
kOS Documentation
Release 0.18.2

Dunbaratu, erendrake, Originally By Nivekk

November 22, 2016





Contents

1 Downloads and Video Links 3
1.1 Obtaining kOS itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Change Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Show and Tell, and Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Tutorials 5
2.1 Quick Start Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 First example: Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Step 1: Start a new sandbox-mode game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Step 2: Make a vessel in the Vehicle Assembly Bay . . . . . . . . . . . . . . . . . . . . . . . 6
Step 3: Put the vessel on the launchpad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Step 4: Invoke the terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Step 5: See what an interactive command is like . . . . . . . . . . . . . . . . . . . . . . . . . 7
Step 6: Okay that’s great, but how can you make that happen in a program script instead? . . . 7
Step 7: Okay, but where is this program? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Step 8: I don’t like the idea that the program is stored only on this vessel. Can’t I save it

somewhere better? More permanent? . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Second Example: Doing something real . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Step 1: Make a vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Step 2: Make the start of the script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Step 3: Make the script actually do something . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Step 4: Make the script actually control steering . . . . . . . . . . . . . . . . . . . . . . . . . 15
Step 5: Add staging logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Step 6: Now to make it turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Step 7: Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Design Patterns and Considerations with kOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 The Major Design Patterns of kOS Control Programs . . . . . . . . . . . . . . . . . . . . . 24

1. Sequential Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Loops with Condition Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3. Loops with Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Bringing It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 General Guidelines for kOS Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1. Minimize Time Spent in WHEN/THEN Blocks . . . . . . . . . . . . . . . . . . . . . . . 26
2. Minimize Trigger Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 PID Loops in kOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Proportional Feedback Loop (P-loop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Proportional-Integral Feedback Loop (PI-loop) . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Proportional-Integral-Derivative Feedback Loop (PID-loop) . . . . . . . . . . . . . . . . . 32

i



2.3.4 Final Touches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.5 Tuning a PID-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.6 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Advanced Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Introductory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Intermediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Community Examples Library 41

4 General Topics 43
4.1 Catalog of Bound Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 NAMED VESSELS AND BODIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Alias shortcuts for SHIP fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Constants (pi, e, etc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.4 Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.5 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.6 Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.7 NextNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.8 Resource Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.9 ALT ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.10 ETA ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.11 ENCOUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.12 BOOLEAN TOGGLE FIELDS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.13 Flight Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Controls that must be used with LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.14 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.15 System Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
WARP and WARPMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
MAPVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LOADDISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.16 SOLARPRIMEVECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
What is the Solar Prime Reference Vector? . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.17 Addons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.18 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 CPU Vessel (SHIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 The kOS CPU hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Update Ticks and Physics Ticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Do Not Loop a Long Time in a Trigger Body! . . . . . . . . . . . . . . . . . . . . . . . . . . 52
But I Want a Loop!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Wait!!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 The Frozen Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 kOS Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 The kOS Telnet Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 Telnet clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Using it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 Special Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.4 HOWTO: Putty client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.5 HOWTO: Command-line client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.6 HOWTO: Other client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.7 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.8 Homemade telnet clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Files and Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ii



4.6.1 Script Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.2 File Storage Behind the Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.3 You can get more space by paying extra cost in money and mass . . . . . . . . . . . . . . . 63
4.6.4 Multiple Volumes on One Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.5 Naming Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.6 Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 KerboScript Machine Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.1 Compiling to a KSM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Why Do I Care? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.2 How to Use KSM Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7.3 Default File Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7.4 Downsides to Using KSM Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7.5 More Reading and Fiddling with Your Bits . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 The Name Tag System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.1 Giving a Part a Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2 Cloning with Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8.3 Where is it saved? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8.4 Examples of Using the Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Ship Parts and PartModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.9.2 Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Accessing the parts by various naming systems . . . . . . . . . . . . . . . . . . . . . . . . . 70
Accessing the parts list as a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Accessing the parts list as a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Shortcuts to smaller lists of parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9.3 PartModules and the right-click menu: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
PartModules, Stock vs Mods: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
PartModules and ModuleManager-like behavior: . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9.4 What a PartModule means to a kOS script . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
KSPFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
KSPEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
KSPActions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9.5 Exploring what’s there to find Field/Event/Action Names: . . . . . . . . . . . . . . . . . . 75
What PartModules are there on a part? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
What are the names of the stuff that a PartModule can do? . . . . . . . . . . . . . . . . . . . 75
BE WARNED! Names are able to dynamically change! . . . . . . . . . . . . . . . . . . . . . 76

4.10 Career Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.10.1 The rules being enforced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.10.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 The KerboScript Language 79
5.1 General Features of the KerboScript Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Case Insensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1. Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2. Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3. Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4. Structure Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Short-circuiting booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.4 Late Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.5 Lazy Globals (variable declarations optional) . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.6 User Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.7 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 KerboScript Syntax Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

iii



5.2.1 General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Braces (statement blocks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Functions (built-in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.4 Suffixes as Functions (Methods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.5 User Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.6 Built-In Special Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.7 What does not exist (yet?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 BREAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 IF / ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.4 UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.5 UNTIL loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.6 FOR loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.7 FROM loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Syntax: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
What the parts mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Why some braces are mandatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Why DO is mandatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Other formatting examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
The literal meaning of FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
An example of why the FROM loop is useful . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.8 WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.9 WHEN / THEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.10 ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.11 PRESERVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.12 DECLARE FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.13 Boolean Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Variables & Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 DECLARE .. TO/IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

What it does: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Allowed Syntax: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

All the following are legal “declare” statements: . . . . . . . . . . . . . . . . . . . . 95
Detailed Description of the syntax: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

See Scoping: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Initializer required in DECLARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 DECLARE PARAMETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.3 SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.4 DEFINED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Difference between SET and DECLARE LOCAL and DECLARE GLOBAL . . . . . . . . . 99
When to use GLOBAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.5 LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Calling a LOCK that was created in another file . . . . . . . . . . . . . . . . . . . . . . . . . 100
Local lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Why do I care about a local lock? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.6 TOGGLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.7 ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.8 OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.9 Scoping terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.10 Scoping syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Presumed defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Explicit scoping keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Explicit Scoping required for @lazyglobal off . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Locals stated at the global level are global . . . . . . . . . . . . . . . . . . . . . . . . 103

iv



Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Scoping and Triggers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
@LAZYGLOBAL directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

@LAZYGLOBAL Can only exist at the top of your code. . . . . . . . . . . . . . . . 104
@LAZYGLOBAL Makes LOCAL and GLOBAL mandatory . . . . . . . . . . . . . . 104
Longer Example of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 KerboScript User Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.1 Help for the new user - What is a Function? . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5.2 DECLARE FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5.3 Using RUN ONCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.4 DECLARE PARAMETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.5 Calling a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Functions and the terminal interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Calling a function without parentheses (please don’t) . . . . . . . . . . . . . . . . . . . . . . 110

Omitting parentheses only works in the same file . . . . . . . . . . . . . . . . . . . . 110
5.5.6 LOCAL .. TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Initializers are now mandatory for the DECLARE statement . . . . . . . . . . . . . . . . . . 110
Difference between declare and set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.7 RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.8 Passing by value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Important exception to passing by value - structures . . . . . . . . . . . . . . . . . . . . . . . 112
5.5.9 Nesting functions inside functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.10 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.11 User Function Gotchas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Calling program’s functions from the interpreter . . . . . . . . . . . . . . . . . . . . . . . . 113
Inconsistent returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Accidentally using globals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Mathematics and Basic Geometry 117
6.1 Fundamental Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Mathematical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.3 Operations and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.3 Operations and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4.4 Vectors and Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Geographic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5.1 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5.3 Examples Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6.1 Raw Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6.2 Origin Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6.3 Converting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Command Reference 137
7.1 Flight Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.1 Cooked Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Unlocking controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

v



Tuning cooked steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Some simple suggestions to try fixing common problems . . . . . . . . . . . . . . . . 139
Quick and Dirty description of a PID controller . . . . . . . . . . . . . . . . . . . . . 139
Cooked Steering’s use of PID controllers . . . . . . . . . . . . . . . . . . . . . . . . 140

Advantages/Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.2 Raw Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Raw Flight Controls Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Unlocking controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Advantages/Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.3 Pilot Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.1.4 Ship Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.1.5 Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Predictions of Flight Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3 LIST Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.1 FOR Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.2 Available Listable Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Universal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Vessel Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
File System Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Querying a vessel’s parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.5 File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.1 Volume and Filename arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5.2 COMPILE program (TO compiledProgram). . . . . . . . . . . . . . . . . . . . . 155
7.5.3 COPY programFile FROM/TO Volume|volumeId|volumeName. . . . . . . . . 155

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.5.4 DELETE filename FROM Volume|volumeId|volumeName. . . . . . . . . . . . 156

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.5 EDIT program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.6 LOG text TO filename. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5.7 RENAME VOLUME Volume|volumeId|oldVolumeName TO name. . . . . . . . . 157
7.5.8 RENAME FILE oldName TO newName. . . . . . . . . . . . . . . . . . . . . . . . . . 157

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5.9 RUN [ONCE] <program>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Important exceptions to the usual filename rules for RUN . . . . . . . . . . . . . . . . . . . . 158

7.5.10 SWITCH TO Volume|volumeId|volumeName. . . . . . . . . . . . . . . . . . . . . 158
Special handling of files starting with “boot” (example boot.ks) . . . . . . . . . . . . . . . 158

7.6 Terminal and game environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.6.1 GUI display tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.7 Transferring resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7.1 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7.2 Source and Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.8 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.8.1 Accessing processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 Structure Reference 163
8.1 Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.1.1 Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Deprecated Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Transition Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

vi



8.1.2 Orbitable (Vessels and Bodies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.1.3 OrbitableVelocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.2 Celestial Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2.1 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Atmospheric Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2.2 Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Predefined Celestial Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.3 Vessels and Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.3.1 AggregateResource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.3.2 ALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.3.3 CrewMember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.3.4 DockingPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.3.5 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3.6 Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.3.7 ETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.3.8 Gimbal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.3.9 kOSProcessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.3.10 Maneuver Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3.11 Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.3.12 PartModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
KSPFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
KSPEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
KSPActions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.13 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.3.14 ScienceExperimentModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.3.15 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.3.16 Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.3.17 Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.3.18 VesselSensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.3.19 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.4 Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.5 Configurations and Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.5.1 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.5.2 Configuration of kOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.5.3 File Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.5.4 Part Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.5.5 Iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.5.6 KUniverse 4th wall methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.5.8 Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Lexicons are case-insensitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Constructing a lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Access to Individual Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Implicit ADD when using index brackets with new key values . . . . . . . . . . . . . . . . . 230
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.5.9 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Constructing a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Access to Individual Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

vii



Multidimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Comparing two lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.5.10 Vessel Load Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.5.11 Situation Load Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.5.12 PIDLoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

PIDLoop Update Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.5.13 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Using a queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.5.14 Resource Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.5.15 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Using a stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

8.5.16 SteeringManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.5.17 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Creating strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
CASE SENSITIVIY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Access to Individual Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8.5.18 Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8.5.19 Time Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
TimeSpan represents SIMULATED time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Special variable TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Using TIME to detect when the physics have been updated ‘one tick’ . . . . . . . . . 261
8.5.20 Drawing Vectors on the Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

8.6 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9 Addon Reference 267
9.1 Action Groups Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.2 RemoteTech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.2.1 Interaction with kOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.3 Kerbal Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9.3.1 Available Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
9.4 Infernal Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9.5 ADDONS:AGX:AVAILABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
9.6 ADDONS:RT:AVAILABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
9.7 ADDONS:KAC:AVAILABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.8 ADDONS:IR:AVAILABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

10 Contribute 283
10.1 How to Contribute to this Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
10.2 How to Edit this Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

11 Changes from version to version 285
11.1 Changes in 0.18.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

11.1.1 Queue and Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.1.2 Run Once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.1.3 Volumes and Processors integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.1.4 Debuglog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

11.2 Changes in 0.18.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.3 Changes in 0.18 - Steering Much Betterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

11.3.1 Steering Overhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

viii



11.3.2 Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.3.3 String methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.3.4 Science Experiment Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.5 Crew Member API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.6 LOADISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.7 Infernal Robotics Part suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.8 Renamed built-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.9 Enforces control of own-vessel only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.10 New quickstart tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.11 A few more constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.12 Dynamic pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.13 DEFINED keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.14 KUNIVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.3.15 SolarPrimeVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

11.4 Changes in 0.17.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.1 New Looping control flow, the FROM loop . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.2 Short-Circuit Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.3 New Infernal Robotics interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.4 New RemoteTech interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.5 Deprecated INCOMMRANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.6 Updated thrust calculations for 1.0.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.7 New CORE struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.4.8 Updated boot file name handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.4.9 Docking port, element, and vessel references . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.4.10 New sounds and terminal features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.4.11 Clear vecdraws all at once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

11.5 Changes in 0.17.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.5.1 Variables can now be local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.5.2 Kerboscript has User Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.5.3 Community Examples Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.5.4 Physics Ticks not Update Ticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.5 Ability to use SAS modes from KSP 0.90 . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.6 Blizzy ToolBar Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.7 Ability to define colors using HSV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.8 Ability to highlight a part in color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.9 Better user interface for selecting boot scripts . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.10 Disks can be made bigger with tweakable slider . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.11 You Can Transfer Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.12 Kerbal Alarm Clock support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.5.13 Query the docked elements of a vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
11.5.14 Support for Action Groups Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
11.5.15 LIST constructor can now initialize lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
11.5.16 ISDEAD suffix for Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

12 About kOS and KerboScript 293

13 Introduction to kOS and KerboScript 295
13.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
13.2 KerboScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

14 Indices and tables 297

ix



x



kOS Documentation, Release 0.18.2

kOS is a scriptable autopilot modification for Kerbal Space Program. It allows you write small programs that
automate specific tasks.

Contents 1



kOS Documentation, Release 0.18.2

2 Contents



CHAPTER 1

Downloads and Video Links

Useful link resources for kOS:

1.1 Obtaining kOS itself

The kOS mod can be obtained a number of ways:

• Use CKAN. The Comprehensive Kerbal Archive Network. If you install the CKAN program, it
can manage your mods for you and check for updates whenever you run it. kOS sends update
information to CKAN so kOS updates should appear in your CKAN manager tool as soon as they’re
released.

• Download from github directly Github is where development of the mod occurs, and new releases
will apear there first, without delays, and its where old obsolete releases can be found, if you need
one for use with an older version of KSP.

• Use KerbalStuff Kerbalstuff is a community supported Kerbal Space Program mod hosting site that
behaves much like Curse, but without Curse’s embedded advertisements all over the webpage.

• Download from Curse Love it or Loathe it, Curse is the official place SQUAD points people to for
KSP addons, so we make it available there too.

1.2 Change Log

• Change Log on Github.

1.3 Show and Tell, and Tutorials

There are a number of people who have created helpful tutorials for kOS, and others who’ve created show
and tell videos showing the nifty things they’ve done with kOS. If you’d like to have your video added to
this section please contact the authors of over on github at https://github.com/KSP-KOS/KOS.

Note that there is category overlap as often a showoff video is also a sort of tutorial too.

Tutorials

• Seth Persigehl’s Tutorial playlist

Show and Tell

3

https://github.com/KSP-CKAN/CKAN/releases
https://github.com/KSP-KOS/KOS/releases
https://kerbalstuff.com/mod/86/kOS:%20Scriptable%20Autopilot%20System
http://www.curse.com/ksp-mods/kerbal/220265-kos-scriptable-autopilot-system
https://github.com/KSP-KOS/KOS/blob/develop/CHANGELOG.md
https://github.com/KSP-KOS/KOS
https://www.youtube.com/playlist?list=PLEpK8nolWr1rghS5cOEOL-JQ33h4CgPAP


kOS Documentation, Release 0.18.2

• Steven Mading’s user scripts playlist Some of these are very old and out of date, going back as far as kOS
version 0.65. The actual code used may have to be tweaked a bit to work with recent kOS releases.

• Parasite’s first docking script, reddit post

Past Teasers

• Steven Mading’s Developer teasers playlist (Note these are teasers that were created just before new features
were first released, to show off what was (at the time) new content that hadn’t been public yet. They also can
constitute a tutorial of sorts to show how some of the features work.)

4 Chapter 1. Downloads and Video Links

https://www.youtube.com/playlist?list=PLdXwd2JlyAvqamZN_jfcxUc29Q6Kzxqmb
http://www.reddit.com/r/Kos/comments/2w3sq5/first_working_docking_script_info_in_comments/
https://www.youtube.com/playlist?list=PLdXwd2JlyAvo_pH1tS3P7elVTYjvmIh-m


CHAPTER 2

Tutorials

If you prefer the tutorial style of explanation, please see the following examples that walk you through examples:

2.1 Quick Start Tutorial

This is a quick start guide for the Kerbal Operating System (kOS). It is intended for those who are just starting with
using kOS. It does presume you have played Kerbal Space Program before and know the basics of how to fly a
rocket under manual control. It does NOT assume you know a lot about computer programming, and it will walk you
through some basic first steps.

Contents

• First example: Hello World
– Step 1: Start a new sandbox-mode game
– Step 2: Make a vessel in the Vehicle Assembly Bay
– Step 3: Put the vessel on the launchpad
– Step 4: Invoke the terminal
– Step 5: See what an interactive command is like
– Step 6: Okay that’s great, but how can you make that happen in a program script instead?
– Step 7: Okay, but where is this program?
– Step 8: I don’t like the idea that the program is stored only on this vessel. Can’t I save it somewhere

better? More permanent?
• Second Example: Doing something real

– Step 1: Make a vessel
– Step 2: Make the start of the script
– Step 3: Make the script actually do something
– Step 4: Make the script actually control steering
– Step 5: Add staging logic
– Step 6: Now to make it turn
– Step 7: Putting it all together

2.1.1 First example: Hello World

In the grand tradition of programming tutorials, the first example will be how to make a script that does nothing more
than print the words “Hello World” on the screen. The purpose of this example is to show where you should put the
files, how to move them about, and how to get one to run on the vessel.

5



kOS Documentation, Release 0.18.2

Step 1: Start a new sandbox-mode game

(You can use kOS in a career mode game, but it requires a part that you have to research which isn’t available at the
start of the tech tree, so this example will just use sandbox mode to keep it simple.)

Step 2: Make a vessel in the Vehicle Assembly Bay

Make the vessel contain any unmanned command core, a few hundred units of battery power, a means of recharging
the battery such as a solar panel array, and the “Comptronix CX-4181 Scriptable Control System”. (From this point
onward the CX-4181 Scriptable Control System part will be referred to by the acronym “SCS”.) The SCS part is
located in the parts bin under the “Control” tab (the same place where RCS thrusters and Torque Wheels are found.)

6 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

Step 3: Put the vessel on the launchpad

Put the vessel on the launchpad. For this first example it doesn’t matter if the vessel can actually liftoff or even has
engines at all.

Step 4: Invoke the terminal

Right click for the SCS part on the vessel and then click the button that says “Open Terminal”.

Note that if the terminal is semi-transparent, this means it’s not currently selected. If you click on the terminal, then
your keyboard input is directed to the terminal INSTEAD of to piloting. In other words if you type W A S D, you’ll
actually get the word “wasd” to appear on the terminal, rather than the W A S D keys steering the ship. To switch back
to manual control of the game instead of typing into the terminal, click outside the terminal window anywhere on the
background of the screen.

