formatters available are:

	Adapter
	Description

	Phalcon\Logger\Formatter\Line
	Formats the messages using a one-line string

	Phalcon\Logger\Formatter\Firephp
	Formats the messages so that they can be sent to FirePHP

	Phalcon\Logger\Formatter\Json
	Prepares a message to be encoded with JSON

	Phalcon\Logger\Formatter\Syslog
	Prepares a message to be sent to syslog

Line Formatter

Formats the messages using a one-line string. The default logging format is:

[%date%][%type%] %message%

You can change the default format using setFormat(), this allows you to change the format of the logged
messages by defining your own. The log format variables allowed are:

	Variable
	Description

	%message%
	The message itself expected to be logged

	%date%
	Date the message was added

	%type%
	Uppercase string with message type

The example below shows how to change the log format:

<?php

use Phalcon\Logger\Formatter\Line as LineFormatter;

$formatter = new LineFormatter("%date% - %message%");

// Changing the logger format
$logger->setFormatter($formatter);

Implementing your own formatters

The Phalcon\Logger\FormatterInterface interface must be implemented in order to
create your own logger formatter or extend the existing ones.

Adapters

The following examples show the basic use of each adapter:

Stream Logger

The stream logger writes messages to a valid registered stream in PHP. A list of streams is available here [http://php.net/manual/en/wrappers.php]:

<?php

use Phalcon\Logger\Adapter\Stream as StreamAdapter;

// Opens a stream using zlib compression
$logger = new StreamAdapter("compress.zlib://week.log.gz");

// Writes the logs to stderr
$logger = new StreamAdapter("php://stderr");

File Logger

This logger uses plain files to log any kind of data. By default all logger files are opened using
append mode which opens the files for writing only; placing the file pointer at the end of the file.
If the file does not exist, an attempt will be made to create it. You can change this mode by passing additional options to the constructor:

<?php

use Phalcon\Logger\Adapter\File as FileAdapter;

// Create the file logger in 'w' mode
$logger = new FileAdapter(
 "app/logs/test.log",
 [
 "mode" => "w",
]
);

Syslog Logger

This logger sends messages to the system logger. The syslog behavior may vary from one operating system to another.

<?php

use Phalcon\Logger\Adapter\Syslog as SyslogAdapter;

// Basic Usage
$logger = new SyslogAdapter(null);

// Setting ident/mode/facility
$logger = new SyslogAdapter(
 "ident-name",
 [
 "option" => LOG_NDELAY,
 "facility" => LOG_MAIL,
]
);

FirePHP Logger

This logger sends messages in HTTP response headers that are displayed by FirePHP [http://www.firephp.org/],
a Firebug [http://getfirebug.com/] extension for Firefox.

<?php

use Phalcon\Logger;
use Phalcon\Logger\Adapter\Firephp as Firephp;

$logger = new Firephp("");

$logger->log(
 "This is a message"
);

$logger->log(
 "This is an error",
 Logger::ERROR
);

$logger->error(
 "This is another error"
);

Implementing your own adapters

The Phalcon\Logger\AdapterInterface interface must be implemented in order to
create your own logger adapters or extend the existing ones.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Annotations Parser

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Annotations Parser

It is the first time that an annotations parser component is written in C for the PHP world. Phalcon\Annotations is
a general purpose component that provides ease of parsing and caching annotations in PHP classes to be used in applications.

Annotations are read from docblocks in classes, methods and properties. An annotation can be placed at any position in the docblock:

<?php

/**
 * This is the class description
 *
 * @AmazingClass(true)
 */
class Example
{
 /**
 * This a property with a special feature
 *
 * @SpecialFeature
 */
 protected $someProperty;

 /**
 * This is a method
 *
 * @SpecialFeature
 */
 public function someMethod()
 {
 // ...
 }
}

An annotation has the following syntax:

/**
 * @Annotation-Name
 * @Annotation-Name(param1, param2, ...)
 */

Also, an annotation can be placed at any part of a docblock:

<?php

/**
 * This a property with a special feature
 *
 * @SpecialFeature
 *
 * More comments
 *
 * @AnotherSpecialFeature(true)
 */

The parser is highly flexible, the following docblock is valid:

<?php

/**
 * This a property with a special feature @SpecialFeature({
someParameter="the value", false

 }) More comments @AnotherSpecialFeature(true) @MoreAnnotations
 **/

However, to make the code more maintainable and understandable it is recommended to place annotations at the end of the docblock:

<?php

/**
 * This a property with a special feature
 * More comments
 *
 * @SpecialFeature({someParameter="the value", false})
 * @AnotherSpecialFeature(true)
 */

Reading Annotations

A reflector is implemented to easily get the annotations defined on a class using an object-oriented interface:

<?php

use Phalcon\Annotations\Adapter\Memory as MemoryAdapter;

$reader = new MemoryAdapter();

// Reflect the annotations in the class Example
$reflector = $reader->get("Example");

// Read the annotations in the class' docblock
$annotations = $reflector->getClassAnnotations();

// Traverse the annotations
foreach ($annotations as $annotation) {
 // Print the annotation name
 echo $annotation->getName(), PHP_EOL;

 // Print the number of arguments
 echo $annotation->numberArguments(), PHP_EOL;

 // Print the arguments
 print_r($annotation->getArguments());
}

The annotation reading process is very fast, however, for performance reasons it is recommended to store the parsed annotations using an adapter.
Adapters cache the processed annotations avoiding the need of parse the annotations again and again.

Phalcon\Annotations\Adapter\Memory was used in the above example. This adapter
only caches the annotations while the request is running and for this reason the adapter is more suitable for development. There are
other adapters to swap out when the application is in production stage.

Types of Annotations

Annotations may have parameters or not. A parameter could be a simple literal (strings, number, boolean, null), an array, a hashed list or other annotation:

<?php

/**
 * Simple Annotation
 *
 * @SomeAnnotation
 */

/**
 * Annotation with parameters
 *
 * @SomeAnnotation("hello", "world", 1, 2, 3, false, true)
 */

/**
 * Annotation with named parameters
 *
 * @SomeAnnotation(first="hello", second="world", third=1)
 * @SomeAnnotation(first: "hello", second: "world", third: 1)
 */

/**
 * Passing an array
 *
 * @SomeAnnotation([1, 2, 3, 4])
 * @SomeAnnotation({1, 2, 3, 4})
 */

/**
 * Passing a hash as parameter
 *
 * @SomeAnnotation({first=1, second=2, third=3})
 * @SomeAnnotation({'first'=1, 'second'=2, 'third'=3})
 * @SomeAnnotation({'first': 1, 'second': 2, 'third': 3})
 * @SomeAnnotation(['first': 1, 'second': 2, 'third': 3])
 */

/**
 * Nested arrays/hashes
 *
 * @SomeAnnotation({"name"="SomeName", "other"={
 * "foo1": "bar1", "foo2": "bar2", {1, 2, 3},
 * }})
 */

/**
 * Nested Annotations
 *
 * @SomeAnnotation(first=@AnotherAnnotation(1, 2, 3))
 */

Practical Usage

Next we will explain some practical examples of annotations in PHP applications:

Cache Enabler with Annotations

Let’s pretend we’ve created the following controller and you want to create a plugin that automatically starts the
cache if the last action executed is marked as cacheable. First off all, we register a plugin in the Dispatcher service
to be notified when a route is executed:

<?php

use Phalcon\Mvc\Dispatcher as MvcDispatcher;
use Phalcon\Events\Manager as EventsManager;

$di["dispatcher"] = function () {
 $eventsManager = new EventsManager();

 // Attach the plugin to 'dispatch' events
 $eventsManager->attach(
 "dispatch",
 new CacheEnablerPlugin()
);

 $dispatcher = new MvcDispatcher();

 $dispatcher->setEventsManager($eventsManager);

 return $dispatcher;
};

CacheEnablerPlugin is a plugin that intercepts every action executed in the dispatcher enabling the cache if needed:

<?php

use Phalcon\Events\Event;
use Phalcon\Mvc\Dispatcher;
use Phalcon\Mvc\User\Plugin;

/**
 * Enables the cache for a view if the latest
 * executed action has the annotation @Cache
 */
class CacheEnablerPlugin extends Plugin
{
 /**
 * This event is executed before every route is executed in the dispatcher
 */
 public function beforeExecuteRoute(Event $event, Dispatcher $dispatcher)
 {
 // Parse the annotations in the method currently executed
 $annotations = $this->annotations->getMethod(
 $dispatcher->getControllerClass(),
 $dispatcher->getActiveMethod()
);

 // Check if the method has an annotation 'Cache'
 if ($annotations->has("Cache")) {
 // The method has the annotation 'Cache'
 $annotation = $annotations->get("Cache");

 // Get the lifetime
 $lifetime = $annotation->getNamedParameter("lifetime");

 $options = [
 "lifetime" => $lifetime,
];

 // Check if there is a user defined cache key
 if ($annotation->hasNamedParameter("key")) {
 $options["key"] = $annotation->getNamedParameter("key");
 }

 // Enable the cache for the current method
 $this->view->cache($options);
 }
 }
}

Now, we can use the annotation in a controller:

<?php

use Phalcon\Mvc\Controller;

class NewsController extends Controller
{
 public function indexAction()
 {

 }

 /**
 * This is a comment
 *
 * @Cache(lifetime=86400)
 */
 public function showAllAction()
 {
 $this->view->article = Articles::find();
 }

 /**
 * This is a comment
 *
 * @Cache(key="my-key", lifetime=86400)
 */
 public function showAction($slug)
 {
 $this->view->article = Articles::findFirstByTitle($slug);
 }
}

Private/Public areas with Annotations

You can use annotations to tell the ACL which controllers belong to the administrative areas:

<?php

use Phalcon\Acl;
use Phalcon\Acl\Role;
use Phalcon\Acl\Resource;
use Phalcon\Events\Event;
use Phalcon\Mvc\User\Plugin;
use Phalcon\Mvc\Dispatcher;
use Phalcon\Acl\Adapter\Memory as AclList;

/**
 * This is the security plugin which controls that users only have access to the modules they're assigned to
 */
class SecurityAnnotationsPlugin extends Plugin
{
 /**
 * This action is executed before execute any action in the application
 *
 * @param Event $event
 * @param Dispatcher $dispatcher
 */
 public function beforeDispatch(Event $event, Dispatcher $dispatcher)
 {
 // Possible controller class name
 $controllerName = $dispatcher->getControllerClass();

 // Possible method name
 $actionName = $dispatcher->getActiveMethod();

 // Get annotations in the controller class
 $annotations = $this->annotations->get($controllerName);

 // The controller is private?
 if ($annotations->getClassAnnotations()->has("Private")) {
 // Check if the session variable is active?
 if (!$this->session->get("auth")) {

 // The user is no logged redirect to login
 $dispatcher->forward(
 [
 "controller" => "session",
 "action" => "login",
]
);

 return false;
 }
 }

 // Continue normally
 return true;
 }
}

Annotations Adapters

This component makes use of adapters to cache or no cache the parsed and processed annotations thus improving the performance or providing facilities to development/testing:

	Class
	Description

	Phalcon\Annotations\Adapter\Memory
	The annotations are cached only in memory. When the request ends the cache is cleaned reloading the annotations in each request. This adapter is suitable for a development stage

	Phalcon\Annotations\Adapter\Files
	Parsed and processed annotations are stored permanently in PHP files improving performance. This adapter must be used together with a bytecode cache.

	Phalcon\Annotations\Adapter\Apc
	Parsed and processed annotations are stored permanently in the APC cache improving performance. This is the faster adapter

	Phalcon\Annotations\Adapter\Xcache
	Parsed and processed annotations are stored permanently in the XCache cache improving performance. This is a fast adapter too

Implementing your own adapters

The Phalcon\Annotations\AdapterInterface interface must be implemented in order to create your own
annotations adapters or extend the existing ones.

External Resources

	Tutorial: Creating a custom model’s initializer with Annotations [https://blog.phalconphp.com/post/tutorial-creating-a-custom-models-initializer]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Command Line Applications

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Command Line Applications

CLI applications are executed from the command line. They are useful to create cron jobs, scripts, command utilities and more.

Structure

A minimal structure of a CLI application will look like this:

	app/config/config.php

	app/tasks/MainTask.php

	app/cli.php <– main bootstrap file

Creating a Bootstrap

As in regular MVC applications, a bootstrap file is used to bootstrap the application. Instead of the index.php bootstrapper in web applications, we use a cli.php file for bootstrapping the application.

Below is a sample bootstrap that is being used for this example.

<?php

use Phalcon\Di\FactoryDefault\Cli as CliDI;
use Phalcon\Cli\Console as ConsoleApp;
use Phalcon\Loader;

// Using the CLI factory default services container
$di = new CliDI();

/**
 * Register the autoloader and tell it to register the tasks directory
 */
$loader = new Loader();

$loader->registerDirs(
 [
 __DIR__ . "/tasks",
]
);

$loader->register();

// Load the configuration file (if any)

$configFile = __DIR__ . "/config/config.php";

if (is_readable($configFile)) {
 $config = include $configFile;

 $di->set("config", $config);
}

// Create a console application
$console = new ConsoleApp();

$console->setDI($di);

/**
 * Process the console arguments
 */
$arguments = [];

foreach ($argv as $k => $arg) {
 if ($k === 1) {
 $arguments["task"] = $arg;
 } elseif ($k === 2) {
 $arguments["action"] = $arg;
 } elseif ($k >= 3) {
 $arguments["params"][] = $arg;
 }
}

try {
 // Handle incoming arguments
 $console->handle($arguments);
} catch (\Phalcon\Exception $e) {
 echo $e->getMessage();

 exit(255);
}

This piece of code can be run using:

$ php app/cli.php

This is the default task and the default action

Tasks

Tasks work similar to controllers. Any CLI application needs at least a MainTask and a mainAction and every task needs to have a mainAction which will run if no action is given explicitly.

Below is an example of the app/tasks/MainTask.php file:

<?php

use Phalcon\Cli\Task;

class MainTask extends Task
{
 public function mainAction()
 {
 echo "This is the default task and the default action" . PHP_EOL;
 }
}

Processing action parameters

It’s possible to pass parameters to actions, the code for this is already present in the sample bootstrap.

If you run the application with the following parameters and action:

<?php

use Phalcon\Cli\Task;

class MainTask extends Task
{
 public function mainAction()
 {
 echo "This is the default task and the default action" . PHP_EOL;
 }

 /**
 * @param array $params
 */
 public function testAction(array $params)
 {
 echo sprintf(
 "hello %s",
 $params[0]
);

 echo PHP_EOL;

 echo sprintf(
 "best regards, %s",
 $params[1]
);

 echo PHP_EOL;
 }
}

We can then run the following command:

$ php app/cli.php main test world universe

hello world
best regards, universe

Running tasks in a chain

It’s also possible to run tasks in a chain if it’s required. To accomplish this you must add the console itself to the DI:

<?php

$di->setShared("console", $console);

try {
 // Handle incoming arguments
 $console->handle($arguments);
} catch (\Phalcon\Exception $e) {
 echo $e->getMessage();

 exit(255);
}

Then you can use the console inside of any task. Below is an example of a modified MainTask.php:

<?php

use Phalcon\Cli\Task;

class MainTask extends Task
{
 public function mainAction()
 {
 echo "This is the default task and the default action" . PHP_EOL;

 $this->console->handle(
 [
 "task" => "main",
 "action" => "test",
]
);
 }

 public function testAction()
 {
 echo "I will get printed too!" . PHP_EOL;
 }
}

However, it’s a better idea to extend Phalcon\Cli\Task and implement this kind of logic there.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Images

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Images

Phalcon\Image is the component that allows you to manipulate image files.
Multiple operations can be performed on the same image object.

This guide is not intended to be a complete documentation of available methods and their arguments.
Please visit the API for a complete reference.

Adapters

This component makes use of adapters to encapsulate specific image manipulator programs.
The following image manipulator programs are supported:

	Class
	Description

	Phalcon\Image\Adapter\Gd
	Requires the GD PHP extension [http://php.net/manual/en/book.image.php].

	Phalcon\Image\Adapter\Imagick
	Requires the ImageMagick PHP extension [http://php.net/manual/en/book.imagick.php].

Implementing your own adapters

The Phalcon\Image\AdapterInterface interface must be implemented in order to create your own image adapters or extend the existing ones.

Saving and rendering images

Before we begin with the various features of the image component, it’s worth understanding how to save and render these images.

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

// ...

// Overwrite the original image
$image->save();

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

// ...

// Save to 'new-image.jpg'
$image->save("new-image.jpg");

You can also change the format of the image:

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

// ...

// Save as a PNG file
$image->save("image.png");

When saving as a JPEG, you can also specify the quality as the second parameter:

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

// ...

// Save as a JPEG with 80% quality
$image->save("image.jpg", 80);

Resizing images

There are several modes of resizing:

	\Phalcon\Image::WIDTH

	\Phalcon\Image::HEIGHT

	\Phalcon\Image::NONE

	\Phalcon\Image::TENSILE

	\Phalcon\Image::AUTO

	\Phalcon\Image::INVERSE

	\Phalcon\Image::PRECISE

\Phalcon\Image::WIDTH

The height will automatically be generated to keep the proportions the same; if you specify a height, it will be ignored.

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->resize(
 300,
 null,
 \Phalcon\Image::WIDTH
);

$image->save("resized-image.jpg");

\Phalcon\Image::HEIGHT

The width will automatically be generated to keep the proportions the same; if you specify a width, it will be ignored.

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->resize(
 null,
 300,
 \Phalcon\Image::HEIGHT
);

$image->save("resized-image.jpg");

\Phalcon\Image::NONE

The NONE constant ignores the original image’s ratio.
Neither width and height are required.
If a dimension is not specified, the original dimension will be used.
If the new proportions differ from the original proportions, the image may be distorted and stretched.

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->resize(
 400,
 200,
 \Phalcon\Image::NONE
);

$image->save("resized-image.jpg");

\Phalcon\Image::TENSILE

Similar to the NONE constant, the TENSILE constant ignores the original image’s ratio.
Both width and height are required.
If the new proportions differ from the original proportions, the image may be distorted and stretched.

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->resize(
 400,
 200,
 \Phalcon\Image::NONE
);

$image->save("resized-image.jpg");

Cropping images

For example, to get a 100px by 100px square from the centre of the image:

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$width = 100;
$height = 100;
$offsetX = (($image->getWidth() - $width) / 2);
$offsetY = (($image->getHeight() - $height) / 2);

$image->crop($width, $height, $offsetX, $offsetY);

$image->save("cropped-image.jpg");

Rotating images

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

// Rotate an image by 90 degrees clockwise
$image->rotate(90);

$image->save("rotated-image.jpg");

Flipping images

You can flip an image horizontally (using the \Phalcon\Image::HORIZONTAL constant) and vertically (using the \Phalcon\Image::VERTICAL constant):

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

// Flip an image horizontally
$image->flip(
 \Phalcon\Image::HORIZONTAL
);

$image->save("flipped-image.jpg");

Sharpening images

The sharpen() method takes a single parameter - an integer between 0 (no effect) and 100 (very sharp):

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->sharpen(50);

$image->save("sharpened-image.jpg");

Adding watermarks to images

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$watermark = new \Phalcon\Image\Adapter\Gd("me.jpg");

// Put the watermark in the top left corner
$offsetX = 10;
$offsetY = 10;

$opacity = 70;

$image->watermark(
 $watermark,
 $offsetX,
 $offsetY,
 $opacity
);

$image->save("watermarked-image.jpg");

Of course, you can also manipulate the watermarked image before applying it to the main image:

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$watermark = new \Phalcon\Image\Adapter\Gd("me.jpg");

$watermark->resize(100, 100);
$watermark->rotate(90);
$watermark->sharpen(5);

// Put the watermark in the bottom right corner with a 10px margin
$offsetX = ($image->getWidth() - $watermark->getWidth() - 10);
$offsetY = ($image->getHeight() - $watermark->getHeight() - 10);

$opacity = 70;

$image->watermark(
 $watermark,
 $offsetX,
 $offsetY,
 $opacity
);

$image->save("watermarked-image.jpg");

Blurring images

The blur() method takes a single parameter - an integer between 0 (no effect) and 100 (very blurry):

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->blur(50);

$image->save("blurred-image.jpg");

Pixelating images

The pixelate() method takes a single parameter - the higher the integer, the more pixelated the image becomes:

<?php

$image = new \Phalcon\Image\Adapter\Gd("image.jpg");

$image->pixelate(10);

$image->save("pixelated-image.jpg");

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Queueing

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Queueing

Activities like processing videos, resizing images or sending emails aren’t suitable to be executed
online or in real time because it may slow the loading time of pages and severely impact the user experience.

The best solution here is to implement background jobs. The web application puts jobs
into a queue and which will be processed separately.

While you can find more sophisticated PHP extensions to address queueing in your applications like RabbitMQ [http://pecl.php.net/package/amqp];
Phalcon provides a client for Beanstalk [http://www.igvita.com/2010/05/20/scalable-work-queues-with-beanstalk/], a job queueing backend inspired by Memcache [http://memcached.org/].
It’s simple, lightweight, and completely specialized for job queueing.

Attention

Some of the returns from queue methods require that the module Yaml be installed. Please
refer to http://php.net/manual/book.yaml.php for more information. For PHP < 7, Yaml 1.3.0
is acceptable. For PHP >= 7, you will need to use Yaml >= 2.0.0.

Putting Jobs into the Queue

After connecting to Beanstalk you can insert as many jobs as required. You can define the message
structure according to the needs of the application:

<?php

use Phalcon\Queue\Beanstalk;

// Connect to the queue
$queue = new Beanstalk(
 [
 "host" => "192.168.0.21",
 "port" => "11300",
]
);

// Insert the job in the queue
$queue->put(
 [
 "processVideo" => 4871,
]
);

Available connection options are:

	Option
	Description
	Default

	host
	IP where the beanstalk server is located
	127.0.0.1

	port
	Connection port
	11300

In the above example we stored a message which will allow a background job to process a video.
The message is stored in the queue immediately and does not have a certain time to live.

Additional options as time to run, priority and delay can be passed as second parameter:

<?php

// Insert the job in the queue with options
$queue->put(
 [
 "processVideo" => 4871,
],
 [
 "priority" => 250,
 "delay" => 10,
 "ttr" => 3600,
]
);

The following options are available:

	Option
	Description

	priority
	It’s an integer < 2**32. Jobs with smaller priority values will be scheduled before jobs with larger priorities. The most urgent priority is 0; the least urgent priority is 4,294,967,295.

	delay
	It’s an integer number of seconds to wait before putting the job in the ready queue. The job will be in the “delayed” state during this time.

	ttr
	Time to run – is an integer number of seconds to allow a worker to run this job. This time is counted from the moment a worker reserves this job.

Every job put into the queue returns a “job id” which you can use to track the status of the job:

<?php

$jobId = $queue->put(
 [
 "processVideo" => 4871,
]
);

Retrieving Messages

Once a job is placed into the queue, those messages can be consumed by a background worker which will have enough time to complete
the task:

<?php

while (($job = $queue->peekReady()) !== false) {
 $message = $job->getBody();

 var_dump($message);

 $job->delete();
}

Jobs must be removed from the queue to avoid double processing. If multiple background jobs workers are implemented,
jobs must be “reserved” so other workers don’t re-process them while other workers have them reserved:

<?php

while (($job = $queue->reserve()) !== false) {
 $message = $job->getBody();

 var_dump($message);

 $job->delete();
}

Our client implement a basic set of the features provided by Beanstalkd but enough to allow you to build applications
implementing queues.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Database Abstraction Layer

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Database Abstraction Layer

Phalcon\Db is the component behind Phalcon\Mvc\Model that powers the model layer
in the framework. It consists of an independent high-level abstraction layer for database systems completely written in C.

This component allows for a lower level database manipulation than using traditional models.

This guide is not intended to be a complete documentation of available methods and their arguments. Please visit the API
for a complete reference.

Database Adapters

This component makes use of adapters to encapsulate specific database system details. Phalcon uses PDO [http://www.php.net/manual/en/book.pdo.php] to connect to databases. The following
database engines are supported:

	Class
	Description

	Phalcon\Db\Adapter\Pdo\Mysql
	Is the world’s most used relational database management system (RDBMS) that runs as a server providing multi-user access to a number of databases

	Phalcon\Db\Adapter\Pdo\Postgresql
	PostgreSQL is a powerful, open source relational database system. It has more than 15 years of active development and a proven architecture that has earned it a strong reputation for reliability, data integrity, and correctness.

	Phalcon\Db\Adapter\Pdo\Sqlite
	SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine

Implementing your own adapters

The Phalcon\Db\AdapterInterface interface must be implemented in order to create your own
database adapters or extend the existing ones.

Database Dialects

Phalcon encapsulates the specific details of each database engine in dialects. Those provide common functions and SQL generator to the adapters.

	Class
	Description

	Phalcon\Db\Dialect\Mysql
	SQL specific dialect for MySQL database system

	Phalcon\Db\Dialect\Postgresql
	SQL specific dialect for PostgreSQL database system

	Phalcon\Db\Dialect\Sqlite
	SQL specific dialect for SQLite database system

Implementing your own dialects

The Phalcon\Db\DialectInterface interface must be implemented in order to create your own database dialects or extend the existing ones.

Connecting to Databases

To create a connection it’s necessary instantiate the adapter class. It only requires an array with the connection parameters. The example
below shows how to create a connection passing both required and optional parameters:

<?php

// Required
$config = [
 "host" => "127.0.0.1",
 "username" => "mike",
 "password" => "sigma",
 "dbname" => "test_db",
];

// Optional
$config["persistent"] = false;

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Mysql($config);

<?php

// Required
$config = [
 "host" => "localhost",
 "username" => "postgres",
 "password" => "secret1",
 "dbname" => "template",
];

// Optional
$config["schema"] = "public";

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Postgresql($config);

<?php

// Required
$config = [
 "dbname" => "/path/to/database.db",
];

// Create a connection
$connection = new \Phalcon\Db\Adapter\Pdo\Sqlite($config);

Setting up additional PDO options

You can set PDO options at connection time by passing the parameters ‘options’:

<?php

// Create a connection with PDO options
$connection = new \Phalcon\Db\Adapter\Pdo\Mysql(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "sigma",
 "dbname" => "test_db",
 "options" => [
 PDO::MYSQL_ATTR_INIT_COMMAND => "SET NAMES 'UTF8'",
 PDO::ATTR_CASE => PDO::CASE_LOWER,
]
]
);

Finding Rows

Phalcon\Db provides several methods to query rows from tables. The specific SQL syntax of the target database engine is required in this case:

<?php

$sql = "SELECT id, name FROM robots ORDER BY name";

// Send a SQL statement to the database system
$result = $connection->query($sql);

// Print each robot name
while ($robot = $result->fetch()) {
 echo $robot["name"];
}

// Get all rows in an array
$robots = $connection->fetchAll($sql);
foreach ($robots as $robot) {
 echo $robot["name"];
}

// Get only the first row
$robot = $connection->fetchOne($sql);

By default these calls create arrays with both associative and numeric indexes. You can change this behavior by using Phalcon\Db\Result::setFetchMode(). This method receives a constant, defining which kind of index is required.

	Constant
	Description

	Phalcon\Db::FETCH_NUM
	Return an array with numeric indexes

	Phalcon\Db::FETCH_ASSOC
	Return an array with associative indexes

	Phalcon\Db::FETCH_BOTH
	Return an array with both associative and numeric indexes

	Phalcon\Db::FETCH_OBJ
	Return an object instead of an array

<?php

$sql = "SELECT id, name FROM robots ORDER BY name";
$result = $connection->query($sql);

$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = $result->fetch()) {
 echo $robot[0];
}

The Phalcon\Db::query() returns an instance of Phalcon\Db\Result\Pdo. These objects encapsulate all the functionality related to the returned resultset i.e. traversing, seeking specific records, count etc.

<?php

$sql = "SELECT id, name FROM robots";
$result = $connection->query($sql);

// Traverse the resultset
while ($robot = $result->fetch()) {
 echo $robot["name"];
}

// Seek to the third row
$result->seek(2);
$robot = $result->fetch();

// Count the resultset
echo $result->numRows();

Binding Parameters

Bound parameters is also supported in Phalcon\Db. Although there is a minimal performance impact by using
bound parameters, you are encouraged to use this methodology so as to eliminate the possibility of your code being subject to SQL
injection attacks. Both string and positional placeholders are supported. Binding parameters can simply be achieved as follows:

<?php

// Binding with numeric placeholders
$sql = "SELECT * FROM robots WHERE name = ? ORDER BY name";
$result = $connection->query(
 $sql,
 [
 "Wall-E",
]
);

// Binding with named placeholders
$sql = "INSERT INTO `robots`(name`, year) VALUES (:name, :year)";
$success = $connection->query(
 $sql,
 [
 "name" => "Astro Boy",
 "year" => 1952,
]
);

When using numeric placeholders, you will need to define them as integers i.e. 1 or 2. In this case “1” or “2”
are considered strings and not numbers, so the placeholder could not be successfully replaced. With any adapter
data are automatically escaped using PDO Quote [http://www.php.net/manual/en/pdo.quote.php].

This function takes into account the connection charset, so its recommended to define the correct charset
in the connection parameters or in your database server configuration, as a wrong
charset will produce undesired effects when storing or retrieving data.

Also, you can pass your parameters directly to the execute/query methods. In this case
bound parameters are directly passed to PDO:

<?php

// Binding with PDO placeholders
$sql = "SELECT * FROM robots WHERE name = ? ORDER BY name";
$result = $connection->query(
 $sql,
 [
 1 => "Wall-E",
]
);

Inserting/Updating/Deleting Rows

To insert, update or delete rows, you can use raw SQL or use the preset functions provided by the class:

<?php

// Inserting data with a raw SQL statement
$sql = "INSERT INTO `robots`(`name`, `year`) VALUES ('Astro Boy', 1952)";
$success = $connection->execute($sql);

// With placeholders
$sql = "INSERT INTO `robots`(`name`, `year`) VALUES (?, ?)";
$success = $connection->execute(
 $sql,
 [
 "Astro Boy",
 1952,
]
);

// Generating dynamically the necessary SQL
$success = $connection->insert(
 "robots",
 [
 "Astro Boy",
 1952,
],
 [
 "name",
 "year",
],
);

// Generating dynamically the necessary SQL (another syntax)
$success = $connection->insertAsDict(
 "robots",
 [
 "name" => "Astro Boy",
 "year" => 1952,
]
);

// Updating data with a raw SQL statement
$sql = "UPDATE `robots` SET `name` = 'Astro boy' WHERE `id` = 101";
$success = $connection->execute($sql);

// With placeholders
$sql = "UPDATE `robots` SET `name` = ? WHERE `id` = ?";
$success = $connection->execute(
 $sql,
 [
 "Astro Boy",
 101,
]
);

// Generating dynamically the necessary SQL
$success = $connection->update(
 "robots",
 [
 "name",
],
 [
 "New Astro Boy",
],
 "id = 101" // Warning! In this case values are not escaped
);

// Generating dynamically the necessary SQL (another syntax)
$success = $connection->updateAsDict(
 "robots",
 [
 "name" => "New Astro Boy",
],
 "id = 101" // Warning! In this case values are not escaped
);

// With escaping conditions
$success = $connection->update(
 "robots",
 [
 "name",
],
 [
 "New Astro Boy",
],
 [
 "conditions" => "id = ?",
 "bind" => [101],
 "bindTypes" => [PDO::PARAM_INT], // Optional parameter
]
);
$success = $connection->updateAsDict(
 "robots",
 [
 "name" => "New Astro Boy",
],
 [
 "conditions" => "id = ?",
 "bind" => [101],
 "bindTypes" => [PDO::PARAM_INT], // Optional parameter
]
);

// Deleting data with a raw SQL statement
$sql = "DELETE `robots` WHERE `id` = 101";
$success = $connection->execute($sql);

// With placeholders
$sql = "DELETE `robots` WHERE `id` = ?";
$success = $connection->execute($sql, [101]);

// Generating dynamically the necessary SQL
$success = $connection->delete(
 "robots",
 "id = ?",
 [
 101,
]
);

Transactions and Nested Transactions

Working with transactions is supported as it is with PDO. Perform data manipulation inside transactions
often increase the performance on most database systems:

<?php

try {
 // Start a transaction
 $connection->begin();

 // Execute some SQL statements
 $connection->execute("DELETE `robots` WHERE `id` = 101");
 $connection->execute("DELETE `robots` WHERE `id` = 102");
 $connection->execute("DELETE `robots` WHERE `id` = 103");

 // Commit if everything goes well
 $connection->commit();
} catch (Exception $e) {
 // An exception has occurred rollback the transaction
 $connection->rollback();
}

In addition to standard transactions, Phalcon\Db provides built-in support for nested transactions [http://en.wikipedia.org/wiki/Nested_transaction]
(if the database system used supports them). When you call begin() for a second time a nested transaction
is created:

<?php

try {
 // Start a transaction
 $connection->begin();

 // Execute some SQL statements
 $connection->execute("DELETE `robots` WHERE `id` = 101");

 try {
 // Start a nested transaction
 $connection->begin();

 // Execute these SQL statements into the nested transaction
 $connection->execute("DELETE `robots` WHERE `id` = 102");
 $connection->execute("DELETE `robots` WHERE `id` = 103");

 // Create a save point
 $connection->commit();
 } catch (Exception $e) {
 // An error has occurred, release the nested transaction
 $connection->rollback();
 }

 // Continue, executing more SQL statements
 $connection->execute("DELETE `robots` WHERE `id` = 104");

 // Commit if everything goes well
 $connection->commit();
} catch (Exception $e) {
 // An exception has occurred rollback the transaction
 $connection->rollback();
}

Database Events

Phalcon\Db is able to send events to a EventsManager if it’s present. Some events when returning boolean false could stop the active operation. The following events are supported:

	Event Name
	Triggered
	Can stop operation?

	afterConnect
	After a successfully connection to a database system
	No

	beforeQuery
	Before send a SQL statement to the database system
	Yes

	afterQuery
	After send a SQL statement to database system
	No

	beforeDisconnect
	Before close a temporal database connection
	No

	beginTransaction
	Before a transaction is going to be started
	No

	rollbackTransaction
	Before a transaction is rollbacked
	No

	commitTransaction
	Before a transaction is committed
	No

Bind an EventsManager to a connection is simple, Phalcon\Db will trigger the events with the type “db”:

<?php

use Phalcon\Events\Manager as EventsManager;
use Phalcon\Db\Adapter\Pdo\Mysql as Connection;

$eventsManager = new EventsManager();

// Listen all the database events
$eventsManager->attach('db', $dbListener);

$connection = new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);

// Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

Stop SQL operations are very useful if for example you want to implement some last-resource SQL injector checker:

<?php

use Phalcon\Events\Event;

$eventsManager->attach(
 "db:beforeQuery",
 function (Event $event, $connection) {
 $sql = $connection->getSQLStatement();

 // Check for malicious words in SQL statements
 if (preg_match("/DROP|ALTER/i", $sql)) {
 // DROP/ALTER operations aren't allowed in the application,
 // this must be a SQL injection!
 return false;
 }

 // It's OK
 return true;
 }
);

Profiling SQL Statements

Phalcon\Db includes a profiling component called Phalcon\Db\Profiler, that is used to analyze the performance of database operations so as to diagnose performance problems and discover bottlenecks.

Database profiling is really easy With Phalcon\Db\Profiler:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Db\Profiler as DbProfiler;

$eventsManager = new EventsManager();

$profiler = new DbProfiler();

// Listen all the database events
$eventsManager->attach(
 "db",
 function (Event $event, $connection) use ($profiler) {
 if ($event->getType() === "beforeQuery") {
 $sql = $connection->getSQLStatement();

 // Start a profile with the active connection
 $profiler->startProfile($sql);
 }

 if ($event->getType() === "afterQuery") {
 // Stop the active profile
 $profiler->stopProfile();
 }
 }
);

// Assign the events manager to the connection
$connection->setEventsManager($eventsManager);

$sql = "SELECT buyer_name, quantity, product_name "
 . "FROM buyers "
 . "LEFT JOIN products ON buyers.pid = products.id";

// Execute a SQL statement
$connection->query($sql);

// Get the last profile in the profiler
$profile = $profiler->getLastProfile();

echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
echo "Start Time: ", $profile->getInitialTime(), "\n";
echo "Final Time: ", $profile->getFinalTime(), "\n";
echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";

You can also create your own profile class based on Phalcon\Db\Profiler to record real time statistics of the statements sent to the database system:

<?php

use Phalcon\Events\Manager as EventsManager;
use Phalcon\Db\Profiler as Profiler;
use Phalcon\Db\Profiler\Item as Item;

class DbProfiler extends Profiler
{
 /**
 * Executed before the SQL statement will sent to the db server
 */
 public function beforeStartProfile(Item $profile)
 {
 echo $profile->getSQLStatement();
 }

 /**
 * Executed after the SQL statement was sent to the db server
 */
 public function afterEndProfile(Item $profile)
 {
 echo $profile->getTotalElapsedSeconds();
 }
}

// Create an Events Manager
$eventsManager = new EventsManager();

// Create a listener
$dbProfiler = new DbProfiler();

// Attach the listener listening for all database events
$eventsManager->attach("db", $dbProfiler);

Logging SQL Statements

Using high-level abstraction components such as Phalcon\Db to access a database, it is difficult to understand which statements are sent to the database system. Phalcon\Logger interacts with Phalcon\Db, providing logging capabilities on the database abstraction layer.

<?php

use Phalcon\Logger;
use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Logger\Adapter\File as FileLogger;

$eventsManager = new EventsManager();

$logger = new FileLogger("app/logs/db.log");

$eventsManager->attach(
 "db:beforeQuery",
 function (Event $event, $connection) use ($logger) {
 $sql = $connection->getSQLStatement();

 $logger->log($sql, Logger::INFO);
 }
);

// Assign the eventsManager to the db adapter instance
$connection->setEventsManager($eventsManager);

// Execute some SQL statement
$connection->insert(
 "products",
 [
 "Hot pepper",
 3.50,
],
 [
 "name",
 "price",
]
);

As above, the file app/logs/db.log will contain something like this:

[Sun, 29 Apr 12 22:35:26 -0500][DEBUG][Resource Id #77] INSERT INTO products
(name, price) VALUES ('Hot pepper', 3.50)

Implementing your own Logger

You can implement your own logger class for database queries, by creating a class that implements a single method called “log”.
The method needs to accept a string as the first argument. You can then pass your logging object to Phalcon\Db::setLogger(),
and from then on any SQL statement executed will call that method to log the results.

Describing Tables/Views

Phalcon\Db also provides methods to retrieve detailed information about tables and views:

<?php

// Get tables on the test_db database
$tables = $connection->listTables("test_db");

// Is there a table 'robots' in the database?
$exists = $connection->tableExists("robots");

// Get name, data types and special features of 'robots' fields
$fields = $connection->describeColumns("robots");
foreach ($fields as $field) {
 echo "Column Type: ", $field["Type"];
}

// Get indexes on the 'robots' table
$indexes = $connection->describeIndexes("robots");
foreach ($indexes as $index) {
 print_r(
 $index->getColumns()
);
}

// Get foreign keys on the 'robots' table
$references = $connection->describeReferences("robots");
foreach ($references as $reference) {
 // Print referenced columns
 print_r(
 $reference->getReferencedColumns()
);
}

A table description is very similar to the MySQL describe command, it contains the following information:

	Index
	Description

	Field
	Field’s name

	Type
	Column Type

	Key
	Is the column part of the primary key or an index?

	Null
	Does the column allow null values?

Methods to get information about views are also implemented for every supported database system:

<?php

// Get views on the test_db database
$tables = $connection->listViews("test_db");

// Is there a view 'robots' in the database?
$exists = $connection->viewExists("robots");

Creating/Altering/Dropping Tables

Different database systems (MySQL, Postgresql etc.) offer the ability to create, alter or drop tables with the use of
commands such as CREATE, ALTER or DROP. The SQL syntax differs based on which database system is used.
Phalcon\Db offers a unified interface to alter tables, without the need to
differentiate the SQL syntax based on the target storage system.

Creating Tables

The following example shows how to create a table:

<?php

use \Phalcon\Db\Column as Column;

$connection->createTable(
 "robots",
 null,
 [
 "columns" => [
 new Column(
 "id",
 [
 "type" => Column::TYPE_INTEGER,
 "size" => 10,
 "notNull" => true,
 "autoIncrement" => true,
 "primary" => true,
]
),
 new Column(
 "name",
 [
 "type" => Column::TYPE_VARCHAR,
 "size" => 70,
 "notNull" => true,
]
),
 new Column(
 "year",
 [
 "type" => Column::TYPE_INTEGER,
 "size" => 11,
 "notNull" => true,
]
),
]
]
);

Phalcon\Db::createTable() accepts an associative array describing the table. Columns are defined with the class
Phalcon\Db\Column. The table below shows the options available to define a column:

	Option
	Description
	Optional

	“type”
	Column type. Must be a Phalcon\Db\Column constant (see below for a list)
	No

	“primary”
	True if the column is part of the table’s primary key
	Yes

	“size”
	Some type of columns like VARCHAR or INTEGER may have a specific size
	Yes

	“scale”
	DECIMAL or NUMBER columns may be have a scale to specify how many decimals should be stored
	Yes

	“unsigned”
	INTEGER columns may be signed or unsigned. This option does not apply to other types of columns
	Yes

	“notNull”
	Column can store null values?
	Yes

	“default”
	Default value (when used with "notNull" => true).
	Yes

	“autoIncrement”
	With this attribute column will filled automatically with an auto-increment integer. Only one column in the table can have this attribute.
	Yes

	“bind”
	One of the BIND_TYPE_* constants telling how the column must be binded before save it
	Yes

	“first”
	Column must be placed at first position in the column order
	Yes

	“after”
	Column must be placed after indicated column
	Yes

Phalcon\Db supports the following database column types:

	Phalcon\Db\Column::TYPE_INTEGER

	Phalcon\Db\Column::TYPE_DATE

	Phalcon\Db\Column::TYPE_VARCHAR

	Phalcon\Db\Column::TYPE_DECIMAL

	Phalcon\Db\Column::TYPE_DATETIME

	Phalcon\Db\Column::TYPE_CHAR

	Phalcon\Db\Column::TYPE_TEXT

The associative array passed in Phalcon\Db::createTable() can have the possible keys:

	Index
	Description
	Optional

	“columns”
	An array with a set of table columns defined with Phalcon\Db\Column
	No

	“indexes”
	An array with a set of table indexes defined with Phalcon\Db\Index
	Yes

	“references”
	An array with a set of table references (foreign keys) defined with Phalcon\Db\Reference
	Yes

	“options”
	An array with a set of table creation options. These options often relate to the database system in which the migration was generated.
	Yes

Altering Tables

As your application grows, you might need to alter your database, as part of a refactoring or adding new features.
Not all database systems allow to modify existing columns or add columns between two existing ones. Phalcon\Db
is limited by these constraints.

<?php

use Phalcon\Db\Column as Column;

// Adding a new column
$connection->addColumn(
 "robots",
 null,
 new Column(
 "robot_type",
 [
 "type" => Column::TYPE_VARCHAR,
 "size" => 32,
 "notNull" => true,
 "after" => "name",
]
)
);

// Modifying an existing column
$connection->modifyColumn(
 "robots",
 null,
 new Column(
 "name",
 [
 "type" => Column::TYPE_VARCHAR,
 "size" => 40,
 "notNull" => true,
]
)
);

// Deleting the column "name"
$connection->dropColumn(
 "robots",
 null,
 "name"
);

Dropping Tables

Examples on dropping tables:

<?php

// Drop table robot from active database
$connection->dropTable("robots");

// Drop table robot from database "machines"
$connection->dropTable("robots", "machines");

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Internationalization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Internationalization

Phalcon is written in C as an extension for PHP. There is a PECL [http://pecl.php.net/package/intl] extension that offers internationalization functions to PHP applications called intl [http://pecl.php.net/package/intl].
Starting from PHP 5.4/5.5 this extension is bundled with PHP. Its documentation can be found in the pages of the official PHP manual [http://www.php.net/manual/en/intro.intl.php].

Phalcon does not offer this functionality, since creating such a component would be replicating existing code.

In the examples below, we will show you how to implement the intl [http://pecl.php.net/package/intl] extension’s functionality into Phalcon powered applications.

This guide is not intended to be a complete documentation of the intl [http://pecl.php.net/package/intl] extension. Please visit its the documentation [http://www.php.net/manual/en/book.intl.php] of the extension for a reference.

Find out best available Locale

There are several ways to find out the best available locale using intl [http://pecl.php.net/package/intl]. One of them is to check the HTTP “Accept-Language” header:

<?php

$locale = Locale::acceptFromHttp($_SERVER["HTTP_ACCEPT_LANGUAGE"]);

// Locale could be something like "en_GB" or "en"
echo $locale;

Below method returns a locale identified. It is used to get language, culture, or regionally-specific behavior from the Locale API.

Examples of identifiers include:

	en-US (English, United States)

	ru-RU (Russian, Russia)

	zh-Hant-TW (Chinese, Traditional Script, Taiwan)

	fr-CA, fr-FR (French for Canada and France respectively)

Formatting messages based on Locale

Part of creating a localized application is to produce concatenated, language-neutral messages. The MessageFormatter [http://www.php.net/manual/en/class.messageformatter.php] allows for the
production of those messages.

Printing numbers formatted based on some locale:

<?php

// Prints € 4 560
$formatter = new MessageFormatter("fr_FR", "€ {0, number, integer}");
echo $formatter->format([4560]);

// Prints USD$ 4,560.5
$formatter = new MessageFormatter("en_US", "USD$ {0, number}");
echo $formatter->format([4560.50]);

// Prints ARS$ 1.250,25
$formatter = new MessageFormatter("es_AR", "ARS$ {0, number}");
echo $formatter->format([1250.25]);

Message formatting using time and date patterns:

<?php

// Setting parameters
$time = time();
$values = [7, $time, $time];

// Prints "At 3:50:31 PM on Apr 19, 2015, there was a disturbance on planet 7."
$pattern = "At {1, time} on {1, date}, there was a disturbance on planet {0, number}.";
$formatter = new MessageFormatter("en_US", $pattern);
echo $formatter->format($values);

// Prints "À 15:53:01 le 19 avr. 2015, il y avait une perturbation sur la planète 7."
$pattern = "À {1, time} le {1, date}, il y avait une perturbation sur la planète {0, number}.";
$formatter = new MessageFormatter("fr_FR", $pattern);
echo $formatter->format($values);

Locale-Sensitive comparison

The Collator [http://www.php.net/manual/en/class.collator.php] class provides string comparison capability with support for appropriate locale-sensitive sort orderings. Check the
examples below on the usage of this class:

<?php

// Create a collator using Spanish locale
$collator = new Collator("es");

// Returns that the strings are equal, in spite of the emphasis on the "o"
$collator->setStrength(Collator::PRIMARY);
var_dump($collator->compare("una canción", "una cancion"));

// Returns that the strings are not equal
$collator->setStrength(Collator::DEFAULT_VALUE);
var_dump($collator->compare("una canción", "una cancion"));

Transliteration

Transliterator [http://www.php.net/manual/en/class.transliterator.php] provides transliteration of strings:

<?php

$id = "Any-Latin; NFD; [:Nonspacing Mark:] Remove; NFC; [:Punctuation:] Remove; Lower();";
$transliterator = Transliterator::create($id);

$string = "garçon-étudiant-où-L'école";
echo $transliterator->transliterate($string); // garconetudiantoulecole

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Database Migrations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Database Migrations

Migrations are a convenient way for you to alter your database in a structured and organized manner.

Important: Migrations are available in Phalcon Developer Tools You need at least Phalcon Framework version 0.5.0 to use developer tools. Also, it is recommended to have PHP 5.4 or greater installed.

Often in development we need to update changes in production environments. Some of these changes could be database modifications like new fields, new tables, removing indexes, etc.

When a migration is generated a set of classes are created to describe how your database is structured at that particular moment. These classes can be used to synchronize the schema structure on remote databases setting your database ready to work with the new changes that your application implements. Migrations describe these transformations using plain PHP.

 Debugging Applications

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Debugging Applications

[image: ../_images/xdebug-1.jpg]

PHP offers tools to debug applications with notices, warnings, errors and exceptions. The Exception class [http://www.php.net/manual/en/language.exceptions.php] offers information such as the file,
line, message, numeric code, backtrace etc. on where an error occurred. OOP frameworks like Phalcon mainly use this class to encapsulate
this functionality and provide information back to the developer or user.

Despite being written in C, Phalcon executes methods in the PHP userland, providing the debug capability that any other application or framework
written in PHP has.

Catching Exceptions

Throughout the tutorials and examples of the Phalcon documentation, there is a common element that is catching exceptions. This is a try/catch block:

<?php

try {

 // ... Some Phalcon/PHP code

} catch (\Exception $e) {

}

Any exception thrown within the block is captured in the variable $e. A Phalcon\Exception extends the
PHP Exception class [http://www.php.net/manual/en/language.exceptions.php] and is used to understand whether the exception came from Phalcon or PHP itself.

All exceptions generated by PHP are based on the Exception class [http://www.php.net/manual/en/language.exceptions.php], and have at least the following elements:

<?php

class Exception
{

 /* Properties */
 protected string $message;
 protected int $code;
 protected string $file;
 protected int $line;

 /* Methods */
 public __construct ([string $message = "" [, int $code = 0 [, Exception $previous = NULL]]])
 final public string getMessage (void)
 final public Exception getPrevious (void)
 final public mixed getCode (void)
 final public string getFile (void)
 final public int getLine (void)
 final public array getTrace (void)
 final public string getTraceAsString (void)
 public string __toString (void)
 final private void __clone (void)
}

Retrieving information from Phalcon\Exception is the same as PHP’s Exception class [http://www.php.net/manual/en/language.exceptions.php]:

<?php

try {

 // ... App code ...

} catch (\Exception $e) {
 echo get_class($e), ": ", $e->getMessage(), "\n";
 echo " File=", $e->getFile(), "\n";
 echo " Line=", $e->getLine(), "\n";
 echo $e->getTraceAsString();
}

It’s therefore easy to find which file and line of the application’s code generated the exception, as well as the components involved in
generating the exception:

PDOException: SQLSTATE[28000] [1045] Access denied for user 'root'@'localhost'
 (using password: NO)
 File=/Applications/MAMP/htdocs/invo/public/index.php
 Line=74
#0 [internal function]: PDO->__construct('mysql:host=loca...', 'root', '', Array)
#1 [internal function]: Phalcon\Db\Adapter\Pdo->connect(Array)
#2 /Applications/MAMP/htdocs/invo/public/index.php(74):
 Phalcon\Db\Adapter\Pdo->__construct(Array)
#3 [internal function]: {closure}()
#4 [internal function]: call_user_func_array(Object(Closure), Array)
#5 [internal function]: Phalcon\Di->_factory(Object(Closure), Array)
#6 [internal function]: Phalcon\Di->get('db', Array)
#7 [internal function]: Phalcon\Di->getShared('db')
#8 [internal function]: Phalcon\Mvc\Model->getConnection()
#9 [internal function]: Phalcon\Mvc\Model::_getOrCreateResultset('Users', Array, true)
#10 /Applications/MAMP/htdocs/invo/app/controllers/SessionController.php(83):
 Phalcon\Mvc\Model::findFirst('email='demo@pha...')
#11 [internal function]: SessionController->startAction()
#12 [internal function]: call_user_func_array(Array, Array)
#13 [internal function]: Phalcon\Mvc\Dispatcher->dispatch()
#14 /Applications/MAMP/htdocs/invo/public/index.php(114): Phalcon\Mvc\Application->handle()
#15 {main}

As you can see from the above output the Phalcon’s classes and methods are displayed just like any other component, and even showing the
parameters that were invoked in every call. The method Exception::getTrace [http://www.php.net/manual/en/exception.gettrace.php] provides additional information if needed.

Debug component

Phalcon provides a debug component that allows the developer to easily find errors produced in an application
created with the framework.

The following screencast explains how it works:

 Unit testing

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Unit testing

Writing proper tests can assist in writing better software. If you set up proper test cases you can eliminate most functional bugs and better maintain your software.

Integrating PHPunit with phalcon

If you don’t already have phpunit installed, you can do it by using the following composer command:

composer require phpunit/phpunit

or by manually adding it to composer.json:

{
 "require-dev": {
 "phpunit/phpunit": "~4.5"
 }
}

Once phpunit is installed create a directory called ‘tests’ in your root directory:

app/
public/
tests/

Next, we need a ‘helper’ file to bootstrap the application for unit testing.

The PHPunit helper file

A helper file is required to bootstrap the application for running the tests. We have prepared a sample file. Put the file in your tests/ directory as TestHelper.php.

<?php

use Phalcon\Di;
use Phalcon\Di\FactoryDefault;
use Phalcon\Loader;

ini_set("display_errors", 1);
error_reporting(E_ALL);

define("ROOT_PATH", __DIR__);

set_include_path(
 ROOT_PATH . PATH_SEPARATOR . get_include_path()
);

// Required for phalcon/incubator
include __DIR__ . "/../vendor/autoload.php";

// Use the application autoloader to autoload the classes
// Autoload the dependencies found in composer
$loader = new Loader();

$loader->registerDirs(
 [
 ROOT_PATH,
]
);

$loader->register();

$di = new FactoryDefault();

Di::reset();

// Add any needed services to the DI here

Di::setDefault($di);

Should you need to test any components from your own library, add them to the autoloader or use the autoloader from your main application.

To help you build the unit tests, we made a few abstract classes you can use to bootstrap the unit tests themselves.
These files exist in the Phalcon incubator @ https://github.com/phalcon/incubator.

You can use the incubator library by adding it as a dependency:

composer require phalcon/incubator

or by manually adding it to composer.json:

{
 "require": {
 "phalcon/incubator": "dev-master"
 }
}

You can also clone the repository using the repo link above.

PHPunit.xml file

Now, create a phpunit file:

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="./TestHelper.php"
 backupGlobals="false"
 backupStaticAttributes="false"
 verbose="true"
 colors="false"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 processIsolation="false"
 stopOnFailure="false"
 syntaxCheck="true">
 <testsuite name="Phalcon - Testsuite">
 <directory>./</directory>
 </testsuite>
</phpunit>

Modify the phpunit.xml to fit your needs and save it in tests/.

This will run any tests under the tests/ directory.

Sample unit test

To run any unit tests you need to define them. The autoloader will make sure the proper files are loaded so all you need to do is create the files and phpunit will run the tests for you.

This example does not contain a config file, most test cases however, do need one. You can add it to the DI to get the UnitTestCase file.

First create a base unit test called UnitTestCase.php in your /tests directory:

<?php

use Phalcon\Di;
use Phalcon\Test\UnitTestCase as PhalconTestCase;

abstract class UnitTestCase extends PhalconTestCase
{
 /**
 * @var bool
 */
 private $_loaded = false;

 public function setUp()
 {
 parent::setUp();

 // Load any additional services that might be required during testing
 $di = Di::getDefault();

 // Get any DI components here. If you have a config, be sure to pass it to the parent

 $this->setDi($di);

 $this->_loaded = true;
 }

 /**
 * Check if the test case is setup properly
 *
 * @throws \PHPUnit_Framework_IncompleteTestError;
 */
 public function __destruct()
 {
 if (!$this->_loaded) {
 throw new \PHPUnit_Framework_IncompleteTestError(
 "Please run parent::setUp()."
);
 }
 }
}

It’s always a good idea to separate your Unit tests in namespaces. For this test we will create the namespace ‘Test’. So create a file called testsTestUnitTest.php:

<?php

namespace Test;

/**
 * Class UnitTest
 */
class UnitTest extends \UnitTestCase
{
 public function testTestCase()
 {
 $this->assertEquals(
 "works",
 "works",
 "This is OK"
);

 $this->assertEquals(
 "works",
 "works1",
 "This will fail"
);
 }
}

Now when you execute ‘phpunit’ in your command-line from the tests directory you will get the following output:

$ phpunit
PHPUnit 3.7.23 by Sebastian Bergmann.

Configuration read from /private/var/www/tests/phpunit.xml

Time: 3 ms, Memory: 3.25Mb

There was 1 failure:

1) Test\UnitTest::testTestCase
This will fail
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'works'
+'works1'

/private/var/www/tests/Test/UnitTest.php:25

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

Now you can start building your unit tests. You can view a good guide here (we also recommend reading the PHPunit documentation if you’re not familiar with PHPunit):

http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Increasing Performance: What’s next?

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Increasing Performance: What’s next?

Get faster applications requires refine many aspects: server, client, network, database, web server, static sources, etc.
In this chapter we highlight scenarios where you can improve performance and how detect what is really slow in your application.

Profile on the Server

Each application is different, the permanent profiling is important to understand where performance can be increased.
Profiling gives us a real picture on what is really slow and what does not. Profiles can vary between a request and another,
so it is important to make enough measurements to make conclusions.

Profiling with XDebug

Xdebug [http://xdebug.org/docs] provides an easier way to profile PHP applications, just install the extension and enable profiling in the php.ini:

xdebug.profiler_enable = On

Using a tool like Webgrind [https://github.com/jokkedk/webgrind/] you can see which functions/methods are slower than others:

[image: ../_images/webgrind.jpg]

Profiling with Xhprof

Xhprof [https://github.com/facebook/xhprof] is another interesting extension to profile PHP applications. Add the following line to the start of the bootstrap file:

<?php

xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMORY);

Then at the end of the file save the profiled data:

<?php

$xhprof_data = xhprof_disable('/tmp');

$XHPROF_ROOT = "/var/www/xhprof/";
include_once $XHPROF_ROOT . "/xhprof_lib/utils/xhprof_lib.php";
include_once $XHPROF_ROOT . "/xhprof_lib/utils/xhprof_runs.php";

$xhprof_runs = new XHProfRuns_Default();
$run_id = $xhprof_runs->save_run($xhprof_data, "xhprof_testing");

echo "http://localhost/xhprof/xhprof_html/index.php?run={$run_id}&source=xhprof_testing\n";

Xhprof provides a built-in HTML viewer to analyze the profiled data:

[image: ../_images/xhprof-2.jpg]

[image: ../_images/xhprof-1.jpg]

Profiling SQL Statements

Most database systems provide tools to identify slow SQL statements. Detecting and fixing slow queries is very important in order to increase performance
in the server side. In the Mysql case, you can use the slow query log to know what SQL queries are taking more time than expected:

log-slow-queries = /var/log/slow-queries.log
long_query_time = 1.5

Profile on the Client

Sometimes we may need to improve the loading of static elements such as images, javascript and css to improve performance.
The following tools are useful to detect common bottlenecks in the client side:

Profile with Chrome/Firefox

Most modern browsers have tools to profile the page loading time. In Chrome you can use the web inspector to know how much time is taking the
loading of the different resources required by a single page:

[image: ../_images/chrome-1.jpg]

Firebug [http://getfirebug.com/] provides a similar functionality:

[image: ../_images/firefox-1.jpg]

Yahoo! YSlow

YSlow [http://developer.yahoo.com/yslow/] analyzes web pages and suggests ways to improve their performance based on a set of rules for high performance web pages [http://developer.yahoo.com/performance/rules.html]

[image: ../_images/yslow-1.jpg]

Profile with Speed Tracer

Speed Tracer [https://developers.google.com/web-toolkit/speedtracer/] is a tool to help you identify and fix performance problems in your web applications. It visualizes metrics that are taken
from low level instrumentation points inside of the browser and analyzes them as your application runs. Speed Tracer is available as a
Chrome extension and works on all platforms where extensions are currently supported (Windows and Linux).

[image: ../_images/speed-tracer.jpg]

This tool is very useful because it help you to get the real time used to render the whole page including HTML parsing,
Javascript evaluation and CSS styling.

Use a recent PHP version

PHP is faster every day, using the latest version improves the performance of your applications and also of Phalcon.

Use a PHP Bytecode Cache

APC [http://php.net/manual/en/book.apc.php] as many other bytecode caches help an application to reduce the overhead of read, tokenize and parse PHP files in each request.
Once the extension is installed use the following setting to enable APC:

apc.enabled = On

PHP 5.5 includes a built-in bytecode cache called ZendOptimizer+, this extension is also available for 5.3 and 5.4.

Do blocking work in the background

Process a video, send e-mails, compress a file or an image, etc., are slow tasks that must be processed in background jobs.
There are a variety of tools that provide queuing or messaging systems that work well with PHP:

	Beanstalkd [http://kr.github.io/beanstalkd/]

	Redis [http://redis.io/]

	RabbitMQ [http://www.rabbitmq.com/]

	Resque [https://github.com/chrisboulton/php-resque]

	Gearman [http://gearman.org/]

	ZeroMQ [http://www.zeromq.org/]

Google Page Speed

mod_pagespeed [https://developers.google.com/speed/pagespeed/mod] speeds up your site and reduces page load time. This open-source Apache HTTP server module (also available
for nginx as ngx_pagespeed [https://developers.google.com/speed/pagespeed/ngx]) automatically applies web performance best practices to pages, and associated assets
(CSS, JavaScript, images) without requiring that you modify your existing content or workflow.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Dependency Injection Explained

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Dependency Injection Explained

The following example is a bit lengthy, but it attempts to explain why Phalcon uses service location and dependency injection.
First, let’s pretend we are developing a component called SomeComponent. This performs a task that is not important now.
Our component has some dependency that is a connection to a database.

In this first example, the connection is created inside the component. This approach is impractical; due to the fact
we cannot change the connection parameters or the type of database system because the component only works as created.

<?php

class SomeComponent
{
 /**
 * The instantiation of the connection is hardcoded inside
 * the component, therefore it's difficult replace it externally
 * or change its behavior
 */
 public function someDbTask()
 {
 $connection = new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);

 // ...
 }
}

$some = new SomeComponent();

$some->someDbTask();

To solve this, we have created a setter that injects the dependency externally before using it. For now, this seems to be
a good solution:

<?php

class SomeComponent
{
 protected $_connection;

 /**
 * Sets the connection externally
 */
 public function setConnection($connection)
 {
 $this->_connection = $connection;
 }

 public function someDbTask()
 {
 $connection = $this->_connection;

 // ...
 }
}

$some = new SomeComponent();

// Create the connection
$connection = new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);

// Inject the connection in the component
$some->setConnection($connection);

$some->someDbTask();

Now consider that we use this component in different parts of the application and
then we will need to create the connection several times before passing it to the component.
Using some kind of global registry where we obtain the connection instance and not have
to create it again and again could solve this:

<?php

class Registry
{
 /**
 * Returns the connection
 */
 public static function getConnection()
 {
 return new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);
 }
}

class SomeComponent
{
 protected $_connection;

 /**
 * Sets the connection externally
 */
 public function setConnection($connection)
 {
 $this->_connection = $connection;
 }

 public function someDbTask()
 {
 $connection = $this->_connection;

 // ...
 }
}

$some = new SomeComponent();

// Pass the connection defined in the registry
$some->setConnection(Registry::getConnection());

$some->someDbTask();

Now, let’s imagine that we must implement two methods in the component, the first always needs to create a new connection and the second always needs to use a shared connection:

<?php

class Registry
{
 protected static $_connection;

 /**
 * Creates a connection
 */
 protected static function _createConnection()
 {
 return new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);
 }

 /**
 * Creates a connection only once and returns it
 */
 public static function getSharedConnection()
 {
 if (self::$_connection === null) {
 self::$_connection = self::_createConnection();
 }

 return self::$_connection;
 }

 /**
 * Always returns a new connection
 */
 public static function getNewConnection()
 {
 return self::_createConnection();
 }
}

class SomeComponent
{
 protected $_connection;

 /**
 * Sets the connection externally
 */
 public function setConnection($connection)
 {
 $this->_connection = $connection;
 }

 /**
 * This method always needs the shared connection
 */
 public function someDbTask()
 {
 $connection = $this->_connection;

 // ...
 }

 /**
 * This method always needs a new connection
 */
 public function someOtherDbTask($connection)
 {

 }
}

$some = new SomeComponent();

// This injects the shared connection
$some->setConnection(
 Registry::getSharedConnection()
);

$some->someDbTask();

// Here, we always pass a new connection as parameter
$some->someOtherDbTask(
 Registry::getNewConnection()
);

So far we have seen how dependency injection solved our problems. Passing dependencies as arguments instead
of creating them internally in the code makes our application more maintainable and decoupled. However, in the long-term,
this form of dependency injection has some disadvantages.

For instance, if the component has many dependencies, we will need to create multiple setter arguments to pass
the dependencies or create a constructor that pass them with many arguments, additionally creating dependencies
before using the component, every time, makes our code not as maintainable as we would like:

<?php

// Create the dependencies or retrieve them from the registry
$connection = new Connection();
$session = new Session();
$fileSystem = new FileSystem();
$filter = new Filter();
$selector = new Selector();

// Pass them as constructor parameters
$some = new SomeComponent($connection, $session, $fileSystem, $filter, $selector);

// ... Or using setters
$some->setConnection($connection);
$some->setSession($session);
$some->setFileSystem($fileSystem);
$some->setFilter($filter);
$some->setSelector($selector);

Think if we had to create this object in many parts of our application. In the future, if we do not require any of the dependencies,
we need to go through the entire code base to remove the parameter in any constructor or setter where we injected the code. To solve this,
we return again to a global registry to create the component. However, it adds a new layer of abstraction before creating
the object:

<?php

class SomeComponent
{
 // ...

 /**
 * Define a factory method to create SomeComponent instances injecting its dependencies
 */
 public static function factory()
 {
 $connection = new Connection();
 $session = new Session();
 $fileSystem = new FileSystem();
 $filter = new Filter();
 $selector = new Selector();

 return new self($connection, $session, $fileSystem, $filter, $selector);
 }
}

Now we find ourselves back where we started, we are again building the dependencies inside of the component! We must find a solution that
keeps us from repeatedly falling into bad practices.

A practical and elegant way to solve these problems is using a container for dependencies. The containers act as the global registry that
we saw earlier. Using the container for dependencies as a bridge to obtain the dependencies allows us to reduce the complexity
of our component:

<?php

use Phalcon\Di;
use Phalcon\DiInterface;

class SomeComponent
{
 protected $_di;

 public function __construct(DiInterface $di)
 {
 $this->_di = $di;
 }

 public function someDbTask()
 {
 // Get the connection service
 // Always returns a new connection
 $connection = $this->_di->get("db");
 }

 public function someOtherDbTask()
 {
 // Get a shared connection service,
 // this will return the same connection every time
 $connection = $this->_di->getShared("db");

 // This method also requires an input filtering service
 $filter = $this->_di->get("filter");
 }
}

$di = new Di();

// Register a "db" service in the container
$di->set(
 "db",
 function () {
 return new Connection(
 [
 "host" => "localhost",
 "username" => "root",
 "password" => "secret",
 "dbname" => "invo",
]
);
 }
);

// Register a "filter" service in the container
$di->set(
 "filter",
 function () {
 return new Filter();
 }
);

// Register a "session" service in the container
$di->set(
 "session",
 function () {
 return new Session();
 }
);

// Pass the service container as unique parameter
$some = new SomeComponent($di);

$some->someDbTask();

The component can now simply access the service it requires when it needs it, if it does not require a service it is not even initialized,
saving resources. The component is now highly decoupled. For example, we can replace the manner in which connections are created,
their behavior or any other aspect of them and that would not affect the component.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Understanding How Phalcon Applications Work

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

Understanding How Phalcon Applications Work

If you’ve been following the tutorial or have generated the code using Phalcon Devtools,
you may recognize the following bootstrap file:

<?php

use Phalcon\Mvc\Application;

// Register autoloaders
// ...

// Register services
// ...

// Handle the request
$application = new Application($di);

try {
 $response = $application->handle();

 $response->send();
} catch (\Exception $e) {
 echo "Exception: ", $e->getMessage();
}

The core of all the work of the controller occurs when handle() is invoked:

<?php

$response = $application->handle();

Manual bootstrapping

If you do not wish to use Phalcon\Mvc\Application, the code above can be changed as follows:

<?php

// Get the 'router' service
$router = $di["router"];

$router->handle();

$view = $di["view"];

$dispatcher = $di["dispatcher"];

// Pass the processed router parameters to the dispatcher

$dispatcher->setControllerName(
 $router->getControllerName()
);

$dispatcher->setActionName(
 $router->getActionName()
);

$dispatcher->setParams(
 $router->getParams()
);

// Start the view
$view->start();

// Dispatch the request
$dispatcher->dispatch();

// Render the related views
$view->render(
 $dispatcher->getControllerName(),
 $dispatcher->getActionName(),
 $dispatcher->getParams()
);

// Finish the view
$view->finish();

$response = $di["response"];

// Pass the output of the view to the response
$response->setContent(
 $view->getContent()
);

// Send the response
$response->send();

The following replacement of Phalcon\Mvc\Application lacks of a view component making it suitable for Rest APIs:

<?php

use Phalcon\Http\ResponseInterface;

// Get the 'router' service
$router = $di["router"];

$router->handle();

$dispatcher = $di["dispatcher"];

// Pass the processed router parameters to the dispatcher

$dispatcher->setControllerName(
 $router->getControllerName()
);

$dispatcher->setActionName(
 $router->getActionName()
);

$dispatcher->setParams(
 $router->getParams()
);

// Dispatch the request
$dispatcher->dispatch();

// Get the returned value by the last executed action
$response = $dispatcher->getReturnedValue();

// Check if the action returned is a 'response' object
if ($response instanceof ResponseInterface) {
 // Send the response
 $response->send();
}

Yet another alternative that catch exceptions produced in the dispatcher forwarding to other actions consequently:

<?php

use Phalcon\Http\ResponseInterface;

// Get the 'router' service
$router = $di["router"];

$router->handle();

$dispatcher = $di["dispatcher"];

// Pass the processed router parameters to the dispatcher

$dispatcher->setControllerName(
 $router->getControllerName()
);

$dispatcher->setActionName(
 $router->getActionName()
);

$dispatcher->setParams(
 $router->getParams()
);

try {
 // Dispatch the request
 $dispatcher->dispatch();
} catch (Exception $e) {
 // An exception has occurred, dispatch some controller/action aimed for that

 // Pass the processed router parameters to the dispatcher
 $dispatcher->setControllerName("errors");
 $dispatcher->setActionName("action503");

 // Dispatch the request
 $dispatcher->dispatch();
}

// Get the returned value by the last executed action
$response = $dispatcher->getReturnedValue();

// Check if the action returned is a 'response' object
if ($response instanceof ResponseInterface) {
 // Send the response
 $response->send();
}

Although the above implementations are a lot more verbose than the code needed while using Phalcon\Mvc\Application,
it offers an alternative in bootstrapping your application. Depending on your needs, you might want to have full control of what
should be instantiated or not, or replace certain components with those of your own to extend the default functionality.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 API Indice

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

API Indice

	Abstract class Phalcon\Acl

	Abstract class Phalcon\Acl\Adapter

	Class Phalcon\Acl\Adapter\Memory

	Class Phalcon\Acl\Exception

	Class Phalcon\Acl\Resource

	Class Phalcon\Acl\Role

	Abstract class Phalcon\Annotations\Adapter

	Class Phalcon\Annotations\Adapter\Apc

	Class Phalcon\Annotations\Adapter\Files

	Class Phalcon\Annotations\Adapter\Memory

	Class Phalcon\Annotations\Adapter\Xcache

	Class Phalcon\Annotations\Annotation

	Class Phalcon\Annotations\Collection

	Class Phalcon\Annotations\Exception

	Class Phalcon\Annotations\Reader

	Class Phalcon\Annotations\Reflection

	Abstract class Phalcon\Application

	Class Phalcon\Application\Exception

	Class Phalcon\Assets\Collection

	Class Phalcon\Assets\Exception

	Class Phalcon\Assets\Filters\Cssmin

	Class Phalcon\Assets\Filters\Jsmin

	Class Phalcon\Assets\Filters\None

	Class Phalcon\Assets\Inline

	Class Phalcon\Assets\Inline\Css

	Class Phalcon\Assets\Inline\Js

	Class Phalcon\Assets\Manager

	Class Phalcon\Assets\Resource

	Class Phalcon\Assets\Resource\Css

	Class Phalcon\Assets\Resource\Js

	Abstract class Phalcon\Cache\Backend

	Class Phalcon\Cache\Backend\Apc

	Class Phalcon\Cache\Backend\File

	Class Phalcon\Cache\Backend\Libmemcached

	Class Phalcon\Cache\Backend\Memcache

	Class Phalcon\Cache\Backend\Memory

	Class Phalcon\Cache\Backend\Mongo

	Class Phalcon\Cache\Backend\Redis

	Class Phalcon\Cache\Backend\Xcache

	Class Phalcon\Cache\Exception

	Class Phalcon\Cache\Frontend\Base64

	Class Phalcon\Cache\Frontend\Data

	Class Phalcon\Cache\Frontend\Igbinary

	Class Phalcon\Cache\Frontend\Json

	Class Phalcon\Cache\Frontend\Msgpack

	Class Phalcon\Cache\Frontend\None

	Class Phalcon\Cache\Frontend\Output

	Class Phalcon\Cache\Multiple

	Class Phalcon\Cli\Console

	Class Phalcon\Cli\Console\Exception

	Class Phalcon\Cli\Dispatcher

	Class Phalcon\Cli\Dispatcher\Exception

	Class Phalcon\Cli\Router

	Class Phalcon\Cli\Router\Exception

	Class Phalcon\Cli\Router\Route

	Class Phalcon\Cli\Task

	Class Phalcon\Config

	Class Phalcon\Config\Adapter\Ini

	Class Phalcon\Config\Adapter\Json

	Class Phalcon\Config\Adapter\Php

	Class Phalcon\Config\Adapter\Yaml

	Class Phalcon\Config\Exception

	Class Phalcon\Crypt

	Class Phalcon\Crypt\Exception

	Abstract class Phalcon\Db

	Abstract class Phalcon\Db\Adapter

	Abstract class Phalcon\Db\Adapter\Pdo

	Class Phalcon\Db\Adapter\Pdo\Mysql

	Class Phalcon\Db\Adapter\Pdo\Postgresql

	Class Phalcon\Db\Adapter\Pdo\Sqlite

	Class Phalcon\Db\Column

	Abstract class Phalcon\Db\Dialect

	Class Phalcon\Db\Dialect\Mysql

	Class Phalcon\Db\Dialect\Postgresql

	Class Phalcon\Db\Dialect\Sqlite

	Class Phalcon\Db\Exception

	Class Phalcon\Db\Index

	Class Phalcon\Db\Profiler

	Class Phalcon\Db\Profiler\Item

	Class Phalcon\Db\RawValue

	Class Phalcon\Db\Reference

	Class Phalcon\Db\Result\Pdo

	Class Phalcon\Debug

	Class Phalcon\Debug\Dump

	Class Phalcon\Debug\Exception

	Class Phalcon\Di

	Class Phalcon\Di\Exception

	Class Phalcon\Di\FactoryDefault

	Class Phalcon\Di\FactoryDefault\Cli

	Abstract class Phalcon\Di\Injectable

	Class Phalcon\Di\Service

	Class Phalcon\Di\Service\Builder

	Abstract class Phalcon\Dispatcher

	Class Phalcon\Escaper

	Class Phalcon\Escaper\Exception

	Class Phalcon\Events\Event

	Class Phalcon\Events\Exception

	Class Phalcon\Events\Manager

	Class Phalcon\Exception

	Class Phalcon\Filter

	Class Phalcon\Filter\Exception

	Abstract class Phalcon\Flash

	Class Phalcon\Flash\Direct

	Class Phalcon\Flash\Exception

	Class Phalcon\Flash\Session

	Abstract class Phalcon\Forms\Element

	Class Phalcon\Forms\Element\Check

	Class Phalcon\Forms\Element\Date

	Class Phalcon\Forms\Element\Email

	Class Phalcon\Forms\Element\File

	Class Phalcon\Forms\Element\Hidden

	Class Phalcon\Forms\Element\Numeric

	Class Phalcon\Forms\Element\Password

	Class Phalcon\Forms\Element\Radio

	Class Phalcon\Forms\Element\Select

	Class Phalcon\Forms\Element\Submit

	Class Phalcon\Forms\Element\Text

	Class Phalcon\Forms\Element\TextArea

	Class Phalcon\Forms\Exception

	Class Phalcon\Forms\Form

	Class Phalcon\Forms\Manager

	Class Phalcon\Http\Cookie

	Class Phalcon\Http\Cookie\Exception

	Class Phalcon\Http\Request

	Class Phalcon\Http\Request\Exception

	Class Phalcon\Http\Request\File

	Class Phalcon\Http\Response

	Class Phalcon\Http\Response\Cookies

	Class Phalcon\Http\Response\Exception

	Class Phalcon\Http\Response\Headers

	Class Phalcon\Image

	Abstract class Phalcon\Image\Adapter

	Class Phalcon\Image\Adapter\Gd

	Class Phalcon\Image\Adapter\Imagick

	Class Phalcon\Image\Exception

	Class Phalcon\Kernel

	Class Phalcon\Loader

	Class Phalcon\Loader\Exception

	Abstract class Phalcon\Logger

	Abstract class Phalcon\Logger\Adapter

	Class Phalcon\Logger\Adapter\File

	Class Phalcon\Logger\Adapter\Firephp

	Class Phalcon\Logger\Adapter\Stream

	Class Phalcon\Logger\Adapter\Syslog

	Class Phalcon\Logger\Exception

	Abstract class Phalcon\Logger\Formatter

	Class Phalcon\Logger\Formatter\Firephp

	Class Phalcon\Logger\Formatter\Json

	Class Phalcon\Logger\Formatter\Line

	Class Phalcon\Logger\Formatter\Syslog

	Class Phalcon\Logger\Item

	Class Phalcon\Logger\Multiple

	Class Phalcon\Mvc\Application

	Class Phalcon\Mvc\Application\Exception

	Abstract class Phalcon\Mvc\Collection

	Abstract class Phalcon\Mvc\Collection\Behavior

	Class Phalcon\Mvc\Collection\Behavior\SoftDelete

	Class Phalcon\Mvc\Collection\Behavior\Timestampable

	Class Phalcon\Mvc\Collection\Document

	Class Phalcon\Mvc\Collection\Exception

	Class Phalcon\Mvc\Collection\Manager

	Abstract class Phalcon\Mvc\Controller

	Class Phalcon\Mvc\Dispatcher

	Class Phalcon\Mvc\Dispatcher\Exception

	Class Phalcon\Mvc\Micro

	Class Phalcon\Mvc\Micro\Collection

	Class Phalcon\Mvc\Micro\Exception

	Class Phalcon\Mvc\Micro\LazyLoader

	Abstract class Phalcon\Mvc\Model

	Abstract class Phalcon\Mvc\Model\Behavior

	Class Phalcon\Mvc\Model\Behavior\SoftDelete

	Class Phalcon\Mvc\Model\Behavior\Timestampable

	Class Phalcon\Mvc\Model\Criteria

	Class Phalcon\Mvc\Model\Exception

	Class Phalcon\Mvc\Model\Manager

	Class Phalcon\Mvc\Model\Message

	Abstract class Phalcon\Mvc\Model\MetaData

	Class Phalcon\Mvc\Model\MetaData\Apc

	Class Phalcon\Mvc\Model\MetaData\Files

	Class Phalcon\Mvc\Model\MetaData\Libmemcached

	Class Phalcon\Mvc\Model\MetaData\Memcache

	Class Phalcon\Mvc\Model\MetaData\Memory

	Class Phalcon\Mvc\Model\MetaData\Redis

	Class Phalcon\Mvc\Model\MetaData\Session

	Class Phalcon\Mvc\Model\MetaData\Strategy\Annotations

	Class Phalcon\Mvc\Model\MetaData\Strategy\Introspection

	Class Phalcon\Mvc\Model\MetaData\Xcache

	Class Phalcon\Mvc\Model\Query

	Class Phalcon\Mvc\Model\Query\Builder

	Abstract class Phalcon\Mvc\Model\Query\Lang

	Class Phalcon\Mvc\Model\Query\Status

	Class Phalcon\Mvc\Model\Relation

	Abstract class Phalcon\Mvc\Model\Resultset

	Class Phalcon\Mvc\Model\Resultset\Complex

	Class Phalcon\Mvc\Model\Resultset\Simple

	Class Phalcon\Mvc\Model\Row

	Class Phalcon\Mvc\Model\Transaction

	Class Phalcon\Mvc\Model\Transaction\Exception

	Class Phalcon\Mvc\Model\Transaction\Failed

	Class Phalcon\Mvc\Model\Transaction\Manager

	Class Phalcon\Mvc\Model\ValidationFailed

	Abstract class Phalcon\Mvc\Model\Validator

	Class Phalcon\Mvc\Model\Validator\Email

	Class Phalcon\Mvc\Model\Validator\Exclusionin

	Class Phalcon\Mvc\Model\Validator\Inclusionin

	Class Phalcon\Mvc\Model\Validator\Ip

	Class Phalcon\Mvc\Model\Validator\Numericality

	Class Phalcon\Mvc\Model\Validator\PresenceOf

	Class Phalcon\Mvc\Model\Validator\Regex

	Class Phalcon\Mvc\Model\Validator\StringLength

	Class Phalcon\Mvc\Model\Validator\Uniqueness

	Class Phalcon\Mvc\Model\Validator\Url

	Class Phalcon\Mvc\Router

	Class Phalcon\Mvc\Router\Annotations

	Class Phalcon\Mvc\Router\Exception

	Class Phalcon\Mvc\Router\Group

	Class Phalcon\Mvc\Router\Route

	Class Phalcon\Mvc\Url

	Class Phalcon\Mvc\Url\Exception

	Class Phalcon\Mvc\User\Component

	Class Phalcon\Mvc\User\Module

	Class Phalcon\Mvc\User\Plugin

	Class Phalcon\Mvc\View

	Abstract class Phalcon\Mvc\View\Engine

	Class Phalcon\Mvc\View\Engine\Php

	Class Phalcon\Mvc\View\Engine\Volt

	Class Phalcon\Mvc\View\Engine\Volt\Compiler

	Class Phalcon\Mvc\View\Engine\Volt\Exception

	Class Phalcon\Mvc\View\Exception

	Class Phalcon\Mvc\View\Simple

	Abstract class Phalcon\Paginator\Adapter

	Class Phalcon\Paginator\Adapter\Model

	Class Phalcon\Paginator\Adapter\NativeArray

	Class Phalcon\Paginator\Adapter\QueryBuilder

	Class Phalcon\Paginator\Exception

	Class Phalcon\Queue\Beanstalk

	Class Phalcon\Queue\Beanstalk\Exception

	Class Phalcon\Queue\Beanstalk\Job

	Final class Phalcon\Registry

	Class Phalcon\Security

	Class Phalcon\Security\Exception

	Class Phalcon\Security\Random

	Abstract class Phalcon\Session\Adapter

	Class Phalcon\Session\Adapter\Files

	Class Phalcon\Session\Adapter\Libmemcached

	Class Phalcon\Session\Adapter\Memcache

	Class Phalcon\Session\Adapter\Redis

	Class Phalcon\Session\Bag

	Class Phalcon\Session\Exception

	Class Phalcon\Tag

	Class Phalcon\Tag\Exception

	Abstract class Phalcon\Tag\Select

	Abstract class Phalcon\Text

	Abstract class Phalcon\Translate

	Abstract class Phalcon\Translate\Adapter

	Class Phalcon\Translate\Adapter\Csv

	Class Phalcon\Translate\Adapter\Gettext

	Class Phalcon\Translate\Adapter\NativeArray

	Class Phalcon\Translate\Exception

	Class Phalcon\Translate\Interpolator\AssociativeArray

	Class Phalcon\Translate\Interpolator\IndexedArray

	Class Phalcon\Validation

	Abstract class Phalcon\Validation\CombinedFieldsValidator

	Class Phalcon\Validation\Exception

	Class Phalcon\Validation\Message

	Class Phalcon\Validation\Message\Group

	Abstract class Phalcon\Validation\Validator

	Class Phalcon\Validation\Validator\Alnum

	Class Phalcon\Validation\Validator\Alpha

	Class Phalcon\Validation\Validator\Between

	Class Phalcon\Validation\Validator\Confirmation

	Class Phalcon\Validation\Validator\CreditCard

	Class Phalcon\Validation\Validator\Date

	Class Phalcon\Validation\Validator\Digit

	Class Phalcon\Validation\Validator\Email

	Class Phalcon\Validation\Validator\ExclusionIn

	Class Phalcon\Validation\Validator\File

	Class Phalcon\Validation\Validator\Identical

	Class Phalcon\Validation\Validator\InclusionIn

	Class Phalcon\Validation\Validator\Numericality

	Class Phalcon\Validation\Validator\PresenceOf

	Class Phalcon\Validation\Validator\Regex

	Class Phalcon\Validation\Validator\StringLength

	Class Phalcon\Validation\Validator\Uniqueness

	Class Phalcon\Validation\Validator\Url

	Class Phalcon\Version

	Interface Phalcon\Acl\AdapterInterface

	Interface Phalcon\Acl\ResourceAware

	Interface Phalcon\Acl\ResourceInterface

	Interface Phalcon\Acl\RoleAware

	Interface Phalcon\Acl\RoleInterface

	Interface Phalcon\Annotations\AdapterInterface

	Interface Phalcon\Annotations\ReaderInterface

	Interface Phalcon\Assets\FilterInterface

	Interface Phalcon\Cache\BackendInterface

	Interface Phalcon\Cache\FrontendInterface

	Interface Phalcon\Cli\DispatcherInterface

	Interface Phalcon\Cli\RouterInterface

	Interface Phalcon\Cli\Router\RouteInterface

	Interface Phalcon\Cli\TaskInterface

	Interface Phalcon\CryptInterface

	Interface Phalcon\Db\AdapterInterface

	Interface Phalcon\Db\ColumnInterface

	Interface Phalcon\Db\DialectInterface

	Interface Phalcon\Db\IndexInterface

	Interface Phalcon\Db\ReferenceInterface

	Interface Phalcon\Db\ResultInterface

	Interface Phalcon\DiInterface

	Interface Phalcon\Di\InjectionAwareInterface

	Interface Phalcon\Di\ServiceInterface

	Interface Phalcon\DispatcherInterface

	Interface Phalcon\EscaperInterface

	Interface Phalcon\Events\EventInterface

	Interface Phalcon\Events\EventsAwareInterface

	Interface Phalcon\Events\ManagerInterface

	Interface Phalcon\FilterInterface

	Interface Phalcon\Filter\UserFilterInterface

	Interface Phalcon\FlashInterface

	Interface Phalcon\Forms\ElementInterface

	Interface Phalcon\Http\CookieInterface

	Interface Phalcon\Http\RequestInterface

	Interface Phalcon\Http\Request\FileInterface

	Interface Phalcon\Http\ResponseInterface

	Interface Phalcon\Http\Response\CookiesInterface

	Interface Phalcon\Http\Response\HeadersInterface

	Interface Phalcon\Image\AdapterInterface

	Interface Phalcon\Logger\AdapterInterface

	Interface Phalcon\Logger\FormatterInterface

	Interface Phalcon\Mvc\CollectionInterface

	Interface Phalcon\Mvc\Collection\BehaviorInterface

	Interface Phalcon\Mvc\Collection\ManagerInterface

	Interface Phalcon\Mvc\ControllerInterface

	Interface Phalcon\Mvc\Controller\BindModelInterface

	Interface Phalcon\Mvc\DispatcherInterface

	Interface Phalcon\Mvc\EntityInterface

	Interface Phalcon\Mvc\Micro\CollectionInterface

	Interface Phalcon\Mvc\Micro\MiddlewareInterface

	Interface Phalcon\Mvc\ModelInterface

	Interface Phalcon\Mvc\Model\BehaviorInterface

	Interface Phalcon\Mvc\Model\CriteriaInterface

	Interface Phalcon\Mvc\Model\ManagerInterface

	Interface Phalcon\Mvc\Model\MessageInterface

	Interface Phalcon\Mvc\Model\MetaDataInterface

	Interface Phalcon\Mvc\Model\MetaData\StrategyInterface

	Interface Phalcon\Mvc\Model\QueryInterface

	Interface Phalcon\Mvc\Model\Query\BuilderInterface

	Interface Phalcon\Mvc\Model\Query\StatusInterface

	Interface Phalcon\Mvc\Model\RelationInterface

	Interface Phalcon\Mvc\Model\ResultInterface

	Interface Phalcon\Mvc\Model\ResultsetInterface

	Interface Phalcon\Mvc\Model\TransactionInterface

	Interface Phalcon\Mvc\Model\Transaction\ManagerInterface

	Interface Phalcon\Mvc\Model\ValidatorInterface

	Interface Phalcon\Mvc\ModuleDefinitionInterface

	Interface Phalcon\Mvc\RouterInterface

	Interface Phalcon\Mvc\Router\GroupInterface

	Interface Phalcon\Mvc\Router\RouteInterface

	Interface Phalcon\Mvc\UrlInterface

	Interface Phalcon\Mvc\ViewBaseInterface

	Interface Phalcon\Mvc\ViewInterface

	Interface Phalcon\Mvc\View\EngineInterface

	Interface Phalcon\Paginator\AdapterInterface

	Interface Phalcon\Session\AdapterInterface

	Interface Phalcon\Session\BagInterface

	Interface Phalcon\Translate\AdapterInterface

	Interface Phalcon\Translate\InterpolatorInterface

	Interface Phalcon\ValidationInterface

	Interface Phalcon\Validation\MessageInterface

	Interface Phalcon\Validation\ValidatorInterface

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Acl

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Acl

Source on GitHub

Constants

integer ALLOW

integer DENY

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Acl\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Acl\Adapter

implements Phalcon\Acl\AdapterInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

Adapter for Phalcon\Acl adapters

Methods

public getActiveRole ()

Role which the list is checking if it’s allowed to certain resource/access

public getActiveResource ()

Resource which the list is checking if some role can access it

public getActiveAccess ()

Active access which the list is checking if some role can access it

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public getEventsManager ()

Returns the internal event manager

public setDefaultAction (mixed $defaultAccess)

Sets the default access level (Phalcon\Acl::ALLOW or Phalcon\Acl::DENY)

public getDefaultAction ()

Returns the default ACL access level

abstract public setNoArgumentsDefaultAction (mixed $defaultAccess) inherited from Phalcon\Acl\AdapterInterface

...

abstract public getNoArgumentsDefaultAction () inherited from Phalcon\Acl\AdapterInterface

...

abstract public addRole (mixed $role, [mixed $accessInherits]) inherited from Phalcon\Acl\AdapterInterface

...

abstract public addInherit (mixed $roleName, mixed $roleToInherit) inherited from Phalcon\Acl\AdapterInterface

...

abstract public isRole (mixed $roleName) inherited from Phalcon\Acl\AdapterInterface

...

abstract public isResource (mixed $resourceName) inherited from Phalcon\Acl\AdapterInterface

...

abstract public addResource (mixed $resourceObject, mixed $accessList) inherited from Phalcon\Acl\AdapterInterface

...

abstract public addResourceAccess (mixed $resourceName, mixed $accessList) inherited from Phalcon\Acl\AdapterInterface

...

abstract public dropResourceAccess (mixed $resourceName, mixed $accessList) inherited from Phalcon\Acl\AdapterInterface

...

abstract public allow (mixed $roleName, mixed $resourceName, mixed $access, [mixed $func]) inherited from Phalcon\Acl\AdapterInterface

...

abstract public deny (mixed $roleName, mixed $resourceName, mixed $access, [mixed $func]) inherited from Phalcon\Acl\AdapterInterface

...

abstract public isAllowed (mixed $roleName, mixed $resourceName, mixed $access, [array $parameters]) inherited from Phalcon\Acl\AdapterInterface

...

abstract public getRoles () inherited from Phalcon\Acl\AdapterInterface

...

abstract public getResources () inherited from Phalcon\Acl\AdapterInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Acl\Adapter\Memory

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Acl\Adapter\Memory

extends abstract class Phalcon\Acl\Adapter

implements Phalcon\Events\EventsAwareInterface, Phalcon\Acl\AdapterInterface

Source on GitHub

Manages ACL lists in memory

<?php

$acl = new \Phalcon\Acl\Adapter\Memory();

$acl->setDefaultAction(Phalcon\Acl::DENY);

//Register roles
$roles = array(
 'users' => new \Phalcon\Acl\Role('Users'),
 'guests' => new \Phalcon\Acl\Role('Guests')
);
foreach ($roles as $role) {
 $acl->addRole($role);
}

//Private area resources
$privateResources = array(
 'companies' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),
 'products' => array('index', 'search', 'new', 'edit', 'save', 'create', 'delete'),
 'invoices' => array('index', 'profile')
);
foreach ($privateResources as $resource => $actions) {
 $acl->addResource(new Phalcon\Acl\Resource($resource), $actions);
}

//Public area resources
$publicResources = array(
 'index' => array('index'),
 'about' => array('index'),
 'session' => array('index', 'register', 'start', 'end'),
 'contact' => array('index', 'send')
);
foreach ($publicResources as $resource => $actions) {
 $acl->addResource(new Phalcon\Acl\Resource($resource), $actions);
}

//Grant access to public areas to both users and guests
foreach ($roles as $role){
 foreach ($publicResources as $resource => $actions) {
 $acl->allow($role->getName(), $resource, '*');
 }
}

//Grant access to private area to role Users
foreach ($privateResources as $resource => $actions) {
 foreach ($actions as $action) {
 $acl->allow('Users', $resource, $action);
 }
}

Methods

public __construct ()

Phalcon\Acl\Adapter\Memory constructor

public addRole (RoleInterface | string $role, [array | string $accessInherits])

Adds a role to the ACL list. Second parameter allows inheriting access data from other existing role Example:

<?php

 $acl->addRole(new Phalcon\Acl\Role('administrator'), 'consultant');
 $acl->addRole('administrator', 'consultant');

public addInherit (mixed $roleName, mixed $roleToInherit)

Do a role inherit from another existing role

public isRole (mixed $roleName)

Check whether role exist in the roles list

public isResource (mixed $resourceName)

Check whether resource exist in the resources list

public addResource (Phalcon\Acl\Resource | string $resourceValue, array | string $accessList)

Adds a resource to the ACL list Access names can be a particular action, by example search, update, delete, etc or a list of them Example:

<?php

 //Add a resource to the the list allowing access to an action
 $acl->addResource(new Phalcon\Acl\Resource('customers'), 'search');
 $acl->addResource('customers', 'search');

 //Add a resource with an access list
 $acl->addResource(new Phalcon\Acl\Resource('customers'), array('create', 'search'));
 $acl->addResource('customers', array('create', 'search'));

public addResourceAccess (mixed $resourceName, array | string $accessList)

Adds access to resources

public dropResourceAccess (mixed $resourceName, array | string $accessList)

Removes an access from a resource

protected _allowOrDeny (mixed $roleName, mixed $resourceName, mixed $access, mixed $action, [mixed $func])

Checks if a role has access to a resource

public allow (mixed $roleName, mixed $resourceName, mixed $access, [mixed $func])

Allow access to a role on a resource You can use ‘*’ as wildcard Example:

<?php

 //Allow access to guests to search on customers
 $acl->allow('guests', 'customers', 'search');

 //Allow access to guests to search or create on customers
 $acl->allow('guests', 'customers', array('search', 'create'));

 //Allow access to any role to browse on products
 $acl->allow('*', 'products', 'browse');

 //Allow access to any role to browse on any resource
 $acl->allow('*', '*', 'browse');

public deny (mixed $roleName, mixed $resourceName, mixed $access, [mixed $func])

Deny access to a role on a resource You can use ‘*’ as wildcard Example:

<?php

 //Deny access to guests to search on customers
 $acl->deny('guests', 'customers', 'search');

 //Deny access to guests to search or create on customers
 $acl->deny('guests', 'customers', array('search', 'create'));

 //Deny access to any role to browse on products
 $acl->deny('*', 'products', 'browse');

 //Deny access to any role to browse on any resource
 $acl->deny('*', '*', 'browse');

public isAllowed (mixed $roleName, mixed $resourceName, mixed $access, [array $parameters])

Check whether a role is allowed to access an action from a resource

<?php

 //Does andres have access to the customers resource to create?
 $acl->isAllowed('andres', 'Products', 'create');

 //Do guests have access to any resource to edit?
 $acl->isAllowed('guests', '*', 'edit');

public setNoArgumentsDefaultAction (mixed $defaultAccess)

Sets the default access level (Phalcon\Acl::ALLOW or Phalcon\Acl::DENY) for no arguments provided in isAllowed action if there exists func for accessKey

public getNoArgumentsDefaultAction ()

Returns the default ACL access level for no arguments provided in isAllowed action if there exists func for accessKey

public getRoles ()

Return an array with every role registered in the list

public getResources ()

Return an array with every resource registered in the list

public getActiveRole () inherited from Phalcon\Acl\Adapter

Role which the list is checking if it’s allowed to certain resource/access

public getActiveResource () inherited from Phalcon\Acl\Adapter

Resource which the list is checking if some role can access it

public getActiveAccess () inherited from Phalcon\Acl\Adapter

Active access which the list is checking if some role can access it

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Acl\Adapter

Sets the events manager

public getEventsManager () inherited from Phalcon\Acl\Adapter

Returns the internal event manager

public setDefaultAction (mixed $defaultAccess) inherited from Phalcon\Acl\Adapter

Sets the default access level (Phalcon\Acl::ALLOW or Phalcon\Acl::DENY)

public getDefaultAction () inherited from Phalcon\Acl\Adapter

Returns the default ACL access level

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Acl\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Acl\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Acl\Resource

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Acl\Resource

implements Phalcon\Acl\ResourceInterface

Source on GitHub

This class defines resource entity and its description

Methods

public getName ()

Resource name

public __toString ()

Resource name

public getDescription ()

Resource description

public __construct (mixed $name, [mixed $description])

Phalcon\Acl\Resource constructor

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Acl\Role

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Acl\Role

implements Phalcon\Acl\RoleInterface

Source on GitHub

This class defines role entity and its description

Methods

public getName ()

Role name

public __toString ()

Role name

public getDescription ()

Role description

public __construct (mixed $name, [mixed $description])

Phalcon\Acl\Role constructor

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Annotations\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Source on GitHub

This is the base class for Phalcon\Annotations adapters

Methods

public setReader (Phalcon\Annotations\ReaderInterface $reader)

Sets the annotations parser

public getReader ()

Returns the annotation reader

public get (string | object $className)

Parses or retrieves all the annotations found in a class

public getMethods (mixed $className)

Returns the annotations found in all the class’ methods

public getMethod (mixed $className, mixed $methodName)

Returns the annotations found in a specific method

public getProperties (mixed $className)

Returns the annotations found in all the class’ methods

public getProperty (mixed $className, mixed $propertyName)

Returns the annotations found in a specific property

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Adapter\Apc

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Adapter\Apc

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Source on GitHub

Stores the parsed annotations in APC. This adapter is suitable for production

<?php

 $annotations = new \Phalcon\Annotations\Adapter\Apc();

Methods

public __construct ([array $options])

Phalcon\Annotations\Adapter\Apc constructor

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from APC

public write (mixed $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to APC

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public get (string | object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public getMethods (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getMethod (mixed $className, mixed $methodName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific method

public getProperties (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getProperty (mixed $className, mixed $propertyName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific property

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Adapter\Files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Adapter\Files

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Source on GitHub

Stores the parsed annotations in files. This adapter is suitable for production

<?php

 use Phalcon\Annotations\Adapter\Files;

 $annotations = new Files(['annotationsDir' => 'app/cache/annotations/']);

Methods

public __construct ([array $options])

Phalcon\Annotations\Adapter\Files constructor

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from files

public write (mixed $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to files

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public get (string | object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public getMethods (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getMethod (mixed $className, mixed $methodName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific method

public getProperties (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getProperty (mixed $className, mixed $propertyName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific property

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Adapter\Memory

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Adapter\Memory

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Source on GitHub

Stores the parsed annotations in memory. This adapter is the suitable development/testing

Methods

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from memory

public write (mixed $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to memory

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public get (string | object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public getMethods (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getMethod (mixed $className, mixed $methodName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific method

public getProperties (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getProperty (mixed $className, mixed $propertyName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific property

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Adapter\Xcache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Adapter\Xcache

extends abstract class Phalcon\Annotations\Adapter

implements Phalcon\Annotations\AdapterInterface

Source on GitHub

Stores the parsed annotations to XCache. This adapter is suitable for production

<?php

 $annotations = new \Phalcon\Annotations\Adapter\Xcache();

Methods

public Phalcon\Annotations\Reflection read (string $key)

Reads parsed annotations from XCache

public write (mixed $key, Phalcon\Annotations\Reflection $data)

Writes parsed annotations to XCache

public setReader (Phalcon\Annotations\ReaderInterface $reader) inherited from Phalcon\Annotations\Adapter

Sets the annotations parser

public getReader () inherited from Phalcon\Annotations\Adapter

Returns the annotation reader

public get (string | object $className) inherited from Phalcon\Annotations\Adapter

Parses or retrieves all the annotations found in a class

public getMethods (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getMethod (mixed $className, mixed $methodName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific method

public getProperties (mixed $className) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in all the class’ methods

public getProperty (mixed $className, mixed $propertyName) inherited from Phalcon\Annotations\Adapter

Returns the annotations found in a specific property

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Annotation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Annotation

Source on GitHub

Represents a single annotation in an annotations collection

Methods

public __construct (array $reflectionData)

Phalcon\Annotations\Annotation constructor

public getName ()

Returns the annotation’s name

public mixed getExpression (array $expr)

Resolves an annotation expression

public array getExprArguments ()

Returns the expression arguments without resolving

public array getArguments ()

Returns the expression arguments

public numberArguments ()

Returns the number of arguments that the annotation has

public mixed getArgument (int | string $position)

Returns an argument in a specific position

public boolean hasArgument (int | string $position)

Returns an argument in a specific position

public mixed getNamedArgument (mixed $name)

Returns a named argument

public mixed getNamedParameter (mixed $name)

Returns a named parameter

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Collection

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Collection

implements Iterator [http://php.net/manual/en/class.iterator.php], Traversable [http://php.net/manual/en/class.traversable.php], Countable [http://php.net/manual/en/class.countable.php]

Source on GitHub

Represents a collection of annotations. This class allows to traverse a group of annotations easily

<?php

 //Traverse annotations
 foreach ($classAnnotations as $annotation) {
 echo 'Name=', $annotation->getName(), PHP_EOL;
 }

 //Check if the annotations has a specific
 var_dump($classAnnotations->has('Cacheable'));

 //Get an specific annotation in the collection
 $annotation = $classAnnotations->get('Cacheable');

Methods

public __construct ([array $reflectionData])

Phalcon\Annotations\Collection constructor

public count ()

Returns the number of annotations in the collection

public rewind ()

Rewinds the internal iterator

public Phalcon\Annotations\Annotation current ()

Returns the current annotation in the iterator

public key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public valid ()

Check if the current annotation in the iterator is valid

public getAnnotations ()

Returns the internal annotations as an array

public get (mixed $name)

Returns the first annotation that match a name

public getAll (mixed $name)

Returns all the annotations that match a name

public has (mixed $name)

Check if an annotation exists in a collection

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Exception

extends class Exception [http://php.net/manual/en/class.exception.php]

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Reader

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Reader

implements Phalcon\Annotations\ReaderInterface

Source on GitHub

Parses docblocks returning an array with the found annotations

Methods

public parse (mixed $className)

Reads annotations from the class dockblocks, its methods and/or properties

public static parseDocBlock (mixed $docBlock, [mixed $file], [mixed $line])

Parses a raw doc block returning the annotations found

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Annotations\Reflection

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Annotations\Reflection

Source on GitHub

Allows to manipulate the annotations reflection in an OO manner

<?php

 use Phalcon\Annotations\Reader;
 use Phalcon\Annotations\Reflection;

 // Parse the annotations in a class
 $reader = new Reader();
 $parsing = reader->parse('MyComponent');

 // Create the reflection
 $reflection = new Reflection($parsing);

 // Get the annotations in the class docblock
 $classAnnotations = reflection->getClassAnnotations();

Methods

public __construct ([array $reflectionData])

Phalcon\Annotations\Reflection constructor

public getClassAnnotations ()

Returns the annotations found in the class docblock

public getMethodsAnnotations ()

Returns the annotations found in the methods’ docblocks

public getPropertiesAnnotations ()

Returns the annotations found in the properties’ docblocks

public array getReflectionData ()

Returns the raw parsing intermediate definitions used to construct the reflection

public static array data __set_state (mixed $data)

Restores the state of a Phalcon\Annotations\Reflection variable export

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Application

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Base class for Phalcon\Cli\Console and Phalcon\Mvc\Application.

Methods

public __construct ([Phalcon\DiInterface $dependencyInjector])

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public getEventsManager ()

Returns the internal event manager

public registerModules (array $modules, [mixed $merge])

Register an array of modules present in the application

<?php

 $this->registerModules(
 [
 'frontend' => [
 'className' => 'Multiple\Frontend\Module',
 'path' => '../apps/frontend/Module.php'
],
 'backend' => [
 'className' => 'Multiple\Backend\Module',
 'path' => '../apps/backend/Module.php'
]
]
);

public getModules ()

Return the modules registered in the application

public getModule (mixed $name)

Gets the module definition registered in the application via module name

public setDefaultModule (mixed $defaultModule)

Sets the module name to be used if the router doesn’t return a valid module

public getDefaultModule ()

Returns the default module name

abstract public handle ()

Handles a request

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Application\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Application\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Collection

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Collection

implements Countable [http://php.net/manual/en/class.countable.php], Iterator [http://php.net/manual/en/class.iterator.php], Traversable [http://php.net/manual/en/class.traversable.php]

Source on GitHub

Represents a collection of resources

Methods

public getPrefix ()

...

public getLocal ()

...

public getResources ()

...

public getCodes ()

...

public getPosition ()

...

public getFilters ()

...

public getAttributes ()

...

public getJoin ()

...

public getTargetUri ()

...

public getTargetPath ()

...

public getTargetLocal ()

...

public getSourcePath ()

...

public add (Phalcon\Assets\Resource $resource)

Adds a resource to the collection

public addInline (Phalcon\Assets\Inline $code)

Adds an inline code to the collection

public addCss (mixed $path, [mixed $local], [mixed $filter], [mixed $attributes])

Adds a CSS resource to the collection

public addInlineCss (mixed $content, [mixed $filter], [mixed $attributes])

Adds an inline CSS to the collection

public Phalcon\Assets\Collection addJs (string $path, [boolean $local], [boolean $filter], [array $attributes])

Adds a javascript resource to the collection

public addInlineJs (mixed $content, [mixed $filter], [mixed $attributes])

Adds an inline javascript to the collection

public count ()

Returns the number of elements in the form

public rewind ()

Rewinds the internal iterator

public current ()

Returns the current resource in the iterator

public int key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public valid ()

Check if the current element in the iterator is valid

public setTargetPath (mixed $targetPath)

Sets the target path of the file for the filtered/join output

public setSourcePath (mixed $sourcePath)

Sets a base source path for all the resources in this collection

public setTargetUri (mixed $targetUri)

Sets a target uri for the generated HTML

public setPrefix (mixed $prefix)

Sets a common prefix for all the resources

public setLocal (mixed $local)

Sets if the collection uses local resources by default

public setAttributes (array $attributes)

Sets extra HTML attributes

public setFilters (array $filters)

Sets an array of filters in the collection

public setTargetLocal (mixed $targetLocal)

Sets the target local

public join (mixed $join)

Sets if all filtered resources in the collection must be joined in a single result file

public getRealTargetPath (mixed $basePath)

Returns the complete location where the joined/filtered collection must be written

public addFilter (Phalcon\Assets\FilterInterface $filter)

Adds a filter to the collection

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Filters\Cssmin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Filters\Cssmin

implements Phalcon\Assets\FilterInterface

Source on GitHub

Minify the css - removes comments removes newlines and line feeds keeping removes last semicolon from last property

Methods

public filter (mixed $content)

Filters the content using CSSMIN

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Filters\Jsmin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Filters\Jsmin

implements Phalcon\Assets\FilterInterface

Source on GitHub

Deletes the characters which are insignificant to JavaScript. Comments will be removed. Tabs will be replaced with spaces. Carriage returns will be replaced with linefeeds. Most spaces and linefeeds will be removed.

Methods

public filter (mixed $content)

Filters the content using JSMIN

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Filters\None

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Filters\None

implements Phalcon\Assets\FilterInterface

Source on GitHub

Returns the content without make any modification to the original source

Methods

public filter (mixed $content)

Returns the content without be touched

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Inline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Inline

Source on GitHub

Represents an inline asset

<?php

 $inline = new \Phalcon\Assets\Inline('js', 'alert("hello world");');

Methods

public getType ()

...

public getContent ()

...

public getFilter ()

...

public getAttributes ()

...

public __construct (string $type, string $content, [boolean $filter], [array $attributes])

Phalcon\Assets\Inline constructor

public setType (mixed $type)

Sets the inline’s type

public setFilter (mixed $filter)

Sets if the resource must be filtered or not

public setAttributes (array $attributes)

Sets extra HTML attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Inline\Css

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Inline\Css

extends class Phalcon\Assets\Inline

Source on GitHub

Represents an inlined CSS

Methods

public __construct (string $content, [boolean $filter], [array $attributes])

public getType () inherited from Phalcon\Assets\Inline

...

public getContent () inherited from Phalcon\Assets\Inline

...

public getFilter () inherited from Phalcon\Assets\Inline

...

public getAttributes () inherited from Phalcon\Assets\Inline

...

public setType (mixed $type) inherited from Phalcon\Assets\Inline

Sets the inline’s type

public setFilter (mixed $filter) inherited from Phalcon\Assets\Inline

Sets if the resource must be filtered or not

public setAttributes (array $attributes) inherited from Phalcon\Assets\Inline

Sets extra HTML attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Inline\Js

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Inline\Js

extends class Phalcon\Assets\Inline

Source on GitHub

Represents an inline Javascript

Methods

public __construct (string $content, [boolean $filter], [array $attributes])

public getType () inherited from Phalcon\Assets\Inline

...

public getContent () inherited from Phalcon\Assets\Inline

...

public getFilter () inherited from Phalcon\Assets\Inline

...

public getAttributes () inherited from Phalcon\Assets\Inline

...

public setType (mixed $type) inherited from Phalcon\Assets\Inline

Sets the inline’s type

public setFilter (mixed $filter) inherited from Phalcon\Assets\Inline

Sets if the resource must be filtered or not

public setAttributes (array $attributes) inherited from Phalcon\Assets\Inline

Sets extra HTML attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Manager

Source on GitHub

Manages collections of CSS/Javascript assets

Methods

public __construct ([array $options])

public setOptions (array $options)

Sets the manager options

public getOptions ()

Returns the manager options

public useImplicitOutput (mixed $implicitOutput)

Sets if the HTML generated must be directly printed or returned

public addCss (mixed $path, [mixed $local], [mixed $filter], [mixed $attributes])

Adds a Css resource to the ‘css’ collection

<?php

$assets->addCss('css/bootstrap.css');
$assets->addCss('http://bootstrap.my-cdn.com/style.css', false);

public addInlineCss (mixed $content, [mixed $filter], [mixed $attributes])

Adds an inline Css to the ‘css’ collection

public addJs (mixed $path, [mixed $local], [mixed $filter], [mixed $attributes])

Adds a javascript resource to the ‘js’ collection

<?php

$assets->addJs('scripts/jquery.js');
$assets->addJs('http://jquery.my-cdn.com/jquery.js', false);

public addInlineJs (mixed $content, [mixed $filter], [mixed $attributes])

Adds an inline javascript to the ‘js’ collection

public addResourceByType (mixed $type, Phalcon\Assets\Resource $resource)

Adds a resource by its type

<?php

$assets->addResourceByType('css', new \Phalcon\Assets\Resource\Css('css/style.css'));

public addInlineCodeByType (mixed $type, Phalcon\Assets\Inline $code)

Adds an inline code by its type

public addResource (Phalcon\Assets\Resource $resource)

Adds a raw resource to the manager

<?php

 $assets->addResource(new Phalcon\Assets\Resource('css', 'css/style.css'));

public addInlineCode (Phalcon\Assets\Inline $code)

Adds a raw inline code to the manager

public set (mixed $id, Phalcon\Assets\Collection $collection)

Sets a collection in the Assets Manager

<?php

 $assets->set('js', $collection);

public get (mixed $id)

Returns a collection by its id

<?php

 $scripts = $assets->get('js');

public getCss ()

Returns the CSS collection of assets

public getJs ()

Returns the CSS collection of assets

public collection (mixed $name)

Creates/Returns a collection of resources

public output (Phalcon\Assets\Collection $collection, callback $callback, string $type)

Traverses a collection calling the callback to generate its HTML

public outputInline (Phalcon\Assets\Collection $collection, string $type)

Traverses a collection and generate its HTML

public outputCss ([string $collectionName])

Prints the HTML for CSS resources

public outputInlineCss ([string $collectionName])

Prints the HTML for inline CSS

public outputJs ([string $collectionName])

Prints the HTML for JS resources

public outputInlineJs ([string $collectionName])

Prints the HTML for inline JS

public getCollections ()

Returns existing collections in the manager

public exists (mixed $id)

Returns true or false if collection exists

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Resource

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Resource

Source on GitHub

Represents an asset resource

<?php

 $resource = new \Phalcon\Assets\Resource('js', 'javascripts/jquery.js');

Methods

public getType ()

public getPath ()

public getLocal ()

public getFilter ()

public getAttributes ()

public getSourcePath ()

...

public getTargetPath ()

...

public getTargetUri ()

...

public __construct (string $type, string $path, [boolean $local], [boolean $filter], [array $attributes])

Phalcon\Assets\Resource constructor

public setType (mixed $type)

Sets the resource’s type

public setPath (mixed $path)

Sets the resource’s path

public setLocal (mixed $local)

Sets if the resource is local or external

public setFilter (mixed $filter)

Sets if the resource must be filtered or not

public setAttributes (array $attributes)

Sets extra HTML attributes

public setTargetUri (mixed $targetUri)

Sets a target uri for the generated HTML

public setSourcePath (mixed $sourcePath)

Sets the resource’s source path

public setTargetPath (mixed $targetPath)

Sets the resource’s target path

public getContent ([mixed $basePath])

Returns the content of the resource as an string Optionally a base path where the resource is located can be set

public getRealTargetUri ()

Returns the real target uri for the generated HTML

public getRealSourcePath ([mixed $basePath])

Returns the complete location where the resource is located

public getRealTargetPath ([mixed $basePath])

Returns the complete location where the resource must be written

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Resource\Css

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Resource\Css

extends class Phalcon\Assets\Resource

Source on GitHub

Represents CSS resources

Methods

public __construct (string $path, [boolean $local], [boolean $filter], [array $attributes])

public getType () inherited from Phalcon\Assets\Resource

public getPath () inherited from Phalcon\Assets\Resource

public getLocal () inherited from Phalcon\Assets\Resource

public getFilter () inherited from Phalcon\Assets\Resource

public getAttributes () inherited from Phalcon\Assets\Resource

public getSourcePath () inherited from Phalcon\Assets\Resource

...

public getTargetPath () inherited from Phalcon\Assets\Resource

...

public getTargetUri () inherited from Phalcon\Assets\Resource

...

public setType (mixed $type) inherited from Phalcon\Assets\Resource

Sets the resource’s type

public setPath (mixed $path) inherited from Phalcon\Assets\Resource

Sets the resource’s path

public setLocal (mixed $local) inherited from Phalcon\Assets\Resource

Sets if the resource is local or external

public setFilter (mixed $filter) inherited from Phalcon\Assets\Resource

Sets if the resource must be filtered or not

public setAttributes (array $attributes) inherited from Phalcon\Assets\Resource

Sets extra HTML attributes

public setTargetUri (mixed $targetUri) inherited from Phalcon\Assets\Resource

Sets a target uri for the generated HTML

public setSourcePath (mixed $sourcePath) inherited from Phalcon\Assets\Resource

Sets the resource’s source path

public setTargetPath (mixed $targetPath) inherited from Phalcon\Assets\Resource

Sets the resource’s target path

public getContent ([mixed $basePath]) inherited from Phalcon\Assets\Resource

Returns the content of the resource as an string Optionally a base path where the resource is located can be set

public getRealTargetUri () inherited from Phalcon\Assets\Resource

Returns the real target uri for the generated HTML

public getRealSourcePath ([mixed $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource is located

public getRealTargetPath ([mixed $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource must be written

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Assets\Resource\Js

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Assets\Resource\Js

extends class Phalcon\Assets\Resource

Source on GitHub

Represents Javascript resources

Methods

public __construct (string $path, [boolean $local], [boolean $filter], [array $attributes])

public getType () inherited from Phalcon\Assets\Resource

public getPath () inherited from Phalcon\Assets\Resource

public getLocal () inherited from Phalcon\Assets\Resource

public getFilter () inherited from Phalcon\Assets\Resource

public getAttributes () inherited from Phalcon\Assets\Resource

public getSourcePath () inherited from Phalcon\Assets\Resource

...

public getTargetPath () inherited from Phalcon\Assets\Resource

...

public getTargetUri () inherited from Phalcon\Assets\Resource

...

public setType (mixed $type) inherited from Phalcon\Assets\Resource

Sets the resource’s type

public setPath (mixed $path) inherited from Phalcon\Assets\Resource

Sets the resource’s path

public setLocal (mixed $local) inherited from Phalcon\Assets\Resource

Sets if the resource is local or external

public setFilter (mixed $filter) inherited from Phalcon\Assets\Resource

Sets if the resource must be filtered or not

public setAttributes (array $attributes) inherited from Phalcon\Assets\Resource

Sets extra HTML attributes

public setTargetUri (mixed $targetUri) inherited from Phalcon\Assets\Resource

Sets a target uri for the generated HTML

public setSourcePath (mixed $sourcePath) inherited from Phalcon\Assets\Resource

Sets the resource’s source path

public setTargetPath (mixed $targetPath) inherited from Phalcon\Assets\Resource

Sets the resource’s target path

public getContent ([mixed $basePath]) inherited from Phalcon\Assets\Resource

Returns the content of the resource as an string Optionally a base path where the resource is located can be set

public getRealTargetUri () inherited from Phalcon\Assets\Resource

Returns the real target uri for the generated HTML

public getRealSourcePath ([mixed $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource is located

public getRealTargetPath ([mixed $basePath]) inherited from Phalcon\Assets\Resource

Returns the complete location where the resource must be written

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Cache\Backend

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Cache\Backend

Source on GitHub

This class implements common functionality for backend adapters. A backend cache adapter may extend this class

Methods

public getFrontend ()

...

public setFrontend (mixed $frontend)

...

public getOptions ()

...

public setOptions (mixed $options)

...

public getLastKey ()

...

public setLastKey (mixed $lastKey)

...

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend constructor

public mixed start (int | string $keyName, [int $lifetime])

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer])

Stops the frontend without store any cached content

public isFresh ()

Checks whether the last cache is fresh or cached

public isStarted ()

Checks whether the cache has starting buffering or not

public int getLifetime ()

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Apc

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Apc

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments, PHP data and raw data using an APC backend

<?php

 use Phalcon\Cache\Backend\Apc;
 use Phalcon\Cache\Frontend\Data as FrontData;

 // Cache data for 2 days
 $frontCache = new FrontData([
 'lifetime' => 172800
]);

 $cache = new Apc($frontCache, [
 'prefix' => 'app-data'
]);

 // Cache arbitrary data
 $cache->save('my-data', [1, 2, 3, 4, 5]);

 // Get data
 $data = $cache->get('my-data');

Methods

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([string | long $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the APC backend and stops the frontend

public mixed increment ([string $keyName], [long $value])

Increment of a given key, by number $value

public mixed decrement ([string $keyName], [long $value])

Decrement of a given key, by number $value

public delete (mixed $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string | long $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

public flush ()

Immediately invalidates all existing items.

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options]) inherited from Phalcon\Cache\Backend

Phalcon\Cache\Backend constructor

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\File

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\File

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments using a file backend

<?php

 use Phalcon\Cache\Backend\File;
 use Phalcon\Cache\Frontend\Output as FrontOutput;

 // Cache the file for 2 days
 $frontendOptions = [
 'lifetime' => 172800
];

 // Create an output cache
 $frontCache = FrontOutput($frontOptions);

 // Set the cache directory
 $backendOptions = [
 'cacheDir' => '../app/cache/'
];

 // Create the File backend
 $cache = new File($frontCache, $backendOptions);

 $content = $cache->start('my-cache');
 if ($content === null) {
 echo '<h1>', time(), '</h1>';
 $cache->save();
 } else {
 echo $content;
 }

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, array $options)

Phalcon\Cache\Backend\File constructor

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([int | string $keyName], [string $content], [int $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public boolean delete (int | string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string | int $prefix])

Query the existing cached keys

public boolean exists ([string | int $keyName], [int $lifetime])

Checks if cache exists and it isn’t expired

public mixed increment ([string | int $keyName], [int $value])

Increment of a given key, by number $value

public mixed decrement ([string | int $keyName], [int $value])

Decrement of a given key, by number $value

public flush ()

Immediately invalidates all existing items.

public getKey (mixed $key)

Return a file-system safe identifier for a given key

public useSafeKey (mixed $useSafeKey)

Set whether to use the safekey or not

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Libmemcached

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Libmemcached

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments, PHP data or raw data to a libmemcached backend. Per default persistent memcached connection pools are used.

<?php

 use Phalcon\Cache\Backend\Libmemcached;
 use Phalcon\Cache\Frontend\Data as FrontData;

 // Cache data for 2 days
 $frontCache = new FrontData([
 'lifetime' => 172800
]);

 // Create the Cache setting memcached connection options
 $cache = new Libmemcached($frontCache, [
 'servers' => [
 [
 'host' => 'localhost',
 'port' => 11211,
 'weight' => 1
],
],
 'client' => [
 \Memcached::OPT_HASH => Memcached::HASH_MD5,
 \Memcached::OPT_PREFIX_KEY => 'prefix.',
]
]);

 // Cache arbitrary data
 $cache->save('my-data', [1, 2, 3, 4, 5]);

 // Get data
 $data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Memcache constructor

public _connect ()

Create internal connection to memcached

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([int | string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public boolean delete (int | string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it isn’t expired

public long increment ([string $keyName], [mixed $value])

Increment of given $keyName by $value

public long decrement ([string $keyName], [long $value])

Decrement of $keyName by given $value

public flush ()

Immediately invalidates all existing items. Memcached does not support flush() per default. If you require flush() support, set $config[“statsKey”]. All modified keys are stored in “statsKey”. Note: statsKey has a negative performance impact.

<?php

 $cache = new \Phalcon\Cache\Backend\Libmemcached($frontCache, ["statsKey" => "_PHCM"]);
 $cache->save('my-data', array(1, 2, 3, 4, 5));

 //'my-data' and all other used keys are deleted
 $cache->flush();

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Memcache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Memcache

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments, PHP data or raw data to a memcache backend This adapter uses the special memcached key “_PHCM” to store all the keys internally used by the adapter

<?php

 use Phalcon\Cache\Backend\Memcache;
 use Phalcon\Cache\Frontend\Data as FrontData;

 // Cache data for 2 days
 $frontCache = new FrontData([
 'lifetime' => 172800
]);

 // Create the Cache setting memcached connection options
 $cache = new Memcache($frontCache, [
 'host' => 'localhost',
 'port' => 11211,
 'persistent' => false
]);

 // Cache arbitrary data
 $cache->save('my-data', [1, 2, 3, 4, 5]);

 // Get data
 $data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Memcache constructor

public _connect ()

Create internal connection to memcached

public addServers (mixed $host, mixed $port, [mixed $persistent])

Add servers to memcache pool

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([int | string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public boolean delete (int | string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it isn’t expired

public long increment ([string $keyName], [long $value])

Increment of given $keyName by $value

public long decrement ([string $keyName], [long $value])

Decrement of $keyName by given $value

public flush ()

Immediately invalidates all existing items.

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Memory

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Memory

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface, Serializable [http://php.net/manual/en/class.serializable.php]

Source on GitHub

Stores content in memory. Data is lost when the request is finished

<?php

 use Phalcon\Cache\Backend\Memory;
 use Phalcon\Cache\Frontend\Data as FrontData;

 // Cache data
 $frontCache = new FrontData();

 $cache = new Memory($frontCache);

 // Cache arbitrary data
 $cache->save('my-data', [1, 2, 3, 4, 5]);

 // Get data
 $data = $cache->get('my-data');

Methods

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the backend and stops the frontend

public boolean delete (string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string | int $prefix])

Query the existing cached keys

public boolean exists ([string | int $keyName], [long $lifetime])

Checks if cache exists and it hasn’t expired

public long increment ([string $keyName], [mixed $value])

Increment of given $keyName by $value

public long decrement ([string $keyName], [long $value])

Decrement of $keyName by given $value

public flush ()

Immediately invalidates all existing items.

public serialize ()

Required for interface \Serializable

public unserialize (mixed $data)

Required for interface \Serializable

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options]) inherited from Phalcon\Cache\Backend

Phalcon\Cache\Backend constructor

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Mongo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Mongo

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments, PHP data or raw data to a MongoDb backend

<?php

 use Phalcon\Cache\Backend\Mongo;
 use Phalcon\Cache\Frontend\Base64;

 // Cache data for 2 days
 $frontCache = new Base64([
 'lifetime' => 172800
]);

 // Create a MongoDB cache
 $cache = new Mongo($frontCache, [
 'server' => "mongodb://localhost",
 'db' => 'caches',
 'collection' => 'images'
]);

 // Cache arbitrary data
 $cache->save('my-data', file_get_contents('some-image.jpg'));

 // Get data
 $data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Mongo constructor

final protected MongoCollection _getCollection ()

Returns a MongoDb collection based on the backend parameters

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([int | string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public boolean delete (int | string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it isn’t expired

public collection->remove(...) gc ()

gc

public mixed increment (int | string $keyName, [long $value])

Increment of a given key by $value

public mixed decrement (int | string $keyName, [long $value])

Decrement of a given key by $value

public flush ()

Immediately invalidates all existing items.

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Redis

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Redis

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments, PHP data or raw data to a redis backend This adapter uses the special redis key “_PHCR” to store all the keys internally used by the adapter

<?php

 use Phalcon\Cache\Backend\Redis;
 use Phalcon\Cache\Frontend\Data as FrontData;

 // Cache data for 2 days
 $frontCache = new FrontData([
 'lifetime' => 172800
]);

 // Create the Cache setting redis connection options
 $cache = new Redis($frontCache, [
 'host' => 'localhost',
 'port' => 6379,
 'auth' => 'foobared',
 'persistent' => false
 'index' => 0,
]);

 // Cache arbitrary data
 $cache->save('my-data', [1, 2, 3, 4, 5]);

 // Get data
 $data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Redis constructor

public _connect ()

Create internal connection to redis

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([int | string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public delete (int | string $keyName)

Deletes a value from the cache by its key

public queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it isn’t expired

public increment ([string $keyName], [long $value])

Increment of given $keyName by $value

public decrement ([string $keyName], [long $value])

Decrement of $keyName by given $value

public flush ()

Immediately invalidates all existing items.

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Backend\Xcache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Backend\Xcache

extends abstract class Phalcon\Cache\Backend

implements Phalcon\Cache\BackendInterface

Source on GitHub

Allows to cache output fragments, PHP data and raw data using an XCache backend

<?php

 use Phalcon\Cache\Backend\Xcache;
 use Phalcon\Cache\Frontend\Data as FrontData;

 // Cache data for 2 days
 $frontCache = new FrontData([
 'lifetime' => 172800
]);

 $cache = new Xcache($frontCache, [
 'prefix' => 'app-data'
]);

 // Cache arbitrary data
 $cache->save('my-data', [1, 2, 3, 4, 5]);

 // Get data
 $data = $cache->get('my-data');

Methods

public __construct (Phalcon\Cache\FrontendInterface $frontend, [array $options])

Phalcon\Cache\Backend\Xcache constructor

public get (mixed $keyName, [mixed $lifetime])

Returns a cached content

public save ([int | string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into the file backend and stops the frontend

public boolean delete (int | string $keyName)

Deletes a value from the cache by its key

public array queryKeys ([string $prefix])

Query the existing cached keys

public boolean exists ([string $keyName], [long $lifetime])

Checks if cache exists and it isn’t expired

public mixed increment (string $keyName, [long $value])

Atomic increment of a given key, by number $value

public mixed decrement (string $keyName, [long $value])

Atomic decrement of a given key, by number $value

public flush ()

Immediately invalidates all existing items.

public getFrontend () inherited from Phalcon\Cache\Backend

...

public setFrontend (mixed $frontend) inherited from Phalcon\Cache\Backend

...

public getOptions () inherited from Phalcon\Cache\Backend

...

public setOptions (mixed $options) inherited from Phalcon\Cache\Backend

...

public getLastKey () inherited from Phalcon\Cache\Backend

...

public setLastKey (mixed $lastKey) inherited from Phalcon\Cache\Backend

...

public mixed start (int | string $keyName, [int $lifetime]) inherited from Phalcon\Cache\Backend

Starts a cache. The keyname allows to identify the created fragment

public stop ([mixed $stopBuffer]) inherited from Phalcon\Cache\Backend

Stops the frontend without store any cached content

public isFresh () inherited from Phalcon\Cache\Backend

Checks whether the last cache is fresh or cached

public isStarted () inherited from Phalcon\Cache\Backend

Checks whether the cache has starting buffering or not

public int getLifetime () inherited from Phalcon\Cache\Backend

Gets the last lifetime set

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\Base64

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\Base64

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Allows to cache data converting/deconverting them to base64. This adapter uses the base64_encode/base64_decode PHP’s functions

<?php

<?php

 // Cache the files for 2 days using a Base64 frontend
 $frontCache = new \Phalcon\Cache\Frontend\Base64(array(
 "lifetime" => 172800
));

 //Create a MongoDB cache
 $cache = new \Phalcon\Cache\Backend\Mongo($frontCache, array(
 'server' => "mongodb://localhost",
 'db' => 'caches',
 'collection' => 'images'
));

 // Try to get cached image
 $cacheKey = 'some-image.jpg.cache';
 $image = $cache->get($cacheKey);
 if ($image === null) {

 // Store the image in the cache
 $cache->save($cacheKey, file_get_contents('tmp-dir/some-image.jpg'));
 }

 header('Content-Type: image/jpeg');
 echo $image;

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Base64 constructor

public getLifetime ()

Returns the cache lifetime

public isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Actually, does nothing in this adapter

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\Data

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Allows to cache native PHP data in a serialized form

<?php

 use Phalcon\Cache\Backend\File;
 use Phalcon\Cache\Frontend\Data;

 // Cache the files for 2 days using a Data frontend
 $frontCache = new Data(['lifetime' => 172800]);

 // Create the component that will cache "Data" to a 'File' backend
 // Set the cache file directory - important to keep the '/' at the end of
 // of the value for the folder
 $cache = new File($frontCache, ['cacheDir' => '../app/cache/']);

 // Try to get cached records
 $cacheKey = 'robots_order_id.cache';
 $robots = $cache->get($cacheKey);

 if ($robots === null) {
 // $robots is null due to cache expiration or data does not exist
 // Make the database call and populate the variable
 $robots = Robots::find(['order' => 'id']);

 // Store it in the cache
 $cache->save($cacheKey, $robots);
 }

 // Use $robots :)
 foreach ($robots as $robot) {
 echo $robot->name, "\n";
 }

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Data constructor

public getLifetime ()

Returns the cache lifetime

public isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Actually, does nothing

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public beforeStore (mixed $data)

Serializes data before storing them

public afterRetrieve (mixed $data)

Unserializes data after retrieval

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\Igbinary

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\Igbinary

extends class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Allows to cache native PHP data in a serialized form using igbinary extension

<?php

// Cache the files for 2 days using Igbinary frontend
$frontCache = new \Phalcon\Cache\Frontend\Igbinary(array(
 "lifetime" => 172800
));

// Create the component that will cache "Igbinary" to a "File" backend
// Set the cache file directory - important to keep the "/" at the end of
// of the value for the folder
$cache = new \Phalcon\Cache\Backend\File($frontCache, array(
 "cacheDir" => "../app/cache/"
));

// Try to get cached records
$cacheKey = 'robots_order_id.cache';
$robots = $cache->get($cacheKey);
if ($robots === null) {

 // $robots is null due to cache expiration or data do not exist
 // Make the database call and populate the variable
 $robots = Robots::find(array("order" => "id"));

 // Store it in the cache
 $cache->save($cacheKey, $robots);
}

// Use $robots :)
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Data constructor

public getLifetime ()

Returns the cache lifetime

public isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Actually, does nothing

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\Json

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\Json

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Allows to cache data converting/deconverting them to JSON. This adapter uses the json_encode/json_decode PHP’s functions As the data is encoded in JSON other systems accessing the same backend could process them

<?php

<?php

 // Cache the data for 2 days
 $frontCache = new \Phalcon\Cache\Frontend\Json(array(
 "lifetime" => 172800
));

 //Create the Cache setting memcached connection options
 $cache = new \Phalcon\Cache\Backend\Memcache($frontCache, array(
 'host' => 'localhost',
 'port' => 11211,
 'persistent' => false
));

 //Cache arbitrary data
 $cache->save('my-data', array(1, 2, 3, 4, 5));

 //Get data
 $data = $cache->get('my-data');

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Base64 constructor

public getLifetime ()

Returns the cache lifetime

public isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Actually, does nothing

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\Msgpack

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\Msgpack

extends class Phalcon\Cache\Frontend\Data

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Allows to cache native PHP data in a serialized form using msgpack extension This adapter uses a Msgpack frontend to store the cached content and requires msgpack extension.

<?php

 use Phalcon\Cache\Backend\File;
 use Phalcon\Cache\Frontend\Msgpack;

 // Cache the files for 2 days using Msgpack frontend
 $frontCache = new Msgpack([
 'lifetime' => 172800
]);

 // Create the component that will cache "Msgpack" to a "File" backend
 // Set the cache file directory - important to keep the "/" at the end of
 // of the value for the folder
 $cache = new File($frontCache, [
 'cacheDir' => '../app/cache/'
]);

 // Try to get cached records
 $cacheKey = 'robots_order_id.cache';
 $robots = $cache->get($cacheKey);
 if ($robots === null) {
 // $robots is null due to cache expiration or data do not exist
 // Make the database call and populate the variable
 $robots = Robots::find(['order' => 'id']);

 // Store it in the cache
 $cache->save($cacheKey, $robots);
 }

 // Use $robots
 foreach ($robots as $robot) {
 echo $robot->name, "\n";
 }

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Msgpack constructor

public getLifetime ()

Returns the cache lifetime

public isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Actually, does nothing

public getContent ()

Returns output cached content

public stop ()

Stops output frontend

public beforeStore (mixed $data)

Serializes data before storing them

public afterRetrieve (mixed $data)

Unserializes data after retrieval

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\None

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\None

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Discards any kind of frontend data input. This frontend does not have expiration time or any other options

<?php

<?php

//Create a None Cache
$frontCache = new \Phalcon\Cache\Frontend\None();

// Create the component that will cache "Data" to a "Memcached" backend
// Memcached connection settings
$cache = new \Phalcon\Cache\Backend\Memcache($frontCache, array(
 "host" => "localhost",
 "port" => "11211"
));

// This Frontend always return the data as it's returned by the backend
$cacheKey = 'robots_order_id.cache';
$robots = $cache->get($cacheKey);
if ($robots === null) {

 // This cache doesn't perform any expiration checking, so the data is always expired
 // Make the database call and populate the variable
 $robots = Robots::find(array("order" => "id"));

 $cache->save($cacheKey, $robots);
}

// Use $robots :)
foreach ($robots as $robot) {
 echo $robot->name, "\n";
}

Methods

public getLifetime ()

Returns cache lifetime, always one second expiring content

public isBuffering ()

Check whether if frontend is buffering output, always false

public start ()

Starts output frontend

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public beforeStore (mixed $data)

Prepare data to be stored

public afterRetrieve (mixed $data)

Prepares data to be retrieved to user

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Frontend\Output

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Frontend\Output

implements Phalcon\Cache\FrontendInterface

Source on GitHub

Allows to cache output fragments captured with ob_* functions

<?php

*
* use Phalcon\Tag;
* use Phalcon\Cache\Backend\File;
* use Phalcon\Cache\Frontend\Output;
*
* // Create an Output frontend. Cache the files for 2 days
* $frontCache = new Output(['lifetime' => 172800]));
*
* // Create the component that will cache from the "Output" to a "File" backend
* // Set the cache file directory - it's important to keep the "/" at the end of
* // the value for the folder
* $cache = new File($frontCache, ['cacheDir' => '../app/cache/']);
*
* // Get/Set the cache file to ../app/cache/my-cache.html
* $content = $cache->start('my-cache.html');
*
* // If $content is null then the content will be generated for the cache
* if (null === $content) {
* // Print date and time
* echo date('r');
*
* // Generate a link to the sign-up action
* echo Tag::linkTo(
* [
* 'user/signup',
* 'Sign Up',
* 'class' => 'signup-button'
*]
*);
*
* // Store the output into the cache file
* $cache->save();
* } else {
* // Echo the cached output
* echo $content;
* }

	

Methods

public __construct ([array $frontendOptions])

Phalcon\Cache\Frontend\Output constructor

public getLifetime ()

Returns the cache lifetime

public isBuffering ()

Check whether if frontend is buffering output

public start ()

Starts output frontend. Currently, does nothing

public string getContent ()

Returns output cached content

public stop ()

Stops output frontend

public string beforeStore (mixed $data)

Serializes data before storing them

public mixed afterRetrieve (mixed $data)

Unserializes data after retrieval

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cache\Multiple

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cache\Multiple

Source on GitHub

Allows to read to chained backend adapters writing to multiple backends

<?php

 use Phalcon\Cache\Frontend\Data as DataFrontend,
 Phalcon\Cache\Multiple,
 Phalcon\Cache\Backend\Apc as ApcCache,
 Phalcon\Cache\Backend\Memcache as MemcacheCache,
 Phalcon\Cache\Backend\File as FileCache;

 $ultraFastFrontend = new DataFrontend(array(
 "lifetime" => 3600
));

 $fastFrontend = new DataFrontend(array(
 "lifetime" => 86400
));

 $slowFrontend = new DataFrontend(array(
 "lifetime" => 604800
));

 //Backends are registered from the fastest to the slower
 $cache = new Multiple(array(
 new ApcCache($ultraFastFrontend, array(
 "prefix" => 'cache',
)),
 new MemcacheCache($fastFrontend, array(
 "prefix" => 'cache',
 "host" => "localhost",
 "port" => "11211"
)),
 new FileCache($slowFrontend, array(
 "prefix" => 'cache',
 "cacheDir" => "../app/cache/"
))
));

 //Save, saves in every backend
 $cache->save('my-key', $data);

Methods

public __construct ([Phalcon\Cache\BackendInterface[] $backends])

Phalcon\Cache\Multiple constructor

public push (Phalcon\Cache\BackendInterface $backend)

Adds a backend

public mixed get (string | int $keyName, [long $lifetime])

Returns a cached content reading the internal backends

public start (string | int $keyName, [long $lifetime])

Starts every backend

public save ([string $keyName], [string $content], [long $lifetime], [boolean $stopBuffer])

Stores cached content into all backends and stops the frontend

public boolean delete (string | int $keyName)

Deletes a value from each backend

public boolean exists ([string | int $keyName], [long $lifetime])

Checks if cache exists in at least one backend

public flush ()

Flush all backend(s)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Console

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Console

extends abstract class Phalcon\Application

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

This component allows to create CLI applications using Phalcon

Methods

public addModules (array $modules)

Merge modules with the existing ones

<?php

application->addModules(array(
 'admin' => array(
 'className' => 'Multiple\Admin\Module',
 'path' => '../apps/admin/Module.php'
)
));

public handle ([array $arguments])

Handle the whole command-line tasks

public setArgument ([array $arguments], [mixed $str], [mixed $shift])

Set an specific argument

public __construct ([Phalcon\DiInterface $dependencyInjector]) inherited from Phalcon\Application

Phalcon\Application

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Application

Sets the events manager

public getEventsManager () inherited from Phalcon\Application

Returns the internal event manager

public registerModules (array $modules, [mixed $merge]) inherited from Phalcon\Application

Register an array of modules present in the application

<?php

 $this->registerModules(
 [
 'frontend' => [
 'className' => 'Multiple\Frontend\Module',
 'path' => '../apps/frontend/Module.php'
],
 'backend' => [
 'className' => 'Multiple\Backend\Module',
 'path' => '../apps/backend/Module.php'
]
]
);

public getModules () inherited from Phalcon\Application

Return the modules registered in the application

public getModule (mixed $name) inherited from Phalcon\Application

Gets the module definition registered in the application via module name

public setDefaultModule (mixed $defaultModule) inherited from Phalcon\Application

Sets the module name to be used if the router doesn’t return a valid module

public getDefaultModule () inherited from Phalcon\Application

Returns the default module name

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Console\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Console\Exception

extends class Phalcon\Application\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Dispatcher

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Dispatcher

extends abstract class Phalcon\Dispatcher

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\DispatcherInterface, Phalcon\Cli\DispatcherInterface

Source on GitHub

Dispatching is the process of taking the command-line arguments, extracting the module name, task name, action name, and optional parameters contained in it, and then instantiating a task and calling an action on it.

<?php

$di = new \Phalcon\Di();

$dispatcher = new \Phalcon\Cli\Dispatcher();

 $dispatcher->setDi(di);

$dispatcher->setTaskName('posts');
$dispatcher->setActionName('index');
$dispatcher->setParams(array());

$handle = dispatcher->dispatch();

Constants

integer EXCEPTION_NO_DI

integer EXCEPTION_CYCLIC_ROUTING

integer EXCEPTION_HANDLER_NOT_FOUND

integer EXCEPTION_INVALID_HANDLER

integer EXCEPTION_INVALID_PARAMS

integer EXCEPTION_ACTION_NOT_FOUND

Methods

public setTaskSuffix (mixed $taskSuffix)

Sets the default task suffix

public setDefaultTask (mixed $taskName)

Sets the default task name

public setTaskName (mixed $taskName)

Sets the task name to be dispatched

public getTaskName ()

Gets last dispatched task name

protected _throwDispatchException (mixed $message, [mixed $exceptionCode])

Throws an internal exception

protected _handleException (Exception [http://php.net/manual/en/class.exception.php] $exception)

Handles a user exception

public getLastTask ()

Returns the lastest dispatched controller

public getActiveTask ()

Returns the active task in the dispatcher

public setOptions (array $options)

Set the options to be dispatched

public getOptions ()

Get dispatched options

public callActionMethod (mixed $handler, mixed $actionMethod, [array $params])

...

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Dispatcher

Sets the dependency injector

public getDI () inherited from Phalcon\Dispatcher

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Dispatcher

Sets the events manager

public getEventsManager () inherited from Phalcon\Dispatcher

Returns the internal event manager

public setActionSuffix (mixed $actionSuffix) inherited from Phalcon\Dispatcher

Sets the default action suffix

public getActionSuffix () inherited from Phalcon\Dispatcher

Gets the default action suffix

public setModuleName (mixed $moduleName) inherited from Phalcon\Dispatcher

Sets the module where the controller is (only informative)

public getModuleName () inherited from Phalcon\Dispatcher

Gets the module where the controller class is

public setNamespaceName (mixed $namespaceName) inherited from Phalcon\Dispatcher

Sets the namespace where the controller class is

public getNamespaceName () inherited from Phalcon\Dispatcher

Gets a namespace to be prepended to the current handler name

public setDefaultNamespace (mixed $namespaceName) inherited from Phalcon\Dispatcher

Sets the default namespace

public getDefaultNamespace () inherited from Phalcon\Dispatcher

Returns the default namespace

public setDefaultAction (mixed $actionName) inherited from Phalcon\Dispatcher

Sets the default action name

public setActionName (mixed $actionName) inherited from Phalcon\Dispatcher

Sets the action name to be dispatched

public getActionName () inherited from Phalcon\Dispatcher

Gets the latest dispatched action name

public setParams (array $params) inherited from Phalcon\Dispatcher

Sets action params to be dispatched

public getParams () inherited from Phalcon\Dispatcher

Gets action params

public setParam (mixed $param, mixed $value) inherited from Phalcon\Dispatcher

Set a param by its name or numeric index

public mixed getParam (mixed $param, [string | array $filters], [mixed $defaultValue]) inherited from Phalcon\Dispatcher

Gets a param by its name or numeric index

public boolean hasParam (mixed $param) inherited from Phalcon\Dispatcher

Check if a param exists

public getActiveMethod () inherited from Phalcon\Dispatcher

Returns the current method to be/executed in the dispatcher

public isFinished () inherited from Phalcon\Dispatcher

Checks if the dispatch loop is finished or has more pendent controllers/tasks to dispatch

public setReturnedValue (mixed $value) inherited from Phalcon\Dispatcher

Sets the latest returned value by an action manually

public mixed getReturnedValue () inherited from Phalcon\Dispatcher

Returns value returned by the latest dispatched action

public setModelBinding (boolean $value) inherited from Phalcon\Dispatcher

Enable/Disable model binding during dispatch

public object dispatch () inherited from Phalcon\Dispatcher

Dispatches a handle action taking into account the routing parameters

protected object _dispatch () inherited from Phalcon\Dispatcher

Dispatches a handle action taking into account the routing parameters

public forward (array $forward) inherited from Phalcon\Dispatcher

Forwards the execution flow to another controller/action Dispatchers are unique per module. Forwarding between modules is not allowed

<?php

 $this->dispatcher->forward(array("controller" => "posts", "action" => "index"));

public wasForwarded () inherited from Phalcon\Dispatcher

Check if the current executed action was forwarded by another one

public getHandlerClass () inherited from Phalcon\Dispatcher

Possible class name that will be located to dispatch the request

protected _resolveEmptyProperties () inherited from Phalcon\Dispatcher

Set empty properties to their defaults (where defaults are available)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Dispatcher\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Dispatcher\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Router

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Router

implements Phalcon\Di\InjectionAwareInterface

Source on GitHub

Phalcon\Cli\Router is the standard framework router. Routing is the process of taking a command-line arguments and decomposing it into parameters to determine which module, task, and action of that task should receive the request

<?php

$router = new \Phalcon\Cli\Router();
$router->handle(array(
 'module' => 'main',
 'task' => 'videos',
 'action' => 'process'
));
echo $router->getTaskName();

Methods

public __construct ([mixed $defaultRoutes])

Phalcon\Cli\Router constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setDefaultModule (mixed $moduleName)

Sets the name of the default module

public setDefaultTask (mixed $taskName)

Sets the default controller name

public setDefaultAction (mixed $actionName)

Sets the default action name

public setDefaults (array $defaults)

Sets an array of default paths. If a route is missing a path the router will use the defined here This method must not be used to set a 404 route

<?php

 $router->setDefaults(array(
 'module' => 'common',
 'action' => 'index'
));

public handle ([array $arguments])

Handles routing information received from command-line arguments

public Phalcon\Cli\Router\Route add (string $pattern, [string/array $paths])

Adds a route to the router

<?php

 $router->add('/about', 'About::main');

public getModuleName ()

Returns proccesed module name

public getTaskName ()

Returns proccesed task name

public getActionName ()

Returns processed action name

public array getParams ()

Returns processed extra params

public getMatchedRoute ()

Returns the route that matches the handled URI

public array getMatches ()

Returns the sub expressions in the regular expression matched

public wasMatched ()

Checks if the router matches any of the defined routes

public getRoutes ()

Returns all the routes defined in the router

public Phalcon\Cli\Router\Route getRouteById (int $id)

Returns a route object by its id

public getRouteByName (mixed $name)

Returns a route object by its name

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Router\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Router\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Router\Route

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Router\Route

Source on GitHub

This class represents every route added to the router

Constants

string DEFAULT_DELIMITER

Methods

public __construct (string $pattern, [array $paths])

Phalcon\Cli\Router\Route constructor

public compilePattern (mixed $pattern)

Replaces placeholders from pattern returning a valid PCRE regular expression

public array | boolean extractNamedParams (string $pattern)

Extracts parameters from a string

public reConfigure (string $pattern, [array $paths])

Reconfigure the route adding a new pattern and a set of paths

public getName ()

Returns the route’s name

public setName (mixed $name)

Sets the route’s name

<?php

 $router->add('/about', array(
 'controller' => 'about'
))->setName('about');

public Phalcon\Cli\Router\Route beforeMatch (callback $callback)

Sets a callback that is called if the route is matched. The developer can implement any arbitrary conditions here If the callback returns false the route is treated as not matched

public mixed getBeforeMatch ()

Returns the ‘before match’ callback if any

public getRouteId ()

Returns the route’s id

public getPattern ()

Returns the route’s pattern

public getCompiledPattern ()

Returns the route’s compiled pattern

public getPaths ()

Returns the paths

public getReversedPaths ()

Returns the paths using positions as keys and names as values

public Phalcon\Cli\Router\Route convert (string $name, callable $converter)

Adds a converter to perform an additional transformation for certain parameter

public getConverters ()

Returns the router converter

public static reset ()

Resets the internal route id generator

public static delimiter ([mixed $delimiter])

Set the routing delimiter

public static getDelimiter ()

Get routing delimiter

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Cli\Task

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Cli\Task

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\Cli\TaskInterface

Source on GitHub

Every command-line task should extend this class that encapsulates all the task functionality A task can be used to run “tasks” such as migrations, cronjobs, unit-tests, or anything that you want. The Task class should at least have a “mainAction” method

<?php

class HelloTask extends \Phalcon\Cli\Task
{

 // This action will be executed by default
 public function mainAction()
 {

 }

 public function findAction()
 {

 }

}

Methods

final public __construct ()

Phalcon\Cli\Task constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Config

implements ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Countable [http://php.net/manual/en/class.countable.php]

Source on GitHub

Phalcon\Config is designed to simplify the access to, and the use of, configuration data within applications. It provides a nested object property based user interface for accessing this configuration data within application code.

<?php

$config = new \Phalcon\Config(array(
 "database" => array(
 "adapter" => "Mysql",
 "host" => "localhost",
 "username" => "scott",
 "password" => "cheetah",
 "dbname" => "test_db"
),
 "phalcon" => array(
 "controllersDir" => "../app/controllers/",
 "modelsDir" => "../app/models/",
 "viewsDir" => "../app/views/"
)
));

Methods

public __construct ([array $arrayConfig])

Phalcon\Config constructor

public offsetExists (mixed $index)

Allows to check whether an attribute is defined using the array-syntax

<?php

 var_dump(isset($config['database']));

public get (mixed $index, [mixed $defaultValue])

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not defined the default value will be used instead

<?php

 echo $config->get('controllersDir', '../app/controllers/');

public offsetGet (mixed $index)

Gets an attribute using the array-syntax

<?php

 print_r($config['database']);

public offsetSet (mixed $index, mixed $value)

Sets an attribute using the array-syntax

<?php

 $config['database'] = array('type' => 'Sqlite');

public offsetUnset (mixed $index)

Unsets an attribute using the array-syntax

<?php

 unset($config['database']);

public merge (Phalcon\Config $config)

Merges a configuration into the current one

<?php

 $appConfig = new \Phalcon\Config(array('database' => array('host' => 'localhost')));
 $globalConfig->merge($config2);

public toArray ()

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count ()

Returns the count of properties set in the config

<?php

 print count($config);

or

<?php

 print $config->count();

public static __set_state (array $data)

Restores the state of a Phalcon\Config object

final protected Config merged config _merge (Config $config, [mixed $instance])

Helper method for merge configs (forwarding nested config instance)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Config\Adapter\Ini

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Config\Adapter\Ini

extends class Phalcon\Config

implements Countable [http://php.net/manual/en/class.countable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Reads ini files and converts them to Phalcon\Config objects. Given the next configuration file:

 <?php

 [database]
 adapter = Mysql
 host = localhost
 username = scott
 password = cheetah
 dbname = test_db

 [phalcon]
 controllersDir = "../app/controllers/"
 modelsDir = "../app/models/"
 viewsDir = "../app/views/"

You can read it as follows:

 <?php

 $config = new Phalcon\Config\Adapter\Ini("path/config.ini");
 echo $config->phalcon->controllersDir;
 echo $config->database->username;

PHP constants may also be parsed in the ini file, so if you define a constant as an ini value before calling the constructor, the constant's value will be integrated into the results. To use it this way you must specify the optional second parameter as INI_SCANNER_NORMAL when calling the constructor:

<?php

 $config = new Phalcon\Config\Adapter\Ini("path/config-with-constants.ini", INI_SCANNER_NORMAL);

Methods

public __construct (mixed $filePath, [mixed $mode])

Phalcon\Config\Adapter\Ini constructor

protected _parseIniString (mixed $path, mixed $value)

Build multidimensional array from string

<?php

 $this->_parseIniString('path.hello.world', 'value for last key');

 // result
 [
 'path' => [
 'hello' => [
 'world' => 'value for last key',
],
],
];

private _cast (mixed $ini)

We have to cast values manually because parse_ini_file() has a poor implementation.

public offsetExists (mixed $index) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

<?php

 var_dump(isset($config['database']));

public get (mixed $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not defined the default value will be used instead

<?php

 echo $config->get('controllersDir', '../app/controllers/');

public offsetGet (mixed $index) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

 print_r($config['database']);

public offsetSet (mixed $index, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

 $config['database'] = array('type' => 'Sqlite');

public offsetUnset (mixed $index) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

 unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

 $appConfig = new \Phalcon\Config(array('database' => array('host' => 'localhost')));
 $globalConfig->merge($config2);

public toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

Returns the count of properties set in the config

<?php

 print count($config);

or

<?php

 print $config->count();

public static __set_state (array $data) inherited from Phalcon\Config

Restores the state of a Phalcon\Config object

final protected Config merged config _merge (Config $config, [mixed $instance]) inherited from Phalcon\Config

Helper method for merge configs (forwarding nested config instance)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Config\Adapter\Json

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Config\Adapter\Json

extends class Phalcon\Config

implements Countable [http://php.net/manual/en/class.countable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Reads JSON files and converts them to Phalcon\Config objects. Given the following configuration file:

 <?php

 {"phalcon":{"baseuri":"\/phalcon\/"},"models":{"metadata":"memory"}}

You can read it as follows:

<?php

 $config = new Phalcon\Config\Adapter\Json("path/config.json");
 echo $config->phalcon->baseuri;
 echo $config->models->metadata;

Methods

public __construct (mixed $filePath)

Phalcon\Config\Adapter\Json constructor

public offsetExists (mixed $index) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

<?php

 var_dump(isset($config['database']));

public get (mixed $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not defined the default value will be used instead

<?php

 echo $config->get('controllersDir', '../app/controllers/');

public offsetGet (mixed $index) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

 print_r($config['database']);

public offsetSet (mixed $index, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

 $config['database'] = array('type' => 'Sqlite');

public offsetUnset (mixed $index) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

 unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

 $appConfig = new \Phalcon\Config(array('database' => array('host' => 'localhost')));
 $globalConfig->merge($config2);

public toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

Returns the count of properties set in the config

<?php

 print count($config);

or

<?php

 print $config->count();

public static __set_state (array $data) inherited from Phalcon\Config

Restores the state of a Phalcon\Config object

final protected Config merged config _merge (Config $config, [mixed $instance]) inherited from Phalcon\Config

Helper method for merge configs (forwarding nested config instance)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Config\Adapter\Php

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Config\Adapter\Php

extends class Phalcon\Config

implements Countable [http://php.net/manual/en/class.countable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Reads php files and converts them to Phalcon\Config objects. Given the next configuration file:

 <?php

 <?php
 return array(
 'database' => array(
 'adapter' => 'Mysql',
 'host' => 'localhost',
 'username' => 'scott',
 'password' => 'cheetah',
 'dbname' => 'test_db'
),

 'phalcon' => array(
 'controllersDir' => '../app/controllers/',
 'modelsDir' => '../app/models/',
 'viewsDir' => '../app/views/'
));

You can read it as follows:

<?php

 $config = new Phalcon\Config\Adapter\Php("path/config.php");
 echo $config->phalcon->controllersDir;
 echo $config->database->username;

Methods

public __construct (mixed $filePath)

Phalcon\Config\Adapter\Php constructor

public offsetExists (mixed $index) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

<?php

 var_dump(isset($config['database']));

public get (mixed $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not defined the default value will be used instead

<?php

 echo $config->get('controllersDir', '../app/controllers/');

public offsetGet (mixed $index) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

 print_r($config['database']);

public offsetSet (mixed $index, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

 $config['database'] = array('type' => 'Sqlite');

public offsetUnset (mixed $index) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

 unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

 $appConfig = new \Phalcon\Config(array('database' => array('host' => 'localhost')));
 $globalConfig->merge($config2);

public toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

Returns the count of properties set in the config

<?php

 print count($config);

or

<?php

 print $config->count();

public static __set_state (array $data) inherited from Phalcon\Config

Restores the state of a Phalcon\Config object

final protected Config merged config _merge (Config $config, [mixed $instance]) inherited from Phalcon\Config

Helper method for merge configs (forwarding nested config instance)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Config\Adapter\Yaml

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Config\Adapter\Yaml

extends class Phalcon\Config

implements Countable [http://php.net/manual/en/class.countable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Reads YAML files and converts them to Phalcon\Config objects. Given the following configuration file:

 <?php

 phalcon:
 baseuri: /phalcon/
 controllersDir: !approot /app/controllers/
 models:
 metadata: memory

You can read it as follows:

<?php

 define('APPROOT', dirname(__DIR__));

 $config = new Phalcon\Config\Adapter\Yaml("path/config.yaml", [
 '!approot' => function($value) {
 return APPROOT . $value;
 }
]);

 echo $config->phalcon->controllersDir;
 echo $config->phalcon->baseuri;
 echo $config->models->metadata;

Methods

public __construct (mixed $filePath, [array $callbacks])

Phalcon\Config\Adapter\Yaml constructor

public offsetExists (mixed $index) inherited from Phalcon\Config

Allows to check whether an attribute is defined using the array-syntax

<?php

 var_dump(isset($config['database']));

public get (mixed $index, [mixed $defaultValue]) inherited from Phalcon\Config

Gets an attribute from the configuration, if the attribute isn’t defined returns null If the value is exactly null or is not defined the default value will be used instead

<?php

 echo $config->get('controllersDir', '../app/controllers/');

public offsetGet (mixed $index) inherited from Phalcon\Config

Gets an attribute using the array-syntax

<?php

 print_r($config['database']);

public offsetSet (mixed $index, mixed $value) inherited from Phalcon\Config

Sets an attribute using the array-syntax

<?php

 $config['database'] = array('type' => 'Sqlite');

public offsetUnset (mixed $index) inherited from Phalcon\Config

Unsets an attribute using the array-syntax

<?php

 unset($config['database']);

public merge (Phalcon\Config $config) inherited from Phalcon\Config

Merges a configuration into the current one

<?php

 $appConfig = new \Phalcon\Config(array('database' => array('host' => 'localhost')));
 $globalConfig->merge($config2);

public toArray () inherited from Phalcon\Config

Converts recursively the object to an array

<?php

print_r($config->toArray());

public count () inherited from Phalcon\Config

Returns the count of properties set in the config

<?php

 print count($config);

or

<?php

 print $config->count();

public static __set_state (array $data) inherited from Phalcon\Config

Restores the state of a Phalcon\Config object

final protected Config merged config _merge (Config $config, [mixed $instance]) inherited from Phalcon\Config

Helper method for merge configs (forwarding nested config instance)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Config\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Config\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Crypt

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Crypt

implements Phalcon\CryptInterface

Source on GitHub

Provides encryption facilities to phalcon applications

<?php

$crypt = new \Phalcon\Crypt();

$key = 'le password';
$text = 'This is a secret text';

$encrypted = $crypt->encrypt($text, $key);

echo $crypt->decrypt($encrypted, $key);

Constants

integer PADDING_DEFAULT

integer PADDING_ANSI_X_923

integer PADDING_PKCS7

integer PADDING_ISO_10126

integer PADDING_ISO_IEC_7816_4

integer PADDING_ZERO

integer PADDING_SPACE

Methods

public setPadding (mixed $scheme)

Changes the padding scheme used

public setCipher (mixed $cipher)

Sets the cipher algorithm

public getCipher ()

Returns the current cipher

public setKey (mixed $key)

Sets the encryption key

public getKey ()

Returns the encryption key

protected _cryptPadText (mixed $text, mixed $mode, mixed $blockSize, mixed $paddingType)

Pads texts before encryption

protected _cryptUnpadText (mixed $text, mixed $mode, mixed $blockSize, mixed $paddingType)

If the function detects that the text was not padded, it will return it unmodified

public encrypt (mixed $text, [mixed $key])

Encrypts a text

<?php

$encrypted = $crypt->encrypt("Ultra-secret text", "encrypt password");

public decrypt (mixed $text, [mixed $key])

Decrypts an encrypted text

<?php

echo $crypt->decrypt($encrypted, "decrypt password");

public encryptBase64 (mixed $text, [mixed $key], [mixed $safe])

Encrypts a text returning the result as a base64 string

public decryptBase64 (mixed $text, [mixed $key], [mixed $safe])

Decrypt a text that is coded as a base64 string

public getAvailableCiphers ()

Returns a list of available ciphers

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Crypt\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Crypt\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Db

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Db

Source on GitHub

Phalcon\Db and its related classes provide a simple SQL database interface for Phalcon Framework. The Phalcon\Db is the basic class you use to connect your PHP application to an RDBMS. There is a different adapter class for each brand of RDBMS. This component is intended to lower level database operations. If you want to interact with databases using higher level of abstraction use Phalcon\Mvc\Model. Phalcon\Db is an abstract class. You only can use it with a database adapter like Phalcon\Db\Adapter\Pdo

<?php

use Phalcon\Db;
use Phalcon\Db\Exception;
use Phalcon\Db\Adapter\Pdo\Mysql as MysqlConnection;

try {

 $connection = new MysqlConnection(array(
 'host' => '192.168.0.11',
 'username' => 'sigma',
 'password' => 'secret',
 'dbname' => 'blog',
 'port' => '3306',
));

 $result = $connection->query("SELECT * FROM robots LIMIT 5");
 $result->setFetchMode(Db::FETCH_NUM);
 while ($robot = $result->fetch()) {
 print_r($robot);
 }

} catch (Exception $e) {
echo $e->getMessage(), PHP_EOL;
}

Constants

integer FETCH_LAZY

integer FETCH_ASSOC

integer FETCH_NAMED

integer FETCH_NUM

integer FETCH_BOTH

integer FETCH_OBJ

integer FETCH_BOUND

integer FETCH_COLUMN

integer FETCH_CLASS

integer FETCH_INTO

integer FETCH_FUNC

integer FETCH_GROUP

integer FETCH_UNIQUE

integer FETCH_KEY_PAIR

integer FETCH_CLASSTYPE

integer FETCH_SERIALIZE

integer FETCH_PROPS_LATE

Methods

public static setup (array $options)

Enables/disables options in the Database component

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Db\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Db\Adapter

implements Phalcon\Events\EventsAwareInterface

Source on GitHub

Base class for Phalcon\Db adapters

Methods

public getDialectType ()

Name of the dialect used

public getType ()

Type of database system the adapter is used for

public getSqlVariables ()

Active SQL bound parameter variables

public __construct (array $descriptor)

Phalcon\Db\Adapter constructor

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the event manager

public getEventsManager ()

Returns the internal event manager

public setDialect (Phalcon\Db\DialectInterface $dialect)

Sets the dialect used to produce the SQL

public getDialect ()

Returns internal dialect instance

public fetchOne (mixed $sqlQuery, [mixed $fetchMode], [mixed $bindParams], [mixed $bindTypes])

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [array $bindParams], [array $bindTypes])

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {
 print_r($robot);
}

 //Getting all robots that contains word "robot" withing the name
 $robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
 Phalcon\Db::FETCH_ASSOC,
 array('name' => '%robot%')
);
foreach($robots as $robot){
 print_r($robot);
}

public string | ** fetchColumn (string $sqlQuery, [array $placeholders], [int | string $column])

Returns the n’th field of first row in a SQL query result

<?php

//Getting count of robots
$robotsCount = $connection->fetchColumn("SELECT count(*) FROM robots");
print_r($robotsCount);

//Getting name of last edited robot
$robot = $connection->fetchColumn("SELECT id, name FROM robots order by modified desc", 1);
print_r($robot);

public boolean insert (string | array $table, array $values, [array $fields], [array $dataTypes])

Inserts data into a table using custom RDBMS SQL syntax

<?php

 // Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 // Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean insertAsDict (string $table, array $data, [array $dataTypes])

Inserts data into a table using custom RBDM SQL syntax

<?php

 //Inserting a new robot
 $success = $connection->insertAsDict(
 "robots",
 array(
 "name" => "Astro Boy",
 "year" => 1952
)
);

 //Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string | array $table, array $fields, array $values, [string | array $whereCondition], [array $dataTypes])

Updates data on a table using custom RBDM SQL syntax

<?php

 //Updating existing robot
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

 //Updating existing robot with array condition and $dataTypes
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 array(
 'conditions' => "id = ?",
 'bind' => array($some_unsafe_id),
 'bindTypes' => array(PDO::PARAM_INT) //use only if you use $dataTypes param
),
 array(PDO::PARAM_STR)
);

Warning! If $whereCondition is string it not escaped.

public boolean updateAsDict (string $table, array $data, [string $whereCondition], [array $dataTypes])

Updates data on a table using custom RBDM SQL syntax Another, more convenient syntax

<?php

 //Updating existing robot
 $success = $connection->updateAsDict(
 "robots",
 array(
 "name" => "New Astro Boy"
),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string | array $table, [string $whereCondition], [array $placeholders], [array $dataTypes])

Deletes data from a table using custom RBDM SQL syntax

<?php

 //Deleting existing robot
 $success = $connection->delete(
 "robots",
 "id = 101"
);

 //Next SQL sentence is generated
 DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList)

Gets a list of columns

public limit (mixed $sqlQuery, mixed $number)

Appends a LIMIT clause to $sqlQuery argument

<?php

 echo $connection->limit("SELECT * FROM robots", 5);

public tableExists (mixed $tableName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

 var_dump($connection->tableExists("blog", "posts"));

public viewExists (mixed $viewName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.view

<?php

 var_dump($connection->viewExists("active_users", "posts"));

public forUpdate (mixed $sqlQuery)

Returns a SQL modified with a FOR UPDATE clause

public sharedLock (mixed $sqlQuery)

Returns a SQL modified with a LOCK IN SHARE MODE clause

public createTable (mixed $tableName, mixed $schemaName, array $definition)

Creates a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists])

Drops a table from a schema/database

public createView (mixed $viewName, array $definition, [mixed $schemaName])

Creates a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists])

Drops a view

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column)

Adds a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

Modifies a table column based on a definition

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName)

Drops a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Adds an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName)

Drop an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Adds a primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName)

Drops a table’s primary key

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference)

Adds a foreign key to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName)

Drops a foreign key from a table

public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Returns the SQL column definition from a column

public listTables ([mixed $schemaName])

List all tables on a database

<?php

 print_r($connection->listTables("blog"));

public listViews ([mixed $schemaName])

List all views on a database

<?php

print_r($connection->listViews("blog"));

public Phalcon\Db\Index[] describeIndexes (string $table, [string $schema])

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public describeReferences (mixed $table, [mixed $schema])

Lists table references

<?php

 print_r($connection->describeReferences('robots_parts'));

public tableOptions (mixed $tableName, [mixed $schemaName])

Gets creation options from a table

<?php

 print_r($connection->tableOptions('robots'));

public createSavepoint (mixed $name)

Creates a new savepoint

public releaseSavepoint (mixed $name)

Releases given savepoint

public rollbackSavepoint (mixed $name)

Rollbacks given savepoint

public setNestedTransactionsWithSavepoints (mixed $nestedTransactionsWithSavepoints)

Set if nested transactions should use savepoints

public isNestedTransactionsWithSavepoints ()

Returns if nested transactions should use savepoints

public getNestedTransactionSavepointName ()

Returns the savepoint name to use for nested transactions

public getDefaultIdValue ()

Returns the default identity value to be inserted in an identity column

<?php

 //Inserting a new robot with a valid default value for the column 'id'
 $success = $connection->insert(
 "robots",
 array($connection->getDefaultIdValue(), "Astro Boy", 1952),
 array("id", "name", "year")
);

public getDefaultValue ()

Returns the default value to make the RBDM use the default value declared in the table definition

<?php

 //Inserting a new robot with a valid default value for the column 'year'
 $success = $connection->insert(
 "robots",
 array("Astro Boy", $connection->getDefaultValue()),
 array("name", "year")
);

public supportSequences ()

Check whether the database system requires a sequence to produce auto-numeric values

public useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public getDescriptor ()

Return descriptor used to connect to the active database

public string getConnectionId ()

Gets the active connection unique identifier

public getSQLStatement ()

Active SQL statement in the object

public getRealSQLStatement ()

Active SQL statement in the object without replace bound paramters

public array getSQLBindTypes ()

Active SQL statement in the object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Db\Adapter\Pdo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Db\Adapter\Pdo

extends abstract class Phalcon\Db\Adapter

implements Phalcon\Events\EventsAwareInterface

Source on GitHub

Phalcon\Db\Adapter\Pdo is the Phalcon\Db that internally uses PDO to connect to a database

<?php

 use Phalcon\Db\Adapter\Pdo\Mysql;

 $config = [
 'host' => 'localhost',
 'dbname' => 'blog',
 'port' => 3306,
 'username' => 'sigma',
 'password' => 'secret'
];

 $connection = new Mysql($config);

Methods

public __construct (array $descriptor)

Constructor for Phalcon\Db\Adapter\Pdo

public connect ([array $descriptor])

This method is automatically called in \Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a database connection.