Step 5: See what an interactive command is like

You should now see an old-school looking text terminal like the one shown below. Type the line:

CLEARSCREEN. PRINT "==HELLO WORLD==".

into the terminal (make sure to actually type the periods (”.”) as shown) and hit ENTER. Note that you can type it in
uppercase or lowercase. kOS doesn’t care.

The terminal will respond by showing you this:

Step 6: Okay that’s great, but how can you make that happen in a program script instead?

Like so: Enter this command:

EDIT HELLO.

2.1. Quick Start Tutorial 7



kOS Documentation, Release 0.18.2

8 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

(Don’t forget the period (”.”). All commands in kOS are ended with a period. Again, you can type it in uppercase or
lowercase. kOS doesn’t care.)

You should see an editor window appear, looking something like this (without the text inside because you’re starting a
blank new file):

Type this text into the window:

PRINT "=========================================".
PRINT " HELLO WORLD".
PRINT "THIS IS THE FIRST SCRIPT I WROTE IN kOS.".
PRINT "=========================================".

Click “Save” then “Exit” in the editor pop-up window.

• Side Note: The editor font - Experienced programmers may have noticed that the editor’s font is proportional

2.1. Quick Start Tutorial 9



kOS Documentation, Release 0.18.2

width rather than monospaced and that this is not ideal for programming work. You are right, but there is little
that can be done about it for a variety of technical reasons that are too complex to go into right now.

Then on the main text terminal Enter:

RUN HELLO.

And you will see the program run, showing the text on the screen like so.

Step 7: Okay, but where is this program?

To see where the “HELLO” program has been saved, Issue the command LIST FILES like this:

LIST FILES.

(Note, that the default for the LIST command is to list FILES, so you can leave the word “FILES” off if you like.)

It should look like this, showing you the HELLO program you just wrote:

This is a list of all the files on the currently selected VOLUME. By default, when you launch a new vessel, the currently
selected VOLUME is called “1” and it’s the volume that’s stored on THAT SCS part that you are running all these
commands in.

10 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

This is the local volume of that SCS part. Local volumes such at this tend to have very small limited storage, as you
can see when you look at the space remaining in the list printout.

If you’re wondering where the file is stored physically on your computer, it’s represented by a section inside the
persistence file for your saved game, as a piece of data associated with the SCS part. This is important because it
means you can’t access the program from another vessel, and if this vessel ever crashes and the SCS part explodes,
then you’ve lost the program.

Step 8: I don’t like the idea that the program is stored only on this vessel. Can’t I save it somewhere
better? More permanent?

Yes. Yes you can.

There is another VOLUME that always exists called the Archive, which is also referred to as volume 0. (either name
can be used in commands). The archive is conceptually stored somewhere back at Kerbin home base in the Space
Center rather than on your vessel. It has infinite storage space, and does not disappear when your vessel is gone.
ALSO, it actually exists across saved games - if you launch one saved game, put a new file in the Archive, and then
later launch a different saved game, that file will be there in that game too.

To use the Archive, first we’ll have to introduce you to a new command, called SWITCH TO. The SWITCH TO
command changes which VOLUME is the one that you are doing your work with.

To work with the archive, and create a second “hello world” file there, you issue these commands and see what they
do:

SWITCH TO 0.
EDIT HELLO2. // Make a new file here that just says: PRINT "hi again".
LIST FILES.
RUN HELLO2.
SWITCH TO 1.
LIST FILES.
RUN HELLO.

But where is it stored behind the scenes? The archive is currently slightly violating the design of KSP mods that puts
everything in the GameData folder. The kSP Archive is actually stored in the Ships/Script folder of your MAIN
KSP home, not inside GameData.

If a file is stored inside the archive, it can actually be edited by an external text editor of your choice instead of using
kOS‘s in-game editor. This is usually a much better practice once you start doing more complex things with kOS.
You can also make new files in the archive folder. Just make sure that all the files end with a .ks file name suffix or
kOS won’t use them.

Further reading about files and volumes:

• Volumes

• File Control

• File Information

2.1. Quick Start Tutorial 11



kOS Documentation, Release 0.18.2

2.1.2 Second Example: Doing something real

Okay that’s all basic setup stuff but you’re probably clamoring for a real example that actually does something nifty.

This example will show the crudest, most basic use of kOS just to get started. In this example we’ll make a program
that will launch a vessel using progressively more and more complex checks. kOS can be used at any stage of a
vessel’s flight - launching, circularizing, docking, landing,... and in fact launching is one of the simpler piloting tasks
that you can do without much need of automation. Where kOS really shines is for writing scripts to do touchy sensitive
tasks like landing or docking or hovering. These are the areas that can benefit from the faster reaction speed that a
computer script can handle.

But in order to give you an example that you can start with from scratch, that’s easy to reload and retry from an initial
point, we’ll use an example of launching.

Step 1: Make a vessel

This tutorial is designed to work with a very specific rocket design. You need to make the vessel you see here:

If you prefer, you can instead download the .craft file here

Step 2: Make the start of the script

Okay, so type the lines below in an external text editor of your choice (i.e. Notepad on Windows, or TextEdit on Mac,
or whatever you fancy):

//hellolaunch

//First, we'll clear the terminal screen to make it look nice
CLEARSCREEN.

//This is our countdown loop, which cycles from 10 to 0
PRINT "Counting down:".
FROM {local countdown is 10.} UNTIL countdown = 0 STEP {SET countdown to countdown - 1.} DO {

PRINT "..." + countdown.
WAIT 1. // pauses the script here for 1 second.

}

12 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

See those things with the two slashes (“//”)? Those are comments in the kerboscript language and they’re just ways to
write things in the program that don’t do anything - they’re there for humans like you to read so you understand what’s
going on. In these examples you never actually have to type in the things you see after the slashes. They’re there for
your benefit when reading this document but you can leave them out if you wish.

Save the file in your Ships/Script folder of your KSP installation under the filename “hellolaunch.ks”. DO NOT
save it anywhere under GameData/kOS/. Do NOT. According to the KSP standard, normally KSP mods should put
their files in GameData/[mod name], but kOS puts the archive outside the GameData folder because it represents
content owned by you, the player, not content owned by the kOS mod.

By saving the file in Ships/Script, you have actually put it in your archive volume of kOS. kOS will see it there
immediately without delay. You do not need to restart the game. If you do:

SWITCH TO 0.
LIST FILES.

after saving the file from your external text editor program, you will see a listing of your file “hellolaunch” right away.
Okay, now copy it to your local drive and give it a try running it from there:

SWITCH TO 1.
COPY HELLOLAUNCH FROM 0.
RUN HELLOLAUNCH.

Okay so the program doesn’t actually DO anything yet other than just countdown from 10 to 0. A bit of a disappoint-
ment, but we haven’t written the rest of the program yet.

You’ll note that what you’ve done is switch to the local volume (1) and then copy the program from the archive (0) to
the local volume (1) and then run it from the local volume. Technically you didn’t need to do this. You could have just
run it directly from the archive. For those looking at the KSP game as a bit of a role-play experience, it makes sense
to never run programs directly from the archive, and instead live with the limitation that software should be copied to
the craft for it to be able to run it.

Step 3: Make the script actually do something

Okay now go back into your text editor of choice and append a few more lines to the hellolaunch.ks file so it now looks
like this:

2.1. Quick Start Tutorial 13



kOS Documentation, Release 0.18.2

//hellolaunch

//First, we'll clear the terminal screen to make it look nice
CLEARSCREEN.

//Next, we'll lock our throttle to 100%.
LOCK THROTTLE TO 1.0. // 1.0 is the max, 0.0 is idle.

//This is our countdown loop, which cycles from 10 to 0
PRINT "Counting down:".
FROM {local countdown is 10.} UNTIL countdown = 0 STEP {SET countdown to countdown - 1.} DO {

PRINT "..." + countdown.
WAIT 1. // pauses the script here for 1 second.

}

UNTIL SHIP:MAXTHRUST > 0 {
WAIT 0.5. // pause half a second between stage attempts.
PRINT "Stage activated.".
STAGE. // same as hitting the spacebar.

}

WAIT UNTIL SHIP:ALTITUDE > 70000.

// NOTE that it is vital to not just let the script end right away
// here. Once a kOS script just ends, it releases all the controls
// back to manual piloting so that you can fly the ship by hand again.
// If the program just ended here, then that would cause the throttle
// to turn back off again right away and nothing would happen.

Save this file to hellolaunch.ks again, and re-copy it to your vessel that should still be sitting on the launchpad, then
run it, like so:

COPY HELLOLAUNCH FROM 0.
RUN HELLOLAUNCH.

Hey! It does something now! It fires the first stage engine and launches!

But.. but wait... It doesn’t control the steering and it just lets it go where ever it will.

14 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

Most likely you had a crash with this script because it didn’t do anything to affect the steering at all, so it probably
allowed the rocket to tilt over.

Step 4: Make the script actually control steering

So to fix that problem, let’s add steering control to the script.

The easy way to control steering is to use the LOCK STEERING command.

Once you have mastered the basics of kOS, you should go and read the documentation on ship steering techniques,
but that’s a more advanced topic for later.

The way to use the LOCK STEERING command is to set it to a thing called a Vector or a Direction. There are
several Directions built-in to kOS, one of which is called “UP”. “UP” is a Direction that always aims directly toward
the sky (the center of the blue part of the navball).

So to steer always UP, just do this:

LOCK STEERING TO UP.

So if you just add this one line to your script, you’ll get something that should keep the craft aimed straight up and not
let it tip over. Add the line just after the line that sets the THROTTLE, like so:

//hellolaunch

//First, we'll clear the terminal screen to make it look nice
CLEARSCREEN.

//Next, we'll lock our throttle to 100%.
LOCK THROTTLE TO 1.0. // 1.0 is the max, 0.0 is idle.

//This is our countdown loop, which cycles from 10 to 0
PRINT "Counting down:".
FROM {local countdown is 10.} UNTIL countdown = 0 STEP {SET countdown to countdown - 1.} DO {

PRINT "..." + countdown.
WAIT 1. // pauses the script here for 1 second.

}

//This is the line we added
LOCK STEERING TO UP.

UNTIL SHIP:MAXTHRUST > 0 {
WAIT 0.5. // pause half a second between stage attempts.
PRINT "Stage activated.".
STAGE. // same as hitting the spacebar.

}

WAIT UNTIL SHIP:ALTITUDE > 70000.

// NOTE that it is vital to not just let the script end right away
// here. Once a kOS script just ends, it releases all the controls
// back to manual piloting so that you can fly the ship by hand again.
// If the program just ended here, then that would cause the throttle
// to turn back off again right away and nothing would happen.

Again, copy this and run it, like before. If your craft crashed in the previous step, which it probably did, then revert to
the VAB and re-launch it.:

2.1. Quick Start Tutorial 15



kOS Documentation, Release 0.18.2

SWITCH TO 1. // should be the default already, but just in case.
COPY HELLOLAUNCH FROM 0.
RUN HELLOLAUNCH.

Now you should see the same thing as before, but now your craft will stay pointed up.

But wait - it only does the first stage and then it stops without doing the next stage? how do I fix that?

Step 5: Add staging logic

The logic for how and when to stage can be an interesting and fun thing to write yourself. This example will keep it
very simple, and this is the part where it’s important that you are using a vessel that only contains liquidfuel engines.
If your vessel has some booster engines, then it would require a more sophisticated script to launch it correctly than
this tutorial gives you.

To add the logic to check when to stage, we introduce a new concept called the WHEN trigger. To see full documen-
tation on it when you finish the tutorial, look for it on the Flow Control page

The quick and dirty explanation is that a WHEN section is a short section of code that you set up to run LATER rather
than right now. It creates a check in the background that will constantly look for some condition to occur, and when it
happens, it interrupts whatever else the code is doing, and it will run the body of the WHEN code before continuing
from where it left off in the main script.

There are some complex dangers with writing WHEN triggers that can cause KSP itself to hang or stutter if you are
not careful, but explaining them is beyond the scope of this tutorial. But when you want to start using WHEN triggers
yourself, you really should read the section on WHEN in the Flow Control page before you do so.

The WHEN trigger we are going to add to the launch script looks like this:

WHEN MAXTHRUST = 0 THEN {
PRINT "Staging".
STAGE.
PRESERVE.

}.

It says, “Whenever the maximum thrust of our vehicle is zero, then activate the next stage.” The PRESERVE keyword
says, “don’t stop checking this condition just because it’s been triggered once. It should still keep checking for it again
in the future.” If this block of code is inserted into the script, then it will set up a constant background check that will

16 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

always hit the next stage as soon as the current stage has no thrust. UNLIKE with all the previous edits this tutorial
has asked you to make to the script, this time you’re going to be asked to delete something and replace it. The new
WHEN section above should actually REPLACE the existing “UNTIL SHIP:MAXTHRUST > 0” loop that you had
before.

Now your script should look like this:

//hellolaunch

//First, we'll clear the terminal screen to make it look nice
CLEARSCREEN.

//Next, we'll lock our throttle to 100%.
LOCK THROTTLE TO 1.0. // 1.0 is the max, 0.0 is idle.

//This is our countdown loop, which cycles from 10 to 0
PRINT "Counting down:".
FROM {local countdown is 10.} UNTIL countdown = 0 STEP {SET countdown to countdown - 1.} DO {

PRINT "..." + countdown.
WAIT 1. // pauses the script here for 1 second.

}

//This is a trigger that constantly checks to see if our thrust is zero.
//If it is, it will attempt to stage and then return to where the script
//left off. The PRESERVE keyword keeps the trigger active even after it
//has been triggered.
WHEN MAXTHRUST = 0 THEN {

PRINT "Staging".
STAGE.
PRESERVE.

}.

LOCK STEERING TO UP.

WAIT UNTIL ALTITUDE > 70000.

// NOTE that it is vital to not just let the script end right away
// here. Once a kOS script just ends, it releases all the controls
// back to manual piloting so that you can fly the ship by hand again.
// If the program just ended here, then that would cause the throttle
// to turn back off again right away and nothing would happen.

Again, relaunch the ship, copy the script as before, and run it again. This time you should see it activate your later
upper stages correctly.

Step 6: Now to make it turn

Okay that’s fine but it still just goes straight up! What about a gravity turn?

Well, a true and proper gravity turn is a very complex bit of math that is best left as an exercise for the reader, given
that the goal of kOS is to let you write your OWN autopilot, not to write it for you. But to give some basic examples
of commands, lets just make a crude gravity turn approximation that simply flies the ship like a lot of new KSP pilots
learn to do it for the first time:

• Fly straight up until your velocity is 100m/s.

• Pitch ten degrees towards the East.

• Continue to pitch 10 degrees down for each 100m/s of velocity.

2.1. Quick Start Tutorial 17



kOS Documentation, Release 0.18.2

To make this work, we introduce a new way to make a Direction, called the HEADING function. Whenever you call
the function HEADING(a,b), it makes a Direction oriented as follows on the navball:

• Point at the compass heading A.

• Pitch up a number of degrees from the horizon = to B.

So for example, HEADING(45,10) would aim northeast, 10 degrees above the horizon. We can use this to easily set
our orientation. For example:

//This locks our steering to due east, pitched 45 degrees above the horizon.
LOCK STEERING TO HEADING(90,45).

Instead of using WAIT UNTIL to pause the script and keep it from exiting, we can use an UNTIL loop to constantly
perform actions until a certain condition is met. For example:

UNTIL APOAPSIS > 100000 {
LOCK STEERING TO HEADING(90,90). //90 degrees east and pitched up 90 degrees (straight up)
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16). // prints new number, rounded to the nearest integer.
//We use the PRINT AT() command here to keep from printing the same thing over and
//over on a new line every time the loop iterates. Instead, this will always print
//the apoapsis at the same point on the screen.

}.

This loop will continue to execute all of its instructions until the apoapsis reaches 100km. Once the apoapsis is past
100km, the loop exits and the rest of the code continues.

We can combine this with IF statements in order to have one main loop that only executes certain chunks of its code
under certain conditions. For example:

UNTIL SHIP:APOAPSIS > 100000 { //Remember, all altitudes will be in meters, not kilometers

//For the initial ascent, we want our steering to be straight
//up and rolled due east
IF SHIP:VELOCITY:SURFACE:MAG < 100 {

//This sets our steering 90 degrees up and yawed to the compass
//heading of 90 degrees (east)
LOCK STEERING TO HEADING(90,90).

18 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

//Once we pass 100m/s, we want to pitch down ten degrees
} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 100 AND SHIP:VELOCITY:SURFACE:MAG < 200 {

LOCK STEERING TO HEADING(90,80).
PRINT "Pitching to 80 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

}.
}.

Each time this loop iterates, it will check the surface velocity. If the velocity is below 100m/s, it will continuously
execute the first block of instructions. Once the velocity reaches 100m/s, it will stop executing the first block and start
executing the second block, which will pitch the nose down to 80 degrees above the horizon.

Putting this into your script, it should look like this:

//hellolaunch

//First, we'll clear the terminal screen to make it look nice
CLEARSCREEN.

//Next, we'll lock our throttle to 100%.
LOCK THROTTLE TO 1.0. // 1.0 is the max, 0.0 is idle.

//This is our countdown loop, which cycles from 10 to 0
PRINT "Counting down:".
FROM {local countdown is 10.} UNTIL countdown = 0 STEP {SET countdown to countdown - 1.} DO {

PRINT "..." + countdown.
WAIT 1. // pauses the script here for 1 second.

}

//This is a trigger that constantly checks to see if our thrust is zero.
//If it is, it will attempt to stage and then return to where the script
//left off. The PRESERVE keyword keeps the trigger active even after it
//has been triggered.
WHEN MAXTHRUST = 0 THEN {

PRINT "Staging".
STAGE.
PRESERVE.

}.

//This will be our main control loop for the ascent. It will
//cycle through continuously until our apoapsis is greater
//than 100km. Each cycle, it will check each of the IF
//statements inside and perform them if their conditions
//are met
UNTIL SHIP:APOAPSIS > 100000 { //Remember, all altitudes will be in meters, not kilometers

//For the initial ascent, we want our steering to be straight
//up and rolled due east
IF SHIP:VELOCITY:SURFACE:MAG < 100 {

//This sets our steering 90 degrees up and yawed to the compass
//heading of 90 degrees (east)
LOCK STEERING TO HEADING(90,90).

//Once we pass 100m/s, we want to pitch down ten degrees
} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 100 {

LOCK STEERING TO HEADING(90,80).
PRINT "Pitching to 80 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

}.

2.1. Quick Start Tutorial 19



kOS Documentation, Release 0.18.2

}.

Again, copy this into your script and run it. You should see your countdown occur, then it will launch. Once the ship
passes 100m/s surface velocity, it will pitch down to 80 degrees and continuously print the apoapsis until the apoapsis
reaches 100km, staging if necessary. The script will then end.

Step 7: Putting it all together

We now have every element of the script necessary to do a proper (albeit simple) gravity turn. We just need to extend
it all the way through the ascent.

Adding additional IF statements inside our main loop will allow us to perform further actions based on our velocity.
Each IF statement you see in the script below covers a 100m/s block of velocity, and will adjust the pitch 10 degrees
farther down than the previous block.