<?php

 use Phalcon\Db\Adapter\Pdo\Mysql;

 // Make a connection
 $connection = new Mysql([
 'host' => 'localhost',
 'username' => 'sigma',
 'password' => 'secret',
 'dbname' => 'blog',
 'port' => 3306,
]);

 // Reconnect
 $connection->connect();

public prepare (mixed $sqlStatement)

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public PDOStatement [http://php.net/manual/en/class.pdostatement.php] executePrepared (PDOStatement [http://php.net/manual/en/class.pdostatement.php] $statement, array $placeholders, array $dataTypes)

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public query (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes])

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public execute (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes])

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server doesn’t return any rows

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public affectedRows ()

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public close ()

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when the request ends

public string escapeIdentifier (string $identifier)

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(['store', 'robots']);

public escapeString (mixed $str)

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public convertBoundParams (mixed $sql, [array $params])

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

 print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int | boolean lastInsertId ([string $sequenceName])

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

 //Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 //Getting the generated id
 $id = $connection->lastInsertId();

public begin ([mixed $nesting])

Starts a transaction in the connection

public rollback ([mixed $nesting])

Rollbacks the active transaction in the connection

public commit ([mixed $nesting])

Commits the active transaction in the connection

public getTransactionLevel ()

Returns the current transaction nesting level

public isUnderTransaction ()

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public getInternalHandler ()

Return internal PDO handler

public array getErrorInfo ()

Return the error info, if any

public getDialectType () inherited from Phalcon\Db\Adapter

Name of the dialect used

public getType () inherited from Phalcon\Db\Adapter

Type of database system the adapter is used for

public getSqlVariables () inherited from Phalcon\Db\Adapter

Active SQL bound parameter variables

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (Phalcon\Db\DialectInterface $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public fetchOne (mixed $sqlQuery, [mixed $fetchMode], [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [array $bindParams], [array $bindTypes]) inherited from Phalcon\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {
 print_r($robot);
}

 //Getting all robots that contains word "robot" withing the name
 $robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
 Phalcon\Db::FETCH_ASSOC,
 array('name' => '%robot%')
);
foreach($robots as $robot){
 print_r($robot);
}

public string | ** fetchColumn (string $sqlQuery, [array $placeholders], [int | string $column]) inherited from Phalcon\Db\Adapter

Returns the n’th field of first row in a SQL query result

<?php

//Getting count of robots
$robotsCount = $connection->fetchColumn("SELECT count(*) FROM robots");
print_r($robotsCount);

//Getting name of last edited robot
$robot = $connection->fetchColumn("SELECT id, name FROM robots order by modified desc", 1);
print_r($robot);

public boolean insert (string | array $table, array $values, [array $fields], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RDBMS SQL syntax

<?php

 // Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 // Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean insertAsDict (string $table, array $data, [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

 //Inserting a new robot
 $success = $connection->insertAsDict(
 "robots",
 array(
 "name" => "Astro Boy",
 "year" => 1952
)
);

 //Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string | array $table, array $fields, array $values, [string | array $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

 //Updating existing robot
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

 //Updating existing robot with array condition and $dataTypes
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 array(
 'conditions' => "id = ?",
 'bind' => array($some_unsafe_id),
 'bindTypes' => array(PDO::PARAM_INT) //use only if you use $dataTypes param
),
 array(PDO::PARAM_STR)
);

Warning! If $whereCondition is string it not escaped.

public boolean updateAsDict (string $table, array $data, [string $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax Another, more convenient syntax

<?php

 //Updating existing robot
 $success = $connection->updateAsDict(
 "robots",
 array(
 "name" => "New Astro Boy"
),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string | array $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

 //Deleting existing robot
 $success = $connection->delete(
 "robots",
 "id = 101"
);

 //Next SQL sentence is generated
 DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

 echo $connection->limit("SELECT * FROM robots", 5);

public tableExists (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

 var_dump($connection->tableExists("blog", "posts"));

public viewExists (mixed $viewName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

 var_dump($connection->viewExists("active_users", "posts"));

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public createTable (mixed $tableName, mixed $schemaName, array $definition) inherited from Phalcon\Db\Adapter

Creates a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a table from a schema/database

public createView (mixed $viewName, array $definition, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Creates a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a view

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Adds a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn]) inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName) inherited from Phalcon\Db\Adapter

Drops a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName) inherited from Phalcon\Db\Adapter

Drop an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds a primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName) inherited from Phalcon\Db\Adapter

Drops a foreign key from a table

public getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public listTables ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

 print_r($connection->listTables("blog"));

public listViews ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog"));

public Phalcon\Db\Index[] describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\Adapter

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public describeReferences (mixed $table, [mixed $schema]) inherited from Phalcon\Db\Adapter

Lists table references

<?php

 print_r($connection->describeReferences('robots_parts'));

public tableOptions (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

 print_r($connection->tableOptions('robots'));

public createSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public setNestedTransactionsWithSavepoints (mixed $nestedTransactionsWithSavepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public getDefaultIdValue () inherited from Phalcon\Db\Adapter

Returns the default identity value to be inserted in an identity column

<?php

 //Inserting a new robot with a valid default value for the column 'id'
 $success = $connection->insert(
 "robots",
 array($connection->getDefaultIdValue(), "Astro Boy", 1952),
 array("id", "name", "year")
);

public getDefaultValue () inherited from Phalcon\Db\Adapter

Returns the default value to make the RBDM use the default value declared in the table definition

<?php

 //Inserting a new robot with a valid default value for the column 'year'
 $success = $connection->insert(
 "robots",
 array("Astro Boy", $connection->getDefaultValue()),
 array("name", "year")
);

public supportSequences () inherited from Phalcon\Db\Adapter

Check whether the database system requires a sequence to produce auto-numeric values

public useExplicitIdValue () inherited from Phalcon\Db\Adapter

Check whether the database system requires an explicit value for identity columns

public getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Adapter\Pdo\Mysql

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Adapter\Pdo\Mysql

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Source on GitHub

Specific functions for the Mysql database system

<?php

 use Phalcon\Db\Adapter\Pdo\Mysql;

 $config = [
 'host' => 'localhost',
 'dbname' => 'blog',
 'port' => 3306,
 'username' => 'sigma',
 'password' => 'secret'
];

 $connection = new Mysql($config);

Methods

public escapeIdentifier (mixed $identifier)

Escapes a column/table/schema name

<?php

 echo $connection->escapeIdentifier('my_table'); // `my_table`
 echo $connection->escapeIdentifier(['companies', 'name']); // `companies`.`name`

<?php

 @param string|array identifier

public describeColumns (mixed $table, [mixed $schema])

Returns an array of Phalcon\Db\Column objects describing a table

<?php

 print_r($connection->describeColumns("posts"));

public Phalcon\Db\IndexInterface[] describeIndexes (string $table, [string $schema])

Lists table indexes

<?php

 print_r($connection->describeIndexes('robots_parts'));

public describeReferences (mixed $table, [mixed $schema])

Lists table references

<?php

 print_r($connection->describeReferences('robots_parts'));

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public connect ([array $descriptor]) inherited from Phalcon\Db\Adapter\Pdo

This method is automatically called in \Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a database connection.

<?php

 use Phalcon\Db\Adapter\Pdo\Mysql;

 // Make a connection
 $connection = new Mysql([
 'host' => 'localhost',
 'username' => 'sigma',
 'password' => 'secret',
 'dbname' => 'blog',
 'port' => 3306,
]);

 // Reconnect
 $connection->connect();

public prepare (mixed $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public PDOStatement [http://php.net/manual/en/class.pdostatement.php] executePrepared (PDOStatement [http://php.net/manual/en/class.pdostatement.php] $statement, array $placeholders, array $dataTypes) inherited from Phalcon\Db\Adapter\Pdo

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public query (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public execute (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server doesn’t return any rows

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when the request ends

public escapeString (mixed $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public convertBoundParams (mixed $sql, [array $params]) inherited from Phalcon\Db\Adapter\Pdo

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

 print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int | boolean lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\Adapter\Pdo

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

 //Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 //Getting the generated id
 $id = $connection->lastInsertId();

public begin ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public rollback ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public commit ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public array getErrorInfo () inherited from Phalcon\Db\Adapter\Pdo

Return the error info, if any

public getDialectType () inherited from Phalcon\Db\Adapter

Name of the dialect used

public getType () inherited from Phalcon\Db\Adapter

Type of database system the adapter is used for

public getSqlVariables () inherited from Phalcon\Db\Adapter

Active SQL bound parameter variables

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (Phalcon\Db\DialectInterface $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public fetchOne (mixed $sqlQuery, [mixed $fetchMode], [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [array $bindParams], [array $bindTypes]) inherited from Phalcon\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {
 print_r($robot);
}

 //Getting all robots that contains word "robot" withing the name
 $robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
 Phalcon\Db::FETCH_ASSOC,
 array('name' => '%robot%')
);
foreach($robots as $robot){
 print_r($robot);
}

public string | ** fetchColumn (string $sqlQuery, [array $placeholders], [int | string $column]) inherited from Phalcon\Db\Adapter

Returns the n’th field of first row in a SQL query result

<?php

//Getting count of robots
$robotsCount = $connection->fetchColumn("SELECT count(*) FROM robots");
print_r($robotsCount);

//Getting name of last edited robot
$robot = $connection->fetchColumn("SELECT id, name FROM robots order by modified desc", 1);
print_r($robot);

public boolean insert (string | array $table, array $values, [array $fields], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RDBMS SQL syntax

<?php

 // Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 // Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean insertAsDict (string $table, array $data, [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

 //Inserting a new robot
 $success = $connection->insertAsDict(
 "robots",
 array(
 "name" => "Astro Boy",
 "year" => 1952
)
);

 //Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string | array $table, array $fields, array $values, [string | array $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

 //Updating existing robot
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

 //Updating existing robot with array condition and $dataTypes
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 array(
 'conditions' => "id = ?",
 'bind' => array($some_unsafe_id),
 'bindTypes' => array(PDO::PARAM_INT) //use only if you use $dataTypes param
),
 array(PDO::PARAM_STR)
);

Warning! If $whereCondition is string it not escaped.

public boolean updateAsDict (string $table, array $data, [string $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax Another, more convenient syntax

<?php

 //Updating existing robot
 $success = $connection->updateAsDict(
 "robots",
 array(
 "name" => "New Astro Boy"
),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string | array $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

 //Deleting existing robot
 $success = $connection->delete(
 "robots",
 "id = 101"
);

 //Next SQL sentence is generated
 DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

 echo $connection->limit("SELECT * FROM robots", 5);

public tableExists (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

 var_dump($connection->tableExists("blog", "posts"));

public viewExists (mixed $viewName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

 var_dump($connection->viewExists("active_users", "posts"));

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public createTable (mixed $tableName, mixed $schemaName, array $definition) inherited from Phalcon\Db\Adapter

Creates a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a table from a schema/database

public createView (mixed $viewName, array $definition, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Creates a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a view

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Adds a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn]) inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName) inherited from Phalcon\Db\Adapter

Drops a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName) inherited from Phalcon\Db\Adapter

Drop an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds a primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName) inherited from Phalcon\Db\Adapter

Drops a foreign key from a table

public getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public listTables ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

 print_r($connection->listTables("blog"));

public listViews ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog"));

public tableOptions (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

 print_r($connection->tableOptions('robots'));

public createSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public setNestedTransactionsWithSavepoints (mixed $nestedTransactionsWithSavepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public getDefaultIdValue () inherited from Phalcon\Db\Adapter

Returns the default identity value to be inserted in an identity column

<?php

 //Inserting a new robot with a valid default value for the column 'id'
 $success = $connection->insert(
 "robots",
 array($connection->getDefaultIdValue(), "Astro Boy", 1952),
 array("id", "name", "year")
);

public getDefaultValue () inherited from Phalcon\Db\Adapter

Returns the default value to make the RBDM use the default value declared in the table definition

<?php

 //Inserting a new robot with a valid default value for the column 'year'
 $success = $connection->insert(
 "robots",
 array("Astro Boy", $connection->getDefaultValue()),
 array("name", "year")
);

public supportSequences () inherited from Phalcon\Db\Adapter

Check whether the database system requires a sequence to produce auto-numeric values

public useExplicitIdValue () inherited from Phalcon\Db\Adapter

Check whether the database system requires an explicit value for identity columns

public getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Adapter\Pdo\Postgresql

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Adapter\Pdo\Postgresql

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Source on GitHub

Specific functions for the Postgresql database system

<?php

 use Phalcon\Db\Adapter\Pdo\Postgresql;

 $config = [
 'host' => 'localhost',
 'dbname' => 'blog',
 'port' => 5432,
 'username' => 'postgres',
 'password' => 'secret'
];

 $connection = new Postgresql($config);

Methods

public connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a database connection.

public describeColumns (mixed $table, [mixed $schema])

Returns an array of Phalcon\Db\Column objects describing a table

<?php

 print_r($connection->describeColumns("posts"));

public createTable (mixed $tableName, mixed $schemaName, array $definition)

Creates a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

Modifies a table column based on a definition

public useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public getDefaultIdValue ()

Returns the default identity value to be inserted in an identity column

<?php

 //Inserting a new robot with a valid default value for the column 'id'
 $success = $connection->insert(
 "robots",
 array($connection->getDefaultIdValue(), "Astro Boy", 1952),
 array("id", "name", "year")
);

public supportSequences ()

Check whether the database system requires a sequence to produce auto-numeric values

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public prepare (mixed $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public PDOStatement [http://php.net/manual/en/class.pdostatement.php] executePrepared (PDOStatement [http://php.net/manual/en/class.pdostatement.php] $statement, array $placeholders, array $dataTypes) inherited from Phalcon\Db\Adapter\Pdo

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public query (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public execute (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server doesn’t return any rows

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when the request ends

public string escapeIdentifier (string $identifier) inherited from Phalcon\Db\Adapter\Pdo

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(['store', 'robots']);

public escapeString (mixed $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public convertBoundParams (mixed $sql, [array $params]) inherited from Phalcon\Db\Adapter\Pdo

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

 print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int | boolean lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\Adapter\Pdo

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

 //Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 //Getting the generated id
 $id = $connection->lastInsertId();

public begin ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public rollback ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public commit ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public array getErrorInfo () inherited from Phalcon\Db\Adapter\Pdo

Return the error info, if any

public getDialectType () inherited from Phalcon\Db\Adapter

Name of the dialect used

public getType () inherited from Phalcon\Db\Adapter

Type of database system the adapter is used for

public getSqlVariables () inherited from Phalcon\Db\Adapter

Active SQL bound parameter variables

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (Phalcon\Db\DialectInterface $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public fetchOne (mixed $sqlQuery, [mixed $fetchMode], [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [array $bindParams], [array $bindTypes]) inherited from Phalcon\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {
 print_r($robot);
}

 //Getting all robots that contains word "robot" withing the name
 $robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
 Phalcon\Db::FETCH_ASSOC,
 array('name' => '%robot%')
);
foreach($robots as $robot){
 print_r($robot);
}

public string | ** fetchColumn (string $sqlQuery, [array $placeholders], [int | string $column]) inherited from Phalcon\Db\Adapter

Returns the n’th field of first row in a SQL query result

<?php

//Getting count of robots
$robotsCount = $connection->fetchColumn("SELECT count(*) FROM robots");
print_r($robotsCount);

//Getting name of last edited robot
$robot = $connection->fetchColumn("SELECT id, name FROM robots order by modified desc", 1);
print_r($robot);

public boolean insert (string | array $table, array $values, [array $fields], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RDBMS SQL syntax

<?php

 // Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 // Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean insertAsDict (string $table, array $data, [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

 //Inserting a new robot
 $success = $connection->insertAsDict(
 "robots",
 array(
 "name" => "Astro Boy",
 "year" => 1952
)
);

 //Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string | array $table, array $fields, array $values, [string | array $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

 //Updating existing robot
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

 //Updating existing robot with array condition and $dataTypes
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 array(
 'conditions' => "id = ?",
 'bind' => array($some_unsafe_id),
 'bindTypes' => array(PDO::PARAM_INT) //use only if you use $dataTypes param
),
 array(PDO::PARAM_STR)
);

Warning! If $whereCondition is string it not escaped.

public boolean updateAsDict (string $table, array $data, [string $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax Another, more convenient syntax

<?php

 //Updating existing robot
 $success = $connection->updateAsDict(
 "robots",
 array(
 "name" => "New Astro Boy"
),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string | array $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

 //Deleting existing robot
 $success = $connection->delete(
 "robots",
 "id = 101"
);

 //Next SQL sentence is generated
 DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

 echo $connection->limit("SELECT * FROM robots", 5);

public tableExists (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

 var_dump($connection->tableExists("blog", "posts"));

public viewExists (mixed $viewName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

 var_dump($connection->viewExists("active_users", "posts"));

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a table from a schema/database

public createView (mixed $viewName, array $definition, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Creates a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a view

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Adds a column to a table

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName) inherited from Phalcon\Db\Adapter

Drops a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName) inherited from Phalcon\Db\Adapter

Drop an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds a primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName) inherited from Phalcon\Db\Adapter

Drops a foreign key from a table

public getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public listTables ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

 print_r($connection->listTables("blog"));

public listViews ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog"));

public Phalcon\Db\Index[] describeIndexes (string $table, [string $schema]) inherited from Phalcon\Db\Adapter

Lists table indexes

<?php

print_r($connection->describeIndexes('robots_parts'));

public describeReferences (mixed $table, [mixed $schema]) inherited from Phalcon\Db\Adapter

Lists table references

<?php

 print_r($connection->describeReferences('robots_parts'));

public tableOptions (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

 print_r($connection->tableOptions('robots'));

public createSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public setNestedTransactionsWithSavepoints (mixed $nestedTransactionsWithSavepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public getDefaultValue () inherited from Phalcon\Db\Adapter

Returns the default value to make the RBDM use the default value declared in the table definition

<?php

 //Inserting a new robot with a valid default value for the column 'year'
 $success = $connection->insert(
 "robots",
 array("Astro Boy", $connection->getDefaultValue()),
 array("name", "year")
);

public getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Adapter\Pdo\Sqlite

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Adapter\Pdo\Sqlite

extends abstract class Phalcon\Db\Adapter\Pdo

implements Phalcon\Events\EventsAwareInterface, Phalcon\Db\AdapterInterface

Source on GitHub

Specific functions for the Sqlite database system

<?php

 use Phalcon\Db\Adapter\Pdo\Sqlite;

 $connection = new Sqlite(['dbname' => '/tmp/test.sqlite']);

Methods

public connect ([array $descriptor])

This method is automatically called in Phalcon\Db\Adapter\Pdo constructor. Call it when you need to restore a database connection.

public describeColumns (mixed $table, [mixed $schema])

Returns an array of Phalcon\Db\Column objects describing a table

<?php

 print_r($connection->describeColumns("posts"));

public Phalcon\Db\IndexInterface[] describeIndexes (string $table, [string $schema])

Lists table indexes

<?php

 print_r($connection->describeIndexes('robots_parts'));

public Phalcon\Db\ReferenceInterface[] describeReferences (string $table, [string $schema])

Lists table references

public useExplicitIdValue ()

Check whether the database system requires an explicit value for identity columns

public getDefaultValue ()

Returns the default value to make the RBDM use the default value declared in the table definition

<?php

 //Inserting a new robot with a valid default value for the column 'year'
 $success = $connection->insert(
 "robots",
 array("Astro Boy", $connection->getDefaultValue()),
 array("name", "year")
);

public __construct (array $descriptor) inherited from Phalcon\Db\Adapter\Pdo

Constructor for Phalcon\Db\Adapter\Pdo

public prepare (mixed $sqlStatement) inherited from Phalcon\Db\Adapter\Pdo

Returns a PDO prepared statement to be executed with ‘executePrepared’

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public PDOStatement [http://php.net/manual/en/class.pdostatement.php] executePrepared (PDOStatement [http://php.net/manual/en/class.pdostatement.php] $statement, array $placeholders, array $dataTypes) inherited from Phalcon\Db\Adapter\Pdo

Executes a prepared statement binding. This function uses integer indexes starting from zero

<?php

 use Phalcon\Db\Column;

 $statement = $db->prepare('SELECT * FROM robots WHERE name = :name');
 $result = $connection->executePrepared($statement, ['name' => 'Voltron'], ['name' => Column::BIND_PARAM_INT]);

public query (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server is returning rows

<?php

//Querying data
$resultset = $connection->query("SELECT * FROM robots WHERE type='mechanical'");
$resultset = $connection->query("SELECT * FROM robots WHERE type=?", array("mechanical"));

public execute (mixed $sqlStatement, [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter\Pdo

Sends SQL statements to the database server returning the success state. Use this method only when the SQL statement sent to the server doesn’t return any rows

<?php

//Inserting data
$success = $connection->execute("INSERT INTO robots VALUES (1, 'Astro Boy')");
$success = $connection->execute("INSERT INTO robots VALUES (?, ?)", array(1, 'Astro Boy'));

public affectedRows () inherited from Phalcon\Db\Adapter\Pdo

Returns the number of affected rows by the lastest INSERT/UPDATE/DELETE executed in the database system

<?php

$connection->execute("DELETE FROM robots");
echo $connection->affectedRows(), ' were deleted';

public close () inherited from Phalcon\Db\Adapter\Pdo

Closes the active connection returning success. Phalcon automatically closes and destroys active connections when the request ends

public string escapeIdentifier (string $identifier) inherited from Phalcon\Db\Adapter\Pdo

Escapes a column/table/schema name

<?php

$escapedTable = $connection->escapeIdentifier('robots');
$escapedTable = $connection->escapeIdentifier(['store', 'robots']);

public escapeString (mixed $str) inherited from Phalcon\Db\Adapter\Pdo

Escapes a value to avoid SQL injections according to the active charset in the connection

<?php

$escapedStr = $connection->escapeString('some dangerous value');

public convertBoundParams (mixed $sql, [array $params]) inherited from Phalcon\Db\Adapter\Pdo

Converts bound parameters such as :name: or ?1 into PDO bind params ?

<?php

 print_r($connection->convertBoundParams('SELECT * FROM robots WHERE name = :name:', array('Bender')));

public int | boolean lastInsertId ([string $sequenceName]) inherited from Phalcon\Db\Adapter\Pdo

Returns the insert id for the auto_increment/serial column inserted in the lastest executed SQL statement

<?php

 //Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 //Getting the generated id
 $id = $connection->lastInsertId();

public begin ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Starts a transaction in the connection

public rollback ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Rollbacks the active transaction in the connection

public commit ([mixed $nesting]) inherited from Phalcon\Db\Adapter\Pdo

Commits the active transaction in the connection

public getTransactionLevel () inherited from Phalcon\Db\Adapter\Pdo

Returns the current transaction nesting level

public isUnderTransaction () inherited from Phalcon\Db\Adapter\Pdo

Checks whether the connection is under a transaction

<?php

$connection->begin();
var_dump($connection->isUnderTransaction()); //true

public getInternalHandler () inherited from Phalcon\Db\Adapter\Pdo

Return internal PDO handler

public array getErrorInfo () inherited from Phalcon\Db\Adapter\Pdo

Return the error info, if any

public getDialectType () inherited from Phalcon\Db\Adapter

Name of the dialect used

public getType () inherited from Phalcon\Db\Adapter

Type of database system the adapter is used for

public getSqlVariables () inherited from Phalcon\Db\Adapter

Active SQL bound parameter variables

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Db\Adapter

Sets the event manager

public getEventsManager () inherited from Phalcon\Db\Adapter

Returns the internal event manager

public setDialect (Phalcon\Db\DialectInterface $dialect) inherited from Phalcon\Db\Adapter

Sets the dialect used to produce the SQL

public getDialect () inherited from Phalcon\Db\Adapter

Returns internal dialect instance

public fetchOne (mixed $sqlQuery, [mixed $fetchMode], [mixed $bindParams], [mixed $bindTypes]) inherited from Phalcon\Db\Adapter

Returns the first row in a SQL query result

<?php

//Getting first robot
$robot = $connection->fetchOne("SELECT * FROM robots");
print_r($robot);

//Getting first robot with associative indexes only
$robot = $connection->fetchOne("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
print_r($robot);

public array fetchAll (string $sqlQuery, [int $fetchMode], [array $bindParams], [array $bindTypes]) inherited from Phalcon\Db\Adapter

Dumps the complete result of a query into an array

<?php

//Getting all robots with associative indexes only
$robots = $connection->fetchAll("SELECT * FROM robots", Phalcon\Db::FETCH_ASSOC);
foreach ($robots as $robot) {
 print_r($robot);
}

 //Getting all robots that contains word "robot" withing the name
 $robots = $connection->fetchAll("SELECT * FROM robots WHERE name LIKE :name",
 Phalcon\Db::FETCH_ASSOC,
 array('name' => '%robot%')
);
foreach($robots as $robot){
 print_r($robot);
}

public string | ** fetchColumn (string $sqlQuery, [array $placeholders], [int | string $column]) inherited from Phalcon\Db\Adapter

Returns the n’th field of first row in a SQL query result

<?php

//Getting count of robots
$robotsCount = $connection->fetchColumn("SELECT count(*) FROM robots");
print_r($robotsCount);

//Getting name of last edited robot
$robot = $connection->fetchColumn("SELECT id, name FROM robots order by modified desc", 1);
print_r($robot);

public boolean insert (string | array $table, array $values, [array $fields], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RDBMS SQL syntax

<?php

 // Inserting a new robot
 $success = $connection->insert(
 "robots",
 array("Astro Boy", 1952),
 array("name", "year")
);

 // Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean insertAsDict (string $table, array $data, [array $dataTypes]) inherited from Phalcon\Db\Adapter

Inserts data into a table using custom RBDM SQL syntax

<?php

 //Inserting a new robot
 $success = $connection->insertAsDict(
 "robots",
 array(
 "name" => "Astro Boy",
 "year" => 1952
)
);

 //Next SQL sentence is sent to the database system
 INSERT INTO `robots` (`name`, `year`) VALUES ("Astro boy", 1952);

public boolean update (string | array $table, array $fields, array $values, [string | array $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax

<?php

 //Updating existing robot
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

 //Updating existing robot with array condition and $dataTypes
 $success = $connection->update(
 "robots",
 array("name"),
 array("New Astro Boy"),
 array(
 'conditions' => "id = ?",
 'bind' => array($some_unsafe_id),
 'bindTypes' => array(PDO::PARAM_INT) //use only if you use $dataTypes param
),
 array(PDO::PARAM_STR)
);

Warning! If $whereCondition is string it not escaped.

public boolean updateAsDict (string $table, array $data, [string $whereCondition], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Updates data on a table using custom RBDM SQL syntax Another, more convenient syntax

<?php

 //Updating existing robot
 $success = $connection->updateAsDict(
 "robots",
 array(
 "name" => "New Astro Boy"
),
 "id = 101"
);

 //Next SQL sentence is sent to the database system
 UPDATE `robots` SET `name` = "Astro boy" WHERE id = 101

public boolean delete (string | array $table, [string $whereCondition], [array $placeholders], [array $dataTypes]) inherited from Phalcon\Db\Adapter

Deletes data from a table using custom RBDM SQL syntax

<?php

 //Deleting existing robot
 $success = $connection->delete(
 "robots",
 "id = 101"
);

 //Next SQL sentence is generated
 DELETE FROM `robots` WHERE `id` = 101

public string getColumnList (array $columnList) inherited from Phalcon\Db\Adapter

Gets a list of columns

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Adapter

Appends a LIMIT clause to $sqlQuery argument

<?php

 echo $connection->limit("SELECT * FROM robots", 5);

public tableExists (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.table

<?php

 var_dump($connection->tableExists("blog", "posts"));

public viewExists (mixed $viewName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Generates SQL checking for the existence of a schema.view

<?php

 var_dump($connection->viewExists("active_users", "posts"));

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a FOR UPDATE clause

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Adapter

Returns a SQL modified with a LOCK IN SHARE MODE clause

public createTable (mixed $tableName, mixed $schemaName, array $definition) inherited from Phalcon\Db\Adapter

Creates a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a table from a schema/database

public createView (mixed $viewName, array $definition, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Creates a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\Adapter

Drops a view

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Adds a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn]) inherited from Phalcon\Db\Adapter

Modifies a table column based on a definition

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName) inherited from Phalcon\Db\Adapter

Drops a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName) inherited from Phalcon\Db\Adapter

Drop an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\Adapter

Adds a primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName) inherited from Phalcon\Db\Adapter

Drops a table’s primary key

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference) inherited from Phalcon\Db\Adapter

Adds a foreign key to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName) inherited from Phalcon\Db\Adapter

Drops a foreign key from a table

public getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\Adapter

Returns the SQL column definition from a column

public listTables ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all tables on a database

<?php

 print_r($connection->listTables("blog"));

public listViews ([mixed $schemaName]) inherited from Phalcon\Db\Adapter

List all views on a database

<?php

print_r($connection->listViews("blog"));

public tableOptions (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\Adapter

Gets creation options from a table

<?php

 print_r($connection->tableOptions('robots'));

public createSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Creates a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Releases given savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Adapter

Rollbacks given savepoint

public setNestedTransactionsWithSavepoints (mixed $nestedTransactionsWithSavepoints) inherited from Phalcon\Db\Adapter

Set if nested transactions should use savepoints

public isNestedTransactionsWithSavepoints () inherited from Phalcon\Db\Adapter

Returns if nested transactions should use savepoints

public getNestedTransactionSavepointName () inherited from Phalcon\Db\Adapter

Returns the savepoint name to use for nested transactions

public getDefaultIdValue () inherited from Phalcon\Db\Adapter

Returns the default identity value to be inserted in an identity column

<?php

 //Inserting a new robot with a valid default value for the column 'id'
 $success = $connection->insert(
 "robots",
 array($connection->getDefaultIdValue(), "Astro Boy", 1952),
 array("id", "name", "year")
);

public supportSequences () inherited from Phalcon\Db\Adapter

Check whether the database system requires a sequence to produce auto-numeric values

public getDescriptor () inherited from Phalcon\Db\Adapter

Return descriptor used to connect to the active database

public string getConnectionId () inherited from Phalcon\Db\Adapter

Gets the active connection unique identifier

public getSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

public getRealSQLStatement () inherited from Phalcon\Db\Adapter

Active SQL statement in the object without replace bound paramters

public array getSQLBindTypes () inherited from Phalcon\Db\Adapter

Active SQL statement in the object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Column

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Column

implements Phalcon\Db\ColumnInterface

Source on GitHub

Allows to define columns to be used on create or alter table operations

<?php

use Phalcon\Db\Column as Column;

 //column definition
 $column = new Column("id", array(
 "type" => Column::TYPE_INTEGER,
 "size" => 10,
 "unsigned" => true,
 "notNull" => true,
 "autoIncrement" => true,
 "first" => true
));

 //add column to existing table
 $connection->addColumn("robots", null, $column);

Constants

integer TYPE_INTEGER

integer TYPE_DATE

integer TYPE_VARCHAR

integer TYPE_DECIMAL

integer TYPE_DATETIME

integer TYPE_CHAR

integer TYPE_TEXT

integer TYPE_FLOAT

integer TYPE_BOOLEAN

integer TYPE_DOUBLE

integer TYPE_TINYBLOB

integer TYPE_BLOB

integer TYPE_MEDIUMBLOB

integer TYPE_LONGBLOB

integer TYPE_BIGINTEGER

integer TYPE_JSON

integer TYPE_JSONB

integer TYPE_TIMESTAMP

integer BIND_PARAM_NULL

integer BIND_PARAM_INT

integer BIND_PARAM_STR

integer BIND_PARAM_BLOB

integer BIND_PARAM_BOOL

integer BIND_PARAM_DECIMAL

integer BIND_SKIP

Methods

public getName ()

Column’s name

public getSchemaName ()

Schema which table related is

public getType ()

Column data type

public getTypeReference ()

Column data type reference

public getTypeValues ()

Column data type values

public getSize ()

Integer column size

public getScale ()

Integer column number scale

public getDefault ()

Default column value

public __construct (mixed $name, array $definition)

Phalcon\Db\Column constructor

public isUnsigned ()

Returns true if number column is unsigned

public isNotNull ()

Not null

public isPrimary ()

Column is part of the primary key?

public isAutoIncrement ()

Auto-Increment

public isNumeric ()

Check whether column have an numeric type

public isFirst ()

Check whether column have first position in table

public string getAfterPosition ()

Check whether field absolute to position in table

public getBindType ()

Returns the type of bind handling

public static __set_state (array $data)

Restores the internal state of a Phalcon\Db\Column object

public hasDefault ()

Check whether column has default value

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Db\Dialect

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Source on GitHub

This is the base class to each database dialect. This implements common methods to transform intermediate code into its RDBMS related syntax

Methods

public registerCustomFunction (mixed $name, mixed $customFunction)

Registers custom SQL functions

public getCustomFunctions ()

Returns registered functions

final public escapeSchema (mixed $str, [mixed $escapeChar])

Escape Schema

final public escape (mixed $str, [mixed $escapeChar])

Escape identifiers

public limit (mixed $sqlQuery, mixed $number)

Generates the SQL for LIMIT clause

<?php

 $sql = $dialect->limit('SELECT * FROM robots', 10);
 echo $sql; // SELECT * FROM robots LIMIT 10

 $sql = $dialect->limit('SELECT * FROM robots', [10, 50]);
 echo $sql; // SELECT * FROM robots LIMIT 10 OFFSET 50

public forUpdate (mixed $sqlQuery)

Returns a SQL modified with a FOR UPDATE clause

<?php

 $sql = $dialect->forUpdate('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots FOR UPDATE

public sharedLock (mixed $sqlQuery)

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

 $sql = $dialect->sharedLock('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

final public getColumnList (array $columnList, [mixed $escapeChar], [mixed $bindCounts])

Gets a list of columns with escaped identifiers

<?php

 echo $dialect->getColumnList(array('column1', 'column'));

final public getSqlColumn (mixed $column, [mixed $escapeChar], [mixed $bindCounts])

Resolve Column expressions

public getSqlExpression (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Transforms an intermediate representation for an expression into a database system valid expression

final public getSqlTable (mixed $table, [mixed $escapeChar])

Transform an intermediate representation of a schema/table into a database system valid expression

public select (array $definition)

Builds a SELECT statement

public supportsSavepoints ()

Checks whether the platform supports savepoints

public supportsReleaseSavepoints ()

Checks whether the platform supports releasing savepoints.

public createSavepoint (mixed $name)

Generate SQL to create a new savepoint

public releaseSavepoint (mixed $name)

Generate SQL to release a savepoint

public rollbackSavepoint (mixed $name)

Generate SQL to rollback a savepoint

final protected getSqlExpressionScalar (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve Column expressions

final protected getSqlExpressionObject (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve object expressions

final protected getSqlExpressionQualified (array $expression, [mixed $escapeChar])

Resolve qualified expressions

final protected getSqlExpressionBinaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve binary operations expressions

final protected getSqlExpressionUnaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve unary operations expressions

final protected getSqlExpressionFunctionCall (array $expression, mixed $escapeChar, [mixed $bindCounts])

Resolve function calls

final protected getSqlExpressionList (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve Lists

final protected getSqlExpressionAll (array $expression, [mixed $escapeChar])

Resolve *

final protected getSqlExpressionCastValue (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve CAST of values

final protected getSqlExpressionConvertValue (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve CONVERT of values encodings

final protected getSqlExpressionCase (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve CASE expressions

final protected getSqlExpressionFrom (mixed $expression, [mixed $escapeChar])

Resolve a FROM clause

final protected getSqlExpressionJoins (mixed $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve a JOINs clause

final protected getSqlExpressionWhere (mixed $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve a WHERE clause

final protected getSqlExpressionGroupBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve a GROUP BY clause

final protected getSqlExpressionHaving (array $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve a HAVING clause

final protected getSqlExpressionOrderBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve an ORDER BY clause

final protected getSqlExpressionLimit (mixed $expression, [mixed $escapeChar], [mixed $bindCounts])

Resolve a LIMIT clause

protected prepareColumnAlias (mixed $qualified, [mixed $alias], [mixed $escapeChar])

Prepares column for this RDBMS

protected prepareTable (mixed $table, [mixed $schema], [mixed $alias], [mixed $escapeChar])

Prepares table for this RDBMS

protected prepareQualified (mixed $column, [mixed $domain], [mixed $escapeChar])

Prepares qualified for this RDBMS

abstract public getColumnDefinition (Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\DialectInterface

...

abstract public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column) inherited from Phalcon\Db\DialectInterface

...

abstract public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn]) inherited from Phalcon\Db\DialectInterface

...

abstract public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName) inherited from Phalcon\Db\DialectInterface

...

abstract public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\DialectInterface

...

abstract public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName) inherited from Phalcon\Db\DialectInterface

...

abstract public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index) inherited from Phalcon\Db\DialectInterface

...

abstract public dropPrimaryKey (mixed $tableName, mixed $schemaName) inherited from Phalcon\Db\DialectInterface

...

abstract public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference) inherited from Phalcon\Db\DialectInterface

...

abstract public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName) inherited from Phalcon\Db\DialectInterface

...

abstract public createTable (mixed $tableName, mixed $schemaName, array $definition) inherited from Phalcon\Db\DialectInterface

...

abstract public createView (mixed $viewName, array $definition, [mixed $schemaName]) inherited from Phalcon\Db\DialectInterface

...

abstract public dropTable (mixed $tableName, mixed $schemaName) inherited from Phalcon\Db\DialectInterface

...

abstract public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists]) inherited from Phalcon\Db\DialectInterface

...

abstract public tableExists (mixed $tableName, [mixed $schemaName]) inherited from Phalcon\Db\DialectInterface

...

abstract public viewExists (mixed $viewName, [mixed $schemaName]) inherited from Phalcon\Db\DialectInterface

...

abstract public describeColumns (mixed $table, [mixed $schema]) inherited from Phalcon\Db\DialectInterface

...

abstract public listTables ([mixed $schemaName]) inherited from Phalcon\Db\DialectInterface

...

abstract public describeIndexes (mixed $table, [mixed $schema]) inherited from Phalcon\Db\DialectInterface

...

abstract public describeReferences (mixed $table, [mixed $schema]) inherited from Phalcon\Db\DialectInterface

...

abstract public tableOptions (mixed $table, [mixed $schema]) inherited from Phalcon\Db\DialectInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Dialect\Mysql

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Dialect\Mysql

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Source on GitHub

Generates database specific SQL for the MySQL RDBMS

Methods

public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in MySQL

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to add a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

Generates SQL to modify a column in a table

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName)

Generates SQL to delete a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName)

Generates SQL to delete an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add the primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName)

Generates SQL to delete primary key from a table

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference)

Generates SQL to add an index to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName)

Generates SQL to delete a foreign key from a table

public createTable (mixed $tableName, mixed $schemaName, array $definition)

Generates SQL to create a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists])

Generates SQL to drop a table

public createView (mixed $viewName, array $definition, [mixed $schemaName])

Generates SQL to create a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists])

Generates SQL to drop a view

public tableExists (mixed $tableName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

 echo $dialect->tableExists("posts", "blog");
 echo $dialect->tableExists("posts");

public viewExists (mixed $viewName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.view

public describeColumns (mixed $table, [mixed $schema])

Generates SQL describing a table

<?php

 print_r($dialect->describeColumns("posts"));

public listTables ([mixed $schemaName])

List all tables in database

<?php

 print_r($dialect->listTables("blog"))

public listViews ([mixed $schemaName])

Generates the SQL to list all views of a schema or user

public describeIndexes (mixed $table, [mixed $schema])

Generates SQL to query indexes on a table

public describeReferences (mixed $table, [mixed $schema])

Generates SQL to query foreign keys on a table

public tableOptions (mixed $table, [mixed $schema])

Generates the SQL to describe the table creation options

protected _getTableOptions (array $definition)

Generates SQL to add the table creation options

public registerCustomFunction (mixed $name, mixed $customFunction) inherited from Phalcon\Db\Dialect

Registers custom SQL functions

public getCustomFunctions () inherited from Phalcon\Db\Dialect

Returns registered functions

final public escapeSchema (mixed $str, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Escape Schema

final public escape (mixed $str, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Escape identifiers

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Dialect

Generates the SQL for LIMIT clause

<?php

 $sql = $dialect->limit('SELECT * FROM robots', 10);
 echo $sql; // SELECT * FROM robots LIMIT 10

 $sql = $dialect->limit('SELECT * FROM robots', [10, 50]);
 echo $sql; // SELECT * FROM robots LIMIT 10 OFFSET 50

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

 $sql = $dialect->forUpdate('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots FOR UPDATE

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

 $sql = $dialect->sharedLock('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

final public getColumnList (array $columnList, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

 echo $dialect->getColumnList(array('column1', 'column'));

final public getSqlColumn (mixed $column, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Column expressions

public getSqlExpression (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for an expression into a database system valid expression

final public getSqlTable (mixed $table, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Transform an intermediate representation of a schema/table into a database system valid expression

public select (array $definition) inherited from Phalcon\Db\Dialect

Builds a SELECT statement

public supportsSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports savepoints

public supportsReleaseSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports releasing savepoints.

public createSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to create a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

final protected getSqlExpressionScalar (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Column expressions

final protected getSqlExpressionObject (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve object expressions

final protected getSqlExpressionQualified (array $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve qualified expressions

final protected getSqlExpressionBinaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve binary operations expressions

final protected getSqlExpressionUnaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve unary operations expressions

final protected getSqlExpressionFunctionCall (array $expression, mixed $escapeChar, [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve function calls

final protected getSqlExpressionList (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Lists

final protected getSqlExpressionAll (array $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve *

final protected getSqlExpressionCastValue (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CAST of values

final protected getSqlExpressionConvertValue (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CONVERT of values encodings

final protected getSqlExpressionCase (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CASE expressions

final protected getSqlExpressionFrom (mixed $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve a FROM clause

final protected getSqlExpressionJoins (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a JOINs clause

final protected getSqlExpressionWhere (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a WHERE clause

final protected getSqlExpressionGroupBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a GROUP BY clause

final protected getSqlExpressionHaving (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a HAVING clause

final protected getSqlExpressionOrderBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve an ORDER BY clause

final protected getSqlExpressionLimit (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a LIMIT clause

protected prepareColumnAlias (mixed $qualified, [mixed $alias], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares column for this RDBMS

protected prepareTable (mixed $table, [mixed $schema], [mixed $alias], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares table for this RDBMS

protected prepareQualified (mixed $column, [mixed $domain], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares qualified for this RDBMS

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Dialect\Postgresql

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Dialect\Postgresql

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Source on GitHub

Generates database specific SQL for the PostgreSQL RDBMS

Methods

public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in PostgreSQL

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to add a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

Generates SQL to modify a column in a table

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName)

Generates SQL to delete a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName)

Generates SQL to delete an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add the primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName)

Generates SQL to delete primary key from a table

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference)

Generates SQL to add an index to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName)

Generates SQL to delete a foreign key from a table

public createTable (mixed $tableName, mixed $schemaName, array $definition)

Generates SQL to create a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists])

Generates SQL to drop a view

public createView (mixed $viewName, array $definition, [mixed $schemaName])

Generates SQL to create a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists])

Generates SQL to drop a view

public tableExists (mixed $tableName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

 echo $dialect->tableExists("posts", "blog");
 echo $dialect->tableExists("posts");

public viewExists (mixed $viewName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.view

public describeColumns (mixed $table, [mixed $schema])

Generates SQL describing a table

<?php

 print_r($dialect->describeColumns("posts"));

public listTables ([mixed $schemaName])

List all tables in database

<?php

 print_r($dialect->listTables("blog"))

public string listViews ([string $schemaName])

Generates the SQL to list all views of a schema or user

public describeIndexes (mixed $table, [mixed $schema])

Generates SQL to query indexes on a table

public describeReferences (mixed $table, [mixed $schema])

Generates SQL to query foreign keys on a table

public tableOptions (mixed $table, [mixed $schema])

Generates the SQL to describe the table creation options

protected _getTableOptions (array $definition)

...

public registerCustomFunction (mixed $name, mixed $customFunction) inherited from Phalcon\Db\Dialect

Registers custom SQL functions

public getCustomFunctions () inherited from Phalcon\Db\Dialect

Returns registered functions

final public escapeSchema (mixed $str, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Escape Schema

final public escape (mixed $str, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Escape identifiers

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Dialect

Generates the SQL for LIMIT clause

<?php

 $sql = $dialect->limit('SELECT * FROM robots', 10);
 echo $sql; // SELECT * FROM robots LIMIT 10

 $sql = $dialect->limit('SELECT * FROM robots', [10, 50]);
 echo $sql; // SELECT * FROM robots LIMIT 10 OFFSET 50

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

 $sql = $dialect->forUpdate('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots FOR UPDATE

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

 $sql = $dialect->sharedLock('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

final public getColumnList (array $columnList, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

 echo $dialect->getColumnList(array('column1', 'column'));

final public getSqlColumn (mixed $column, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Column expressions

public getSqlExpression (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for an expression into a database system valid expression

final public getSqlTable (mixed $table, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Transform an intermediate representation of a schema/table into a database system valid expression

public select (array $definition) inherited from Phalcon\Db\Dialect

Builds a SELECT statement

public supportsSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports savepoints

public supportsReleaseSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports releasing savepoints.

public createSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to create a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

final protected getSqlExpressionScalar (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Column expressions

final protected getSqlExpressionObject (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve object expressions

final protected getSqlExpressionQualified (array $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve qualified expressions

final protected getSqlExpressionBinaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve binary operations expressions

final protected getSqlExpressionUnaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve unary operations expressions

final protected getSqlExpressionFunctionCall (array $expression, mixed $escapeChar, [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve function calls

final protected getSqlExpressionList (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Lists

final protected getSqlExpressionAll (array $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve *

final protected getSqlExpressionCastValue (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CAST of values

final protected getSqlExpressionConvertValue (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CONVERT of values encodings

final protected getSqlExpressionCase (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CASE expressions

final protected getSqlExpressionFrom (mixed $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve a FROM clause

final protected getSqlExpressionJoins (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a JOINs clause

final protected getSqlExpressionWhere (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a WHERE clause

final protected getSqlExpressionGroupBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a GROUP BY clause

final protected getSqlExpressionHaving (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a HAVING clause

final protected getSqlExpressionOrderBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve an ORDER BY clause

final protected getSqlExpressionLimit (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a LIMIT clause

protected prepareColumnAlias (mixed $qualified, [mixed $alias], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares column for this RDBMS

protected prepareTable (mixed $table, [mixed $schema], [mixed $alias], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares table for this RDBMS

protected prepareQualified (mixed $column, [mixed $domain], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares qualified for this RDBMS

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Dialect\Sqlite

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Dialect\Sqlite

extends abstract class Phalcon\Db\Dialect

implements Phalcon\Db\DialectInterface

Source on GitHub

Generates database specific SQL for the Sqlite RDBMS

Methods

public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

Gets the column name in SQLite

public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column)

Generates SQL to add a column to a table

public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

Generates SQL to modify a column in a table

public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName)

Generates SQL to delete a column from a table

public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add an index to a table

public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName)

Generates SQL to delete an index from a table

public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

Generates SQL to add the primary key to a table

public dropPrimaryKey (mixed $tableName, mixed $schemaName)

Generates SQL to delete primary key from a table

public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference)

Generates SQL to add an index to a table

public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName)

Generates SQL to delete a foreign key from a table

public createTable (mixed $tableName, mixed $schemaName, array $definition)

Generates SQL to create a table

public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists])

Generates SQL to drop a table

public createView (mixed $viewName, array $definition, [mixed $schemaName])

Generates SQL to create a view

public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists])

Generates SQL to drop a view

public tableExists (mixed $tableName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.table

<?php

 echo $dialect->tableExists("posts", "blog");
 echo $dialect->tableExists("posts");

public viewExists (mixed $viewName, [mixed $schemaName])

Generates SQL checking for the existence of a schema.view

public describeColumns (mixed $table, [mixed $schema])

Generates SQL describing a table

<?php

 print_r($dialect->describeColumns("posts"));

public listTables ([mixed $schemaName])

List all tables in database

<?php

 print_r($dialect->listTables("blog"))

public listViews ([mixed $schemaName])

Generates the SQL to list all views of a schema or user

public listIndexesSql (mixed $table, [mixed $schema], [mixed $keyName])

Generates the SQL to get query list of indexes

<?php

 print_r($dialect->listIndexesSql("blog"))

public describeIndexes (mixed $table, [mixed $schema])

Generates SQL to query indexes on a table

public describeIndex (mixed $index)

Generates SQL to query indexes detail on a table

public describeReferences (mixed $table, [mixed $schema])

Generates SQL to query foreign keys on a table

public tableOptions (mixed $table, [mixed $schema])

Generates the SQL to describe the table creation options

public registerCustomFunction (mixed $name, mixed $customFunction) inherited from Phalcon\Db\Dialect

Registers custom SQL functions

public getCustomFunctions () inherited from Phalcon\Db\Dialect

Returns registered functions

final public escapeSchema (mixed $str, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Escape Schema

final public escape (mixed $str, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Escape identifiers

public limit (mixed $sqlQuery, mixed $number) inherited from Phalcon\Db\Dialect

Generates the SQL for LIMIT clause

<?php

 $sql = $dialect->limit('SELECT * FROM robots', 10);
 echo $sql; // SELECT * FROM robots LIMIT 10

 $sql = $dialect->limit('SELECT * FROM robots', [10, 50]);
 echo $sql; // SELECT * FROM robots LIMIT 10 OFFSET 50

public forUpdate (mixed $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a FOR UPDATE clause

<?php

 $sql = $dialect->forUpdate('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots FOR UPDATE

public sharedLock (mixed $sqlQuery) inherited from Phalcon\Db\Dialect

Returns a SQL modified with a LOCK IN SHARE MODE clause

<?php

 $sql = $dialect->sharedLock('SELECT * FROM robots');
 echo $sql; // SELECT * FROM robots LOCK IN SHARE MODE

final public getColumnList (array $columnList, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Gets a list of columns with escaped identifiers

<?php

 echo $dialect->getColumnList(array('column1', 'column'));

final public getSqlColumn (mixed $column, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Column expressions

public getSqlExpression (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Transforms an intermediate representation for an expression into a database system valid expression

final public getSqlTable (mixed $table, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Transform an intermediate representation of a schema/table into a database system valid expression

public select (array $definition) inherited from Phalcon\Db\Dialect

Builds a SELECT statement

public supportsSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports savepoints

public supportsReleaseSavepoints () inherited from Phalcon\Db\Dialect

Checks whether the platform supports releasing savepoints.

public createSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to create a new savepoint

public releaseSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to release a savepoint

public rollbackSavepoint (mixed $name) inherited from Phalcon\Db\Dialect

Generate SQL to rollback a savepoint

final protected getSqlExpressionScalar (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Column expressions

final protected getSqlExpressionObject (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve object expressions

final protected getSqlExpressionQualified (array $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve qualified expressions

final protected getSqlExpressionBinaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve binary operations expressions

final protected getSqlExpressionUnaryOperations (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve unary operations expressions

final protected getSqlExpressionFunctionCall (array $expression, mixed $escapeChar, [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve function calls

final protected getSqlExpressionList (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve Lists

final protected getSqlExpressionAll (array $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve *

final protected getSqlExpressionCastValue (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CAST of values

final protected getSqlExpressionConvertValue (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CONVERT of values encodings

final protected getSqlExpressionCase (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve CASE expressions

final protected getSqlExpressionFrom (mixed $expression, [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Resolve a FROM clause

final protected getSqlExpressionJoins (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a JOINs clause

final protected getSqlExpressionWhere (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a WHERE clause

final protected getSqlExpressionGroupBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a GROUP BY clause

final protected getSqlExpressionHaving (array $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a HAVING clause

final protected getSqlExpressionOrderBy (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve an ORDER BY clause

final protected getSqlExpressionLimit (mixed $expression, [mixed $escapeChar], [mixed $bindCounts]) inherited from Phalcon\Db\Dialect

Resolve a LIMIT clause

protected prepareColumnAlias (mixed $qualified, [mixed $alias], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares column for this RDBMS

protected prepareTable (mixed $table, [mixed $schema], [mixed $alias], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares table for this RDBMS

protected prepareQualified (mixed $column, [mixed $domain], [mixed $escapeChar]) inherited from Phalcon\Db\Dialect

Prepares qualified for this RDBMS

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Index

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Index

implements Phalcon\Db\IndexInterface

Source on GitHub

Allows to define indexes to be used on tables. Indexes are a common way to enhance database performance. An index allows the database server to find and retrieve specific rows much faster than it could do without an index

Methods

public getName ()

Index name

public getColumns ()

Index columns

public getType ()

Index type

public __construct (mixed $name, array $columns, [mixed $type])

Phalcon\Db\Index constructor

public static __set_state (array $data)

Restore a Phalcon\Db\Index object from export

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Profiler

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Profiler

Source on GitHub

Instances of Phalcon\Db can generate execution profiles on SQL statements sent to the relational database. Profiled information includes execution time in milliseconds. This helps you to identify bottlenecks in your applications.

<?php

$profiler = new \Phalcon\Db\Profiler();

//Set the connection profiler
$connection->setProfiler($profiler);

$sql = "SELECT buyer_name, quantity, product_name
FROM buyers LEFT JOIN products ON
buyers.pid=products.id";

//Execute a SQL statement
$connection->query($sql);

//Get the last profile in the profiler
$profile = $profiler->getLastProfile();

echo "SQL Statement: ", $profile->getSQLStatement(), "\n";
echo "Start Time: ", $profile->getInitialTime(), "\n";
echo "Final Time: ", $profile->getFinalTime(), "\n";
echo "Total Elapsed Time: ", $profile->getTotalElapsedSeconds(), "\n";

Methods

public Phalcon\Db\Profiler startProfile (string $sqlStatement, [mixed $sqlVariables], [mixed $sqlBindTypes])

Starts the profile of a SQL sentence

public stopProfile ()

Stops the active profile

public getNumberTotalStatements ()

Returns the total number of SQL statements processed

public getTotalElapsedSeconds ()

Returns the total time in seconds spent by the profiles

public getProfiles ()

Returns all the processed profiles

public reset ()

Resets the profiler, cleaning up all the profiles

public getLastProfile ()

Returns the last profile executed in the profiler

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Profiler\Item

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Profiler\Item

Source on GitHub

This class identifies each profile in a Phalcon\Db\Profiler

Methods

public setSqlStatement (mixed $sqlStatement)

SQL statement related to the profile

public getSqlStatement ()

SQL statement related to the profile

public setSqlVariables (array $sqlVariables)

SQL variables related to the profile

public getSqlVariables ()

SQL variables related to the profile

public setSqlBindTypes (array $sqlBindTypes)

SQL bind types related to the profile

public getSqlBindTypes ()

SQL bind types related to the profile

public setInitialTime (mixed $initialTime)

Timestamp when the profile started

public getInitialTime ()

Timestamp when the profile started

public setFinalTime (mixed $finalTime)

Timestamp when the profile ended

public getFinalTime ()

Timestamp when the profile ended

public getTotalElapsedSeconds ()

Returns the total time in seconds spent by the profile

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\RawValue

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\RawValue

Source on GitHub

This class allows to insert/update raw data without quoting or formatting. The next example shows how to use the MySQL now() function as a field value.

<?php

$subscriber = new Subscribers();
$subscriber->email = 'andres@phalconphp.com';
$subscriber->createdAt = new \Phalcon\Db\RawValue('now()');
$subscriber->save();

Methods

public getValue ()

Raw value without quoting or formatting

public __toString ()

Raw value without quoting or formatting

public __construct (mixed $value)

Phalcon\Db\RawValue constructor

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Reference

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Reference

implements Phalcon\Db\ReferenceInterface

Source on GitHub

Allows to define reference constraints on tables

<?php

$reference = new \Phalcon\Db\Reference("field_fk", array(
 'referencedSchema' => "invoicing",
 'referencedTable' => "products",
 'columns' => array("product_type", "product_code"),
 'referencedColumns' => array("type", "code")
));

Methods

public getName ()

Constraint name

public getSchemaName ()

...

public getReferencedSchema ()

...

public getReferencedTable ()

Referenced Table

public getColumns ()

Local reference columns

public getReferencedColumns ()

Referenced Columns

public getOnDelete ()

ON DELETE

public getOnUpdate ()

ON UPDATE

public __construct (mixed $name, array $definition)

Phalcon\Db\Reference constructor

public static __set_state (array $data)

Restore a Phalcon\Db\Reference object from export

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Db\Result\Pdo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Db\Result\Pdo

implements Phalcon\Db\ResultInterface

Source on GitHub

Encapsulates the resultset internals

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = $result->fetchArray()) {
 print_r($robot);
}

Methods

public __construct (Phalcon\Db\AdapterInterface $connection, PDOStatement [http://php.net/manual/en/class.pdostatement.php] $result, [string $sqlStatement], [array $bindParams], [array $bindTypes])

Phalcon\Db\Result\Pdo constructor

public execute ()

Allows to execute the statement again. Some database systems don’t support scrollable cursors, So, as cursors are forward only, we need to execute the cursor again to fetch rows from the begining

public fetch ([mixed $fetchStyle], [mixed $cursorOrientation], [mixed $cursorOffset])

Fetches an array/object of strings that corresponds to the fetched row, or FALSE if there are no more rows. This method is affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->setFetchMode(Phalcon\Db::FETCH_OBJ);
while ($robot = $result->fetch()) {
 echo $robot->name;
}

public fetchArray ()

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows. This method is affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->setFetchMode(Phalcon\Db::FETCH_NUM);
while ($robot = result->fetchArray()) {
 print_r($robot);
}

public fetchAll ([mixed $fetchStyle], [mixed $fetchArgument], [mixed $ctorArgs])

Returns an array of arrays containing all the records in the result This method is affected by the active fetch flag set using Phalcon\Db\Result\Pdo::setFetchMode

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$robots = $result->fetchAll();

public numRows ()

Gets number of rows returned by a resultset

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
echo 'There are ', $result->numRows(), ' rows in the resultset';

public dataSeek (mixed $number)

Moves internal resultset cursor to another position letting us to fetch a certain row

<?php

$result = $connection->query("SELECT * FROM robots ORDER BY name");
$result->dataSeek(2); // Move to third row on result
$row = $result->fetch(); // Fetch third row

public setFetchMode (mixed $fetchMode, [mixed $colNoOrClassNameOrObject], [mixed $ctorargs])

Changes the fetching mode affecting Phalcon\Db\Result\Pdo::fetch()

<?php

//Return array with integer indexes
$result->setFetchMode(\Phalcon\Db::FETCH_NUM);

//Return associative array without integer indexes
$result->setFetchMode(\Phalcon\Db::FETCH_ASSOC);

//Return associative array together with integer indexes
$result->setFetchMode(\Phalcon\Db::FETCH_BOTH);

//Return an object
$result->setFetchMode(\Phalcon\Db::FETCH_OBJ);

public getInternalResult ()

Gets the internal PDO result object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Debug

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Debug

Source on GitHub

Provides debug capabilities to Phalcon applications

Methods

public setUri (mixed $uri)

Change the base URI for static resources

public setShowBackTrace (mixed $showBackTrace)

Sets if files the exception’s backtrace must be showed

public setShowFiles (mixed $showFiles)

Set if files part of the backtrace must be shown in the output

public setShowFileFragment (mixed $showFileFragment)

Sets if files must be completely opened and showed in the output or just the fragment related to the exception

public listen ([mixed $exceptions], [mixed $lowSeverity])

Listen for uncaught exceptions and unsilent notices or warnings

public listenExceptions ()

Listen for uncaught exceptions

public listenLowSeverity ()

Listen for unsilent notices or warnings

public halt ()

Halts the request showing a backtrace

public debugVar (mixed $varz, [mixed $key])

Adds a variable to the debug output

public clearVars ()

Clears are variables added previously

protected _escapeString (mixed $value)

Escapes a string with htmlentities

protected _getArrayDump (array $argument, [mixed $n])

Produces a recursive representation of an array

protected _getVarDump (mixed $variable)

Produces an string representation of a variable

public getMajorVersion ()

Returns the major framework’s version

public getVersion ()

Generates a link to the current version documentation

public getCssSources ()

Returns the css sources

public getJsSources ()

Returns the javascript sources

final protected showTraceItem (mixed $n, array $trace)

Shows a backtrace item

public onUncaughtLowSeverity (mixed $severity, mixed $message, mixed $file, mixed $line, mixed $context)

Throws an exception when a notice or warning is raised

public onUncaughtException (Exception [http://php.net/manual/en/class.exception.php] $exception)

Handles uncaught exceptions

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Debug\Dump

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Debug\Dump

Source on GitHub

Dumps information about a variable(s)

<?php

 $foo = 123;
 echo (new \Phalcon\Debug\Dump())->variable($foo, "foo");

<?php

 $foo = "string";
 $bar = ["key" => "value"];
 $baz = new stdClass();
 echo (new \Phalcon\Debug\Dump())->variables($foo, $bar, $baz);

Methods

public getDetailed ()

...

public setDetailed (mixed $detailed)

...

public __construct ([array $styles], [mixed $detailed])

Phalcon\Debug\Dump constructor

public all ()

Alias of variables() method

protected getStyle (mixed $type)

Get style for type

public setStyles ([mixed $styles])

Set styles for vars type

public one (mixed $variable, [mixed $name])

Alias of variable() method

protected output (mixed $variable, [mixed $name], [mixed $tab])

Prepare an HTML string of information about a single variable.

public variable (mixed $variable, [mixed $name])

Returns an HTML string of information about a single variable.

<?php

 echo (new \Phalcon\Debug\Dump())->variable($foo, "foo");

public variables ()

Returns an HTML string of debugging information about any number of variables, each wrapped in a “pre” tag.

<?php

 $foo = "string";
 $bar = ["key" => "value"];
 $baz = new stdClass();
 echo (new \Phalcon\Debug\Dump())->variables($foo, $bar, $baz);

public toJson (mixed $variable)

Returns an JSON string of information about a single variable.

<?php

 $foo = ["key" => "value"];
 echo (new \Phalcon\Debug\Dump())->toJson($foo);
 $foo = new stdClass();
 $foo->bar = 'buz';
 echo (new \Phalcon\Debug\Dump())->toJson($foo);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Debug\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Debug\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Di

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Di

implements Phalcon\DiInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Phalcon\Di is a component that implements Dependency Injection/Service Location of services and it’s itself a container for them. Since Phalcon is highly decoupled, Phalcon\Di is essential to integrate the different components of the framework. The developer can also use this component to inject dependencies and manage global instances of the different classes used in the application. Basically, this component implements the Inversion of Control pattern. Applying this, the objects do not receive their dependencies using setters or constructors, but requesting a service dependency injector. This reduces the overall complexity, since there is only one way to get the required dependencies within a component. Additionally, this pattern increases testability in the code, thus making it less prone to errors.

<?php

 $di = new \Phalcon\Di();

 //Using a string definition
 $di->set("request", "Phalcon\Http\Request", true);

 //Using an anonymous function
 $di->set("request", function(){
 return new \Phalcon\Http\Request();
 }, true);

 $request = $di->getRequest();

Methods

public __construct ()

Phalcon\Di constructor

public setInternalEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the internal event manager

public getInternalEventsManager ()

Returns the internal event manager

public set (mixed $name, mixed $definition, [mixed $shared])

Registers a service in the services container

public setShared (mixed $name, mixed $definition)

Registers an “always shared” service in the services container

public remove (mixed $name)

Removes a service in the services container It also removes any shared instance created for the service

public attempt (mixed $name, mixed $definition, [mixed $shared])

Attempts to register a service in the services container Only is successful if a service hasn’t been registered previously with the same name

public setRaw (mixed $name, Phalcon\Di\ServiceInterface $rawDefinition)

Sets a service using a raw Phalcon\Di\Service definition

public getRaw (mixed $name)

Returns a service definition without resolving

public getService (mixed $name)

Returns a Phalcon\Di\Service instance

public get (mixed $name, [mixed $parameters])

Resolves the service based on its configuration

public mixed getShared (string $name, [array $parameters])

Resolves a service, the resolved service is stored in the DI, subsequent requests for this service will return the same instance

public has (mixed $name)

Check whether the DI contains a service by a name

public wasFreshInstance ()

Check whether the last service obtained via getShared produced a fresh instance or an existing one

public getServices ()

Return the services registered in the DI

public offsetExists (mixed $name)

Check if a service is registered using the array syntax

public boolean offsetSet (string $name, mixed $definition)

Allows to register a shared service using the array syntax

<?php

$di["request"] = new \Phalcon\Http\Request();

public offsetGet (mixed $name)

Allows to obtain a shared service using the array syntax

<?php

var_dump($di["request"]);

public offsetUnset (mixed $name)

Removes a service from the services container using the array syntax

public __call (string $method, [array $arguments])

Magic method to get or set services using setters/getters

public static setDefault (Phalcon\DiInterface $dependencyInjector)

Set a default dependency injection container to be obtained into static methods

public static getDefault ()

Return the latest DI created

public static reset ()

Resets the internal default DI

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Di\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Di\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Di\FactoryDefault

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Di\FactoryDefault

extends class Phalcon\Di

implements ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Phalcon\DiInterface

Source on GitHub

This is a variant of the standard Phalcon\Di. By default it automatically registers all the services provided by the framework. Thanks to this, the developer does not need to register each service individually providing a full stack framework

Methods

public __construct ()

Phalcon\Di\FactoryDefault constructor

public setInternalEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di

Sets the internal event manager

public getInternalEventsManager () inherited from Phalcon\Di

Returns the internal event manager

public set (mixed $name, mixed $definition, [mixed $shared]) inherited from Phalcon\Di

Registers a service in the services container

public setShared (mixed $name, mixed $definition) inherited from Phalcon\Di

Registers an “always shared” service in the services container

public remove (mixed $name) inherited from Phalcon\Di

Removes a service in the services container It also removes any shared instance created for the service

public attempt (mixed $name, mixed $definition, [mixed $shared]) inherited from Phalcon\Di

Attempts to register a service in the services container Only is successful if a service hasn’t been registered previously with the same name

public setRaw (mixed $name, Phalcon\Di\ServiceInterface $rawDefinition) inherited from Phalcon\Di

Sets a service using a raw Phalcon\Di\Service definition

public getRaw (mixed $name) inherited from Phalcon\Di

Returns a service definition without resolving

public getService (mixed $name) inherited from Phalcon\Di

Returns a Phalcon\Di\Service instance

public get (mixed $name, [mixed $parameters]) inherited from Phalcon\Di

Resolves the service based on its configuration

public mixed getShared (string $name, [array $parameters]) inherited from Phalcon\Di

Resolves a service, the resolved service is stored in the DI, subsequent requests for this service will return the same instance

public has (mixed $name) inherited from Phalcon\Di

Check whether the DI contains a service by a name

public wasFreshInstance () inherited from Phalcon\Di

Check whether the last service obtained via getShared produced a fresh instance or an existing one

public getServices () inherited from Phalcon\Di

Return the services registered in the DI

public offsetExists (mixed $name) inherited from Phalcon\Di

Check if a service is registered using the array syntax

public boolean offsetSet (string $name, mixed $definition) inherited from Phalcon\Di

Allows to register a shared service using the array syntax

<?php

$di["request"] = new \Phalcon\Http\Request();

public offsetGet (mixed $name) inherited from Phalcon\Di

Allows to obtain a shared service using the array syntax

<?php

var_dump($di["request"]);

public offsetUnset (mixed $name) inherited from Phalcon\Di

Removes a service from the services container using the array syntax

public __call (string $method, [array $arguments]) inherited from Phalcon\Di

Magic method to get or set services using setters/getters

public static setDefault (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di

Set a default dependency injection container to be obtained into static methods

public static getDefault () inherited from Phalcon\Di

Return the latest DI created

public static reset () inherited from Phalcon\Di

Resets the internal default DI

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Di\FactoryDefault\Cli

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Di\FactoryDefault\Cli

extends class Phalcon\Di\FactoryDefault

implements Phalcon\DiInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

This is a variant of the standard Phalcon\Di. By default it automatically registers all the services provided by the framework. Thanks to this, the developer does not need to register each service individually. This class is specially suitable for CLI applications

Methods

public __construct ()

Phalcon\Di\FactoryDefault\Cli constructor

public setInternalEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di

Sets the internal event manager

public getInternalEventsManager () inherited from Phalcon\Di

Returns the internal event manager

public set (mixed $name, mixed $definition, [mixed $shared]) inherited from Phalcon\Di

Registers a service in the services container

public setShared (mixed $name, mixed $definition) inherited from Phalcon\Di

Registers an “always shared” service in the services container

public remove (mixed $name) inherited from Phalcon\Di

Removes a service in the services container It also removes any shared instance created for the service

public attempt (mixed $name, mixed $definition, [mixed $shared]) inherited from Phalcon\Di

Attempts to register a service in the services container Only is successful if a service hasn’t been registered previously with the same name

public setRaw (mixed $name, Phalcon\Di\ServiceInterface $rawDefinition) inherited from Phalcon\Di

Sets a service using a raw Phalcon\Di\Service definition

public getRaw (mixed $name) inherited from Phalcon\Di

Returns a service definition without resolving

public getService (mixed $name) inherited from Phalcon\Di

Returns a Phalcon\Di\Service instance

public get (mixed $name, [mixed $parameters]) inherited from Phalcon\Di

Resolves the service based on its configuration

public mixed getShared (string $name, [array $parameters]) inherited from Phalcon\Di

Resolves a service, the resolved service is stored in the DI, subsequent requests for this service will return the same instance

public has (mixed $name) inherited from Phalcon\Di

Check whether the DI contains a service by a name

public wasFreshInstance () inherited from Phalcon\Di

Check whether the last service obtained via getShared produced a fresh instance or an existing one

public getServices () inherited from Phalcon\Di

Return the services registered in the DI

public offsetExists (mixed $name) inherited from Phalcon\Di

Check if a service is registered using the array syntax

public boolean offsetSet (string $name, mixed $definition) inherited from Phalcon\Di

Allows to register a shared service using the array syntax

<?php

$di["request"] = new \Phalcon\Http\Request();

public offsetGet (mixed $name) inherited from Phalcon\Di

Allows to obtain a shared service using the array syntax

<?php

var_dump($di["request"]);

public offsetUnset (mixed $name) inherited from Phalcon\Di

Removes a service from the services container using the array syntax

public __call (string $method, [array $arguments]) inherited from Phalcon\Di

Magic method to get or set services using setters/getters

public static setDefault (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di

Set a default dependency injection container to be obtained into static methods

public static getDefault () inherited from Phalcon\Di

Return the latest DI created

public static reset () inherited from Phalcon\Di

Resets the internal default DI

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Di\Injectable

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Di\Injectable

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

This class allows to access services in the services container by just only accessing a public property with the same name of a registered service

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the event manager

public getEventsManager ()

Returns the internal event manager

public __get (mixed $propertyName)

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Di\Service

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Di\Service

implements Phalcon\Di\ServiceInterface

Source on GitHub

Represents individually a service in the services container

<?php

 $service = new \Phalcon\Di\Service('request', 'Phalcon\Http\Request');
 $request = service->resolve();

<?php

Methods

final public __construct (string $name, mixed $definition, [boolean $shared])

public getName ()

Returns the service’s name

public setShared (mixed $shared)

Sets if the service is shared or not

public isShared ()

Check whether the service is shared or not

public setSharedInstance (mixed $sharedInstance)

Sets/Resets the shared instance related to the service

public setDefinition (mixed $definition)

Set the service definition

public mixed getDefinition ()

Returns the service definition

public mixed resolve ([array $parameters], [Phalcon\DiInterface $dependencyInjector])

Resolves the service

public setParameter (mixed $position, array $parameter)

Changes a parameter in the definition without resolve the service

public array getParameter (int $position)

Returns a parameter in a specific position

public isResolved ()

Returns true if the service was resolved

public static __set_state (array $attributes)

Restore the internal state of a service

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Di\Service\Builder

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Di\Service\Builder

Source on GitHub

This class builds instances based on complex definitions

Methods

private mixed _buildParameter (Phalcon\DiInterface $dependencyInjector, int $position, array $argument)

Resolves a constructor/call parameter

private _buildParameters (Phalcon\DiInterface $dependencyInjector, array $arguments)

Resolves an array of parameters

public mixed build (Phalcon\DiInterface $dependencyInjector, array $definition, [array $parameters])

Builds a service using a complex service definition

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Dispatcher

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Dispatcher

implements Phalcon\DispatcherInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

This is the base class for Phalcon\Mvc\Dispatcher and Phalcon\Cli\Dispatcher. This class can’t be instantiated directly, you can use it to create your own dispatchers.