You can see that with the AND statement, we can check multiple conditions and only execute that block when all of
those conditions are true. We can carefully set up the conditions for each IF statement to allow a block of code to be
executed no matter what our surface velocity is.

Copy this into your script and run it. It should take you nearly to orbit:

//hellolaunch

//First, we'll clear the terminal screen to make it look nice
CLEARSCREEN.

//Next, we'll lock our throttle to 100%.
LOCK THROTTLE TO 1.0. // 1.0 is the max, 0.0 is idle.

//This is our countdown loop, which cycles from 10 to 0
PRINT "Counting down:".
FROM {local countdown is 10.} UNTIL countdown = 0 STEP {SET countdown to countdown - 1.} DO {

PRINT "..." + countdown.
WAIT 1. // pauses the script here for 1 second.

}

//This is a trigger that constantly checks to see if our thrust is zero.

20 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

//If it is, it will attempt to stage and then return to where the script
//left off. The PRESERVE keyword keeps the trigger active even after it
//has been triggered.
WHEN MAXTHRUST = 0 THEN {

PRINT "Staging".
STAGE.
PRESERVE.

}.

//This will be our main control loop for the ascent. It will
//cycle through continuously until our apoapsis is greater
//than 100km. Each cycle, it will check each of the IF
//statements inside and perform them if their conditions
//are met
UNTIL SHIP:APOAPSIS > 100000 { //Remember, all altitudes will be in meters, not kilometers

//For the initial ascent, we want our steering to be straight
//up and rolled due east
IF SHIP:VELOCITY:SURFACE:MAG < 100 {

//This sets our steering 90 degrees up and yawed to the compass
//heading of 90 degrees (east)
LOCK STEERING TO HEADING(90,90).

//Once we pass 100m/s, we want to pitch down ten degrees
} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 100 AND SHIP:VELOCITY:SURFACE:MAG < 200 {

LOCK STEERING TO HEADING(90,80).
PRINT "Pitching to 80 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

//Each successive IF statement checks to see if our velocity
//is within a 100m/s block and adjusts our heading down another
//ten degrees if so
} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 200 AND SHIP:VELOCITY:SURFACE:MAG < 300 {

LOCK STEERING TO HEADING(90,70).
PRINT "Pitching to 70 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 300 AND SHIP:VELOCITY:SURFACE:MAG < 400 {
LOCK STEERING TO HEADING(90,60).
PRINT "Pitching to 60 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 400 AND SHIP:VELOCITY:SURFACE:MAG < 500 {
LOCK STEERING TO HEADING(90,50).
PRINT "Pitching to 50 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 500 AND SHIP:VELOCITY:SURFACE:MAG < 600 {
LOCK STEERING TO HEADING(90,40).
PRINT "Pitching to 40 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 600 AND SHIP:VELOCITY:SURFACE:MAG < 700 {
LOCK STEERING TO HEADING(90,30).
PRINT "Pitching to 30 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 700 AND SHIP:VELOCITY:SURFACE:MAG < 800 {

2.1. Quick Start Tutorial 21



kOS Documentation, Release 0.18.2

LOCK STEERING TO HEADING(90,11).
PRINT "Pitching to 20 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

//Beyond 800m/s, we can keep facing towards 10 degrees above the horizon and wait
//for the main loop to recognize that our apoapsis is above 100km
} ELSE IF SHIP:VELOCITY:SURFACE:MAG >= 800 {

LOCK STEERING TO HEADING(90,10).
PRINT "Pitching to 10 degrees" AT(0,15).
PRINT ROUND(SHIP:APOAPSIS,0) AT (0,16).

}.

}.

PRINT "100km apoapsis reached, cutting throttle".

//At this point, our apoapsis is above 100km and our main loop has ended. Next
//we'll make sure our throttle is zero and that we're pointed prograde
LOCK THROTTLE TO 0.

//This sets the user's throttle setting to zero to prevent the throttle
//from returning to the position it was at before the script was run.
SET SHIP:CONTROL:PILOTMAINTHROTTLE TO 0.

And here is it in action:

And toward the end:

This script should, in principle, work to get you to the point of leaving the atmosphere. It will probably still fall back
down, because this script makes no attempt to ensure that the craft is going fast enough to maintain the orbit.

As you can probably see, it would still have a long way to go before it would become a really GOOD launching
autopilot. Think about the following features you could add yourself as you become more familiar with kOS:

• You could change the steering logic to make a more smooth gravity turn by constantly adjusting the pitch in the
HEADING according to some math formula. The example shown here tends to create a “too high” launch that’s
a bit inefficient. In addition, this method relies on velocity to determine pitch angle, which could result in some

22 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

very firey launches for other ships with a higher TWR profile.

• This script just stupidly leaves the throttle at max the whole way. You could make it more sophisticated by
adjusting the throttle as necessary to avoid velocities that result in high atmospheric heating.

• This script does not attempt to circularize. With some simple checks of the time to apoapsis and the orbital
velocity, you can execute a burn that circularizes your orbit.

• With even more sophisticated checks, the script could be made to work with fancy staging methods like asapara-
gus.

• Using the PRINT AT command, you can make fancier status readouts in the terminal window as the script runs.

2.2 Design Patterns and Considerations with kOS

There are many ways one can write a control program for a given scenario. The goal of this section is to help a novice
kOS programmer, after having finished the Quick Start Tutorial, to develop a sense of elegance and capability when
writing his or her own kOS scripts. All of the examples in this tutorial may be tested by the reader using a rocket
design similar to the following. Notice it carries an accelerometer and the negative gravioli detector which are used in
the second section. Don’t forget the kOS module as well!

2.2. Design Patterns and Considerations with kOS 23

http://wiki.kerbalspaceprogram.com/wiki/Double-C_Seismic_Accelerometer
http://wiki.kerbalspaceprogram.com/wiki/GRAVMAX_Negative_Gravioli_Detector


kOS Documentation, Release 0.18.2

Contents

• The Major Design Patterns of kOS Control Programs
– 1. Sequential Programs
– 2. Loops with Condition Checking
– 3. Loops with Triggers
– Bringing It All Together

• General Guidelines for kOS Scripts
– 1. Minimize Time Spent in WHEN/THEN Blocks
– 2. Minimize Trigger Conditions

2.2.1 The Major Design Patterns of kOS Control Programs

The design of a program is usually determined by the flow-control statements used. I.e., the WHEN/THEN, ON,
WAIT, UNTIL, IF and FOR constructs. Here is a list of the major styles of control programs that can be written in
kOS:

1. Sequential

2. Loops with Condition Checking

3. Loops with Triggers

Of course, one style does not fit all scenarios and the programmer will typically want to use a combination of these all
at once. Also, there may be other design patterns not listed here which can be perfectly valid, but this is a start.

1. Sequential Programs

These are programs that rely almost exclusively on WAIT UNTIL statements to go from one phase to the next.

LOCK STEERING TO HEADING(0,90).
LOCK THROTTLE TO 1.
STAGE.
WAIT UNTIL SHIP:ALTITUDE > 10000.
LOCK STEERING TO HEADING(0,90) + R(0,-45,0).
WAIT UNTIL STAGE:LIQUIDFUEL < 0.1.
STAGE.
WAIT UNTIL SHIP:ALTITUDE > 20000.
LOCK THROTTLE TO 0.
WAIT UNTIL FALSE. // CTRL+C to break out

This example will take a two stage rocket up to 20km. The immediate thing to notice is that the programmer must
have known that the first stage would cutoff between 10km and 20km. This is fine for a specific rocket but not too
general and could end in disaster if the first stage cutoff occurs at say 5km. Certainly, one can write a program using
this technique to take a specific rocket, put it into orbit and even perform a lot of fancy maneuvers, but adapting the
code to different rockets may get complicated quickly.

2. Loops with Condition Checking

Here, we introduce IF/ELSE logic into UNTIL loops:

LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
LOCK THROTTLE TO 1.
STAGE.
UNTIL SHIP:ALTITUDE > 20000 {

24 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

IF SHIP:ALTITUDE > 10000 {
LOCK STEERING TO R(0,0,-90) + HEADING(90,45).

}
IF STAGE:LIQUIDFUEL < 0.1 {

STAGE.
}

}
LOCK THROTTLE TO 0.
WAIT UNTIL FALSE.

This does the same thing as the previous example, but now it’s checking for a staging condition from the launch pad
all the way to 20km. More than that, it will stage as many times as needed.

One can imagine that these types of UNTIL loops can become very complex with many layers of IF/ELSE blocks.
Once this happens it is usually good to reduce the frequency of the loop by adding a WAIT statement at the end
of the loop. This wait could be anywhere from 0.001 (every physics tick), to 60 (every minute) or even longer for
inter-planetary transfers if desired.

3. Loops with Triggers

In the above example, once the rocket reaches 10km, the steering is constantly being re-locked to HEADING(90,45).
This works, but it only needs to be locked once. A possible improvement is to set up a trigger using a WHEN/THEN
statement:

LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
LOCK THROTTLE TO 1.
STAGE.
WHEN SHIP:ALTITUDE > 10000 THEN {

LOCK STEERING TO R(0,0,-90) + HEADING(90,45).
}
UNTIL SHIP:ALTITUDE > 20000 {

IF STAGE:LIQUIDFUEL < 0.1 {
STAGE.

}
}
LOCK THROTTLE TO 0.
WAIT UNTIL FALSE.

Now, when the rocket reaches 10km, the steering is set once and the trigger is removed from the active list of trig-
gers. The staging condition can also be promoted to a trigger, keeping the trigger active after every stage using the
PRESERVE keyword:

WHEN STAGE:LIQUIDFUEL < 0.1 THEN {
STAGE.
PRESERVE.

}
LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
LOCK THROTTLE TO 1.
STAGE.
WHEN SHIP:ALTITUDE > 10000 THEN {

LOCK STEERING TO R(0,0,-90) + HEADING(90,45).
}
WAIT UNTIL SHIP:ALTITUDE > 20000.
LOCK THROTTLE TO 0.
WAIT UNTIL FALSE.

Notice that the UNTIL loop was changed to a WAIT UNTIL statement since the program is small and all the logic of
the triggers can be handled in a reasonable amount of time - there will be more on this topic later.

2.2. Design Patterns and Considerations with kOS 25



kOS Documentation, Release 0.18.2

Bringing It All Together

Typically, the programmer will find all of these constructs are useful at the same time and kOS scripts will naturally
contain some sequential parts in combination with long-term and short-term triggers which can modify states in com-
plex loops of varying frequency. If you didn’t follow that bit of gobbledygook, don’t worry. The next section will
discuss a few recommendations for beginning kOS programmers to follow when setting up any program.

2.2.2 General Guidelines for kOS Scripts

This section discusses two general guidelines to follow when starting out with more complicated kOS scripts. These
are not meant to be absolute and there will certainly be cases when they can be stretched, though one should never
totally ignore them.

1. Minimize Time Spent in WHEN/THEN Blocks

Remember that WAIT statements are ignored when inside WHEN/THEN blocks. It is OK to loop over small lists
(engines for example), but don’t let it get out of hand. The WHEN/THEN construct was designed to accommodate
quick bits of code. Consider this bit of (non-working) code which tries to adjust the throttle based on the g-force as
measured by a combination of the accelerometer and the negative gravioli detector:

SET thrott TO 1.
LOCK THROTTLE TO thrott.
LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
STAGE.
WHEN SHIP:ALTITUDE > 1000 THEN {

SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.
LOCK dthrott TO 0.05 * (1.2 - gforce).

UNTIL SHIP:ALTITUDE > 40000 {
WHEN STAGE:LIQUIDFUEL < 0.1 THEN {

STAGE.
PRESERVE.

}
SET thrott to thrott + dthrott.
WAIT 0.1.

}
}

This looks reasonable. The throttle is set to maximum until 1km is reached at which point the throttle is adjusted every
0.1 seconds. If the gforce is off from the value of 1.2, then the throttle is either increased or decreased by a small
amount. Running this on a test rocket merely produce the message “Program ended.”

Understanding why this does not work is important. Everything in a WHEN/THEN block is expected to complete in
the current physics tick, but here we have a loop that is supposed to last until the ship reaches 40km. This example can
be reworked by separating the triggers from the loop. The staging trigger was separated from the UNTIL loop as well
- not strictly necessary, but recommended form:

WHEN STAGE:LIQUIDFUEL < 0.1 THEN {
STAGE.
PRESERVE.

}
SET thrott TO 1.
SET dthrott TO 0.
LOCK THROTTLE TO thrott.

26 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
STAGE.
WHEN SHIP:ALTITUDE > 1000 THEN {

SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.
LOCK dthrott TO 0.05 * (1.2 - gforce).

}
UNTIL SHIP:ALTITUDE > 40000 {

SET thrott to thrott + dthrott.
WAIT 0.1.

}

Now this program should work. The variable dthrott had to be set to 0 in the beginning so that the throttle is kept at
maximum until 1km, the UNTIL loop operates every 0.1 seconds, and the WHEN/THEN triggers are run only once
when the condition is met. The take-away from this example is to keep WHEN/THEN blocks separate from UNTIL
loops. Specifically, never put an UNTIL loop inside a WHEN/THEN block and it should be extremely rare to put a
WHEN/THEN statement inside an UNTIL loop.

Finally, as a bit of foreshadowing, this bit of code is actually a “proportional feedback loop.” From an altitude of 1km
up to 40km, the total g-force exerted on the ship is kept near 1.2 by constantly adjusting the throttle. The value of
1.2 is called the “setpoint,” the measured g-force is called the “process variable,” and the mystical 0.05 is called the
“proportional gain.” Please take a look at the PID Loop Tutorial which takes this script as a starting point and develops
a full PID-loop in kOS.

2. Minimize Trigger Conditions

There is a lot of power in developing multi-level LOCK variables in combination with WHEN/THEN triggers. How-
ever, it can be easy to hit kOS’s hard limit in the number of operations allowed for trigger checking. This will happen
when several WHEN/THEN triggers are dependent on the same complex LOCK variable. This results in the LOCK
variable being calculated multiple times every update. If the LOCK is deep enough, the calculations become too
expensive to do and kOS stops executing and complains.

With this in mind, consider an extension of the example script in the previous section. This time, the g-force setpoint
changes as the rocket climbs through 10km, 20km and 30km:

WHEN STAGE:LIQUIDFUEL < 0.1 THEN {
STAGE.
PRESERVE.

}
SET thrott TO 1.
SET dthrott TO 0.
LOCK THROTTLE TO thrott.
LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
STAGE.
WHEN SHIP:ALTITUDE > 1000 THEN {

SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.
LOCK dthrott TO 0.05 * (1.2 - gforce).

}
WHEN SHIP:ALTITUDE > 10000 THEN {

LOCK dthrott TO 0.05 * (2.0 - gforce).
}
WHEN SHIP:ALTITUDE > 20000 THEN {

LOCK dthrott TO 0.05 * (4.0 - gforce).
}

2.2. Design Patterns and Considerations with kOS 27

http://en.wikipedia.org/wiki/PID_controller


kOS Documentation, Release 0.18.2

WHEN SHIP:ALTITUDE > 30000 THEN {
LOCK dthrott TO 0.05 * (5.0 - gforce).

}
UNTIL SHIP:ALTITUDE > 40000 {

SET thrott to thrott + dthrott.
WAIT 0.1.

}

This example does what is expected of it without problems. But the ship’s altitude is being checked at least five times
for every update, including the UNTIL loop check. Certaintly, the kOS CPU can keep up with this, however, one can
imagine a whole series of WHEN/THEN statements which make use of complicated calculations based on atmospheric
data or orbital mechanics. One way to minimize the trigger condition checking is to take strictly-sequential triggers
and nest them:

WHEN STAGE:LIQUIDFUEL < 0.1 THEN {
STAGE.
PRESERVE.

}
SET thrott TO 1.
SET dthrott TO 0.
LOCK THROTTLE TO thrott.
LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
STAGE.
WHEN SHIP:ALTITUDE > 1000 THEN {

SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.
LOCK dthrott TO 0.05 * (1.2 - gforce).

WHEN SHIP:ALTITUDE > 10000 THEN {
LOCK dthrott TO 0.05 * (2.0 - gforce).

WHEN SHIP:ALTITUDE > 20000 THEN {
LOCK dthrott TO 0.05 * (4.0 - gforce).

WHEN SHIP:ALTITUDE > 30000 THEN {
LOCK dthrott TO 0.05 * (5.0 - gforce).

}
}

}
}
UNTIL SHIP:ALTITUDE > 40000 {

SET thrott to thrott + dthrott.
WAIT 0.1.

}

Now this is quite elegant! The number of triggers have been reduced to two per update for the entire running of this
script. The trigger at 1km sets up the next trigger which will happen at 10km which sets up then next at 20km and so
on. This can save a lot of processing time for triggers that will happen sequentially. As a general rule, one should try
to nest WHEN/THEN statements whenever possible. Again, both examples above will work, but when scripts start to
have deep and complicated triggers, this nested construct can save it from the dreaded kOS trigger limit.

2.3 PID Loops in kOS

This tutorial covers how one can implement a PID loop using kOS. A P-loop, or “proportional feedback loop” was
already introduced in the second section of the Design Patterns Tutorial, and that will serve as our starting point.

28 Chapter 2. Tutorials

http://en.wikipedia.org/wiki/PID_controller


kOS Documentation, Release 0.18.2

After some code rearrangement, the integral and derivative terms will be added and discussed in turn. Next, a couple
extra features will be added to the full PID-loop. Lastly, we’ll show a case-study in tuning a full PID loop using the
Ziegler-Nichols method. We’ll use the LOG method to dump telemetry from KSP into a file and our favorite graphing
software to visualize the data.

The code examples in this tutorial can be tested with a similar rocket design as shown. Do not forget the accelerometer,
gravioli detector or the kOS CPU module. The engine is purposefully overpowered to demonstrate the feedback in
action.

Those fuel-tank adapters are from the Modular Rocket Systems (MRS) addon, but stock tanks will work just fine. The
design goal of this rocket is to have a TWR of 8 on the launchpad and enough fuel to make it past 30km when throttled
for optimal atmospheric efficiency.

2.3. PID Loops in kOS 29

https://kerbalstuff.com/mod/148/Modular%20Rocket%20Systems%20-%20Parts%20Pack


kOS Documentation, Release 0.18.2

Contents

• Proportional Feedback Loop (P-loop)
• Proportional-Integral Feedback Loop (PI-loop)
• Proportional-Integral-Derivative Feedback Loop (PID-loop)
• Final Touches
• Tuning a PID-loop
• Final Thoughts

2.3.1 Proportional Feedback Loop (P-loop)

The example code from the Design Patterns Tutorial, with some slight modifications looks like the following:

// staging, throttle, steering, go
WHEN STAGE:LIQUIDFUEL < 0.1 THEN {

STAGE.
PRESERVE.

}
LOCK THROTTLE TO 1.
LOCK STEERING TO R(0,0,-90) + HEADING(90,90).
STAGE.
WAIT UNTIL SHIP:ALTITUDE > 1000.

// P-loop setup
SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.
LOCK dthrott TO 0.05 * (1.2 - gforce).

SET thrott TO 1.
LOCK THROTTLE to thrott.

UNTIL SHIP:ALTITUDE > 40000 {
SET thrott to thrott + dthrott.
WAIT 0.1.

}

The first several lines sets up a simple staging condition, puts the throttle to maximum, steers the rocket straight up and
launches. The rocket is assumed to use only liquid fuel engines. After the rocket hits 1km, the script sets up the LOCK
used in the P-loop which is updated every 0.1 seconds in the UNTIL loop. The use of LOCK variables makes this
code fairly clean. When the script comes up to the first line in the UNTIL loop, i.e. “SET thrott TO thrott + dthrott.”,
the variable dthrott is evaluated which causes the LOCK on gforce to be evaluated which in-turn causes accvec to be
evaluated.

The input to this feedback loop is the acceleration experienced by the ship (gforce) in terms of Kerbin’s gravitational
acceleration at sea level (g). The variable accvec is the total acceleration vector and is obtained by the accelerometer
and gravioli detectors, both of which must be on the ship for this to work. The variable dthrott is the change in throttle
that should be applied in a single iteration of the feedback loop.

In terms of a PID loop, the factor 1.2 is called the setpoint, gforce is the process variable and 0.05 is called the
proportional gain. The setpoint and gain factors can be promoted to their own variables with names. Also, the code up
to and including the “WAIT UNTIL SHIP:ALTITUDE > 1000.” will be implied for the next few examples of code:

// P-loop
SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.

30 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

LOCK gforce TO accvec:MAG / g.

SET gforce_setpoint TO 1.2.
SET Kp TO 0.05.
LOCK dthrott TO Kp * (gforce_setpoint - gforce).

SET thrott TO 1.
LOCK THROTTLE to thrott.

UNTIL SHIP:ALTITUDE > 40000 {
SET thrott to thrott + dthrott.
WAIT 0.1.

}

This is not a big change, but it will set us up to include the integral and derivative terms in the next section.

2.3.2 Proportional-Integral Feedback Loop (PI-loop)

Adding the integral term requires us to keep track of time. This is done by introducing a variable (t0) to store the time
of the last iteration. Now, the throttle is changed only on iterations where some time has elapsed so the WAIT time in
the UNTIL can be brought to 0.001. The offset of the gforce has been set to the variable P, and the integral gain to Ki.

// PI-loop
SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.

SET gforce_setpoint TO 1.2.

LOCK P TO gforce_setpoint - gforce.
SET I TO 0.

SET Kp TO 0.01.
SET Ki TO 0.006.

LOCK dthrott TO Kp * P + Ki * I.

SET thrott TO 1.
LOCK THROTTLE to thrott.

SET t0 TO TIME:SECONDS.
UNTIL SHIP:ALTITUDE > 40000 {

SET dt TO TIME:SECONDS - t0.
IF dt > 0 {

SET I TO I + P * dt.
SET thrott to thrott + dthrott.
SET t0 TO TIME:SECONDS.

}
WAIT 0.001.

}

Adding the integral term has the general effect of stabilizing the feedback loop, making it less prone to oscillating due
to rapid changes in the process variable (gforce, in this case). This is usually at the expense of a longer settling time.

2.3. PID Loops in kOS 31



kOS Documentation, Release 0.18.2

2.3.3 Proportional-Integral-Derivative Feedback Loop (PID-loop)

Incorporating the derivative term (D) and derivative gain (Kd) requires an additional variable (P0) to keep track of the
previous value of the proportional term (P).

// PID-loop
SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.

SET gforce_setpoint TO 1.2.

LOCK P TO gforce_setpoint - gforce.
SET I TO 0.
SET D TO 0.
SET P0 TO P.

SET Kp TO 0.01.
SET Ki TO 0.006.
SET Kd TO 0.006.

LOCK dthrott TO Kp * P + Ki * I + Kd * D.

SET thrott TO 1.
LOCK THROTTLE to thrott.

SET t0 TO TIME:SECONDS.
UNTIL SHIP:ALTITUDE > 40000 {

SET dt TO TIME:SECONDS - t0.
IF dt > 0 {

SET I TO I + P * dt.
SET D TO (P - P0) / dt.
SET thrott to thrott + dthrott.
SET P0 TO P.
SET t0 TO TIME:SECONDS.

}
WAIT 0.001.

}

When tuned properly, the derivative term will cause the PID-loop to act quickly without causing problematic oscil-
lations. Later in this tutorial, we will cover a way to tune a PID-loop using only the proportional term called the
Zieger-Nichols method.

2.3.4 Final Touches

There are a few modifications that can make PID loops very robust. The following code example adds three range
limits:

1. bounds on the Integral term which addresses possible integral windup

2. bounds on the throttle since it must stay in the range 0 to 1

3. a deadband to avoid changing the throttle due to small fluctuations

Of course, KSP is a simulator and small fluctuations are not observed in this particular loop. Indeed, the P-loop is
sufficient in this example, but all these features are included here for illustration purposes and they could become
useful for unstable aircraft or untested scenarios.

32 Chapter 2. Tutorials

http://en.wikipedia.org/wiki/Integral_windup
http://en.wikipedia.org/wiki/Deadband


kOS Documentation, Release 0.18.2

// PID-loop
SET g TO KERBIN:MU / KERBIN:RADIUS^2.
LOCK accvec TO SHIP:SENSORS:ACC - SHIP:SENSORS:GRAV.
LOCK gforce TO accvec:MAG / g.

SET gforce_setpoint TO 1.2.

LOCK P TO gforce_setpoint - gforce.
SET I TO 0.
SET D TO 0.
SET P0 TO P.

LOCK in_deadband TO ABS(P) < 0.01.

SET Kp TO 0.01.
SET Ki TO 0.006.
SET Kd TO 0.006.

LOCK dthrott TO Kp * P + Ki * I + Kd * D.

SET thrott TO 1.
LOCK THROTTLE to thrott.

SET t0 TO TIME:SECONDS.
UNTIL SHIP:ALTITUDE > 40000 {

SET dt TO TIME:SECONDS - t0.
IF dt > 0 {

IF NOT in_deadband {
SET I TO I + P * dt.
SET D TO (P - P0) / dt.

// If Ki is non-zero, then limit Ki*I to [-1,1]
IF Ki > 0 {

SET I TO MIN(1.0/Ki, MAX(-1.0/Ki, I)).
}

// set throttle but keep in range [0,1]
SET thrott to MIN(1, MAX(0, thrott + dthrott)).

SET P0 TO P.
SET t0 TO TIME:SECONDS.

}
}
WAIT 0.001.

}

2.3.5 Tuning a PID-loop

We are going to start with the same rocket design we have been using so far and actually tune the PID-loop using
the Ziegler-Nichols method. This is where we turn off the integral and derivative terms in the loop and bring the
proportional gain (Kp) up from zero to the point where the loop causes a steady oscillation with a measured period
(Tu). At this point, the proportional gain is called the “ultimate gain” (Ku) and the actual gains (Kp, Ki and Kd) are
set according to this table taken from wikipedia:

2.3. PID Loops in kOS 33

http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method


kOS Documentation, Release 0.18.2

Control Type Kp Ki Kd
P 0.5 Ku
PI 0.45 Ku 1.2 Kp / Tu
PD 0.8 Ku Kp Tu / 8
classic PID 0.6 Ku 2 Kp / Tu Kp Tu / 8
Pessen Integral Rule 0.7 Ku 0.4 Kp / Tu 0.15 Kp Tu
some overshoot 0.33 Ku 2 Kp / Tu Kp Tu / 3
no overshoot 0.2 Ku 2 Kp / Tu Kp Tu / 3

An immediate problem to overcome with this method is that it assumes a steady state can be achieved. With rockets,
there is never a steady state: fuel is being consumed, altitude and therefore gravity and atmosphere is changing, staging
can cause major upsets in the feedback loop. So, this tuning method will be some approximation which should come
as no surprise since it will come from experimental observation. All we need is enough of a steady state that we can
measure the oscillations - both the change in amplitude and the period.

The script we’ll use to tune the highly overpowered rocket shown will launch the rocket straight up (using SAS) and
will log data to an output file until it reaches 30km at which point the log file will be copied to the archive and the
program will terminate. Also, this time the feedback loop will be based on the more realistic “atmospheric efficiency.”
The log file will contain three columns: time since launch, offset of atmospheric efficiency from the ideal (in this case,
1.0) and the ship’s maximum thrust. The maximum thrust will increase monotonically with time (this rocket has only
one stage) and we’ll use both as the x-axis when plotting the offset on the y-axis.

DECLARE PARAMETER Kp.

LOCK g TO SHIP:BODY:MU / (SHIP:BODY:RADIUS + SHIP:ALTITUDE)^2.
LOCK maxtwr TO SHIP:MAXTHRUST / (g * SHIP:MASS).

// feedback based on atmospheric efficiency
LOCK surfspeed TO SHIP:VELOCITY:SURFACE:MAG.
LOCK atmoeff TO surfspeed / SHIP:TERMVELOCITY.
LOCK P TO 1.0 - atmoeff.

SET t0 TO TIME:SECONDS.
LOCK dthrott TO Kp*P.
SET start_time TO t0.

LOG "# Throttle PID Tuning" TO throttle_log.
LOG "# Kp: " + Kp TO throttle_log.
LOG "# t P maxtwr" TO throttle_log.

LOCK logline TO (TIME:SECONDS - start_time)
+ " " + P
+ " " + maxtwr.

SET thrott TO 1.
LOCK THROTTLE TO thrott.
SAS ON.
STAGE.
WAIT 3.

UNTIL SHIP:ALTITUDE > 30000 {
SET dt TO TIME:SECONDS - t0.
IF dt > 0 {

SET thrott TO MIN(1,MAX(0,thrott + dthrott)).
SET t0 TO TIME:SECONDS.
LOG logline TO throttle_log.

}
WAIT 0.001.

34 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

}
COPY throttle_log TO 0.

Give this script a short name, something like “tune.txt” so that running is simple:

copy tune from 0.
run tune(0.5).

After every launch completes, you’ll have to go into the archive directory and rename the output logfile. Something
like “throttle_log.txt” –> “throttle.01.log” will help if you increment the index number each time. To analyze the data,
plot the offset (P) as a function of time (t). Here, we show the results for three values of Kp: 0.002, 0.016 and 0.160,
including the maximum TWR when Kp = 0.002 as the top x-axis. The maximum TWR dependence on time is different
for the three values of Kp, but not by a lot.

The value of 0.002 is obviously too low. The settling time is well over 20 seconds and the loop can’t keep up with the
increase in terminal velocity at the higher altitudes reached after one minute. When Kp = 0.016, the behavior is far
more well behaved, and though some oscillation exists, it’s damped and slow with a period of about 10 seconds. At
Kp = 0.160, the oscillations are prominent and we can start to measure the change in amplitude along with the period
of the oscillations. This plot shows the data for Kp = 0.160 from 20 to 40 seconds after ignition. The peaks are found
and are fit to a line.

This is done for each value of Kp and the slopes of the fitted lines are plotted as a function of Kp in the following plot:

The period of oscillation was averaged over the interval and plotted on top of the amplitude change over time. Notice
the turn over that occurs when Kp reaches approximately 0.26. This will mark the “ultimate gain” and 3.1 seconds
will be used as the associated period of oscillation. It is left as an exercise for the reader to implement a full PID-loop
using the classic PID values (see table above): Kp = 0.156, Ki = 0.101, Kd = 0.060, producing this behavior:

As soon as the PID-loop was activated at 3 seconds after ignition, the throttle was cut. At approximately 7 seconds,
the atmospheric efficiency dropped below 100% and the integral term started to climb back to zero. At 11 seconds,
the engine was reignited and the feedback loop settled after about 20 seconds. The inset plot has the same axes as the
parent and shows the long-term stability of the final PID-loop.

2.3. PID Loops in kOS 35



kOS Documentation, Release 0.18.2

36 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

2.3.6 Final Thoughts

The classic PID values used above are fairly aggressive and there is some overshoot at the beginning. This can be dealt
with in many ways and is discussed on the wikipedia page about PID controllers. For example, one might consider
trying to implement a switch to a PD-loop when the integral term hits some limit, switching back once P crosses zero.
The PID behavior should look like the following:

Finally, Controlling the throttle of a rocket is perhaps the easiest thing to implement as a PID loop in KSP using
kOS. The steering was largely ignored and the orientation was always up. When writing an autopilot for horizontal
atmospheric flight, one will have to deal with the direction the ship is traveling using SHIP:HEADING as well as
it’s orientation with SHIP:FACING. Additionally, there are the SHIP:ROTATION and SHIP:TRANSLATION vectors
which can tell you the rate of change of the ship’s facing and heading respectively. The controls in this case are six-
dimensional using SHIP:CONTROL with YAW, PITCH, ROLL, FORE, STARBOARD, TOP and MAINTHROTTLE.

The PID gain parameters are dependent on the characteristics of the ship being controlled. The size, shape, turning
capability and maximum TWR should be considered when tuning a PID loop. Turning RCS on can also have an effect
and you might consider changing the PID loop’s gain parameters every time to switch them on or off.

2.4 Advanced Tutorial

Let’s try to automate one of the most common tasks in orbital maneuvering - execution of the maneuver node. In this
tutorial I’ll try to show you how to write a script for precise maneuver node execution.

So to start our script we need to get the next available maneuver node:

set nd to nextnode().

Our next step is to calculate how much time our vessel needs to burn at full throttle to execute the node:

//print out node's basic parameters - ETA and deltaV
print "Node in: " + round(nd:eta) + ", DeltaV: " + round(nd:deltav:mag).

2.4. Advanced Tutorial 37

http://en.wikipedia.org/wiki/PID_controller


kOS Documentation, Release 0.18.2

//calculate ship's max acceleration
set max_acc to ship:maxthrust/ship:mass.

//now we just need to divide deltav:mag by our ship's max acceleration
set burn_duration to nd:deltav:mag/max_acc.
print "Estimated burn duration: " + round(burn_duration) + "s".

So now we have our node’s deltav vector, ETA to the node and we calculated our burn duration. All that is left for us
to do is wait until we are close to node’s ETA less half of our burn duration. But we want to write a universal script,
and some of our current and/or future ships can be quite slow to turn, so let’s give us some time, 60 seconds, to prepare
for the maneuver burn:

wait until node:eta <= (burn_duration/2 + 60).

This wait can be tedious and you’ll most likely end up warping some time, but we’ll leave kOS automation of warping
for a given period of time to our readers.

The wait has finished, and now we need to start turning our ship in the direction of the burn:

set np to lookdirup(nd:deltav, ship:facing:topvector). //points to node, keeping roll the same.
lock steering to np.

//now we need to wait until the burn vector and ship's facing are aligned
wait until abs(np:pitch - facing:pitch) < 0.15 and abs(np:yaw - facing:yaw) < 0.15.

//the ship is facing the right direction, let's wait for our burn time
wait until node:eta <= (burn_duration/2)

Now we are ready to burn. It is usually done in the until loop, checking main parameters of the burn every iteration
until the burn is complete:

//we only need to lock throttle once to a certain variable in the beginning of the loop, and adjust only the variable itself inside it
set tset to 0.

38 Chapter 2. Tutorials



kOS Documentation, Release 0.18.2

lock throttle to tset.

set done to False.
//initial deltav
set dv0 to nd:deltav.
until done
{

//recalculate current max_acceleration, as it changes while we burn through fuel
set max_acc to ship:maxthrust/ship:mass.

//throttle is 100% until there is less than 1 second of time left to burn
//when there is less than 1 second - decrease the throttle linearly
set tset to min(nd:deltav:mag/max_acc, 1).

//here's the tricky part, we need to cut the throttle as soon as our nd:deltav and initial deltav start facing opposite directions
//this check is done via checking the dot product of those 2 vectors
if vdot(dv0, nd:deltav) < 0
{

print "End burn, remain dv " + round(nd:deltav:mag,1) + "m/s, vdot: " + round(vdot(dv0, nd:deltav),1).
lock throttle to 0.
break.

}

//we have very little left to burn, less then 0.1m/s
if nd:deltav:mag < 0.1
{

print "Finalizing burn, remain dv " + round(nd:deltav:mag,1) + "m/s, vdot: " + round(vdot(dv0, nd:deltav),1).
//we burn slowly until our node vector starts to drift significantly from initial vector
//this usually means we are on point
wait until vdot(dv0, nd:deltav) < 0.5.

lock throttle to 0.
print "End burn, remain dv " + round(nd:deltav:mag,1) + "m/s, vdot: " + round(vdot(dv0, nd:deltav),1).
set done to True.

}
}
unlock steering.
unlock throttle.
wait 1.

//we no longer need the maneuver node
remove nd.

//set throttle to 0 just in case.
SET SHIP:CONTROL:PILOTMAINTHROTTLE TO 0.

That is all, this short script can execute any maneuver node with 0.1 m/s dv precision or even better.

2.5 Introductory

Quick Start Tutorial Walks you through the beginnings of making a beginner’s ship launcher script.

2.5. Introductory 39



kOS Documentation, Release 0.18.2

2.6 Intermediate

Design Patterns Tutorial Discusses some general aspects of kOS flow control and optimizations.

PID Loop Tutorial Starts with a basic proportional feedback loop and develops, in stages, a complete PID-loop to
control the throttle of a simple rocket design.

Execute Node script ZiwKerman describes a generic “execute manuever node” script to be a one-size-fits-all solution
to many situations in KSP. If you can make a manuever node for something, exenode will execute it.

40 Chapter 2. Tutorials



CHAPTER 3

Community Examples Library

Starting with version 0.17.0 of kOS, we have decided to support a separate repository of examples and libraries that
“live” entirely in kerboscript code only. This is a useful place to find helpful code written by other users of kOS, some
of whom may be members of the main kOS development team, and some of whom might ber users in the community.

The separate repository is found here:

https://github.com/KSP-KOS/KSLib

Some examples of useful things you can find there are:

• A generic all-purpose PID controller function:

– library script: https://github.com/KSP-KOS/KSLib/blob/master/library/lib_pid.ks

– documentation: https://github.com/KSP-KOS/KSLib/blob/master/doc/lib_pid.md

– example https://github.com/KSP-KOS/KSLib/blob/master/examples/example_lib_pid.ks

• A library for getting navball orientation information:

– library script https://github.com/KSP-KOS/KSLib/blob/master/library/lib_navball.ks

– documentation https://github.com/KSP-KOS/KSLib/blob/master/doc/lib_navball.md

– example https://github.com/KSP-KOS/KSLib/blob/master/examples/example_lib_navball.ks

• An example of how to use the sasmode feature:

– example https://github.com/KSP-KOS/KSLib/blob/master/examples/example_testsasmode.ks

41

https://github.com/KSP-KOS/KSLib
https://github.com/KSP-KOS/KSLib/blob/master/library/lib_pid.ks
https://github.com/KSP-KOS/KSLib/blob/master/doc/lib_pid.md
https://github.com/KSP-KOS/KSLib/blob/master/examples/example_lib_pid.ks
https://github.com/KSP-KOS/KSLib/blob/master/library/lib_navball.ks
https://github.com/KSP-KOS/KSLib/blob/master/doc/lib_navball.md
https://github.com/KSP-KOS/KSLib/blob/master/examples/example_lib_navball.ks
https://github.com/KSP-KOS/KSLib/blob/master/examples/example_testsasmode.ks


kOS Documentation, Release 0.18.2

42 Chapter 3. Community Examples Library



CHAPTER 4

General Topics

These topics discuss the interfacing between kOS and Kerbal Space Program.