Constants

integer EXCEPTION_NO_DI

integer EXCEPTION_CYCLIC_ROUTING

integer EXCEPTION_HANDLER_NOT_FOUND

integer EXCEPTION_INVALID_HANDLER

integer EXCEPTION_INVALID_PARAMS

integer EXCEPTION_ACTION_NOT_FOUND

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public getEventsManager ()

Returns the internal event manager

public setActionSuffix (mixed $actionSuffix)

Sets the default action suffix

public getActionSuffix ()

Gets the default action suffix

public setModuleName (mixed $moduleName)

Sets the module where the controller is (only informative)

public getModuleName ()

Gets the module where the controller class is

public setNamespaceName (mixed $namespaceName)

Sets the namespace where the controller class is

public getNamespaceName ()

Gets a namespace to be prepended to the current handler name

public setDefaultNamespace (mixed $namespaceName)

Sets the default namespace

public getDefaultNamespace ()

Returns the default namespace

public setDefaultAction (mixed $actionName)

Sets the default action name

public setActionName (mixed $actionName)

Sets the action name to be dispatched

public getActionName ()

Gets the latest dispatched action name

public setParams (array $params)

Sets action params to be dispatched

public getParams ()

Gets action params

public setParam (mixed $param, mixed $value)

Set a param by its name or numeric index

public mixed getParam (mixed $param, [string | array $filters], [mixed $defaultValue])

Gets a param by its name or numeric index

public boolean hasParam (mixed $param)

Check if a param exists

public getActiveMethod ()

Returns the current method to be/executed in the dispatcher

public isFinished ()

Checks if the dispatch loop is finished or has more pendent controllers/tasks to dispatch

public setReturnedValue (mixed $value)

Sets the latest returned value by an action manually

public mixed getReturnedValue ()

Returns value returned by the latest dispatched action

public setModelBinding (boolean $value)

Enable/Disable model binding during dispatch

public object dispatch ()

Dispatches a handle action taking into account the routing parameters

protected object _dispatch ()

Dispatches a handle action taking into account the routing parameters

public forward (array $forward)

Forwards the execution flow to another controller/action Dispatchers are unique per module. Forwarding between modules is not allowed

<?php

 $this->dispatcher->forward(array("controller" => "posts", "action" => "index"));

public wasForwarded ()

Check if the current executed action was forwarded by another one

public getHandlerClass ()

Possible class name that will be located to dispatch the request

public callActionMethod (mixed $handler, mixed $actionMethod, [array $params])

...

protected _resolveEmptyProperties ()

Set empty properties to their defaults (where defaults are available)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Escaper

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Escaper

implements Phalcon\EscaperInterface

Source on GitHub

Escapes different kinds of text securing them. By using this component you may prevent XSS attacks. This component only works with UTF-8. The PREG extension needs to be compiled with UTF-8 support.

<?php

$escaper = new \Phalcon\Escaper();
$escaped = $escaper->escapeCss("font-family: <Verdana>");
echo $escaped; // font\2D family\3A \20 \3C Verdana\3E

Methods

public setEncoding (mixed $encoding)

Sets the encoding to be used by the escaper

<?php

 $escaper->setEncoding('utf-8');

public getEncoding ()

Returns the internal encoding used by the escaper

public setHtmlQuoteType (mixed $quoteType)

Sets the HTML quoting type for htmlspecialchars

<?php

 $escaper->setHtmlQuoteType(ENT_XHTML);

public setDoubleEncode (mixed $doubleEncode)

Sets the double_encode to be used by the escaper

<?php

 $escaper->setDoubleEncode(false);

final public detectEncoding (mixed $str)

Detect the character encoding of a string to be handled by an encoder Special-handling for chr(172) and chr(128) to chr(159) which fail to be detected by mb_detect_encoding()

final public normalizeEncoding (mixed $str)

Utility to normalize a string’s encoding to UTF-32.

public escapeHtml (mixed $text)

Escapes a HTML string. Internally uses htmlspecialchars

public escapeHtmlAttr (mixed $attribute)

Escapes a HTML attribute string

public escapeCss (mixed $css)

Escape CSS strings by replacing non-alphanumeric chars by their hexadecimal escaped representation

public escapeJs (mixed $js)

Escape javascript strings by replacing non-alphanumeric chars by their hexadecimal escaped representation

public escapeUrl (mixed $url)

Escapes a URL. Internally uses rawurlencode

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Escaper\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Escaper\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Events\Event

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Events\Event

implements Phalcon\Events\EventInterface

Source on GitHub

This class offers contextual information of a fired event in the EventsManager

Methods

public getType ()

Event type

public getSource ()

Event source

public getData ()

Event data

public __construct (string $type, object $source, [mixed $data], [boolean $cancelable])

Phalcon\Events\Event constructor

public setData ([mixed $data])

Sets event data

public setType (mixed $type)

Sets event type

public stop ()

Stops the event preventing propagation

public isStopped ()

Check whether the event is currently stopped

public isCancelable ()

Check whether the event is cancelable

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Events\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Events\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Events\Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Events\Manager

implements Phalcon\Events\ManagerInterface

Source on GitHub

Phalcon Events Manager, offers an easy way to intercept and manipulate, if needed, the normal flow of operation. With the EventsManager the developer can create hooks or plugins that will offer monitoring of data, manipulation, conditional execution and much more.

Methods

public attach (string $eventType, object | callable $handler, [int $priority])

Attach a listener to the events manager

public detach (string $eventType, object $handler)

Detach the listener from the events manager

public enablePriorities (mixed $enablePriorities)

Set if priorities are enabled in the EventsManager

public arePrioritiesEnabled ()

Returns if priorities are enabled

public collectResponses (mixed $collect)

Tells the event manager if it needs to collect all the responses returned by every registered listener in a single fire

public isCollecting ()

Check if the events manager is collecting all all the responses returned by every registered listener in a single fire

public array getResponses ()

Returns all the responses returned by every handler executed by the last ‘fire’ executed

public detachAll ([mixed $type])

Removes all events from the EventsManager

final public mixed fireQueue (SplPriorityQueue [http://php.net/manual/en/class.splpriorityqueue.php] | array $queue, Phalcon\Events\Event $event)

Internal handler to call a queue of events

public mixed fire (string $eventType, object $source, [mixed $data], [boolean $cancelable])

Fires an event in the events manager causing the active listeners to be notified about it

<?php

$eventsManager->fire('db', $connection);

public hasListeners (mixed $type)

Check whether certain type of event has listeners

public array getListeners (string $type)

Returns all the attached listeners of a certain type

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Exception

extends class Exception [http://php.net/manual/en/class.exception.php]

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Filter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Filter

implements Phalcon\FilterInterface

Source on GitHub

The Phalcon\Filter component provides a set of commonly needed data filters. It provides object oriented wrappers to the php filter extension. Also allows the developer to define his/her own filters

<?php

$filter = new \Phalcon\Filter();
$filter->sanitize("some(one)@exa\\mple.com", "email"); // returns "someone@example.com"
$filter->sanitize("hello<<", "string"); // returns "hello"
$filter->sanitize("!100a019", "int"); // returns "100019"
$filter->sanitize("!100a019.01a", "float"); // returns "100019.01"

Constants

string FILTER_EMAIL

string FILTER_ABSINT

string FILTER_INT

string FILTER_INT_CAST

string FILTER_STRING

string FILTER_FLOAT

string FILTER_FLOAT_CAST

string FILTER_ALPHANUM

string FILTER_TRIM

string FILTER_STRIPTAGS

string FILTER_LOWER

string FILTER_UPPER

Methods

public add (mixed $name, mixed $handler)

Adds a user-defined filter

public sanitize (mixed $value, mixed $filters, [mixed $noRecursive])

Sanitizes a value with a specified single or set of filters

protected _sanitize (mixed $value, mixed $filter)

Internal sanitize wrapper to filter_var

public getFilters ()

Return the user-defined filters in the instance

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Filter\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Filter\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Flash

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Flash

implements Phalcon\Di\InjectionAwareInterface

Source on GitHub

Shows HTML notifications related to different circumstances. Classes can be stylized using CSS

<?php

 $flash->success("The record was successfully deleted");
 $flash->error("Cannot open the file");

Methods

public __construct ([mixed $cssClasses])

Phalcon\Flash constructor

public getAutoescape ()

Returns the autoescape mode in generated html

public setAutoescape (mixed $autoescape)

Set the autoescape mode in generated html

public getEscaperService ()

Returns the Escaper Service

public setEscaperService (Phalcon\EscaperInterface $escaperService)

Sets the Escaper Service

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setImplicitFlush (mixed $implicitFlush)

Set whether the output must be implicitly flushed to the output or returned as string

public setAutomaticHtml (mixed $automaticHtml)

Set if the output must be implicitly formatted with HTML

public setCssClasses (array $cssClasses)

Set an array with CSS classes to format the messages

public error (mixed $message)

Shows a HTML error message

<?php

 $flash->error('This is an error');

public notice (mixed $message)

Shows a HTML notice/information message

<?php

 $flash->notice('This is an information');

public success (mixed $message)

Shows a HTML success message

<?php

 $flash->success('The process was finished successfully');

public warning (mixed $message)

Shows a HTML warning message

<?php

 $flash->warning('Hey, this is important');

public string | void outputMessage (mixed $type, string | array $message)

Outputs a message formatting it with HTML

<?php

 $flash->outputMessage('error', message);

public clear ()

Clears accumulated messages when implicit flush is disabled

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Flash\Direct

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Flash\Direct

extends abstract class Phalcon\Flash

implements Phalcon\Di\InjectionAwareInterface, Phalcon\FlashInterface

Source on GitHub

This is a variant of the Phalcon\Flash that immediately outputs any message passed to it

Methods

public message (mixed $type, mixed $message)

Outputs a message

public output ([mixed $remove])

Prints the messages accumulated in the flasher

public __construct ([mixed $cssClasses]) inherited from Phalcon\Flash

Phalcon\Flash constructor

public getAutoescape () inherited from Phalcon\Flash

Returns the autoescape mode in generated html

public setAutoescape (mixed $autoescape) inherited from Phalcon\Flash

Set the autoescape mode in generated html

public getEscaperService () inherited from Phalcon\Flash

Returns the Escaper Service

public setEscaperService (Phalcon\EscaperInterface $escaperService) inherited from Phalcon\Flash

Sets the Escaper Service

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Flash

Sets the dependency injector

public getDI () inherited from Phalcon\Flash

Returns the internal dependency injector

public setImplicitFlush (mixed $implicitFlush) inherited from Phalcon\Flash

Set whether the output must be implicitly flushed to the output or returned as string

public setAutomaticHtml (mixed $automaticHtml) inherited from Phalcon\Flash

Set if the output must be implicitly formatted with HTML

public setCssClasses (array $cssClasses) inherited from Phalcon\Flash

Set an array with CSS classes to format the messages

public error (mixed $message) inherited from Phalcon\Flash

Shows a HTML error message

<?php

 $flash->error('This is an error');

public notice (mixed $message) inherited from Phalcon\Flash

Shows a HTML notice/information message

<?php

 $flash->notice('This is an information');

public success (mixed $message) inherited from Phalcon\Flash

Shows a HTML success message

<?php

 $flash->success('The process was finished successfully');

public warning (mixed $message) inherited from Phalcon\Flash

Shows a HTML warning message

<?php

 $flash->warning('Hey, this is important');

public string | void outputMessage (mixed $type, string | array $message) inherited from Phalcon\Flash

Outputs a message formatting it with HTML

<?php

 $flash->outputMessage('error', message);

public clear () inherited from Phalcon\Flash

Clears accumulated messages when implicit flush is disabled

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Flash\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Flash\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Flash\Session

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Flash\Session

extends abstract class Phalcon\Flash

implements Phalcon\Di\InjectionAwareInterface, Phalcon\FlashInterface

Source on GitHub

Temporarily stores the messages in session, then messages can be printed in the next request

Methods

protected _getSessionMessages (mixed $remove, [mixed $type])

Returns the messages stored in session

protected _setSessionMessages (array $messages)

Stores the messages in session

public message (mixed $type, mixed $message)

Adds a message to the session flasher

public has ([mixed $type])

Checks whether there are messages

public getMessages ([mixed $type], [mixed $remove])

Returns the messages in the session flasher

public output ([mixed $remove])

Prints the messages in the session flasher

public clear ()

Clear messages in the session messenger

public __construct ([mixed $cssClasses]) inherited from Phalcon\Flash

Phalcon\Flash constructor

public getAutoescape () inherited from Phalcon\Flash

Returns the autoescape mode in generated html

public setAutoescape (mixed $autoescape) inherited from Phalcon\Flash

Set the autoescape mode in generated html

public getEscaperService () inherited from Phalcon\Flash

Returns the Escaper Service

public setEscaperService (Phalcon\EscaperInterface $escaperService) inherited from Phalcon\Flash

Sets the Escaper Service

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Flash

Sets the dependency injector

public getDI () inherited from Phalcon\Flash

Returns the internal dependency injector

public setImplicitFlush (mixed $implicitFlush) inherited from Phalcon\Flash

Set whether the output must be implicitly flushed to the output or returned as string

public setAutomaticHtml (mixed $automaticHtml) inherited from Phalcon\Flash

Set if the output must be implicitly formatted with HTML

public setCssClasses (array $cssClasses) inherited from Phalcon\Flash

Set an array with CSS classes to format the messages

public error (mixed $message) inherited from Phalcon\Flash

Shows a HTML error message

<?php

 $flash->error('This is an error');

public notice (mixed $message) inherited from Phalcon\Flash

Shows a HTML notice/information message

<?php

 $flash->notice('This is an information');

public success (mixed $message) inherited from Phalcon\Flash

Shows a HTML success message

<?php

 $flash->success('The process was finished successfully');

public warning (mixed $message) inherited from Phalcon\Flash

Shows a HTML warning message

<?php

 $flash->warning('Hey, this is important');

public string | void outputMessage (mixed $type, string | array $message) inherited from Phalcon\Flash

Outputs a message formatting it with HTML

<?php

 $flash->outputMessage('error', message);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Forms\Element

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

This is a base class for form elements

Methods

public __construct (string $name, [array $attributes])

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form)

Sets the parent form to the element

public getForm ()

Returns the parent form to the element

public setName (mixed $name)

Sets the element name

public getName ()

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters)

Sets the element filters

public addFilter (mixed $filter)

Adds a filter to current list of filters

public mixed getFilters ()

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge])

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator)

Adds a validator to the element

public getValidators ()

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked])

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value)

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue])

Returns the value of an attribute if present

public setAttributes (array $attributes)

Sets default attributes for the element

public getAttributes ()

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value)

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue])

Returns the value of an option if present

public setUserOptions (array $options)

Sets options for the element

public getUserOptions ()

Returns the options for the element

public setLabel (mixed $label)

Sets the element label

public getLabel ()

Returns the element label

public label ([array $attributes])

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value)

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault ()

Returns the default value assigned to the element

public getValue ()

Returns the element value

public getMessages ()

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages ()

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group)

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message)

Appends a message to the internal message list

public clear ()

Clears every element in the form to its default value

public __toString ()

Magic method __toString renders the widget without attributes

abstract public render ([mixed $attributes]) inherited from Phalcon\Forms\ElementInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Check

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Check

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=check] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Date

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Date

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=date] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Email

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Email

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=email] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\File

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\File

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=file] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Hidden

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Hidden

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=hidden] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Numeric

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Numeric

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=number] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Password

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Password

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=password] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Radio

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Radio

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=radio] for forms

Methods

public render ([array $attributes])

Renders the element widget returning html

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Select

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Select

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component SELECT (choice) for forms

Methods

public __construct (string $name, [object | array $options], [array $attributes])

Phalcon\Forms\Element constructor

public Phalcon\Forms\Element setOptions (array | object $options)

Set the choice’s options

public array | object getOptions ()

Returns the choices’ options

public this addOption (array $option)

Adds an option to the current options

public render ([array $attributes])

Renders the element widget returning html

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Submit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Submit

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=submit] for forms

Methods

public render ([array $attributes])

Renders the element widget

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\Text

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\Text

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component INPUT[type=text] for forms

Methods

public render ([array $attributes])

Renders the element widget

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Element\TextArea

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Element\TextArea

extends abstract class Phalcon\Forms\Element

implements Phalcon\Forms\ElementInterface

Source on GitHub

Component TEXTAREA for forms

Methods

public render ([array $attributes])

Renders the element widget

public __construct (string $name, [array $attributes]) inherited from Phalcon\Forms\Element

Phalcon\Forms\Element constructor

public setForm (Phalcon\Forms\Form $form) inherited from Phalcon\Forms\Element

Sets the parent form to the element

public getForm () inherited from Phalcon\Forms\Element

Returns the parent form to the element

public setName (mixed $name) inherited from Phalcon\Forms\Element

Sets the element name

public getName () inherited from Phalcon\Forms\Element

Returns the element name

public Phalcon\Forms\ElementInterface setFilters (array | string $filters) inherited from Phalcon\Forms\Element

Sets the element filters

public addFilter (mixed $filter) inherited from Phalcon\Forms\Element

Adds a filter to current list of filters

public mixed getFilters () inherited from Phalcon\Forms\Element

Returns the element filters

public Phalcon\Forms\ElementInterface addValidators (array $validators, [mixed $merge]) inherited from Phalcon\Forms\Element

Adds a group of validators

public addValidator (Phalcon\Validation\ValidatorInterface $validator) inherited from Phalcon\Forms\Element

Adds a validator to the element

public getValidators () inherited from Phalcon\Forms\Element

Returns the validators registered for the element

public prepareAttributes ([array $attributes], [mixed $useChecked]) inherited from Phalcon\Forms\Element

Returns an array of prepared attributes for Phalcon\Tag helpers according to the element parameters

public Phalcon\Forms\ElementInterface setAttribute (string $attribute, mixed $value) inherited from Phalcon\Forms\Element

Sets a default attribute for the element

public mixed getAttribute (string $attribute, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an attribute if present

public setAttributes (array $attributes) inherited from Phalcon\Forms\Element

Sets default attributes for the element

public getAttributes () inherited from Phalcon\Forms\Element

Returns the default attributes for the element

public Phalcon\Forms\ElementInterface setUserOption (string $option, mixed $value) inherited from Phalcon\Forms\Element

Sets an option for the element

public mixed getUserOption (string $option, [mixed $defaultValue]) inherited from Phalcon\Forms\Element

Returns the value of an option if present

public setUserOptions (array $options) inherited from Phalcon\Forms\Element

Sets options for the element

public getUserOptions () inherited from Phalcon\Forms\Element

Returns the options for the element

public setLabel (mixed $label) inherited from Phalcon\Forms\Element

Sets the element label

public getLabel () inherited from Phalcon\Forms\Element

Returns the element label

public label ([array $attributes]) inherited from Phalcon\Forms\Element

Generate the HTML to label the element

public Phalcon\Forms\ElementInterface setDefault (mixed $value) inherited from Phalcon\Forms\Element

Sets a default value in case the form does not use an entity or there is no value available for the element in _POST

public getDefault () inherited from Phalcon\Forms\Element

Returns the default value assigned to the element

public getValue () inherited from Phalcon\Forms\Element

Returns the element value

public getMessages () inherited from Phalcon\Forms\Element

Returns the messages that belongs to the element The element needs to be attached to a form

public hasMessages () inherited from Phalcon\Forms\Element

Checks whether there are messages attached to the element

public setMessages (Phalcon\Validation\Message\Group $group) inherited from Phalcon\Forms\Element

Sets the validation messages related to the element

public appendMessage (Phalcon\Validation\MessageInterface $message) inherited from Phalcon\Forms\Element

Appends a message to the internal message list

public clear () inherited from Phalcon\Forms\Element

Clears every element in the form to its default value

public __toString () inherited from Phalcon\Forms\Element

Magic method __toString renders the widget without attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Form

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Form

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Countable [http://php.net/manual/en/class.countable.php], Iterator [http://php.net/manual/en/class.iterator.php], Traversable [http://php.net/manual/en/class.traversable.php]

Source on GitHub

This component allows to build forms using an object-oriented interface

Methods

public setValidation (mixed $validation)

...

public getValidation ()

...

public __construct ([object $entity], [array $userOptions])

Phalcon\Forms\Form constructor

public setAction (mixed $action)

Sets the form’s action

public getAction ()

Returns the form’s action

public setUserOption (string $option, mixed $value)

Sets an option for the form

public getUserOption (string $option, [mixed $defaultValue])

Returns the value of an option if present

public setUserOptions (array $options)

Sets options for the element

public getUserOptions ()

Returns the options for the element

public setEntity (object $entity)

Sets the entity related to the model

public object getEntity ()

Returns the entity related to the model

public getElements ()

Returns the form elements added to the form

public bind (array $data, object $entity, [array $whitelist])

Binds data to the entity

public isValid ([array $data], [object $entity])

Validates the form

public getMessages ([mixed $byItemName])

Returns the messages generated in the validation

public getMessagesFor (mixed $name)

Returns the messages generated for a specific element

public hasMessagesFor (mixed $name)

Check if messages were generated for a specific element

public add (Phalcon\Forms\ElementInterface $element, [mixed $position], [mixed $type])

Adds an element to the form

public render (string $name, [array $attributes])

Renders a specific item in the form

public get (mixed $name)

Returns an element added to the form by its name

public label (mixed $name, [array $attributes])

Generate the label of an element added to the form including HTML

public getLabel (mixed $name)

Returns a label for an element

public getValue (mixed $name)

Gets a value from the internal related entity or from the default value

public has (mixed $name)

Check if the form contains an element

public remove (mixed $name)

Removes an element from the form

public clear ([array $fields])

Clears every element in the form to its default value

public count ()

Returns the number of elements in the form

public rewind ()

Rewinds the internal iterator

public current ()

Returns the current element in the iterator

public key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public valid ()

Check if the current element in the iterator is valid

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Forms\Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Forms\Manager

Source on GitHub

Methods

public Phalcon\Forms\Form create ([string $name], [object $entity])

Creates a form registering it in the forms manager

public get (mixed $name)

Returns a form by its name

public has (mixed $name)

Checks if a form is registered in the forms manager

public set (mixed $name, Phalcon\Forms\Form $form)

Registers a form in the Forms Manager

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Cookie

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Cookie

implements Phalcon\Http\CookieInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Provide OO wrappers to manage a HTTP cookie

Methods

public __construct (string $name, [mixed $value], [int $expire], [string $path], [boolean $secure], [string $domain], [boolean $httpOnly])

Phalcon\Http\Cookie constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public Phalcon\Http\Cookie setValue (string $value)

Sets the cookie’s value

public mixed getValue ([string | array $filters], [string $defaultValue])

Returns the cookie’s value

public send ()

Sends the cookie to the HTTP client Stores the cookie definition in session

public restore ()

Reads the cookie-related info from the SESSION to restore the cookie as it was set This method is automatically called internally so normally you don’t need to call it

public delete ()

Deletes the cookie by setting an expire time in the past

public useEncryption (mixed $useEncryption)

Sets if the cookie must be encrypted/decrypted automatically

public isUsingEncryption ()

Check if the cookie is using implicit encryption

public setExpiration (mixed $expire)

Sets the cookie’s expiration time

public getExpiration ()

Returns the current expiration time

public setPath (mixed $path)

Sets the cookie’s expiration time

public getName ()

Returns the current cookie’s name

public getPath ()

Returns the current cookie’s path

public setDomain (mixed $domain)

Sets the domain that the cookie is available to

public getDomain ()

Returns the domain that the cookie is available to

public setSecure (mixed $secure)

Sets if the cookie must only be sent when the connection is secure (HTTPS)

public getSecure ()

Returns whether the cookie must only be sent when the connection is secure (HTTPS)

public setHttpOnly (mixed $httpOnly)

Sets if the cookie is accessible only through the HTTP protocol

public getHttpOnly ()

Returns if the cookie is accessible only through the HTTP protocol

public __toString ()

Magic __toString method converts the cookie’s value to string

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Cookie\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Cookie\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Request

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Request

implements Phalcon\Http\RequestInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Encapsulates request information for easy and secure access from application controllers. The request object is a simple value object that is passed between the dispatcher and controller classes. It packages the HTTP request environment.

<?php

 use Phalcon\Http\Request;

 $request = new Request();

 if ($request->isPost()) {
 if ($request->isAjax()) {
 echo 'Request was made using POST and AJAX';
 }
 }

 $request->getServer('HTTP_HOST'); // retrieve SERVER variables
 $request->getMethod(); // GET, POST, PUT, DELETE, HEAD, OPTIONS, PATCH, PURGE, TRACE, CONNECT
 $request->getLanguages(); // an array of languages the client accepts

Methods

public getHttpMethodParameterOverride ()

...

public setHttpMethodParameterOverride (mixed $httpMethodParameterOverride)

...

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public get ([mixed $name], [mixed $filters], [mixed $defaultValue], [mixed $notAllowEmpty], [mixed $noRecursive])

Gets a variable from the $_REQUEST superglobal applying filters if needed. If no parameters are given the $_REQUEST superglobal is returned

<?php

//Returns value from $_REQUEST["user_email"] without sanitizing
$userEmail = $request->get("user_email");

//Returns value from $_REQUEST["user_email"] with sanitizing
$userEmail = $request->get("user_email", "email");

public getPost ([mixed $name], [mixed $filters], [mixed $defaultValue], [mixed $notAllowEmpty], [mixed $noRecursive])

Gets a variable from the $_POST superglobal applying filters if needed If no parameters are given the $_POST superglobal is returned

<?php

//Returns value from $_POST["user_email"] without sanitizing
$userEmail = $request->getPost("user_email");

//Returns value from $_POST["user_email"] with sanitizing
$userEmail = $request->getPost("user_email", "email");

public getPut ([mixed $name], [mixed $filters], [mixed $defaultValue], [mixed $notAllowEmpty], [mixed $noRecursive])

Gets a variable from put request

<?php

//Returns value from $_PUT["user_email"] without sanitizing
$userEmail = $request->getPut("user_email");

//Returns value from $_PUT["user_email"] with sanitizing
$userEmail = $request->getPut("user_email", "email");

public getQuery ([mixed $name], [mixed $filters], [mixed $defaultValue], [mixed $notAllowEmpty], [mixed $noRecursive])

Gets variable from $_GET superglobal applying filters if needed If no parameters are given the $_GET superglobal is returned

<?php

// Returns value from $_GET['id'] without sanitizing
$id = $request->getQuery('id');

// Returns value from $_GET['id'] with sanitizing
$id = $request->getQuery('id', 'int');

// Returns value from $_GET['id'] with a default value
$id = $request->getQuery('id', null, 150);

final protected getHelper (array $source, [mixed $name], [mixed $filters], [mixed $defaultValue], [mixed $notAllowEmpty], [mixed $noRecursive])

Helper to get data from superglobals, applying filters if needed. If no parameters are given the superglobal is returned.

public getServer (mixed $name)

Gets variable from $_SERVER superglobal

public has (mixed $name)

Checks whether $_REQUEST superglobal has certain index

public hasPost (mixed $name)

Checks whether $_POST superglobal has certain index

public hasPut (mixed $name)

Checks whether the PUT data has certain index

public hasQuery (mixed $name)

Checks whether $_GET superglobal has certain index

final public hasServer (mixed $name)

Checks whether $_SERVER superglobal has certain index

final public getHeader (mixed $header)

Gets HTTP header from request data

public getScheme ()

Gets HTTP schema (http/https)

public isAjax ()

Checks whether request has been made using ajax

public isSoap ()

Checks whether request has been made using SOAP

public isSoapRequested ()

Alias of isSoap(). It will be deprecated in future versions

public isSecure ()

Checks whether request has been made using any secure layer

public isSecureRequest ()

Alias of isSecure(). It will be deprecated in future versions

public getRawBody ()

Gets HTTP raw request body

public getJsonRawBody ([mixed $associative])

Gets decoded JSON HTTP raw request body

public getServerAddress ()

Gets active server address IP

public getServerName ()

Gets active server name

public getHttpHost ()

Gets host name used by the request. Request::getHttpHost trying to find host name in following order: - $_SERVER[‘HTTP_HOST’] - $_SERVER[‘SERVER_NAME’] - $_SERVER[‘SERVER_ADDR’] Optionally Request::getHttpHost validates and clean host name. The Request::$_strictHostCheck can be used to validate host name. Note: validation and cleaning have a negative performance impact because they use regular expressions.

<?php

 use Phalcon\Http\Request;

 $request = new Request;

 $_SERVER['HTTP_HOST'] = 'example.com';
 $request->getHttpHost(); // example.com

 $_SERVER['HTTP_HOST'] = 'example.com:8080';
 $request->getHttpHost(); // example.com:8080

 $request->setStrictHostCheck(true);
 $_SERVER['HTTP_HOST'] = 'ex=am~ple.com';
 $request->getHttpHost(); // UnexpectedValueException

 $_SERVER['HTTP_HOST'] = 'ExAmPlE.com';
 $request->getHttpHost(); // example.com

public setStrictHostCheck ([mixed $flag])

Sets if the Request::getHttpHost method must be use strict validation of host name or not

public isStrictHostCheck ()

Checks if the Request::getHttpHost method will be use strict validation of host name or not

public getPort ()

Gets information about the port on which the request is made.

final public getURI ()

Gets HTTP URI which request has been made

public getClientAddress ([mixed $trustForwardedHeader])

Gets most possible client IPv4 Address. This method search in _SERVER[‘REMOTE_ADDR’] and optionally in _SERVER[‘HTTP_X_FORWARDED_FOR’]

final public getMethod ()

Gets HTTP method which request has been made If the X-HTTP-Method-Override header is set, and if the method is a POST, then it is used to determine the “real” intended HTTP method. The _method request parameter can also be used to determine the HTTP method, but only if setHttpMethodParameterOverride(true) has been called. The method is always an uppercased string.

public getUserAgent ()

Gets HTTP user agent used to made the request

public isValidHttpMethod (mixed $method)

Checks if a method is a valid HTTP method

public isMethod (mixed $methods, [mixed $strict])

Check if HTTP method match any of the passed methods When strict is true it checks if validated methods are real HTTP methods

public isPost ()

Checks whether HTTP method is POST. if _SERVER[“REQUEST_METHOD”]===”POST”

public isGet ()

Checks whether HTTP method is GET. if _SERVER[“REQUEST_METHOD”]===”GET”

public isPut ()

Checks whether HTTP method is PUT. if _SERVER[“REQUEST_METHOD”]===”PUT”

public isPatch ()

Checks whether HTTP method is PATCH. if _SERVER[“REQUEST_METHOD”]===”PATCH”

public isHead ()

Checks whether HTTP method is HEAD. if _SERVER[“REQUEST_METHOD”]===”HEAD”

public isDelete ()

Checks whether HTTP method is DELETE. if _SERVER[“REQUEST_METHOD”]===”DELETE”

public isOptions ()

Checks whether HTTP method is OPTIONS. if _SERVER[“REQUEST_METHOD”]===”OPTIONS”

public isPurge ()

Checks whether HTTP method is PURGE (Squid and Varnish support). if _SERVER[“REQUEST_METHOD”]===”PURGE”

public isTrace ()

Checks whether HTTP method is TRACE. if _SERVER[“REQUEST_METHOD”]===”TRACE”

public isConnect ()

Checks whether HTTP method is CONNECT. if _SERVER[“REQUEST_METHOD”]===”CONNECT”

public hasFiles ([mixed $onlySuccessful])

Checks whether request include attached files

final protected hasFileHelper (mixed $data, mixed $onlySuccessful)

Recursively counts file in an array of files

public getUploadedFiles ([mixed $onlySuccessful])

Gets attached files as Phalcon\Http\Request\File instances

final protected smoothFiles (array $names, array $types, array $tmp_names, array $sizes, array $errors, mixed $prefix)

Smooth out $_FILES to have plain array with all files uploaded

public getHeaders ()

Returns the available headers in the request

public getHTTPReferer ()

Gets web page that refers active request. ie: http://www.google.com

final protected _getQualityHeader (mixed $serverIndex, mixed $name)

Process a request header and return an array of values with their qualities

final protected _getBestQuality (array $qualityParts, mixed $name)

Process a request header and return the one with best quality

public getContentType ()

Gets content type which request has been made

public getAcceptableContent ()

Gets an array with mime/types and their quality accepted by the browser/client from _SERVER[“HTTP_ACCEPT”]

public getBestAccept ()

Gets best mime/type accepted by the browser/client from _SERVER[“HTTP_ACCEPT”]

public getClientCharsets ()

Gets a charsets array and their quality accepted by the browser/client from _SERVER[“HTTP_ACCEPT_CHARSET”]

public getBestCharset ()

Gets best charset accepted by the browser/client from _SERVER[“HTTP_ACCEPT_CHARSET”]

public getLanguages ()

Gets languages array and their quality accepted by the browser/client from _SERVER[“HTTP_ACCEPT_LANGUAGE”]

public getBestLanguage ()

Gets best language accepted by the browser/client from _SERVER[“HTTP_ACCEPT_LANGUAGE”]

public getBasicAuth ()

Gets auth info accepted by the browser/client from $_SERVER[‘PHP_AUTH_USER’]

public getDigestAuth ()

Gets auth info accepted by the browser/client from $_SERVER[‘PHP_AUTH_DIGEST’]

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Request\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Request\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Request\File

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Request\File

implements Phalcon\Http\Request\FileInterface

Source on GitHub

Provides OO wrappers to the $_FILES superglobal

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{

 public function uploadAction()
 {
 // Check if the user has uploaded files
 if ($this->request->hasFiles() == true) {
 // Print the real file names and their sizes
 foreach ($this->request->getUploadedFiles() as $file) {
 echo $file->getName(), " ", $file->getSize(), "\n";
 }
 }
 }
}

Methods

public getError ()

public getKey ()

public getExtension ()

public __construct (array $file, [mixed $key])

Phalcon\Http\Request\File constructor

public getSize ()

Returns the file size of the uploaded file

public getName ()

Returns the real name of the uploaded file

public getTempName ()

Returns the temporary name of the uploaded file

public getType ()

Returns the mime type reported by the browser This mime type is not completely secure, use getRealType() instead

public getRealType ()

Gets the real mime type of the upload file using finfo

public isUploadedFile ()

Checks whether the file has been uploaded via Post.

public moveTo (mixed $destination)

Moves the temporary file to a destination within the application

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Response

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Response

implements Phalcon\Http\ResponseInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Part of the HTTP cycle is return responses to the clients. Phalcon\HTTP\Response is the Phalcon component responsible to achieve this task. HTTP responses are usually composed by headers and body.

<?php

$response = new \Phalcon\Http\Response();
$response->setStatusCode(200, "OK");
$response->setContent("<html><body>Hello</body></html>");
$response->send();

Methods

public __construct ([mixed $content], [mixed $code], [mixed $status])

Phalcon\Http\Response constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setStatusCode (mixed $code, [mixed $message])

Sets the HTTP response code

<?php

$response->setStatusCode(404, "Not Found");

public getStatusCode ()

Returns the status code

<?php

print_r($response->getStatusCode());

public setHeaders (Phalcon\Http\Response\HeadersInterface $headers)

Sets a headers bag for the response externally

public getHeaders ()

Returns headers set by the user

public setCookies (Phalcon\Http\Response\CookiesInterface $cookies)

Sets a cookies bag for the response externally

public Phalcon\Http\Response\CookiesInterface getCookies ()

Returns coookies set by the user

public setHeader (mixed $name, mixed $value)

Overwrites a header in the response

<?php

$response->setHeader("Content-Type", "text/plain");

public setRawHeader (mixed $header)

Send a raw header to the response

<?php

$response->setRawHeader("HTTP/1.1 404 Not Found");

public resetHeaders ()

Resets all the stablished headers

public setExpires (DateTime [http://php.net/manual/en/class.datetime.php] $datetime)

Sets an Expires header in the response that allows to use the HTTP cache

<?php

$this->response->setExpires(new DateTime());

public setLastModified (DateTime [http://php.net/manual/en/class.datetime.php] $datetime)

Sets Last-Modified header

<?php

$this->response->setLastModified(new DateTime());

public setCache (mixed $minutes)

Sets Cache headers to use HTTP cache

<?php

$this->response->setCache(60);

public setNotModified ()

Sends a Not-Modified response

public setContentType (mixed $contentType, [mixed $charset])

Sets the response content-type mime, optionally the charset

<?php

$response->setContentType('application/pdf');
$response->setContentType('text/plain', 'UTF-8');

public setContentLength (mixed $contentLength)

Sets the response content-length

<?php

$response->setContentLength(2048);

public setEtag (mixed $etag)

Set a custom ETag

<?php

$response->setEtag(md5(time()));

public redirect ([mixed $location], [mixed $externalRedirect], [mixed $statusCode])

Redirect by HTTP to another action or URL

<?php

 //Using a string redirect (internal/external)
$response->redirect("posts/index");
$response->redirect("http://en.wikipedia.org", true);
$response->redirect("http://www.example.com/new-location", true, 301);

//Making a redirection based on a named route
$response->redirect(array(
 "for" => "index-lang",
 "lang" => "jp",
 "controller" => "index"
));

public setContent (mixed $content)

Sets HTTP response body

<?php

response->setContent("<h1>Hello!</h1>");

public setJsonContent (mixed $content, [mixed $jsonOptions], [mixed $depth])

Sets HTTP response body. The parameter is automatically converted to JSON and also sets default header: Content-Type: “application/json; charset=UTF-8”

<?php

$response->setJsonContent(array("status" => "OK"));

public appendContent (mixed $content)

Appends a string to the HTTP response body

public getContent ()

Gets the HTTP response body

public isSent ()

Check if the response is already sent

public sendHeaders ()

Sends headers to the client

public sendCookies ()

Sends cookies to the client

public send ()

Prints out HTTP response to the client

public setFileToSend (mixed $filePath, [mixed $attachmentName], [mixed $attachment])

Sets an attached file to be sent at the end of the request

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Response\Cookies

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Response\Cookies

implements Phalcon\Http\Response\CookiesInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

This class is a bag to manage the cookies A cookies bag is automatically registered as part of the ‘response’ service in the DI

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public useEncryption (mixed $useEncryption)

Set if cookies in the bag must be automatically encrypted/decrypted

public isUsingEncryption ()

Returns if the bag is automatically encrypting/decrypting cookies

public set (mixed $name, [mixed $value], [mixed $expire], [mixed $path], [mixed $secure], [mixed $domain], [mixed $httpOnly])

Sets a cookie to be sent at the end of the request This method overrides any cookie set before with the same name

public get (mixed $name)

Gets a cookie from the bag

public has (mixed $name)

Check if a cookie is defined in the bag or exists in the _COOKIE superglobal

public delete (mixed $name)

Deletes a cookie by its name This method does not removes cookies from the _COOKIE superglobal

public send ()

Sends the cookies to the client Cookies aren’t sent if headers are sent in the current request

public reset ()

Reset set cookies

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Response\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Response\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Http\Response\Headers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Http\Response\Headers

implements Phalcon\Http\Response\HeadersInterface

Source on GitHub

This class is a bag to manage the response headers

Methods

public set (mixed $name, mixed $value)

Sets a header to be sent at the end of the request

public get (mixed $name)

Gets a header value from the internal bag

public setRaw (mixed $header)

Sets a raw header to be sent at the end of the request

public remove (mixed $header)

Removes a header to be sent at the end of the request

public send ()

Sends the headers to the client

public reset ()

Reset set headers

public toArray ()

Returns the current headers as an array

public static __set_state (array $data)

Restore a \Phalcon\Http\Response\Headers object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Image

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Image

Source on GitHub

Constants

integer NONE

integer WIDTH

integer HEIGHT

integer AUTO

integer INVERSE

integer PRECISE

integer TENSILE

integer HORIZONTAL

integer VERTICAL

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Image\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Image\Adapter

Source on GitHub

All image adapters must use this class

Methods

public getImage ()

...

public getRealpath ()

...

public getWidth ()

Image width

public getHeight ()

Image height

public getType ()

Image type Driver dependent

public getMime ()

Image mime type

public resize ([mixed $width], [mixed $height], [mixed $master])

Resize the image to the given size

public liquidRescale (mixed $width, mixed $height, [mixed $deltaX], [mixed $rigidity])

This method scales the images using liquid rescaling method. Only support Imagick

public crop (mixed $width, mixed $height, [mixed $offsetX], [mixed $offsetY])

Crop an image to the given size

public rotate (mixed $degrees)

Rotate the image by a given amount

public flip (mixed $direction)

Flip the image along the horizontal or vertical axis

public sharpen (mixed $amount)

Sharpen the image by a given amount

public reflection (mixed $height, [mixed $opacity], [mixed $fadeIn])

Add a reflection to an image

public watermark (Phalcon\Image\Adapter $watermark, [mixed $offsetX], [mixed $offsetY], [mixed $opacity])

Add a watermark to an image with the specified opacity

public text (mixed $text, [mixed $offsetX], [mixed $offsetY], [mixed $opacity], [mixed $color], [mixed $size], [mixed $fontfile])

Add a text to an image with a specified opacity

public mask (Phalcon\Image\Adapter $watermark)

Composite one image onto another

public background (mixed $color, [mixed $opacity])

Set the background color of an image

public blur (mixed $radius)

Blur image

public pixelate (mixed $amount)

Pixelate image

public save ([mixed $file], [mixed $quality])

Save the image

public render ([mixed $ext], [mixed $quality])

Render the image and return the binary string

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Image\Adapter\Gd

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Image\Adapter\Gd

extends abstract class Phalcon\Image\Adapter

implements Phalcon\Image\AdapterInterface

Source on GitHub

Methods

public static check ()

...

public __construct (mixed $file, [mixed $width], [mixed $height])

...

protected _resize (mixed $width, mixed $height)

...

protected _crop (mixed $width, mixed $height, mixed $offsetX, mixed $offsetY)

...

protected _rotate (mixed $degrees)

...

protected _flip (mixed $direction)

...

protected _sharpen (mixed $amount)

...

protected _reflection (mixed $height, mixed $opacity, mixed $fadeIn)

...

protected _watermark (Phalcon\Image\Adapter $watermark, mixed $offsetX, mixed $offsetY, mixed $opacity)

...

protected _text (mixed $text, mixed $offsetX, mixed $offsetY, mixed $opacity, mixed $r, mixed $g, mixed $b, mixed $size, mixed $fontfile)

...

protected _mask (Phalcon\Image\Adapter $mask)

...

protected _background (mixed $r, mixed $g, mixed $b, mixed $opacity)

...

protected _blur (mixed $radius)

...

protected _pixelate (mixed $amount)

...

protected _save (mixed $file, mixed $quality)

...

protected _render (mixed $ext, mixed $quality)

...

protected _create (mixed $width, mixed $height)

...

public __destruct ()

...

public getImage () inherited from Phalcon\Image\Adapter

...

public getRealpath () inherited from Phalcon\Image\Adapter

...

public getWidth () inherited from Phalcon\Image\Adapter

Image width

public getHeight () inherited from Phalcon\Image\Adapter

Image height

public getType () inherited from Phalcon\Image\Adapter

Image type Driver dependent

public getMime () inherited from Phalcon\Image\Adapter

Image mime type

public resize ([mixed $width], [mixed $height], [mixed $master]) inherited from Phalcon\Image\Adapter

Resize the image to the given size

public liquidRescale (mixed $width, mixed $height, [mixed $deltaX], [mixed $rigidity]) inherited from Phalcon\Image\Adapter

This method scales the images using liquid rescaling method. Only support Imagick

public crop (mixed $width, mixed $height, [mixed $offsetX], [mixed $offsetY]) inherited from Phalcon\Image\Adapter

Crop an image to the given size

public rotate (mixed $degrees) inherited from Phalcon\Image\Adapter

Rotate the image by a given amount

public flip (mixed $direction) inherited from Phalcon\Image\Adapter

Flip the image along the horizontal or vertical axis

public sharpen (mixed $amount) inherited from Phalcon\Image\Adapter

Sharpen the image by a given amount

public reflection (mixed $height, [mixed $opacity], [mixed $fadeIn]) inherited from Phalcon\Image\Adapter

Add a reflection to an image

public watermark (Phalcon\Image\Adapter $watermark, [mixed $offsetX], [mixed $offsetY], [mixed $opacity]) inherited from Phalcon\Image\Adapter

Add a watermark to an image with the specified opacity

public text (mixed $text, [mixed $offsetX], [mixed $offsetY], [mixed $opacity], [mixed $color], [mixed $size], [mixed $fontfile]) inherited from Phalcon\Image\Adapter

Add a text to an image with a specified opacity

public mask (Phalcon\Image\Adapter $watermark) inherited from Phalcon\Image\Adapter

Composite one image onto another

public background (mixed $color, [mixed $opacity]) inherited from Phalcon\Image\Adapter

Set the background color of an image

public blur (mixed $radius) inherited from Phalcon\Image\Adapter

Blur image

public pixelate (mixed $amount) inherited from Phalcon\Image\Adapter

Pixelate image

public save ([mixed $file], [mixed $quality]) inherited from Phalcon\Image\Adapter

Save the image

public render ([mixed $ext], [mixed $quality]) inherited from Phalcon\Image\Adapter

Render the image and return the binary string

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Image\Adapter\Imagick

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Image\Adapter\Imagick

extends abstract class Phalcon\Image\Adapter

implements Phalcon\Image\AdapterInterface

Source on GitHub

Image manipulation support. Allows images to be resized, cropped, etc.

<?php

 $image = new Phalcon\Image\Adapter\Imagick("upload/test.jpg");
 $image->resize(200, 200)->rotate(90)->crop(100, 100);
 if ($image->save()) {
 echo 'success';
 }

Methods

public static check ()

Checks if Imagick is enabled

public __construct (mixed $file, [mixed $width], [mixed $height])

\Phalcon\Image\Adapter\Imagick constructor

protected _resize (mixed $width, mixed $height)

Execute a resize.

protected _liquidRescale (mixed $width, mixed $height, mixed $deltaX, mixed $rigidity)

This method scales the images using liquid rescaling method. Only support Imagick

protected _crop (mixed $width, mixed $height, mixed $offsetX, mixed $offsetY)

Execute a crop.

protected _rotate (mixed $degrees)

Execute a rotation.

protected _flip (mixed $direction)

Execute a flip.

protected _sharpen (mixed $amount)

Execute a sharpen.

protected _reflection (mixed $height, mixed $opacity, mixed $fadeIn)

Execute a reflection.

protected _watermark (Phalcon\Image\Adapter $image, mixed $offsetX, mixed $offsetY, mixed $opacity)

Execute a watermarking.

protected _text (mixed $text, mixed $offsetX, mixed $offsetY, mixed $opacity, mixed $r, mixed $g, mixed $b, mixed $size, mixed $fontfile)

Execute a text

protected _mask (Phalcon\Image\Adapter $image)

Composite one image onto another

protected _background (mixed $r, mixed $g, mixed $b, mixed $opacity)

Execute a background.

protected _blur (mixed $radius)

Blur image

protected _pixelate (mixed $amount)

Pixelate image

protected _save (mixed $file, mixed $quality)

Execute a save.

protected _render (mixed $extension, mixed $quality)

Execute a render.

public __destruct ()

Destroys the loaded image to free up resources.

public getInternalImInstance ()

Get instance

public setResourceLimit (mixed $type, mixed $limit)

Sets the limit for a particular resource in megabytes

public getImage () inherited from Phalcon\Image\Adapter

...

public getRealpath () inherited from Phalcon\Image\Adapter

...

public getWidth () inherited from Phalcon\Image\Adapter

Image width

public getHeight () inherited from Phalcon\Image\Adapter

Image height

public getType () inherited from Phalcon\Image\Adapter

Image type Driver dependent

public getMime () inherited from Phalcon\Image\Adapter

Image mime type

public resize ([mixed $width], [mixed $height], [mixed $master]) inherited from Phalcon\Image\Adapter

Resize the image to the given size

public liquidRescale (mixed $width, mixed $height, [mixed $deltaX], [mixed $rigidity]) inherited from Phalcon\Image\Adapter

This method scales the images using liquid rescaling method. Only support Imagick

public crop (mixed $width, mixed $height, [mixed $offsetX], [mixed $offsetY]) inherited from Phalcon\Image\Adapter

Crop an image to the given size

public rotate (mixed $degrees) inherited from Phalcon\Image\Adapter

Rotate the image by a given amount

public flip (mixed $direction) inherited from Phalcon\Image\Adapter

Flip the image along the horizontal or vertical axis

public sharpen (mixed $amount) inherited from Phalcon\Image\Adapter

Sharpen the image by a given amount

public reflection (mixed $height, [mixed $opacity], [mixed $fadeIn]) inherited from Phalcon\Image\Adapter

Add a reflection to an image

public watermark (Phalcon\Image\Adapter $watermark, [mixed $offsetX], [mixed $offsetY], [mixed $opacity]) inherited from Phalcon\Image\Adapter

Add a watermark to an image with the specified opacity

public text (mixed $text, [mixed $offsetX], [mixed $offsetY], [mixed $opacity], [mixed $color], [mixed $size], [mixed $fontfile]) inherited from Phalcon\Image\Adapter

Add a text to an image with a specified opacity

public mask (Phalcon\Image\Adapter $watermark) inherited from Phalcon\Image\Adapter

Composite one image onto another

public background (mixed $color, [mixed $opacity]) inherited from Phalcon\Image\Adapter

Set the background color of an image

public blur (mixed $radius) inherited from Phalcon\Image\Adapter

Blur image

public pixelate (mixed $amount) inherited from Phalcon\Image\Adapter

Pixelate image

public save ([mixed $file], [mixed $quality]) inherited from Phalcon\Image\Adapter

Save the image

public render ([mixed $ext], [mixed $quality]) inherited from Phalcon\Image\Adapter

Render the image and return the binary string

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Image\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Image\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Kernel

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Kernel

Source on GitHub

Methods

public static preComputeHashKey (mixed $key)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Loader

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Loader

implements Phalcon\Events\EventsAwareInterface

Source on GitHub

This component helps to load your project classes automatically based on some conventions

<?php

 //Creates the autoloader
 $loader = new Loader();

 //Register some namespaces
 $loader->registerNamespaces(array(
 'Example\Base' => 'vendor/example/base/',
 'Example\Adapter' => 'vendor/example/adapter/',
 'Example' => 'vendor/example/'
));

 //register autoloader
 $loader->register();

 //Requiring this class will automatically include file vendor/example/adapter/Some.php
 $adapter = Example\Adapter\Some();

Methods

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public getEventsManager ()

Returns the internal event manager

public setExtensions (array $extensions)

Sets an array of file extensions that the loader must try in each attempt to locate the file

public getExtensions ()

Returns the file extensions registered in the loader

public registerNamespaces (array $namespaces, [mixed $merge])

Register namespaces and their related directories

protected prepareNamespace (array $namespace)

...

public getNamespaces ()

Returns the namespaces currently registered in the autoloader

public registerDirs (array $directories, [mixed $merge])

Register directories in which “not found” classes could be found

public getDirs ()

Returns the directories currently registered in the autoloader

public registerFiles (array $files, [mixed $merge])

Registers files that are “non-classes” hence need a “require”. This is very useful for including files that only have functions

public getFiles ()

Returns the files currently registered in the autoloader

public registerClasses (array $classes, [mixed $merge])

Register classes and their locations

public getClasses ()

Returns the class-map currently registered in the autoloader

public register ()

Register the autoload method

public unregister ()

Unregister the autoload method

public loadFiles ()

Checks if a file exists and then adds the file by doing virtual require

public autoLoad (mixed $className)

Autoloads the registered classes

public getFoundPath ()

Get the path when a class was found

public getCheckedPath ()

Get the path the loader is checking for a path

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Loader\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Loader\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Logger

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Logger

Source on GitHub

Constants

integer SPECIAL

integer CUSTOM

integer DEBUG

integer INFO

integer NOTICE

integer WARNING

integer ERROR

integer ALERT

integer CRITICAL

integer EMERGENCE

integer EMERGENCY

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Logger\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Logger\Adapter

Source on GitHub

Base class for Phalcon\Logger adapters

Methods

public setLogLevel (mixed $level)

Filters the logs sent to the handlers that are less or equal than a specific level

public getLogLevel ()

Returns the current log level

public setFormatter (Phalcon\Logger\FormatterInterface $formatter)

Sets the message formatter

public begin ()

Starts a transaction

public commit ()

Commits the internal transaction

public rollback ()

Rollbacks the internal transaction

public isTransaction ()

Returns the whether the logger is currently in an active transaction or not

public critical (mixed $message, [array $context])

Sends/Writes a critical message to the log

public emergency (mixed $message, [array $context])

Sends/Writes an emergency message to the log

public debug (mixed $message, [array $context])

Sends/Writes a debug message to the log

public error (mixed $message, [array $context])

Sends/Writes an error message to the log

public info (mixed $message, [array $context])

Sends/Writes an info message to the log

public notice (mixed $message, [array $context])

Sends/Writes a notice message to the log

public warning (mixed $message, [array $context])

Sends/Writes a warning message to the log

public alert (mixed $message, [array $context])

Sends/Writes an alert message to the log

public log (mixed $type, [mixed $message], [array $context])

Logs messages to the internal logger. Appends logs to the logger

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Adapter\File

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Adapter\File

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Source on GitHub

Adapter to store logs in plain text files

<?php

$logger = new \Phalcon\Logger\Adapter\File("app/logs/test.log");
$logger->log("This is a message");
$logger->log(\Phalcon\Logger::ERROR, "This is an error");
$logger->error("This is another error");
$logger->close();

Methods

public getPath ()

File Path

public __construct (string $name, [array $options])

Phalcon\Logger\Adapter\File constructor

public getFormatter ()

Returns the internal formatter

public logInternal (mixed $message, mixed $type, mixed $time, array $context)

Writes the log to the file itself

public close ()

Closes the logger

public __wakeup ()

Opens the internal file handler after unserialization

public setLogLevel (mixed $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phalcon\Logger\Adapter

Sets the message formatter

public begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public isTransaction () inherited from Phalcon\Logger\Adapter

Returns the whether the logger is currently in an active transaction or not

public critical (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a critical message to the log

public emergency (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an emergency message to the log

public debug (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a debug message to the log

public error (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an error message to the log

public info (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an info message to the log

public notice (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a notice message to the log

public warning (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a warning message to the log

public alert (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an alert message to the log

public log (mixed $type, [mixed $message], [array $context]) inherited from Phalcon\Logger\Adapter

Logs messages to the internal logger. Appends logs to the logger

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Adapter\Firephp

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Adapter\Firephp

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Source on GitHub

Sends logs to FirePHP

<?php

 use Phalcon\Logger\Adapter\Firephp;
 use Phalcon\Logger;

 $logger = new Firephp();
 $logger->log(Logger::ERROR, 'This is an error');
 $logger->error('This is another error');

Methods

public getFormatter ()

Returns the internal formatter

public logInternal (mixed $message, mixed $type, mixed $time, array $context)

Writes the log to the stream itself

public close ()

Closes the logger

public setLogLevel (mixed $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phalcon\Logger\Adapter

Sets the message formatter

public begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public isTransaction () inherited from Phalcon\Logger\Adapter

Returns the whether the logger is currently in an active transaction or not

public critical (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a critical message to the log

public emergency (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an emergency message to the log

public debug (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a debug message to the log

public error (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an error message to the log

public info (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an info message to the log

public notice (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a notice message to the log

public warning (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a warning message to the log

public alert (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an alert message to the log

public log (mixed $type, [mixed $message], [array $context]) inherited from Phalcon\Logger\Adapter

Logs messages to the internal logger. Appends logs to the logger

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Adapter\Stream

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Adapter\Stream

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Source on GitHub

Sends logs to a valid PHP stream

<?php

$logger = new \Phalcon\Logger\Adapter\Stream("php://stderr");
$logger->log("This is a message");
$logger->log(\Phalcon\Logger::ERROR, "This is an error");
$logger->error("This is another error");

Methods

public __construct (string $name, [array $options])

Phalcon\Logger\Adapter\Stream constructor

public getFormatter ()

Returns the internal formatter

public logInternal (mixed $message, mixed $type, mixed $time, array $context)

Writes the log to the stream itself

public close ()

Closes the logger

public setLogLevel (mixed $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phalcon\Logger\Adapter

Sets the message formatter

public begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public isTransaction () inherited from Phalcon\Logger\Adapter

Returns the whether the logger is currently in an active transaction or not

public critical (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a critical message to the log

public emergency (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an emergency message to the log

public debug (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a debug message to the log

public error (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an error message to the log

public info (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an info message to the log

public notice (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a notice message to the log

public warning (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a warning message to the log

public alert (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an alert message to the log

public log (mixed $type, [mixed $message], [array $context]) inherited from Phalcon\Logger\Adapter

Logs messages to the internal logger. Appends logs to the logger

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Adapter\Syslog

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Adapter\Syslog

extends abstract class Phalcon\Logger\Adapter

implements Phalcon\Logger\AdapterInterface

Source on GitHub

Sends logs to the system logger

<?php

$logger = new \Phalcon\Logger\Adapter\Syslog("ident", array(
 'option' => LOG_NDELAY,
 'facility' => LOG_MAIL
));
$logger->log("This is a message");
$logger->log(\Phalcon\Logger::ERROR, "This is an error");
$logger->error("This is another error");

Methods

public __construct (string $name, [array $options])

Phalcon\Logger\Adapter\Syslog constructor

public getFormatter ()

Returns the internal formatter

public logInternal (string $message, int $type, int $time, array $context)

Writes the log to the stream itself

public close ()

Closes the logger

public setLogLevel (mixed $level) inherited from Phalcon\Logger\Adapter

Filters the logs sent to the handlers that are less or equal than a specific level

public getLogLevel () inherited from Phalcon\Logger\Adapter

Returns the current log level

public setFormatter (Phalcon\Logger\FormatterInterface $formatter) inherited from Phalcon\Logger\Adapter

Sets the message formatter

public begin () inherited from Phalcon\Logger\Adapter

Starts a transaction

public commit () inherited from Phalcon\Logger\Adapter

Commits the internal transaction

public rollback () inherited from Phalcon\Logger\Adapter

Rollbacks the internal transaction

public isTransaction () inherited from Phalcon\Logger\Adapter

Returns the whether the logger is currently in an active transaction or not

public critical (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a critical message to the log

public emergency (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an emergency message to the log

public debug (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a debug message to the log

public error (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an error message to the log

public info (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an info message to the log

public notice (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a notice message to the log

public warning (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes a warning message to the log

public alert (mixed $message, [array $context]) inherited from Phalcon\Logger\Adapter

Sends/Writes an alert message to the log

public log (mixed $type, [mixed $message], [array $context]) inherited from Phalcon\Logger\Adapter

Logs messages to the internal logger. Appends logs to the logger

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Logger\Formatter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Source on GitHub

This is a base class for logger formatters

Methods

public getTypeString (mixed $type)

Returns the string meaning of a logger constant

public interpolate (string $message, [array $context])

Interpolates context values into the message placeholders

abstract public format (mixed $message, mixed $type, mixed $timestamp, [mixed $context]) inherited from Phalcon\Logger\FormatterInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Formatter\Firephp

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Formatter\Firephp

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Source on GitHub

Formats messages so that they can be sent to FirePHP

Methods

public getTypeString (mixed $type)

Returns the string meaning of a logger constant

public setShowBacktrace ([mixed $isShow])

Returns the string meaning of a logger constant

public getShowBacktrace ()

Returns the string meaning of a logger constant

public enableLabels ([mixed $isEnable])

Returns the string meaning of a logger constant

public labelsEnabled ()

Returns the labels enabled

public string format (string $message, int $type, int $timestamp, [array $context])

Applies a format to a message before sending it to the log

public interpolate (string $message, [array $context]) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Formatter\Json

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Formatter\Json

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Source on GitHub

Formats messages using JSON encoding

Methods

public string format (string $message, int $type, int $timestamp, [array $context])

Applies a format to a message before sent it to the internal log

public getTypeString (mixed $type) inherited from Phalcon\Logger\Formatter

Returns the string meaning of a logger constant

public interpolate (string $message, [array $context]) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Formatter\Line

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Formatter\Line

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Source on GitHub

Formats messages using an one-line string

Methods

public getDateFormat ()

Default date format

public setDateFormat (mixed $dateFormat)

Default date format

public getFormat ()

Format applied to each message

public setFormat (mixed $format)

Format applied to each message

public __construct ([string $format], [string $dateFormat])

Phalcon\Logger\Formatter\Line construct

public string format (string $message, int $type, int $timestamp, [array $context])

Applies a format to a message before sent it to the internal log

public getTypeString (mixed $type) inherited from Phalcon\Logger\Formatter

Returns the string meaning of a logger constant

public interpolate (string $message, [array $context]) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Formatter\Syslog

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Formatter\Syslog

extends abstract class Phalcon\Logger\Formatter

implements Phalcon\Logger\FormatterInterface

Source on GitHub

Prepares a message to be used in a Syslog backend

Methods

public array format (string $message, int $type, int $timestamp, [array $context])

Applies a format to a message before sent it to the internal log

public getTypeString (mixed $type) inherited from Phalcon\Logger\Formatter

Returns the string meaning of a logger constant

public interpolate (string $message, [array $context]) inherited from Phalcon\Logger\Formatter

Interpolates context values into the message placeholders

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Item

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Item

Source on GitHub

Represents each item in a logging transaction

Methods

public getType ()

Log type

public getMessage ()

Log message

public getTime ()

Log timestamp

public getContext ()

...

public __construct (string $message, integer $type, [integer $time], [array $context])

Phalcon\Logger\Item constructor

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Logger\Multiple

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Logger\Multiple

Source on GitHub

Handles multiples logger handlers

Methods

public getLoggers ()

...

public getFormatter ()

...

public getLogLevel ()

...

public push (Phalcon\Logger\AdapterInterface $logger)

Pushes a logger to the logger tail

public setFormatter (Phalcon\Logger\FormatterInterface $formatter)

Sets a global formatter

public setLogLevel (mixed $level)

Sets a global level

public log (mixed $type, [mixed $message], [array $context])

Sends a message to each registered logger

public critical (mixed $message, [array $context])

Sends/Writes an critical message to the log

public emergency (mixed $message, [array $context])

Sends/Writes an emergency message to the log

public debug (mixed $message, [array $context])

Sends/Writes a debug message to the log

public error (mixed $message, [array $context])

Sends/Writes an error message to the log

public info (mixed $message, [array $context])

Sends/Writes an info message to the log

public notice (mixed $message, [array $context])

Sends/Writes a notice message to the log

public warning (mixed $message, [array $context])

Sends/Writes a warning message to the log

public alert (mixed $message, [array $context])

Sends/Writes an alert message to the log

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Application

extends abstract class Phalcon\Application

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

This component encapsulates all the complex operations behind instantiating every component needed and integrating it with the rest to allow the MVC pattern to operate as desired.

<?php

 use Phalcon\Mvc\Application;

 class MyApp extends Application
 {

 /**
 * Register the services here to make them general or register
 * in the ModuleDefinition to make them module-specific
 */
 protected function registerServices()
 {

 }

 /**
 * This method registers all the modules in the application
 */
 public function main()
 {
 $this->registerModules(array(
 'frontend' => array(
 'className' => 'Multiple\Frontend\Module',
 'path' => '../apps/frontend/Module.php'
),
 'backend' => array(
 'className' => 'Multiple\Backend\Module',
 'path' => '../apps/backend/Module.php'
)
));
 }
}

$application = new MyApp();
$application->main();

Methods

public useImplicitView (mixed $implicitView)

By default. The view is implicitly buffering all the output You can full disable the view component using this method

public handle ([mixed $uri])

Handles a MVC request

public __construct ([Phalcon\DiInterface $dependencyInjector]) inherited from Phalcon\Application

Phalcon\Application

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Application

Sets the events manager

public getEventsManager () inherited from Phalcon\Application

Returns the internal event manager

public registerModules (array $modules, [mixed $merge]) inherited from Phalcon\Application

Register an array of modules present in the application

<?php

 $this->registerModules(
 [
 'frontend' => [
 'className' => 'Multiple\Frontend\Module',
 'path' => '../apps/frontend/Module.php'
],
 'backend' => [
 'className' => 'Multiple\Backend\Module',
 'path' => '../apps/backend/Module.php'
]
]
);

public getModules () inherited from Phalcon\Application

Return the modules registered in the application

public getModule (mixed $name) inherited from Phalcon\Application

Gets the module definition registered in the application via module name

public setDefaultModule (mixed $defaultModule) inherited from Phalcon\Application

Sets the module name to be used if the router doesn’t return a valid module

public getDefaultModule () inherited from Phalcon\Application

Returns the default module name

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Application\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Application\Exception

extends class Phalcon\Application\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Collection

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Collection

implements Phalcon\Mvc\EntityInterface, Phalcon\Mvc\CollectionInterface, Phalcon\Di\InjectionAwareInterface, Serializable [http://php.net/manual/en/class.serializable.php]

Source on GitHub

This component implements a high level abstraction for NoSQL databases which works with documents

Constants

integer OP_NONE

integer OP_CREATE

integer OP_UPDATE

integer OP_DELETE

Methods

final public __construct ([Phalcon\DiInterface $dependencyInjector], [Phalcon\Mvc\Collection\ManagerInterface $modelsManager])

Phalcon\Mvc\Collection constructor

public setId (mixed $id)

Sets a value for the _id property, creates a MongoId object if needed

public MongoId getId ()

Returns the value of the _id property

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public getDI ()

Returns the dependency injection container

protected setEventsManager (Phalcon\Mvc\Collection\ManagerInterface $eventsManager)

Sets a custom events manager

protected getEventsManager ()

Returns the custom events manager

public getCollectionManager ()

Returns the models manager related to the entity instance

public getReservedAttributes ()

Returns an array with reserved properties that cannot be part of the insert/update

protected useImplicitObjectIds (mixed $useImplicitObjectIds)

Sets if a model must use implicit objects ids

protected setSource (mixed $source)

Sets collection name which model should be mapped

public getSource ()

Returns collection name mapped in the model

public setConnectionService (mixed $connectionService)

Sets the DependencyInjection connection service name

public getConnectionService ()

Returns DependencyInjection connection service

public MongoDb getConnection ()

Retrieves a database connection

public mixed readAttribute (string $attribute)

Reads an attribute value by its name

<?php

echo $robot->readAttribute('name');

public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

<?php

$robot->writeAttribute('name', 'Rosey');

public static cloneResult (Phalcon\Mvc\CollectionInterface $collection, array $document)

Returns a cloned collection

protected static array _getResultset (array $params, Phalcon\Mvc\Collection $collection, MongoDb $connection, boolean $unique)

Returns a collection resultset

protected static int _getGroupResultset (array $params, Phalcon\Mvc\Collection $collection, MongoDb $connection)

Perform a count over a resultset

final protected boolean _preSave (Phalcon\DiInterface $dependencyInjector, boolean $disableEvents, boolean $exists)

Executes internal hooks before save a document

final protected _postSave (mixed $disableEvents, mixed $success, mixed $exists)

Executes internal events after save a document

protected validate (Phalcon\Mvc\Model\ValidatorInterface $validator)

Executes validators on every validation call

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

class Subscriptors extends \Phalcon\Mvc\Collection
{

public function validation()
{
 this->validate(new ExclusionIn(array(
 'field' => 'status',
 'domain' => array('A', 'I')
)));
 if (this->validationHasFailed() == true) {
 return false;
 }
}

}

public validationHasFailed ()

Check whether validation process has generated any messages

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

class Subscriptors extends \Phalcon\Mvc\Collection
{

public function validation()
{
 this->validate(new ExclusionIn(array(
 'field' => 'status',
 'domain' => array('A', 'I')
)));
 if (this->validationHasFailed() == true) {
 return false;
 }
}

}

public fireEvent (mixed $eventName)

Fires an internal event

public fireEventCancel (mixed $eventName)

Fires an internal event that cancels the operation

protected _cancelOperation (mixed $disableEvents)

Cancel the current operation

protected boolean _exists (MongoCollection $collection)

Checks if the document exists in the collection

public getMessages ()

Returns all the validation messages

<?php

 $robot = new Robots();
 $robot->type = 'mechanical';
 $robot->name = 'Astro Boy';
 $robot->year = 1952;
 if ($robot->save() == false) {
echo "Umh, We can't store robots right now ";
foreach ($robot->getMessages() as message) {
 echo message;
}
} else {
echo "Great, a new robot was saved successfully!";
}

public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

Appends a customized message on the validation process

<?php

use \Phalcon\Mvc\Model\Message as Message;

class Robots extends \Phalcon\Mvc\Model
{

 public function beforeSave()
 {
 if ($this->name == 'Peter') {
 message = new Message("Sorry, but a robot cannot be named Peter");
 $this->appendMessage(message);
 }
 }
}

protected prepareCU ()

Shared Code for CU Operations Prepares Collection

public save ()

Creates/Updates a collection based on the values in the attributes

public create ()

Creates a collection based on the values in the attributes

public createIfNotExist (array $criteria)

Creates a document based on the values in the attributes, if not found by criteria Preferred way to avoid duplication is to create index on attribute $robot = new Robot(); $robot->name = “MyRobot”; $robot->type = “Droid”; //create only if robot with same name and type does not exist $robot->createIfNotExist(array(“name”, “type”));

public update ()

Creates/Updates a collection based on the values in the attributes

public static findById (mixed $id)

Find a document by its id (_id)

<?php

 // Find user by using \MongoId object
 $user = Users::findById(new \MongoId('545eb081631d16153a293a66'));

 // Find user by using id as sting
 $user = Users::findById('45cbc4a0e4123f6920000002');

 // Validate input
 if ($user = Users::findById($_POST['id'])) {
 // ...
 }

public static findFirst ([array $parameters])

Allows to query the first record that match the specified conditions

<?php

 // What's the first robot in the robots table?
 $robot = Robots::findFirst();
 echo 'The robot name is ', $robot->name, "\n";

 // What's the first mechanical robot in robots table?
 $robot = Robots::findFirst([
 ['type' => 'mechanical']
]);
 echo 'The first mechanical robot name is ', $robot->name, "\n";

 // Get first virtual robot ordered by name
 $robot = Robots::findFirst([
 ['type' => 'mechanical'],
 'order' => ['name' => 1]
]);
 echo 'The first virtual robot name is ', $robot->name, "\n";

 // Get first robot by id (_id)
 $robot = Robots::findFirst([
 ['_id' => new \MongoId('45cbc4a0e4123f6920000002')]
]);
 echo 'The robot id is ', $robot->_id, "\n";

public static find ([array $parameters])

Allows to query a set of records that match the specified conditions

<?php

 //How many robots are there?
 $robots = Robots::find();
 echo "There are ", count($robots), "\n";

 //How many mechanical robots are there?
 $robots = Robots::find(array(
 array("type" => "mechanical")
));
 echo "There are ", count(robots), "\n";

 //Get and print virtual robots ordered by name
 $robots = Robots::findFirst(array(
 array("type" => "virtual"),
 "order" => array("name" => 1)
));
 foreach ($robots as $robot) {
 echo $robot->name, "\n";
 }

 //Get first 100 virtual robots ordered by name
 $robots = Robots::find(array(
 array("type" => "virtual"),
 "order" => array("name" => 1),
 "limit" => 100
));
 foreach ($robots as $robot) {
 echo $robot->name, "\n";
 }

public static count ([array $parameters])

Perform a count over a collection

<?php

 echo 'There are ', Robots::count(), ' robots';

public static aggregate ([array $parameters])

Perform an aggregation using the Mongo aggregation framework

public static summatory (mixed $field, [mixed $conditions], [mixed $finalize])

Allows to perform a summatory group for a column in the collection

public delete ()

Deletes a model instance. Returning true on success or false otherwise.

<?php

$robot = Robots::findFirst();
$robot->delete();

foreach (Robots::find() as $robot) {
 $robot->delete();
}

protected addBehavior (Phalcon\Mvc\Collection\BehaviorInterface $behavior)

Sets up a behavior in a collection

public skipOperation (mixed $skip)

Skips the current operation forcing a success state

public toArray ()

Returns the instance as an array representation

<?php

 print_r($robot->toArray());

public serialize ()

Serializes the object ignoring connections or protected properties

public unserialize (mixed $data)

Unserializes the object from a serialized string

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Collection\Behavior

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Collection\Behavior

Source on GitHub

This is an optional base class for ORM behaviors

Methods

public __construct ([array $options])

protected mustTakeAction (mixed $eventName)

Checks whether the behavior must take action on certain event

protected array getOptions ([string $eventName])

Returns the behavior options related to an event

public notify (mixed $type, Phalcon\Mvc\CollectionInterface $model)

This method receives the notifications from the EventsManager

public missingMethod (Phalcon\Mvc\CollectionInterface $model, mixed $method, [mixed $arguments])

Acts as fallbacks when a missing method is called on the collection

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Collection\Behavior\SoftDelete

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Collection\Behavior\SoftDelete

extends abstract class Phalcon\Mvc\Collection\Behavior

implements Phalcon\Mvc\Collection\BehaviorInterface

Source on GitHub

Instead of permanently delete a record it marks the record as deleted changing the value of a flag column

Methods

public notify (mixed $type, Phalcon\Mvc\CollectionInterface $model)

Listens for notifications from the models manager

public __construct ([array $options]) inherited from Phalcon\Mvc\Collection\Behavior

Phalcon\Mvc\Collection\Behavior

protected mustTakeAction (mixed $eventName) inherited from Phalcon\Mvc\Collection\Behavior

Checks whether the behavior must take action on certain event

protected array getOptions ([string $eventName]) inherited from Phalcon\Mvc\Collection\Behavior

Returns the behavior options related to an event

public missingMethod (Phalcon\Mvc\CollectionInterface $model, mixed $method, [mixed $arguments]) inherited from Phalcon\Mvc\Collection\Behavior

Acts as fallbacks when a missing method is called on the collection

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Collection\Behavior\Timestampable

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Collection\Behavior\Timestampable

extends abstract class Phalcon\Mvc\Collection\Behavior

implements Phalcon\Mvc\Collection\BehaviorInterface

Source on GitHub

Allows to automatically update a model’s attribute saving the datetime when a record is created or updated

Methods

public notify (mixed $type, Phalcon\Mvc\CollectionInterface $model)

Listens for notifications from the models manager

public __construct ([array $options]) inherited from Phalcon\Mvc\Collection\Behavior

Phalcon\Mvc\Collection\Behavior

protected mustTakeAction (mixed $eventName) inherited from Phalcon\Mvc\Collection\Behavior

Checks whether the behavior must take action on certain event

protected array getOptions ([string $eventName]) inherited from Phalcon\Mvc\Collection\Behavior

Returns the behavior options related to an event

public missingMethod (Phalcon\Mvc\CollectionInterface $model, mixed $method, [mixed $arguments]) inherited from Phalcon\Mvc\Collection\Behavior

Acts as fallbacks when a missing method is called on the collection

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Collection\Document

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Collection\Document

implements Phalcon\Mvc\EntityInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

This component allows Phalcon\Mvc\Collection to return rows without an associated entity. This objects implements the ArrayAccess interface to allow access the object as object->x or array[x].

Methods

public boolean offsetExists (int $index)

Checks whether an offset exists in the document

public offsetGet (mixed $index)

Returns the value of a field using the ArrayAccess interfase

public offsetSet (mixed $index, mixed $value)

Change a value using the ArrayAccess interface

public offsetUnset (string $offset)

Rows cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public mixed readAttribute (string $attribute)

Reads an attribute value by its name

<?php

 echo $robot->readAttribute('name');

public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

<?php

 $robot->writeAttribute('name', 'Rosey');

public array toArray ()

Returns the instance as an array representation

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Collection\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Collection\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Collection\Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Collection\Manager

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

This components controls the initialization of models, keeping record of relations between the different models of the application. A CollectionManager is injected to a model via a Dependency Injector Container such as Phalcon\Di.

<?php

 $di = new \Phalcon\Di();

 $di->set('collectionManager', function(){
 return new \Phalcon\Mvc\Collection\Manager();
 });

 $robot = new Robots($di);

Methods

public getServiceName ()

...

public setServiceName (mixed $serviceName)

...

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the event manager

public getEventsManager ()

Returns the internal event manager

public setCustomEventsManager (Phalcon\Mvc\CollectionInterface $model, Phalcon\Events\ManagerInterface $eventsManager)

Sets a custom events manager for a specific model

public getCustomEventsManager (Phalcon\Mvc\CollectionInterface $model)

Returns a custom events manager related to a model

public initialize (Phalcon\Mvc\CollectionInterface $model)

Initializes a model in the models manager

public isInitialized (mixed $modelName)

Check whether a model is already initialized

public getLastInitialized ()

Get the latest initialized model

public setConnectionService (Phalcon\Mvc\CollectionInterface $model, mixed $connectionService)

Sets a connection service for a specific model

public getConnectionService (Phalcon\Mvc\CollectionInterface $model)

Gets a connection service for a specific model

public useImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model, mixed $useImplicitObjectIds)

Sets whether a model must use implicit objects ids

public isUsingImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model)

Checks if a model is using implicit object ids

public Mongo getConnection (Phalcon\Mvc\CollectionInterface $model)

Returns the connection related to a model

public notifyEvent (mixed $eventName, Phalcon\Mvc\CollectionInterface $model)

Receives events generated in the models and dispatches them to an events-manager if available Notify the behaviors that are listening in the model

public missingMethod (Phalcon\Mvc\CollectionInterface $model, mixed $eventName, mixed $data)

Dispatch an event to the listeners and behaviors This method expects that the endpoint listeners/behaviors returns true meaning that at least one was implemented

public addBehavior (Phalcon\Mvc\CollectionInterface $model, Phalcon\Mvc\Collection\BehaviorInterface $behavior)

Binds a behavior to a model

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Controller

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Controller

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\Mvc\ControllerInterface

Source on GitHub

Every application controller should extend this class that encapsulates all the controller functionality The controllers provide the “flow” between models and views. Controllers are responsible for processing the incoming requests from the web browser, interrogating the models for data, and passing that data on to the views for presentation.

<?php

<?php

class PeopleController extends \Phalcon\Mvc\Controller
{

 //This action will be executed by default
 public function indexAction()
 {

 }

 public function findAction()
 {

 }

 public function saveAction()
 {
 //Forwards flow to the index action
 return $this->dispatcher->forward(array('controller' => 'people', 'action' => 'index'));
 }

}

Methods

final public __construct ()

Phalcon\Mvc\Controller constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Dispatcher

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Dispatcher

extends abstract class Phalcon\Dispatcher

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\DispatcherInterface, Phalcon\Mvc\DispatcherInterface

Source on GitHub

Dispatching is the process of taking the request object, extracting the module name, controller name, action name, and optional parameters contained in it, and then instantiating a controller and calling an action of that controller.

<?php

$di = new \Phalcon\Di();

$dispatcher = new \Phalcon\Mvc\Dispatcher();

 $dispatcher->setDI($di);

$dispatcher->setControllerName('posts');
$dispatcher->setActionName('index');
$dispatcher->setParams(array());

$controller = $dispatcher->dispatch();

Constants

integer EXCEPTION_NO_DI

integer EXCEPTION_CYCLIC_ROUTING

integer EXCEPTION_HANDLER_NOT_FOUND

integer EXCEPTION_INVALID_HANDLER

integer EXCEPTION_INVALID_PARAMS

integer EXCEPTION_ACTION_NOT_FOUND

Methods

public setControllerSuffix (mixed $controllerSuffix)

Sets the default controller suffix

public setDefaultController (mixed $controllerName)

Sets the default controller name

public setControllerName (mixed $controllerName)

Sets the controller name to be dispatched

public getControllerName ()

Gets last dispatched controller name

public getPreviousNamespaceName ()

Gets previous dispatched namespace name

public getPreviousControllerName ()

Gets previous dispatched controller name

public getPreviousActionName ()

Gets previous dispatched action name

protected _throwDispatchException (mixed $message, [mixed $exceptionCode])

Throws an internal exception

protected _handleException (Exception [http://php.net/manual/en/class.exception.php] $exception)

Handles a user exception

public getControllerClass ()

Possible controller class name that will be located to dispatch the request

public getLastController ()

Returns the latest dispatched controller

public getActiveController ()

Returns the active controller in the dispatcher

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Dispatcher

Sets the dependency injector

public getDI () inherited from Phalcon\Dispatcher

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Dispatcher

Sets the events manager

public getEventsManager () inherited from Phalcon\Dispatcher

Returns the internal event manager

public setActionSuffix (mixed $actionSuffix) inherited from Phalcon\Dispatcher

Sets the default action suffix

public getActionSuffix () inherited from Phalcon\Dispatcher

Gets the default action suffix

public setModuleName (mixed $moduleName) inherited from Phalcon\Dispatcher

Sets the module where the controller is (only informative)

public getModuleName () inherited from Phalcon\Dispatcher

Gets the module where the controller class is

public setNamespaceName (mixed $namespaceName) inherited from Phalcon\Dispatcher

Sets the namespace where the controller class is

public getNamespaceName () inherited from Phalcon\Dispatcher

Gets a namespace to be prepended to the current handler name

public setDefaultNamespace (mixed $namespaceName) inherited from Phalcon\Dispatcher

Sets the default namespace

public getDefaultNamespace () inherited from Phalcon\Dispatcher

Returns the default namespace

public setDefaultAction (mixed $actionName) inherited from Phalcon\Dispatcher

Sets the default action name

public setActionName (mixed $actionName) inherited from Phalcon\Dispatcher

Sets the action name to be dispatched

public getActionName () inherited from Phalcon\Dispatcher

Gets the latest dispatched action name

public setParams (array $params) inherited from Phalcon\Dispatcher

Sets action params to be dispatched

public getParams () inherited from Phalcon\Dispatcher

Gets action params

public setParam (mixed $param, mixed $value) inherited from Phalcon\Dispatcher

Set a param by its name or numeric index

public mixed getParam (mixed $param, [string | array $filters], [mixed $defaultValue]) inherited from Phalcon\Dispatcher

Gets a param by its name or numeric index

public boolean hasParam (mixed $param) inherited from Phalcon\Dispatcher

Check if a param exists

public getActiveMethod () inherited from Phalcon\Dispatcher

Returns the current method to be/executed in the dispatcher

public isFinished () inherited from Phalcon\Dispatcher

Checks if the dispatch loop is finished or has more pendent controllers/tasks to dispatch

public setReturnedValue (mixed $value) inherited from Phalcon\Dispatcher

Sets the latest returned value by an action manually

public mixed getReturnedValue () inherited from Phalcon\Dispatcher

Returns value returned by the latest dispatched action

public setModelBinding (boolean $value) inherited from Phalcon\Dispatcher

Enable/Disable model binding during dispatch

public object dispatch () inherited from Phalcon\Dispatcher

Dispatches a handle action taking into account the routing parameters

protected object _dispatch () inherited from Phalcon\Dispatcher

Dispatches a handle action taking into account the routing parameters

public forward (array $forward) inherited from Phalcon\Dispatcher

Forwards the execution flow to another controller/action Dispatchers are unique per module. Forwarding between modules is not allowed

<?php

 $this->dispatcher->forward(array("controller" => "posts", "action" => "index"));

public wasForwarded () inherited from Phalcon\Dispatcher

Check if the current executed action was forwarded by another one

public getHandlerClass () inherited from Phalcon\Dispatcher

Possible class name that will be located to dispatch the request

public callActionMethod (mixed $handler, mixed $actionMethod, [array $params]) inherited from Phalcon\Dispatcher

...

protected _resolveEmptyProperties () inherited from Phalcon\Dispatcher

Set empty properties to their defaults (where defaults are available)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Dispatcher\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Dispatcher\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Micro

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Micro

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

With Phalcon you can create “Micro-Framework like” applications. By doing this, you only need to write a minimal amount of code to create a PHP application. Micro applications are suitable to small applications, APIs and prototypes in a practical way.

<?php

 $app = new \Phalcon\Mvc\Micro();

 $app->get('/say/welcome/{name}', function ($name) {
 echo "<h1>Welcome $name!</h1>";
 });

 $app->handle();

Methods

public __construct ([Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\Micro constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public Phalcon\Mvc\Router\RouteInterface map (string $routePattern, callable $handler)

Maps a route to a handler without any HTTP method constraint

public Phalcon\Mvc\Router\RouteInterface get (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is GET

public Phalcon\Mvc\Router\RouteInterface post (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is POST

public Phalcon\Mvc\Router\RouteInterface put (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PUT

public Phalcon\Mvc\Router\RouteInterface patch (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is PATCH

public Phalcon\Mvc\Router\RouteInterface head (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is HEAD

public Phalcon\Mvc\Router\RouteInterface delete (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is DELETE

public Phalcon\Mvc\Router\RouteInterface options (string $routePattern, callable $handler)

Maps a route to a handler that only matches if the HTTP method is OPTIONS

public mount (Phalcon\Mvc\Micro\CollectionInterface $collection)

Mounts a collection of handlers

public Phalcon\Mvc\Micro notFound (callable $handler)

Sets a handler that will be called when the router doesn’t match any of the defined routes

public Phalcon\Mvc\Micro error (callable $handler)

Sets a handler that will be called when an exception is thrown handling the route

public getRouter ()

Returns the internal router used by the application

public Phalcon\Di\ServiceInterface setService (string $serviceName, mixed $definition, [boolean $shared])

Sets a service from the DI

public hasService (mixed $serviceName)

Checks if a service is registered in the DI

public object getService (string $serviceName)

Obtains a service from the DI

public mixed getSharedService (string $serviceName)

Obtains a shared service from the DI

public mixed handle ([string $uri])

Handle the whole request

public stop ()

Stops the middleware execution avoiding than other middlewares be executed

public setActiveHandler (callable $activeHandler)

Sets externally the handler that must be called by the matched route

public callable getActiveHandler ()

Return the handler that will be called for the matched route

public mixed getReturnedValue ()

Returns the value returned by the executed handler

public boolean offsetExists (string $alias)

Check if a service is registered in the internal services container using the array syntax

public offsetSet (string $alias, mixed $definition)

Allows to register a shared service in the internal services container using the array syntax

<?php

$app['request'] = new \Phalcon\Http\Request();

public mixed offsetGet (string $alias)

Allows to obtain a shared service in the internal services container using the array syntax

<?php

var_dump($di['request']);

public offsetUnset (string $alias)

Removes a service from the internal services container using the array syntax

public Phalcon\Mvc\Micro before (callable $handler)

Appends a before middleware to be called before execute the route

public Phalcon\Mvc\Micro after (callable $handler)

Appends an ‘after’ middleware to be called after execute the route

public Phalcon\Mvc\Micro finish (callable $handler)

Appends a ‘finish’ middleware to be called when the request is finished

public array getHandlers ()

Returns the internal handlers attached to the application

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Micro\Collection

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Micro\Collection

implements Phalcon\Mvc\Micro\CollectionInterface

Source on GitHub

Groups Micro-Mvc handlers as controllers

<?php

 $app = new \Phalcon\Mvc\Micro();

 $collection = new Collection();

 $collection->setHandler(new PostsController());

 $collection->get('/posts/edit/{id}', 'edit');

 $app->mount($collection);

Methods

protected _addMap (string | array $method, string $routePattern, mixed $handler, string $name)

Internal function to add a handler to the group

public setPrefix (mixed $prefix)

Sets a prefix for all routes added to the collection

public getPrefix ()

Returns the collection prefix if any

public array getHandlers ()

Returns the registered handlers

public Phalcon\Mvc\Micro\Collection setHandler (mixed $handler, [boolean $lazy])

Sets the main handler

public setLazy (mixed $lazy)

Sets if the main handler must be lazy loaded

public isLazy ()

Returns if the main handler must be lazy loaded

public mixed getHandler ()

Returns the main handler

public Phalcon\Mvc\Micro\Collection map (string $routePattern, callable $handler, [string $name])

Maps a route to a handler

public Phalcon\Mvc\Micro\Collection get (string $routePattern, callable $handler, [string $name])

Maps a route to a handler that only matches if the HTTP method is GET

public Phalcon\Mvc\Micro\Collection post (string $routePattern, callable $handler, [string $name])

Maps a route to a handler that only matches if the HTTP method is POST

public Phalcon\Mvc\Micro\Collection put (string $routePattern, callable $handler, [string $name])

Maps a route to a handler that only matches if the HTTP method is PUT

public Phalcon\Mvc\Micro\Collection patch (string $routePattern, callable $handler, [string $name])

Maps a route to a handler that only matches if the HTTP method is PATCH

public Phalcon\Mvc\Micro\Collection head (string $routePattern, callable $handler, [string $name])

Maps a route to a handler that only matches if the HTTP method is HEAD

public Phalcon\Mvc\Micro\Collection delete (string $routePattern, callable $handler, [string $name])

Maps a route to a handler that only matches if the HTTP method is DELETE

public Phalcon\Mvc\Micro\Collection options (string $routePattern, callable $handler, [mixed $name])

Maps a route to a handler that only matches if the HTTP method is OPTIONS

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Micro\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Micro\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Micro\LazyLoader

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Micro\LazyLoader

Source on GitHub

Lazy-Load of handlers for Mvc\Micro using auto-loading

Methods

public getDefinition ()

...

public __construct (mixed $definition)

Phalcon\Mvc\Micro\LazyLoader constructor

public mixed __call (string $method, array $arguments)

Initializes the internal handler, calling functions on it

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Model

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Model

implements Phalcon\Mvc\EntityInterface, Phalcon\Mvc\ModelInterface, Phalcon\Mvc\Model\ResultInterface, Phalcon\Di\InjectionAwareInterface, Serializable [http://php.net/manual/en/class.serializable.php], JsonSerializable [http://php.net/manual/en/class.jsonserializable.php]

Source on GitHub

Phalcon\Mvc\Model connects business objects and database tables to create a persistable domain model where logic and data are presented in one wrapping. It‘s an implementation of the object-relational mapping (ORM). A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily used for managing the rules of interaction with a corresponding database table. In most cases, each table in your database will correspond to one model in your application. The bulk of your application’s business logic will be concentrated in the models. Phalcon\Mvc\Model is the first ORM written in Zephir/C languages for PHP, giving to developers high performance when interacting with databases while is also easy to use.

<?php

 $robot = new Robots();
 $robot->type = 'mechanical';
 $robot->name = 'Astro Boy';
 $robot->year = 1952;
 if ($robot->save() == false) {
 echo "Umh, We can store robots: ";
 foreach ($robot->getMessages() as $message) {
 echo message;
 }
 } else {
 echo "Great, a new robot was saved successfully!";
 }

Constants

integer OP_NONE

integer OP_CREATE

integer OP_UPDATE

integer OP_DELETE

integer DIRTY_STATE_PERSISTENT

integer DIRTY_STATE_TRANSIENT

integer DIRTY_STATE_DETACHED

Methods

final public __construct ([mixed $data], [Phalcon\DiInterface $dependencyInjector], [Phalcon\Mvc\Model\ManagerInterface $modelsManager])

Phalcon\Mvc\Model constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public getDI ()

Returns the dependency injection container

protected setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets a custom events manager

protected getEventsManager ()

Returns the custom events manager

public getModelsMetaData ()

Returns the models meta-data service related to the entity instance

public getModelsManager ()

Returns the models manager related to the entity instance

public setTransaction (Phalcon\Mvc\Model\TransactionInterface $transaction)

Sets a transaction related to the Model instance

<?php

use Phalcon\Mvc\Model\Transaction\Manager as TxManager;
use Phalcon\Mvc\Model\Transaction\Failed as TxFailed;

try {

 $txManager = new TxManager();

 $transaction = $txManager->get();

 $robot = new Robots();
 $robot->setTransaction($transaction);
 $robot->name = 'WALL·E';
 $robot->created_at = date('Y-m-d');
 if ($robot->save() == false) {
 $transaction->rollback("Can't save robot");
 }

 $robotPart = new RobotParts();
 $robotPart->setTransaction($transaction);
 $robotPart->type = 'head';
 if ($robotPart->save() == false) {
 $transaction->rollback("Robot part cannot be saved");
 }

 $transaction->commit();

} catch (TxFailed $e) {
 echo 'Failed, reason: ', $e->getMessage();
}

protected setSource (mixed $source)

Sets table name which model should be mapped

public getSource ()

Returns table name mapped in the model

protected setSchema (mixed $schema)

Sets schema name where table mapped is located

public getSchema ()

Returns schema name where table mapped is located

public setConnectionService (mixed $connectionService)

Sets the DependencyInjection connection service name

public setReadConnectionService (mixed $connectionService)

Sets the DependencyInjection connection service name used to read data

public setWriteConnectionService (mixed $connectionService)

Sets the DependencyInjection connection service name used to write data

public getReadConnectionService ()

Returns the DependencyInjection connection service name used to read data related the model

public getWriteConnectionService ()

Returns the DependencyInjection connection service name used to write data related to the model

public setDirtyState (mixed $dirtyState)

Sets the dirty state of the object using one of the DIRTY_STATE_* constants

public getDirtyState ()

Returns one of the DIRTY_STATE_* constants telling if the record exists in the database or not

public getReadConnection ()

Gets the connection used to read data for the model

public getWriteConnection ()

Gets the connection used to write data to the model

public Phalcon\Mvc\Model assign (array $data, [mixed $dataColumnMap], [array $whiteList])

Assigns values to a model from an array

<?php

 $robot->assign(array(
'type' => 'mechanical',
'name' => 'Astro Boy',
'year' => 1952
));

 //assign by db row, column map needed
 $robot->assign($dbRow, array(
'db_type' => 'type',
'db_name' => 'name',
'db_year' => 'year'
));

 //allow assign only name and year
 $robot->assign($_POST, null, array('name', 'year');

public static cloneResultMap (Phalcon\Mvc\ModelInterface | Phalcon\Mvc\Model\Row $base, array $data, array $columnMap, [int $dirtyState], [boolean $keepSnapshots])

Assigns values to a model from an array returning a new model.

<?php

$robot = \Phalcon\Mvc\Model::cloneResultMap(new Robots(), array(
 'type' => 'mechanical',
 'name' => 'Astro Boy',
 'year' => 1952
));

public static mixed cloneResultMapHydrate (array $data, array $columnMap, int $hydrationMode)

Returns an hydrated result based on the data and the column map

public static Phalcon\Mvc\ModelInterface cloneResult (Phalcon\Mvc\ModelInterface $base, array $data, [int $dirtyState])

Assigns values to a model from an array returning a new model

<?php

$robot = Phalcon\Mvc\Model::cloneResult(new Robots(), array(
 'type' => 'mechanical',
 'name' => 'Astro Boy',
 'year' => 1952
));

public static find ([mixed $parameters])

Allows to query a set of records that match the specified conditions

<?php

 // How many robots are there?
 $robots = Robots::find();
 echo 'There are ', count($robots), "\n";

 // How many mechanical robots are there?
 $robots = Robots::find("type='mechanical'");
 echo 'There are ', count($robots), "\n";

 // Get and print virtual robots ordered by name
 $robots = Robots::find(["type='virtual'", 'order' => 'name']);
 foreach ($robots as $robot) {
 echo $robot->name, "\n";
 }

 // Get first 100 virtual robots ordered by name
 $robots = Robots::find(["type='virtual'", 'order' => 'name', 'limit' => 100]);
 foreach ($robots as $robot) {
 echo $robot->name, "\n";
 }

public static static findFirst ([string | array $parameters])

Allows to query the first record that match the specified conditions

<?php

 //What's the first robot in robots table?
 $robot = Robots::findFirst();
 echo "The robot name is ", $robot->name;

 //What's the first mechanical robot in robots table?
 $robot = Robots::findFirst("type='mechanical'");
 echo "The first mechanical robot name is ", $robot->name;

 //Get first virtual robot ordered by name
 $robot = Robots::findFirst(array("type='virtual'", "order" => "name"));
 echo "The first virtual robot name is ", $robot->name;

public static query ([Phalcon\DiInterface $dependencyInjector])

Create a criteria for a specific model

protected boolean _exists (Phalcon\Mvc\Model\MetaDataInterface $metaData, Phalcon\Db\AdapterInterface $connection, [string | array $table])

Checks if the current record already exists or not

protected static Phalcon\Mvc\Model\ResultsetInterface _groupResult (mixed $functionName, string $alias, array $parameters)

Generate a PHQL SELECT statement for an aggregate

public static mixed count ([array $parameters])

Allows to count how many records match the specified conditions

<?php

 //How many robots are there?
 $number = Robots::count();
 echo "There are ", $number, "\n";

 //How many mechanical robots are there?
 $number = Robots::count("type = 'mechanical'");
 echo "There are ", $number, " mechanical robots\n";

public static mixed sum ([array $parameters])

Allows to calculate a sum on a column that match the specified conditions

<?php

 //How much are all robots?
 $sum = Robots::sum(array('column' => 'price'));
 echo "The total price of robots is ", $sum, "\n";

 //How much are mechanical robots?
 $sum = Robots::sum(array("type = 'mechanical'", 'column' => 'price'));
 echo "The total price of mechanical robots is ", $sum, "\n";

public static mixed maximum ([array $parameters])

Allows to get the maximum value of a column that match the specified conditions

<?php

 //What is the maximum robot id?
 $id = Robots::maximum(array('column' => 'id'));
 echo "The maximum robot id is: ", $id, "\n";

 //What is the maximum id of mechanical robots?
 $sum = Robots::maximum(array("type='mechanical'", 'column' => 'id'));
 echo "The maximum robot id of mechanical robots is ", $id, "\n";

public static mixed minimum ([array $parameters])

Allows to get the minimum value of a column that match the specified conditions

<?php

 //What is the minimum robot id?
 $id = Robots::minimum(array('column' => 'id'));
 echo "The minimum robot id is: ", $id;

 //What is the minimum id of mechanical robots?
 $sum = Robots::minimum(array("type='mechanical'", 'column' => 'id'));
 echo "The minimum robot id of mechanical robots is ", $id;

public static double average ([array $parameters])

Allows to calculate the average value on a column matching the specified conditions

<?php

 //What's the average price of robots?
 $average = Robots::average(array('column' => 'price'));
 echo "The average price is ", $average, "\n";

 //What's the average price of mechanical robots?
 $average = Robots::average(array("type='mechanical'", 'column' => 'price'));
 echo "The average price of mechanical robots is ", $average, "\n";

public fireEvent (mixed $eventName)

Fires an event, implicitly calls behaviors and listeners in the events manager are notified

public fireEventCancel (mixed $eventName)

Fires an event, implicitly calls behaviors and listeners in the events manager are notified This method stops if one of the callbacks/listeners returns boolean false

protected _cancelOperation ()

Cancel the current operation

public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

Appends a customized message on the validation process

<?php

 use Phalcon\Mvc\Model;
 use Phalcon\Mvc\Model\Message as Message;

 class Robots extends Model
 {

 public function beforeSave()
 {
 if ($this->name == 'Peter') {
 $message = new Message("Sorry, but a robot cannot be named Peter");
 $this->appendMessage($message);
 }
 }
 }

protected validate (Phalcon\ValidationInterface $validator)

Executes validators on every validation call

<?php

use Phalcon\Mvc\Model;
use Phalcon\Validation;
use Phalcon\Validation\Validator\ExclusionIn;

class Subscriptors extends Model
{

public function validation()
 {
 $validator = new Validation();
 $validator->add('status', new ExclusionIn(array(
 'domain' => array('A', 'I')
)));

 return $this->validate($validator);
}
}

public validationHasFailed ()

Check whether validation process has generated any messages

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionIn;

class Subscriptors extends Model
{

public function validation()
 {
 $validator = new Validation();

 $validator->validate('status', new ExclusionIn(array(
 'domain' => array('A', 'I')
));

 return $this->validate($validator);
}
}

public getMessages ([mixed $filter])

Returns array of validation messages

<?php

$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
if ($robot->save() == false) {
 echo "Umh, We can't store robots right now ";
 foreach ($robot->getMessages() as $message) {
 echo $message;
 }
} else {
 echo "Great, a new robot was saved successfully!";
}

final protected _checkForeignKeysRestrict ()

Reads “belongs to” relations and check the virtual foreign keys when inserting or updating records to verify that inserted/updated values are present in the related entity

final protected _checkForeignKeysReverseCascade ()

Reads both “hasMany” and “hasOne” relations and checks the virtual foreign keys (cascade) when deleting records

final protected _checkForeignKeysReverseRestrict ()

Reads both “hasMany” and “hasOne” relations and checks the virtual foreign keys (restrict) when deleting records

protected _preSave (Phalcon\Mvc\Model\MetaDataInterface $metaData, mixed $exists, mixed $identityField)

Executes internal hooks before save a record

protected _postSave (mixed $success, mixed $exists)

Executes internal events after save a record

protected boolean _doLowInsert (Phalcon\Mvc\Model\MetaDataInterface $metaData, Phalcon\Db\AdapterInterface $connection, string | array $table, boolean | string $identityField)

Sends a pre-build INSERT SQL statement to the relational database system

protected boolean _doLowUpdate (Phalcon\Mvc\Model\MetaDataInterface $metaData, Phalcon\Db\AdapterInterface $connection, string | array $table)

Sends a pre-build UPDATE SQL statement to the relational database system

protected boolean _preSaveRelatedRecords (Phalcon\Db\AdapterInterface $connection, Phalcon\Mvc\ModelInterface[] $related)

Saves related records that must be stored prior to save the master record

protected boolean _postSaveRelatedRecords (Phalcon\Db\AdapterInterface $connection, Phalcon\Mvc\ModelInterface[] $related)

Save the related records assigned in the has-one/has-many relations

public boolean save ([array $data], [array $whiteList])

Inserts or updates a model instance. Returning true on success or false otherwise.

<?php

//Creating a new robot
$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
$robot->save();

//Updating a robot name
$robot = Robots::findFirst("id=100");
$robot->name = "Biomass";
$robot->save();

public create ([mixed $data], [mixed $whiteList])

Inserts a model instance. If the instance already exists in the persistence it will throw an exception Returning true on success or false otherwise.

<?php

//Creating a new robot
$robot = new Robots();
$robot->type = 'mechanical';
$robot->name = 'Astro Boy';
$robot->year = 1952;
$robot->create();

 //Passing an array to create
 $robot = new Robots();
 $robot->create(array(
 'type' => 'mechanical',
 'name' => 'Astro Boy',
 'year' => 1952
));

public update ([mixed $data], [mixed $whiteList])

Updates a model instance. If the instance doesn’t exist in the persistence it will throw an exception Returning true on success or false otherwise.

<?php

//Updating a robot name
$robot = Robots::findFirst("id=100");
$robot->name = "Biomass";
$robot->update();

public delete ()

Deletes a model instance. Returning true on success or false otherwise.

<?php

$robot = Robots::findFirst("id=100");
$robot->delete();

foreach (Robots::find("type = 'mechanical'") as $robot) {
 $robot->delete();
}

public getOperationMade ()

Returns the type of the latest operation performed by the ORM Returns one of the OP_* class constants

public refresh ()

Refreshes the model attributes re-querying the record from the database

public skipOperation (mixed $skip)

Skips the current operation forcing a success state

public readAttribute (mixed $attribute)

Reads an attribute value by its name

<?php

 echo $robot->readAttribute('name');

public writeAttribute (mixed $attribute, mixed $value)

Writes an attribute value by its name

<?php

 $robot->writeAttribute('name', 'Rosey');

protected skipAttributes (array $attributes)

Sets a list of attributes that must be skipped from the generated INSERT/UPDATE statement

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->skipAttributes(array('price'));
 }
}

protected skipAttributesOnCreate (array $attributes)

Sets a list of attributes that must be skipped from the generated INSERT statement

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->skipAttributesOnCreate(array('created_at'));
 }
}

protected skipAttributesOnUpdate (array $attributes)

Sets a list of attributes that must be skipped from the generated UPDATE statement

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->skipAttributesOnUpdate(array('modified_in'));
 }
}

protected allowEmptyStringValues (array $attributes)

Sets a list of attributes that must be skipped from the generated UPDATE statement

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->allowEmptyStringValues(array('name'));
 }
}

protected hasOne (mixed $fields, mixed $referenceModel, mixed $referencedFields, [mixed $options])

Setup a 1-1 relation between two models

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->hasOne('id', 'RobotsDescription', 'robots_id');
 }
}

protected belongsTo (mixed $fields, mixed $referenceModel, mixed $referencedFields, [mixed $options])

Setup a relation reverse 1-1 between two models

<?php

<?php

class RobotsParts extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->belongsTo('robots_id', 'Robots', 'id');
 }

}

protected hasMany (mixed $fields, mixed $referenceModel, mixed $referencedFields, [mixed $options])

Setup a relation 1-n between two models

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 $this->hasMany('id', 'RobotsParts', 'robots_id');
 }
}

protected Phalcon\Mvc\Model\Relation hasManyToMany (string | array $fields, string $intermediateModel, string | array $intermediateFields, string | array $intermediateReferencedFields, mixed $referenceModel, string | array $referencedFields, [array $options])

Setup a relation n-n between two models through an intermediate relation

<?php

<?php

class Robots extends \Phalcon\Mvc\Model
{

 public function initialize()
 {
 //Setup a many-to-many relation to Parts through RobotsParts
 $this->hasManyToMany(
 'id',
 'RobotsParts',
 'robots_id',
 'parts_id',
 'Parts',
 'id'
);
 }
}

public addBehavior (Phalcon\Mvc\Model\BehaviorInterface $behavior)

Setups a behavior in a model

<?php

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Behavior\Timestampable;

class Robots extends Model
{

 public function initialize()
 {
 $this->addBehavior(new Timestampable(array(
 'onCreate' => array(
 'field' => 'created_at',
 'format' => 'Y-m-d'
)
)));
 }
}

protected keepSnapshots (mixed $keepSnapshot)

Sets if the model must keep the original record snapshot in memory

<?php

<?php
use Phalcon\Mvc\Model;

class Robots extends Model
{

 public function initialize()
 {
 $this->keepSnapshots(true);
 }
}

public setSnapshotData (array $data, [array $columnMap])

Sets the record’s snapshot data. This method is used internally to set snapshot data when the model was set up to keep snapshot data

public hasSnapshotData ()

Checks if the object has internal snapshot data

public getSnapshotData ()

Returns the internal snapshot data

public hasChanged ([string | array $fieldName])

Check if a specific attribute has changed This only works if the model is keeping data snapshots

public getChangedFields ()

Returns a list of changed values

protected useDynamicUpdate (mixed $dynamicUpdate)

Sets if a model must use dynamic update instead of the all-field update

<?php

<?php
use Phalcon\Mvc\Model;

class Robots extends Model
{

 public function initialize()
 {
 $this->useDynamicUpdate(true);
 }
}

public Phalcon\Mvc\Model\ResultsetInterface getRelated (string $alias, [array $arguments])

Returns related records based on defined relations

protected mixed _getRelatedRecords (string $modelName, string $method, array $arguments)

Returns related records defined relations depending on the method name

final protected static Phalcon\Mvc\ModelInterface[] | Phalcon\Mvc\ModelInterface | boolean _invokeFinder (string $method, array $arguments)

Try to check if the query must invoke a finder

public mixed __call (string $method, array $arguments)

Handles method calls when a method is not implemented

public static mixed __callStatic (string $method, array $arguments)

Handles method calls when a static method is not implemented

public __set (string $property, mixed $value)

Magic method to assign values to the the model

final protected string _possibleSetter (string $property, mixed $value)

Check for, and attempt to use, possible setter.

public Phalcon\Mvc\Model\Resultset | Phalcon\Mvc\Model __get (string $property)

Magic method to get related records using the relation alias as a property

public __isset (mixed $property)

Magic method to check if a property is a valid relation

public serialize ()

Serializes the object ignoring connections, services, related objects or static properties

public unserialize (mixed $data)

Unserializes the object from a serialized string

public dump ()

Returns a simple representation of the object that can be used with var_dump

<?php

 var_dump($robot->dump());

public array toArray ([array $columns])

Returns the instance as an array representation

<?php

 print_r($robot->toArray());

public array jsonSerialize ()

Serializes the object for json_encode

<?php

 echo json_encode($robot);

public static setup (array $options)

Enables/disables options in the ORM

public reset ()

Reset a model instance data

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Model\Behavior

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Model\Behavior

implements Phalcon\Mvc\Model\BehaviorInterface

Source on GitHub

This is an optional base class for ORM behaviors

Methods

public __construct ([array $options])

protected mustTakeAction (mixed $eventName)

Checks whether the behavior must take action on certain event

protected array getOptions ([string $eventName])

Returns the behavior options related to an event

public notify (mixed $type, Phalcon\Mvc\ModelInterface $model)

This method receives the notifications from the EventsManager

public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments])

Acts as fallbacks when a missing method is called on the model

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Behavior\SoftDelete

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Behavior\SoftDelete

extends abstract class Phalcon\Mvc\Model\Behavior

implements Phalcon\Mvc\Model\BehaviorInterface

Source on GitHub

Instead of permanently delete a record it marks the record as deleted changing the value of a flag column

Methods

public notify (mixed $type, Phalcon\Mvc\ModelInterface $model)

Listens for notifications from the models manager

public __construct ([array $options]) inherited from Phalcon\Mvc\Model\Behavior

Phalcon\Mvc\Model\Behavior

protected mustTakeAction (mixed $eventName) inherited from Phalcon\Mvc\Model\Behavior

Checks whether the behavior must take action on certain event

protected array getOptions ([string $eventName]) inherited from Phalcon\Mvc\Model\Behavior

Returns the behavior options related to an event

public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments]) inherited from Phalcon\Mvc\Model\Behavior

Acts as fallbacks when a missing method is called on the model

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Behavior\Timestampable

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Behavior\Timestampable

extends abstract class Phalcon\Mvc\Model\Behavior

implements Phalcon\Mvc\Model\BehaviorInterface

Source on GitHub

Allows to automatically update a model’s attribute saving the datetime when a record is created or updated

Methods

public notify (mixed $type, Phalcon\Mvc\ModelInterface $model)

Listens for notifications from the models manager

public __construct ([array $options]) inherited from Phalcon\Mvc\Model\Behavior

Phalcon\Mvc\Model\Behavior

protected mustTakeAction (mixed $eventName) inherited from Phalcon\Mvc\Model\Behavior

Checks whether the behavior must take action on certain event

protected array getOptions ([string $eventName]) inherited from Phalcon\Mvc\Model\Behavior

Returns the behavior options related to an event

public missingMethod (Phalcon\Mvc\ModelInterface $model, string $method, [array $arguments]) inherited from Phalcon\Mvc\Model\Behavior

Acts as fallbacks when a missing method is called on the model

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Criteria

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Criteria

implements Phalcon\Mvc\Model\CriteriaInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

This class is used to build the array parameter required by Phalcon\Mvc\Model::find() and Phalcon\Mvc\Model::findFirst() using an object-oriented interface.

<?php

 $robots = Robots::query()
 ->where('type = :type:')
 ->andWhere('year < 2000')
 ->bind(['type' => 'mechanical'])
 ->limit(5, 10)
 ->orderBy('name')
 ->execute();

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public setModelName (mixed $modelName)

Set a model on which the query will be executed

public getModelName ()

Returns an internal model name on which the criteria will be applied

public bind (array $bindParams, [mixed $merge])

Sets the bound parameters in the criteria This method replaces all previously set bound parameters

public bindTypes (array $bindTypes)

Sets the bind types in the criteria This method replaces all previously set bound parameters

public distinct (mixed $distinct)

Sets SELECT DISTINCT / SELECT ALL flag

public Phalcon\Mvc\Model\Criteria columns (string | array $columns)

Sets the columns to be queried

<?php

$criteria->columns(array('id', 'name'));

public join (mixed $model, [mixed $conditions], [mixed $alias], [mixed $type])

Adds an INNER join to the query

<?php

$criteria->join('Robots');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id', 'r');
$criteria->join('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

public innerJoin (mixed $model, [mixed $conditions], [mixed $alias])

Adds an INNER join to the query

<?php

$criteria->innerJoin('Robots');
$criteria->innerJoin('Robots', 'r.id = RobotsParts.robots_id');
$criteria->innerJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public leftJoin (mixed $model, [mixed $conditions], [mixed $alias])

Adds a LEFT join to the query

<?php

$criteria->leftJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public rightJoin (mixed $model, [mixed $conditions], [mixed $alias])

Adds a RIGHT join to the query

<?php

$criteria->rightJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public where (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

Sets the conditions parameter in the criteria

public addWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

Appends a condition to the current conditions using an AND operator (deprecated)

public andWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

Appends a condition to the current conditions using an AND operator

public orWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

Appends a condition to the current conditions using an OR operator

public betweenWhere (mixed $expr, mixed $minimum, mixed $maximum)

Appends a BETWEEN condition to the current conditions

<?php

$criteria->betweenWhere('price', 100.25, 200.50);

public notBetweenWhere (mixed $expr, mixed $minimum, mixed $maximum)

Appends a NOT BETWEEN condition to the current conditions

<?php

$criteria->notBetweenWhere('price', 100.25, 200.50);

public inWhere (mixed $expr, array $values)

Appends an IN condition to the current conditions

<?php

 $criteria->inWhere('id', [1, 2, 3]);

public notInWhere (mixed $expr, array $values)

Appends a NOT IN condition to the current conditions

<?php

$criteria->notInWhere('id', [1, 2, 3]);

public conditions (mixed $conditions)

Adds the conditions parameter to the criteria

public order (mixed $orderColumns)

Adds the order-by parameter to the criteria (deprecated)

public orderBy (mixed $orderColumns)

Adds the order-by clause to the criteria

public groupBy (mixed $group)

Adds the group-by clause to the criteria

public having (mixed $having)

Adds the having clause to the criteria

public limit (mixed $limit, [mixed $offset])

Adds the limit parameter to the criteria

public forUpdate ([mixed $forUpdate])

Adds the “for_update” parameter to the criteria

public sharedLock ([mixed $sharedLock])

Adds the “shared_lock” parameter to the criteria

public cache (array $cache)

Sets the cache options in the criteria This method replaces all previously set cache options

public getWhere ()

Returns the conditions parameter in the criteria

public string | array | null getColumns ()

Returns the columns to be queried

public getConditions ()

Returns the conditions parameter in the criteria

public int | array | null getLimit ()

Returns the limit parameter in the criteria, which will be an integer if limit was set without an offset, an array with ‘number’ and ‘offset’ keys if an offset was set with the limit, or null if limit has not been set.

public getOrderBy ()

Returns the order clause in the criteria

public getGroupBy ()

Returns the group clause in the criteria

public getHaving ()

Returns the having clause in the criteria

public array getParams ()

Returns all the parameters defined in the criteria

public static fromInput (Phalcon\DiInterface $dependencyInjector, mixed $modelName, array $data, [mixed $operator])

Builds a Phalcon\Mvc\Model\Criteria based on an input array like _POST

public execute ()

Executes a find using the parameters built with the criteria

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Manager

implements Phalcon\Mvc\Model\ManagerInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

This components controls the initialization of models, keeping record of relations between the different models of the application. A ModelsManager is injected to a model via a Dependency Injector/Services Container such as Phalcon\Di.

<?php

 use Phalcon\Di;
 use Phalcon\Mvc\Model\Manager as ModelsManager;

 $di = new Di();

 $di->set('modelsManager', function() {
 return new ModelsManager();
 });

 $robot = new Robots($di);

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets a global events manager

public getEventsManager ()

Returns the internal event manager

public setCustomEventsManager (Phalcon\Mvc\ModelInterface $model, Phalcon\Events\ManagerInterface $eventsManager)

Sets a custom events manager for a specific model

public getCustomEventsManager (Phalcon\Mvc\ModelInterface $model)

Returns a custom events manager related to a model

public initialize (Phalcon\Mvc\ModelInterface $model)

Initializes a model in the model manager

public isInitialized (mixed $modelName)

Check whether a model is already initialized

public getLastInitialized ()

Get last initialized model

public load (mixed $modelName, [mixed $newInstance])

Loads a model throwing an exception if it doesn’t exist

public setModelSource (Phalcon\Mvc\ModelInterface $model, mixed $source)

Sets the mapped source for a model

final public isVisibleModelProperty (Phalcon\Mvc\ModelInterface $model, mixed $property)

Check whether a model property is declared as public.

<?php

 $isPublic = $manager->isVisibleModelProperty(new Robots(), 'name');

public getModelSource (Phalcon\Mvc\ModelInterface $model)

Returns the mapped source for a model

public setModelSchema (Phalcon\Mvc\ModelInterface $model, mixed $schema)

Sets the mapped schema for a model

public getModelSchema (Phalcon\Mvc\ModelInterface $model)

Returns the mapped schema for a model

public setConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionService)

Sets both write and read connection service for a model

public setWriteConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionService)

Sets write connection service for a model

public setReadConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionService)

Sets read connection service for a model

public getReadConnection (Phalcon\Mvc\ModelInterface $model)

Returns the connection to read data related to a model

public getWriteConnection (Phalcon\Mvc\ModelInterface $model)

Returns the connection to write data related to a model

protected _getConnection (Phalcon\Mvc\ModelInterface $model, mixed $connectionServices)

Returns the connection to read or write data related to a model depending on the connection services.

public getReadConnectionService (Phalcon\Mvc\ModelInterface $model)

Returns the connection service name used to read data related to a model

public getWriteConnectionService (Phalcon\Mvc\ModelInterface $model)

Returns the connection service name used to write data related to a model

public _getConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionServices)

Returns the connection service name used to read or write data related to a model depending on the connection services

public notifyEvent (mixed $eventName, Phalcon\Mvc\ModelInterface $model)

Receives events generated in the models and dispatches them to an events-manager if available Notify the behaviors that are listening in the model

public missingMethod (Phalcon\Mvc\ModelInterface $model, mixed $eventName, mixed $data)

Dispatch an event to the listeners and behaviors This method expects that the endpoint listeners/behaviors returns true meaning that a least one was implemented

public addBehavior (Phalcon\Mvc\ModelInterface $model, Phalcon\Mvc\Model\BehaviorInterface $behavior)

Binds a behavior to a model

public keepSnapshots (Phalcon\Mvc\ModelInterface $model, mixed $keepSnapshots)

Sets if a model must keep snapshots

public isKeepingSnapshots (Phalcon\Mvc\ModelInterface $model)

Checks if a model is keeping snapshots for the queried records

public useDynamicUpdate (Phalcon\Mvc\ModelInterface $model, mixed $dynamicUpdate)

Sets if a model must use dynamic update instead of the all-field update

public isUsingDynamicUpdate (Phalcon\Mvc\ModelInterface $model)

Checks if a model is using dynamic update instead of all-field update

public Phalcon\Mvc\Model\Relation addHasOne (Phalcon\Mvc\Model $model, mixed $fields, string $referencedModel, mixed $referencedFields, [array $options])

Setup a 1-1 relation between two models

public Phalcon\Mvc\Model\Relation addBelongsTo (Phalcon\Mvc\Model $model, mixed $fields, string $referencedModel, mixed $referencedFields, [array $options])

Setup a relation reverse many to one between two models

public addHasMany (Phalcon\Mvc\ModelInterface $model, mixed $fields, string $referencedModel, mixed $referencedFields, [array $options])

Setup a relation 1-n between two models

public Phalcon\Mvc\Model\Relation addHasManyToMany (Phalcon\Mvc\ModelInterface $model, string $fields, string $intermediateModel, string $intermediateFields, string $intermediateReferencedFields, string $referencedModel, string $referencedFields, [array $options])

Setups a relation n-m between two models

public existsBelongsTo (mixed $modelName, mixed $modelRelation)

Checks whether a model has a belongsTo relation with another model

public existsHasMany (mixed $modelName, mixed $modelRelation)

Checks whether a model has a hasMany relation with another model

public existsHasOne (mixed $modelName, mixed $modelRelation)

Checks whether a model has a hasOne relation with another model

public existsHasManyToMany (mixed $modelName, mixed $modelRelation)

Checks whether a model has a hasManyToMany relation with another model

public getRelationByAlias (mixed $modelName, mixed $alias)

Returns a relation by its alias

final protected _mergeFindParameters (mixed $findParamsOne, mixed $findParamsTwo)

Merge two arrays of find parameters

public Phalcon\Mvc\Model\Resultset\Simple | Phalcon\Mvc\Model\Resultset\Simple | int | false getRelationRecords (Phalcon\Mvc\Model\RelationInterface $relation, mixed $method, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

Helper method to query records based on a relation definition

public getReusableRecords (mixed $modelName, mixed $key)

Returns a reusable object from the internal list

public setReusableRecords (mixed $modelName, mixed $key, mixed $records)

Stores a reusable record in the internal list

public clearReusableObjects ()

Clears the internal reusable list

public getBelongsToRecords (mixed $method, mixed $modelName, mixed $modelRelation, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

Gets belongsTo related records from a model

public getHasManyRecords (mixed $method, mixed $modelName, mixed $modelRelation, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

Gets hasMany related records from a model

public getHasOneRecords (mixed $method, mixed $modelName, mixed $modelRelation, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

Gets belongsTo related records from a model

public getBelongsTo (Phalcon\Mvc\ModelInterface $model)

Gets all the belongsTo relations defined in a model

<?php

$relations = $modelsManager->getBelongsTo(new Robots());

public getHasMany (Phalcon\Mvc\ModelInterface $model)

Gets hasMany relations defined on a model

public getHasOne (Phalcon\Mvc\ModelInterface $model)

Gets hasOne relations defined on a model

public getHasManyToMany (Phalcon\Mvc\ModelInterface $model)

Gets hasManyToMany relations defined on a model

public getHasOneAndHasMany (Phalcon\Mvc\ModelInterface $model)

Gets hasOne relations defined on a model

public getRelations (mixed $modelName)

Query all the relationships defined on a model

public getRelationsBetween (mixed $first, mixed $second)

Query the first relationship defined between two models

public createQuery (mixed $phql)

Creates a Phalcon\Mvc\Model\Query without execute it

public executeQuery (mixed $phql, [mixed $placeholders], [mixed $types])

Creates a Phalcon\Mvc\Model\Query and execute it

public createBuilder ([mixed $params])

Creates a Phalcon\Mvc\Model\Query\Builder

public getLastQuery ()

Returns the last query created or executed in the models manager

public registerNamespaceAlias (mixed $alias, mixed $namespaceName)

Registers shorter aliases for namespaces in PHQL statements

public getNamespaceAlias (mixed $alias)

Returns a real namespace from its alias

public getNamespaceAliases ()

Returns all the registered namespace aliases

public __destruct ()

Destroys the current PHQL cache

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Message

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Message

implements Phalcon\Mvc\Model\MessageInterface

Source on GitHub

Encapsulates validation info generated before save/delete records fails

<?php

use Phalcon\Mvc\Model\Message as Message;

 class Robots extends \Phalcon\Mvc\Model
 {

 public function beforeSave()
 {
 if ($this->name == 'Peter') {
 $text = "A robot cannot be named Peter";
 $field = "name";
 $type = "InvalidValue";
 $message = new Message($text, $field, $type);
 $this->appendMessage($message);
 }
 }

 }

Methods

public __construct (string $message, [string | array $field], [string $type], [Phalcon\Mvc\ModelInterface $model], [int | null $code])

Phalcon\Mvc\Model\Message constructor

public setType (mixed $type)

Sets message type

public getType ()

Returns message type

public setMessage (mixed $message)

Sets verbose message

public getMessage ()

Returns verbose message

public setField (mixed $field)

Sets field name related to message

public getField ()

Returns field name related to message

public setModel (Phalcon\Mvc\ModelInterface $model)

Set the model who generates the message

public setCode (mixed $code)

Sets code for the message

public getModel ()

Returns the model that produced the message

public getCode ()

Returns the message code

public __toString ()

Magic __toString method returns verbose message

public static __set_state (array $message)

Magic __set_state helps to re-build messages variable exporting

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Model\MetaData

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Mvc\Model\MetaDataInterface

Source on GitHub

Because Phalcon\Mvc\Model requires meta-data like field names, data types, primary keys, etc. this component collect them and store for further querying by Phalcon\Mvc\Model. Phalcon\Mvc\Model\MetaData can also use adapters to store temporarily or permanently the meta-data. A standard Phalcon\Mvc\Model\MetaData can be used to query model attributes:

<?php

$metaData = new \Phalcon\Mvc\Model\MetaData\Memory();
$attributes = $metaData->getAttributes(new Robots());
print_r($attributes);

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema)

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy)

Set the meta-data extraction strategy

public getStrategy ()

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model)

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index)

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data)

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model)

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index)

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model)

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model)

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model)

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model)

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model)

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model)

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes)

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes)

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes)

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model)

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model)

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model)

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model)

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute)

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty ()

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset ()

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

abstract public read (mixed $key) inherited from Phalcon\Mvc\Model\MetaDataInterface

...

abstract public write (mixed $key, mixed $data) inherited from Phalcon\Mvc\Model\MetaDataInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Apc

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Apc

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in the APC cache. Data will erased if the web server is restarted By default meta-data is stored for 48 hours (172800 seconds) You can query the meta-data by printing apc_fetch(‘PMM’) or apc_fetch(‘PMMmy-app-id’)

<?php

$metaData = new \Phalcon\Mvc\Model\Metadata\Apc(array(
 'prefix' => 'my-app-id',
 'lifetime' => 86400
));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Apc constructor

public read (mixed $key)

Reads meta-data from APC

public write (mixed $key, mixed $data)

Writes the meta-data to APC

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset () inherited from Phalcon\Mvc\Model\MetaData

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Files

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in PHP files.

<?php

 $metaData = new \Phalcon\Mvc\Model\Metadata\Files(array(
 'metaDataDir' => 'app/cache/metadata/'
));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Files constructor

public mixed read (string $key)

Reads meta-data from files

public write (string $key, array $data)

Writes the meta-data to files

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset () inherited from Phalcon\Mvc\Model\MetaData

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Libmemcached

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Libmemcached

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in the Memcache. By default meta-data is stored for 48 hours (172800 seconds)

<?php

$metaData = new Phalcon\Mvc\Model\Metadata\Libmemcached(array(
 'servers' => array(
 array('host' => 'localhost', 'port' => 11211, 'weight' => 1),
),
 'client' => array(
 Memcached::OPT_HASH => Memcached::HASH_MD5,
 Memcached::OPT_PREFIX_KEY => 'prefix.',
),
 'lifetime' => 3600,
 'prefix' => 'my_'
));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Libmemcached constructor

public read (mixed $key)

Reads metadata from Memcache

public write (mixed $key, mixed $data)

Writes the metadata to Memcache

public reset ()

Flush Memcache data and resets internal meta-data in order to regenerate it

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Memcache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Memcache

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in the Memcache. By default meta-data is stored for 48 hours (172800 seconds)

<?php

$metaData = new Phalcon\Mvc\Model\Metadata\Memcache(array(
 'prefix' => 'my-app-id',
 'lifetime' => 86400,
 'host' => 'localhost',
 'port' => 11211,
 'persistent' => false
));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Memcache constructor

public read (mixed $key)

Reads metadata from Memcache

public write (mixed $key, mixed $data)

Writes the metadata to Memcache

public reset ()

Flush Memcache data and resets internal meta-data in order to regenerate it

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Memory

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Memory

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in memory. Data will be erased when the request finishes

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Memory constructor

public array read (string $key)

Reads the meta-data from temporal memory

public write (string $key, array $data)

Writes the meta-data to temporal memory

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset () inherited from Phalcon\Mvc\Model\MetaData

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Redis

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Redis

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in the Redis. By default meta-data is stored for 48 hours (172800 seconds)

<?php

 use Phalcon\Mvc\Model\Metadata\Redis;

 $metaData = new Redis([
 'host' => '127.0.0.1',
 'port' => 6379,
 'persistent' => 0,
 'statsKey' => '_PHCM_MM',
 'lifetime' => 172800,
 'index' => 2,
]);

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Redis constructor

public read (mixed $key)

Reads metadata from Redis

public write (mixed $key, mixed $data)

Writes the metadata to Redis

public reset ()

Flush Redis data and resets internal meta-data in order to regenerate it

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Session

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Session

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in session. Data will erased when the session finishes. Meta-data are permanent while the session is active. You can query the meta-data by printing $_SESSION[‘$PMM$’]

<?php

 $metaData = new \Phalcon\Mvc\Model\Metadata\Session(array(
 'prefix' => 'my-app-id'
));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Session constructor

public array read (string $key)

Reads meta-data from $_SESSION

public write (string $key, array $data)

Writes the meta-data to $_SESSION

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset () inherited from Phalcon\Mvc\Model\MetaData

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Strategy\Annotations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Strategy\Annotations

implements Phalcon\Mvc\Model\MetaData\StrategyInterface

Source on GitHub

Methods

final public getMetaData (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

The meta-data is obtained by reading the column descriptions from the database information schema

final public getColumnMaps (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

Read the model’s column map, this can’t be inferred

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Strategy\Introspection

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Strategy\Introspection

implements Phalcon\Mvc\Model\MetaData\StrategyInterface

Source on GitHub

Queries the table meta-data in order to introspect the model’s metadata

Methods

final public getMetaData (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

The meta-data is obtained by reading the column descriptions from the database information schema

final public getColumnMaps (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

Read the model’s column map, this can’t be inferred

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\MetaData\Xcache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\MetaData\Xcache

extends abstract class Phalcon\Mvc\Model\MetaData

implements Phalcon\Mvc\Model\MetaDataInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Stores model meta-data in the XCache cache. Data will erased if the web server is restarted By default meta-data is stored for 48 hours (172800 seconds) You can query the meta-data by printing xcache_get(‘PMM’) or xcache_get(‘PMMmy-app-id’)

<?php

$metaData = new Phalcon\Mvc\Model\Metadata\Xcache(array(
 'prefix' => 'my-app-id',
 'lifetime' => 86400
));

Constants

integer MODELS_ATTRIBUTES

integer MODELS_PRIMARY_KEY

integer MODELS_NON_PRIMARY_KEY

integer MODELS_NOT_NULL

integer MODELS_DATA_TYPES

integer MODELS_DATA_TYPES_NUMERIC

integer MODELS_DATE_AT

integer MODELS_DATE_IN

integer MODELS_IDENTITY_COLUMN

integer MODELS_DATA_TYPES_BIND

integer MODELS_AUTOMATIC_DEFAULT_INSERT

integer MODELS_AUTOMATIC_DEFAULT_UPDATE

integer MODELS_DEFAULT_VALUES

integer MODELS_EMPTY_STRING_VALUES

integer MODELS_COLUMN_MAP

integer MODELS_REVERSE_COLUMN_MAP

Methods

public __construct ([array $options])

Phalcon\Mvc\Model\MetaData\Xcache constructor

public array read (string $key)

Reads metadata from XCache

public write (string $key, array $data)

Writes the metadata to XCache

final protected _initialize (Phalcon\Mvc\ModelInterface $model, mixed $key, mixed $table, mixed $schema) inherited from Phalcon\Mvc\Model\MetaData

Initialize the metadata for certain table

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Model\MetaData

Sets the DependencyInjector container

public getDI () inherited from Phalcon\Mvc\Model\MetaData

Returns the DependencyInjector container

public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy) inherited from Phalcon\Mvc\Model\MetaData

Set the meta-data extraction strategy

public getStrategy () inherited from Phalcon\Mvc\Model\MetaData

Return the strategy to obtain the meta-data

final public readMetaData (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the complete meta-data for certain model

<?php

print_r($metaData->readMetaData(new Robots());

final public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads meta-data for certain model

<?php

print_r($metaData->readMetaDataIndex(new Robots(), 0);

final public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data) inherited from Phalcon\Mvc\Model\MetaData

Writes meta-data for certain model using a MODEL_* constant

<?php

print_r($metaData->writeColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP, array('leName' => 'name')));

final public readColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Reads the ordered/reversed column map for certain model

<?php

print_r($metaData->readColumnMap(new Robots()));

final public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index) inherited from Phalcon\Mvc\Model\MetaData

Reads column-map information for certain model using a MODEL_* constant

<?php

print_r($metaData->readColumnMapIndex(new Robots(), MetaData::MODELS_REVERSE_COLUMN_MAP));

public getAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns table attributes names (fields)

<?php

print_r($metaData->getAttributes(new Robots()));

public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are part of the primary key

<?php

print_r($metaData->getPrimaryKeyAttributes(new Robots()));

public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of fields which are not part of the primary key

<?php

print_r($metaData->getNonPrimaryKeyAttributes(new Robots()));

public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns an array of not null attributes

<?php

print_r($metaData->getNotNullAttributes(new Robots()));

public getDataTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their data types

<?php

print_r($metaData->getDataTypes(new Robots()));

public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes which types are numerical

<?php

print_r($metaData->getDataTypesNumeric(new Robots()));

public string getIdentityField (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the name of identity field (if one is present)

<?php

print_r($metaData->getIdentityField(new Robots()));

public getBindTypes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes and their bind data types

<?php

print_r($metaData->getBindTypes(new Robots()));

public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the INSERT SQL generation

<?php

print_r($metaData->getAutomaticCreateAttributes(new Robots()));

public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes that must be ignored from the UPDATE SQL generation

<?php

print_r($metaData->getAutomaticUpdateAttributes(new Robots()));

public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the INSERT SQL generation

<?php

$metaData->setAutomaticCreateAttributes(new Robots(), array('created_at' => true));

public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that must be ignored from the UPDATE SQL generation

<?php

$metaData->setAutomaticUpdateAttributes(new Robots(), array('modified_at' => true));

public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes) inherited from Phalcon\Mvc\Model\MetaData

Set the attributes that allow empty string values

<?php

$metaData->setEmptyStringAttributes(new Robots(), array('name' => true));

public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes allow empty strings

<?php

print_r($metaData->getEmptyStringAttributes(new Robots()));

public getDefaultValues (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns attributes (which have default values) and their default values

<?php

print_r($metaData->getDefaultValues(new Robots()));

public getColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the column map if any

<?php

print_r($metaData->getColumnMap(new Robots()));

public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model) inherited from Phalcon\Mvc\Model\MetaData

Returns the reverse column map if any

<?php

print_r($metaData->getReverseColumnMap(new Robots()));

public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute) inherited from Phalcon\Mvc\Model\MetaData

Check if a model has certain attribute

<?php

var_dump($metaData->hasAttribute(new Robots(), 'name'));

public isEmpty () inherited from Phalcon\Mvc\Model\MetaData

Checks if the internal meta-data container is empty

<?php

var_dump($metaData->isEmpty());

public reset () inherited from Phalcon\Mvc\Model\MetaData

Resets internal meta-data in order to regenerate it

<?php

$metaData->reset();

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Query

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Query

implements Phalcon\Mvc\Model\QueryInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

This class takes a PHQL intermediate representation and executes it.

<?php

 $phql = "SELECT c.price*0.16 AS taxes, c.* FROM Cars AS c JOIN Brands AS b
 WHERE b.name = :name: ORDER BY c.name";

 $result = $manager->executeQuery($phql, array(
 "name" => "Lamborghini"
));

 foreach ($result as $row) {
 echo "Name: ", $row->cars->name, "\n";
 echo "Price: ", $row->cars->price, "\n";
 echo "Taxes: ", $row->taxes, "\n";
 }

Constants

integer TYPE_SELECT

integer TYPE_INSERT

integer TYPE_UPDATE

integer TYPE_DELETE

Methods

public __construct ([string $phql], [Phalcon\DiInterface $dependencyInjector], [mixed $options])

Phalcon\Mvc\Model\Query constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public getDI ()

Returns the dependency injection container

public setUniqueRow (mixed $uniqueRow)

Tells to the query if only the first row in the resultset must be returned

public getUniqueRow ()

Check if the query is programmed to get only the first row in the resultset

final protected _getQualified (array $expr)

Replaces the model’s name to its source name in a qualified-name expression

final protected _getCallArgument (array $argument)

Resolves an expression in a single call argument

final protected _getCaseExpression (array $expr)

Resolves an expression in a single call argument

final protected _getFunctionCall (array $expr)

Resolves an expression in a single call argument

final protected string _getExpression (array $expr, [boolean $quoting])

Resolves an expression from its intermediate code into a string

final protected _getSelectColumn (array $column)

Resolves a column from its intermediate representation into an array used to determine if the resultset produced is simple or complex

final protected string _getTable (Phalcon\Mvc\Model\ManagerInterface $manager, array $qualifiedName)

Resolves a table in a SELECT statement checking if the model exists

final protected _getJoin (Phalcon\Mvc\Model\ManagerInterface $manager, mixed $join)

Resolves a JOIN clause checking if the associated models exist

final protected string _getJoinType (array $join)

Resolves a JOIN type

final protected array _getSingleJoin (string $joinType, string $joinSource, string $modelAlias, string $joinAlias, Phalcon\Mvc\Model\RelationInterface $relation)

Resolves joins involving has-one/belongs-to/has-many relations

final protected array _getMultiJoin (string $joinType, string $joinSource, string $modelAlias, string $joinAlias, Phalcon\Mvc\Model\RelationInterface $relation)

Resolves joins involving many-to-many relations

final protected array _getJoins (array $select)

Processes the JOINs in the query returning an internal representation for the database dialect

final protected array _getOrderClause (array | string $order)

Returns a processed order clause for a SELECT statement

final protected _getGroupClause (array $group)

Returns a processed group clause for a SELECT statement

final protected _getLimitClause (array $limitClause)

Returns a processed limit clause for a SELECT statement

final protected _prepareSelect ([mixed $ast], [mixed $merge])

Analyzes a SELECT intermediate code and produces an array to be executed later

final protected _prepareInsert ()

Analyzes an INSERT intermediate code and produces an array to be executed later

final protected _prepareUpdate ()

Analyzes an UPDATE intermediate code and produces an array to be executed later

final protected _prepareDelete ()

Analyzes a DELETE intermediate code and produces an array to be executed later

public parse ()

Parses the intermediate code produced by Phalcon\Mvc\Model\Query\Lang generating another intermediate representation that could be executed by Phalcon\Mvc\Model\Query

public getCache ()

Returns the current cache backend instance

final protected _executeSelect (mixed $intermediate, mixed $bindParams, mixed $bindTypes, [mixed $simulate])

Executes the SELECT intermediate representation producing a Phalcon\Mvc\Model\Resultset

final protected Phalcon\Mvc\Model\Query\StatusInterface _executeInsert (array $intermediate, array $bindParams, array $bindTypes)

Executes the INSERT intermediate representation producing a Phalcon\Mvc\Model\Query\Status

final protected Phalcon\Mvc\Model\Query\StatusInterface _executeUpdate (array $intermediate, array $bindParams, array $bindTypes)

Executes the UPDATE intermediate representation producing a Phalcon\Mvc\Model\Query\Status

final protected Phalcon\Mvc\Model\Query\StatusInterface _executeDelete (array $intermediate, array $bindParams, array $bindTypes)

Executes the DELETE intermediate representation producing a Phalcon\Mvc\Model\Query\Status

final protected Phalcon\Mvc\Model\ResultsetInterface _getRelatedRecords (Phalcon\Mvc\ModelInterface $model, array $intermediate, array $bindParams, array $bindTypes)

Query the records on which the UPDATE/DELETE operation well be done

public mixed execute ([array $bindParams], [array $bindTypes])

Executes a parsed PHQL statement

public Phalcon\Mvc\ModelInterface getSingleResult ([array $bindParams], [array $bindTypes])

Executes the query returning the first result

public setType (mixed $type)

Sets the type of PHQL statement to be executed

public getType ()

Gets the type of PHQL statement executed

public setBindParams (array $bindParams, [mixed $merge])

Set default bind parameters

public array getBindParams ()

Returns default bind params

public setBindTypes (array $bindTypes, [mixed $merge])

Set default bind parameters

public setSharedLock ([mixed $sharedLock])

Set SHARED LOCK clause

public array getBindTypes ()

Returns default bind types

public setIntermediate (array $intermediate)

Allows to set the IR to be executed

public array getIntermediate ()

Returns the intermediate representation of the PHQL statement

public cache (mixed $cacheOptions)

Sets the cache parameters of the query

public getCacheOptions ()

Returns the current cache options

public getSql ()

Returns the SQL to be generated by the internal PHQL (only works in SELECT statements)

public static clean ()

Destroys the internal PHQL cache

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Query\Builder

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Query\Builder

implements Phalcon\Mvc\Model\Query\BuilderInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Helps to create PHQL queries using an OO interface

<?php

 $params = array(
 'models' => array('Users'),
 'columns' => array('id', 'name', 'status'),
 'conditions' => array(
 array(
 "created > :min: AND created < :max:",
 array("min" => '2013-01-01', 'max' => '2014-01-01'),
 array("min" => PDO::PARAM_STR, 'max' => PDO::PARAM_STR),
),
),
 // or 'conditions' => "created > '2013-01-01' AND created < '2014-01-01'",
 'group' => array('id', 'name'),
 'having' => "name = 'Kamil'",
 'order' => array('name', 'id'),
 'limit' => 20,
 'offset' => 20,
 // or 'limit' => array(20, 20),
);
$queryBuilder = new \Phalcon\Mvc\Model\Query\Builder($params);

Constants

string OPERATOR_OR

string OPERATOR_AND

Methods

public __construct ([mixed $params], [Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\Model\Query\Builder constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public distinct (mixed $distinct)

Sets SELECT DISTINCT / SELECT ALL flag

<?php

$builder->distinct("status");
$builder->distinct(null);

public getDistinct ()

Returns SELECT DISTINCT / SELECT ALL flag

public columns (mixed $columns)

Sets the columns to be queried

<?php

$builder->columns("id, name");
$builder->columns(array('id', 'name'));
 $builder->columns(array('name', 'number' => 'COUNT(*)'));

public string | array getColumns ()

Return the columns to be queried

public from (mixed $models)

Sets the models who makes part of the query

<?php

$builder->from('Robots');
$builder->from(array('Robots', 'RobotsParts'));
$builder->from(array('r' => 'Robots', 'rp' => 'RobotsParts'));

public addFrom (mixed $model, [mixed $alias], [mixed $with])

Add a model to take part of the query

<?php

 // Load data from models Robots
$builder->addFrom('Robots');

 // Load data from model 'Robots' using 'r' as alias in PHQL
$builder->addFrom('Robots', 'r');

 // Load data from model 'Robots' using 'r' as alias in PHQL
 // and eager load model 'RobotsParts'
$builder->addFrom('Robots', 'r', 'RobotsParts');

 // Load data from model 'Robots' using 'r' as alias in PHQL
 // and eager load models 'RobotsParts' and 'Parts'
$builder->addFrom('Robots', 'r', ['RobotsParts', 'Parts']);

public string | array getFrom ()

Return the models who makes part of the query

public Phalcon\Mvc\Model\Query\Builder join (string $model, [string $conditions], [string $alias], [string $type])

Adds an INNER join to the query

<?php

 // Inner Join model 'Robots' with automatic conditions and alias
$builder->join('Robots');

 // Inner Join model 'Robots' specifing conditions
$builder->join('Robots', 'Robots.id = RobotsParts.robots_id');

 // Inner Join model 'Robots' specifing conditions and alias
$builder->join('Robots', 'r.id = RobotsParts.robots_id', 'r');

 // Left Join model 'Robots' specifing conditions, alias and type of join
$builder->join('Robots', 'r.id = RobotsParts.robots_id', 'r', 'LEFT');

public Phalcon\Mvc\Model\Query\Builder innerJoin (string $model, [string $conditions], [string $alias])

Adds an INNER join to the query

<?php

 // Inner Join model 'Robots' with automatic conditions and alias
$builder->innerJoin('Robots');

 // Inner Join model 'Robots' specifing conditions
$builder->innerJoin('Robots', 'Robots.id = RobotsParts.robots_id');

 // Inner Join model 'Robots' specifing conditions and alias
$builder->innerJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public Phalcon\Mvc\Model\Query\Builder leftJoin (string $model, [string $conditions], [string $alias])

Adds a LEFT join to the query

<?php

$builder->leftJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public Phalcon\Mvc\Model\Query\Builder rightJoin (string $model, [string $conditions], [string $alias])

Adds a RIGHT join to the query

<?php

$builder->rightJoin('Robots', 'r.id = RobotsParts.robots_id', 'r');

public array getJoins ()

Return join parts of the query

public Phalcon\Mvc\Model\Query\Builder where (mixed $conditions, [array $bindParams], [array $bindTypes])

Sets the query conditions

<?php

$builder->where(100);
$builder->where('name = "Peter"');
$builder->where('name = :name: AND id > :id:', array('name' => 'Peter', 'id' => 100));

public Phalcon\Mvc\Model\Query\Builder andWhere (string $conditions, [array $bindParams], [array $bindTypes])

Appends a condition to the current conditions using a AND operator

<?php

$builder->andWhere('name = "Peter"');
$builder->andWhere('name = :name: AND id > :id:', array('name' => 'Peter', 'id' => 100));

public Phalcon\Mvc\Model\Query\Builder orWhere (string $conditions, [array $bindParams], [array $bindTypes])

Appends a condition to the current conditions using an OR operator

<?php

$builder->orWhere('name = "Peter"');
$builder->orWhere('name = :name: AND id > :id:', array('name' => 'Peter', 'id' => 100));

public betweenWhere (mixed $expr, mixed $minimum, mixed $maximum, [mixed $operator])

Appends a BETWEEN condition to the current conditions

<?php

$builder->betweenWhere('price', 100.25, 200.50);

public notBetweenWhere (mixed $expr, mixed $minimum, mixed $maximum, [mixed $operator])

Appends a NOT BETWEEN condition to the current conditions

<?php

$builder->notBetweenWhere('price', 100.25, 200.50);

public inWhere (mixed $expr, array $values, [mixed $operator])

Appends an IN condition to the current conditions

<?php

$builder->inWhere('id', [1, 2, 3]);

public notInWhere (mixed $expr, array $values, [mixed $operator])

Appends a NOT IN condition to the current conditions

<?php

$builder->notInWhere('id', [1, 2, 3]);

public string | array getWhere ()

Return the conditions for the query

public Phalcon\Mvc\Model\Query\Builder orderBy (string | array $orderBy)

Sets an ORDER BY condition clause

<?php

$builder->orderBy('Robots.name');
$builder->orderBy(array('1', 'Robots.name'));

public string | array getOrderBy ()

Returns the set ORDER BY clause

public having (mixed $having)

Sets a HAVING condition clause. You need to escape PHQL reserved words using [and] delimiters

<?php

$builder->having('SUM(Robots.price) > 0');

public forUpdate (mixed $forUpdate)

Sets a FOR UPDATE clause

<?php

$builder->forUpdate(true);

public string | array getHaving ()

Return the current having clause

public limit ([mixed $limit], [mixed $offset])

Sets a LIMIT clause, optionally an offset clause

<?php

$builder->limit(100);
$builder->limit(100, 20);

public string | array getLimit ()

Returns the current LIMIT clause

public offset (mixed $offset)

Sets an OFFSET clause

<?php

$builder->offset(30);

public string | array getOffset ()

Returns the current OFFSET clause

public Phalcon\Mvc\Model\Query\Builder groupBy (string | array $group)

Sets a GROUP BY clause

<?php

$builder->groupBy(array('Robots.name'));

public string getGroupBy ()

Returns the GROUP BY clause

final public string getPhql ()

Returns a PHQL statement built based on the builder parameters

public getQuery ()

Returns the query built

final public autoescape (mixed $identifier)

Automatically escapes identifiers but only if they need to be escaped.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Model\Query\Lang

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Model\Query\Lang

Source on GitHub

PHQL is implemented as a parser (written in C) that translates syntax in that of the target RDBMS. It allows Phalcon to offer a unified SQL language to the developer, while internally doing all the work of translating PHQL instructions to the most optimal SQL instructions depending on the RDBMS type associated with a model. To achieve the highest performance possible, we wrote a parser that uses the same technology as SQLite. This technology provides a small in-memory parser with a very low memory footprint that is also thread-safe.

<?php

 $intermediate = Phalcon\Mvc\Model\Query\Lang::parsePHQL("SELECT r.* FROM Robots r LIMIT 10");

Methods

public static string parsePHQL (string $phql)

Parses a PHQL statement returning an intermediate representation (IR)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Query\Status

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Query\Status

implements Phalcon\Mvc\Model\Query\StatusInterface

Source on GitHub

This class represents the status returned by a PHQL statement like INSERT, UPDATE or DELETE. It offers context information and the related messages produced by the model which finally executes the operations when it fails

<?php

$phql = "UPDATE Robots SET name = :name:, type = :type:, year = :year: WHERE id = :id:";
$status = $app->modelsManager->executeQuery($phql, array(
 'id' => 100,
 'name' => 'Astroy Boy',
 'type' => 'mechanical',
 'year' => 1959
));

\//Check if the update was successful
if ($status->success() == true) {
 echo 'OK';
}

Methods

public __construct (mixed $success, [Phalcon\Mvc\ModelInterface $model])

public getModel ()

Returns the model that executed the action

public getMessages ()

Returns the messages produced because of a failed operation

public success ()

Allows to check if the executed operation was successful

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Relation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Relation

implements Phalcon\Mvc\Model\RelationInterface

Source on GitHub

This class represents a relationship between two models

Constants

integer BELONGS_TO

integer HAS_ONE

integer HAS_MANY

integer HAS_ONE_THROUGH

integer HAS_MANY_THROUGH

integer NO_ACTION

integer ACTION_RESTRICT

integer ACTION_CASCADE

Methods

public __construct (int $type, string $referencedModel, string | array $fields, string | array $referencedFields, [array $options])

Phalcon\Mvc\Model\Relation constructor

public setIntermediateRelation (string | array $intermediateFields, string $intermediateModel, string $intermediateReferencedFields)

Sets the intermediate model data for has-*-through relations

public getType ()

Returns the relation type

public getReferencedModel ()

Returns the referenced model

public string | array getFields ()

Returns the fields

public string | array getReferencedFields ()

Returns the referenced fields

public string | array getOptions ()

Returns the options

public getOption (mixed $name)

Returns an option by the specified name If the option doesn’t exist null is returned

public isForeignKey ()

Check whether the relation act as a foreign key

public string | array getForeignKey ()

Returns the foreign key configuration

public array getParams ()

Returns parameters that must be always used when the related records are obtained

public isThrough ()

Check whether the relation is a ‘many-to-many’ relation or not

public isReusable ()

Check if records returned by getting belongs-to/has-many are implicitly cached during the current request

public string | array getIntermediateFields ()

Gets the intermediate fields for has-*-through relations

public getIntermediateModel ()

Gets the intermediate model for has-*-through relations

public string | array getIntermediateReferencedFields ()

Gets the intermediate referenced fields for has-*-through relations

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Model\Resultset

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Model\Resultset

implements Phalcon\Mvc\Model\ResultsetInterface, Iterator [http://php.net/manual/en/class.iterator.php], Traversable [http://php.net/manual/en/class.traversable.php], SeekableIterator [http://php.net/manual/en/class.seekableiterator.php], Countable [http://php.net/manual/en/class.countable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Serializable [http://php.net/manual/en/class.serializable.php], JsonSerializable [http://php.net/manual/en/class.jsonserializable.php]

Source on GitHub

This component allows to Phalcon\Mvc\Model returns large resultsets with the minimum memory consumption Resultsets can be traversed using a standard foreach or a while statement. If a resultset is serialized it will dump all the rows into a big array. Then unserialize will retrieve the rows as they were before serializing.

<?php

 // Using a standard foreach
 $robots = Robots::find(["type='virtual'", 'order' => 'name']);
 foreach ($robots as robot) {
 echo robot->name, "\n";
 }

 // Using a while
 $robots = Robots::find(["type='virtual'", 'order' => 'name');
 $robots->rewind();
 while ($robots->valid()) {
 $robot = $robots->current();
 echo $robot->name, "\n";
 $robots->next();
 }

Constants

integer TYPE_RESULT_FULL

integer TYPE_RESULT_PARTIAL

integer HYDRATE_RECORDS

integer HYDRATE_OBJECTS

integer HYDRATE_ARRAYS

Methods

public __construct (Phalcon\Db\ResultInterface | false $result, [Phalcon\Cache\BackendInterface $cache])

Phalcon\Mvc\Model\Resultset constructor

public next ()

Moves cursor to next row in the resultset

public valid ()

Check whether internal resource has rows to fetch

public key ()

Gets pointer number of active row in the resultset

final public rewind ()

Rewinds resultset to its beginning

final public seek (mixed $position)

Changes internal pointer to a specific position in the resultset Set new position if required and set this->_row

final public count ()

Counts how many rows are in the resultset

public offsetExists (mixed $index)

Checks whether offset exists in the resultset

public offsetGet (mixed $index)

Gets row in a specific position of the resultset

public offsetSet (int $index, Phalcon\Mvc\ModelInterface $value)

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (mixed $offset)

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public getType ()

Returns the internal type of data retrieval that the resultset is using

public getFirst ()

Get first row in the resultset

public getLast ()

Get last row in the resultset

public setIsFresh (mixed $isFresh)

Set if the resultset is fresh or an old one cached

public isFresh ()

Tell if the resultset if fresh or an old one cached

public setHydrateMode (mixed $hydrateMode)

Sets the hydration mode in the resultset

public getHydrateMode ()

Returns the current hydration mode

public getCache ()

Returns the associated cache for the resultset

public getMessages ()

Returns the error messages produced by a batch operation

public boolean update (array $data, [Closure [http://php.net/manual/en/class.closure.php] $conditionCallback])

Updates every record in the resultset

public delete ([Closure [http://php.net/manual/en/class.closure.php] $conditionCallback])

Deletes every record in the resultset

public Phalcon\Mvc\Model[] filter (callback $filter)

Filters a resultset returning only those the developer requires

<?php

 $filtered = $robots->filter(function($robot){
 if ($robot->id < 3) {
 return $robot;
 }
});

public array jsonSerialize ()

Returns serialised model objects as array for json_encode. Calls jsonSerialize on each object if present

<?php

 $robots = Robots::find();
 echo json_encode($robots);

abstract public toArray () inherited from Phalcon\Mvc\Model\ResultsetInterface

...

abstract public current () inherited from Iterator [http://php.net/manual/en/class.iterator.php]

...

abstract public serialize () inherited from Serializable [http://php.net/manual/en/class.serializable.php]

...

abstract public unserialize (mixed $serialized) inherited from Serializable [http://php.net/manual/en/class.serializable.php]

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Resultset\Complex

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Resultset\Complex

extends abstract class Phalcon\Mvc\Model\Resultset

implements JsonSerializable [http://php.net/manual/en/class.jsonserializable.php], Serializable [http://php.net/manual/en/class.serializable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Countable [http://php.net/manual/en/class.countable.php], SeekableIterator [http://php.net/manual/en/class.seekableiterator.php], Traversable [http://php.net/manual/en/class.traversable.php], Iterator [http://php.net/manual/en/class.iterator.php], Phalcon\Mvc\Model\ResultsetInterface

Source on GitHub

Complex resultsets may include complete objects and scalar values. This class builds every complex row as it is required

Constants

integer TYPE_RESULT_FULL

integer TYPE_RESULT_PARTIAL

integer HYDRATE_RECORDS

integer HYDRATE_OBJECTS

integer HYDRATE_ARRAYS

Methods

public __construct (array $columnTypes, [Phalcon\Db\ResultInterface $result], [Phalcon\Cache\BackendInterface $cache])

Phalcon\Mvc\Model\Resultset\Complex constructor

final public current ()

Returns current row in the resultset

public toArray ()

Returns a complete resultset as an array, if the resultset has a big number of rows it could consume more memory than currently it does.

public serialize ()

Serializing a resultset will dump all related rows into a big array

public unserialize (mixed $data)

Unserializing a resultset will allow to only works on the rows present in the saved state

public next () inherited from Phalcon\Mvc\Model\Resultset

Moves cursor to next row in the resultset

public valid () inherited from Phalcon\Mvc\Model\Resultset

Check whether internal resource has rows to fetch

public key () inherited from Phalcon\Mvc\Model\Resultset

Gets pointer number of active row in the resultset

final public rewind () inherited from Phalcon\Mvc\Model\Resultset

Rewinds resultset to its beginning

final public seek (mixed $position) inherited from Phalcon\Mvc\Model\Resultset

Changes internal pointer to a specific position in the resultset Set new position if required and set this->_row

final public count () inherited from Phalcon\Mvc\Model\Resultset

Counts how many rows are in the resultset

public offsetExists (mixed $index) inherited from Phalcon\Mvc\Model\Resultset

Checks whether offset exists in the resultset

public offsetGet (mixed $index) inherited from Phalcon\Mvc\Model\Resultset

Gets row in a specific position of the resultset

public offsetSet (int $index, Phalcon\Mvc\ModelInterface $value) inherited from Phalcon\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (mixed $offset) inherited from Phalcon\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public getType () inherited from Phalcon\Mvc\Model\Resultset

Returns the internal type of data retrieval that the resultset is using

public getFirst () inherited from Phalcon\Mvc\Model\Resultset

Get first row in the resultset

public getLast () inherited from Phalcon\Mvc\Model\Resultset

Get last row in the resultset

public setIsFresh (mixed $isFresh) inherited from Phalcon\Mvc\Model\Resultset

Set if the resultset is fresh or an old one cached

public isFresh () inherited from Phalcon\Mvc\Model\Resultset

Tell if the resultset if fresh or an old one cached

public setHydrateMode (mixed $hydrateMode) inherited from Phalcon\Mvc\Model\Resultset

Sets the hydration mode in the resultset

public getHydrateMode () inherited from Phalcon\Mvc\Model\Resultset

Returns the current hydration mode

public getCache () inherited from Phalcon\Mvc\Model\Resultset

Returns the associated cache for the resultset

public getMessages () inherited from Phalcon\Mvc\Model\Resultset

Returns the error messages produced by a batch operation

public boolean update (array $data, [Closure [http://php.net/manual/en/class.closure.php] $conditionCallback]) inherited from Phalcon\Mvc\Model\Resultset

Updates every record in the resultset

public delete ([Closure [http://php.net/manual/en/class.closure.php] $conditionCallback]) inherited from Phalcon\Mvc\Model\Resultset

Deletes every record in the resultset

public Phalcon\Mvc\Model[] filter (callback $filter) inherited from Phalcon\Mvc\Model\Resultset

Filters a resultset returning only those the developer requires

<?php

 $filtered = $robots->filter(function($robot){
 if ($robot->id < 3) {
 return $robot;
 }
});

public array jsonSerialize () inherited from Phalcon\Mvc\Model\Resultset

Returns serialised model objects as array for json_encode. Calls jsonSerialize on each object if present

<?php

 $robots = Robots::find();
 echo json_encode($robots);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Resultset\Simple

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Resultset\Simple

extends abstract class Phalcon\Mvc\Model\Resultset

implements JsonSerializable [http://php.net/manual/en/class.jsonserializable.php], Serializable [http://php.net/manual/en/class.serializable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Countable [http://php.net/manual/en/class.countable.php], SeekableIterator [http://php.net/manual/en/class.seekableiterator.php], Traversable [http://php.net/manual/en/class.traversable.php], Iterator [http://php.net/manual/en/class.iterator.php], Phalcon\Mvc\Model\ResultsetInterface

Source on GitHub

Simple resultsets only contains a complete objects This class builds every complete object as it is required

Constants

integer TYPE_RESULT_FULL

integer TYPE_RESULT_PARTIAL

integer HYDRATE_RECORDS

integer HYDRATE_OBJECTS

integer HYDRATE_ARRAYS

Methods

public __construct (array $columnMap, Phalcon\Mvc\ModelInterface | Phalcon\Mvc\Model\Row $model, Phalcon\Db\Result\Pdo | null $result, [Phalcon\Cache\BackendInterface $cache], [boolean $keepSnapshots])

Phalcon\Mvc\Model\Resultset\Simple constructor

final public current ()

Returns current row in the resultset

public toArray ([mixed $renameColumns])

Returns a complete resultset as an array, if the resultset has a big number of rows it could consume more memory than currently it does. Export the resultset to an array couldn’t be faster with a large number of records

public serialize ()

Serializing a resultset will dump all related rows into a big array

public unserialize (mixed $data)

Unserializing a resultset will allow to only works on the rows present in the saved state

public next () inherited from Phalcon\Mvc\Model\Resultset

Moves cursor to next row in the resultset

public valid () inherited from Phalcon\Mvc\Model\Resultset

Check whether internal resource has rows to fetch

public key () inherited from Phalcon\Mvc\Model\Resultset

Gets pointer number of active row in the resultset

final public rewind () inherited from Phalcon\Mvc\Model\Resultset

Rewinds resultset to its beginning

final public seek (mixed $position) inherited from Phalcon\Mvc\Model\Resultset

Changes internal pointer to a specific position in the resultset Set new position if required and set this->_row

final public count () inherited from Phalcon\Mvc\Model\Resultset

Counts how many rows are in the resultset

public offsetExists (mixed $index) inherited from Phalcon\Mvc\Model\Resultset

Checks whether offset exists in the resultset

public offsetGet (mixed $index) inherited from Phalcon\Mvc\Model\Resultset

Gets row in a specific position of the resultset

public offsetSet (int $index, Phalcon\Mvc\ModelInterface $value) inherited from Phalcon\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (mixed $offset) inherited from Phalcon\Mvc\Model\Resultset

Resultsets cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public getType () inherited from Phalcon\Mvc\Model\Resultset

Returns the internal type of data retrieval that the resultset is using

public getFirst () inherited from Phalcon\Mvc\Model\Resultset

Get first row in the resultset

public getLast () inherited from Phalcon\Mvc\Model\Resultset

Get last row in the resultset

public setIsFresh (mixed $isFresh) inherited from Phalcon\Mvc\Model\Resultset

Set if the resultset is fresh or an old one cached

public isFresh () inherited from Phalcon\Mvc\Model\Resultset

Tell if the resultset if fresh or an old one cached

public setHydrateMode (mixed $hydrateMode) inherited from Phalcon\Mvc\Model\Resultset

Sets the hydration mode in the resultset

public getHydrateMode () inherited from Phalcon\Mvc\Model\Resultset

Returns the current hydration mode

public getCache () inherited from Phalcon\Mvc\Model\Resultset

Returns the associated cache for the resultset

public getMessages () inherited from Phalcon\Mvc\Model\Resultset

Returns the error messages produced by a batch operation

public boolean update (array $data, [Closure [http://php.net/manual/en/class.closure.php] $conditionCallback]) inherited from Phalcon\Mvc\Model\Resultset

Updates every record in the resultset

public delete ([Closure [http://php.net/manual/en/class.closure.php] $conditionCallback]) inherited from Phalcon\Mvc\Model\Resultset

Deletes every record in the resultset

public Phalcon\Mvc\Model[] filter (callback $filter) inherited from Phalcon\Mvc\Model\Resultset

Filters a resultset returning only those the developer requires

<?php

 $filtered = $robots->filter(function($robot){
 if ($robot->id < 3) {
 return $robot;
 }
});

public array jsonSerialize () inherited from Phalcon\Mvc\Model\Resultset

Returns serialised model objects as array for json_encode. Calls jsonSerialize on each object if present

<?php

 $robots = Robots::find();
 echo json_encode($robots);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Row

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Row

implements Phalcon\Mvc\EntityInterface, Phalcon\Mvc\Model\ResultInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], JsonSerializable [http://php.net/manual/en/class.jsonserializable.php]

Source on GitHub

This component allows Phalcon\Mvc\Model to return rows without an associated entity. This objects implements the ArrayAccess interface to allow access the object as object->x or array[x].