4.1 Catalog of Bound Variable Names

This is the list of special reserved keyword variable names that kOS will interpret to mean something special. If they
are used as normal variable names by your kOS script program they may not work. Understanding them and their
meaning is crucial to creating effective kOS scripts.

4.1.1 NAMED VESSELS AND BODIES

SHIP:

Variable name: SHIP
Gettable: yes
Settable: no
Type: Vessel
Description: Whichever vessel happens to be the one containing the CPU part that is running this Kerboscript code
at the moment. This is the CPU Vessel.

TARGET:

Variable Name: TARGET
Gettable: yes
Settable: yes
Type: Vessel or Body
Description: Whichever Orbitable object happens to be the one selected as the current KSP target. If set to a string, it
will assume the string is the name of a vessel being targetted and set it to a vessel by that name. For best results set it
to Body(“some name”) or Vessel(“some name”) explicitly.

43



kOS Documentation, Release 0.18.2

4.1.2 Alias shortcuts for SHIP fields

The following are all alias shortcuts for accessing the fields of the SHIP vessel. To see their definition, please consult
the Vessel page, as they are all just instances of the standard vessel suffixes.

Variable Same as
HEADING Same as SHIP:HEADING
PROGRADE Same as SHIP:PROGRADE
RETROGRADE Same as SHIP:RETROGRADE
FACING Same as SHIP:FACING
MAXTHRUST Same as SHIP:MAXTHRUST
VELOCITY Same as SHIP:VELOCITY
GEOPOSITION Same as SHIP:GEOPOSITION
LATITUDE Same as SHIP:LATITUDE
LONGITUDE Same as SHIP:LONGITUDE
UP Same as SHIP:UP
NORTH Same as SHIP:NORTH
BODY Same as SHIP:BODY
ANGULARMOMENTUM Same as SHIP:ANGULARMOMENTUM
ANGULARVEL Same as SHIP:ANGULARVEL
ANGULARVELOCITY Same as SHIP:ANGULARVEL
COMMRANGE Same as SHIP:COMMRANGE
MASS Same as SHIP:MASS
VERTICALSPEED Same as SHIP:VERTICALSPEED
GROUNDSPEED Same as SHIP:GROUNDSPEED
SURFACESPEED This has been obsoleted as of kOS 0.18.0. Replace it with GROUNDSPEED.
AIRSPEED Same as SHIP:AIRSPEED
VESSELNAME Same as SHIP:VESSELNAME
ALTITUDE Same as SHIP:ALTITUDE
APOAPSIS Same as SHIP:APOAPSIS
PERIAPSIS Same as SHIP:PERIAPSIS
SENSORS Same as SHIP:SENSORS
SRFPROGRADE Same as SHIP:SRFPROGRADE
SRFREROGRADE Same as SHIP:SRFREROGRADE
OBT Same as SHIP:OBT
STATUS Same as SHIP:STATUS
SHIPNAME Same as SHIP:NAME

4.1.3 Constants (pi, e, etc)

Get-only.

The variable constant provides a way to access a few basic math and physics constants, such as Pi, Euler’s number,
and so on.

Example:

print "Kerbin's circumference: " + (2*constant:pi*Kerbin:radius) + "meters.".

The full list is here: constants page.

44 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

4.1.4 Terminal

Get-only. terminal returns a terminal structure describing the attributes of the current terminal screen associated
with the CPU this script is running on.

4.1.5 Core

Get-only. core returns a core structure referring to the CPU you are running on.

4.1.6 Stage

Get-only. stage returns a stage structure used to count resources in the current stage. Not to be confused with the
COMMAND stage which triggers the next stage.

4.1.7 NextNode

Get-only. nextnode returns the next planned manuever node in the SHIP’s flight plan. Bombs out if no such node
exists.

4.1.8 Resource Types

Any time there is a resource on the ship it can be queried. The resources are the values that appear when you click on

the upper-right corner of the screen in the KSP window.

LIQUIDFUEL
OXIDIZER
ELECTRICCHARGE
MONOPROPELLANT
INTAKEAIR
SOLIDFUEL

All of the above resources can be queried using either the prefix SHIP or STAGE, depending on whether you are trying
to query how much is left in the current stage or the entire ship:

How much liquid fuel is left in the entire ship:

PRINT "There is " + SHIP:LIQUIDFUEL + " liquid fuel on the ship.".

How much liquid fuel is left in just the current stage:

PRINT "There is " + STAGE:LIQUIDFUEL + " liquid fuel in this stage.".

How much liquid fuel is left in the target vessel:

PRINT "There is " + TARGET:LIQUIDFUEL + " liquid fuel in the target ship.".

Any other resources that you have added using other mods should be query-able this way, provided that you spell the
term exactly as it appears in the resources window.

You can also get a list of all resources, either in SHIP: or STAGE: with the :RESOURCES suffix.

4.1. Catalog of Bound Variable Names 45



kOS Documentation, Release 0.18.2

4.1.9 ALT ALIAS

The special variable ALT gives you access to a few altitude predictions:

ALT:APOAPSIS

ALT:PERIAPSIS

ALT:RADAR

Further details are found on the ALT page .

4.1.10 ETA ALIAS

The special variable ETA gives you access to a few time predictions:

ETA:APOAPSIS

ETA:PERIAPSIS

ETA:TRANSITION

Further details are found on the ETA page .

4.1.11 ENCOUNTER

The orbit patch describing the next encounter with a body the current vessel will enter. If there is no such encounter
coming, it will return the special string “None”. If there is an encounter coming, it will return an object of type Orbit.
(i.e. to obtain the name of the planet the encounter is with, you can do: print ENCOUNTER:BODY:NAME., for
example.).

4.1.12 BOOLEAN TOGGLE FIELDS:

These are variables that behave like boolean flags. They can be True or False, and can be set or toggled using the
“ON” and “OFF” and “TOGGLE” commands. Many of these are for action group flags. NOTE ABOUT ACTION
GROUP FLAGS: If the boolean flag is for an action group, be aware that each time the user presses the action group
keypress, it toggles the action group, so you might need to check for both the change in state from false to true AND
the change in state from true to false to see if the key was hit.

46 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

Variable
Name

Can
Read

Can
Set

Description

SAS yes yes (Same as “SAS” indicator on the navball.)
RCS yes yes (Same as “RCS” indicator on the navball.)
GEAR yes yes Is the GEAR enabled right now? (Note, KSP does some strange things with this

flag, like needing to hit it twice the first time).
LEGS yes yes Are the landing LEGS extended? (as opposed to GEAR which is for the wheels

of a plane.)
CHUTES yes yes Are the parachutes extended? (Treats all parachutes as one single unit. Does not

activate them individually.)
LIGHTS yes yes Are the lights on? (like the “U” key in manual flight.)
PANELS yes yes Are the solar panels extended? (Treats all solar panels as one single unit. Does

not activate them individually.)
BRAKES yes yes Are the brakes on?
ABORT yes yes Abort Action Group.
AG1 yes yes Action Group 1.
AG2 yes yes Action Group 2.
AG3 yes yes Action Group 3.
AG4 yes yes Action Group 4.
AG5 yes yes Action Group 5.
AG6 yes yes Action Group 6.
AG7 yes yes Action Group 7.
AG8 yes yes Action Group 8.
AG9 yes yes Action Group 9.
AG10 yes yes Action Group 10.
AGn yes yes If you have the Action Groups Extended mod installed, you can access its

groups the same way, i.e. AG11, AG12, AG13, etc.

4.1.13 Flight Control

There are bound variables used in controlling the flight of a ship, which can be found at the following links:

If you want to let kOS do a lot of the work of aligning to a desired heading for you, use Cooked Control.

If you want your script to manipulate the controls directly (as in “set yaw axis halfway left for a few seconds (using
the ‘A’ key)”, then use Raw Control.

If you want to be able to READ what the player is attempting to do while your script is running, and perhaps respond
to it, then use Reading the Pilot’s Control settings (i.e reading what the manual input is attempting) (By default your
script will override manual piloting attempts, but you can read what the pilot’s controls are set at and make your
autopilot take them under advisement - sort of like how a fly-by-wire plane works.)

Controls that must be used with LOCK

THROTTLE // Lock to a decimal value between 0 and 1.
STEERING // Lock to a direction, either a Vector or a Direction.
WHEELTHROTTLE // Separate throttle for wheels
WHEELSTEERING // Separate steering system for wheels

4.1. Catalog of Bound Variable Names 47



kOS Documentation, Release 0.18.2

4.1.14 Time

Time is the simulated amount of time that passed since the beginning of the game’s universe epoch. (A brand new
campaign that just started begins at TIME zero.)

TIME is a useful system variable for calculating the passage of time between taking physical measurements (i.e. to
calculate how fast a phenomenon is changing in a loop). It returns the KSP simulated time, rather than the actual
realtime sitting in the chair playing the game. If everything is running smoothly on a fast computer, one second of
simulated time will match one second of real time, but if anything is causing the game to stutter or lag a bit, then the
simulated time will be a bit slower than the real time. For any script program trying to calculate physical properties of
the KSP universe, the time that matters is the simulated time, which is what TIME returns.

It’s important to be aware of the frozen update nature of the kOS computer when reading TIME.

4.1.15 System Variables

This section is about variables that describe the things that are slightly outside the simulated universe of the game and
are more about the game’s user interface or the kOS mod itself. They represent things that slightly “break the fourth
wall” and let your script access something entirely outside the in-character experience.

PRINT VERSION. // Returns operating system version number. e.g. 0.8.6
PRINT VERSION:MAJOR. // Returns major version number. e.g. 0
PRINT VERSION:MINOR. // Returns minor version number. e.g. 8
PRINT VERSION:BUILD. // Returns build version number. e.g. 6
PRINT SESSIONTIME. // Returns amount of time, in seconds, from vessel load.

NOTE the following important difference:

SESSIONTIME is the time since the last time this vessel was loaded from on-rails into full physics.

TIME is the time since the entire saved game campaign started, in the kerbal universe’s time. i.e. TIME = 0 means a
brand new campaign was just started.

Config

CONFIG is a special variable name that refers to the configuration settings for the kOS mod, and can be used to set or
get various options.

CONFIG has its own page for further details.

WARP and WARPMODE

Time warp can be controlled with the variables WARP and WARPMODE. See WARP

MAPVIEW

A boolean that is both gettable and settable.

If you query MAPVIEW, it’s true if on the map screen, and false if on the flight view screen. If you SET MAPVIEW,
you can cause the game to switch between mapview and flight view or visa versa.

48 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

LOADDISTANCE

LOADDISTANCE sets the distance from the active vessel at which vessels get removed from the full physics engine
and put on-rails, or visa versa. Note that as of KSP 1.0 the stock game supports multiple different load distance settings
for different situations such that the value changes depending on where you are. But kOS does not support this at the
moment so in kOS if you set the LOADDISTANCE, you are setting it to the same value universally for all situations.

4.1.16 SOLARPRIMEVECTOR

Gives the Prime Meridian Vector for the Solar System itself, in current Ship-Raw XYZ coordinates.

Both the Orbit:LONGITUDEOFASCENDINGNODE orbit suffix and the Body:ROTATIONANGLE body suffix are
expressed in terms of degree offsets from this Prime Meridian Reference Vector.

What is the Solar Prime Reference Vector?

The solar prime vector is an arbitrary vector in space used to measure some orbital parameters that are supposed to
remain fixed to space regardless of how the planets underneath the orbit rotate, or where the Sun is. In a sense it can
be thought of as the celestial “prime meridian” of the entire solar system, rather than the “prime meridian” of any one
particular rotating planet or moon.

In a hypothetical Earthling’s solar system our Kerbal scientists have hypothesized may exist in a galaxy far away,
Earthbound astronomers use a reference they called the First Point of Aries, for this purpose.

For Kerbals, it refers to a more arbitrary line in space, pointing at a fixed point in the firmament, also known as the
“skybox”.

4.1.17 Addons

Get-only. addons is a special variable used to access various extensions to kOS that are designed to support the
features introduced by some other mods. More info can be found on the addons page.

4.1.18 Colors

There are several bound variables associated with hardcoded colors such as WHITE, BLACK, RED, etc. See the
linked page for the full list.

4.2 CPU Vessel (SHIP)

Note: When kOS documentation refers to the “CPU vessel”, it has the following definition:

• The “CPU Vessel” is whichever vessel happens to currently contain the CPU in which the executing code is
running.

It’s important to distinguish this from “active vessel”, which is a KSP term referring to whichever vessel the camera is
centered on, and therefore the vessel that will receive the keyboard controls for W A S D and so on.

The two terms can differ when you are in a situation where there are two vessels near each other, both of them within
full physics range (i.e. 2.5 km), such as would happen during a docking operation. In such a situation it is possible for

4.2. CPU Vessel (SHIP) 49

https://en.wikipedia.org/wiki/First_Point_of_Aries


kOS Documentation, Release 0.18.2

kOS programs to be running on one, both, or neither of the two vessels. The vessel on which a program is executing
is not necessarily the vessel the KSP game is currently considering the “active” one.

Note: The built-in variable called SHIP is always set to the current CPU vessel. Whenever you see the documentation
refer to CPU vessel, you can think of that as being “the SHIP variable”.

For all places where a kOS program needs to do something with this vessel, for the sake of centering SHIP-RAW
coordinates, for the sake of deciding which ship is having maneuver nodes added to it and for the sake of deciding
which vessel is being controlled by the autopilot. The vessel it is referring to is itself the CPU vessel and not necessarily
what KSP thinks of as the “active vessel”.

4.3 The kOS CPU hardware

While it’s possible to write some software without knowing anything about the underlying computer hardware, and
there are good design principles that state one should never make assumptions about the computer hardware when
writing software, there are still some basic things about how computers work in general that a good programmer needs
to be aware of to write good code. Along those lines, the KSP player writing a Kerboscript program needs to know a
few basic things about how the simulated kOS CPU operates in order to be able to write more advanced scripts. This
page contains that type of information.

• Update Ticks and Physics Ticks
• Triggers

– Do Not Loop a Long Time in a Trigger Body!
– But I Want a Loop!!
– Wait!!!

• The Frozen Universe

4.3.1 Update Ticks and Physics Ticks

Note: New in version 0.17: Previous versions of kOS used to execute program code during the Update phase, rather
than the more correct Physics Update phase.

Kerbal Space Program simulates the universe by running the universe in small incremental time intervals that for the
purpose of this document, we will call “physics ticks”. The exact length of time for a physics tick varies as the
program runs. One physics tick might take 0.09 seconds while the next one might take 0.085 seconds. (The default
setting for the rate of physics ticks is 25 ticks per second, just to give a ballpark figure, but you must not write any
scripts that depend on this assumption because it’s a setting the user can change, and it can also vary a bit during play
depending on system load. The setting is a target goal for the game to try to achieve, not a guarantee. If it’s a fast
computer with a speedy animation frame rate, it will try to run physics ticks less often than it runs animation frame
updates, to try to make the physics tick rate match this setting. On the other hand, If it’s a slow computer, it will try
to sacrifice animation frame rate to archive this number (meaning physics get calculated faster than you can see the
effects.)

When calculating physics formulas, you need to actually measure elapsed time in the TIME:SECONDS variable in
your scripts.

The entire simulated universe is utterly frozen during the duration of a physics tick. For example, if one physics tick
occurs at timestamp 10.51 seconds, and the next physics tick occurs 0.08 seconds later at timestamp 10.59 seconds,

50 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

then during the entire intervening time, at timestamp 10.52 seconds, 10.53 seconds, and so on, nothing moves. The
clock is frozen at 10.51 seconds, and the fuel isn’t being consumed, and the vessel is at the same position. On the next
physics tick at 10.59 seconds, then all the numbers are updated. The full details of the physics ticks system are more
complex than that, but that quick description is enough to describe what you need to know about how kOS’s CPU
works.

There is another kind of time tick called an Update tick. It is similar to, but different from, a physics tick. Update
ticks often occur a bit more often than physics ticks. Update ticks are exactly the same thing as your game’s Frame
Rate. Each time your game renders another animation frame, it performs another Update tick. On a good gaming
computer with fast speed and a good graphics card, It is typical to have about 2 or even 3 Update ticks happen within
the time it takes to have one physics tick happen. On a slower computer, it is also possible to go the other way and
have Update ticks happening less frequently than physics tics. Basically, look at your frame rate. Is it higher than 25
fps? If so, then your update ticks happen faster than your physics ticks, otherwise its the other way around.

Note: As of version 0.17.0, The kOS CPU runs every physics tick.

On each physics tick, each kOS CPU that’s within physics range (i.e. 2.5 km), wakes up and performs the following
steps, in this order:

1. Run the conditional checks of all TRIGGERS (see below)

2. For any TRIGGERS who’s conditional checks are true, execute the entire body of the trigger.

3. If there’s a pending WAIT statement, check if it’s done. If so wake up.

4. If awake, then execute the next Config:IPU number of instructions of the main program.

Note that the number of instructions being executed (CONFIG:IPU) are NOT lines of code or kerboscript statements,
but rather the smaller instruction opcodes that they are compiled into behind the scenes. A single kerboscript statement
might become anywhere from one to ten or so instructions when compiled.

4.3.2 Triggers

There are multiple things within kerboscript that run “in the background” always updating, while the main script
continues on. The way these work is a bit like a real computer’s multithreading, but not quite. Collectively all of these
things are called “triggers”.

Triggers are all of the following:

• LOCKS which are attached to flight controls (THROTTLE, STEERING, etc), but not other LOCKS.

• ON condition { some commands }.

• WHEN condition THEN { some commands }.

Note: The WAIT command only causes mainline code to be suspended. Trigger code such as WHEN, ON, LOCK
STEERING, and LOCK THROTTLE, will continue executing while your program is sitting still on the WAIT com-
mand.

The way these work is that once per physics tick, all the LOCK expressions which directly affect flight control are
re-executed, and then each conditional trigger’s condition is checked, and if true, then the entire body of the trigger
is executed all the way to the bottom *before any more instructions of the main body are executed*. This means that
execution of a trigger never gets interleaved with the main code. Once a trigger happens, the entire trigger occurs all
in one go before the rest of the main body continues.

4.3. The kOS CPU hardware 51



kOS Documentation, Release 0.18.2

Do Not Loop a Long Time in a Trigger Body!

Because the entire body of a trigger will execute all the way to the bottom on within a single physics tick, before any
other code continues, it is vital that you not write code in a trigger body that takes a long time to execute. The body of
a trigger must be kept quick. An infinite loop in a trigger body could literally freeze all of KSP, because the kOS mod
will never finish executing its update.

As of kOS version 0.14 and higher, this condition is now being checked for and the script will be terminated with a
runtime error if the triggers like WHEN/THEN and ON take more than Config:IPU instructions to execute. The
sum total of all the code within your WHEN/THEN and ON code blocks MUST be designed to complete within one
physicd tick.

This may seem harsh. Ideally, kOS would only generate a runtime error if it thought your script was stuck in an
infinite loop, and allow it to exceed the Config:IPU number of instructions if it was going to finish and just needed
a little longer to to finish its work. But, because of a well known problem in computer science called the halting
problem, it’s literally impossible for kOS, or any other software for that matter, to detect the difference between
another program’s infinite loop versus another program’s loop that will end soon. kOS only knows how long your
triggers have taken so far, not how long they’re going to take before they’re done, or even if they’ll be done.

If you suspect that your trigger body would have ended if it was allowed to run a little longer, try setting your
Config:IPU setting a bit higher and see if that makes the error go away.

If it does not make the error go away, then you will need to redesign your script to not depend on running a long-lasting
amount of code inside triggers.

But I Want a Loop!!

If you want a trigger body that is meant to loop, the only acceptable way to do it is to design it to execute just once, but
then use the PRESERVE keyword to keep the trigger around for the next physics update. Thus your trigger becomes
a sort of “loop” that executes one iteration per physics tick.

It is also important to consider the way triggers execute for performance reasons too. Every time you write an expres-
sion for a trigger, you are creating a bit of code that gets executed fully to the end before your main body will continue,
once each physics tick. A complex expression in a trigger condition, which in turn calls other complex LOCK expres-
sions, which call other complex LOCK expressions, and so on, may cause kOS to bog itself down during each physics
tick. (And as of version 0.14, it may cause kOS to stop your program and issue a runtime error if it’s taking too long.)

Because of how WAIT works, you cannot put a WAIT statement inside a trigger. If you try, it will have no effect. This
is because WAIT requires the ability of the program to go to sleep and then in a later physics tick, continue from where
it left off. Because triggers run to the bottom entirely within one physics tick, they can’t do that.

Wait!!!

Any WAIT statement causes the kerboscript program to immediately stop executing the main program where it is,
even if far fewer than Config:IPU instructions have been executed in this physics tick. It will not continue the
execution until at least the next physics tick, when it will check to see if the WAIT condition is satisfied and it’s time
to wake up and continue.

Therefore ANY WAIT of any kind will guarantee that your program will allow at least one physics tick to have
happened before continuing. If you attempt to:

WAIT 0.001.

But the duration of the next physics tick is actually 0.09 seconds, then you will actually end up waiting at least 0.09
seconds. It is impossible to wait a unit of time smaller than one physics tick. Using a very small unit of time in a
WAIT statement is an effective way to force the CPU to allow a physics tick to occur before continuing to the next line
of code. Similarly, if you just say:

52 Chapter 4. General Topics

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Halting_problem


kOS Documentation, Release 0.18.2

WAIT UNTIL TRUE.

Then even though the condition is immediately true, it will still wait one physics tick to discover this fact and continue.

Note: The WAIT command only causes mainline code to be suspended. Trigger code such as WHEN, ON, LOCK
STEERING, and LOCK THROTTLE, will continue executing while your program is sitting still on the WAIT com-
mand.

4.3.3 The Frozen Universe

Each physics tick, the kOS mod wakes up and runs through all the currently loaded CPU parts that are in “physics
range” (i.e. 2.5 km), and executes a batch of instructions from your script code that’s on them. It is important to note
that during the running of this batch of instructions, because no physics ticks are happening during it, none of the
values that you might query from the KSP system will change. The clock time returned from the TIME variable will
keep the same value throughout. The amount of fuel left will remain fixed throughout. The position and velocity of
the vessel will remaining fixed throughout. It’s not until the next physics tick occurs that those values will change to
new numbers. It’s typical that several lines of your kerboscript code will run during a single physics tick.

Effectively, as far as the simulated universe can tell, it’s as if your script runs several instructions in literally zero
amount of time, and then pauses for a fraction of a second, and then runs more instructions in literally zero amount of
time, then pauses for a fraction of a second, and so on, rather than running the program in a smoothed out continuous
way.

This is a vital difference between how a kOS CPU behaves versus how a real world computer behaves. In a real world
computer, you would know for certain that time will pass, even if it’s just a few picoseconds, between the execution of
one statement and the next.

4.4 kOS Control Panel

As of kOS v0.15, kOS now makes use of Kerbal Space Program’s built-in Application Launcher toolbar, to open a
config/status panel for kOS.

This panel behaves like the other display panels the launcher creates, and operates mutually exclusively with them.
(For example you can’t make the kOS App Control Panel appear at the same time as the stock Resource display panel.
Opening one toggles the other one off, and visa versa.)

Here is an annotated image of the control panel and what it does:

4.5 The kOS Telnet Server

kOS now supports the ability to enable a telnet server inside Kerbal Space Program.

Telnet is an old network protocol designed in the early days of the Internet, long before World Wide Web. Its purpose
was (is) to allow you to get access to the remote command line interfaces of distant server computers, acting as if the
keyboard and computer screen in front of you was a terminal hooked up to a distant computer. kOS uses this protocol
to let you access the kOS terminal from a program outside of Kerbal Space Program.

There are freely available programs you can use as the telnet client to behave like terminal windows outside of the
KSP window. A list of them appears below in the section called Telnet clients.

4.4. kOS Control Panel 53

http://www.telnet.org/htm/faq.htm


kOS Documentation, Release 0.18.2

There are some security implications of enabling the kOS telnet server, and the first time you turn it on you will see
some warning messages to this effect. If you want to read further about these concerns before deciding to turn it on,
see the section called “Security” at the bottom of this page.

• Telnet clients
• Using it
• Special Keys
• HOWTO: Putty client
• HOWTO: Command-line client
• HOWTO: Other client
• Security
• Homemade telnet clients

4.5.1 Telnet clients

The telnet server for kOS requires the use of a telnet client program. We recommend the following programs, although
you can use others:

For Windows We recommend Putty, the free terminal emulator for Windows, although any good terminal emulator
should do the job, provided it is capable of operating in an “XTERM - compatible” mode.

For Mac You shouldn’t have to install anything. There should be a telnet client already installed, which you can
access by opening up your command terminal, and then running it as a command-line tool. To see how to
use it, read below in the section titled “HOWTO: Command-line client”. The built-in Terminal.app for OSX
understands the XTERM command sequences that kOS uses and in fact identifies itself as a type of XTERM
when used with a telnet client.

For Linux You shouldn’t have to install anything. There should be a telnet client already installed, and an xterm

54 Chapter 4. General Topics

http://www.telnet.org/htm/applications.htm
http://www.putty.org/


kOS Documentation, Release 0.18.2

program already installed in most any Linux distribution. Open an xterm window, and in that window type the
telnet command, as described by the section titled “HOWTO: Command-line client“

4.5.2 Using it

1. Turn on the telnet server by going into the app control panel and clicking on the green circle next to the word
“Telnet”. Alternatively, you can issue the command:

SET CONFIG:TELNET TO TRUE.

from any terminal window in kOS.

2. The very first time you do this, you will get a warning message, as per SQUAD’s rule number 5 about mods that
run network services. After accepting and clicking “yes”, the server will be running on loopback 127.0.0.1 (if
you want to make it run on the non-loopback address, you will get a secondary warning message about that too.

3. Launch your telnet client (there is a list of telnet clients that are known to work listed below.

4. When you first log in to the server you should see the “Welcome menu”, which is a screen looking like this:

Terminal: type = XTERM, size = 80x24
________________________________________________________________________________

Menu GUI Other
Pick Open Telnets Vessel Name (CPU tagname)
---- ---- ------- --------------------------------
[1] no 0 Randy Viewer (CX-4181())
[2] no 0 Randy Viewer (CX-4181())
[3] no 0 Randy Viewer (CX-4181())
[4] no 0 Randy Viewer (CX-4181())
[5] no 0 Randy Viewer (CX-4181())
[6] no 0 Randy Viewer (CX-4181())

4.5. The kOS Telnet Server 55

http://forum.kerbalspaceprogram.com/threads/87843-Forum-Rules-Add-on-Posting-Rules-August-21st-2014
http://forum.kerbalspaceprogram.com/threads/87843-Forum-Rules-Add-on-Posting-Rules-August-21st-2014


kOS Documentation, Release 0.18.2

--------------------------------------------------------------------------------
Choose a CPU to attach to by typing a selection number and pressing
return/enter. Or enter [Q] to quit terminal server.

(After attaching, you can (D)etach and return to this menu by pressing Control-D
as the first character on a new command line.)
--------------------------------------------------------------------------------
>_

Or, if there are no CPU’s within range, it will look like this:

Terminal: type = XTERM, size = 80x24
________________________________________________________________________________

Menu GUI Other
Pick Open Telnets Vessel Name (CPU tagname)
---- ---- ------- --------------------------------

<NONE>

At any moment you can force a redraw of the menu by entering any gibberish non- numeric data and hitting
enter.

This menu should match 1:1 with the list of CPU’s you see on the kOS applauncher control panel.

Fig. 4.1: The welcome menu, shown here in a Mac OSX terminal.

5. Pick a CPU. Pick one of the CPU’s listed by typing its number and hitting enter.

6. Your telnet is now connected to the server and should behave as the terminal for that CPU. You can type
commands and do what you like, the same as if you had been directly on its window.

7. See the section labeled Special Keys to see how to use the keyboard from your telnet client.

8. It is possible to have multiple terminals hooked up to the same in-game CPU. They will all behave as clones
of each other, each being an equal “first citizen”. (For example a pair of people could execute the “stage.”
command by having one of them type “st”, then the other types “age”, followed by the first person typing ”.”
and the return key.) All the keyboards and all the screens are slaved together to be equal. You can view the
in-game gui terminal while somebody is typing on a telnet temrinal.

56 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

9. In order to make the terminals act as clones of each other, the game will attempt to keep them all the same size.
If you resize your telnet client window, it should cause the in-game window to change size to match. (If your
terminal type is XTERM, then the same thing works in reverse. If it’s VT100 then it doesn’t.)

Warning: Certain implementations of the xterm terminal emulation and the telnet client have created a strange
unending cascade of terminal resizes when you have two different telnet clients connected to the same GUI terminal
and one of them is dragged to a new size. Because some implementations don’t wait until they’re done resizing
to report their new size through telnet and instead report their intermediate sizes as they are being stretched, the
attempt to keep them the same size causes them to effectively “argue” back and forth with each other, constantly
changing each other’s size. If you experience this problem (your terminal window will be flipping back and forth
between two different sizes, resizing itself over and over again in a neverending loop), you can try to get out of it
by issuing a hardcoded command to set the terminal size, such as:

SET TERMINAL:WIDTH TO 50.

Doing this should force all the connected telnet XTERM windows to stop arguing with each other about what the
size is, and get them synced up again.

10. At any time you may disconnect your telnet client from the terminal by hitting control-D as the first character
of a new line. This will bring you back to the telnet welcome menu again.

4.5.3 Special Keys

The following keys have special meaning in the telnet session:

Control-L Force refresh Pressing Control-L forces the kOS telnet server to redraw your whole screen for you from
scratch. This is useful if you encounter strange line noise, interrupted messages, or for just any occasion where
you suspect the screen isn’t being drawn correctly. Pressing control-L will ensure your display gets fully re-
synced with what’s in the buffer in memory for the terminal.

Control-C interrupt process This is the same meaning as control-C in the normal GUI terminal - it breaks the
program execution. The reason it gets a special mention here is that it also causes a flush of all the pending input
you may have typed ahead in the queue. If you’ve been typing blindly ahead, and then hit Control-C, it will
erase your typed-ahead keys as it sends the interrupt to the server. This is deliberate, and typical practice for an
interrupt character sent over a remote shell setting.

Control-D detach If you hit control-D as the first character of a new line, it will detach your telnet session from the
CPU and return you to the welcome menu.

Cursor Keys should be mapped If your terminal has identified itself as one of the known types that kOS supports,
it should understand your arrow keys as arrow keys. If you see the text “[A” when you type up-arrow, or “[C”
when you type right-arrow, this is a clue that kOS didn’t recognize your terminal type properly.

Other Keys might be mapped Some keys like the Del (to the right), Home, and End keys are often not mapped
correctly in some terminal emulator programs. If you have trouble using HOME and END, you can try Control-
A and Control-E as alternates for Home and End.

Control-A home This is an alternate way to press the “home” key, just in case your terminal emulation isn’t sending
the officially understood terminal code for it.

Control-E end This is an alternate way to press the “end” key, just in case your terminal emulation isn’t sending the
officially understood terminal code for it.

Control-H backspace This is an alternate way to press the “backspace” key, just in case your terminal emulation
isn’t sending the officially understood terminal code for it.

Control-M Return This is an alternate way to press the “enter” or “return” key, just in case your terminal emulation
isn’t sending the officially understood terminal code for it.

4.5. The kOS Telnet Server 57



kOS Documentation, Release 0.18.2

4.5.4 HOWTO: Putty client

(These instructions assume you use the default kOS Telnet server settings, of the loopback address 127.0.0.1, and port
number 5410. If you’ve changed those settings then alter the numbers you see here accordingly.)

1. Run KSP, and get it into a scene where there exists a vessel with at least one kOS CPU loaded into it.

2. Run Putty.

3. On the first dialog you see, click the Telnet radio-button selection.

4. Type in the number 127.0.0.1 in the large blank above the radio buttons that is labeled “Host Name (or IP
address)”.

5. Type in the number 5410 in the smaller blank to the right of it that is labeled “Port”.

6. At the bottom of the screen, select the radio button labeled “Never” under “Close window on exit”.

7. Click the Open button to connect to the server.

(You can also save these settings under a name for later re-use.)

Step 6 is important. Without it, Putty would just make the window disappear any time there’s a problem, making it
very hard to diagnose because you can’t see what message the server was sending back to you just before the window
went away.

4.5.5 HOWTO: Command-line client

Fig. 4.2: Showing the use of telnet in an x-term window.

(These instructions assume you use the default kOS Telnet server settings, of the loopback address 127.0.0.1, and port
number 5410. If you’ve changed those settings then alter the numbers you see here accordingly.)

58 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

Fig. 4.3: Showing the use of telnet in a Mac OSX terminal.

1. Run KSP, and get it into a scene where there exists a vessel with at least one kOS CPU loaded into it.

2. Open a command shell window that either IS xterm, or emulates xterm. For OSX, the default command shell
should work fine. For Linux, you should actually have the xterm program itself installed that you can use.

3. At the shell prompt in that window, enter the command:

telnet 127.0.0.1 5410

4.5.6 HOWTO: Other client

1. Set the IP address to 127.0.0.1 using whatever means the program has for it.

2. Set the port number to 5410 using whatever means the program has for it.

3. Set the terminal to XTERM emulation mode if it has it, or VT100 mode as a less good, but still perhaps workable
option.

4. Run the terminal.

4.5.7 Security

The telnet protocol performs no encryption of its data, and as such any attempt at securing the system using a
name/password combination would have been utterly pointless. Rather than provide a false sense of security that’s not
really there, we decided to make it obvious that there’s no security by not even implementing a name and password
for connecting to the kOS telnet server.

The purpose is to make it clear that if you want to open up your kOS telnet server, you need to be careful about how
you do it.

The default settings that kOS ships with restricts your kOS telnet server to only operating on the loopback address
(127.0.0.1) so that you won’t accidentally open anything up to the public without thinking about it and making a

4.5. The kOS Telnet Server 59



kOS Documentation, Release 0.18.2

conscious decision to do so. If you don’t know what that means, it means this: Any server that runs on the magic
special address 127.0.0.1, known as “loopback”, is incapable of taking connections from other computers besides
itself.

In order to allow your kOS telnet server to take connections from other computers, you will typically need to do one
of two things:

Either turn off the CONFIG:LOOPBACK option in your kOS install and then restart your telnet server (turn it off and
on again using the button on the control panel), or (much better), set up a remote ssh tunnel that will map from your
current machine’s loopback address on the port number of your server to some remote other computer you want to
connect from, to a port on it. The ssh tunnel is the preferred method, but describing how to set one up is beyond the
scope of this document. You can read more For windows or For UNIX (both Mac and Linux).

Example: Let’s say you have a remote Unix machine you’d like to enable logins from, from there and nowhere else.
You can forward from your own machine’s 127.0.0.1, port 5410, to the remote machine’s, oh let’s say 127.0.0.1, port
54100. Then anyone on the remote machine could telnet to ITS 127.0.0.1, port 54100 and end up talking to your
machine’s port 5410 on its loopback address.

Port forwarding

If you opt to turn off the loopback-only mode on your kOS telnet server, then you will probably also, if you have a
typical home network setup, need to enable port forwarding on your router if you want people from outside your house
to connect to it. (Again, think about the implications of doing so before you do it). This is a topic beyond the scope of
this document, but help can be found out on the web for it. Search for “port forward home router”. (It is probably also
a good idea to include the make & model number of your router device in your search terms, to get a nicely narrowed
result that’s exactly what you need.)

Why not ssh?

The original plan for kOS was to include an ssh server instead of a telnet server. However this proved problematic as
open source solutions in C# for the server-side of ssh were hard to come by (there’s several for the client side only, and
plenty of server-side code that’s not in C#), and implementing the entire server side of the ssh protocol from scratch
is a daunting task that would have taken too much time away from other development of kOS. (While implementing
from scratch the server side of the older, simpler telnet protocol, while still work, was more doable).

4.5.8 Homemade telnet clients

This section is only of interest to hobbyists making Kerbal console hardware rigs and software developers trying to
make interface mods that pretend to be kOS terminals. If you are neither of those two, then don’t worry if this section
looks like gibberish to you. It can be skipped.

TELNET PROTOCOL

If you wish to make your own homemade telnet client and connect it up to the kOS telnet server, the following is the
required subset of the telnet protocol that your telnet client must speak, and the terminal requirements it must fulfill:

1. It must suppress local character echoing, and enter character-at-a-time mode, by implementing both the ECHO
negotiation described by RFC857, and the SUPPRESS GO AHEAD negotiation described by RFC858. These
are used in the following way: Your client must NOT ECHo (letting the server do it), and your client must
suppress go-ahead messages (allowing real-time back-and-forth).

2. It must implement the underlying DO/DONT and WILL/WONT, and SB/SE infrastructure of the main telnet
RFC854. It must send break (ctrl-C) as the IP interrupt process command (byte 255 followed by 244). kOS does
not use much of the negotiations of the protocol mentioned on RFC854, other than those that are necessary to
enable the other ones mentioned here.

3. It must implement the Terminal-Type option described by RFC1091. Furthermore, as of this writing, kOS only
knows how to understand two terminal types, “XTERM”, and “VT100”. If your terminal type is identified as
anything else, kOS may deny your connection, or at the very least just not work right. Even terminals that

60 Chapter 4. General Topics

http://realprogrammers.com/how_to/set_up_an_ssh_tunnel_with_putty.html
http://www.cyberciti.biz/faq/set-up-ssh-tunneling-on-a-linux-unix-bsd-server-to-bypass-nat/
http://www.networksorcery.com/enp/rfc/rfc857.txt
http://www.networksorcery.com/enp/rfc/rfc858.txt
http://www.networksorcery.com/enp/rfc/rfc854.txt
http://www.networksorcery.com/enp/rfc/rfc854.txt
http://www.networksorcery.com/enp/rfc/rfc1091.txt


kOS Documentation, Release 0.18.2

are capable of emulating XTERM or VT100 commands won’t work right if they don’t identify themselves as
XTERM or VT100. kOS does not know how to guess what emulation mode to enter if it doesn’t recognize your
terminal type string.