Methods

public setDirtyState (mixed $dirtyState)

Set the current object’s state

public boolean offsetExists (string | int $index)

Checks whether offset exists in the row

public string | Phalcon\Mvc\ModelInterface offsetGet (string | int $index)

Gets a record in a specific position of the row

public offsetSet (string | int $index, Phalcon\Mvc\ModelInterface $value)

Rows cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public offsetUnset (string | int $offset)

Rows cannot be changed. It has only been implemented to meet the definition of the ArrayAccess interface

public mixed readAttribute (string $attribute)

Reads an attribute value by its name

<?php

 echo $robot->readAttribute('name');

public writeAttribute (string $attribute, mixed $value)

Writes an attribute value by its name

<?php

 $robot->writeAttribute('name', 'Rosey');

public array toArray ()

Returns the instance as an array representation

public array jsonSerialize ()

Serializes the object for json_encode

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Transaction

implements Phalcon\Mvc\Model\TransactionInterface

Source on GitHub

Transactions are protective blocks where SQL statements are only permanent if they can all succeed as one atomic action. Phalcon\Transaction is intended to be used with Phalcon_Model_Base. Phalcon Transactions should be created using Phalcon\Transaction\Manager.

<?php

try {

 $manager = new \Phalcon\Mvc\Model\Transaction\Manager();

 $transaction = $manager->get();

 $robot = new Robots();
 $robot->setTransaction($transaction);
 $robot->name = 'WALL·E';
 $robot->created_at = date('Y-m-d');
 if ($robot->save() == false) {
 $transaction->rollback("Can't save robot");
 }

 $robotPart = new RobotParts();
 $robotPart->setTransaction($transaction);
 $robotPart->type = 'head';
 if ($robotPart->save() == false) {
 $transaction->rollback("Can't save robot part");
 }

 $transaction->commit();

} catch(Phalcon\Mvc\Model\Transaction\Failed $e) {
 echo 'Failed, reason: ', $e->getMessage();
}

Methods

public __construct (Phalcon\DiInterface $dependencyInjector, [boolean $autoBegin], [string $service])

Phalcon\Mvc\Model\Transaction constructor

public setTransactionManager (Phalcon\Mvc\Model\Transaction\ManagerInterface $manager)

Sets transaction manager related to the transaction

public begin ()

Starts the transaction

public commit ()

Commits the transaction

public boolean rollback ([string $rollbackMessage], [Phalcon\Mvc\ModelInterface $rollbackRecord])

Rollbacks the transaction

public getConnection ()

Returns the connection related to transaction

public setIsNewTransaction (mixed $isNew)

Sets if is a reused transaction or new once

public setRollbackOnAbort (mixed $rollbackOnAbort)

Sets flag to rollback on abort the HTTP connection

public isManaged ()

Checks whether transaction is managed by a transaction manager

public getMessages ()

Returns validations messages from last save try

public isValid ()

Checks whether internal connection is under an active transaction

public setRollbackedRecord (Phalcon\Mvc\ModelInterface $record)

Sets object which generates rollback action

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Transaction\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Transaction\Exception

extends class Phalcon\Mvc\Model\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Transaction\Failed

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Transaction\Failed

extends class Phalcon\Mvc\Model\Transaction\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

This class will be thrown to exit a try/catch block for isolated transactions

Methods

public __construct (mixed $message, [Phalcon\Mvc\ModelInterface $record])

Phalcon\Mvc\Model\Transaction\Failed constructor

public getRecordMessages ()

Returns validation record messages which stop the transaction

public getRecord ()

Returns validation record messages which stop the transaction

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Transaction\Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Transaction\Manager

implements Phalcon\Mvc\Model\Transaction\ManagerInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

A transaction acts on a single database connection. If you have multiple class-specific databases, the transaction will not protect interaction among them. This class manages the objects that compose a transaction. A transaction produces a unique connection that is passed to every object part of the transaction.

<?php

try {

 use Phalcon\Mvc\Model\Transaction\Manager as TransactionManager;

 $transactionManager = new TransactionManager();

 $transaction = $transactionManager->get();

 $robot = new Robots();
 $robot->setTransaction($transaction);
 $robot->name = 'WALL·E';
 $robot->created_at = date('Y-m-d');
 if($robot->save()==false){
 $transaction->rollback("Can't save robot");
 }

 $robotPart = new RobotParts();
 $robotPart->setTransaction($transaction);
 $robotPart->type = 'head';
 if($robotPart->save()==false){
 $transaction->rollback("Can't save robot part");
 }

 $transaction->commit();

} catch (Phalcon\Mvc\Model\Transaction\Failed $e) {
 echo 'Failed, reason: ', $e->getMessage();
}

Methods

public __construct ([Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\Model\Transaction\Manager constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injection container

public getDI ()

Returns the dependency injection container

public setDbService (mixed $service)

Sets the database service used to run the isolated transactions

public string getDbService ()

Returns the database service used to isolate the transaction

public setRollbackPendent (mixed $rollbackPendent)

Set if the transaction manager must register a shutdown function to clean up pendent transactions

public getRollbackPendent ()

Check if the transaction manager is registering a shutdown function to clean up pendent transactions

public has ()

Checks whether the manager has an active transaction

public get ([mixed $autoBegin])

Returns a new \Phalcon\Mvc\Model\Transaction or an already created once This method registers a shutdown function to rollback active connections

public getOrCreateTransaction ([mixed $autoBegin])

Create/Returns a new transaction or an existing one

public rollbackPendent ()

Rollbacks active transactions within the manager

public commit ()

Commits active transactions within the manager

public rollback ([boolean $collect])

Rollbacks active transactions within the manager Collect will remove the transaction from the manager

public notifyRollback (Phalcon\Mvc\Model\TransactionInterface $transaction)

Notifies the manager about a rollbacked transaction

public notifyCommit (Phalcon\Mvc\Model\TransactionInterface $transaction)

Notifies the manager about a committed transaction

protected _collectTransaction (Phalcon\Mvc\Model\TransactionInterface $transaction)

Removes transactions from the TransactionManager

public collectTransactions ()

Remove all the transactions from the manager

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\ValidationFailed

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\ValidationFailed

extends class Phalcon\Mvc\Model\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

This exception is generated when a model fails to save a record Phalcon\Mvc\Model must be set up to have this behavior

Methods

public __construct (Model $model, Message[] $validationMessages)

Phalcon\Mvc\Model\ValidationFailed constructor

public getModel ()

Returns the model that generated the messages

public getMessages ()

Returns the complete group of messages produced in the validation

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\Model\Validator

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\Model\Validator

Source on GitHub

This is a base class for Phalcon\Mvc\Model validators

Methods

public __construct (array $options)

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type])

Appends a message to the validator

public getMessages ()

Returns messages generated by the validator

public array getOptions ()

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue])

Returns an option

public isSetOption (mixed $option)

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Email

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Email

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Allows to validate if email fields has correct values

<?php

use Phalcon\Mvc\Model\Validator\Email as EmailValidator;

class Subscriptors extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new EmailValidator(array(
 'field' => 'electronic_mail'
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }
}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Exclusionin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Exclusionin

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Phalcon\Mvc\Model\Validator\ExclusionIn Check if a value is not included into a list of values

<?php

use Phalcon\Mvc\Model\Validator\ExclusionIn as ExclusionInValidator;

class Subscriptors extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new ExclusionInValidator(array(
 'field' => 'status',
 'domain' => array('A', 'I')
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Inclusionin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Inclusionin

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Phalcon\Mvc\Model\Validator\InclusionIn Check if a value is included into a list of values

<?php

use Phalcon\Mvc\Model\Validator\InclusionIn as InclusionInValidator;

class Subscriptors extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new InclusionInValidator(array(
 "field" => 'status',
 'domain' => array('A', 'I')
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Ip

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Ip

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Phalcon\Mvc\Model\Validator\IP Validates that a value is ipv4 address in valid range

<?php

use Phalcon\Mvc\Model\Validator\Ip;

class Data extends Phalcon\Mvc\Model
{

 public function validation()
 {
 // Any pubic IP
 $this->validate(new IP(array(
 'field' => 'server_ip',
 'version' => IP::VERSION_4 | IP::VERSION_6, // v6 and v4. The same if not specified
 'allowReserved' => false, // False if not specified. Ignored for v6
 'allowPrivate' => false, // False if not specified
 'message' => 'IP address has to be correct'
)));

 // Any public v4 address
 $this->validate(new IP(array(
 'field' => 'ip_4',
 'version' => IP::VERSION_4,
 'message' => 'IP address has to be correct'
)));

 // Any v6 address
 $this->validate(new IP(array(
 'field' => 'ip6',
 'version' => IP::VERSION_6,
 'allowPrivate' => true,
 'message' => 'IP address has to be correct'
)));

 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Constants

integer VERSION_4

integer VERSION_6

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Numericality

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Numericality

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Allows to validate if a field has a valid numeric format

<?php

use Phalcon\Mvc\Model\Validator\Numericality as NumericalityValidator;

class Products extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new NumericalityValidator(array(
 "field" => 'price'
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\PresenceOf

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\PresenceOf

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Allows to validate if a filed have a value different of null and empty string (“”)

<?php

use Phalcon\Mvc\Model\Validator\PresenceOf;

class Subscriptors extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new PresenceOf(array(
 "field" => 'name',
 "message" => 'The name is required'
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Regex

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Regex

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Allows validate if the value of a field matches a regular expression

<?php

use Phalcon\Mvc\Model\Validator\Regex as RegexValidator;

class Subscriptors extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new RegexValidator(array(
 "field" => 'created_at',
 'pattern' => '/^[0-9]{4}[-\/](0[1-9]|1[12])[-\/](0[1-9]|[12][0-9]|3[01])/'
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\StringLength

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\StringLength

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Simply validates specified string length constraints

<?php

use Phalcon\Mvc\Model\Validator\StringLength as StringLengthValidator;

class Subscriptors extends \Phalcon\Mvc\Model
{

public function validation()
{
 $this->validate(new StringLengthValidator(array(
 "field" => 'name_last',
 'max' => 50,
 'min' => 2,
 'messageMaximum' => 'We don\'t like really long names',
 'messageMinimum' => 'We want more than just their initials'
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
}

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Uniqueness

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Uniqueness

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Validates that a field or a combination of a set of fields are not present more than once in the existing records of the related table

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Validator\Uniqueness;

class Subscriptors extends Model
{

 public function validation()
 {
 $this->validate(new Uniqueness(array(
 "field" => "email",
 "message" => "Value of field 'email' is already present in another record"
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }
}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Model\Validator\Url

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Model\Validator\Url

extends abstract class Phalcon\Mvc\Model\Validator

implements Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Allows to validate if a field has a url format

<?php

use Phalcon\Mvc\Model\Validator\Url as UrlValidator;

class Posts extends \Phalcon\Mvc\Model
{

 public function validation()
 {
 $this->validate(new UrlValidator(array(
 'field' => 'source_url'
)));
 if ($this->validationHasFailed() == true) {
 return false;
 }
 }

}

Methods

public validate (Phalcon\Mvc\EntityInterface $record)

Executes the validator

public __construct (array $options) inherited from Phalcon\Mvc\Model\Validator

Phalcon\Mvc\Model\Validator constructor

protected appendMessage (string $message, [string | array $field], [string $type]) inherited from Phalcon\Mvc\Model\Validator

Appends a message to the validator

public getMessages () inherited from Phalcon\Mvc\Model\Validator

Returns messages generated by the validator

public array getOptions () inherited from Phalcon\Mvc\Model\Validator

Returns all the options from the validator

public getOption (mixed $option, [mixed $defaultValue]) inherited from Phalcon\Mvc\Model\Validator

Returns an option

public isSetOption (mixed $option) inherited from Phalcon\Mvc\Model\Validator

Check whether an option has been defined in the validator options

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Router

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Router

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Mvc\RouterInterface, Phalcon\Events\EventsAwareInterface

Source on GitHub

Phalcon\Mvc\Router is the standard framework router. Routing is the process of taking a URI endpoint (that part of the URI which comes after the base URL) and decomposing it into parameters to determine which module, controller, and action of that controller should receive the request

<?php

 use Phalcon\Mvc\Router;

 $router = new Router();

 $router->add(
 '/documentation/{chapter}/{name}\.{type:[a-z]+}',
 [
 'controller' => 'documentation',
 'action' => 'show'
)
);

 $router->handle();

 echo $router->getControllerName();

Constants

integer URI_SOURCE_GET_URL

integer URI_SOURCE_SERVER_REQUEST_URI

integer POSITION_FIRST

integer POSITION_LAST

Methods

public __construct ([mixed $defaultRoutes])

Phalcon\Mvc\Router constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

Sets the events manager

public getEventsManager ()

Returns the internal event manager

public getRewriteUri ()

Get rewrite info. This info is read from $_GET[‘_url’]. This returns ‘/’ if the rewrite information cannot be read

public setUriSource (mixed $uriSource)

Sets the URI source. One of the URI_SOURCE_* constants

<?php

$router->setUriSource(Router::URI_SOURCE_SERVER_REQUEST_URI);

public removeExtraSlashes (mixed $remove)

Set whether router must remove the extra slashes in the handled routes

public setDefaultNamespace (mixed $namespaceName)

Sets the name of the default namespace

public setDefaultModule (mixed $moduleName)

Sets the name of the default module

public setDefaultController (mixed $controllerName)

Sets the default controller name

public setDefaultAction (mixed $actionName)

Sets the default action name

public setDefaults (array $defaults)

Sets an array of default paths. If a route is missing a path the router will use the defined here This method must not be used to set a 404 route

<?php

 $router->setDefaults([
 'module' => 'common',
 'action' => 'index'
]);

public getDefaults ()

Returns an array of default parameters

public handle ([mixed $uri])

Handles routing information received from the rewrite engine

<?php

 // Read the info from the rewrite engine
 $router->handle();

 // Manually passing an URL
 $router->handle('/posts/edit/1');

public add (mixed $pattern, [mixed $paths], [mixed $httpMethods], [mixed $position])

Adds a route to the router without any HTTP constraint

<?php

 use Phalcon\Mvc\Router;

 $router->add('/about', 'About::index');
 $router->add('/about', 'About::index', ['GET', 'POST']);
 $router->add('/about', 'About::index', ['GET', 'POST'], Router::POSITION_FIRST);

public addGet (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is GET

public addPost (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is POST

public addPut (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is PUT

public addPatch (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is PATCH

public addDelete (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is DELETE

public addOptions (mixed $pattern, [mixed $paths], [mixed $position])

Add a route to the router that only match if the HTTP method is OPTIONS

public addHead (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is HEAD

public addPurge (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is PURGE (Squid and Varnish support)

public addTrace (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is TRACE

public addConnect (mixed $pattern, [mixed $paths], [mixed $position])

Adds a route to the router that only match if the HTTP method is CONNECT

public mount (Phalcon\Mvc\Router\GroupInterface $group)

Mounts a group of routes in the router

public notFound (mixed $paths)

Set a group of paths to be returned when none of the defined routes are matched

public clear ()

Removes all the pre-defined routes

public getNamespaceName ()

Returns the processed namespace name

public getModuleName ()

Returns the processed module name

public getControllerName ()

Returns the processed controller name

public getActionName ()

Returns the processed action name

public getParams ()

Returns the processed parameters

public getMatchedRoute ()

Returns the route that matches the handled URI

public getMatches ()

Returns the sub expressions in the regular expression matched

public wasMatched ()

Checks if the router matches any of the defined routes

public getRoutes ()

Returns all the routes defined in the router

public getRouteById (mixed $id)

Returns a route object by its id

public getRouteByName (mixed $name)

Returns a route object by its name

public isExactControllerName ()

Returns whether controller name should not be mangled

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Router\Annotations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Router\Annotations

extends class Phalcon\Mvc\Router

implements Phalcon\Events\EventsAwareInterface, Phalcon\Mvc\RouterInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

A router that reads routes annotations from classes/resources

<?php

 $di['router'] = function() {

 //Use the annotations router
 $router = new Annotations(false);

 //This will do the same as above but only if the handled uri starts with /robots
 $router->addResource('Robots', '/robots');

 return $router;
};

Constants

integer URI_SOURCE_GET_URL

integer URI_SOURCE_SERVER_REQUEST_URI

integer POSITION_FIRST

integer POSITION_LAST

Methods

public addResource (mixed $handler, [mixed $prefix])

Adds a resource to the annotations handler A resource is a class that contains routing annotations

public addModuleResource (mixed $module, mixed $handler, [mixed $prefix])

Adds a resource to the annotations handler A resource is a class that contains routing annotations The class is located in a module

public handle ([mixed $uri])

Produce the routing parameters from the rewrite information

public processControllerAnnotation (mixed $handler, Phalcon\Annotations\Annotation $annotation)

Checks for annotations in the controller docblock

public processActionAnnotation (mixed $module, mixed $namespaceName, mixed $controller, mixed $action, Phalcon\Annotations\Annotation $annotation)

Checks for annotations in the public methods of the controller

public setControllerSuffix (mixed $controllerSuffix)

Changes the controller class suffix

public setActionSuffix (mixed $actionSuffix)

Changes the action method suffix

public getResources ()

Return the registered resources

public __construct ([mixed $defaultRoutes]) inherited from Phalcon\Mvc\Router

Phalcon\Mvc\Router constructor

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Mvc\Router

Sets the dependency injector

public getDI () inherited from Phalcon\Mvc\Router

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Mvc\Router

Sets the events manager

public getEventsManager () inherited from Phalcon\Mvc\Router

Returns the internal event manager

public getRewriteUri () inherited from Phalcon\Mvc\Router

Get rewrite info. This info is read from $_GET[‘_url’]. This returns ‘/’ if the rewrite information cannot be read

public setUriSource (mixed $uriSource) inherited from Phalcon\Mvc\Router

Sets the URI source. One of the URI_SOURCE_* constants

<?php

$router->setUriSource(Router::URI_SOURCE_SERVER_REQUEST_URI);

public removeExtraSlashes (mixed $remove) inherited from Phalcon\Mvc\Router

Set whether router must remove the extra slashes in the handled routes

public setDefaultNamespace (mixed $namespaceName) inherited from Phalcon\Mvc\Router

Sets the name of the default namespace

public setDefaultModule (mixed $moduleName) inherited from Phalcon\Mvc\Router

Sets the name of the default module

public setDefaultController (mixed $controllerName) inherited from Phalcon\Mvc\Router

Sets the default controller name

public setDefaultAction (mixed $actionName) inherited from Phalcon\Mvc\Router

Sets the default action name

public setDefaults (array $defaults) inherited from Phalcon\Mvc\Router

Sets an array of default paths. If a route is missing a path the router will use the defined here This method must not be used to set a 404 route

<?php

 $router->setDefaults([
 'module' => 'common',
 'action' => 'index'
]);

public getDefaults () inherited from Phalcon\Mvc\Router

Returns an array of default parameters

public add (mixed $pattern, [mixed $paths], [mixed $httpMethods], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router without any HTTP constraint

<?php

 use Phalcon\Mvc\Router;

 $router->add('/about', 'About::index');
 $router->add('/about', 'About::index', ['GET', 'POST']);
 $router->add('/about', 'About::index', ['GET', 'POST'], Router::POSITION_FIRST);

public addGet (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is GET

public addPost (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is POST

public addPut (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is PUT

public addPatch (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is PATCH

public addDelete (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is DELETE

public addOptions (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Add a route to the router that only match if the HTTP method is OPTIONS

public addHead (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is HEAD

public addPurge (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is PURGE (Squid and Varnish support)

public addTrace (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is TRACE

public addConnect (mixed $pattern, [mixed $paths], [mixed $position]) inherited from Phalcon\Mvc\Router

Adds a route to the router that only match if the HTTP method is CONNECT

public mount (Phalcon\Mvc\Router\GroupInterface $group) inherited from Phalcon\Mvc\Router

Mounts a group of routes in the router

public notFound (mixed $paths) inherited from Phalcon\Mvc\Router

Set a group of paths to be returned when none of the defined routes are matched

public clear () inherited from Phalcon\Mvc\Router

Removes all the pre-defined routes

public getNamespaceName () inherited from Phalcon\Mvc\Router

Returns the processed namespace name

public getModuleName () inherited from Phalcon\Mvc\Router

Returns the processed module name

public getControllerName () inherited from Phalcon\Mvc\Router

Returns the processed controller name

public getActionName () inherited from Phalcon\Mvc\Router

Returns the processed action name

public getParams () inherited from Phalcon\Mvc\Router

Returns the processed parameters

public getMatchedRoute () inherited from Phalcon\Mvc\Router

Returns the route that matches the handled URI

public getMatches () inherited from Phalcon\Mvc\Router

Returns the sub expressions in the regular expression matched

public wasMatched () inherited from Phalcon\Mvc\Router

Checks if the router matches any of the defined routes

public getRoutes () inherited from Phalcon\Mvc\Router

Returns all the routes defined in the router

public getRouteById (mixed $id) inherited from Phalcon\Mvc\Router

Returns a route object by its id

public getRouteByName (mixed $name) inherited from Phalcon\Mvc\Router

Returns a route object by its name

public isExactControllerName () inherited from Phalcon\Mvc\Router

Returns whether controller name should not be mangled

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Router\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Router\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Router\Group

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Router\Group

implements Phalcon\Mvc\Router\GroupInterface

Source on GitHub

Helper class to create a group of routes with common attributes

<?php

 $router = new \Phalcon\Mvc\Router();

 //Create a group with a common module and controller
 $blog = new Group(array(
 'module' => 'blog',
 'controller' => 'index'
));

 //All the routes start with /blog
 $blog->setPrefix('/blog');

 //Add a route to the group
 $blog->add('/save', array(
 'action' => 'save'
));

 //Add another route to the group
 $blog->add('/edit/{id}', array(
 'action' => 'edit'
));

 //This route maps to a controller different than the default
 $blog->add('/blog', array(
 'controller' => 'about',
 'action' => 'index'
));

 //Add the group to the router
 $router->mount($blog);

Methods

public __construct ([mixed $paths])

Phalcon\Mvc\Router\Group constructor

public setHostname (mixed $hostname)

Set a hostname restriction for all the routes in the group

public getHostname ()

Returns the hostname restriction

public setPrefix (mixed $prefix)

Set a common uri prefix for all the routes in this group

public getPrefix ()

Returns the common prefix for all the routes

public beforeMatch (mixed $beforeMatch)

Sets a callback that is called if the route is matched. The developer can implement any arbitrary conditions here If the callback returns false the route is treated as not matched

public getBeforeMatch ()

Returns the ‘before match’ callback if any

public setPaths (mixed $paths)

Set common paths for all the routes in the group

public getPaths ()

Returns the common paths defined for this group

public getRoutes ()

Returns the routes added to the group

public add (mixed $pattern, [mixed $paths], [mixed $httpMethods])

Adds a route to the router on any HTTP method

<?php

 router->add('/about', 'About::index');

public Phalcon\Mvc\Router\Route addGet (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is GET

public Phalcon\Mvc\Router\Route addPost (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is POST

public Phalcon\Mvc\Router\Route addPut (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PUT

public Phalcon\Mvc\Router\Route addPatch (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is PATCH

public Phalcon\Mvc\Router\Route addDelete (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is DELETE

public Phalcon\Mvc\Router\Route addOptions (string $pattern, [string/array $paths])

Add a route to the router that only match if the HTTP method is OPTIONS

public Phalcon\Mvc\Router\Route addHead (string $pattern, [string/array $paths])

Adds a route to the router that only match if the HTTP method is HEAD

public clear ()

Removes all the pre-defined routes

protected _addRoute (mixed $pattern, [mixed $paths], [mixed $httpMethods])

Adds a route applying the common attributes

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Router\Route

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Router\Route

implements Phalcon\Mvc\Router\RouteInterface

Source on GitHub

This class represents every route added to the router

Methods

public __construct (mixed $pattern, [mixed $paths], [mixed $httpMethods])

Phalcon\Mvc\Router\Route constructor

public compilePattern (mixed $pattern)

Replaces placeholders from pattern returning a valid PCRE regular expression

public via (mixed $httpMethods)

Set one or more HTTP methods that constraint the matching of the route

<?php

 $route->via('GET');
 $route->via(array('GET', 'POST'));

public extractNamedParams (mixed $pattern)

Extracts parameters from a string

public reConfigure (mixed $pattern, [mixed $paths])

Reconfigure the route adding a new pattern and a set of paths

public static getRoutePaths ([mixed $paths])

Returns routePaths

public getName ()

Returns the route’s name

public setName (mixed $name)

Sets the route’s name

<?php

 $router->add('/about', array(
 'controller' => 'about'
))->setName('about');

public beforeMatch (mixed $callback)

Sets a callback that is called if the route is matched. The developer can implement any arbitrary conditions here If the callback returns false the route is treated as not matched

<?php

 $router->add('/login', array(
 'module' => 'admin',
 'controller' => 'session'
))->beforeMatch(function ($uri, $route) {
 // Check if the request was made with Ajax
 if ($_SERVER['HTTP_X_REQUESTED_WITH'] == 'xmlhttprequest') {
 return false;
 }
 return true;
 });

public getBeforeMatch ()

Returns the ‘before match’ callback if any

public match (mixed $callback)

Allows to set a callback to handle the request directly in the route

<?php

$router->add("/help", array())->match(function () {
 return $this->getResponse()->redirect('https://support.google.com/', true);
});

public getMatch ()

Returns the ‘match’ callback if any

public getRouteId ()

Returns the route’s id

public getPattern ()

Returns the route’s pattern

public getCompiledPattern ()

Returns the route’s compiled pattern

public getPaths ()

Returns the paths

public getReversedPaths ()

Returns the paths using positions as keys and names as values

public setHttpMethods (mixed $httpMethods)

Sets a set of HTTP methods that constraint the matching of the route (alias of via)

<?php

 $route->setHttpMethods('GET');
 $route->setHttpMethods(array('GET', 'POST'));

public getHttpMethods ()

Returns the HTTP methods that constraint matching the route

public setHostname (mixed $hostname)

Sets a hostname restriction to the route

<?php

 $route->setHostname('localhost');

public getHostname ()

Returns the hostname restriction if any

public setGroup (Phalcon\Mvc\Router\GroupInterface $group)

Sets the group associated with the route

public getGroup ()

Returns the group associated with the route

public convert (mixed $name, mixed $converter)

Adds a converter to perform an additional transformation for certain parameter

public getConverters ()

Returns the router converter

public static reset ()

Resets the internal route id generator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Url

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Url

implements Phalcon\Mvc\UrlInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

This components helps in the generation of: URIs, URLs and Paths

<?php

 //Generate a URL appending the URI to the base URI
 echo $url->get('products/edit/1');

 //Generate a URL for a predefined route
 echo $url->get(array('for' => 'blog-post', 'title' => 'some-cool-stuff', 'year' => '2012'));

Methods

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public setBaseUri (mixed $baseUri)

Sets a prefix for all the URIs to be generated

<?php

$url->setBaseUri('/invo/');
$url->setBaseUri('/invo/index.php/');

public setStaticBaseUri (mixed $staticBaseUri)

Sets a prefix for all static URLs generated

<?php

$url->setStaticBaseUri('/invo/');

public getBaseUri ()

Returns the prefix for all the generated urls. By default /

public getStaticBaseUri ()

Returns the prefix for all the generated static urls. By default /

public setBasePath (mixed $basePath)

Sets a base path for all the generated paths

<?php

$url->setBasePath('/var/www/htdocs/');

public getBasePath ()

Returns the base path

public get ([mixed $uri], [mixed $args], [mixed $local], [mixed $baseUri])

Generates a URL

<?php

 //Generate a URL appending the URI to the base URI
 echo $url->get('products/edit/1');

 //Generate a URL for a predefined route
 echo $url->get(array('for' => 'blog-post', 'title' => 'some-cool-stuff', 'year' => '2015'));

 // Generate a URL with GET arguments (/show/products?id=1&name=Carrots)
 echo $url->get('show/products', array('id' => 1, 'name' => 'Carrots'));

 // Generate an absolute URL by setting the third parameter as false.
 echo $url->get('https://phalconphp.com/', null, false);

public getStatic ([mixed $uri])

Generates a URL for a static resource

<?php

 // Generate a URL for a static resource
 echo $url->getStatic("img/logo.png");

 // Generate a URL for a static predefined route
 echo $url->getStatic(array('for' => 'logo-cdn'));

public path ([mixed $path])

Generates a local path

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\Url\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\Url\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\User\Component

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\User\Component

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\User\Module

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\User\Module

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\User\Plugin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\User\Plugin

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

Methods

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\Mvc\ViewInterface, Phalcon\Mvc\ViewBaseInterface

Source on GitHub

Phalcon\Mvc\View is a class for working with the “view” portion of the model-view-controller pattern. That is, it exists to help keep the view script separate from the model and controller scripts. It provides a system of helpers, output filters, and variable escaping.

<?php

 use Phalcon\Mvc\View;

 $view = new View();

 // Setting views directory
 $view->setViewsDir('app/views/');

 $view->start();

 // Shows recent posts view (app/views/posts/recent.phtml)
 $view->render('posts', 'recent');
 $view->finish();

 // Printing views output
 echo $view->getContent();

Constants

integer LEVEL_MAIN_LAYOUT

integer LEVEL_AFTER_TEMPLATE

integer LEVEL_LAYOUT

integer LEVEL_BEFORE_TEMPLATE

integer LEVEL_ACTION_VIEW

integer LEVEL_NO_RENDER

integer CACHE_MODE_NONE

integer CACHE_MODE_INVERSE

Methods

public getRenderLevel ()

...

public getCurrentRenderLevel ()

...

public getRegisteredEngines ()

public __construct ([array $options])

Phalcon\Mvc\View constructor

final protected _isAbsolutePath (mixed $path)

Checks if a path is absolute or not

public setViewsDir (mixed $viewsDir)

Sets the views directory. Depending of your platform, always add a trailing slash or backslash

public getViewsDir ()

Gets views directory

public setLayoutsDir (mixed $layoutsDir)

Sets the layouts sub-directory. Must be a directory under the views directory. Depending of your platform, always add a trailing slash or backslash

<?php

 $view->setLayoutsDir('../common/layouts/');

public getLayoutsDir ()

Gets the current layouts sub-directory

public setPartialsDir (mixed $partialsDir)

Sets a partials sub-directory. Must be a directory under the views directory. Depending of your platform, always add a trailing slash or backslash

<?php

 $view->setPartialsDir('../common/partials/');

public getPartialsDir ()

Gets the current partials sub-directory

public setBasePath (mixed $basePath)

Sets base path. Depending of your platform, always add a trailing slash or backslash

<?php

 $view->setBasePath(__DIR__ . '/');

public getBasePath ()

Gets base path

public setRenderLevel (mixed $level)

Sets the render level for the view

<?php

 //Render the view related to the controller only
 $this->view->setRenderLevel(View::LEVEL_LAYOUT);

public disableLevel (mixed $level)

Disables a specific level of rendering

<?php

 // Render all levels except ACTION level
 $this->view->disableLevel(View::LEVEL_ACTION_VIEW);

public setMainView (mixed $viewPath)

Sets default view name. Must be a file without extension in the views directory

<?php

 //Renders as main view views-dir/base.phtml
 $this->view->setMainView('base');

public getMainView ()

Returns the name of the main view

public setLayout (mixed $layout)

Change the layout to be used instead of using the name of the latest controller name

<?php

 $this->view->setLayout('main');

public getLayout ()

Returns the name of the main view

public setTemplateBefore (mixed $templateBefore)

Sets a template before the controller layout

public cleanTemplateBefore ()

Resets any “template before” layouts

public setTemplateAfter (mixed $templateAfter)

Sets a “template after” controller layout

public cleanTemplateAfter ()

Resets any template before layouts

public setParamToView (mixed $key, mixed $value)

Adds parameters to views (alias of setVar)

<?php

$this->view->setParamToView('products', $products);

public setVars (array $params, [mixed $merge])

Set all the render params

<?php

$this->view->setVars(['products' => $products]);

public setVar (mixed $key, mixed $value)

Set a single view parameter

<?php

$this->view->setVar('products', $products);

public getVar (mixed $key)

Returns a parameter previously set in the view

public getParamsToView ()

Returns parameters to views

public getControllerName ()

Gets the name of the controller rendered

public getActionName ()

Gets the name of the action rendered

public getParams ()

Gets extra parameters of the action rendered

public start ()

Starts rendering process enabling the output buffering

protected _loadTemplateEngines ()

Loads registered template engines, if none is registered it will use Phalcon\Mvc\View\Engine\Php

protected _engineRender (array $engines, string $viewPath, boolean $silence, boolean $mustClean, [Phalcon\Cache\BackendInterface $cache])

Checks whether view exists on registered extensions and render it

public registerEngines (array $engines)

Register templating engines

<?php

 $this->view->registerEngines([
 '.phtml' => 'Phalcon\Mvc\View\Engine\Php',
 '.volt' => 'Phalcon\Mvc\View\Engine\Volt',
 '.mhtml' => 'MyCustomEngine'
]);

public exists (mixed $view)

Checks whether view exists

public render (string $controllerName, string $actionName, [array $params])

Executes render process from dispatching data

<?php

 // Shows recent posts view (app/views/posts/recent.phtml)
 $view->start()->render('posts', 'recent')->finish();

public pick (mixed $renderView)

Choose a different view to render instead of last-controller/last-action

<?php

 use Phalcon\Mvc\Controller;

 class ProductsController extends Controller
 {

 public function saveAction()
 {

 // Do some save stuff...

 // Then show the list view
 $this->view->pick("products/list");
 }
 }

public getPartial (mixed $partialPath, [mixed $params])

Renders a partial view

<?php

 // Retrieve the contents of a partial
 echo $this->getPartial('shared/footer');

<?php

 // Retrieve the contents of a partial with arguments
 echo $this->getPartial('shared/footer', ['content' => $html]);

public partial (mixed $partialPath, [mixed $params])

Renders a partial view

<?php

 // Show a partial inside another view
 $this->partial('shared/footer');

<?php

 // Show a partial inside another view with parameters
 $this->partial('shared/footer', ['content' => $html]);

public string getRender (string $controllerName, string $actionName, [array $params], [mixed $configCallback])

Perform the automatic rendering returning the output as a string

<?php

 $template = $this->view->getRender('products', 'show', ['products' => $products]);

public finish ()

Finishes the render process by stopping the output buffering

protected _createCache ()

Create a Phalcon\Cache based on the internal cache options

public isCaching ()

Check if the component is currently caching the output content

public getCache ()

Returns the cache instance used to cache

public cache ([mixed $options])

Cache the actual view render to certain level

<?php

 $this->view->cache(['key' => 'my-key', 'lifetime' => 86400]);

public setContent (mixed $content)

Externally sets the view content

<?php

$this->view->setContent("<h1>hello</h1>");

public getContent ()

Returns cached output from another view stage

public getActiveRenderPath ()

Returns the path (or paths) of the views that are currently rendered

public disable ()

Disables the auto-rendering process

public enable ()

Enables the auto-rendering process

public reset ()

Resets the view component to its factory default values

public __set (mixed $key, mixed $value)

Magic method to pass variables to the views

<?php

$this->view->products = $products;

public __get (mixed $key)

Magic method to retrieve a variable passed to the view

<?php

echo $this->view->products;

public isDisabled ()

Whether automatic rendering is enabled

public __isset (mixed $key)

Magic method to retrieve if a variable is set in the view

<?php

 echo isset($this->view->products);

protected getViewsDirs ()

Gets views directories

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Mvc\View\Engine

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Mvc\View\Engine

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface

Source on GitHub

All the template engine adapters must inherit this class. This provides basic interfacing between the engine and the Phalcon\Mvc\View component.

Methods

public __construct (Phalcon\Mvc\ViewBaseInterface $view, [Phalcon\DiInterface $dependencyInjector])

Phalcon\Mvc\View\Engine constructor

public getContent ()

Returns cached output on another view stage

public string partial (string $partialPath, [array $params])

Renders a partial inside another view

public getView ()

Returns the view component related to the adapter

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View\Engine\Php

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View\Engine\Php

extends abstract class Phalcon\Mvc\View\Engine

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface, Phalcon\Mvc\View\EngineInterface

Source on GitHub

Adapter to use PHP itself as templating engine

Methods

public render (mixed $path, mixed $params, [mixed $mustClean])

Renders a view using the template engine

public __construct (Phalcon\Mvc\ViewBaseInterface $view, [Phalcon\DiInterface $dependencyInjector]) inherited from Phalcon\Mvc\View\Engine

Phalcon\Mvc\View\Engine constructor

public getContent () inherited from Phalcon\Mvc\View\Engine

Returns cached output on another view stage

public string partial (string $partialPath, [array $params]) inherited from Phalcon\Mvc\View\Engine

Renders a partial inside another view

public getView () inherited from Phalcon\Mvc\View\Engine

Returns the view component related to the adapter

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View\Engine\Volt

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View\Engine\Volt

extends abstract class Phalcon\Mvc\View\Engine

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Events\EventsAwareInterface, Phalcon\Mvc\View\EngineInterface

Source on GitHub

Designer friendly and fast template engine for PHP written in Zephir/C

Methods

public setOptions (array $options)

Set Volt’s options

public getOptions ()

Return Volt’s options

public getCompiler ()

Returns the Volt’s compiler

public render (mixed $templatePath, mixed $params, [mixed $mustClean])

Renders a view using the template engine

public length (mixed $item)

Length filter. If an array/object is passed a count is performed otherwise a strlen/mb_strlen

public isIncluded (mixed $needle, mixed $haystack)

Checks if the needle is included in the haystack

public convertEncoding (mixed $text, mixed $from, mixed $to)

Performs a string conversion

public slice (mixed $value, [mixed $start], [mixed $end])

Extracts a slice from a string/array/traversable object value

public sort (array $value)

Sorts an array

public callMacro (mixed $name, [array $arguments])

Checks if a macro is defined and calls it

public __construct (Phalcon\Mvc\ViewBaseInterface $view, [Phalcon\DiInterface $dependencyInjector]) inherited from Phalcon\Mvc\View\Engine

Phalcon\Mvc\View\Engine constructor

public getContent () inherited from Phalcon\Mvc\View\Engine

Returns cached output on another view stage

public string partial (string $partialPath, [array $params]) inherited from Phalcon\Mvc\View\Engine

Renders a partial inside another view

public getView () inherited from Phalcon\Mvc\View\Engine

Returns the view component related to the adapter

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View\Engine\Volt\Compiler

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View\Engine\Volt\Compiler

implements Phalcon\Di\InjectionAwareInterface

Source on GitHub

This class reads and compiles Volt templates into PHP plain code

<?php

$compiler = new \Phalcon\Mvc\View\Engine\Volt\Compiler();

$compiler->compile('views/partials/header.volt');

require $compiler->getCompiledTemplatePath();

Methods

public __construct ([Phalcon\Mvc\ViewBaseInterface $view])

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setOptions (array $options)

Sets the compiler options

public setOption (string $option, mixed $value)

Sets a single compiler option

public string getOption (string $option)

Returns a compiler’s option

public getOptions ()

Returns the compiler options

final public mixed fireExtensionEvent (string $name, [array $arguments])

Fires an event to registered extensions

public addExtension (mixed $extension)

Registers a Volt’s extension

public getExtensions ()

Returns the list of extensions registered in Volt

public addFunction (mixed $name, mixed $definition)

Register a new function in the compiler

public getFunctions ()

Register the user registered functions

public addFilter (mixed $name, mixed $definition)

Register a new filter in the compiler

public getFilters ()

Register the user registered filters

public setUniquePrefix (mixed $prefix)

Set a unique prefix to be used as prefix for compiled variables

public getUniquePrefix ()

Return a unique prefix to be used as prefix for compiled variables and contexts

public attributeReader (array $expr)

Resolves attribute reading

public functionCall (array $expr)

Resolves function intermediate code into PHP function calls

public resolveTest (array $test, mixed $left)

Resolves filter intermediate code into a valid PHP expression

final protected resolveFilter (array $filter, mixed $left)

Resolves filter intermediate code into PHP function calls

final public expression (array $expr)

Resolves an expression node in an AST volt tree

final protected string | array _statementListOrExtends (array $statements)

Compiles a block of statements

public compileForeach (array $statement, [mixed $extendsMode])

Compiles a “foreach” intermediate code representation into plain PHP code

public compileForElse ()

Generates a ‘forelse’ PHP code

public compileIf (array $statement, [mixed $extendsMode])

Compiles a ‘if’ statement returning PHP code

public compileElseIf (array $statement)

Compiles a “elseif” statement returning PHP code

public compileCache (array $statement, [mixed $extendsMode])

Compiles a “cache” statement returning PHP code

public compileSet (array $statement)

Compiles a “set” statement returning PHP code

public compileDo (array $statement)

Compiles a “do” statement returning PHP code

public compileReturn (array $statement)

Compiles a “return” statement returning PHP code

public compileAutoEscape (array $statement, mixed $extendsMode)

Compiles a “autoescape” statement returning PHP code

public string compileEcho (array $statement)

Compiles a ‘{{‘ ‘}}’ statement returning PHP code

public compileInclude (array $statement)

Compiles a ‘include’ statement returning PHP code

public compileMacro (array $statement, mixed $extendsMode)

Compiles macros

public string compileCall (array $statement, boolean $extendsMode)

Compiles calls to macros

final protected _statementList (array $statements, [mixed $extendsMode])

Traverses a statement list compiling each of its nodes

protected _compileSource (mixed $viewCode, [mixed $extendsMode])

Compiles a Volt source code returning a PHP plain version

public compileString (mixed $viewCode, [mixed $extendsMode])

Compiles a template into a string

<?php

 echo $compiler->compileString('{{ "hello world" }}');

public string | array compileFile (string $path, string $compiledPath, [boolean $extendsMode])

Compiles a template into a file forcing the destination path

<?php

$compiler->compile('views/layouts/main.volt', 'views/layouts/main.volt.php');

public compile (mixed $templatePath, [mixed $extendsMode])

Compiles a template into a file applying the compiler options This method does not return the compiled path if the template was not compiled

<?php

$compiler->compile('views/layouts/main.volt');
require $compiler->getCompiledTemplatePath();

public getTemplatePath ()

Returns the path that is currently being compiled

public getCompiledTemplatePath ()

Returns the path to the last compiled template

public array parse (string $viewCode)

Parses a Volt template returning its intermediate representation

<?php

print_r($compiler->parse('{{ 3 + 2 }}'));

protected getFinalPath (mixed $path)

Gets the final path with VIEW

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View\Engine\Volt\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View\Engine\Volt\Exception

extends class Phalcon\Mvc\View\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Mvc\View\Simple

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Mvc\View\Simple

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\Mvc\ViewBaseInterface

Source on GitHub

This component allows to render views without hierarchical levels

<?php

 use Phalcon\Mvc\View\Simple as View;

 $view = new View();

 // Render a view
 echo $view->render('templates/my-view', ['some' => $param]);

 // Or with filename with extension
 echo $view->render('templates/my-view.volt', ['parameter' => $here]);

Methods

public getRegisteredEngines ()

public __construct ([array $options])

Phalcon\Mvc\View\Simple constructor

public setViewsDir (mixed $viewsDir)

Sets views directory. Depending of your platform, always add a trailing slash or backslash

public getViewsDir ()

Gets views directory

public registerEngines (array $engines)

Register templating engines

<?php

 $this->view->registerEngines([
 '.phtml' => 'Phalcon\Mvc\View\Engine\Php',
 '.volt' => 'Phalcon\Mvc\View\Engine\Volt',
 '.mhtml' => 'MyCustomEngine'
]);

protected array _loadTemplateEngines ()

Loads registered template engines, if none is registered it will use Phalcon\Mvc\View\Engine\Php

final protected _internalRender (string $path, array $params)

Tries to render the view with every engine registered in the component

public render (string $path, [array $params])

Renders a view

public partial (mixed $partialPath, [mixed $params])

Renders a partial view

<?php

 // Show a partial inside another view
 $this->partial('shared/footer');

<?php

 // Show a partial inside another view with parameters
 $this->partial('shared/footer', ['content' => $html]);

public setCacheOptions (array $options)

Sets the cache options

public array getCacheOptions ()

Returns the cache options

protected _createCache ()

Create a Phalcon\Cache based on the internal cache options

public getCache ()

Returns the cache instance used to cache

public cache ([mixed $options])

Cache the actual view render to certain level

<?php

 $this->view->cache(['key' => 'my-key', 'lifetime' => 86400]);

public setParamToView (mixed $key, mixed $value)

Adds parameters to views (alias of setVar)

<?php

$this->view->setParamToView('products', $products);

public setVars (array $params, [mixed $merge])

Set all the render params

<?php

$this->view->setVars(['products' => $products]);

public setVar (mixed $key, mixed $value)

Set a single view parameter

<?php

$this->view->setVar('products', $products);

public getVar (mixed $key)

Returns a parameter previously set in the view

public array getParamsToView ()

Returns parameters to views

public setContent (mixed $content)

Externally sets the view content

<?php

$this->view->setContent("<h1>hello</h1>");

public getContent ()

Returns cached output from another view stage

public string getActiveRenderPath ()

Returns the path of the view that is currently rendered

public __set (mixed $key, mixed $value)

Magic method to pass variables to the views

<?php

$this->view->products = $products;

public __get (mixed $key)

Magic method to retrieve a variable passed to the view

<?php

echo $this->view->products;

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Paginator\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Paginator\Adapter

Source on GitHub

Methods

public setCurrentPage (mixed $page)

Set the current page number

public setLimit (mixed $limitRows)

Set current rows limit

public getLimit ()

Get current rows limit

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Paginator\Adapter\Model

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Paginator\Adapter\Model

extends abstract class Phalcon\Paginator\Adapter

implements Phalcon\Paginator\AdapterInterface

Source on GitHub

This adapter allows to paginate data using a Phalcon\Mvc\Model resultset as a base.

<?php

 use Phalcon\Paginator\Adapter\Model;

 $paginator = new Model(
 [
 'data' => Robots::find(),
 'limit' => 25,
 'page' => $currentPage
]
);

 $paginate = $paginator->getPaginate();

Methods

public __construct (array $config)

Phalcon\Paginator\Adapter\Model constructor

public getPaginate ()

Returns a slice of the resultset to show in the pagination

public setCurrentPage (mixed $page) inherited from Phalcon\Paginator\Adapter

Set the current page number

public setLimit (mixed $limitRows) inherited from Phalcon\Paginator\Adapter

Set current rows limit

public getLimit () inherited from Phalcon\Paginator\Adapter

Get current rows limit

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Paginator\Adapter\NativeArray

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Paginator\Adapter\NativeArray

extends abstract class Phalcon\Paginator\Adapter

implements Phalcon\Paginator\AdapterInterface

Source on GitHub

Pagination using a PHP array as source of data

<?php

 use Phalcon\Paginator\Adapter\NativeArray;

 $paginator = new NativeArray(
 [
 'data' => array(
 ['id' => 1, 'name' => 'Artichoke'],
 ['id' => 2, 'name' => 'Carrots'],
 ['id' => 3, 'name' => 'Beet'],
 ['id' => 4, 'name' => 'Lettuce'],
 ['id' => 5, 'name' => '']
],
 'limit' => 2,
 'page' => $currentPage,
]
);

Methods

public __construct (array $config)

Phalcon\Paginator\Adapter\NativeArray constructor

public getPaginate ()

Returns a slice of the resultset to show in the pagination

public setCurrentPage (mixed $page) inherited from Phalcon\Paginator\Adapter

Set the current page number

public setLimit (mixed $limitRows) inherited from Phalcon\Paginator\Adapter

Set current rows limit

public getLimit () inherited from Phalcon\Paginator\Adapter

Get current rows limit

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Paginator\Adapter\QueryBuilder

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Paginator\Adapter\QueryBuilder

extends abstract class Phalcon\Paginator\Adapter

implements Phalcon\Paginator\AdapterInterface

Source on GitHub

Pagination using a PHQL query builder as source of data

<?php

 use Phalcon\Paginator\Adapter\QueryBuilder;

 $builder = $this->modelsManager->createBuilder()
 ->columns('id, name')
 ->from('Robots')
 ->orderBy('name');

 $paginator = new QueryBuilder(
 [
 'builder' => $builder,
 'limit' => 20,
 'page' => 1,
]
);

Methods

public __construct (array $config)

public getCurrentPage ()

Get the current page number

public setQueryBuilder (Phalcon\Mvc\Model\Query\Builder $builder)

Set query builder object

public getQueryBuilder ()

Get query builder object

public getPaginate ()

Returns a slice of the resultset to show in the pagination

public setCurrentPage (mixed $page) inherited from Phalcon\Paginator\Adapter

Set the current page number

public setLimit (mixed $limitRows) inherited from Phalcon\Paginator\Adapter

Set current rows limit

public getLimit () inherited from Phalcon\Paginator\Adapter

Get current rows limit

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Paginator\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Paginator\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Queue\Beanstalk

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Queue\Beanstalk

Source on GitHub

Class to access the beanstalk queue service. Partially implements the protocol version 1.2

<?php

 use Phalcon\Queue\Beanstalk;

 $queue = new Beanstalk([
 'host' => '127.0.0.1',
 'port' => 11300,
 'persistent' => true,
]);

Constants

integer DEFAULT_DELAY

integer DEFAULT_PRIORITY

integer DEFAULT_TTR

string DEFAULT_TUBE

string DEFAULT_HOST

integer DEFAULT_PORT

Methods

public __construct ([array $options])

public connect ()

Makes a connection to the Beanstalkd server

public put (mixed $data, [array $options])

Puts a job on the queue using specified tube.

public reserve ([mixed $timeout])

Reserves/locks a ready job from the specified tube.

public choose (mixed $tube)

Change the active tube. By default the tube is “default”.

public watch (mixed $tube)

The watch command adds the named tube to the watch list for the current connection.

public ignore (mixed $tube)

It removes the named tube from the watch list for the current connection.

public pauseTube (mixed $tube, mixed $delay)

Can delay any new job being reserved for a given time.

public kick (mixed $bound)

The kick command applies only to the currently used tube.

public stats ()

Gives statistical information about the system as a whole.

public statsTube (mixed $tube)

Gives statistical information about the specified tube if it exists.

public listTubes ()

Returns a list of all existing tubes.

public listTubeUsed ()

Returns the tube currently being used by the client.

public listTubesWatched ()

Returns a list tubes currently being watched by the client.

public peekReady ()

Inspect the next ready job.

public peekBuried ()

Return the next job in the list of buried jobs.

public peekDelayed ()

Return the next job in the list of buried jobs.

public jobPeek (mixed $id)

The peek commands let the client inspect a job in the system.

final public readStatus ()

Reads the latest status from the Beanstalkd server

final public readYaml ()

Fetch a YAML payload from the Beanstalkd server

public read ([mixed $length])

Reads a packet from the socket. Prior to reading from the socket will check for availability of the connection.

protected write (mixed $data)

Writes data to the socket. Performs a connection if none is available

public disconnect ()

Closes the connection to the beanstalk server.

public quit ()

Simply closes the connection.

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Queue\Beanstalk\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Queue\Beanstalk\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Queue\Beanstalk\Job

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Queue\Beanstalk\Job

Source on GitHub

Represents a job in a beanstalk queue

Methods

public getId ()

public getBody ()

public __construct (Phalcon\Queue\Beanstalk $queue, mixed $id, mixed $body)

public delete ()

Removes a job from the server entirely

public release ([mixed $priority], [mixed $delay])

The release command puts a reserved job back into the ready queue (and marks its state as “ready”) to be run by any client. It is normally used when the job fails because of a transitory error.

public bury ([mixed $priority])

The bury command puts a job into the “buried” state. Buried jobs are put into a FIFO linked list and will not be touched by the server again until a client kicks them with the “kick” command.

public touch ()

The touch command allows a worker to request more time to work on a job. This is useful for jobs that potentially take a long time, but you still want the benefits of a TTR pulling a job away from an unresponsive worker. A worker may periodically tell the server that it’s still alive and processing a job (e.g. it may do this on DEADLINE_SOON). The command postpones the auto release of a reserved job until TTR seconds from when the command is issued.

public kick ()

Move the job to the ready queue if it is delayed or buried.

public stats ()

Gives statistical information about the specified job if it exists.

public __wakeup ()

Checks if the job has been modified after unserializing the object

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Final class Phalcon\Registry

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Final class Phalcon\Registry

implements ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Countable [http://php.net/manual/en/class.countable.php], Iterator [http://php.net/manual/en/class.iterator.php], Traversable [http://php.net/manual/en/class.traversable.php]

Source on GitHub

A registry is a container for storing objects and values in the application space. By storing the value in a registry, the same object is always available throughout your application.

 <?php

 $registry = new \Phalcon\Registry();

 // Set value
 $registry->something = 'something';
 // or
 $registry['something'] = 'something';

 // Get value
 $value = $registry->something;
 // or
 $value = $registry['something'];

 // Check if the key exists
 $exists = isset($registry->something);
 // or
 $exists = isset($registry['something']);

 // Unset
 unset($registry->something);
 // or
 unset($registry['something']);

In addition to ArrayAccess, Phalcon\\Registry also implements Countable (count($registry) will return the number of elements in the registry), Serializable and Iterator (you can iterate over the registry using a foreach loop) interfaces. For PHP 5.4 and higher, JsonSerializable interface is implemented. Phalcon\\Registry is very fast (it is typically faster than any userspace implementation of the registry); however, this comes at a price: Phalcon\\Registry is a final class and cannot be inherited from. Though Phalcon\\Registry exposes methods like __get(), offsetGet(), count() etc, it is not recommended to invoke them manually (these methods exist mainly to match the interfaces the registry implements): $registry->__get('property') is several times slower than $registry->property. Internally all the magic methods (and interfaces except JsonSerializable) are implemented using object handlers or similar techniques: this allows to bypass relatively slow method calls.

Methods

final public __construct ()

Registry constructor

final public offsetExists (mixed $offset)

Checks if the element is present in the registry

final public offsetGet (mixed $offset)

Returns an index in the registry

final public offsetSet (mixed $offset, mixed $value)

Sets an element in the registry

final public offsetUnset (mixed $offset)

Unsets an element in the registry

final public count ()

Checks how many elements are in the register

final public next ()

Moves cursor to next row in the registry

final public key ()

Gets pointer number of active row in the registry

final public rewind ()

Rewinds the registry cursor to its beginning

public valid ()

Checks if the iterator is valid

public current ()

Obtains the current value in the internal iterator

final public __set (mixed $key, mixed $value)

Sets an element in the registry

final public __get (mixed $key)

Returns an index in the registry

final public __isset (mixed $key)

...

final public __unset (mixed $key)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Security

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Security

implements Phalcon\Di\InjectionAwareInterface

Source on GitHub

This component provides a set of functions to improve the security in Phalcon applications

<?php

$login = $this->request->getPost('login');
$password = $this->request->getPost('password');

$user = Users::findFirstByLogin($login);
if ($user) {
 if ($this->security->checkHash($password, $user->password)) {
 //The password is valid
 }
}

Constants

integer CRYPT_DEFAULT

integer CRYPT_STD_DES

integer CRYPT_EXT_DES

integer CRYPT_MD5

integer CRYPT_BLOWFISH

integer CRYPT_BLOWFISH_A

integer CRYPT_BLOWFISH_X

integer CRYPT_BLOWFISH_Y

integer CRYPT_SHA256

integer CRYPT_SHA512

Methods

public setWorkFactor (mixed $workFactor)

...

public getWorkFactor ()

...

public __construct ()

Phalcon\Security constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector

public getDI ()

Returns the internal dependency injector

public setRandomBytes (mixed $randomBytes)

Sets a number of bytes to be generated by the openssl pseudo random generator

public getRandomBytes ()

Returns a number of bytes to be generated by the openssl pseudo random generator

public getRandom ()

Returns a secure random number generator instance

public getSaltBytes ([mixed $numberBytes])

Generate a >22-length pseudo random string to be used as salt for passwords

public hash (mixed $password, [mixed $workFactor])

Creates a password hash using bcrypt with a pseudo random salt

public checkHash (mixed $password, mixed $passwordHash, [mixed $maxPassLength])

Checks a plain text password and its hash version to check if the password matches

public isLegacyHash (mixed $passwordHash)

Checks if a password hash is a valid bcrypt’s hash

public getTokenKey ()

Generates a pseudo random token key to be used as input’s name in a CSRF check

public getToken ()

Generates a pseudo random token value to be used as input’s value in a CSRF check

public checkToken ([mixed $tokenKey], [mixed $tokenValue], [mixed $destroyIfValid])

Check if the CSRF token sent in the request is the same that the current in session

public getSessionToken ()

Returns the value of the CSRF token in session

public destroyToken ()

Removes the value of the CSRF token and key from session

public computeHmac (mixed $data, mixed $key, mixed $algo, [mixed $raw])

Computes a HMAC

public setDefaultHash (mixed $defaultHash)

Sets the default hash

public getDefaultHash ()

Returns the default hash

public hasLibreSsl ()

Testing for LibreSSL

public getSslVersionNumber ()

Getting OpenSSL or LibreSSL version Parse OPENSSL_VERSION_TEXT because OPENSSL_VERSION_NUMBER is no use for LibreSSL.

<?php

 if ($security->getSslVersionNumber() >= 20105) {
 // ...
 }

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Security\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Security\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Security\Random

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Security\Random

Source on GitHub

Secure random number generator class. Provides secure random number generator which is suitable for generating session key in HTTP cookies, etc. It supports following secure random number generators: - random_bytes (PHP 7) - libsodium - openssl, libressl - /dev/urandom Phalcon\Security\Random could be mainly useful for: - Key generation (e.g. generation of complicated keys) - Generating random passwords for new user accounts - Encryption systems

 <?php

 $random = new \Phalcon\Security\Random();

 // Random binary string
 $bytes = $random->bytes();

 // Random hex string
 echo $random->hex(10); // a29f470508d5ccb8e289
 echo $random->hex(10); // 533c2f08d5eee750e64a
 echo $random->hex(11); // f362ef96cb9ffef150c9cd
 echo $random->hex(12); // 95469d667475125208be45c4
 echo $random->hex(13); // 05475e8af4a34f8f743ab48761

 // Random base64 string
 echo $random->base64(12); // XfIN81jGGuKkcE1E
 echo $random->base64(12); // 3rcq39QzGK9fUqh8
 echo $random->base64(); // DRcfbngL/iOo9hGGvy1TcQ==
 echo $random->base64(16); // SvdhPcIHDZFad838Bb0Swg==

 // Random URL-safe base64 string
 echo $random->base64Safe(); // PcV6jGbJ6vfVw7hfKIFDGA
 echo $random->base64Safe(); // GD8JojhzSTrqX7Q8J6uug
 echo $random->base64Safe(8); // mGyy0evy3ok
 echo $random->base64Safe(null, true); // DRrAgOFkS4rvRiVHFefcQ==

 // Random UUID
 echo $random->uuid(); // db082997-2572-4e2c-a046-5eefe97b1235
 echo $random->uuid(); // da2aa0e2-b4d0-4e3c-99f5-f5ef62c57fe2
 echo $random->uuid(); // 75e6b628-c562-4117-bb76-61c4153455a9
 echo $random->uuid(); // dc446df1-0848-4d05-b501-4af3c220c13d

 // Random number between 0 and $len
 echo $random->number(256); // 84
 echo $random->number(256); // 79
 echo $random->number(100); // 29
 echo $random->number(300); // 40

 // Random base58 string
 echo $random->base58(); // 4kUgL2pdQMSCQtjE
 echo $random->base58(); // Umjxqf7ZPwh765yR
 echo $random->base58(24); // qoXcgmw4A9dys26HaNEdCRj9
 echo $random->base58(7); // 774SJD3vgP

This class partially borrows SecureRandom library from Ruby

Methods

public bytes ([mixed $len])

Generates a random binary string The Random::bytes method returns a string and accepts as input an int representing the length in bytes to be returned. If $len is not specified, 16 is assumed. It may be larger in future. The result may contain any byte: “x00” - “xFF”.

<?php

 $random = new \Phalcon\Security\Random();

 $bytes = $random->bytes();
 var_dump(bin2hex($bytes));
 // possible output: string(32) "00f6c04b144b41fad6a59111c126e1ee"

public hex ([mixed $len])

Generates a random hex string If $len is not specified, 16 is assumed. It may be larger in future. The length of the result string is usually greater of $len.

<?php

 $random = new \Phalcon\Security\Random();

 echo $random->hex(10); // a29f470508d5ccb8e289

public base58 ([mixed $n])

Generates a random base58 string If $len is not specified, 16 is assumed. It may be larger in future. The result may contain alphanumeric characters except 0, O, I and l. It is similar to Base64 but has been modified to avoid both non-alphanumeric characters and letters which might look ambiguous when printed.

<?php

 $random = new \Phalcon\Security\Random();

 echo $random->base58(); // 4kUgL2pdQMSCQtjE

public base64 ([mixed $len])

Generates a random base64 string If $len is not specified, 16 is assumed. It may be larger in future. The length of the result string is usually greater of $len. Size formula: 4 *($len / 3) and this need to be rounded up to a multiple of 4.

<?php

 $random = new \Phalcon\Security\Random();

 echo $random->base64(12); // 3rcq39QzGK9fUqh8

public base64Safe ([mixed $len], [mixed $padding])

Generates a random URL-safe base64 string If $len is not specified, 16 is assumed. It may be larger in future. The length of the result string is usually greater of $len. By default, padding is not generated because “=” may be used as a URL delimiter. The result may contain A-Z, a-z, 0-9, “-” and “_”. “=” is also used if $padding is true. See RFC 3548 for the definition of URL-safe base64.

<?php

 $random = new \Phalcon\Security\Random();

 echo $random->base64Safe(); // GD8JojhzSTrqX7Q8J6uug

public uuid ()

Generates a v4 random UUID (Universally Unique IDentifier) The version 4 UUID is purely random (except the version). It doesn’t contain meaningful information such as MAC address, time, etc. See RFC 4122 for details of UUID. This algorithm sets the version number (4 bits) as well as two reserved bits. All other bits (the remaining 122 bits) are set using a random or pseudorandom data source. Version 4 UUIDs have the form xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx where x is any hexadecimal digit and y is one of 8, 9, A, or B (e.g., f47ac10b-58cc-4372-a567-0e02b2c3d479).

<?php

 $random = new \Phalcon\Security\Random();

 echo $random->uuid(); // 1378c906-64bb-4f81-a8d6-4ae1bfcdec22

public number (mixed $len)

Generates a random number between 0 and $len Returns an integer: 0 <= result <= $len.

<?php

 $random = new \Phalcon\Security\Random();

 echo $random->number(16); // 8

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Session\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Session\Adapter

implements Phalcon\Session\AdapterInterface

Source on GitHub

Base class for Phalcon\Session adapters

Constants

integer SESSION_ACTIVE

integer SESSION_NONE

integer SESSION_DISABLED

Methods

public __construct ([array $options])

Phalcon\Session\Adapter constructor

public start ()

Starts the session (if headers are already sent the session will not be started)

public setOptions (array $options)

Sets session’s options

<?php

$session->setOptions(['uniqueId' => 'my-private-app']);

public getOptions ()

Get internal options

public setName (mixed $name)

Set session name

public getName ()

Get session name

public regenerateId ([mixed $deleteOldSession])

public get (mixed $index, [mixed $defaultValue], [mixed $remove])

Gets a session variable from an application context

<?php

$session->get('auth', 'yes');

public set (mixed $index, mixed $value)

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public has (mixed $index)

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (mixed $index)

Removes a session variable from an application context

<?php

$session->remove('auth');

public getId ()

Returns active session id

<?php

echo $session->getId();

public setId (mixed $id)

Set the current session id

<?php

$session->setId($id);

public isStarted ()

Check whether the session has been started

<?php

var_dump($session->isStarted());

public destroy ([mixed $removeData])

Destroys the active session

<?php

var_dump($session->destroy());
var_dump($session->destroy(true));

public status ()

Returns the status of the current session.

<?php

var_dump($session->status());

 if ($session->status() !== $session::SESSION_ACTIVE) {
 $session->start();
 }

public __get (mixed $index)

Alias: Gets a session variable from an application context

public __set (mixed $index, mixed $value)

Alias: Sets a session variable in an application context

public __isset (mixed $index)

Alias: Check whether a session variable is set in an application context

public __unset (mixed $index)

Alias: Removes a session variable from an application context

public __destruct ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Session\Adapter\Files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Session\Adapter\Files

extends abstract class Phalcon\Session\Adapter

implements Phalcon\Session\AdapterInterface

Source on GitHub

Constants

integer SESSION_ACTIVE

integer SESSION_NONE

integer SESSION_DISABLED

Methods

public __construct ([array $options]) inherited from Phalcon\Session\Adapter

Phalcon\Session\Adapter constructor

public start () inherited from Phalcon\Session\Adapter

Starts the session (if headers are already sent the session will not be started)

public setOptions (array $options) inherited from Phalcon\Session\Adapter

Sets session’s options

<?php

$session->setOptions(['uniqueId' => 'my-private-app']);

public getOptions () inherited from Phalcon\Session\Adapter

Get internal options

public setName (mixed $name) inherited from Phalcon\Session\Adapter

Set session name

public getName () inherited from Phalcon\Session\Adapter

Get session name

public regenerateId ([mixed $deleteOldSession]) inherited from Phalcon\Session\Adapter

public get (mixed $index, [mixed $defaultValue], [mixed $remove]) inherited from Phalcon\Session\Adapter

Gets a session variable from an application context

<?php

$session->get('auth', 'yes');

public set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public has (mixed $index) inherited from Phalcon\Session\Adapter

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (mixed $index) inherited from Phalcon\Session\Adapter

Removes a session variable from an application context

<?php

$session->remove('auth');

public getId () inherited from Phalcon\Session\Adapter

Returns active session id

<?php

echo $session->getId();

public setId (mixed $id) inherited from Phalcon\Session\Adapter

Set the current session id

<?php

$session->setId($id);

public isStarted () inherited from Phalcon\Session\Adapter

Check whether the session has been started

<?php

var_dump($session->isStarted());

public destroy ([mixed $removeData]) inherited from Phalcon\Session\Adapter

Destroys the active session

<?php

var_dump($session->destroy());
var_dump($session->destroy(true));

public status () inherited from Phalcon\Session\Adapter

Returns the status of the current session.

<?php

var_dump($session->status());

 if ($session->status() !== $session::SESSION_ACTIVE) {
 $session->start();
 }

public __get (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Gets a session variable from an application context

public __set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Alias: Sets a session variable in an application context

public __isset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Check whether a session variable is set in an application context

public __unset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Removes a session variable from an application context

public __destruct () inherited from Phalcon\Session\Adapter

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Session\Adapter\Libmemcached

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Session\Adapter\Libmemcached

extends abstract class Phalcon\Session\Adapter

implements Phalcon\Session\AdapterInterface

Source on GitHub

This adapter store sessions in libmemcached

<?php

 use Phalcon\Session\Adapter\Libmemcached;

 $session = new Libmemcached([
 'servers' => [
 ['host' => 'localhost', 'port' => 11211, 'weight' => 1],
],
 'client' => [
 \Memcached::OPT_HASH => \Memcached::HASH_MD5,
 \Memcached::OPT_PREFIX_KEY => 'prefix.',
],
 'lifetime' => 3600,
 'prefix' => 'my_'
]);

 $session->start();

 $session->set('var', 'some-value');

 echo $session->get('var');

Constants

integer SESSION_ACTIVE

integer SESSION_NONE

integer SESSION_DISABLED

Methods

public getLibmemcached ()

...

public getLifetime ()

...

public __construct (array $options)

Phalcon\Session\Adapter\Libmemcached constructor

public open ()

...

public close ()

...

public read (mixed $sessionId)

public write (mixed $sessionId, mixed $data)

public destroy ([mixed $sessionId])

public gc ()

public start () inherited from Phalcon\Session\Adapter

Starts the session (if headers are already sent the session will not be started)

public setOptions (array $options) inherited from Phalcon\Session\Adapter

Sets session’s options

<?php

$session->setOptions(['uniqueId' => 'my-private-app']);

public getOptions () inherited from Phalcon\Session\Adapter

Get internal options

public setName (mixed $name) inherited from Phalcon\Session\Adapter

Set session name

public getName () inherited from Phalcon\Session\Adapter

Get session name

public regenerateId ([mixed $deleteOldSession]) inherited from Phalcon\Session\Adapter

public get (mixed $index, [mixed $defaultValue], [mixed $remove]) inherited from Phalcon\Session\Adapter

Gets a session variable from an application context

<?php

$session->get('auth', 'yes');

public set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public has (mixed $index) inherited from Phalcon\Session\Adapter

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (mixed $index) inherited from Phalcon\Session\Adapter

Removes a session variable from an application context

<?php

$session->remove('auth');

public getId () inherited from Phalcon\Session\Adapter

Returns active session id

<?php

echo $session->getId();

public setId (mixed $id) inherited from Phalcon\Session\Adapter

Set the current session id

<?php

$session->setId($id);

public isStarted () inherited from Phalcon\Session\Adapter

Check whether the session has been started

<?php

var_dump($session->isStarted());

public status () inherited from Phalcon\Session\Adapter

Returns the status of the current session.

<?php

var_dump($session->status());

 if ($session->status() !== $session::SESSION_ACTIVE) {
 $session->start();
 }

public __get (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Gets a session variable from an application context

public __set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Alias: Sets a session variable in an application context

public __isset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Check whether a session variable is set in an application context

public __unset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Removes a session variable from an application context

public __destruct () inherited from Phalcon\Session\Adapter

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Session\Adapter\Memcache

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Session\Adapter\Memcache

extends abstract class Phalcon\Session\Adapter

implements Phalcon\Session\AdapterInterface

Source on GitHub

This adapter store sessions in memcache

<?php

 use Phalcon\Session\Adapter\Memcache;

 $session = new Memcache([
 'uniqueId' => 'my-private-app',
 'host' => '127.0.0.1',
 'port' => 11211,
 'persistent' => true,
 'lifetime' => 3600,
 'prefix' => 'my_'
]);

 $session->start();

 $session->set('var', 'some-value');

 echo $session->get('var');

Constants

integer SESSION_ACTIVE

integer SESSION_NONE

integer SESSION_DISABLED

Methods

public getMemcache ()

...

public getLifetime ()

...

public __construct ([array $options])

Phalcon\Session\Adapter\Memcache constructor

public open ()

...

public close ()

...

public read (mixed $sessionId)

public write (mixed $sessionId, mixed $data)

public destroy ([mixed $sessionId])

public gc ()

public start () inherited from Phalcon\Session\Adapter

Starts the session (if headers are already sent the session will not be started)

public setOptions (array $options) inherited from Phalcon\Session\Adapter

Sets session’s options

<?php

$session->setOptions(['uniqueId' => 'my-private-app']);

public getOptions () inherited from Phalcon\Session\Adapter

Get internal options

public setName (mixed $name) inherited from Phalcon\Session\Adapter

Set session name

public getName () inherited from Phalcon\Session\Adapter

Get session name

public regenerateId ([mixed $deleteOldSession]) inherited from Phalcon\Session\Adapter

public get (mixed $index, [mixed $defaultValue], [mixed $remove]) inherited from Phalcon\Session\Adapter

Gets a session variable from an application context

<?php

$session->get('auth', 'yes');

public set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public has (mixed $index) inherited from Phalcon\Session\Adapter

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (mixed $index) inherited from Phalcon\Session\Adapter

Removes a session variable from an application context

<?php

$session->remove('auth');

public getId () inherited from Phalcon\Session\Adapter

Returns active session id

<?php

echo $session->getId();

public setId (mixed $id) inherited from Phalcon\Session\Adapter

Set the current session id

<?php

$session->setId($id);

public isStarted () inherited from Phalcon\Session\Adapter

Check whether the session has been started

<?php

var_dump($session->isStarted());

public status () inherited from Phalcon\Session\Adapter

Returns the status of the current session.

<?php

var_dump($session->status());

 if ($session->status() !== $session::SESSION_ACTIVE) {
 $session->start();
 }

public __get (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Gets a session variable from an application context

public __set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Alias: Sets a session variable in an application context

public __isset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Check whether a session variable is set in an application context

public __unset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Removes a session variable from an application context

public __destruct () inherited from Phalcon\Session\Adapter

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Session\Adapter\Redis

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Session\Adapter\Redis

extends abstract class Phalcon\Session\Adapter

implements Phalcon\Session\AdapterInterface

Source on GitHub

This adapter store sessions in Redis

<?php

 use Phalcon\Session\Adapter\Redis;

 $session = new Redis([
 'uniqueId' => 'my-private-app',
 'host' => 'localhost',
 'port' => 6379,
 'auth' => 'foobared',
 'persistent' => false,
 'lifetime' => 3600,
 'prefix' => 'my_'
 'index' => 1,
]);

 $session->start();

 $session->set('var', 'some-value');

 echo $session->get('var');

Constants

integer SESSION_ACTIVE

integer SESSION_NONE

integer SESSION_DISABLED

Methods

public getRedis ()

...

public getLifetime ()

...

public __construct ([array $options])

Phalcon\Session\Adapter\Redis constructor

public open ()

public close ()

public read (mixed $sessionId)

public write (mixed $sessionId, mixed $data)

public destroy ([mixed $sessionId])

public gc ()

public start () inherited from Phalcon\Session\Adapter

Starts the session (if headers are already sent the session will not be started)

public setOptions (array $options) inherited from Phalcon\Session\Adapter

Sets session’s options

<?php

$session->setOptions(['uniqueId' => 'my-private-app']);

public getOptions () inherited from Phalcon\Session\Adapter

Get internal options

public setName (mixed $name) inherited from Phalcon\Session\Adapter

Set session name

public getName () inherited from Phalcon\Session\Adapter

Get session name

public regenerateId ([mixed $deleteOldSession]) inherited from Phalcon\Session\Adapter

public get (mixed $index, [mixed $defaultValue], [mixed $remove]) inherited from Phalcon\Session\Adapter

Gets a session variable from an application context

<?php

$session->get('auth', 'yes');

public set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Sets a session variable in an application context

<?php

$session->set('auth', 'yes');

public has (mixed $index) inherited from Phalcon\Session\Adapter

Check whether a session variable is set in an application context

<?php

var_dump($session->has('auth'));

public remove (mixed $index) inherited from Phalcon\Session\Adapter

Removes a session variable from an application context

<?php

$session->remove('auth');

public getId () inherited from Phalcon\Session\Adapter

Returns active session id

<?php

echo $session->getId();

public setId (mixed $id) inherited from Phalcon\Session\Adapter

Set the current session id

<?php

$session->setId($id);

public isStarted () inherited from Phalcon\Session\Adapter

Check whether the session has been started

<?php

var_dump($session->isStarted());

public status () inherited from Phalcon\Session\Adapter

Returns the status of the current session.

<?php

var_dump($session->status());

 if ($session->status() !== $session::SESSION_ACTIVE) {
 $session->start();
 }

public __get (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Gets a session variable from an application context

public __set (mixed $index, mixed $value) inherited from Phalcon\Session\Adapter

Alias: Sets a session variable in an application context

public __isset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Check whether a session variable is set in an application context

public __unset (mixed $index) inherited from Phalcon\Session\Adapter

Alias: Removes a session variable from an application context

public __destruct () inherited from Phalcon\Session\Adapter

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Session\Bag

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Session\Bag

implements Phalcon\Di\InjectionAwareInterface, Phalcon\Session\BagInterface, IteratorAggregate [http://php.net/manual/en/class.iteratoraggregate.php], Traversable [http://php.net/manual/en/class.traversable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Countable [http://php.net/manual/en/class.countable.php]

Source on GitHub

This component helps to separate session data into “namespaces”. Working by this way you can easily create groups of session variables into the application

<?php

$user = new \Phalcon\Session\Bag('user');
$user->name = "Kimbra Johnson";
$user->age = 22;

Methods

public __construct (mixed $name)

Phalcon\Session\Bag constructor

public setDI (Phalcon\DiInterface $dependencyInjector)

Sets the DependencyInjector container

public getDI ()

Returns the DependencyInjector container

public initialize ()

Initializes the session bag. This method must not be called directly, the class calls it when its internal data is accessed

public destroy ()

Destroys the session bag

<?php

 $user->destroy();

public set (mixed $property, mixed $value)

Sets a value in the session bag

<?php

 $user->set('name', 'Kimbra');

public __set (mixed $property, mixed $value)

Magic setter to assign values to the session bag

<?php

 $user->name = "Kimbra";

public get (mixed $property, [mixed $defaultValue])

Obtains a value from the session bag optionally setting a default value

<?php

 echo $user->get('name', 'Kimbra');

public __get (mixed $property)

Magic getter to obtain values from the session bag

<?php

 echo $user->name;

public has (mixed $property)

Check whether a property is defined in the internal bag

<?php

 var_dump($user->has('name'));

public __isset (mixed $property)

Magic isset to check whether a property is defined in the bag

<?php

 var_dump(isset($user['name']));

public remove (mixed $property)

Removes a property from the internal bag

<?php

 $user->remove('name');

public __unset (mixed $property)

Magic unset to remove items using the array syntax

<?php

 unset($user['name']);

final public count ()

Return length of bag

<?php

 echo $user->count();

final public getIterator ()

Returns the bag iterator

final public offsetSet (mixed $property, mixed $value)

...

final public offsetExists (mixed $property)

...

final public offsetUnset (mixed $property)

...

final public offsetGet (mixed $property)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Session\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Session\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Tag

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Tag

Source on GitHub

Phalcon\Tag is designed to simplify building of HTML tags. It provides a set of helpers to generate HTML in a dynamic way. This component is an abstract class that you can extend to add more helpers.