4. It must implement the NAWS, Negotiate About Terminal Size option, as described by RFC1073. kOS uses
this to decide how to size its mental image of your terminal to match your terminal’s real size. Note that this
negotiation is one-way. Your client can use it to tell the server about its size, but the server can’t use it to tell
your client to change its size. Instead if your client can respond to changing sizes at the behest of the server,
it must do so through terminal escape code characters sent back to it on the stream, above the telnet protocol
layer itself. (For example, if you identify as XTERM, you will be sent the XTERM escape code pattern ESC [
8 ; height ; width t, which is the XTERM escape code for setting the terminal size.) This is because the telnet
protocol was never written to accommodate the concept of server-initiated resizes.

Making a telnet client from scratch that actually follows protocol may be a complex enough task that the smarter
solution is to just use an existing telnet program, if you are trying to create some sort of hardware rig. These days a
small cheap mini-hardware implementation of Linux should be doable, and could include the telnet client installed in
it for very little storage cost.

TERMINAL EMULATION

As of right now, the terminal emulation of kOS only really supports XTERM or VT100 well, however the infrastructure
is in place to support modifications to map to other terminal types. If you want to try a hand at adding the terminal
emulation for a currently unsupported terminal, you’d do it by subclassing the kOS.UserIO.TerminalUnicodeMapper
class. You can look at kOS.UserIO.TerminalXtermMapper as a sample to see what you need to do.

If you have a project where you want to just work with the terminal codes already supported, then these are the subset
you need to support:

ASCII The following terms should have their normal ASCII meaning:

0x08 (control-H) backspace key

0x0d (control-M) Return key. On output it means go to left edge but don’t go down a line. A typical eoln needs to
occur using its ASCII standard of both a return character 0x0d AND a linefeed character 0x0a

0x0a (control-J) On output it means go to go down a line but don’t go to the left edge A typical eoln needs to occur
using its ASCII standard of both a return character 0x0d AND a linefeed character 0x0a

Terminal codes: The following terms should have their VT100/XTERM meaning

Left-Arrow ESC [ D – both on input and on output

Right-Arrow ESC [ C – both on input and on output

Up-Arrow ESC [ A – both on input and on output

Down-Arrow ESC [ B – both on input and on output

Home-key ESC [ 1 ~ – input only

End-key ESC [ 4 ~ – input only

Delete-to-the-right-key ESC [ 3 ~ – input only

PageUp-key ESC [ 5 ~ – input only

PageDown-key ESC [ 6 ~ – input only

Move-to-home-of-screen-upper-left ESC [ H – output only

Move-to-end-of-line ESC [ F – output only

Teleport-cursor-to-coordinate ESC [ row ; col H – output only: rows and cols start counting at 1, not 0

Clearscreen ESC [ 2 J – output only

4.5. The kOS Telnet Server 61

http://www.networksorcery.com/enp/rfc/rfc1073.txt


kOS Documentation, Release 0.18.2

Scroll-screen-up-one-line-keeping-cursor-where-it-is ESC [ S – output only

Scroll-screen-down-one-line-keeping-cursor-where-it-is ESC [ T – output only

Delete-to-the-left-of-cursor-ie-backspace ESC [ K – output only

Delete-at-the-cursor-toward-the-right ESC [ 1 K – output only

XTERM codes: The following codes are for the XTERM emulation only

Server-telling-client-to-resize-screen ESC [ 8 ; newheight ; newwidth t – The height/width are in chars

Server-telling-client-to-change-window-title ESC ] 2 ; title string BEL – where BEL is the character normally used
to mean beep: control-G or 0x07. But in this context it just marks the end of the title and shouldn’t cause a
beep. Note this is NOT a typo that it uses a right-square-bracket (“]”) here where all the other codes used a
left-square-bracket (“[”). That’s actually how the xterm control sequence for this really looks.

Any value not mentioned in the list above might still get sent, but you should be able to capture and ignore it.

4.6 Files and Volumes

Using the COPY, SWITCH, DELETE, and RENAME commands, you can manipulate the archive and the volumes
as described in the File I/O page. But before you do that, it’s useful to know how kOS manages the archive and the
volumes, and what they mean.

• Script Files
• File Storage Behind the Scenes
• You can get more space by paying extra cost in money and mass
• Multiple Volumes on One Vessel
• Naming Volumes
• Archive

Warning: Changed in version 0.15: Archive location and file extension change
The Archive where KerboScript files are kept has been changed from Plugins/PluginData/Archive to
Ships/Script, but still under the top-level KSP installation directory. The file name extensions have also
changes from .txt to .ks.

4.6.1 Script Files

There is one file per program. You can use the words “file” and “program” interchangeably in your thinking for the
most part. Files are stored in volumes and there can be more than one file in a volume provided there’s enough room.
Volumes have small storage and there’s no way to span a file across two volumes, so the limit to the size of a volume
is also effectively a limit to the size of a program.

4.6.2 File Storage Behind the Scenes

In the Archive:

• If a file is stored on the volume called “Archive” (or volume number zero to put it another way), then behind the
scenes it’s really stored as an actual file, with the extension .ks, on your computer (As of right now it’s located
in Ships/Script but that location is likely to change to somewhere in GameData in a future version.) Each
program is a simple text file you can edit with any text editor, and your edits will be seen immediately by KOS
the next time it tries running that program from the archive volume.

62 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

• Historical note: older versions of kOS (0.14 and earlier) used the directory
Plugins/PluginData/Archive for the archive.

In any other volume besides Archive:

• If a file is stored on any volume other than archive, then behind the scenes it’s stored actually inside the saved
game’s persistence file in the section for the KOS part on the vessel. What’s a Volume

A Volume is a small unit of disk storage that contains a single hard drive with very limited storage capacity. It can
store more than one program on it. To simulate the sense that this game takes place at the dawn of the space race with
1960’s and 1970’s technology, the storage capacity of a volume is very limited.

For example, the CX-4181 Scriptable Control System part defaults to only allowing 1000 bytes of storage.

The byte count of a program is just the count of the characters in the source code text. Writing programs with
short cryptic variable names instead of long descriptive ones does save space, although you can also save space by
compiling your programs to KSM files where the variable names are only stored once in the file, but that’s another
topic for another page.

Each of the computer parts that kOS supports have their own different default storage capacity limits for their local
volume. As you get better parts higher up the tech tree, they come with bigger default size limits.

4.6.3 You can get more space by paying extra cost in money and mass

If you wish to have more disk space on your local volume, and are willing to pay a little extra cost in money and in
mass, you can use the disk space slider in the vehicle assembly building to increase the limit.

Every part comes with 3 different multiplier options:

• 1x default size,

• 2x default size,

• 4x default size

The higher the multiplier the more mass it will cost you, to represent that you’re using old storage technology, so it
costs a lot of mass to have more storage.

The disk size is only settable like this in the assembly building. Once you launch a vessel, its volume size is stuck the
way it was when you launched it.

4.6. Files and Volumes 63



kOS Documentation, Release 0.18.2

4.6.4 Multiple Volumes on One Vessel

Each kOS CX-4181 Scriptable Control System part contains ‘’‘one’‘’ such volume inside it.

If you have multiple CX-4181 parts on the same craft, they are assumed to be networked together on the same system,
and capable of reading each other’s hard drives. Their disk drives each have a different Volume, and by default they
are simply numbered 1,2,3, . . . unless you rename them with the RENAME command.

For example, if you have two CX-4181’s on the same craft, called 1 and 2, with volumes on them called 1 and 2,
respectively, it is possible for CPU 1 to run code stored on volume 2 by just having CPU number 1 issue the command
‘’SWITCH TO 2.’‘

4.6.5 Naming Volumes

It’s important to note that if you have multiple volumes on the same vessel, the numbering conventions for the volumes
will differ on different CPUs. The same volume which was called ‘2’ when one CPU was looking at it might instead
be called ‘1’ when a different CPU is looking at it. Each CPU thinks of its OWN volume as number ‘1’.

Therefore using the RENAME command on the volumes is useful when dealing with multiple CX-4181’s on the same
vessel, so they all will refer to the volumes using the same names.

If a kOS processor has a name tag set, then that processor’s volume will have its name initially set to the value of the
name tag.

4.6.6 Archive

The “archive” is a special volume that behaves much like any other volume but with the following exceptions:

• It is globally the same even across save games.

• The archive represents the large bank of disk storage back at mission control’s mainframe, rather than the storage
on an indivdual craft. While “Volume 1” on one vessel might be a different disk than “Volume 1” on another
vessel, there is only volume called “archive” in the entire solar system. Also, there’s only one “archive” across
all saved universes. If you play a new campaign from scratch, your archive in that new game will still have
all the files in it from your previous saved game. This is because behid the scenes it’s stored in the plugin’s
directory, not the save game directory.

• It is infinitely large.

• Unlike the other volumes, the archive volume does not have a byte limit. This is because the mainframe back
at home base can store a lot more than the special drives sent on the vessels - so much so that it may as well be
infinite by comparison.

• Files saved there do not revert when you “revert flight”.

• When you revert a flight, you are going back to a previous saved state of the game, and therefore any disk data
on the vessels themselves also reverts to what it was at the time of the saved game. Because the archive is saved
outside the normal game save, changes made there are retained even when reverting a flight.

• It’s not always reachable if you are out in space, unless you have antennae.

• Once a vessel is more than 100,000 meters away from mission control, by default it cannot access the files
on the archive. Commands such as SWITCH TO , and COPY FROM will fail to work when trying to access
the archive volume while out of range. This can be changed by putting antennae on the vessel. With enough
antennae it becomes possible to reach the archive drive from farther away. Using this method it is possible to
alter the software stored on a vessel after launch.

• Files in Archive are editable with a text editor directly and they will have the .ks extension.

64 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

• Files in the Archive are stored on your computer in the subdirectory: Ships/Script. You can pull them up
in a text editor of your choice and edit them directly, and the KOS Mod will see those changes in its archive im-
mediately. Files stored in other volumes, on the other hand, are stored inside the vessel’s data in the persistence
file of the saved game and are quite a bit bit harder to edit there. Editing the files in the Archive directory is
allowed and in fact is an officially accepted way to use the plugin. Editing the section in a persistence file, on the
other hand, is a bad idea and probably constitutes a form of cheating similar to any other edit of the persistence
file.

4.7 KerboScript Machine Code

• Compiling to a KSM File
• How to Use KSM Files
• Default File Naming Conventions
• Downsides to Using KSM Files
• More Reading and Fiddling with Your Bits

4.7.1 Compiling to a KSM File

When you run your Kerboscript programs, behind the scenes they get compiled into a form in memory that runs much
smoother but at the same time is quite hard for a Kerbal to read and understand. The actual computer hardware built
by your friends at Compotronix incorporated actually run the program using these tiny instructions called “opcodes”.
In the early days of room-sized computers before we were able to get them down to the compact size of just a meter or
so across, all programmers had to use this difficult system, referred to as “machine language”. Ah, those were heady
days, but they were hard.

The commands you actually write when you say something like SET X TO 1.0. are really a euphemism for these
“machine language” opcodes under the surface.

When you try to “RUN” your script, the first thing that kOS does is transform your script into this ancient and arcane
“machine language” form, storing it in its memory, and from then on it runs using that.

This process of transforming your script into Machine Language, or “ML” is called “Compiling”.

The “RUN” command does this silently, without telling you. This is why you may have noticed the universe slightly
stutter for a moment when you first run your program. Compiling is hard work for the universe to do.

Why Do I Care?

Warning: This is an experimental feature.

The reason it matters is this: Although once it’s loaded into memory and running, these opcodes actually have a lot of
baggage and take up a lot of space, when they’re stored passively on the disk not doing anything, they can be smaller
than your script programs are. For one thing, they don’t care about your comments (only other Kerbals reading your
script do), and they don’t care about your indenting (only other Kerbals reading your script do).

So, given that the compiled “ML” codes are the only thing your program really needs to be run, why not just store
THAT instead of storing the entire script, and then you can put the ML files on your remote probes instead of putting
the larger script files on them.

And THAT is the purpose of the COMPILE command.

4.7. KerboScript Machine Code 65



kOS Documentation, Release 0.18.2

It does some, but not all, of the compiling work that the RUN command does, and then stores the results in a file that
you can run instead of running the original script.

The output of the COMPILE command is a file in what we call KSM format.

KSM stands for “KerboScript Machine code”, and it has nearly the same information the program will have when it’s
loaded and running, minus a few extra steps about relocating it in memory.

4.7.2 How to Use KSM Files

Let’s say that you have 3 programs your probe needs, called:

• myprog1.ks

• myprog2.ks

• myprog3.ks

And that myprog1 calls myprog2 and myprog3, and you normall would call the progam this way:

SWITCH TO 1.
COPY myprog1 from ARCHIVE.
COPY myprog2 from ARCHIVE.
COPY myprog3 from ARCHIVE.
RUN myprog1(1,2,"hello").

Then you can put just the compiled KSM versions of them on your vessel and run it this way:

SWITCH TO ARCHIVE.

COMPILE myprog1.ks to myprog1.ksm.
COPY myprog1.ksm to 1.

COMPILE myprog2. // If you leave the arguments off, it assumes you are going from .ks to .ksm
COPY myprog2.ksm to 1.

COMPILE myprog3. // If you leave the arguments off, it assumes you are going from .ks to .ksm
COPY myprog2.ksm to 1.

SWITCH TO 1.
RUN myprog1(1,2,"hello").

4.7.3 Default File Naming Conventions

When you have both a .ks and a .ksm file, the RUN command allows you to specify which one you meant explicitly,
like so:

RUN myprog1.ks.
RUM myprog1.ksm.

But if you just leave the file extension off, and do this:

RUN myprog1.

Then the RUN command will first try to run a file called “myprog1.ksm” and if it cannot find such a file, then it will
try to run one called “myprog1.ks”.

66 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

In this way, if you decide to take the plunge and attempt the use of KSM files, you shouldn’t have to change the
way any of your scripts call each other, provided you just used versions of the filenames without mentioning the file
extensions.

4.7.4 Downsides to Using KSM Files

1. Be aware that if you use this feature, you do lose the ability to have the line of code printed out for you when
the kOS computer finds an error in your program. It will still tell you what line number the error happened on,
but it cannot show you the line of code. Just the number.

2. Know that you cannot view the program inside the in-game editor anymore when you do this. A KSM file will
not appear right in the editor. It requires a magic tool called a “hex editor” to properly see what’s happening
inside the file.

3. The file isn’t always smaller. There’s a threshold at which the KSM file is actually bigger than the source KS
file. For large KS files, the KSM file will be smaller, but for short KS files, the KSM file will be bigger, because
there’s a small amount of overhead they have to store that is only efficient if the data was large enough.

4.7.5 More Reading and Fiddling with Your Bits

So, if you are intrigued by all this and want to see how it all REALLY works under the hood, Computronix has deciced
to make internal document MLfile-zx1/a on the basic plan of the ML file system open for public viewing, if you are
one of those rare Kerbals that enjoys fiddling with your bits. No, not THOSE kind of bits, the computery kind!

4.8 The Name Tag System

One useful thing to do is to be able to give parts on a craft your own chosen names that you can use to get a reference
to the parts, utterly bypassing the naming schemes used by KSP, and ignoring the complex part tree system. The Name
Tag system was designed to make it possible for you to just give any part on a craft whatever arbitrary name you feel
like.

• Giving a Part a Name
• Cloning with Symmetry
• Where is it saved?
• Examples of Using the Name

4.8.1 Giving a Part a Name

1. Right click on any part. **You can do this in either the editor VAB/SPH, or during flight.** It is more useful to
do beforehand when making the craft, but you can do it in the midst of a flight, which is useful for experimenting
and testing.

2. Click the “change name tag” button. A small text pop-up will appear with the ability to type a name for the part.
Type any value you like. In the example picture here, the value “the big tank” was typed in.

3. From now on this part can be retrieved using either the :PARTSDUBBED or the :PARTSTAGGED methods of
the vessel, as described on the Vessel Page

4.8. The Name Tag System 67

https://github.com/KSP-KOS/KOS/blob/develop/src/kOS.Safe/Compilation/CompiledObject-doc.md


kOS Documentation, Release 0.18.2

68 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

4.8.2 Cloning with Symmetry

If you name a part in the editor first, and then remove it from the vessel and place it again with symmetry, all the
symmetry copies of the part will get the same nametag cloned to them. This is not an error. It is allowed to give the
same nametag to more than one part. If you do this, it just means that the :PARTSTAGGED or :PARTSDUBBED
methods will return lists containing more than one part.

If you want each part in a symmetrical group to get a unique nametag, you can change their names one at a time after
you’ve placed the parts.

4.8.3 Where is it saved?

If you add a nametag to a part in the editor (VAB or SPH), then that nametag will get saved inside the craft file for that
vessel design. All new instances of that craft design that you launch will get the same nametag configuration on them.

On the other hand, if you added a nametag to a part after the vessel was launched, during flight or on the launchpad,
then that nametag will only be attached to that part on that one instance of the vessel. Other copies of the same design
won’t have the name. In this case the name is saved inside the saved game’s persistence file, but not in the editor’s
craft design file.

4.8.4 Examples of Using the Name

// Only if you expected to get
// exactly 1 such part, no more, no less.
SET myPart TO SHIP:PARTSDUBBED("my nametag here")[0].

// OR

// Only if you expected to get
// exactly 1 such part, no more, no less.
SET myPart TO SHIP:PARTSTAGGED("my nametag here")[0].

// Handling the case of more than
// one part with the same nametag,
// or the case of zero parts with
// the name:
SET allSuchParts TO SHIP:PARTSDUBBED("my nametag here").

// OR

SET allSuchParts TO SHIP:PARTSTAGGED("my nametag here").

// Followed by using the list returned:
FOR onePart IN allSuchParts {

// do something with onePart here.
}

For more details on how this system works see the Parts and PartModules Section.

4.9 Ship Parts and PartModules

As of v0.15, kOS has introduced the ability to access the functionality of Parts’ actions, and right-click context menus.
However, to understand how to use them it is necessary to first understand a little bit about the structure of parts in a
vessel in Kerbal Space Program.

4.9. Ship Parts and PartModules 69



kOS Documentation, Release 0.18.2

In Kerbal Space Program, a Vessel is a collection of Parts arranged in a tree Structure. In kOS, you can access the
parts one of two ways:

4.9.1 Tutorial

If you prefer the tutorial approach to learning, the following links will walk you through a specific pair of tasks to
introduce you to this system. If you prefer a methodical reference approach, skip the tutorials and read on, then come
back to the tutorials afterward.

TODO: PUT LINKS POINTING TO A TUTORIAL WALKING THROUGH WHAT THIS IS TEACHING.

THERE NEEDS TO BE TWO TUTORIALS MINIMUM:

1. A Tuturial made on an ONLY STOCK (other than kOS of course) install, using only STOCK parts to do
something interesting.

2. A Tutorial more complex showing that this can be used with mods too, probably the Leg Leveller example from
the teaser video, but with the code updated to use the newer part query methods.

4.9.2 Parts

Note: The short and quick thing to remember

If you only remember one technique, it should be using the Part:PARTSDUBBED method described down below.
It’s the most useful one that covers all the other cases.

Accessing the parts by various naming systems

Any time you have a vessel variable, you can use these suffixes to get lists of parts on it by their names using several
different naming schemes:

Part Tag: A part’s tag is whatever custom name you have given it using the nametag system described here. This is
probably the best naming convention to use because it lets you make up whatever name you like for the part and use it
to pick the parts you want to deal with in your script.