Constants

integer HTML32

integer HTML401_STRICT

integer HTML401_TRANSITIONAL

integer HTML401_FRAMESET

integer HTML5

integer XHTML10_STRICT

integer XHTML10_TRANSITIONAL

integer XHTML10_FRAMESET

integer XHTML11

integer XHTML20

integer XHTML5

Methods

public static EscaperInterface getEscaper (array $params)

Obtains the ‘escaper’ service if required

public static renderAttributes (mixed $code, array $attributes)

Renders parameters keeping order in their HTML attributes

public static setDI (Phalcon\DiInterface $dependencyInjector)

Sets the dependency injector container.

public static getDI ()

Internally gets the request dispatcher

public static getUrlService ()

Returns a URL service from the default DI

public static getEscaperService ()

Returns an Escaper service from the default DI

public static setAutoescape (mixed $autoescape)

Set autoescape mode in generated html

public static setDefault (string $id, string $value)

Assigns default values to generated tags by helpers

<?php

 // Assigning "peter" to "name" component
 Phalcon\Tag::setDefault("name", "peter");

 // Later in the view
 echo Phalcon\Tag::textField("name"); //Will have the value "peter" by default

public static setDefaults (array $values, [mixed $merge])

Assigns default values to generated tags by helpers

<?php

 // Assigning "peter" to "name" component
 Phalcon\Tag::setDefaults(array("name" => "peter"));

 // Later in the view
 echo Phalcon\Tag::textField("name"); //Will have the value "peter" by default

public static displayTo (string $id, string $value)

Alias of Phalcon\Tag::setDefault

public static boolean hasValue (string $name)

Check if a helper has a default value set using Phalcon\Tag::setDefault or value from _POST

public static mixed getValue (string $name, [array $params])

Every helper calls this function to check whether a component has a predefined value using Phalcon\Tag::setDefault or value from _POST

public static resetInput ()

Resets the request and internal values to avoid those fields will have any default value

public static string linkTo (array | string $parameters, [string $text], [boolean $local])

Builds a HTML A tag using framework conventions

<?php

 echo Phalcon\Tag::linkTo("signup/register", "Register Here!");
 echo Phalcon\Tag::linkTo(array("signup/register", "Register Here!"));
 echo Phalcon\Tag::linkTo(array("signup/register", "Register Here!", "class" => "btn-primary"));
 echo Phalcon\Tag::linkTo("http://phalconphp.com/", "Phalcon", FALSE);
 echo Phalcon\Tag::linkTo(array("http://phalconphp.com/", "Phalcon Home", FALSE));
 echo Phalcon\Tag::linkTo(array("http://phalconphp.com/", "Phalcon Home", "local" =>FALSE));

final protected static string _inputField (string $type, array $parameters, [boolean $asValue])

Builds generic INPUT tags

final protected static string _inputFieldChecked (string $type, array $parameters)

Builds INPUT tags that implements the checked attribute

public static string colorField (array $parameters)

Builds a HTML input[type=”color”] tag

public static string textField (array $parameters)

Builds a HTML input[type=”text”] tag

<?php

 echo Phalcon\Tag::textField(array("name", "size" => 30));

public static string numericField (array $parameters)

Builds a HTML input[type=”number”] tag

<?php

 echo Phalcon\Tag::numericField(array("price", "min" => "1", "max" => "5"));

public static string rangeField (array $parameters)

Builds a HTML input[type=”range”] tag

public static string emailField (array $parameters)

Builds a HTML input[type=”email”] tag

<?php

 echo Phalcon\Tag::emailField("email");

public static string dateField (array $parameters)

Builds a HTML input[type=”date”] tag

<?php

 echo Phalcon\Tag::dateField(array("born", "value" => "14-12-1980"))

public static string dateTimeField (array $parameters)

Builds a HTML input[type=”datetime”] tag

public static string dateTimeLocalField (array $parameters)

Builds a HTML input[type=”datetime-local”] tag

public static string monthField (array $parameters)

Builds a HTML input[type=”month”] tag

public static string timeField (array $parameters)

Builds a HTML input[type=”time”] tag

public static string weekField (array $parameters)

Builds a HTML input[type=”week”] tag

public static string passwordField (array $parameters)

Builds a HTML input[type=”password”] tag

<?php

 echo Phalcon\Tag::passwordField(array("name", "size" => 30));

public static string hiddenField (array $parameters)

Builds a HTML input[type=”hidden”] tag

<?php

 echo Phalcon\Tag::hiddenField(array("name", "value" => "mike"));

public static string fileField (array $parameters)

Builds a HTML input[type=”file”] tag

<?php

 echo Phalcon\Tag::fileField("file");

public static string searchField (array $parameters)

Builds a HTML input[type=”search”] tag

public static string telField (array $parameters)

Builds a HTML input[type=”tel”] tag

public static string urlField (array $parameters)

Builds a HTML input[type=”url”] tag

public static string checkField (array $parameters)

Builds a HTML input[type=”check”] tag

<?php

 echo Phalcon\Tag::checkField(array("terms", "value" => "Y"));

Volt syntax:

<?php

 {{ check_field("terms") }}

public static string radioField (array $parameters)

Builds a HTML input[type=”radio”] tag

<?php

 echo Phalcon\Tag::radioField(array("weather", "value" => "hot"))

Volt syntax:

<?php

 {{ radio_field("Save") }}

public static string imageInput (array $parameters)

Builds a HTML input[type=”image”] tag

<?php

 echo Phalcon\Tag::imageInput(array("src" => "/img/button.png"));

Volt syntax:

<?php

 {{ image_input("src": "/img/button.png") }}

public static string submitButton (array $parameters)

Builds a HTML input[type=”submit”] tag

<?php

 echo Phalcon\Tag::submitButton("Save")

Volt syntax:

<?php

 {{ submit_button("Save") }}

public static string selectStatic (array $parameters, [array $data])

Builds a HTML SELECT tag using a PHP array for options

<?php

 echo Phalcon\Tag::selectStatic("status", array("A" => "Active", "I" => "Inactive"))

public static string select (array $parameters, [array $data])

Builds a HTML SELECT tag using a Phalcon\Mvc\Model resultset as options

<?php

 echo Phalcon\Tag::select([
 "robotId",
 Robots::find("type = "mechanical""),
 "using" => ["id", "name"]
]);

Volt syntax:

<?php

 {{ select("robotId", robots, "using": ["id", "name"]) }}

public static string textArea (array $parameters)

Builds a HTML TEXTAREA tag

<?php

 echo Phalcon\Tag::textArea(array("comments", "cols" => 10, "rows" => 4))

Volt syntax:

<?php

 {{ text_area("comments", "cols": 10, "rows": 4) }}

public static string form (array $parameters)

Builds a HTML FORM tag

<?php

 echo Phalcon\Tag::form("posts/save");
 echo Phalcon\Tag::form(array("posts/save", "method" => "post"));

Volt syntax:

<?php

 {{ form("posts/save") }}
 {{ form("posts/save", "method": "post") }}

public static endForm ()

Builds a HTML close FORM tag

public static setTitle (mixed $title)

Set the title of view content

<?php

 Phalcon\Tag::setTitle("Welcome to my Page");

public static setTitleSeparator (mixed $titleSeparator)

Set the title separator of view content

<?php

 Phalcon\Tag::setTitleSeparator("-");

public static appendTitle (mixed $title)

Appends a text to current document title

public static prependTitle (mixed $title)

Prepends a text to current document title

public static getTitle ([mixed $tags])

Gets the current document title. The title will be automatically escaped.

<?php

 echo Phalcon\Tag::getTitle();

<?php

 {{ get_title() }}

public static getTitleSeparator ()

Gets the current document title separator

<?php

 echo Phalcon\Tag::getTitleSeparator();

<?php

 {{ get_title_separator() }}

public static string stylesheetLink ([array $parameters], [boolean $local])

Builds a LINK[rel=”stylesheet”] tag

<?php

 echo Phalcon\Tag::stylesheetLink("http://fonts.googleapis.com/css?family=Rosario", false);
 echo Phalcon\Tag::stylesheetLink("css/style.css");

Volt Syntax:

<?php

 {{ stylesheet_link("http://fonts.googleapis.com/css?family=Rosario", false) }}
 {{ stylesheet_link("css/style.css") }}

public static string javascriptInclude ([array $parameters], [boolean $local])

Builds a SCRIPT[type=”javascript”] tag

<?php

 echo Phalcon\Tag::javascriptInclude("http://ajax.googleapis.com/ajax/libs/jquery/2.2.3/jquery.min.js", false);
 echo Phalcon\Tag::javascriptInclude("javascript/jquery.js");

Volt syntax:

<?php

 {{ javascript_include("http://ajax.googleapis.com/ajax/libs/jquery/2.2.3/jquery.min.js", false) }}
 {{ javascript_include("javascript/jquery.js") }}

public static string image ([array $parameters], [boolean $local])

Builds HTML IMG tags

<?php

 echo Phalcon\Tag::image("img/bg.png");
 echo Phalcon\Tag::image(array("img/photo.jpg", "alt" => "Some Photo"));

Volt Syntax:

<?php

 {{ image("img/bg.png") }}
 {{ image("img/photo.jpg", "alt": "Some Photo") }}
 {{ image("http://static.mywebsite.com/img/bg.png", false) }}

public static friendlyTitle (mixed $text, [mixed $separator], [mixed $lowercase], [mixed $replace])

Converts texts into URL-friendly titles

<?php

 echo Phalcon\Tag::friendlyTitle("These are big important news", "-")

public static setDocType (mixed $doctype)

Set the document type of content

public static getDocType ()

Get the document type declaration of content

public static tagHtml (mixed $tagName, [mixed $parameters], [mixed $selfClose], [mixed $onlyStart], [mixed $useEol])

Builds a HTML tag

<?php

 echo Phalcon\Tag::tagHtml(name, parameters, selfClose, onlyStart, eol);

public static tagHtmlClose (mixed $tagName, [mixed $useEol])

Builds a HTML tag closing tag

<?php

 echo Phalcon\Tag::tagHtmlClose("script", true)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Tag\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Tag\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Tag\Select

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Tag\Select

Source on GitHub

Generates a SELECT html tag using a static array of values or a Phalcon\Mvc\Model resultset

Methods

public static selectField (array $parameters, [array $data])

Generates a SELECT tag

private static _optionsFromResultset (Phalcon\Mvc\Model\Resultset $resultset, array $using, mixed $value, string $closeOption)

Generate the OPTION tags based on a resultset

private static _optionsFromArray (array $data, mixed $value, string $closeOption)

Generate the OPTION tags based on an array

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Text

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Text

Source on GitHub

Provides utilities to work with texts

Constants

integer RANDOM_ALNUM

integer RANDOM_ALPHA

integer RANDOM_HEXDEC

integer RANDOM_NUMERIC

integer RANDOM_NOZERO

Methods

public static camelize (mixed $str, [mixed $delimiter])

Converts strings to camelize style

<?php

 echo Phalcon\Text::camelize('coco_bongo'); // CocoBongo
 echo Phalcon\Text::camelize('co_co-bon_go', '-'); // Co_coBon_go
 echo Phalcon\Text::camelize('co_co-bon_go', '_-'); // CoCoBonGo

public static uncamelize (mixed $str, [mixed $delimiter])

Uncamelize strings which are camelized

<?php

 echo Phalcon\Text::uncamelize('CocoBongo'); // coco_bongo
 echo Phalcon\Text::uncamelize('CocoBongo', '-'); // coco-bongo

public static increment (mixed $str, [mixed $separator])

Adds a number to a string or increment that number if it already is defined

<?php

 echo Phalcon\Text::increment("a"); // "a_1"
 echo Phalcon\Text::increment("a_1"); // "a_2"

public static random ([mixed $type], [mixed $length])

Generates a random string based on the given type. Type is one of the RANDOM_* constants

<?php

 echo Phalcon\Text::random(Phalcon\Text::RANDOM_ALNUM); //"aloiwkqz"

public static startsWith (mixed $str, mixed $start, [mixed $ignoreCase])

Check if a string starts with a given string

<?php

 echo Phalcon\Text::startsWith("Hello", "He"); // true
 echo Phalcon\Text::startsWith("Hello", "he", false); // false
 echo Phalcon\Text::startsWith("Hello", "he"); // true

public static endsWith (mixed $str, mixed $end, [mixed $ignoreCase])

Check if a string ends with a given string

<?php

 echo Phalcon\Text::endsWith("Hello", "llo"); // true
 echo Phalcon\Text::endsWith("Hello", "LLO", false); // false
 echo Phalcon\Text::endsWith("Hello", "LLO"); // true

public static lower (mixed $str, [mixed $encoding])

Lowercases a string, this function makes use of the mbstring extension if available

<?php

 echo Phalcon\Text::lower("HELLO"); // hello

public static upper (mixed $str, [mixed $encoding])

Uppercases a string, this function makes use of the mbstring extension if available

<?php

 echo Phalcon\Text::upper("hello"); // HELLO

public static reduceSlashes (mixed $str)

Reduces multiple slashes in a string to single slashes

<?php

 echo Phalcon\Text::reduceSlashes("foo//bar/baz"); // foo/bar/baz
 echo Phalcon\Text::reduceSlashes("http://foo.bar///baz/buz"); // http://foo.bar/baz/buz

public static concat ()

Concatenates strings using the separator only once without duplication in places concatenation

<?php

 $str = Phalcon\Text::concat("/", "/tmp/", "/folder_1/", "/folder_2", "folder_3/");
 echo $str; // /tmp/folder_1/folder_2/folder_3/

public static dynamic (mixed $text, [mixed $leftDelimiter], [mixed $rightDelimiter], [mixed $separator])

Generates random text in accordance with the template

<?php

 echo Phalcon\Text::dynamic("{Hi|Hello}, my name is a {Bob|Mark|Jon}!"); // Hi my name is a Bob
 echo Phalcon\Text::dynamic("{Hi|Hello}, my name is a {Bob|Mark|Jon}!"); // Hi my name is a Jon
 echo Phalcon\Text::dynamic("{Hi|Hello}, my name is a {Bob|Mark|Jon}!"); // Hello my name is a Bob
 echo Phalcon\Text::dynamic("[Hi/Hello], my name is a [Zyxep/Mark]!", '[', ']', '/'); // Hello my name is a Zyxep

public static underscore (mixed $text)

Makes a phrase underscored instead of spaced

<?php

 echo Phalcon\Text::underscore('look behind'); // 'look_behind'
 echo Phalcon\Text::underscore('Awesome Phalcon'); // 'Awesome_Phalcon'

public static humanize (mixed $text)

Makes an underscored or dashed phrase human-readable

<?php

 echo Phalcon\Text::humanize('start-a-horse'); // 'start a horse'
 echo Phalcon\Text::humanize('five_cats'); // 'five cats'

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Translate

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Translate

Source on GitHub

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Translate\Adapter

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Translate\Adapter

Source on GitHub

Base class for Phalcon\Translate adapters

Methods

public __construct (array $options)

...

public setInterpolator (Phalcon\Translate\InterpolatorInterface $interpolator)

...

public string t (string $translateKey, [array $placeholders])

Returns the translation string of the given key

public string _ (string $translateKey, [array $placeholders])

Returns the translation string of the given key (alias of method ‘t’)

public offsetSet (string $offset, string $value)

Sets a translation value

public offsetExists (mixed $translateKey)

Check whether a translation key exists

public offsetUnset (string $offset)

Unsets a translation from the dictionary

public string offsetGet (string $translateKey)

Returns the translation related to the given key

protected replacePlaceholders (mixed $translation, [mixed $placeholders])

Replaces placeholders by the values passed

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Translate\Adapter\Csv

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Translate\Adapter\Csv

extends abstract class Phalcon\Translate\Adapter

implements Phalcon\Translate\AdapterInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Allows to define translation lists using CSV file

Methods

public __construct (array $options)

Phalcon\Translate\Adapter\Csv constructor

private _load (string $file, int $length, string $delimiter, string $enclosure)

Load translates from file

public query (mixed $index, [mixed $placeholders])

Returns the translation related to the given key

public exists (mixed $index)

Check whether is defined a translation key in the internal array

public setInterpolator (Phalcon\Translate\InterpolatorInterface $interpolator) inherited from Phalcon\Translate\Adapter

...

public string t (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key

public string _ (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key (alias of method ‘t’)

public offsetSet (string $offset, string $value) inherited from Phalcon\Translate\Adapter

Sets a translation value

public offsetExists (mixed $translateKey) inherited from Phalcon\Translate\Adapter

Check whether a translation key exists

public offsetUnset (string $offset) inherited from Phalcon\Translate\Adapter

Unsets a translation from the dictionary

public string offsetGet (string $translateKey) inherited from Phalcon\Translate\Adapter

Returns the translation related to the given key

protected replacePlaceholders (mixed $translation, [mixed $placeholders]) inherited from Phalcon\Translate\Adapter

Replaces placeholders by the values passed

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Translate\Adapter\Gettext

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Translate\Adapter\Gettext

extends abstract class Phalcon\Translate\Adapter

implements Phalcon\Translate\AdapterInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Allows translate using gettext

Methods

public getDirectory ()

public getDefaultDomain ()

public getLocale ()

public getCategory ()

public __construct (array $options)

Phalcon\Translate\Adapter\Gettext constructor

public string query (string $index, [array $placeholders])

Returns the translation related to the given key

public exists (mixed $index)

Check whether is defined a translation key in the internal array

public nquery (mixed $msgid1, mixed $msgid2, mixed $count, [mixed $placeholders], [mixed $domain])

The plural version of gettext(). Some languages have more than one form for plural messages dependent on the count.

public setDomain (mixed $domain)

Changes the current domain (i.e. the translation file)

public resetDomain ()

Sets the default domain

public setDefaultDomain (mixed $domain)

Sets the domain default to search within when calls are made to gettext()

public setDirectory (mixed $directory)

Sets the path for a domain

<?php

 // Set the directory path
 $gettext->setDirectory('/path/to/the/messages');

 // Set the domains and directories path
 $gettext->setDirectory([
 'messages' => '/path/to/the/messages',
 'another' => '/path/to/the/another'
]);

public setLocale (mixed $category, mixed $locale)

Sets locale information

<?php

 // Set locale to Dutch
 $gettext->setLocale(LC_ALL, 'nl_NL');

 // Try different possible locale names for german
 $gettext->setLocale(LC_ALL, 'de_DE@euro', 'de_DE', 'de', 'ge');

protected prepareOptions (array $options)

Validator for constructor

protected getOptionsDefault ()

Gets default options

public setInterpolator (Phalcon\Translate\InterpolatorInterface $interpolator) inherited from Phalcon\Translate\Adapter

...

public string t (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key

public string _ (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key (alias of method ‘t’)

public offsetSet (string $offset, string $value) inherited from Phalcon\Translate\Adapter

Sets a translation value

public offsetExists (mixed $translateKey) inherited from Phalcon\Translate\Adapter

Check whether a translation key exists

public offsetUnset (string $offset) inherited from Phalcon\Translate\Adapter

Unsets a translation from the dictionary

public string offsetGet (string $translateKey) inherited from Phalcon\Translate\Adapter

Returns the translation related to the given key

protected replacePlaceholders (mixed $translation, [mixed $placeholders]) inherited from Phalcon\Translate\Adapter

Replaces placeholders by the values passed

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Translate\Adapter\NativeArray

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Translate\Adapter\NativeArray

extends abstract class Phalcon\Translate\Adapter

implements Phalcon\Translate\AdapterInterface, ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Allows to define translation lists using PHP arrays

Methods

public __construct (array $options)

Phalcon\Translate\Adapter\NativeArray constructor

public query (mixed $index, [mixed $placeholders])

Returns the translation related to the given key

public exists (mixed $index)

Check whether is defined a translation key in the internal array

public setInterpolator (Phalcon\Translate\InterpolatorInterface $interpolator) inherited from Phalcon\Translate\Adapter

...

public string t (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key

public string _ (string $translateKey, [array $placeholders]) inherited from Phalcon\Translate\Adapter

Returns the translation string of the given key (alias of method ‘t’)

public offsetSet (string $offset, string $value) inherited from Phalcon\Translate\Adapter

Sets a translation value

public offsetExists (mixed $translateKey) inherited from Phalcon\Translate\Adapter

Check whether a translation key exists

public offsetUnset (string $offset) inherited from Phalcon\Translate\Adapter

Unsets a translation from the dictionary

public string offsetGet (string $translateKey) inherited from Phalcon\Translate\Adapter

Returns the translation related to the given key

protected replacePlaceholders (mixed $translation, [mixed $placeholders]) inherited from Phalcon\Translate\Adapter

Replaces placeholders by the values passed

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Translate\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Translate\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Translate\Interpolator\AssociativeArray

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Translate\Interpolator\AssociativeArray

implements Phalcon\Translate\InterpolatorInterface

Source on GitHub

Methods

public replacePlaceholders (mixed $translation, [mixed $placeholders])

Replaces placeholders by the values passed

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Translate\Interpolator\IndexedArray

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Translate\Interpolator\IndexedArray

implements Phalcon\Translate\InterpolatorInterface

Source on GitHub

Methods

public replacePlaceholders (mixed $translation, [mixed $placeholders])

Replaces placeholders by the values passed

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation

extends abstract class Phalcon\Di\Injectable

implements Phalcon\Events\EventsAwareInterface, Phalcon\Di\InjectionAwareInterface, Phalcon\ValidationInterface

Source on GitHub

Allows to validate data using custom or built-in validators

Methods

public setValidators (mixed $validators)

...

public __construct ([array $validators])

Phalcon\Validation constructor

public Phalcon\Validation\Message\Group validate ([array | object $data], [object $entity])

Validate a set of data according to a set of rules

public add (mixed $field, Phalcon\Validation\ValidatorInterface $validator)

Adds a validator to a field

public rule (mixed $field, Phalcon\Validation\ValidatorInterface $validator)

Alias of add method

public rules (mixed $field, array $validators)

Adds the validators to a field

public Phalcon\Validation setFilters (string $field, array | string $filters)

Adds filters to the field

public mixed getFilters ([string $field])

Returns all the filters or a specific one

public getValidators ()

Returns the validators added to the validation

public setEntity (object $entity)

Sets the bound entity

public object getEntity ()

Returns the bound entity

public setDefaultMessages ([array $messages])

Adds default messages to validators

public getDefaultMessage (mixed $type)

Get default message for validator type

public getMessages ()

Returns the registered validators

public setLabels (array $labels)

Adds labels for fields

public string getLabel (string $field)

Get label for field

public appendMessage (Phalcon\Validation\MessageInterface $message)

Appends a message to the messages list

public Phalcon\Validation bind (object $entity, array | object $data)

Assigns the data to an entity The entity is used to obtain the validation values

public mixed getValue (string $field)

Gets the a value to validate in the array/object data source

protected preChecking (mixed $field, Phalcon\Validation\ValidatorInterface $validator)

Internal validations, if it returns true, then skip the current validator

public setDI (Phalcon\DiInterface $dependencyInjector) inherited from Phalcon\Di\Injectable

Sets the dependency injector

public getDI () inherited from Phalcon\Di\Injectable

Returns the internal dependency injector

public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager) inherited from Phalcon\Di\Injectable

Sets the event manager

public getEventsManager () inherited from Phalcon\Di\Injectable

Returns the internal event manager

public __get (mixed $propertyName) inherited from Phalcon\Di\Injectable

Magic method __get

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Validation\CombinedFieldsValidator

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Validation\CombinedFieldsValidator

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Methods

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

abstract public validate (Phalcon\Validation $validation, mixed $attribute) inherited from Phalcon\Validation\Validator

Executes the validation

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Exception

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Exception

extends class Phalcon\Exception

implements Throwable [http://php.net/manual/en/class.throwable.php]

Source on GitHub

Methods

final private Exception [http://php.net/manual/en/class.exception.php] __clone () inherited from Exception [http://php.net/manual/en/class.exception.php]

Clone the exception

public __construct ([string $message], [int $code], [Exception [http://php.net/manual/en/class.exception.php] $previous]) inherited from Exception [http://php.net/manual/en/class.exception.php]

Exception constructor

public __wakeup () inherited from Exception [http://php.net/manual/en/class.exception.php]

...

final public string getMessage () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception message

final public int getCode () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the Exception code

final public string getFile () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the file in which the exception occurred

final public int getLine () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the line in which the exception occurred

final public array getTrace () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace

final public Exception [http://php.net/manual/en/class.exception.php] getPrevious () inherited from Exception [http://php.net/manual/en/class.exception.php]

Returns previous Exception

final public Exception [http://php.net/manual/en/class.exception.php] getTraceAsString () inherited from Exception [http://php.net/manual/en/class.exception.php]

Gets the stack trace as a string

public string __toString () inherited from Exception [http://php.net/manual/en/class.exception.php]

String representation of the exception

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Message

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Message

implements Phalcon\Validation\MessageInterface

Source on GitHub

Encapsulates validation info generated in the validation process

Methods

public __construct (mixed $message, [mixed $field], [mixed $type], [mixed $code])

Phalcon\Validation\Message constructor

public setType (mixed $type)

Sets message type

public getType ()

Returns message type

public setMessage (mixed $message)

Sets verbose message

public getMessage ()

Returns verbose message

public setField (mixed $field)

Sets field name related to message

public mixed getField ()

Returns field name related to message

public setCode (mixed $code)

Sets code for the message

public getCode ()

Returns the message code

public __toString ()

Magic __toString method returns verbose message

public static __set_state (array $message)

Magic __set_state helps to recover messsages from serialization

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Message\Group

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Message\Group

implements Countable [http://php.net/manual/en/class.countable.php], ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Iterator [http://php.net/manual/en/class.iterator.php], Traversable [http://php.net/manual/en/class.traversable.php]

Source on GitHub

Represents a group of validation messages

Methods

public __construct ([array $messages])

Phalcon\Validation\Message\Group constructor

public Phalcon\Validation\Message offsetGet (int $index)

Gets an attribute a message using the array syntax

<?php

 print_r($messages[0]);

public offsetSet (int $index, Phalcon\Validation\Message $message)

Sets an attribute using the array-syntax

<?php

 $messages[0] = new \Phalcon\Validation\Message('This is a message');

public boolean offsetExists (int $index)

Checks if an index exists

<?php

 var_dump(isset($message['database']));

public offsetUnset (string $index)

Removes a message from the list

<?php

 unset($message['database']);

public appendMessage (Phalcon\Validation\MessageInterface $message)

Appends a message to the group

<?php

 $messages->appendMessage(new \Phalcon\Validation\Message('This is a message'));

public appendMessages (Phalcon\Validation\MessageInterface[] $messages)

Appends an array of messages to the group

<?php

 $messages->appendMessages($messagesArray);

public array filter (string $fieldName)

Filters the message group by field name

public count ()

Returns the number of messages in the list

public rewind ()

Rewinds the internal iterator

public current ()

Returns the current message in the iterator

public key ()

Returns the current position/key in the iterator

public next ()

Moves the internal iteration pointer to the next position

public valid ()

Check if the current message in the iterator is valid

public static Phalcon\Validation\Message\Group __set_state (array $group)

Magic __set_state helps to re-build messages variable when exporting

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Abstract class Phalcon\Validation\Validator

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

This is a base class for validators

Methods

public __construct ([array $options])

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key)

Checks if an option has been defined

public hasOption (mixed $key)

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue])

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value)

Sets an option in the validator

abstract public validate (Phalcon\Validation $validation, mixed $attribute)

Executes the validation

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Alnum

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Alnum

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check for alphanumeric character(s)

<?php

 use Phalcon\Validation\Validator\Alnum as AlnumValidator;

 $validator->add('username', new AlnumValidator([
 'message' => ':field must contain only alphanumeric characters'
]));

 $validator->add(['username', 'name'], new AlnumValidator([
 'message' => [
 'username' => 'username must contain only alphanumeric characters',
 'name' => 'name must contain only alphanumeric characters'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Alpha

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Alpha

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check for alphabetic character(s)

<?php

 use Phalcon\Validation\Validator\Alpha as AlphaValidator;

 $validator->add('username', new AlphaValidator([
 'message' => ':field must contain only letters'
]));

 $validator->add(['username', 'name'], new AlphaValidator([
 'message' => [
 'username' => 'username must contain only letters',
 'name' => 'name must contain only letters'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Between

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Between

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Validates that a value is between an inclusive range of two values. For a value x, the test is passed if minimum<=x<=maximum.

<?php

 use Phalcon\Validation\Validator\Between;

 $validator->add('price', new Between([
 'minimum' => 0,
 'maximum' => 100,
 'message' => 'The price must be between 0 and 100'
]));

 $validator->add(['price', 'amount'], new Between([
 'minimum' => [
 'price' => 0,
 'amount' => 0
],
 'maximum' => [
 'price' => 100,
 'amount' => 50
],
 'message' => [
 'price' => 'The price must be between 0 and 100',
 'amount' => 'The amount must be between 0 and 50'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Confirmation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Confirmation

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks that two values have the same value

<?php

 use Phalcon\Validation\Validator\Confirmation;

 $validator->add('password', new Confirmation([
 'message' => 'Password doesn\'t match confirmation',
 'with' => 'confirmPassword'
]));

 $validator->add(['password', 'email'], new Confirmation([
 'message' => [
 'password' => 'Password doesn\'t match confirmation',
 'email' => 'Email doesn\'t match confirmation'
],
 'with' => [
 'password => 'confirmPassword',
 'email' => 'confirmEmail'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

final protected compare (mixed $a, mixed $b)

Compare strings

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\CreditCard

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\CreditCard

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks if a value has a valid credit card number

<?php

 use Phalcon\Validation\Validator\CreditCard as CreditCardValidator;

 $validator->add('creditcard', new CreditCardValidator([
 'message' => 'The credit card number is not valid'
]));

 $validator->add(['creditcard', 'secondCreditCard'], new CreditCardValidator([
 'message' => [
 'creditcard' => 'The credit card number is not valid',
 'secondCreditCard' => 'The second credit card number is not valid'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

private boolean verifyByLuhnAlgorithm (string $number)

is a simple checksum formula used to validate a variety of identification numbers

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Date

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Date

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks if a value is a valid date

<?php

 use Phalcon\Validation\Validator\Date as DateValidator;

 $validator->add('date', new DateValidator([
 'format' => 'd-m-Y',
 'message' => 'The date is invalid'
]));

 $validator->add(['date','anotherDate'], new DateValidator([
 'format' => [
 'date' => 'd-m-Y',
 'anotherDate' => 'Y-m-d'
],
 'message' => [
 'date' => 'The date is invalid',
 'anotherDate' => 'The another date is invalid'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

private checkDate (mixed $value, mixed $format)

...

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Digit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Digit

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check for numeric character(s)

<?php

 use Phalcon\Validation\Validator\Digit as DigitValidator;

 $validator->add('height', new DigitValidator([
 'message' => ':field must be numeric'
]));

 $validator->add(['height', 'width'], new DigitValidator([
 'message' => [
 'height' => 'height must be numeric',
 'width' => 'width must be numeric'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Email

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Email

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks if a value has a correct e-mail format

<?php

 use Phalcon\Validation\Validator\Email as EmailValidator;

 $validator->add('email', new EmailValidator([
 'message' => 'The e-mail is not valid'
]));

 $validator->add(['email', 'anotherEmail'], new EmailValidator([
 'message' => [
 'email' => 'The e-mail is not valid',
 'anotherEmail' => 'The another e-mail is not valid'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\ExclusionIn

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\ExclusionIn

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check if a value is not included into a list of values

<?php

 use Phalcon\Validation\Validator\ExclusionIn;

 $validator->add('status', new ExclusionIn([
 'message' => 'The status must not be A or B',
 'domain' => ['A', 'B']
]));

 $validator->add(['status', 'type'], new ExclusionIn([
 'message' => [
 'status' => 'The status must not be A or B',
 'type' => 'The type must not be 1 or 2'
],
 'domain' => [
 'status' => ['A', 'B'],
 'type' => [1, 2]
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\File

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\File

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks if a value has a correct file

<?php

 use Phalcon\Validation\Validator\File as FileValidator;

 $validator->add('file', new FileValidator([
 'maxSize' => '2M',
 'messageSize' => ':field exceeds the max filesize (:max)',
 'allowedTypes' => array('image/jpeg', 'image/png'),
 'messageType' => 'Allowed file types are :types',
 'maxResolution' => '800x600',
 'messageMaxResolution' => 'Max resolution of :field is :max'
]));

 $validator->add(['file', 'anotherFile'], new FileValidator([
 'maxSize' => [
 'file' => '2M',
 'anotherFile' => '4M'
],
 'messageSize' => [
 'file' => 'file exceeds the max filesize 2M',
 'anotherFile' => 'anotherFile exceeds the max filesize 4M',
 'allowedTypes' => [
 'file' => ['image/jpeg', 'image/png'],
 'anotherFile' => ['image/gif', 'image/bmp']
],
 'messageType' => [
 'file' => 'Allowed file types are image/jpeg and image/png',
 'anotherFile' => 'Allowed file types are image/gif and image/bmp'
],
 'maxResolution' => [
 'file' => '800x600',
 'anotherFile' => '1024x768'
],
 'messageMaxResolution' => [
 'file' => 'Max resolution of file is 800x600',
 'anotherFile' => 'Max resolution of file is 1024x768'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public isAllowEmpty (Phalcon\Validation $validation, mixed $field)

Check on empty

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Identical

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Identical

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks if a value is identical to other

<?php

 use Phalcon\Validation\Validator\Identical;

 $validator->add('terms', new Identical([
 'accepted' => 'yes',
 'message' => 'Terms and conditions must be accepted'
]));

 $validator->add(['terms', 'anotherTerms'], new Identical([
 'accepted' => [
 'terms' => 'yes',
 'anotherTerms' => 'yes'
],
 'message' => [
 'terms' => 'Terms and conditions must be accepted',
 'anotherTerms' => 'Another terms must be accepted'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\InclusionIn

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\InclusionIn

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check if a value is included into a list of values

<?php

 use Phalcon\Validation\Validator\InclusionIn;

 $validator->add('status', new InclusionIn([
 'message' => 'The status must be A or B',
 'domain' => array('A', 'B')
]));

 $validator->add(['status', 'type'], new InclusionIn([
 'message' => [
 'status' => 'The status must be A or B',
 'type' => 'The status must be 1 or 2'
],
 'domain' => [
 'status' => ['A', 'B'],
 'type' => [1, 2]
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Numericality

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Numericality

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check for a valid numeric value

<?php

 use Phalcon\Validation\Validator\Numericality;

 $validator->add('price', new Numericality([
 'message' => ':field is not numeric'
]));

 $validator->add(['price', 'amount'], new Numericality([
 'message' => [
 'price' => 'price is not numeric',
 'amount' => 'amount is not numeric'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\PresenceOf

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\PresenceOf

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Validates that a value is not null or empty string

<?php

 use Phalcon\Validation\Validator\PresenceOf;

 $validator->add('name', new PresenceOf([
 'message' => 'The name is required'
]));

 $validator->add(['name', 'email'], new PresenceOf([
 'message' => [
 'name' => 'The name is required',
 'email' => 'The email is required'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Regex

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Regex

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Allows validate if the value of a field matches a regular expression

<?php

 use Phalcon\Validation\Validator\Regex as RegexValidator;

 $validator->add('created_at', new RegexValidator([
 'pattern' => '/^[0-9]{4}[-\/](0[1-9]|1[12])[-\/](0[1-9]|[12][0-9]|3[01])$/',
 'message' => 'The creation date is invalid'
]));

 $validator->add(['created_at', 'name'], new RegexValidator([
 'pattern' => [
 'created_at' => '/^[0-9]{4}[-\/](0[1-9]|1[12])[-\/](0[1-9]|[12][0-9]|3[01])$/',
 'name' => '/^[a-z]$/'
],
 'message' => [
 'created_at' => 'The creation date is invalid',
 'name' => ' 'The name is invalid'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\StringLength

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\StringLength

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Validates that a string has the specified maximum and minimum constraints The test is passed if for a string’s length L, min<=L<=max, i.e. L must be at least min, and at most max.

<?php

 use Phalcon\Validation\Validator\StringLength as StringLength;

 $validation->add('name_last', new StringLength([
 'max' => 50,
 'min' => 2,
 'messageMaximum' => 'We don\'t like really long names',
 'messageMinimum' => 'We want more than just their initials'
]));

 $validation->add(['name_last', 'name_first'], new StringLength([
 'max' => [
 'name_last' => 50,
 'name_first' => 40
],
 'min' => [
 'name_last' => 2,
 'name_first' => 4
],
 'messageMaximum' => [
 'name_last' => 'We don\'t like really long last names',
 'name_first' => 'We don\'t like really long first names'
],
 'messageMinimum' => [
 'name_last' => 'We don\'t like too short last names',
 'name_first' => 'We don\'t like too short first names',
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Uniqueness

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Uniqueness

extends abstract class Phalcon\Validation\CombinedFieldsValidator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Check that a field is unique in the related table

<?php

 use Phalcon\Validation\Validator\Uniqueness as UniquenessValidator;

 $validator->add('username', new UniquenessValidator([
 'model' => new Users(),
 'message' => ':field must be unique'
]));

Different attribute from the field:

<?php

 $validator->add('username', new UniquenessValidator([
 'model' => new Users(),
 'attribute' => 'nick'
]));

In model:

<?php

 $validator->add('username', new UniquenessValidator());

Combination of fields in model:

<?php

 $validator->add(['firstName', 'lastName'], new UniquenessValidator());

It is possible to convert values before validation. This is useful in situations where values need to be converted to do the database lookup:

<?php

 $validator->add('username', new UniquenessValidator([
 'convert' => function (array $values) {
 $values['username'] = strtolower($values['username']);

 return $values;
 }
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

protected isUniqueness (Phalcon\Validation $validation, mixed $field)

...

protected getColumnNameReal (mixed $record, mixed $field)

The column map is used in the case to get real column name

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Validation\Validator\Url

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Validation\Validator\Url

extends abstract class Phalcon\Validation\Validator

implements Phalcon\Validation\ValidatorInterface

Source on GitHub

Checks if a value has a url format

<?php

 use Phalcon\Validation\Validator\Url as UrlValidator;

 $validator->add('url', new UrlValidator([
 'message' => ':field must be a url'
]));

 $validator->add(['url', 'homepage'], new UrlValidator([
 'message' => [
 'url' => 'url must be a url',
 'homepage' => 'homepage must be a url'
]
]));

Methods

public validate (Phalcon\Validation $validation, mixed $field)

Executes the validation

public __construct ([array $options]) inherited from Phalcon\Validation\Validator

Phalcon\Validation\Validator constructor

public isSetOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option has been defined

public hasOption (mixed $key) inherited from Phalcon\Validation\Validator

Checks if an option is defined

public getOption (mixed $key, [mixed $defaultValue]) inherited from Phalcon\Validation\Validator

Returns an option in the validator’s options Returns null if the option hasn’t set

public setOption (mixed $key, mixed $value) inherited from Phalcon\Validation\Validator

Sets an option in the validator

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Class Phalcon\Version

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Class Phalcon\Version

Source on GitHub

This class allows to get the installed version of the framework

Constants

integer VERSION_MAJOR

integer VERSION_MEDIUM

integer VERSION_MINOR

integer VERSION_SPECIAL

integer VERSION_SPECIAL_NUMBER

Methods

protected static _getVersion ()

Area where the version number is set. The format is as follows: ABBCCDE A - Major version B - Med version (two digits) C - Min version (two digits) D - Special release: 1 = Alpha, 2 = Beta, 3 = RC, 4 = Stable E - Special release version i.e. RC1, Beta2 etc.

final protected static _getSpecial (mixed $special)

Translates a number to a special release If Special release = 1 this function will return ALPHA

public static get ()

Returns the active version (string)

<?php

 echo Phalcon\Version::get();

public static getId ()

Returns the numeric active version

<?php

 echo Phalcon\Version::getId();

public static getPart (mixed $part)

Returns a specific part of the version. If the wrong parameter is passed it will return the full version

<?php

 echo Phalcon\Version::getPart(Phalcon\Version::VERSION_MAJOR);

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Acl\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Acl\AdapterInterface

Source on GitHub

Methods

abstract public setDefaultAction (mixed $defaultAccess)

...

abstract public getDefaultAction ()

...

abstract public setNoArgumentsDefaultAction (mixed $defaultAccess)

...

abstract public getNoArgumentsDefaultAction ()

...

abstract public addRole (mixed $role, [mixed $accessInherits])

...

abstract public addInherit (mixed $roleName, mixed $roleToInherit)

...

abstract public isRole (mixed $roleName)

...

abstract public isResource (mixed $resourceName)

...

abstract public addResource (mixed $resourceObject, mixed $accessList)

...

abstract public addResourceAccess (mixed $resourceName, mixed $accessList)

...

abstract public dropResourceAccess (mixed $resourceName, mixed $accessList)

...

abstract public allow (mixed $roleName, mixed $resourceName, mixed $access, [mixed $func])

...

abstract public deny (mixed $roleName, mixed $resourceName, mixed $access, [mixed $func])

...

abstract public isAllowed (mixed $roleName, mixed $resourceName, mixed $access, [array $parameters])

...

abstract public getActiveRole ()

...

abstract public getActiveResource ()

...

abstract public getActiveAccess ()

...

abstract public getRoles ()

...

abstract public getResources ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Acl\ResourceAware

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Acl\ResourceAware

Source on GitHub

Methods

abstract public getResourceName ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Acl\ResourceInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Acl\ResourceInterface

Source on GitHub

Methods

abstract public getName ()

...

abstract public getDescription ()

...

abstract public __toString ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Acl\RoleAware

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Acl\RoleAware

Source on GitHub

Methods

abstract public getRoleName ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Acl\RoleInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Acl\RoleInterface

Source on GitHub

Methods

abstract public getName ()

...

abstract public getDescription ()

...

abstract public __toString ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Annotations\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Annotations\AdapterInterface

Source on GitHub

Methods

abstract public setReader (Phalcon\Annotations\ReaderInterface $reader)

...

abstract public getReader ()

...

abstract public get (mixed $className)

...

abstract public getMethods (mixed $className)

...

abstract public getMethod (mixed $className, mixed $methodName)

...

abstract public getProperties (mixed $className)

...

abstract public getProperty (mixed $className, mixed $propertyName)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Annotations\ReaderInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Annotations\ReaderInterface

Source on GitHub

Methods

abstract public parse (mixed $className)

...

abstract public static parseDocBlock (mixed $docBlock, [mixed $file], [mixed $line])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Assets\FilterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Assets\FilterInterface

Source on GitHub

Methods

abstract public filter (mixed $content)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Cache\BackendInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Cache\BackendInterface

Source on GitHub

Methods

abstract public start (mixed $keyName, [mixed $lifetime])

...

abstract public stop ([mixed $stopBuffer])

...

abstract public getFrontend ()

...

abstract public getOptions ()

...

abstract public isFresh ()

...

abstract public isStarted ()

...

abstract public setLastKey (mixed $lastKey)

...

abstract public getLastKey ()

...

abstract public get (mixed $keyName, [mixed $lifetime])

...

abstract public save ([mixed $keyName], [mixed $content], [mixed $lifetime], [mixed $stopBuffer])

...

abstract public delete (mixed $keyName)

...

abstract public queryKeys ([mixed $prefix])

...

abstract public exists ([mixed $keyName], [mixed $lifetime])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Cache\FrontendInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Cache\FrontendInterface

Source on GitHub

Methods

abstract public getLifetime ()

...

abstract public isBuffering ()

...

abstract public start ()

...

abstract public getContent ()

...

abstract public stop ()

...

abstract public beforeStore (mixed $data)

...

abstract public afterRetrieve (mixed $data)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Cli\DispatcherInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Cli\DispatcherInterface

implements Phalcon\DispatcherInterface

Source on GitHub

Methods

abstract public setTaskSuffix (mixed $taskSuffix)

...

abstract public setDefaultTask (mixed $taskName)

...

abstract public setTaskName (mixed $taskName)

...

abstract public getTaskName ()

...

abstract public getLastTask ()

...

abstract public getActiveTask ()

...

abstract public setActionSuffix (mixed $actionSuffix) inherited from Phalcon\DispatcherInterface

...

abstract public getActionSuffix () inherited from Phalcon\DispatcherInterface

...

abstract public setDefaultNamespace (mixed $defaultNamespace) inherited from Phalcon\DispatcherInterface

...

abstract public setDefaultAction (mixed $actionName) inherited from Phalcon\DispatcherInterface

...

abstract public setNamespaceName (mixed $namespaceName) inherited from Phalcon\DispatcherInterface

...

abstract public setModuleName (mixed $moduleName) inherited from Phalcon\DispatcherInterface

...

abstract public setActionName (mixed $actionName) inherited from Phalcon\DispatcherInterface

...

abstract public getActionName () inherited from Phalcon\DispatcherInterface

...

abstract public setParams (mixed $params) inherited from Phalcon\DispatcherInterface

...

abstract public getParams () inherited from Phalcon\DispatcherInterface

...

abstract public setParam (mixed $param, mixed $value) inherited from Phalcon\DispatcherInterface

...

abstract public getParam (mixed $param, [mixed $filters]) inherited from Phalcon\DispatcherInterface

...

abstract public hasParam (mixed $param) inherited from Phalcon\DispatcherInterface

...

abstract public isFinished () inherited from Phalcon\DispatcherInterface

...

abstract public getReturnedValue () inherited from Phalcon\DispatcherInterface

...

abstract public dispatch () inherited from Phalcon\DispatcherInterface

...

abstract public forward (mixed $forward) inherited from Phalcon\DispatcherInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Cli\RouterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Cli\RouterInterface

Source on GitHub

Methods

abstract public setDefaultModule (mixed $moduleName)

...

abstract public setDefaultTask (mixed $taskName)

...

abstract public setDefaultAction (mixed $actionName)

...

abstract public setDefaults (array $defaults)

...

abstract public handle ([mixed $arguments])

...

abstract public add (mixed $pattern, [mixed $paths])

...

abstract public getModuleName ()

...

abstract public getTaskName ()

...

abstract public getActionName ()

...

abstract public getParams ()

...

abstract public getMatchedRoute ()

...

abstract public getMatches ()

...

abstract public wasMatched ()

...

abstract public getRoutes ()

...

abstract public getRouteById (mixed $id)

...

abstract public getRouteByName (mixed $name)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Cli\Router\RouteInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Cli\Router\RouteInterface

Source on GitHub

Methods

abstract public compilePattern (mixed $pattern)

...

abstract public reConfigure (mixed $pattern, [mixed $paths])

...

abstract public getName ()

...

abstract public setName (mixed $name)

...

abstract public getRouteId ()

...

abstract public getPattern ()

...

abstract public getCompiledPattern ()

...

abstract public getPaths ()

...

abstract public getReversedPaths ()

...

abstract public static reset ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Cli\TaskInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Cli\TaskInterface

Source on GitHub

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\CryptInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\CryptInterface

Source on GitHub

Methods

abstract public setCipher (mixed $cipher)

...

abstract public getCipher ()

...

abstract public setKey (mixed $key)

...

abstract public getKey ()

...

abstract public encrypt (mixed $text, [mixed $key])

...

abstract public decrypt (mixed $text, [mixed $key])

...

abstract public encryptBase64 (mixed $text, [mixed $key])

...

abstract public decryptBase64 (mixed $text, [mixed $key])

...

abstract public getAvailableCiphers ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Db\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Db\AdapterInterface

Source on GitHub

Methods

abstract public fetchOne (mixed $sqlQuery, [mixed $fetchMode], [mixed $placeholders])

...

abstract public fetchAll (mixed $sqlQuery, [mixed $fetchMode], [mixed $placeholders])

...

abstract public insert (mixed $table, array $values, [mixed $fields], [mixed $dataTypes])

...

abstract public update (mixed $table, mixed $fields, mixed $values, [mixed $whereCondition], [mixed $dataTypes])

...

abstract public delete (mixed $table, [mixed $whereCondition], [mixed $placeholders], [mixed $dataTypes])

...

abstract public getColumnList (mixed $columnList)

...

abstract public limit (mixed $sqlQuery, mixed $number)

...

abstract public tableExists (mixed $tableName, [mixed $schemaName])

...

abstract public viewExists (mixed $viewName, [mixed $schemaName])

...

abstract public forUpdate (mixed $sqlQuery)

...

abstract public sharedLock (mixed $sqlQuery)

...

abstract public createTable (mixed $tableName, mixed $schemaName, array $definition)

...

abstract public dropTable (mixed $tableName, [mixed $schemaName], [mixed $ifExists])

...

abstract public createView (mixed $viewName, array $definition, [mixed $schemaName])

...

abstract public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists])

...

abstract public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column)

...

abstract public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

...

abstract public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName)

...

abstract public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

...

abstract public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName)

...

abstract public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

...

abstract public dropPrimaryKey (mixed $tableName, mixed $schemaName)

...

abstract public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference)

...

abstract public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName)

...

abstract public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

...

abstract public listTables ([mixed $schemaName])

...

abstract public listViews ([mixed $schemaName])

...

abstract public getDescriptor ()

...

abstract public getConnectionId ()

...

abstract public getSQLStatement ()

...

abstract public getRealSQLStatement ()

...

abstract public getSQLVariables ()

...

abstract public getSQLBindTypes ()

...

abstract public getType ()

...

abstract public getDialectType ()

...

abstract public getDialect ()

...

abstract public connect ([array $descriptor])

...

abstract public query (mixed $sqlStatement, [mixed $placeholders], [mixed $dataTypes])

...

abstract public execute (mixed $sqlStatement, [mixed $placeholders], [mixed $dataTypes])

...

abstract public affectedRows ()

...

abstract public close ()

...

abstract public escapeIdentifier (mixed $identifier)

...

abstract public escapeString (mixed $str)

...

abstract public lastInsertId ([mixed $sequenceName])

...

abstract public begin ([mixed $nesting])

...

abstract public rollback ([mixed $nesting])

...

abstract public commit ([mixed $nesting])

...

abstract public isUnderTransaction ()

...

abstract public getInternalHandler ()

...

abstract public describeIndexes (mixed $table, [mixed $schema])

...

abstract public describeReferences (mixed $table, [mixed $schema])

...

abstract public tableOptions (mixed $tableName, [mixed $schemaName])

...

abstract public useExplicitIdValue ()

...

abstract public getDefaultIdValue ()

...

abstract public supportSequences ()

...

abstract public createSavepoint (mixed $name)

...

abstract public releaseSavepoint (mixed $name)

...

abstract public rollbackSavepoint (mixed $name)

...

abstract public setNestedTransactionsWithSavepoints (mixed $nestedTransactionsWithSavepoints)

...

abstract public isNestedTransactionsWithSavepoints ()

...

abstract public getNestedTransactionSavepointName ()

...

abstract public describeColumns (mixed $table, [mixed $schema])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Db\ColumnInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Db\ColumnInterface

Source on GitHub

Methods

abstract public getSchemaName ()

...

abstract public getName ()

...

abstract public getType ()

...

abstract public getTypeReference ()

...

abstract public getTypeValues ()

...

abstract public getSize ()

...

abstract public getScale ()

...

abstract public isUnsigned ()

...

abstract public isNotNull ()

...

abstract public isPrimary ()

...

abstract public isAutoIncrement ()

...

abstract public isNumeric ()

...

abstract public isFirst ()

...

abstract public getAfterPosition ()

...

abstract public getBindType ()

...

abstract public getDefault ()

...

abstract public hasDefault ()

...

abstract public static __set_state (array $data)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Db\DialectInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Db\DialectInterface

Source on GitHub

Methods

abstract public limit (mixed $sqlQuery, mixed $number)

...

abstract public forUpdate (mixed $sqlQuery)

...

abstract public sharedLock (mixed $sqlQuery)

...

abstract public select (array $definition)

...

abstract public getColumnList (array $columnList)

...

abstract public getColumnDefinition (Phalcon\Db\ColumnInterface $column)

...

abstract public addColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column)

...

abstract public modifyColumn (mixed $tableName, mixed $schemaName, Phalcon\Db\ColumnInterface $column, [Phalcon\Db\ColumnInterface $currentColumn])

...

abstract public dropColumn (mixed $tableName, mixed $schemaName, mixed $columnName)

...

abstract public addIndex (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

...

abstract public dropIndex (mixed $tableName, mixed $schemaName, mixed $indexName)

...

abstract public addPrimaryKey (mixed $tableName, mixed $schemaName, Phalcon\Db\IndexInterface $index)

...

abstract public dropPrimaryKey (mixed $tableName, mixed $schemaName)

...

abstract public addForeignKey (mixed $tableName, mixed $schemaName, Phalcon\Db\ReferenceInterface $reference)

...

abstract public dropForeignKey (mixed $tableName, mixed $schemaName, mixed $referenceName)

...

abstract public createTable (mixed $tableName, mixed $schemaName, array $definition)

...

abstract public createView (mixed $viewName, array $definition, [mixed $schemaName])

...

abstract public dropTable (mixed $tableName, mixed $schemaName)

...

abstract public dropView (mixed $viewName, [mixed $schemaName], [mixed $ifExists])

...

abstract public tableExists (mixed $tableName, [mixed $schemaName])

...

abstract public viewExists (mixed $viewName, [mixed $schemaName])

...

abstract public describeColumns (mixed $table, [mixed $schema])

...

abstract public listTables ([mixed $schemaName])

...

abstract public describeIndexes (mixed $table, [mixed $schema])

...

abstract public describeReferences (mixed $table, [mixed $schema])

...

abstract public tableOptions (mixed $table, [mixed $schema])

...

abstract public supportsSavepoints ()

...

abstract public supportsReleaseSavepoints ()

...

abstract public createSavepoint (mixed $name)

...

abstract public releaseSavepoint (mixed $name)

...

abstract public rollbackSavepoint (mixed $name)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Db\IndexInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Db\IndexInterface

Source on GitHub

Methods

abstract public getName ()

...

abstract public getColumns ()

...

abstract public getType ()

...

abstract public static __set_state (array $data)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Db\ReferenceInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Db\ReferenceInterface

Source on GitHub

Methods

abstract public getName ()

...

abstract public getSchemaName ()

...

abstract public getReferencedSchema ()

...

abstract public getColumns ()

...

abstract public getReferencedTable ()

...

abstract public getReferencedColumns ()

...

abstract public getOnDelete ()

...

abstract public getOnUpdate ()

...

abstract public static __set_state (array $data)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Db\ResultInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Db\ResultInterface

Source on GitHub

Methods

abstract public execute ()

...

abstract public fetch ()

...

abstract public fetchArray ()

...

abstract public fetchAll ()

...

abstract public numRows ()

...

abstract public dataSeek (mixed $number)

...

abstract public setFetchMode (mixed $fetchMode)

...

abstract public getInternalResult ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\DiInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\DiInterface

implements ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

Source on GitHub

Methods

abstract public set (mixed $name, mixed $definition, [mixed $shared])

...

abstract public setShared (mixed $name, mixed $definition)

...

abstract public remove (mixed $name)

...

abstract public attempt (mixed $name, mixed $definition, [mixed $shared])

...

abstract public get (mixed $name, [mixed $parameters])

...

abstract public getShared (mixed $name, [mixed $parameters])

...

abstract public setRaw (mixed $name, Phalcon\Di\ServiceInterface $rawDefinition)

...

abstract public getRaw (mixed $name)

...

abstract public getService (mixed $name)

...

abstract public has (mixed $name)

...

abstract public wasFreshInstance ()

...

abstract public getServices ()

...

abstract public static setDefault (Phalcon\DiInterface $dependencyInjector)

...

abstract public static getDefault ()

...

abstract public static reset ()

...

abstract public offsetExists (mixed $offset) inherited from ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

...

abstract public offsetGet (mixed $offset) inherited from ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

...

abstract public offsetSet (mixed $offset, mixed $value) inherited from ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

...

abstract public offsetUnset (mixed $offset) inherited from ArrayAccess [http://php.net/manual/en/class.arrayaccess.php]

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Di\InjectionAwareInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Di\InjectionAwareInterface

Source on GitHub

Methods

abstract public setDI (Phalcon\DiInterface $dependencyInjector)

...

abstract public getDI ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Di\ServiceInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Di\ServiceInterface

Source on GitHub

Methods

abstract public getName ()

...

abstract public setShared (mixed $shared)

...

abstract public isShared ()

...

abstract public setDefinition (mixed $definition)

...

abstract public getDefinition ()

...

abstract public resolve ([mixed $parameters], [Phalcon\DiInterface $dependencyInjector])

...

abstract public setParameter (mixed $position, array $parameter)

...

abstract public static __set_state (array $attributes)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\DispatcherInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\DispatcherInterface

Source on GitHub

Methods

abstract public setActionSuffix (mixed $actionSuffix)

...

abstract public getActionSuffix ()

...

abstract public setDefaultNamespace (mixed $defaultNamespace)

...

abstract public setDefaultAction (mixed $actionName)

...

abstract public setNamespaceName (mixed $namespaceName)

...

abstract public setModuleName (mixed $moduleName)

...

abstract public setActionName (mixed $actionName)

...

abstract public getActionName ()

...

abstract public setParams (mixed $params)

...

abstract public getParams ()

...

abstract public setParam (mixed $param, mixed $value)

...

abstract public getParam (mixed $param, [mixed $filters])

...

abstract public hasParam (mixed $param)

...

abstract public isFinished ()

...

abstract public getReturnedValue ()

...

abstract public dispatch ()

...

abstract public forward (mixed $forward)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\EscaperInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\EscaperInterface

Source on GitHub

Methods

abstract public setEncoding (mixed $encoding)

...

abstract public getEncoding ()

...

abstract public setHtmlQuoteType (mixed $quoteType)

...

abstract public escapeHtml (mixed $text)

...

abstract public escapeHtmlAttr (mixed $text)

...

abstract public escapeCss (mixed $css)

...

abstract public escapeJs (mixed $js)

...

abstract public escapeUrl (mixed $url)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Events\EventInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Events\EventInterface

Source on GitHub

Methods

abstract public getData ()

...

abstract public setData ([mixed $data])

...

abstract public getType ()

...

abstract public setType (mixed $type)

...

abstract public stop ()

...

abstract public isStopped ()

...

abstract public isCancelable ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Events\EventsAwareInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Events\EventsAwareInterface

Source on GitHub

Methods

abstract public setEventsManager (Phalcon\Events\ManagerInterface $eventsManager)

...

abstract public getEventsManager ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Events\ManagerInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Events\ManagerInterface

Source on GitHub

Methods

abstract public attach (mixed $eventType, mixed $handler)

...

abstract public detach (mixed $eventType, mixed $handler)

...

abstract public detachAll ([mixed $type])

...

abstract public fire (mixed $eventType, mixed $source, [mixed $data])

...

abstract public getListeners (mixed $type)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\FilterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\FilterInterface

Source on GitHub

Methods

abstract public add (mixed $name, mixed $handler)

...

abstract public sanitize (mixed $value, mixed $filters)

...

abstract public getFilters ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Filter\UserFilterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Filter\UserFilterInterface

Source on GitHub

Methods

abstract public filter (mixed $value)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\FlashInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\FlashInterface

Source on GitHub

Methods

abstract public error (mixed $message)

...

abstract public notice (mixed $message)

...

abstract public success (mixed $message)

...

abstract public warning (mixed $message)

...

abstract public message (mixed $type, mixed $message)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Forms\ElementInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Forms\ElementInterface

Source on GitHub

Methods

abstract public setForm (Phalcon\Forms\Form $form)

...

abstract public getForm ()

...

abstract public setName (mixed $name)

...

abstract public getName ()

...

abstract public setFilters (mixed $filters)

...

abstract public addFilter (mixed $filter)

...

abstract public getFilters ()

...

abstract public addValidators (array $validators, [mixed $merge])

...

abstract public addValidator (Phalcon\Validation\ValidatorInterface $validator)

...

abstract public getValidators ()

...

abstract public prepareAttributes ([array $attributes], [mixed $useChecked])

...

abstract public setAttribute (mixed $attribute, mixed $value)

...

abstract public getAttribute (mixed $attribute, [mixed $defaultValue])

...

abstract public setAttributes (array $attributes)

...

abstract public getAttributes ()

...

abstract public setUserOption (mixed $option, mixed $value)

...

abstract public getUserOption (mixed $option, [mixed $defaultValue])

...

abstract public setUserOptions (array $options)

...

abstract public getUserOptions ()

...

abstract public setLabel (mixed $label)

...

abstract public getLabel ()

...

abstract public label ()

...

abstract public setDefault (mixed $value)

...

abstract public getDefault ()

...

abstract public getValue ()

...

abstract public getMessages ()

...

abstract public hasMessages ()

...

abstract public setMessages (Phalcon\Validation\Message\Group $group)

...

abstract public appendMessage (Phalcon\Validation\MessageInterface $message)

...

abstract public clear ()

...

abstract public render ([mixed $attributes])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Http\CookieInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Http\CookieInterface

Source on GitHub

Methods

abstract public setValue (mixed $value)

...

abstract public getValue ([mixed $filters], [mixed $defaultValue])

...

abstract public send ()

...

abstract public delete ()

...

abstract public useEncryption (mixed $useEncryption)

...

abstract public isUsingEncryption ()

...

abstract public setExpiration (mixed $expire)

...

abstract public getExpiration ()

...

abstract public setPath (mixed $path)

...

abstract public getName ()

...

abstract public getPath ()

...

abstract public setDomain (mixed $domain)

...

abstract public getDomain ()

...

abstract public setSecure (mixed $secure)

...

abstract public getSecure ()

...

abstract public setHttpOnly (mixed $httpOnly)

...

abstract public getHttpOnly ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Http\RequestInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Http\RequestInterface

Source on GitHub

Methods

abstract public get ([mixed $name], [mixed $filters], [mixed $defaultValue])

...

abstract public getPost ([mixed $name], [mixed $filters], [mixed $defaultValue])

...

abstract public getQuery ([mixed $name], [mixed $filters], [mixed $defaultValue])

...

abstract public getServer (mixed $name)

...

abstract public has (mixed $name)

...

abstract public hasPost (mixed $name)

...

abstract public hasPut (mixed $name)

...

abstract public hasQuery (mixed $name)

...

abstract public hasServer (mixed $name)

...

abstract public getHeader (mixed $header)

...

abstract public getScheme ()

...

abstract public isAjax ()

...

abstract public isSoapRequested ()

...

abstract public isSecureRequest ()

...

abstract public getRawBody ()

...

abstract public getServerAddress ()

...

abstract public getServerName ()

...

abstract public getHttpHost ()

...

abstract public getPort ()

...

abstract public getClientAddress ([mixed $trustForwardedHeader])

...

abstract public getMethod ()

...

abstract public getUserAgent ()

...

abstract public isMethod (mixed $methods, [mixed $strict])

...

abstract public isPost ()

...

abstract public isGet ()

...

abstract public isPut ()

...

abstract public isHead ()

...

abstract public isDelete ()

...

abstract public isOptions ()

...

abstract public isPurge ()

...

abstract public isTrace ()

...

abstract public isConnect ()

...

abstract public hasFiles ([mixed $onlySuccessful])

...

abstract public getUploadedFiles ([mixed $onlySuccessful])

...

abstract public getHTTPReferer ()

...

abstract public getAcceptableContent ()

...

abstract public getBestAccept ()

...

abstract public getClientCharsets ()

...

abstract public getBestCharset ()

...

abstract public getLanguages ()

...

abstract public getBestLanguage ()

...

abstract public getBasicAuth ()

...

abstract public getDigestAuth ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Http\Request\FileInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Http\Request\FileInterface

Source on GitHub

Methods

abstract public getSize ()

...

abstract public getName ()

...

abstract public getTempName ()

...

abstract public getType ()

...

abstract public getRealType ()

...

abstract public moveTo (mixed $destination)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Http\ResponseInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Http\ResponseInterface

Source on GitHub

Methods

abstract public setStatusCode (mixed $code, [mixed $message])

...

abstract public getHeaders ()

...

abstract public setHeader (mixed $name, mixed $value)

...

abstract public setRawHeader (mixed $header)

...

abstract public resetHeaders ()

...

abstract public setExpires (DateTime [http://php.net/manual/en/class.datetime.php] $datetime)

...

abstract public setNotModified ()

...

abstract public setContentType (mixed $contentType, [mixed $charset])

...

abstract public setContentLength (mixed $contentLength)

...

abstract public redirect ([mixed $location], [mixed $externalRedirect], [mixed $statusCode])

...

abstract public setContent (mixed $content)

...

abstract public setJsonContent (mixed $content)

...

abstract public appendContent (mixed $content)

...

abstract public getContent ()

...

abstract public sendHeaders ()

...

abstract public sendCookies ()

...

abstract public send ()

...

abstract public setFileToSend (mixed $filePath, [mixed $attachmentName])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Http\Response\CookiesInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Http\Response\CookiesInterface

Source on GitHub

Methods

abstract public useEncryption (mixed $useEncryption)

...

abstract public isUsingEncryption ()

...

abstract public set (mixed $name, [mixed $value], [mixed $expire], [mixed $path], [mixed $secure], [mixed $domain], [mixed $httpOnly])

...

abstract public get (mixed $name)

...

abstract public has (mixed $name)

...

abstract public delete (mixed $name)

...

abstract public send ()

...

abstract public reset ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Http\Response\HeadersInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Http\Response\HeadersInterface

Source on GitHub

Methods

abstract public set (mixed $name, mixed $value)

...

abstract public get (mixed $name)

...

abstract public setRaw (mixed $header)

...

abstract public send ()

...

abstract public reset ()

...

abstract public static __set_state (array $data)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Image\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Image\AdapterInterface

Source on GitHub

Methods

abstract public resize ([mixed $width], [mixed $height], [mixed $master])

...

abstract public crop (mixed $width, mixed $height, [mixed $offsetX], [mixed $offsetY])

...

abstract public rotate (mixed $degrees)

...

abstract public flip (mixed $direction)

...

abstract public sharpen (mixed $amount)

...

abstract public reflection (mixed $height, [mixed $opacity], [mixed $fadeIn])

...

abstract public watermark (Phalcon\Image\Adapter $watermark, [mixed $offsetX], [mixed $offsetY], [mixed $opacity])

...

abstract public text (mixed $text, [mixed $offsetX], [mixed $offsetY], [mixed $opacity], [mixed $color], [mixed $size], [mixed $fontfile])

...

abstract public mask (Phalcon\Image\Adapter $watermark)

...

abstract public background (mixed $color, [mixed $opacity])

...

abstract public blur (mixed $radius)

...

abstract public pixelate (mixed $amount)

...

abstract public save ([mixed $file], [mixed $quality])

...

abstract public render ([mixed $ext], [mixed $quality])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Logger\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Logger\AdapterInterface

Source on GitHub

Methods

abstract public setFormatter (Phalcon\Logger\FormatterInterface $formatter)

...

abstract public getFormatter ()

...

abstract public setLogLevel (mixed $level)

...

abstract public getLogLevel ()

...

abstract public log (mixed $type, [mixed $message], [array $context])

...

abstract public begin ()

...

abstract public commit ()

...

abstract public rollback ()

...

abstract public close ()

...

abstract public debug (mixed $message, [array $context])

...

abstract public error (mixed $message, [array $context])

...

abstract public info (mixed $message, [array $context])

...

abstract public notice (mixed $message, [array $context])

...

abstract public warning (mixed $message, [array $context])

...

abstract public alert (mixed $message, [array $context])

...

abstract public emergency (mixed $message, [array $context])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Logger\FormatterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Logger\FormatterInterface

Source on GitHub

Methods

abstract public format (mixed $message, mixed $type, mixed $timestamp, [mixed $context])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\CollectionInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\CollectionInterface

Source on GitHub

Methods

abstract public setId (mixed $id)

...

abstract public getId ()

...

abstract public getReservedAttributes ()

...

abstract public getSource ()

...

abstract public setConnectionService (mixed $connectionService)

...

abstract public getConnection ()

...

abstract public static cloneResult (Phalcon\Mvc\CollectionInterface $collection, array $document)

...

abstract public fireEvent (mixed $eventName)

...

abstract public fireEventCancel (mixed $eventName)

...

abstract public validationHasFailed ()

...

abstract public getMessages ()

...

abstract public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

...

abstract public save ()

...

abstract public static findById (mixed $id)

...

abstract public static findFirst ([array $parameters])

...

abstract public static find ([array $parameters])

...

abstract public static count ([array $parameters])

...

abstract public delete ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Collection\BehaviorInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Collection\BehaviorInterface

Source on GitHub

Methods

abstract public notify (mixed $type, Phalcon\Mvc\CollectionInterface $collection)

...

abstract public missingMethod (Phalcon\Mvc\CollectionInterface $collection, mixed $method, [mixed $arguments])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Collection\ManagerInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Collection\ManagerInterface

Source on GitHub

Methods

abstract public setCustomEventsManager (Phalcon\Mvc\CollectionInterface $model, Phalcon\Events\ManagerInterface $eventsManager)

...

abstract public getCustomEventsManager (Phalcon\Mvc\CollectionInterface $model)

...

abstract public initialize (Phalcon\Mvc\CollectionInterface $model)

...

abstract public isInitialized (mixed $modelName)

...

abstract public getLastInitialized ()

...

abstract public setConnectionService (Phalcon\Mvc\CollectionInterface $model, mixed $connectionService)

...

abstract public useImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model, mixed $useImplicitObjectIds)

...

abstract public isUsingImplicitObjectIds (Phalcon\Mvc\CollectionInterface $model)

...

abstract public getConnection (Phalcon\Mvc\CollectionInterface $model)

...

abstract public notifyEvent (mixed $eventName, Phalcon\Mvc\CollectionInterface $model)

...

abstract public addBehavior (Phalcon\Mvc\CollectionInterface $model, Phalcon\Mvc\Collection\BehaviorInterface $behavior)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\ControllerInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\ControllerInterface

Source on GitHub

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Controller\BindModelInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Controller\BindModelInterface

Source on GitHub

Methods

abstract public static getModelName ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\DispatcherInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\DispatcherInterface

implements Phalcon\DispatcherInterface

Source on GitHub

Methods

abstract public setControllerSuffix (mixed $controllerSuffix)

...

abstract public setDefaultController (mixed $controllerName)

...

abstract public setControllerName (mixed $controllerName)

...

abstract public getControllerName ()

...

abstract public getLastController ()

...

abstract public getActiveController ()

...

abstract public setActionSuffix (mixed $actionSuffix) inherited from Phalcon\DispatcherInterface

...

abstract public getActionSuffix () inherited from Phalcon\DispatcherInterface

...

abstract public setDefaultNamespace (mixed $defaultNamespace) inherited from Phalcon\DispatcherInterface

...

abstract public setDefaultAction (mixed $actionName) inherited from Phalcon\DispatcherInterface

...

abstract public setNamespaceName (mixed $namespaceName) inherited from Phalcon\DispatcherInterface

...

abstract public setModuleName (mixed $moduleName) inherited from Phalcon\DispatcherInterface

...

abstract public setActionName (mixed $actionName) inherited from Phalcon\DispatcherInterface

...

abstract public getActionName () inherited from Phalcon\DispatcherInterface

...

abstract public setParams (mixed $params) inherited from Phalcon\DispatcherInterface

...

abstract public getParams () inherited from Phalcon\DispatcherInterface

...

abstract public setParam (mixed $param, mixed $value) inherited from Phalcon\DispatcherInterface

...

abstract public getParam (mixed $param, [mixed $filters]) inherited from Phalcon\DispatcherInterface

...

abstract public hasParam (mixed $param) inherited from Phalcon\DispatcherInterface

...

abstract public isFinished () inherited from Phalcon\DispatcherInterface

...

abstract public getReturnedValue () inherited from Phalcon\DispatcherInterface

...

abstract public dispatch () inherited from Phalcon\DispatcherInterface

...

abstract public forward (mixed $forward) inherited from Phalcon\DispatcherInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\EntityInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\EntityInterface

Source on GitHub

Methods

abstract public readAttribute (mixed $attribute)

...

abstract public writeAttribute (mixed $attribute, mixed $value)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Micro\CollectionInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Micro\CollectionInterface

Source on GitHub

Methods

abstract public setPrefix (mixed $prefix)

...

abstract public getPrefix ()

...

abstract public getHandlers ()

...

abstract public setHandler (mixed $handler, [mixed $lazy])

...

abstract public setLazy (mixed $lazy)

...

abstract public isLazy ()

...

abstract public getHandler ()

...

abstract public map (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public get (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public post (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public put (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public patch (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public head (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public delete (mixed $routePattern, mixed $handler, [mixed $name])

...

abstract public options (mixed $routePattern, mixed $handler, [mixed $name])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Micro\MiddlewareInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Micro\MiddlewareInterface

Source on GitHub

Methods

abstract public call (Phalcon\Mvc\Micro $application)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\ModelInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\ModelInterface

Source on GitHub

Methods

abstract public setTransaction (Phalcon\Mvc\Model\TransactionInterface $transaction)

...

abstract public getSource ()

...

abstract public getSchema ()

...

abstract public setConnectionService (mixed $connectionService)

...

abstract public setWriteConnectionService (mixed $connectionService)

...

abstract public setReadConnectionService (mixed $connectionService)

...

abstract public getReadConnectionService ()

...

abstract public getWriteConnectionService ()

...

abstract public getReadConnection ()

...

abstract public getWriteConnection ()

...

abstract public setDirtyState (mixed $dirtyState)

...

abstract public getDirtyState ()

...

abstract public assign (array $data, [mixed $dataColumnMap], [mixed $whiteList])

...

abstract public static cloneResultMap (mixed $base, array $data, mixed $columnMap, [mixed $dirtyState], [mixed $keepSnapshots])

...

abstract public static cloneResult (Phalcon\Mvc\ModelInterface $base, array $data, [mixed $dirtyState])

...

abstract public static cloneResultMapHydrate (array $data, mixed $columnMap, mixed $hydrationMode)

...

abstract public static find ([mixed $parameters])

...

abstract public static findFirst ([mixed $parameters])

...

abstract public static query ([Phalcon\DiInterface $dependencyInjector])

...

abstract public static count ([mixed $parameters])

...

abstract public static sum ([mixed $parameters])

...

abstract public static maximum ([mixed $parameters])

...

abstract public static minimum ([mixed $parameters])

...

abstract public static average ([mixed $parameters])

...

abstract public fireEvent (mixed $eventName)

...

abstract public fireEventCancel (mixed $eventName)

...

abstract public appendMessage (Phalcon\Mvc\Model\MessageInterface $message)

...

abstract public validationHasFailed ()

...

abstract public getMessages ()

...

abstract public save ([mixed $data], [mixed $whiteList])

...

abstract public create ([mixed $data], [mixed $whiteList])

...

abstract public update ([mixed $data], [mixed $whiteList])

...

abstract public delete ()

...

abstract public getOperationMade ()

...

abstract public refresh ()

...

abstract public skipOperation (mixed $skip)

...

abstract public getRelated (mixed $alias, [mixed $arguments])

...

abstract public setSnapshotData (array $data, [mixed $columnMap])

...

abstract public reset ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\BehaviorInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\BehaviorInterface

Source on GitHub

Methods

abstract public notify (mixed $type, Phalcon\Mvc\ModelInterface $model)

...

abstract public missingMethod (Phalcon\Mvc\ModelInterface $model, mixed $method, [mixed $arguments])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\CriteriaInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\CriteriaInterface

Source on GitHub

Methods

abstract public setModelName (mixed $modelName)

...

abstract public getModelName ()

...

abstract public bind (array $bindParams)

...

abstract public bindTypes (array $bindTypes)

...

abstract public where (mixed $conditions)

...

abstract public conditions (mixed $conditions)

...

abstract public orderBy (mixed $orderColumns)

...

abstract public limit (mixed $limit, [mixed $offset])

...

abstract public forUpdate ([mixed $forUpdate])

...

abstract public sharedLock ([mixed $sharedLock])

...

abstract public andWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

...

abstract public orWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

...

abstract public betweenWhere (mixed $expr, mixed $minimum, mixed $maximum)

...

abstract public notBetweenWhere (mixed $expr, mixed $minimum, mixed $maximum)

...

abstract public inWhere (mixed $expr, array $values)

...

abstract public notInWhere (mixed $expr, array $values)

...

abstract public getWhere ()

...

abstract public getConditions ()

...

abstract public getLimit ()

...

abstract public getOrderBy ()

...

abstract public getParams ()

...

abstract public execute ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\ManagerInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\ManagerInterface

Source on GitHub

Methods

abstract public initialize (Phalcon\Mvc\ModelInterface $model)

...

abstract public setModelSource (Phalcon\Mvc\ModelInterface $model, mixed $source)

...

abstract public getModelSource (Phalcon\Mvc\ModelInterface $model)

...

abstract public setModelSchema (Phalcon\Mvc\ModelInterface $model, mixed $schema)

...

abstract public getModelSchema (Phalcon\Mvc\ModelInterface $model)

...

abstract public setConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionService)

...

abstract public setReadConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionService)

...

abstract public getReadConnectionService (Phalcon\Mvc\ModelInterface $model)

...

abstract public setWriteConnectionService (Phalcon\Mvc\ModelInterface $model, mixed $connectionService)

...

abstract public getWriteConnectionService (Phalcon\Mvc\ModelInterface $model)

...

abstract public getReadConnection (Phalcon\Mvc\ModelInterface $model)

...

abstract public getWriteConnection (Phalcon\Mvc\ModelInterface $model)

...

abstract public isInitialized (mixed $modelName)

...

abstract public getLastInitialized ()

...

abstract public load (mixed $modelName, [mixed $newInstance])

...

abstract public addHasOne (Phalcon\Mvc\ModelInterface $model, mixed $fields, mixed $referencedModel, mixed $referencedFields, [mixed $options])

...

abstract public addBelongsTo (Phalcon\Mvc\ModelInterface $model, mixed $fields, mixed $referencedModel, mixed $referencedFields, [mixed $options])

...

abstract public addHasMany (Phalcon\Mvc\ModelInterface $model, mixed $fields, mixed $referencedModel, mixed $referencedFields, [mixed $options])

...

abstract public existsBelongsTo (mixed $modelName, mixed $modelRelation)

...

abstract public existsHasMany (mixed $modelName, mixed $modelRelation)

...

abstract public existsHasOne (mixed $modelName, mixed $modelRelation)

...

abstract public getBelongsToRecords (mixed $method, mixed $modelName, mixed $modelRelation, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

...

abstract public getHasManyRecords (mixed $method, mixed $modelName, mixed $modelRelation, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

...

abstract public getHasOneRecords (mixed $method, mixed $modelName, mixed $modelRelation, Phalcon\Mvc\ModelInterface $record, [mixed $parameters])

...

abstract public getBelongsTo (Phalcon\Mvc\ModelInterface $model)

...

abstract public getHasMany (Phalcon\Mvc\ModelInterface $model)

...

abstract public getHasOne (Phalcon\Mvc\ModelInterface $model)

...

abstract public getHasOneAndHasMany (Phalcon\Mvc\ModelInterface $model)

...

abstract public getRelations (mixed $modelName)

...

abstract public getRelationsBetween (mixed $first, mixed $second)

...

abstract public createQuery (mixed $phql)

...

abstract public executeQuery (mixed $phql, [mixed $placeholders])

...

abstract public createBuilder ([mixed $params])

...

abstract public addBehavior (Phalcon\Mvc\ModelInterface $model, Phalcon\Mvc\Model\BehaviorInterface $behavior)

...

abstract public notifyEvent (mixed $eventName, Phalcon\Mvc\ModelInterface $model)

...

abstract public missingMethod (Phalcon\Mvc\ModelInterface $model, mixed $eventName, mixed $data)

...

abstract public getLastQuery ()

...

abstract public getRelationByAlias (mixed $modelName, mixed $alias)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\MessageInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\MessageInterface

Source on GitHub

Methods

abstract public setType (mixed $type)

...

abstract public getType ()

...

abstract public setMessage (mixed $message)

...

abstract public getMessage ()

...

abstract public setField (mixed $field)

...

abstract public getField ()

...

abstract public __toString ()

...

abstract public static __set_state (array $message)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\MetaDataInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\MetaDataInterface

Source on GitHub

Methods

abstract public setStrategy (Phalcon\Mvc\Model\MetaData\StrategyInterface $strategy)

...

abstract public getStrategy ()

...

abstract public readMetaData (Phalcon\Mvc\ModelInterface $model)

...

abstract public readMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index)

...

abstract public writeMetaDataIndex (Phalcon\Mvc\ModelInterface $model, mixed $index, mixed $data)

...

abstract public readColumnMap (Phalcon\Mvc\ModelInterface $model)

...

abstract public readColumnMapIndex (Phalcon\Mvc\ModelInterface $model, mixed $index)

...

abstract public getAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getNonPrimaryKeyAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getNotNullAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getDataTypes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getDataTypesNumeric (Phalcon\Mvc\ModelInterface $model)

...

abstract public getIdentityField (Phalcon\Mvc\ModelInterface $model)

...

abstract public getBindTypes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public setAutomaticCreateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes)

...

abstract public setAutomaticUpdateAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes)

...

abstract public setEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model, array $attributes)

...

abstract public getEmptyStringAttributes (Phalcon\Mvc\ModelInterface $model)

...

abstract public getDefaultValues (Phalcon\Mvc\ModelInterface $model)

...

abstract public getColumnMap (Phalcon\Mvc\ModelInterface $model)

...

abstract public getReverseColumnMap (Phalcon\Mvc\ModelInterface $model)

...

abstract public hasAttribute (Phalcon\Mvc\ModelInterface $model, mixed $attribute)

...

abstract public isEmpty ()

...

abstract public reset ()

...

abstract public read (mixed $key)

...

abstract public write (mixed $key, mixed $data)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\MetaData\StrategyInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\MetaData\StrategyInterface

Source on GitHub

Methods

abstract public getMetaData (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

...

abstract public getColumnMaps (Phalcon\Mvc\ModelInterface $model, Phalcon\DiInterface $dependencyInjector)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\QueryInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\QueryInterface

Source on GitHub

Methods

abstract public parse ()

...

abstract public cache (mixed $cacheOptions)

...

abstract public getCacheOptions ()

...

abstract public setUniqueRow (mixed $uniqueRow)

...

abstract public getUniqueRow ()

...

abstract public execute ([mixed $bindParams], [mixed $bindTypes])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\Query\BuilderInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\Query\BuilderInterface

Source on GitHub

Constants

string OPERATOR_OR

string OPERATOR_AND

Methods

abstract public columns (mixed $columns)

...

abstract public getColumns ()

...

abstract public from (mixed $models)

...

abstract public addFrom (mixed $model, [mixed $alias])

...

abstract public getFrom ()

...

abstract public join (mixed $model, [mixed $conditions], [mixed $alias])

...

abstract public innerJoin (mixed $model, [mixed $conditions], [mixed $alias])

...

abstract public leftJoin (mixed $model, [mixed $conditions], [mixed $alias])

...

abstract public rightJoin (mixed $model, [mixed $conditions], [mixed $alias])

...

abstract public getJoins ()

...

abstract public where (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

...

abstract public andWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

...

abstract public orWhere (mixed $conditions, [mixed $bindParams], [mixed $bindTypes])

...

abstract public betweenWhere (mixed $expr, mixed $minimum, mixed $maximum, [mixed $operator])

...

abstract public notBetweenWhere (mixed $expr, mixed $minimum, mixed $maximum, [mixed $operator])

...

abstract public inWhere (mixed $expr, array $values, [mixed $operator])

...

abstract public notInWhere (mixed $expr, array $values, [mixed $operator])

...

abstract public getWhere ()

...

abstract public orderBy (mixed $orderBy)

...

abstract public getOrderBy ()

...

abstract public having (mixed $having)

...

abstract public getHaving ()

...

abstract public limit (mixed $limit, [mixed $offset])

...

abstract public getLimit ()

...

abstract public groupBy (mixed $group)

...

abstract public getGroupBy ()

...

abstract public getPhql ()

...

abstract public getQuery ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\Query\StatusInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\Query\StatusInterface

Source on GitHub

Methods

abstract public getModel ()

...

abstract public getMessages ()

...

abstract public success ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\RelationInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\RelationInterface

Source on GitHub

Methods

abstract public setIntermediateRelation (mixed $intermediateFields, mixed $intermediateModel, mixed $intermediateReferencedFields)

...

abstract public isReusable ()

...

abstract public getType ()

...

abstract public getReferencedModel ()

...

abstract public getFields ()

...

abstract public getReferencedFields ()

...

abstract public getOptions ()

...

abstract public getOption (mixed $name)

...

abstract public isForeignKey ()

...

abstract public getForeignKey ()

...

abstract public isThrough ()

...

abstract public getIntermediateFields ()

...

abstract public getIntermediateModel ()

...

abstract public getIntermediateReferencedFields ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\ResultInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\ResultInterface

Source on GitHub

Methods

abstract public setDirtyState (mixed $dirtyState)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\ResultsetInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\ResultsetInterface

Source on GitHub

Methods

abstract public getType ()

...

abstract public getFirst ()

...

abstract public getLast ()

...

abstract public setIsFresh (mixed $isFresh)

...

abstract public isFresh ()

...

abstract public getCache ()

...

abstract public toArray ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\TransactionInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\TransactionInterface

Source on GitHub

Methods

abstract public setTransactionManager (Phalcon\Mvc\Model\Transaction\ManagerInterface $manager)

...

abstract public begin ()

...

abstract public commit ()

...

abstract public rollback ([mixed $rollbackMessage], [mixed $rollbackRecord])

...

abstract public getConnection ()

...

abstract public setIsNewTransaction (mixed $isNew)

...

abstract public setRollbackOnAbort (mixed $rollbackOnAbort)

...

abstract public isManaged ()

...

abstract public getMessages ()

...

abstract public isValid ()

...

abstract public setRollbackedRecord (Phalcon\Mvc\ModelInterface $record)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\Transaction\ManagerInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\Transaction\ManagerInterface

Source on GitHub

Methods

abstract public has ()

...

abstract public get ([mixed $autoBegin])

...

abstract public rollbackPendent ()

...

abstract public commit ()

...

abstract public rollback ([mixed $collect])

...

abstract public notifyRollback (Phalcon\Mvc\Model\TransactionInterface $transaction)

...

abstract public notifyCommit (Phalcon\Mvc\Model\TransactionInterface $transaction)

...

abstract public collectTransactions ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Model\ValidatorInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Model\ValidatorInterface

Source on GitHub

Methods

abstract public getMessages ()

...

abstract public validate (Phalcon\Mvc\EntityInterface $record)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\ModuleDefinitionInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\ModuleDefinitionInterface

Source on GitHub

Methods

abstract public registerAutoloaders ([Phalcon\DiInterface $dependencyInjector])

...

abstract public registerServices (Phalcon\DiInterface $dependencyInjector)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\RouterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\RouterInterface

Source on GitHub

Methods

abstract public setDefaultModule (mixed $moduleName)

...

abstract public setDefaultController (mixed $controllerName)

...

abstract public setDefaultAction (mixed $actionName)

...

abstract public setDefaults (array $defaults)

...

abstract public handle ([mixed $uri])

...

abstract public add (mixed $pattern, [mixed $paths], [mixed $httpMethods])

...

abstract public addGet (mixed $pattern, [mixed $paths])

...

abstract public addPost (mixed $pattern, [mixed $paths])

...

abstract public addPut (mixed $pattern, [mixed $paths])

...

abstract public addPatch (mixed $pattern, [mixed $paths])

...

abstract public addDelete (mixed $pattern, [mixed $paths])

...

abstract public addOptions (mixed $pattern, [mixed $paths])

...

abstract public addHead (mixed $pattern, [mixed $paths])

...

abstract public addPurge (mixed $pattern, [mixed $paths])

...

abstract public addTrace (mixed $pattern, [mixed $paths])

...

abstract public addConnect (mixed $pattern, [mixed $paths])

...

abstract public mount (Phalcon\Mvc\Router\GroupInterface $group)

...

abstract public clear ()

...

abstract public getModuleName ()

...

abstract public getNamespaceName ()

...

abstract public getControllerName ()

...

abstract public getActionName ()

...

abstract public getParams ()

...

abstract public getMatchedRoute ()

...

abstract public getMatches ()

...

abstract public wasMatched ()

...

abstract public getRoutes ()

...

abstract public getRouteById (mixed $id)

...

abstract public getRouteByName (mixed $name)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Router\GroupInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Router\GroupInterface

Source on GitHub

Methods

abstract public setHostname (mixed $hostname)

...

abstract public getHostname ()

...

abstract public setPrefix (mixed $prefix)

...

abstract public getPrefix ()

...

abstract public beforeMatch (mixed $beforeMatch)

...

abstract public getBeforeMatch ()

...

abstract public setPaths (mixed $paths)

...

abstract public getPaths ()

...

abstract public getRoutes ()

...

abstract public add (mixed $pattern, [mixed $paths], [mixed $httpMethods])

...

abstract public addGet (mixed $pattern, [mixed $paths])

...

abstract public addPost (mixed $pattern, [mixed $paths])

...

abstract public addPut (mixed $pattern, [mixed $paths])

...

abstract public addPatch (mixed $pattern, [mixed $paths])

...

abstract public addDelete (mixed $pattern, [mixed $paths])

...

abstract public addOptions (mixed $pattern, [mixed $paths])

...

abstract public addHead (mixed $pattern, [mixed $paths])

...

abstract public clear ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\Router\RouteInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\Router\RouteInterface

Source on GitHub

Methods

abstract public setHostname (mixed $hostname)

...

abstract public getHostname ()

...

abstract public compilePattern (mixed $pattern)

...

abstract public via (mixed $httpMethods)

...

abstract public reConfigure (mixed $pattern, [mixed $paths])

...

abstract public getName ()

...

abstract public setName (mixed $name)

...

abstract public setHttpMethods (mixed $httpMethods)

...

abstract public getRouteId ()

...

abstract public getPattern ()

...

abstract public getCompiledPattern ()

...

abstract public getPaths ()

...

abstract public getReversedPaths ()

...

abstract public getHttpMethods ()

...

abstract public static reset ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\UrlInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\UrlInterface

Source on GitHub

Methods

abstract public setBaseUri (mixed $baseUri)

...

abstract public getBaseUri ()

...

abstract public setBasePath (mixed $basePath)

...

abstract public getBasePath ()

...

abstract public get ([mixed $uri], [mixed $args], [mixed $local])

...

abstract public path ([mixed $path])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\ViewBaseInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\ViewBaseInterface

Source on GitHub

Methods

abstract public setViewsDir (mixed $viewsDir)

...

abstract public getViewsDir ()

...

abstract public setParamToView (mixed $key, mixed $value)

...

abstract public setVar (mixed $key, mixed $value)

...

abstract public getParamsToView ()

...

abstract public getCache ()

...

abstract public cache ([mixed $options])

...

abstract public setContent (mixed $content)

...

abstract public getContent ()

...

abstract public partial (mixed $partialPath, [mixed $params])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\ViewInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\ViewInterface

implements Phalcon\Mvc\ViewBaseInterface

Source on GitHub

Methods

abstract public setLayoutsDir (mixed $layoutsDir)

...

abstract public getLayoutsDir ()

...

abstract public setPartialsDir (mixed $partialsDir)

...

abstract public getPartialsDir ()

...

abstract public setBasePath (mixed $basePath)

...

abstract public getBasePath ()

...

abstract public setRenderLevel (mixed $level)

...

abstract public setMainView (mixed $viewPath)

...

abstract public getMainView ()

...

abstract public setLayout (mixed $layout)

...

abstract public getLayout ()

...

abstract public setTemplateBefore (mixed $templateBefore)

...

abstract public cleanTemplateBefore ()

...

abstract public setTemplateAfter (mixed $templateAfter)

...

abstract public cleanTemplateAfter ()

...

abstract public getControllerName ()

...

abstract public getActionName ()

...

abstract public getParams ()

...

abstract public start ()

...

abstract public registerEngines (array $engines)

...

abstract public render (mixed $controllerName, mixed $actionName, [mixed $params])

...

abstract public pick (mixed $renderView)

...

abstract public finish ()

...

abstract public getActiveRenderPath ()

...

abstract public disable ()

...

abstract public enable ()

...

abstract public reset ()

...

abstract public isDisabled ()

...

abstract public setViewsDir (mixed $viewsDir) inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public getViewsDir () inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public setParamToView (mixed $key, mixed $value) inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public setVar (mixed $key, mixed $value) inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public getParamsToView () inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public getCache () inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public cache ([mixed $options]) inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public setContent (mixed $content) inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public getContent () inherited from Phalcon\Mvc\ViewBaseInterface

...

abstract public partial (mixed $partialPath, [mixed $params]) inherited from Phalcon\Mvc\ViewBaseInterface

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Mvc\View\EngineInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Mvc\View\EngineInterface

Source on GitHub

Methods

abstract public getContent ()

...

abstract public partial (mixed $partialPath, [mixed $params])

...

abstract public render (mixed $path, mixed $params, [mixed $mustClean])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Paginator\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Paginator\AdapterInterface

Source on GitHub

Methods

abstract public setCurrentPage (mixed $page)

...

abstract public getPaginate ()

...

abstract public setLimit (mixed $limit)

...

abstract public getLimit ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Session\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Session\AdapterInterface

Source on GitHub

Methods

abstract public start ()

...

abstract public setOptions (array $options)

...

abstract public getOptions ()

...

abstract public get (mixed $index, [mixed $defaultValue])

...

abstract public set (mixed $index, mixed $value)

...

abstract public has (mixed $index)

...

abstract public remove (mixed $index)

...

abstract public getId ()

...

abstract public isStarted ()

...

abstract public destroy ([mixed $removeData])

...

abstract public regenerateId ([mixed $deleteOldSession])

...

abstract public setName (mixed $name)

...

abstract public getName ()

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Session\BagInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Session\BagInterface

Source on GitHub

Methods

abstract public initialize ()

...

abstract public destroy ()

...

abstract public set (mixed $property, mixed $value)

...

abstract public get (mixed $property, [mixed $defaultValue])

...

abstract public has (mixed $property)

...

abstract public __set (mixed $property, mixed $value)

...

abstract public __get (mixed $property)

...

abstract public __isset (mixed $property)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Translate\AdapterInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Translate\AdapterInterface

Source on GitHub

Methods

abstract public t (mixed $translateKey, [mixed $placeholders])

...

abstract public query (mixed $index, [mixed $placeholders])

...

abstract public exists (mixed $index)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Translate\InterpolatorInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Translate\InterpolatorInterface

Source on GitHub

Methods

abstract public replacePlaceholders (mixed $translation, [mixed $placeholders])

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\ValidationInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\ValidationInterface

Source on GitHub

Methods

abstract public validate ([mixed $data], [mixed $entity])

...

abstract public add (mixed $field, Phalcon\Validation\ValidatorInterface $validator)

...

abstract public rule (mixed $field, Phalcon\Validation\ValidatorInterface $validator)

...

abstract public rules (mixed $field, array $validators)

...

abstract public setFilters (mixed $field, mixed $filters)

...

abstract public getFilters ([mixed $field])

...

abstract public getValidators ()

...

abstract public getEntity ()

...

abstract public setDefaultMessages ([array $messages])

...

abstract public getDefaultMessage (mixed $type)

...

abstract public getMessages ()

...

abstract public setLabels (array $labels)

...

abstract public getLabel (mixed $field)

...

abstract public appendMessage (Phalcon\Validation\MessageInterface $message)

...

abstract public bind (mixed $entity, mixed $data)

...

abstract public getValue (mixed $field)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Validation\MessageInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Validation\MessageInterface

Source on GitHub

Methods

abstract public setType (mixed $type)

...

abstract public getType ()

...

abstract public setMessage (mixed $message)

...

abstract public getMessage ()

...

abstract public setField (mixed $field)

...

abstract public getField ()

...

abstract public __toString ()

...

abstract public static __set_state (array $message)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Interface Phalcon\Validation\ValidatorInterface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phalcon 3.0.2 documentation

 	API Indice

Interface Phalcon\Validation\ValidatorInterface

Source on GitHub

Methods

abstract public hasOption (mixed $key)

...

abstract public getOption (mixed $key, [mixed $defaultValue])

...

abstract public validate (Phalcon\Validation $validation, mixed $attribute)

...

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 License

 Navigation

 	
 index

 	
 previous |

 	Phalcon 3.0.2 documentation

License

Phalcon is brought to you by the Phalcon Team! [Twitter [https://twitter.com/#!/phalconphp] - Google Plus [https://plus.google.com/u/0/102376109340560896457/posts] - Github [https://github.com/phalcon]]

The Phalcon PHP Framework is released under the new BSD license [https://github.com/phalcon/cphalcon/blob/master/docs/LICENSE.md]. Except where otherwise noted, content on
this site is licensed under the Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].

If you love Phalcon please return something to the community! :)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	Phalcon 3.0.2 documentation

 Index

 Index pages by letter:

 Full index on one page
 (can be huge)

 Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

_images/wamp-4.png
©

WampServer

Version 2.5 Version Francaise

Server Configuration
Apache Version : 2.4.9 - Documentation
PHP Version: 5.5.12 - Documentation
Server Software: Apache/2.4.9 (Win64) PHP/5.5.12

Loaded Extensions : i apache2handler J bemath b2
& Core & ctype acurl
Prereg o exif B fileinfo
Hrgd B gettext & gmp
#imap ¢ json ¢ b
B mhash & mysql # mysqli
& openss| o pere. #PDO
E Johaicon} ¢ Phar ¥ Reflection
o SimplexML. ¢ soap. # sockets
o standard o tokenizer e wddx
Fexmireader dxmirpe Fxmhvrter
e zlib

MySQL Version : 5.6.17 - Documentation

& calendar
o date

o filter

o hash

¢ mbstring
& mysqind
@ pdo_mysql
o session
o SPL

xdebug
sl

& com_dotnet
3 dom

e ftp

i iconv.

2 merypt

odbe

@ pdo_sqlite
¢ shmop

sqlite3

e xml

e zip

_images/mac-5.png
[
Phalcon: incorrect usage

_images/tutorial-4.png
© - = http://localhost/tutorial/signup/register - Google Chrome
G http://localhost/t x \ [\

& > C O [® localhost/tutorial/signup/register E-N WA

Somy the following problems wre generaed:name i reqired
email is required

o)

_images/chrome-1.jpg
Elements Resources | Newwork | Sources Timeline Profies Audits Console

Name Status Size | Time
Mam Meth.. SRS Type mmitiaor 2t TIM | Timeline B M —
ndex e 37k 1lms
E2 jinvorproducts ok | i 3.4K8 10ms
e @ 30, indexs 1958 8ms
= Jinvo/bootstrapycss NotMor """ parser %7K 7ms !
bootstrap-responsive 304 . index§ 1948 8ms
Jinvo/bootstrap/css Not Mo " | parser 140K8 3ms

>

Q

e o Documents _Stylesheets Images Scripts XHR Fonts WebSockets _Other [y

_images/sql.png
HI, THIS 15

YOUR SON SCHOOL
VERE HAVING SOYE
COMPUTER TROLBLE.

for

OH, DERR - DID HE.
BREAK SOMETHING?

INAL/AY /

i

DID YOU REALLY
INAE YOUR SON
Robert); DROP
TRBLE Serts;-~ 7

~OH.YES UTIE
BOBBY TABLES,
WE CALLHIM.

WELL VEVE LOST THIS
YEAR'S STUDENT RECURDS
T HOPE YOURE HAPPY.

AND T H(PE
- YOUVE LEARNED

TOSMIZE YOUR

DATAGASE INPUTS.

_images/speed-tracer.jpg
. & speed Tracer

€3¢l % ®

= ol
® ¥ B 199 for4.00s 36515 @ @ @ (hpisiocaihostjimvojind 18
o0
Tosims a8 et ot o

Sluggishness (events)

Network (resources)

Event Trace
.
I 9 esoure Daa Received
44.2ms (self 6.2ms) 43.10% Parse HTML (18ms)
he 29.1% Script Evaluation (12ms)
B parse HTML 51 14.0% Resource Data Received (6ms)
| Bssmtsams = 1540, Loy ()
o W 0.4% Style Recalculation (Oms)
5 Script Evaluation [0.0% Resource Response (Oms)
21.4ms (self 11.7ms) =
st Details for Resource Data Received
ot Description | Processing a file received by the
Some (self 5.9ms) resource loader.
» Lo e 1993ms. .
« Parse HTHL Duration 44.234ms

_images/linux-2.png
©O® Terminal

phalcon@ubuntu:~$ cd phalcon-devtools/
phalcon@ubuntu:~/phalcon-devtools$. ./phalcon.sh

Phalcon Developer Tools Installer

Make sure phalcon.sh is in the same dir as phalcon.php and that you are runni
ng this with sudo or as root.

Installing Devtools.

Working dir is: /home/phalcon/phalcon-devtools

Generating synlink...

[Done. Devtools installed!

phalcongubuntu:~/phalcon-devtoolss i

_images/cherokee-8.jpg
Behavior

[Fote Fitering

_images/mac-1.png
terminal

[show All

Definition {8 adjective 1 of, forming, or s.
Applications [l Terminal

Documents

VBox.log — WINDOWS XP [VC6]
[VBox.log.1 — WINDOWS XP [

| kernel js
VBox.log — Windows XP 64 bits

_images/tools-11.png
A ———
0 00/ phalcon prp Framework o
€« C | ® localhost/store /products/create/ N

Go Back

types is required
‘name is required
price is required

Create products
s
Name
Price

_static/img/wamp-2.png
File Edit Fomat View Help
extension=php_shmop.d11 ~

; The MIBS data available in the PHP distribution must be installed.
; See http://wwm.php.net/manual/en/snmp. installation.php
;extension=php_snmp.d11

extension-php_soap.d11
extension-php_sockets.d11
extension-php_sqlite3.d11
;extension-php_sybase_ct.d11

;extension=php_tidy.d11
extension=php_xmlrpc.dll
extension-php_xs1.d11

; Module Settings ;

[CLT Server]
; Whether the CLT web server uses ANST color coding in its terminal output.
cli_server.color = On

_static/img/class.png

_static/img/sample-5.png
Albun 0 Ramo, = =~

Related Tags: 2010 indierock indie rock bestof 2010

Home > Two Door Cinema Club

WO

Touris
Club

1Mar2010

Tourist Hist
“Two Door C

_static/img/linux-1.png
©O® Terminal
phalcon@ubuntu:~$ git clone git://github.con/phalcon/phalcon-devtools.git
Cloning into phalcon-devtools.

remote: Counting objects: 788, done.

remote: Compressing objects: 100% (597/597), done.

IReceiving objects: 100% (788/788), 421.64 KiB | 230 KiB/s, done.

remote: Total 788 (delta 339), reused 590 (delta 141)

IResolving deltas: 100% (339/339), done.

phalcongubuntu:~$ I

_static/img/tools-13.png
©O® Terminal
phalcon@ubuntu:~$ git clone git://github.con/phalcon/phalcon-devtools.git
Cloning into phalcon-devtools.

remote: Counting objects: 788, done.

remote: Compressing objects: 100% (597/597), done.

IReceiving objects: 100% (788/788), 421.64 KiB | 230 KiB/s, done.

remote: Total 788 (delta 339), reused 590 (delta 141)

IResolving deltas: 100% (339/339), done.

phalcongubuntu:~$ I

_static/img/cherokee-9.jpg
000 <o weame
€ 5 C D mesniconarn:

Welcome to INVO

INVOIs a revoluionary appicaon to create nvoes onine for free. Recsive onine
ayments from your lents and improve your cash fow

Manage Invoices Dashboards And Invite, Share And
Online Reports Collaborate

_static/img/invo-2.png
000,/ w0 weome
€ 5 C [locatbost/ino/roducts =

T 5 samesopicaton of o Pcn P2 Framors. Pess do s i ary borsons irraton. T

Welcome to INVO

INVO i a revolutionary appication to create invoioes onine fo froe. Receive onine
payments from your cients and improve your cash flow

Manage Invoices Dashboards And Invite, Share And
Online Reports Collaborate

i, tack and axport yourbvcces Gain iat g ko how yeur inin usors and share your warkdond sa

_static/img/tutorial-3.png
© - = http://localhost/tutorial/signup - Google Chrome
/G httpi/flocalhost/t. x \{)

& - C 0 [® localhost/tutorial signup

L

Sign up using this form

Name

E-Mail

_static/img/cherokee-1.jpg
wconeto Gastee s
€ 5 C [0z

FR— Soport

e T p——— cmsan
ey S nosoatss

ek eteve e s o oo Somwbe g s sk LS5

L o 10y oo Puatuie ol e
RS ————— T
Jetiern

LA00 progs Crrokne Uors

Q saneriormton

Pop—

| s

=y

_static/img/xampp-2.png
phalcon x&
6VCTph
560300

php_phalco
ndll

=

LICENSE

_images/wamp-1.png
Home Share

5 Quick access
LS
B Documents#-
18 Downloads #-
WMusic

iy Local Disk (C)
% CDDrive 0\

E—

View

&)

1 [> ThisPC » Locol Disk (C) » wemp » bin » php » phps5.12 » et

C | | Searchext

php_bz2.dil

Ll

php_encha
ntl

dll

.l

php._gettext
an

php_mbstri
ng.dl

php_oci
gl

php_pdo
docl

&)

37items 1 item selected 453 MB

php_sybase
et

php_tidy.dil

php_xmirpe
il

php_ssldil

php_phalco
ndll

php_snmp.
il

_images/path-1.png
12 vy Music
&

[

Set progran
Defals

iy printers anq

) Help and 5y

) search

Run,

Open
Explore
Search,

Manage

Map Network Dive.
Discannect Netwark Drive.

Shaw on Deskiap
Rename

_images/migrations-2.png
000 Default
8 NCINE, TAB BLE COLLATION TROM INCORMATION SCHEM/

.TABLES WHERE TABLES.TABLE_SCHEMA = "invo" AND TABLES.TABLE_NA
ME = "test" => 1335920161.9368 (©.000324091084899902)
1335920161.9369: DESCRIBE “invo™ . users’ => 1335920161.938 (@
.0010280609130859)

1335920161.9383: SHOW INDEXES FROM “invo™. users™ => 13359201
61.9389 (0.00062680244445801)

1335920161.939: SELECT TABLE_NAME,COLUMN_NAME , CONSTRAINT_NAME,
REFERENCED_TABLE_SCHEMA, REFERENCED_TABLE_NAME , REFERENCED_COLUM
N_NAME FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE WHERE REFER
ENCED_TABLE_NAME IS NOT NULL AND CONSTRAINT_SCHEMA = "invo" AN
D TABLE_NAME = "users" => 1335920161.9483 (©.0012459754943848
)

1335920161.9404: SELECT TABLES.TABLE_TYPE, TABLES.AUTO_INCREMEN
T, TABLES . ENGINE, TABLES . TABLE_COLLATION FROM INFORMATION_SCHEMA
.TABLES WHERE TABLES.TABLE_SCHEMA = "invo" AND TABLES.TABLE_NA
ME = "users" => 1335920161.9407 (©.00038504600524902)

Version 1.0.0 was successfully generated

[invo #]

_images/volt.jpg
showvolt B

2 {x extends “templates/products.volt” x}

3

4 content() }}

5

6 {% block last_products %}

7

8 {% for product in products %}

9 * Name: {{ product.name/e }}

10 {% 11 product.status = "Active" }

1 Price: {{ product.price + product.taxes/100 }}
2 {{ Uink_to(*More', 'products/details/* ~ product.id) }}
13 o else 4}

1 {4 " (Inactive)* 1}

15 {5 enatt %}

16 {x endfor %}

17

18 {% endblock %}

19

20 {% block footer %}
21 {{ partial(‘navbar/footer') }}
22 {x endblock a}

Line 1, Column 1.

Tab Size:

_images/xampp-4.png
T

;extension-php_pgsql.d1l
ion=php_pspell.d1l

; The MIBS data available in the PHP distribution must be installed.
; See http://wwm.php.net/manual/en/snmp. installation.php
;extension=php_snmp.d11

extension-php_soap.d11
extension-php_sockets.d11
extension-php_sqlite3.d11
ion-php_sybase_ct.d11
hp_tidy.d1l
extension=php_xmlrpc.dll
extension-php_xs1.d11

; Module Settings ;

[CLT Server]
; Whether the CLT web server uses ANST color coding in its terminal output.

<

_images/migrations-1.png
nvo #] phalcon gen-migration --help
GenerateMigration - Usage:

--config-ini path
igations-dir path
--table-name name
--directory path
1

--version value
--export-data type
--verbose

e [optional]
--force

--help

[invo #]

Configuration file [optional]

Migrations directory [optional]

Table to migrate. Default: all [optional]

Directory where the project will be created [optiona

Version to migrate [optional]
Export table data. Type: always,on-create [optional]
Generate profiling of SQL statements sent to databas

Forces to overwrite existing migrations [optional]
Shows this help

_images/firefox-1.jpg
P K€ » = || console HTML S Script DOM [Net~ | Cookies P) @88

Clear Persist m HTML CSS JS XHR Images Flash Media

» POST search 200 0% localhost 5.2K8 127.00.1:80 | 13ms
b GETutlsjs 304 Not Modifed localhost LaKB 12700180 | 3ms
b GETstylecss 304 Not Modified localhost 23K8 12700180 | 2ms

> GETjauery.mi 304 Not Modified localhost 9L7KE 12700180 | 2ms
> GETglyphicon 304 Not Modifed localhost 13.5K8 127.00.180

> GET bootstrap 304 Not Modified localhost 489K8 127.00.180 | 3ms
> GET bootstrap 304 Not Modifed localhost 96.7K8 12700180 | 1ms

b GET bootstrap 304 Not Modified locahost _ 14K8_ 127.0.0.1:80 | 1ms

_images/xampp-3.png
37items

Home Share View

1[5 ThisPC » Locol Disk (C) » xampp » php » et

7 licenses A

[tocale &

&)

v ¢

Search ext

[mailouty php_bz2.dll
1 maitodi
[mysal
[per

php_com_d
otnetdil

Ll

php_ed.dil

.l

[php
[T g
[data

108
[dev
[docs
[0 et

[et
[togs
[pear

&)

[script php_sybase
=y et
[Text

[security v
1 item selected 346 MB

php_tidy.dil

php_xmirpe
il

php_ssldil

_images/tools-12.png
S Phalcon PHP Framework

€ -~ C | © localhost/store/products/search/

Go Back

Create products

1d Types Name Price Quantity Status

11 Cabbage10.50 15 A
21 Spinach 720 38 A
31 Tomawo 525 2 A

First Previous Next Last 1/1

_images/migrations-3.png
[1.0.0 #] 1s
companies . php
contact.php
product_types.php
[1.0.0 #]

products. php
test.php
users.php

_images/yslow-1.jpg
2R <D

T
ome | Crade | Components | stadstcs | Tools Rulesets (VSlowtv2) 3

Console HTML CSS Script DOM Net (Cookies [YSlow | Pages.

Grade @) overall performance score 92 Ruleset applie

Slow(V2) URL: htp: /invo.phalconphp.com/
ALL@3) FILTERBY: CONTENT (6) | COOKIE (2) | CS5.(6) | IMAGES (2) | JAVASCRIPT (4) | SERVER (6

Make fewer HTTP requests.

Grade A on Make fewer HTTP requests
Use a Content Delivery Network (CDN)

P — This page has 3 external stylesheets. Try combining them into one.

Add Expires headers Decreasing the number of components on a page reduces the number of HTTP requests

the page, resulting in faster page loads. Some ways to reduce the number of componen
files, combine multiple scripts into one script, combine multiple CSS files into one style s
Sprites and image maps.

A

F

A

E

A Compress components with gzip
A Putcssattop

A Put Javascript at bottom »Read More
A Avoid CSS expressions.

N/a Make JavaScript and Cs external

Copyright © 2013 Yahoo! Inc. Al rights reserved.

_images/path-3.png
Environment Variables

User variables for eagle

Variable
i
MSDevDir
path
TEWP

value
CiProgram Fisipicrosoft Viual Studio,
CiProgram Fis!picrosoft Visual Stusio,
CiProgram Fisipicrosoft Visual Stusi,
CiiDocuments and SettingsleaglelLocal
CiiDocuments and SettingsleaglelLocal

= oo)

NLMBER_OF P.
o5

PATHEAT
PROCESSOR 4.

value

1
indows T

_images/wamp-3.png
) Locslhost
) My projects
5) phpMyadmin
QB o directory

Start Al Services
Stop Al Services

Restart All Services

Put Online

_images/path-5.png
P

_images/views-1.png
C1G1S) ay—
=

€ | ® localhost/phalconphp/posts/show/101

This is main layout!

This is the "posts" controller layout!
This is show view!

Thave received the parameter 101

_images/xdebug-1.jpg
Variable Value [Tyoe File Ttine T Function
> Sthis (sthis => (_depend ProductsControll... ducsController.php 17 “ProductsControll..
PS.COOKIE (S.COOKIE=>(_u array vojpublic/index.php 0 Phalcon\Mvc\Ap.
SNy Geew=iionn. sey vo/public/index.php 121 main

SCFILES aray il 1]
»sceT (SGET=>(wi= amay
s posT aray
P SREQUEST (S_REQUEST =>(_u array
PSSERVER (S_SERVER => (RED array
P SSESSION (S_SESSION => (Sec array
»SGLOBALS (SGLOBALS => (GL array
™ this->view->setTenpLateAt tor (main']7 B
n Tag: :setTitle(Manage your product types');
1 parent::initialize();
B
1
[| opibtladmtion initsiaiiony
-—w
$this->view->setVar 'productTypes £ind());
B)
2
21 public function searchction()
2 It
2 snunberpage = 1; 5
7 T£ (Sthis->remest>isPost1) 151
Break

_static/img/tools-8.png
[store #] |

_static/img/tools-2.png
000

~sore
£ raccess
(e
> Ccontia
» Elcontrolers
\ » Ciogs
» imodels
» Eviews
v Eapublic
£ raccess
\ > Scss
» Efles
> img
2 index.ohp
‘ » [javascript
> Ctems

. Line: 1 Column

_static/img/xampp-5.png
& XAMPP Control Panel v3.2.1

Modules
Service Module

Apache
MysaL
Filezilla
Mercury

Tomcat

45536 PV [main]

45536 PV [main]

45539 PV [Apache]
45539 PV [Apache]
52205 P [Apache]
52205 P [Apache]
52205 P [Apache]
52207 PM [Apache]
52208 PM [Apache]

PID(s) Portls) Actions
3804 r
= 80,443 | Stop
Start
Start
Start
Start
Starting Check-Timer
Control Panel Ready
Attempting to start Apache app.

Status change detected: running
Attempting to stop Apache (PID- 3568)
Attempting to stop Apache (PID- 3964)
Status change detected: stopped
Attempting to start Apache app.

Status change detected: running

Admin

Admin

Admin

Admin

Admin

Config
Config
Config
Config

Config

Logs
Logs
Logs
Logs

Logs

7 Config
@ Netstat
i Shell
) Explorer
£ Senices
'@ Help

[Quit

_images/tutorial-2.png
© - = http://localhost/tutorial/ - Google Chrome
G http://localhost/t. x \ {1\

o)

R L X

Hello!

Sign up here!

_static/img/xampp-6.png
[xampp 563

€) @ locothostsarmpp/indesphp @[Q puscar [¢ A oG

(5] XAMPP for WindoWs e e e oo o e s o

/Portuguas (erasi) BAEE

XAMPP pdo_sqlite i
5.6.3
T | sauite Library 3843
atus
Security
Documentation phalcon
Components
prieAreE Web framework delivered as a C-extension for PHP.
a0
D Collection "
Somytnm L Phalcon Team and contribufors
Instant Art Version 200
Phone Book = -
Powered by Zephir Version 0.6.2a
Perl
perino()
Guest Book Phar
Info ~
Tomcat examples FErETTEET Ziz
Phar APIversion 111
Tools
FileZilla FTP SVN revision ‘$1d: ac6bd272c417316cc971d46ea4fB8372dcf054406
W‘?t‘a"’:j; Phar-based phar archives. enabled
Tar-based phar archives enabled
22002-2015 ZIP-based phar archives enabled

“-APACHE
FRIENDS... [P enabled

_static/img/xampp-7.png
phalcon

Web framework delivered as a C-extension for PHP

Author Phalcon Team and contributors

Version 200

Powered by Zephir Version 0.6.2a

_images/tools-6.png
OO0)/ rhaiconprpFramenork
€ C | ® localhost/store/

Congratulations!

You're now flying with Phalcon.

_static/img/background.png

_images/cherokee-6.jpg
Behavior + (G myphalconapp — Default

Extensions pho o Handlor

PR e, T]

Fie exits . Handr | Rodecton 9
| o o conacton i b

_ Fuietot

_static/img/cherokee-2.jpg
o
e

cms
Content Management Systems
Applcation Servers Nick my-phalcon.app
General Purposs Application Servers

Plattorms

Web Development Platiorms
Languages

Development Languages and Document Root directory of the new Virtual Servar.
Platforms. v

Name of the Virtual Server you are about to create. A domain namo s alrigh.

Document Root Narmwwwintmifpublic/

Web Applications

General Purpose Applications

Tasks
Common Maintenance Tasks

_images/xampp-1.png
phalcon x&
6VCTph
560300

_static/img/tools-5.png
store #] phalcon create-controller --name tes!

_images/tools-10.png
A ———
| r——
€ & C | © localhost/store/products IR Y

Create Products

Search products

Id
Types
Name
Price

_static/img/tools-3.png
jocs #] phalcon create-project --help
phalcon.php - Usage:

-directory path Base path on which project will be created
-help Show help
[htdocs #]

_images/eer-1.png
1 INT(10)
 name VARCHAR(70)

 type VARCHAR(E2)
& year INT(11)

1 INT(10)
@ robots_id INT(10)
@ parts_id INT(10)

-
INT(10)
 name VARCHAR(70)

Indexes

_static/img/tutorial-1.png
o - -

http://localhost/tutorial/ - Google Chrome

G http://localhost/te x \{ 1\

<

o)

T L X

Hello!

_images/invo-1.png
Jocaio

B T ———

Welcome to INVO

INVO i a revolutionary appication to create invoioes onine fo froe. Recaive onine
payments from your cients and Improve your cash flow

Manage Invoices Dashboards And Invite, Share And
Online Reports Collaborate
G,k and gty icicos G rcl s ko Py e —

_static/img/sample-2.png
‘This is a sample application of the Phalcon PHP Framework. Please don

Welcome to Il

INVO is a revolutionary application to create invoic
improve your cash flow

_images/path-0.png
& phalcon-tools

Fle Edt View Favortes Took Help

O - © - (] Do [rots

address |5 Criphakon-tools

File and Folder Tasks (2

85} Rename this e Edt
B Movothistie it with Visual Stucko
D) oy i i Prink
& Publsh tis ie to the Gt Add al Fles row
e G Conmit Tool
() EmailthsFie o Hetory
& Prin this il Gt Bame
X Delete tisFie Gt Gui
Gt Branch
Gt Bash

Other Places e
A G Commit -> "mast

o LocalDisk (C) R ToroiseGit

Send To

_images/webgrind.jpg
& webgrind of /Applicatior % || |
€ > C | [} localhost/webgrind/

IApplications/MAMP/htdocs/involpublicfindex.php J———

cachegrind out 1032 @ 2013-02-25 16:00:08 62 diferent functions called in 7 millissconds (1 runs, 4 shown)

Filter: (regextoo)

ol invocationCount [FRMIBSHGRRIIIS] Tota nchsivecost ¢
@) php:PhalconiMvciModel:find 1 3 4
@ » php::PhalconiMvc\Application->handie 1 3 7
@ » php::Phalcon\Db\Adapter\Pdo->_construct 1 1 1
@ > (main} E 1 2 7

You have the latest version.
Gopyright @ 2008-2011 Jacob Ostinger & Joakim Nygard. webarind homepage

_images/path-7.png
with Rdebug v211.2, Copyright (c> 2082-2011, by Derick Rethans

Docunents and Settings\eagle>phalcon
incorrect usage

\Docunents and Settings\eagle>_

_images/cherokee-3.jpg
Virtual Server: my-phalcon.app Holp

Bases Host Match Bohavior Error Hander Logging Securty
Behavior Rules

Match Handler Auh Root Secuwe Enc Cache Exp Timeou Shaping Log Final

Default List & Send v

Rule Management

genindex-all.html

 Navigation

 		
 index

 		Phalcon 3.0.2 documentation »

Index

 © Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Phalcon 3.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Phalcon Team and contributors.
 Last updated on Dec 19, 2016.
 Created using Sphinx 1.3.5.

_static/img/tutorial-2.png
© - = http://localhost/tutorial/ - Google Chrome
G http://localhost/t. x \ {1\

o)

R L X

Hello!

Sign up here!

_static/img/path-7.png
with Rdebug v211.2, Copyright (c> 2082-2011, by Derick Rethans

Docunents and Settings\eagle>phalcon
incorrect usage

\Docunents and Settings\eagle>_

_static/img/tools-6.png
OO0)/ rhaiconprpFramenork
€ C | ® localhost/store/

Congratulations!

You're now flying with Phalcon.

_static/img/cherokee-6.jpg
Behavior + (G myphalconapp — Default

Extensions pho o Handlor

PR e, T]

Fie exits . Handr | Rodecton 9
| o o conacton i b

_ Fuietot

_images/path-01.png
= phalcon-tools,

Fle Edt View Favortes Took Help

Qo - © - (B Do i ros | (-

address |5 Criphakon-tools

File and Folder Tofl Y ISR YR)

) e thsic| Fle B8t Fomat ow_Hob
(@ Move this file @echo of f

1) Copythisfle |set PTOOLSPATH: .\Ehﬂcun—(uﬂs\

@ rubieh sl o PR XPTOOLSPATH\phal con. php %+
web

) Emaithisfle

1 Print this il

X Delete tisFie

_static/img/xampp-1.png
phalcon x&
6VCTph
560300

_images/xhprof-1.jpg
- Froducts: etProducypes
iy 7T | e 3317ms26%
B ey Excl: 3249 ms (123%)
= Soul calls

_static/img/tools-10.png
A ———
| r——
€ & C | © localhost/store/products IR Y

Create Products

Search products

Id
Types
Name
Price

_images/migrations-4.png
phalcon run-migration

_static/img/xhprof-2.jpg
I

Displaying top 100 functions: Sorted by Excl. Wall Time (microsee) display all]

ot e AT e B WAL TI iy, I CPU 1, P 5 ieni
= e

o) i) * % (i)
Lose s s s ssse e s e s s
1os s eow ams s sis ma @1 0% ©su
s s 5317 126% S s o % s 1sox siom
1oss asem svaw T 27 s s e i07% assa
1 oss s 26% @3 a6s % % lem
1 os - 4 g% a3 e s
1 oss - 1% 1% e s M ask
1m0 fooo% s ia e ok s 20% snses
7 sam 1013 35% B 3s o onae wm as% ssu
1 oss o5 108 7 s me w76 a3k usm
4 s s 1588 0 w0 s ma% 1 sen e
2 2008 s W s aex e % oo
1om w0 mse W 0ss 20w I 20% 1w
5 s ™ om 8 ose 12 1w ® s upn
1 oss m osw moos o1 > 1% s
1 oss 15 o T T S TURT ")
5 6% w 03 ® 0% e 0k @ 0k 2w
1 oss 07 0% 0w s s os% se
1 oss 2 o 2 0w e % s om e
1 os S0z Soaw s oz us oa% 11@
1 os % oss S om o s as o am
ST I B T T e S e

_images/path-2.png
System Properties

System Restore Automatic Updates
General Computer Name Hardware Advanced

Yo must be logged on as an Adiistator ta make most of these changes.
Pefamance

Visual efects, processor scheduing, memory usage. and vitual memory

User Profes

Deskiop settings related to yout logon

Stattup and Reecovery
System stattup, system i, and debugging information

Ervrerment varabes]) _ErorRepotng

_static/img/path-4.png
Edit System Variable

Variable name: Path

Variable value: wamplbiniphplphpS 3. 10;C\phalcon-tools

(e)

_static/img/path-0.png
& phalcon-tools

Fle Edt View Favortes Took Help

O - © - (] Do [rots

address |5 Criphakon-tools

File and Folder Tasks (2

85} Rename this e Edt
B Movothistie it with Visual Stucko
D) oy i i Prink
& Publsh tis ie to the Gt Add al Fles row
e G Conmit Tool
() EmailthsFie o Hetory
& Prin this il Gt Bame
X Delete tisFie Gt Gui
Gt Branch
Gt Bash

Other Places e
A G Commit -> "mast

o LocalDisk (C) R ToroiseGit

Send To

_static/img/webgrind.jpg
& webgrind of /Applicatior % || |
€ > C | [} localhost/webgrind/

IApplications/MAMP/htdocs/involpublicfindex.php J———

cachegrind out 1032 @ 2013-02-25 16:00:08 62 diferent functions called in 7 millissconds (1 runs, 4 shown)

Filter: (regextoo)

ol invocationCount [FRMIBSHGRRIIIS] Tota nchsivecost ¢
@) php:PhalconiMvciModel:find 1 3 4
@ » php::PhalconiMvc\Application->handie 1 3 7
@ » php::Phalcon\Db\Adapter\Pdo->_construct 1 1 1
@ > (main} E 1 2 7

You have the latest version.
Gopyright @ 2008-2011 Jacob Ostinger & Joakim Nygard. webarind homepage

_static/img/cherokee-3.jpg
Virtual Server: my-phalcon.app Holp

Bases Host Match Bohavior Error Hander Logging Securty
Behavior Rules

Match Handler Auh Root Secuwe Enc Cache Exp Timeou Shaping Log Final

Default List & Send v

Rule Management

_images/migrations-5.png
1335932029.8233: SHOW INDEXES FROM “invo™. products® => 13359
32029.8237 (©.00034308433532715)

1335932029.8246: SELECT COUNT(*) FROM ~INFORMATION_SCHEMA
BLES™ WHERE TABLE_NAME “test' AND “TABLE_SCHEMA'='invo'
1335932029.8249 (©.00030779838562012)

1335932029.825: DESCRIBE “invo™. test’ => 1335932029.8259 (@.
00094413757324219)

1335932029.826: SHOW INDEXES FROM “invo™
.8269 (©.000859092214050293)
1335932029.8275: SELECT COUNT(*) FROM ~INFORMATION_SCHEMA® . TA
BLES® WHERE “TABLE_NAME = ‘'users' AND ~TABLE_SCHEMA ='invo' =
> 1335932029.8278 (0.00026392936706543)

1335932029.8279: DESCRIBE “invo’ . users’ => 1335932029.8287 (
©.00088977813720703)

1335932029.8289: SHOW INDEXES FROM “invo™. users™ => 13359320
29.8299 (©.00097990036010742)

Version 1.0.0 was successfully migrated

[invo #]

test™ => 1335932029

_images/cherokee-7.jpg
Banavior + (G myshalconapg — Fileexisis

Exonsions oo .
PR e T ey Hondler

- - =

oetaut

Document oot
Ao sty e ocunt s s

_images/eer-2.png
+idINT(10)
 name VARCHAR(70)
 type VARCHAR(E2)

& year INT(11)

AT
© robots_id INT

< similar_robots_id INT

_images/cherokee-55.jpg
Add Behavior Rule

=
- -

cus
Content Managemen Systems.

Appliation Servers Enadled

General Purpose Applicaion Servers Math any fie -

Platiorms

Web Development Platorms -

e Use V0 cache Enatled

Development Languages and Uses cache durn i detecion.Disabe octoy conent change roqenty. Enaie
il otrerwae

Web Appiications

Match th roquest #any o oxits.

General Purpose Appicatons Onymatcnties Enabled
P -

dir,check ndex fles ¥ Enabled
a drectory i roquestod, chock tho ndex s sido .

_images/path-6.png
Type the name of a program, older, docurent, or
7] nternet resorce, and indows willopen i For you.

Open: 1

o [concel] [mromse

_images/cherokee-4.jpg
‘Add Behavior Rule

Manual
Manual configuration

cms
Content Management Systems.

Application Servers
General Purpose Application Servers.

Platforms
Web Development Platiorms

Languages
Development Languages and
Platiorms

‘Web Applications
General Purpose Applications

Tasks
‘Common Maintenance Tasks

.NET with Mono
Cross-platiorm, open-source .NET development framework.

_images/vokuro-1.png
&) 5 oo

Welcome!

This s 2 website secured by Phalcon Framework

o Important Stuff Example addresses
(e ot s s et s o Ve

Mol s s g ol amare . sl oo oo e maghs 456 e o Sk 101
el Com o oo e et e o e 29656780

Py Mok 61 s s s 4
Proemmsivrieoray - o
TR e ity

vt dtr i Conmodtn st st s it

_images/cherokee-1.jpg
wconeto Gastee s
€ 5 C [0z

FR— Soport

e T p——— cmsan
ey S nosoatss

ek eteve e s o oo Somwbe g s sk LS5

L o 10y oo Puatuie ol e
RS ————— T
Jetiern

LA00 progs Crrokne Uors

Q saneriormton

Pop—

| s

=y

_images/cherokee-9.jpg
000 <o weame
€ 5 C D mesniconarn:

Welcome to INVO

INVOIs a revoluionary appicaon to create nvoes onine for free. Recsive onine
ayments from your lents and improve your cash fow

Manage Invoices Dashboards And Invite, Share And
Online Reports Collaborate

_images/xampp-2.png
phalcon x&
6VCTph
560300

php_phalco
ndll

=

LICENSE

_images/tutorial-3.png
© - = http://localhost/tutorial/signup - Google Chrome
/G httpi/flocalhost/t. x \{)

& - C 0 [® localhost/tutorial signup

L

Sign up using this form

Name

E-Mail

_images/xampp-6.png
[xampp 563

€) @ locothostsarmpp/indesphp @[Q puscar [¢ A oG

(5] XAMPP for WindoWs e e e oo o e s o

/Portuguas (erasi) BAEE

XAMPP pdo_sqlite i
5.6.3
T | sauite Library 3843
atus
Security
Documentation phalcon
Components
prieAreE Web framework delivered as a C-extension for PHP.
a0
D Collection "
Somytnm L Phalcon Team and contribufors
Instant Art Version 200
Phone Book = -
Powered by Zephir Version 0.6.2a
Perl
perino()
Guest Book Phar
Info ~
Tomcat examples FErETTEET Ziz
Phar APIversion 111
Tools
FileZilla FTP SVN revision ‘$1d: ac6bd272c417316cc971d46ea4fB8372dcf054406
W‘?t‘a"’:j; Phar-based phar archives. enabled
Tar-based phar archives enabled
22002-2015 ZIP-based phar archives enabled

“-APACHE
FRIENDS... [P enabled

_images/xampp-7.png
phalcon

Web framework delivered as a C-extension for PHP

Author Phalcon Team and contributors

Version 200

Powered by Zephir Version 0.6.2a

_images/wamp-2.png
File Edit Fomat View Help
extension=php_shmop.d11 ~

; The MIBS data available in the PHP distribution must be installed.
; See http://wwm.php.net/manual/en/snmp. installation.php
;extension=php_snmp.d11

extension-php_soap.d11
extension-php_sockets.d11
extension-php_sqlite3.d11
;extension-php_sybase_ct.d11

;extension=php_tidy.d11
extension=php_xmlrpc.dll
extension-php_xs1.d11

; Module Settings ;

[CLT Server]
; Whether the CLT web server uses ANST color coding in its terminal output.
cli_server.color = On

_images/cherokee-2.jpg
o
e

cms
Content Management Systems
Applcation Servers Nick my-phalcon.app
General Purposs Application Servers

Plattorms

Web Development Platiorms
Languages

Development Languages and Document Root directory of the new Virtual Servar.
Platforms. v

Name of the Virtual Server you are about to create. A domain namo s alrigh.

Document Root Narmwwwintmifpublic/

Web Applications

General Purpose Applications

Tasks
Common Maintenance Tasks

_images/invo-2.png
000,/ w0 weome
€ 5 C [locatbost/ino/roducts =

T 5 samesopicaton of o Pcn P2 Framors. Pess do s i ary borsons irraton. T

Welcome to INVO

INVO i a revolutionary appication to create invoioes onine fo froe. Receive onine
payments from your cients and improve your cash flow

Manage Invoices Dashboards And Invite, Share And
Online Reports Collaborate

i, tack and axport yourbvcces Gain iat g ko how yeur inin usors and share your warkdond sa

_images/linux-1.png
©O® Terminal
phalcon@ubuntu:~$ git clone git://github.con/phalcon/phalcon-devtools.git
Cloning into phalcon-devtools.

remote: Counting objects: 788, done.

remote: Compressing objects: 100% (597/597), done.

IReceiving objects: 100% (788/788), 421.64 KiB | 230 KiB/s, done.

remote: Total 788 (delta 339), reused 590 (delta 141)

IResolving deltas: 100% (339/339), done.

phalcongubuntu:~$ I

_images/xhprof-2.jpg
I

Displaying top 100 functions: Sorted by Excl. Wall Time (microsee) display all]

ot e AT e B WAL TI iy, I CPU 1, P 5 ieni
= e

o) i) * % (i)
Lose s s s ssse e s e s s
1os s eow ams s sis ma @1 0% ©su
s s 5317 126% S s o % s 1sox siom
1oss asem svaw T 27 s s e i07% assa
1 oss s 26% @3 a6s % % lem
1 os - 4 g% a3 e s
1 oss - 1% 1% e s M ask
1m0 fooo% s ia e ok s 20% snses
7 sam 1013 35% B 3s o onae wm as% ssu
1 oss o5 108 7 s me w76 a3k usm
4 s s 1588 0 w0 s ma% 1 sen e
2 2008 s W s aex e % oo
1om w0 mse W 0ss 20w I 20% 1w
5 s ™ om 8 ose 12 1w ® s upn
1 oss m osw moos o1 > 1% s
1 oss 15 o T T S TURT ")
5 6% w 03 ® 0% e 0k @ 0k 2w
1 oss 07 0% 0w s s os% se
1 oss 2 o 2 0w e % s om e
1 os S0z Soaw s oz us oa% 11@
1 os % oss S om o s as o am
ST I B T T e S e

_images/path-4.png
Edit System Variable

Variable name: Path

Variable value: wamplbiniphplphpS 3. 10;C\phalcon-tools

(e)

_static/img/tools-4.png
jocs #] phalcon commands
Available commands:
create-all-models
create-controller
create-nodel

create-project

scaffold

[htdocs #]

_images/xampp-5.png
& XAMPP Control Panel v3.2.1

Modules
Service Module

Apache
MysaL
Filezilla
Mercury

Tomcat

45536 PV [main]

45536 PV [main]

45539 PV [Apache]
45539 PV [Apache]
52205 P [Apache]
52205 P [Apache]
52205 P [Apache]
52207 PM [Apache]
52208 PM [Apache]

PID(s) Portls) Actions
3804 r
= 80,443 | Stop
Start
Start
Start
Start
Starting Check-Timer
Control Panel Ready
Attempting to start Apache app.

Status change detected: running
Attempting to stop Apache (PID- 3568)
Attempting to stop Apache (PID- 3964)
Status change detected: stopped
Attempting to start Apache app.

Status change detected: running

Admin

Admin

Admin

Admin

Admin

Config
Config
Config
Config

Config

Logs
Logs
Logs
Logs

Logs

7 Config
@ Netstat
i Shell
) Explorer
£ Senices
'@ Help

[Quit

_images/tutorial-1.png
o - -

http://localhost/tutorial/ - Google Chrome

G http://localhost/te x \{ 1\

<

o)

T L X

Hello!

_images/tools-2.png
000

~sore
£ raccess
(e
> Ccontia
» Elcontrolers
\ » Ciogs
» imodels
» Eviews
v Eapublic
£ raccess
\ > Scss
» Efles
> img
2 index.ohp
‘ » [javascript
> Ctems

. Line: 1 Column

_static/img/firefox-1.jpg
P K€ » = || console HTML S Script DOM [Net~ | Cookies P) @88

Clear Persist m HTML CSS JS XHR Images Flash Media

» POST search 200 0% localhost 5.2K8 127.00.1:80 | 13ms
b GETutlsjs 304 Not Modifed localhost LaKB 12700180 | 3ms
b GETstylecss 304 Not Modified localhost 23K8 12700180 | 2ms

> GETjauery.mi 304 Not Modified localhost 9L7KE 12700180 | 2ms
> GETglyphicon 304 Not Modifed localhost 13.5K8 127.00.180

> GET bootstrap 304 Not Modified localhost 489K8 127.00.180 | 3ms
> GET bootstrap 304 Not Modifed localhost 96.7K8 12700180 | 1ms

b GET bootstrap 304 Not Modified locahost _ 14K8_ 127.0.0.1:80 | 1ms

_static/img/migrations-1.png
nvo #] phalcon gen-migration --help
GenerateMigration - Usage:

--config-ini path
igations-dir path
--table-name name
--directory path
1

--version value
--export-data type
--verbose

e [optional]
--force

--help

[invo #]

Configuration file [optional]

Migrations directory [optional]

Table to migrate. Default: all [optional]

Directory where the project will be created [optiona

Version to migrate [optional]
Export table data. Type: always,on-create [optional]
Generate profiling of SQL statements sent to databas

Forces to overwrite existing migrations [optional]
Shows this help

_static/img/xampp-3.png
37items

Home Share View

1[5 ThisPC » Locol Disk (C) » xampp » php » et

7 licenses A

[tocale &

&)

v ¢

Search ext

[mailouty php_bz2.dll
1 maitodi
[mysal
[per

php_com_d
otnetdil

Ll

php_ed.dil

.l

[php
[T g
[data

108
[dev
[docs
[0 et

[et
[togs
[pear

&)

[script php_sybase
=y et
[Text

[security v
1 item selected 346 MB

php_tidy.dil

php_xmirpe
il

php_ssldil

_static/img/tools-11.png
A ———
0 00/ phalcon prp Framework o
€« C | ® localhost/store /products/create/ N

Go Back

types is required
‘name is required
price is required

Create products
s
Name
Price

_static/img/mac-1.png
terminal

[show All

Definition {8 adjective 1 of, forming, or s.
Applications [l Terminal

Documents

VBox.log — WINDOWS XP [VC6]
[VBox.log.1 — WINDOWS XP [

| kernel js
VBox.log — Windows XP 64 bits

_static/img/interface.png

_static/img/volt.jpg
showvolt B

2 {x extends “templates/products.volt” x}

3

4 content() }}

5

6 {% block last_products %}

7

8 {% for product in products %}

9 * Name: {{ product.name/e }}

10 {% 11 product.status = "Active" }

1 Price: {{ product.price + product.taxes/100 }}
2 {{ Uink_to(*More', 'products/details/* ~ product.id) }}
13 o else 4}

1 {4 " (Inactive)* 1}

15 {5 enatt %}

16 {x endfor %}

17

18 {% endblock %}

19

20 {% block footer %}
21 {{ partial(‘navbar/footer') }}
22 {x endblock a}

Line 1, Column 1.

Tab Size:

_static/img/path-1.png
12 vy Music
&

[

Set progran
Defals

iy printers anq

) Help and 5y

) search

Run,

Open
Explore
Search,

Manage

Map Network Dive.
Discannect Netwark Drive.

Shaw on Deskiap
Rename

_static/img/xampp-4.png
T

;extension-php_pgsql.d1l
ion=php_pspell.d1l

; The MIBS data available in the PHP distribution must be installed.
; See http://wwm.php.net/manual/en/snmp. installation.php
;extension=php_snmp.d11

extension-php_soap.d11
extension-php_sockets.d11
extension-php_sqlite3.d11
ion-php_sybase_ct.d11
hp_tidy.d1l
extension=php_xmlrpc.dll
extension-php_xs1.d11

; Module Settings ;

[CLT Server]
; Whether the CLT web server uses ANST color coding in its terminal output.

<

_static/img/tools-9.png
[store #] |

_static/img/migrations-2.png
000 Default
8 NCINE, TAB BLE COLLATION TROM INCORMATION SCHEM/

.TABLES WHERE TABLES.TABLE_SCHEMA = "invo" AND TABLES.TABLE_NA
ME = "test" => 1335920161.9368 (©.000324091084899902)
1335920161.9369: DESCRIBE “invo™ . users’ => 1335920161.938 (@
.0010280609130859)

1335920161.9383: SHOW INDEXES FROM “invo™. users™ => 13359201
61.9389 (0.00062680244445801)

1335920161.939: SELECT TABLE_NAME,COLUMN_NAME , CONSTRAINT_NAME,
REFERENCED_TABLE_SCHEMA, REFERENCED_TABLE_NAME , REFERENCED_COLUM
N_NAME FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE WHERE REFER
ENCED_TABLE_NAME IS NOT NULL AND CONSTRAINT_SCHEMA = "invo" AN
D TABLE_NAME = "users" => 1335920161.9483 (©.0012459754943848
)

1335920161.9404: SELECT TABLES.TABLE_TYPE, TABLES.AUTO_INCREMEN
T, TABLES . ENGINE, TABLES . TABLE_COLLATION FROM INFORMATION_SCHEMA
.TABLES WHERE TABLES.TABLE_SCHEMA = "invo" AND TABLES.TABLE_NA
ME = "users" => 1335920161.9407 (©.00038504600524902)

Version 1.0.0 was successfully generated

[invo #]

_static/img/tools-12.png
S Phalcon PHP Framework

€ -~ C | © localhost/store/products/search/

Go Back

Create products

1d Types Name Price Quantity Status

11 Cabbage10.50 15 A
21 Spinach 720 38 A
31 Tomawo 525 2 A

First Previous Next Last 1/1

_static/img/yslow-1.jpg
2R <D

T
ome | Crade | Components | stadstcs | Tools Rulesets (VSlowtv2) 3

Console HTML CSS Script DOM Net (Cookies [YSlow | Pages.

Grade @) overall performance score 92 Ruleset applie

Slow(V2) URL: htp: /invo.phalconphp.com/
ALL@3) FILTERBY: CONTENT (6) | COOKIE (2) | CS5.(6) | IMAGES (2) | JAVASCRIPT (4) | SERVER (6

Make fewer HTTP requests.

Grade A on Make fewer HTTP requests
Use a Content Delivery Network (CDN)

P — This page has 3 external stylesheets. Try combining them into one.

Add Expires headers Decreasing the number of components on a page reduces the number of HTTP requests

the page, resulting in faster page loads. Some ways to reduce the number of componen
files, combine multiple scripts into one script, combine multiple CSS files into one style s
Sprites and image maps.

A

F

A

E

A Compress components with gzip
A Putcssattop

A Put Javascript at bottom »Read More
A Avoid CSS expressions.

N/a Make JavaScript and Cs external

Copyright © 2013 Yahoo! Inc. Al rights reserved.

_static/img/bench-1.png
PHP Version 5.3.8

System [Darwin imacocal 10.8.0 Darvin Kerel Version 10.8.0: Tue Jun 7 16:38:36 PDT 2011;
rootxnu-1504.15.3~1/RELEASE 1386 1386

BuildDate |Feb 282012 104308

Configure Jconfigure' prefix=/opUiocal —mandir=loptiocal/sharelman' infodir=/opUiocallshare/inio'

Command |*-with-confi-fle-path=ioptlocalietciphps' with-config-fle-scan-dir=foptiocalivaridbiphps"
cisable-all ~enable-bemath enable-ctype' enable-dom' ~enable-flinfo’ enable-
fiter —enabie-hash' ~enable-json’ *~enabie-ibxm ~enable-pdo’ enable-phar -enable-
|session' —enable-simplexm" enable-tokenizer ~enable-xmi' —enable-xmireader’
—enable-miwriter -with-bz2=/optocal' wit-mhash=/optiocal’ ~with-pcre-regex=/opt
|focal with-readiine=/optocal’ with-lioxmi-dir=loptiocal” ~with-zlb=loptiocal”
-without-pear disable-cgi “~with-apxs2=loptiocal/zpache2/in/apxs"

[Server APl |Apache 2.0 Handler

Virtual [disabled

Directory

Support

Configuration _|/optiocal/etcipnps.

File (php.ni)

Path

Loaded [foptiocalietciphpSipnp.ni

Configuration

File

Scan this dir for (loptiocalivar/dbiphps

additional .ini

fles

(Additional ini | loptiocal/var/dbiphp3/apc.ii, /oplocallvar/do/phpScurlni, /opUIocaINr/dbiphpS/gdni,

fles parsed foptiocalivaridbiphpsito i, optiocalivaricbiphpsmagick.ni, foptocalivarido
[ohps/imap.in,foptiocalivaridbiphps/mbstring i, /oplocalivaridbiphps/mrypt.in, foptiocal
| Var/doiphpsimysal n, loptocalivaridbiphpsiopenssl.ni, loptlocalivaridbipnps/pentlni,
[loptocalivaricbiphpsisoap.in, /optiocalivaridbiphps/sockets.ni, foptocalivaridb
hpsisalie.ini, fopiocalivaridbiphps/zipini

PHP API 20080626

PHP Extension |20090626

2end Extension [220090626

2end Extension | API220090626,NTS.

Build

PHP Extension |API20090626NTS

Build

e T——

_static/img/migrations-3.png
[1.0.0 #] 1s
companies . php
contact.php
product_types.php
[1.0.0 #]

products. php
test.php
users.php

_static/social-links.png

_static/up.png

_static/up-pressed.png

_static/img/logo-small-sp.png

_static/img/sample-4.png
Phosphorum Discussions Activity
All discussions Hot Unanswered
0 3 Can | use \Phalcon\Mvc\Router\Annof

replies views Apr11/2013

1 3 Whatis the difference between *db:be
replies views Apr11/2013

0 5 Consider adding a flag to make dev to

_static/img/wamp-1.png
Home Share

5 Quick access
LS
B Documents#-
18 Downloads #-
WMusic

iy Local Disk (C)
% CDDrive 0\

E—

View

&)

1 [> ThisPC » Locol Disk (C) » wemp » bin » php » phps5.12 » et

C | | Searchext

php_bz2.dil

Ll

php_encha
ntl

dll

.l

php._gettext
an

php_mbstri
ng.dl

php_oci
gl

php_pdo
docl

&)

37items 1 item selected 453 MB

php_sybase
et

php_tidy.dil

php_xmirpe
il

php_ssldil

php_phalco
ndll

php_snmp.
il

_static/img/logo-small.png

_static/img/migrations-4.png
phalcon run-migration

_static/img/path-2.png
System Properties

System Restore Automatic Updates
General Computer Name Hardware Advanced

Yo must be logged on as an Adiistator ta make most of these changes.
Pefamance

Visual efects, processor scheduing, memory usage. and vitual memory

User Profes

Deskiop settings related to yout logon

Stattup and Reecovery
System stattup, system i, and debugging information

Ervrerment varabes]) _ErorRepotng

_static/img/bench-4.png
PHP Version 5.3.15 Php

System Darwin Andress-MacBook-Pro.ocal 11.4.0 Darwin Kernel Version 11.4.0: Mon Apr 9 19:32:15
PDT 2012; r001x11-1699.26 8~1/RELEASE X86_64 X86._64.

Build Date | Aug 152012 16:31:00

Configure | Jconfigure’ ~prefix=/optiocal ~mandir=loptiocal/sharelman’ infodir=/optiocalishare/info’

Command | ™~program-suix=53' -includedir=ioptocallnciude/phps3 lidir=ioptiocallibiphpsa’
“—with-coniig-fle-path=foptocalfetciphps3' ~with-config-fle-scan-dir=/optiocalaridbipnpsa'
"disable-all"~enable-bemath' ~enable-ctype' ~enable-dom' —enable-feinfo’ enabie-fier’
"—enable-hash' —enable-json’ ~enable-fioxm" —enable-pdo’ ~enable-phar’ ~enable-session’
"—enable-simplexm’ '~enable-tokenizer *~enable-xm! ~enable-xmireader -enable-
xmiwrier’ --with-b22=loptiocal - with-mhash=Ioptiocal’ -wit-pore-regex=/optioca’ “-wih-
Hibxmi-dir=/optocal -with-2ib=/optliocal - without-pear' ~disable-cgi""~disable-ci
~disable-fom’ with-apxs2=/optiocallapache2/bin/apys'

Server APl | Apache 2.0 Handier

Virtual disabied

Directory

Support

Configuration | /optiocallelciphps3

File (php.ini)

Path

Loaded Toptocalleto/phpSa/php.ni

Configuration

File

Scan this dir | loptiocalivaridbiphps3.

for additional

ini files

(Additional .ini | [opiocalivaridbiphpS3/APC.ini, /opUiocailvaridblphpSa/tip.ni, lopUiocallvar/dbiphps3.

files parse: loptiocalivaridoiphps3/pearni

PHP API

PHP Extension

[Zend Extension 220090626

[Zend Extension | AP1220090626, NTS

Build

PHP Extension | API20080626 NS

Build

Debug Build__|no

[Thread Safety _|disabled

[Zend Memory [enabied

Manager

_static/img/invo-1.png
Jocaio

B T ———

Welcome to INVO

INVO i a revolutionary appication to create invoioes onine fo froe. Recaive onine
payments from your cients and Improve your cash flow

Manage Invoices Dashboards And Invite, Share And
Online Reports Collaborate
G,k and gty icicos G rcl s ko Py e —

_static/img/volt-bundle.jpg
showvolt *
20 {# app/views/products/show.volt #}

2 {% extends "templates/products.volt" %}

E]

4 {{ content() }}

5

6 {% block last_products %}

7

& {% for product in products %}

9 * Name: {{ product.name e }}

10 {% it product.status — “Active" %}

1 Price: {{ product.price + product.taxes/100 }}
12 {4 link_to('More', 'products/details/' ~ product.id) }}
13 1x else &}

14 {{ '(Inactive)' }}

15 {% endif &}

16 {% endfor %}

17

18 {% endblock %}

19

20 {% block footer %}

21 {{ partial(‘navbar/footer') }}

22 {% endblock %}

Uine 1, Column 1 Tab Size: 4 HTML(Vol)

_static/img/eer-1.png
1 INT(10)
 name VARCHAR(70)

 type VARCHAR(E2)
& year INT(11)

1 INT(10)
@ robots_id INT(10)
@ parts_id INT(10)

-
INT(10)
 name VARCHAR(70)

Indexes

_static/img/xhprof-1.jpg
- Froducts: etProducypes
iy 7T | e 3317ms26%
B ey Excl: 3249 ms (123%)
= Soul calls

_static/img/speed-tracer.jpg
. & speed Tracer

€3¢l % ®

= ol
® ¥ B 199 for4.00s 36515 @ @ @ (hpisiocaihostjimvojind 18
o0
Tosims a8 et ot o

Sluggishness (events)

Network (resources)

Event Trace
.
I 9 esoure Daa Received
44.2ms (self 6.2ms) 43.10% Parse HTML (18ms)
he 29.1% Script Evaluation (12ms)
B parse HTML 51 14.0% Resource Data Received (6ms)
| Bssmtsams = 1540, Loy ()
o W 0.4% Style Recalculation (Oms)
5 Script Evaluation [0.0% Resource Response (Oms)
21.4ms (self 11.7ms) =
st Details for Resource Data Received
ot Description | Processing a file received by the
Some (self 5.9ms) resource loader.
» Lo e 1993ms. .
« Parse HTHL Duration 44.234ms

_static/img/sample-6.png
Vokuré ~ Home About

Sign Up
Name
EMail pob@phalconphp.com
[ZEEV T pe—
Confirm Password

() Accept terms and conditions

_static/img/path-01.png
= phalcon-tools,

Fle Edt View Favortes Took Help

Qo - © - (B Do i ros | (-

address |5 Criphakon-tools

File and Folder Tofl Y ISR YR)

) e thsic| Fle B8t Fomat ow_Hob
(@ Move this file @echo of f

1) Copythisfle |set PTOOLSPATH: .\Ehﬂcun—(uﬂs\

@ rubieh sl o PR XPTOOLSPATH\phal con. php %+
web

) Emaithisfle

1 Print this il

X Delete tisFie

_static/img/chrome-1.jpg
Elements Resources | Newwork | Sources Timeline Profies Audits Console

Name Status Size | Time
Mam Meth.. SRS Type mmitiaor 2t TIM | Timeline B M —
ndex e 37k 1lms
E2 jinvorproducts ok | i 3.4K8 10ms
e @ 30, indexs 1958 8ms
= Jinvo/bootstrapycss NotMor """ parser %7K 7ms !
bootstrap-responsive 304 . index§ 1948 8ms
Jinvo/bootstrap/css Not Mo " | parser 140K8 3ms

>

Q

e o Documents _Stylesheets Images Scripts XHR Fonts WebSockets _Other [y

_static/img/sample-1.png
> phaicon

Welcome to

THE FASTEST PHP
FRAMEWORK

Phalcon is a web framework implemented as a C extens
offering high performance and lower resource consumpt

‘ oot

_static/img/mac-5.png
[
Phalcon: incorrect usage

_static/img/wamp-4.png
©

WampServer

Version 2.5 Version Francaise

Server Configuration
Apache Version : 2.4.9 - Documentation
PHP Version: 5.5.12 - Documentation
Server Software: Apache/2.4.9 (Win64) PHP/5.5.12

Loaded Extensions : i apache2handler J bemath b2
& Core & ctype acurl
Prereg o exif B fileinfo
Hrgd B gettext & gmp
#imap ¢ json ¢ b
B mhash & mysql # mysqli
& openss| o pere. #PDO
E Johaicon} ¢ Phar ¥ Reflection
o SimplexML. ¢ soap. # sockets
o standard o tokenizer e wddx
Fexmireader dxmirpe Fxmhvrter
e zlib

MySQL Version : 5.6.17 - Documentation

& calendar
o date

o filter

o hash

¢ mbstring
& mysqind
@ pdo_mysql
o session
o SPL

xdebug
sl

& com_dotnet
3 dom

e ftp

i iconv.

2 merypt

odbe

@ pdo_sqlite
¢ shmop

sqlite3

e xml

e zip

_static/img/header-line.jpg

_static/img/sql.png
HI, THIS 15

YOUR SON SCHOOL
VERE HAVING SOYE
COMPUTER TROLBLE.

for

OH, DERR - DID HE.
BREAK SOMETHING?

INAL/AY /

i

DID YOU REALLY
INAE YOUR SON
Robert); DROP
TRBLE Serts;-~ 7

~OH.YES UTIE
BOBBY TABLES,
WE CALLHIM.

WELL VEVE LOST THIS
YEAR'S STUDENT RECURDS
T HOPE YOURE HAPPY.

AND T H(PE
- YOUVE LEARNED

TOSMIZE YOUR

DATAGASE INPUTS.

_static/img/linux-2.png
©O® Terminal

phalcon@ubuntu:~$ cd phalcon-devtools/
phalcon@ubuntu:~/phalcon-devtools$. ./phalcon.sh

Phalcon Developer Tools Installer

Make sure phalcon.sh is in the same dir as phalcon.php and that you are runni
ng this with sudo or as root.

Installing Devtools.

Working dir is: /home/phalcon/phalcon-devtools

Generating synlink...

[Done. Devtools installed!

phalcongubuntu:~/phalcon-devtoolss i

_static/img/tools-7.png

_static/img/cherokee-8.jpg
Behavior

[Fote Fitering

_static/img/bench-3.png
apc

APC Support enabled
Version 319
[APC Debugging Disabled
MMAP Support [Enabled
MMAP File Mask o value
Locking type [spin Locks|
[Serialization Support php
Revision SRevision: 3088125
Build Date [Feb 28 2012 17:38:40
Directive Local Value Master Value
apc.cache_by_default on on
[ape.canonicalize on on
apc.coredump_unmap ofr of
apc.enable_cil ofr of
apc.enabled on on
apo.file_mds ofr of
apc.file_update_protection 2 2
apcilters o value o value
apo.ge_ttl 3600 3600
[apcinclude_once_override of of
apo.lazy_classes ofr of
apc.lazy_functions ofr of
[apc.max_file_size [[
|apc.mmap_file_mask o value o value
[apc.num files_hint 1000 1000
apc.preload_path o value o value
apc.report_autofilter ofr of
apo.rfc1867 ofr of
ape.rfc1867._freq o o

ape.rfc1867_name

[APC_UPLOAD_PROGRESS

[APC_UPLOAD_PROGRESS

[apo.rfc1867_prefix upload. upload.
[apo.rfc1867_tt 3600 3600
apo.serializer Gefault Gofau
[apc.shm_segments. 1 1
ape.shm_size ED E
apc.slam_defense on on
apo.stat on on
‘apc.stat_ctime. Off off

_static/img/tutorial-4.png
© - = http://localhost/tutorial/signup/register - Google Chrome
G http://localhost/t x \ [\

& > C O [® localhost/tutorial/signup/register E-N WA

Somy the following problems wre generaed:name i reqired
email is required

o)

_static/img/pretty.jpg
Footacetion: SusTATE2ee) 1041 Accese dntadfor aen| roocesin seLSTATE[20ue) (645) ccess enied for v
et e s e s s 5. e e)

Selorset, functiont) use (Scontle) { pres

car, O use Geonfie) {

Scomnectton = new \Phalcon\Ob\dspter\pdo\hysaL(a Scomectton = ne \PhalcomOb\dapter\PdoWysalCarreC
23 Scontsa istamssecshast, “hostt o Sconfig-sdotabasesshost
=" scentig->databasesisern “liername <> Scontigiodatobasesusername,
“pasenard® o> Scontigosdotobate spassrard,
“Ginona" > Sconfig-Sdatabese-snome
»;

33 Soontitadatabasecopasiverd,
> contig-Sdatabasasrane

_static/img/views-1.png
C1G1S) ay—
=

€ | ® localhost/phalconphp/posts/show/101

This is main layout!

This is the "posts" controller layout!
This is show view!

Thave received the parameter 101

_static/img/bench-2.png
Apache Environment

Variable Value

HTTP_HOST Tocalhost

HTTP_USER AGENT Mozilal5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101
Firefox/11.0

HTTP_ACCEPT textitm,application/xhimi+xml applcation/xmi;g=0.9, 708

HTTP_ACCEPT LANGUAGE es,e5-ariq=0.8,6n,0=0.5,en-s.g=03

HTTP_ACCEPT_ENCODING | gzip, deflate

HTTP_DNT 1

HTTP_CONNECTION keep-alive

HTTP_COOKIE PHPSESSID=4rbsdbglé14g6t6ofih2nivgf

PATH optiocalbin/foptliocallibimysqi/bin-ust/ocaljruby/bin-ust/bin oinsTsbin:
sbin:ustfiocalbinustiiocaliMacGPG2/bin-usriX11/bin

[SERVER_SIGNATURE o value

SERVER_SOFTWARE [Apache/2.2.21 (Unix) DAV/Z

[SERVER_NAME Tocalhost

[SERVER_ADDR 127,001

[SERVER_PORT 80

REMOTE_ADDR 127,001

DOCUMENT_ROOT /Applications/MAMPhidocs

[SERVER_ADMIN you®example.com

[SCRIPT_FILENAME /Applications/MAMPhidocs/inio.php

REMOTE_PORT 63866

GATEWAY_INTERFACE __|CGI/T.1

[SERVER_PROTOCOL HTTPI.

REQUEST_METHOD GET

QUERY_STRING o value

REQUEST_URI finfo.php

[SCRIPT_NAME finfo.php

_static/img/path-5.png
P

_static/img/tools-1.png
/Applications/MAMP/htdocs
[htdocs #] phalcon create-project store
[htdocs #]

_static/img/xdebug-1.jpg
Variable Value [Tyoe File Ttine T Function
> Sthis (sthis => (_depend ProductsControll... ducsController.php 17 “ProductsControll..
PS.COOKIE (S.COOKIE=>(_u array vojpublic/index.php 0 Phalcon\Mvc\Ap.
SNy Geew=iionn. sey vo/public/index.php 121 main

SCFILES aray il 1]
»sceT (SGET=>(wi= amay
s posT aray
P SREQUEST (S_REQUEST =>(_u array
PSSERVER (S_SERVER => (RED array
P SSESSION (S_SESSION => (Sec array
»SGLOBALS (SGLOBALS => (GL array
™ this->view->setTenpLateAt tor (main']7 B
n Tag: :setTitle(Manage your product types');
1 parent::initialize();
B
1
[| opibtladmtion initsiaiiony
-—w
$this->view->setVar 'productTypes £ind());
B)
2
21 public function searchction()
2 It
2 snunberpage = 1; 5
7 T£ (Sthis->remest>isPost1) 151
Break

_static/img/path-3.png
Environment Variables

User variables for eagle

Variable
i
MSDevDir
path
TEWP

value
CiProgram Fisipicrosoft Viual Studio,
CiProgram Fis!picrosoft Visual Stusio,
CiProgram Fisipicrosoft Visual Stusi,
CiiDocuments and SettingsleaglelLocal
CiiDocuments and SettingsleaglelLocal

= oo)

NLMBER_OF P.
o5

PATHEAT
PROCESSOR 4.

value

1
indows T

_static/img/wamp-3.png
) Locslhost
) My projects
5) phpMyadmin
QB o directory

Start Al Services
Stop Al Services

Restart All Services

Put Online

_static/img/cherokee-4.jpg
‘Add Behavior Rule

Manual
Manual configuration

cms
Content Management Systems.

Application Servers
General Purpose Application Servers.

Platforms
Web Development Platiorms

Languages
Development Languages and
Platiorms

‘Web Applications
General Purpose Applications

Tasks
‘Common Maintenance Tasks

.NET with Mono
Cross-platiorm, open-source .NET development framework.

_static/img/eer-2.png
+idINT(10)
 name VARCHAR(70)
 type VARCHAR(E2)

& year INT(11)

AT
© robots_id INT

< similar_robots_id INT

_static/img/migrations-5.png
1335932029.8233: SHOW INDEXES FROM “invo™. products® => 13359
32029.8237 (©.00034308433532715)

1335932029.8246: SELECT COUNT(*) FROM ~INFORMATION_SCHEMA
BLES™ WHERE TABLE_NAME “test' AND “TABLE_SCHEMA'='invo'
1335932029.8249 (©.00030779838562012)

1335932029.825: DESCRIBE “invo™. test’ => 1335932029.8259 (@.
00094413757324219)

1335932029.826: SHOW INDEXES FROM “invo™
.8269 (©.000859092214050293)
1335932029.8275: SELECT COUNT(*) FROM ~INFORMATION_SCHEMA® . TA
BLES® WHERE “TABLE_NAME = ‘'users' AND ~TABLE_SCHEMA ='invo' =
> 1335932029.8278 (0.00026392936706543)

1335932029.8279: DESCRIBE “invo’ . users’ => 1335932029.8287 (
©.00088977813720703)

1335932029.8289: SHOW INDEXES FROM “invo™. users™ => 13359320
29.8299 (©.00097990036010742)

Version 1.0.0 was successfully migrated

[invo #]

test™ => 1335932029

_static/img/cherokee-7.jpg
Banavior + (G myshalconapg — Fileexisis

Exonsions oo .
PR e T ey Hondler

- - =

oetaut

Document oot
Ao sty e ocunt s s

_static/img/volt-small.jpg
showseie B

1% extends

/products/show.vo

enplates/products.volt” x}

1 content() 1

% for product in products ¥}
* Name: {{ product. nane|
% 11 product.status.

»n
ctive" %}

1
2
3
3
5
6 {x block last_products %}
7
8
9
10

1 Price: {{ product.price + product.taxes/100 }}
12 {{ Uink_to("More', ‘products/details/’ ~ product.id) }}
3 5 else x}

1 4L *(Inactive)' 1}

15 O endit %}

16 {x endfor A}

7

18 {x endblock 8}

19

20 {% block footer %}
21 {{ partial(*navbar/footer’) }}
22 {x endblock A}

e 1, Column T TabSized HOMLNOR

_static/img/cherokee-5.jpg
Add Behavior Rule

Manual
Manual configuration Rule Type File Exists

cms.
Content Management Systems.

Application Servers Enabled
General Purpose Application Servers Matchsny e o

Platforms
Web Development Platiorms 2

Enabled
esnes Use VO cache
Development Languages and Uses cache during fle detection. Disable f drectory contents change frequenty. Enable
Platforms. otherwise.

Web Applications

Match the request fany fl xists.

General Purposs Applicatons Onlymatchfies ®Enabled
Tasks Oy mtchrogulr s funsot drctoris wil o mached a wol.
Gommon Maintenance Tasks

f dir, check index files ¥ Enabled
Ifa directory i requosted, check the ndox les inside .

_static/img/sample-3.png
Downloads Documentation ~ Getting Help Malling Lists ~ Wiki

PHP 5.4.3 and PHP 5.3.13 Released!
Q08 May2012 N

The PHP development team would like to announce the immediate av
PHP 5.3.13. All users are encouraged to upgrade to PHP 5.4.3 or PHF

The releases complete a fix for a in CGl-based setups (C\
mod_php and php-fom are not vulnerable to this attack.

PHP 5.4.3 fixes a buffer overfiow vulnerabilty in the

_static/img/cherokee-55.jpg
Add Behavior Rule

=
- -

cus
Content Managemen Systems.

Appliation Servers Enadled

General Purpose Applicaion Servers Math any fie -

Platiorms

Web Development Platorms -

e Use V0 cache Enatled

Development Languages and Uses cache durn i detecion.Disabe octoy conent change roqenty. Enaie
il otrerwae

Web Appiications

Match th roquest #any o oxits.

General Purpose Appicatons Onymatcnties Enabled
P -

dir,check ndex fles ¥ Enabled
a drectory i roquestod, chock tho ndex s sido .

_static/img/path-6.png
Type the name of a program, older, docurent, or
7] nternet resorce, and indows willopen i For you.

Open: 1

o [concel] [mromse

_static/img/bench-5.png
ap