Part Title: A part’s title is the name it has inside the GUI interface on the screen that you see as the user.

Part Name: A part’s name is the name it is given behind the scenes in KSP. It never appears in the normal GUI for the
user to see, but it is used in places like Part.cfg files, the saved game persistence file, the ModuleManager mod, and so
on.

Assuming you’ve done one of these:

SET somevessel to SHIP.
// Or this:
SET somevessel to VESSEL("some vessel's name").
// Or this:
SET somevessel to TARGET. // assuming TARGET is a vessel and not a body or docking port.

Then you can do one of these to query based on any of the above schemes:

// --------- :PARTSTAGGED -----------
// Finds all parts that have a nametag (Part:Tag suffix) matching the value given:
SET partlist to somevessel:PARTSTAGGED(nametag_of_part)

70 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

// --------- :PARTSTITLED -----------
// Finds all parts that have a title (Part:Title suffix) matching the value given:
SET partlist to somevessel:PARTSTITLED(title_of_part)

// --------- :PARTSNAMED -----------
// Finds all parts that have a name (Part:Name suffix) matching the value given:
SET partlist to somevessel:PARTSNAMED(name_of_part)

// --------- :PARTSDUBBED -----------
// Finds all parts matching the string in any naming scheme, without caring what kind of naming scheme it is
// This is essentially the combination of all the above three searches.
SET partlist to somevessel:PARTSDUBBED(any_of_the_above)

In all cases the checks are performed case-insensitively.

These are different styles of naming parts, all slightly different, and you can use any of them you like to get access to
the part or parts you’re interested in.

They all return a List of Parts rather than just one single part. This is because any name could have more than one hit.
If you expect to get just one single hit, you can just look at the zero-th value of the list, like so:

SET onePart TO somevessel:PARTSDUBBED("my favorite engine")[0].

If the name does not exist, you can tell by seeing if the list returned has a length of zero:

IF somevessel:PARTSDUBBED("my favorite engine"):LENGTH = 0 {
PRINT "There is no part named 'my favorite engine'.".

}.

Examples:

// Change the altitude at which all the drouge chutes will deploy:
FOR somechute IN somevessel:PARTSNAMED("parachuteDrogue") {

somechute:GETMODULE("ModuleParachute"):SETFIELD("DEPLOYALTITUDE", 1500).
}.

Accessing the parts list as a tree

Starting from the root part, Vessel:ROOTPART (SHIP:ROOTPART, TARGET:ROOTPART, or Vessel(“some ship
name”):ROOTPART). You can get all its children parts with the Part:CHILDREN suffix. Given any Part, you can
access its Parent part with Part:PARENT, and detect if it doesn’t have a parent with Part:HASPARENT. By walking
this tree you can see how the parts are connected together.

The diagram here shows an example of a small vessel and how it might get represented as a tree of parts in KSP.

Accessing the parts list as a list

You can get a list of all the parts on a vessel using the suffix :PARTS, or by using the LIST PARTS IN command. When
you do this, the resulting list is a “flattening” of the tree of parts, created by use of a depth-first search starting from
the root part. In the diagram shown here, the red numbers indicate one possible way the parts might be represented in
LIST indeces if you used SHIP:PARTS on such a vessel. Note there is no guarantee it would look exactly like this, as
it depends on exactly what order the parts were attached in the VAB.

4.9. Ship Parts and PartModules 71



kOS Documentation, Release 0.18.2

72 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

Shortcuts to smaller lists of parts

If you know some of the properties of the parts you’re interested in, you can ask kOS to give you a shorter list of parts
that just includes those parts, using the following suffixes:

Return a List of just the parts who’s name is “someNameHere”:

SET ves TO SHIP. // or Target or Vessel("ship name").
SET PLIST TO ves:PARTSNAMED("someNameHere").

Return a List of just the parts that have had some sort of activity attached to action group 1:

SET ves TO SHIP. // or Target or Vessel("ship name").
SET PLIST TO ves:PARTSINGROUP(AG1).

4.9.3 PartModules and the right-click menu:

Each Part, in turn has a list of what are called PartModules on it. A PartModule is a collection of variables and
executable program hooks that gives the part some of its behaviors and properties. Without a PartModule, a part is
really nothing more than a passive bit of structure that has nothing more than a shape, a look, and a strength to it.
Some of the parts in the “structure” tab of the parts bin, like pure I-beams and girders, are like this - they have no
PartModules on them. But all of the interesting parts you might want to do something with will have a PartModule on
them. Through PartModules, **kOS will now allow you to manipulate or query anything that any KSP programmer,
stock or mod, has added to the rightclick menu**, or action group actions, for a part.

PartModules, Stock vs Mods:

It should be noted that even if you play an entirely stock installation of KSP (well, stock other than for kOS, obviously,
otherwise you wouldn’t be reading this), you will still have PartModules on your Parts. Some people have muddied
the terminology difference between “Mod” meaning “modification” and “Mod” meaning “module”. It should be made
absolutely clear that PartModules are a feature of stock KSP, and BOTH stock KSP parts and Modded KSP Parts use
them. Even if all you want to do is affect the stock behavior of stock parts in a completely unmodded way, you’ll still
want to know about PartModules in order to do so.

PartModules and ModuleManager-like behavior:

Some Mods (meaning “modifications” here) operate by adding a new PartModule to every single part in the game.
One example of such a mod is the Deadly Reentry mod. In order to track how fragile each part is and how well it
withstands re-entry heat, the Deadly Re-entry mod adds a small module to each part in the game, even the stock parts
that would normally have no mods at all on them.

Other Mods allow the user to add PartModule’s to any part they feel like, through the use of the ModuleManager mod.

Because of these, it’s impossible in this explanatory document to make blanket statements about which PartModules
will exist on which Parts. Everything that is said here needs to be taken with a grain of salt, as depending on the mods
you’ve installed on your game, you may find PartModules on your parts that are not normally on those parts for most
other players.

4.9.4 What a PartModule means to a kOS script

There are 3 ways that a kOS script may interface with a PartModule.

TODO - TAKE SOME SCREENSHOTS TO PUT ALONGSIDE THIS TEXT, SHOWING EXAMPLES OF THESE
THINGS IN THE USER INTERFACE. WE NEED A SCREENSHOT THAT SHOWS BOTH A KSPFIELD AND A

4.9. Ship Parts and PartModules 73



kOS Documentation, Release 0.18.2

KSPEVENT IN A PART’S RMB CONTEXT MENU, A SCREENSHOT THAT SHOWS FIELDS COMING FROM
MULTIPLE PARTMODULES, AND A SCREENSHOT SHOWING THE KSPACTIONS IN THE VAB ACTION
EDITOR.

KSPFields

A KSPField is a single variable that a PartModule attaches to a part. Some of the KSPFields are also displayed in the
RMB context menu of a part. It has a current value, and if the field has had a “tweakable” GUI interface attached to it,
then it’s also a settable field by the user manipulating the field in the context menu. In kOS, you can only access those
KSPFields that are currently visible on the RMB context menu. We, the developers of kOS, instituted this rule out of
respect for the developers of other mods and the stock KSP game. If they didn’t allow the user to see or manipulate
the variable directly in the GUI, then we shouldn’t allow it to be manipulated or seen by a kOS script either.

KSPFields are read or manipulated by the following suffixes of PartModule

• :GETFIELD(“name of field”).

• :SETFIELD(“name of field”, new_value_for_field).

Note, that these are suffixes of the partmodule and NOT suffixes of the Part itself. This is because two different
PartModule’s on the same Part might have used the same field name as each other, and it’s important to keep them
separate.

KSPEvents

A KSPEvent, just like a KSPField, is a thing that a PartModule can put on the RMB context menu for a part. The
difference is that a KSPEvent does not actually HAVE a value. It’s not a variable. Rather it’s just a button with a label
next to it. When you press the button, it causes some sort of software inside the PartModule to run. An example of
this is the “undock node” button you see on many of the docking ports.

Difference between a KSPEvent and a boolean KSPField: If you see a label next to a button in the RMB context
menu, it might be a KSPEvent, OR it might be a boolean KSPField variable which is editable with a tweakable GUI.
They look exactly the same in the user interface. To tell the difference, you need to look at what happens when you
click the button. If clicking the button causes the button to depress inward and stay pressed in until you click it again,
then this is a boolean value KSPField. If clicking the button pops the button in and then it pops out again right away,
then this is a KSPEvent instead.

KSPEvents are manipulated by the following suffix of PartModule

• :DOEVENT(“name of event”).

This causes the event to execute once.

KSPActions:

A KSPAction is a bit different from a KSPField or KSPEvent. A KSPAction is like a KSPEvent in that it causes
some software inside the PartModule to be run. But it doesn’t work via the RMB context menu for the part. Instead
KSPAction’s are those things you see being made avaiable to you as options you can assign into an Action Group in
the VAB or SPH. When you have the action group editor tab enabled in the VAB or SPH, and then click on a part,
that part asks all of its PartModules if they have any KSPActions they’d like to provide access to, and gathers all those
answers and lists them in the user interface for you to select from and assign to the action group.

kOS now allows you to access any of those actions without necessarily having had to assign them to any action groups
if you didn’t want to.

KSPActions are manipulated by the following suffix of PartModule

74 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

• :DOACTION(“name of action”, new_boolan_value).

The name of the action is the name you see in the action group editor interface, and the new boolean value is either True
or False. Unlike KSPEvents, a KSPAction has two states, true and false. When you toggle the brakes, for example,
they go from on to off, or from off to on. When you call :DOACTION, you are specifying if the KSPAction should
behave as if you have just toggled the group on, or just toggled the group off. But instead of actually toggling an
action group - you are just telling the single PartModule on a single Part to perform the same behavior it would have
performed had that action been assigned to an action group. You don’t actually have to assign the action to an action
group for this to work.

4.9.5 Exploring what’s there to find Field/Event/Action Names:

Okay, so you understand all that, but you’re still thinking “but how do I KNOW what the names of part modules are,
or what the names of the fields on them are? I didn’t write all that C# source code for all the modules.”

There are some additional suffixes that are designed to help you explore what’s available so you can learn the answers
to these questions. Also, some of the questions can be answered by other means:

What PartModules are there on a part?

To answer this question you can do one of two things:

A: Use the part.cfg file All parts in KSP come with a part.cfg file defining them, both for modded parts and stock
parts. If you look at this file, it will contain sections looking something like this:

// Example snippet from a Part.cfg file:
MODULE
{

name = ModuleCommand

That would tell you that this part has a PartModule on it called ModuleCommand. there can be multiple such modules
per part. But it doesn’t let you know about PartModules that get added afterward during runtime, by such things as the
ModuleManager mod.

B: Use the :MODULES suffix of Part: If you have a handle on any part in kOS, you can print out the value of
:MODULES and it will tell you the string names of all the modules on the part. For example:

FOR P IN SHIP:PARTS {
LOG ("MODULES FOR PART NAMED " + P:NAME) TO MODLIST.
LOG P:MODULES TO MODLIST.

}.

Do that, and the file MODLIST should now contain a verbose dump of all the module names of all the parts on your
ship. You can get any of the modules now by using Part:GETMODULE(“module name”).

What are the names of the stuff that a PartModule can do?

These three suffixes tell you everything a part module can do:

SET MOD TO P:GETMODULE("some name here").
LOG ("These are all the things that I can currently USE GETFIELD AND SETFIELD ON IN " + MOD:NAME + ":") TO NAMELIST.
LOG MOD:ALLFIELDS TO NAMELIST.
LOG ("These are all the things that I can currently USE DOEVENT ON IN " + MOD:NAME + ":") TO NAMELIST.
LOG MOD:ALLEVENTS TO NAMELIST.
LOG ("These are all the things that I can currently USE DOACTION ON IN " + MOD:NAME + ":") TO NAMELIST.
LOG MOD:ALLACTIONS TO NAMELIST.

4.9. Ship Parts and PartModules 75



kOS Documentation, Release 0.18.2

After that, the file NAMELIST would contain a dump of all the fields on this part module that you can use.

BE WARNED! Names are able to dynamically change!

Some PartModules are written to change the name of a field when something happens in the game. For example, you
might find that after you’ve done this:

SomeModule:DOEVENT("Activate").

That this doesn’t work anymore after that, and the “Activate” event now causes an error.

And the reason is that the PartModule chose to change the label on the event. It changed to the word “Deactivate”
now. kOS can no longer trigger an event called “Activate” because that’s no longer its name.

Be on the lookout for cases like this. Experiment with how the context menu is being manipulated and keep in mind
that the list of strings you got the last time you exectued :ALLFIELDS a few minutes ago might not be the same list
you’d get if you ran it now, because the PartModule has changed what is being shown on the menu.

4.10 Career Limits

The theme of KSP 0.90 is that some features of your space program don’t work until after you’ve made some upgrades.
kOS now supports enforcing these checks, as described below.

• The rules being enforced
• Structure

Warning:

4.10.1 The rules being enforced

These are rules inherited from the stock KSP game that kOS is simply adhering to:

• If your tracking center is not upgraded far enough, then you cannot see future orbit patches.

• If your mission control center AND tracking center are not upgraded enough, then you cannot add manuever
nodes.

The following are rules invented by kOS that are thematically very similar to stock KSP, intended to be as close to the
meaning of the stock game’s rules as possible:

• In order to be allowed to execute the PartModule :DOACTION method, either your VAB or your SPH must
be upgraded to the point where it will allow access to custom action groups. This is because otherwise the
:DOACTION method would be a backdoor “cheat” past the restricted access to the action group feaures of
various PartModules that the game is meant to have.

• In order to be allowed to add a nametag to parts inside the editor so they get saved to the craft file, you must
have upgraded your current editor building (VAB or SPH, depending) to the point where it allows at least stock
action groups. This is because name tags are a sort of semi-advanced feature.

You can see some of these settings by reading the values of the Career() global object, for example:

:: print Career():PATCHLIMIT. print Career():CANDOACTIONS.

76 Chapter 4. General Topics



kOS Documentation, Release 0.18.2

4.10.2 Structure

structure Career

Table 4.2: Members
Suffix Type Get Set
CANTRACKOBJECTS boolean yes no
PATCHLIMIT number yes no
CANMAKENODES boolean yes no
CANDOACTIONS boolean yes no

Career:CANTRACKOBJECTS

Type boolean

Access Get

If your tracking center allows the tracking of unnamed objects (asteroids, mainly) then this will return true.

Career:PATCHLIMIT

Type number

Access Get

If your tracking center allows some patched conics predictions, then this number will be greater than zero. The
number represents how many patches beyond the current one that you are allowed to see. It influences attempts
to call SHIP:PATCHES and SHIP:OBT:NEXTPATCH.

Career:CANMAKENODES

Type boolean

Access Get

If your tracking center and mission control buildings are both upgraded enough, then the game allows you to
make manuever nodes (which the game calls “flight planning”). This will return true if you can make maneuver
nodes.

Career:CANDOACTIONS

Type boolean

Access Get

If your VAB or SPH are upgraded enough to allow custom action groups, then you will also be allowed to
execute the :DOACTION method of PartModules. Otherwise you can’t. This will return a boolean letting you
know if the condition has been met.

4.10. Career Limits 77



kOS Documentation, Release 0.18.2

78 Chapter 4. General Topics



CHAPTER 5

The KerboScript Language

5.1 General Features of the KerboScript Language

• Case Insensitivity
• Expressions

– 1. Numbers
– 2. Strings
– 3. Structures
– 4. Structure Methods

• Short-circuiting booleans
• Late Typing
• Lazy Globals (variable declarations optional)
• User Functions
• Structures

5.1.1 Case Insensitivity

Everything in KerboScript is case-insensitive, including your own variable names and filenames. The only exception
is when you perform a string comparison, ("Hello"="HELLO" will return false.)

Most of the examples here will show the syntax in all-uppercase to help make it stand out from the explanatory text.

5.1.2 Expressions

KerboScript uses an expression evaluation system that allows you to perform math operations on variables. Some
variables are defined by you. Others are defined by the system. There are four basic types:

1. Numbers

You can use mathematical operations on numbers, like this:

SET X TO 4 + 2.5.
PRINT X. // Outputs 6.5

The system follows the order of operations, but currently the implementation is imperfect. For example, multiplication
will always be performed before division, regardless of the order they come in. This will be fixed in a future release.

79



kOS Documentation, Release 0.18.2

2. Strings

Strings are pieces of text that are generally meant to be printed to the screen. For example:

PRINT "Hello World!".

To concatenate strings, you can use the + operator. This works with mixtures of numbers and strings as well:

PRINT "4 plus 3 is: " + (4+3).

3. Structures

Structures are variables that contain more than one piece of information. For example, a Vector has an X, a Y, and
a Z component. Structures can be used with SET.. TO just like any other variable. To access the sub-elements of a
structure, you use the colon operator (”:”). Here are some examples:

PRINT "The Mun's periapsis altitude is: " + MUN:PERIAPSIS.
PRINT "The ship's surface velocity is: " + SHIP:VELOCITY:SURFACE.

Many structures also let you set a specific component of them, for example:

SET VEC TO V(10,10,10). // A vector with x,y,z components
// all set to 10.

SET VEC:X to VEC:X * 4. // multiply just the X part of VEC by 4.
PRINT VEC. // Results in V(40,10,10).

4. Structure Methods

Structures also often contain methods. A method is a suffix of a structure that actually performs an activity when you
mention it, and can sometimes take parameters. The following are examples of calling methods of a structure:

SET PLIST TO SHIP:PARTSDUBBED("my engines"). // calling a suffix
// method with one
// argument that
// returns a list.

PLIST:REMOVE(0). // calling a suffix method with one argument that
// doesn't return anything.

PRINT PLIST:SUBLIST(0,4). // calling a suffix method with 2
// arguments that returns a list.

Note: New in version 0.15: Methods now perform the activity when the interpreter comes up to it. Prior to this
version, execution was sometimes delayed until some later time depending on the trigger setup or flow-control.

For more information, see the Structures Section. A full list of structure types can be found on the Structures page.
For a more detailed breakdown of the language, see the Language Syntax Constructs page.

5.1.3 Short-circuiting booleans

Further reading: https://en.wikipedia.org/wiki/Short-circuit_evaluation

When performing any boolean operation involving the use of the AND or the OR operator, kerboscript will short-
circuit the boolean check. What this means is that if it gets to a point in the expression where it already knows the
result is a forgone conclusion, it doesn’t bother calculating the rest of the expression and just quits there.

80 Chapter 5. The KerboScript Language

https://en.wikipedia.org/wiki/Short-circuit_evaluation


kOS Documentation, Release 0.18.2

Example:

set x to true.
if x or y+2 > 10 {

print "yes".
} else {

print "no".
}.

In this case, the fact that x is true means that when evaluating the boolean expression x or y+2 > 10 it never
even bothers trying to add y and 2 to find out if it’s greater than 10. It already knew as soon as it got to the x or
whatever that given that x is true, the whatever doesn’t matter one bit. Once one side of an OR is true, the other
side can either be true or false and it won’t change the fact that the whole expression will be true anyway.

A similar short circuiting happens with AND. Once the left side of the AND operator is false, then the entire AND
expression is guaranteed to be false regardless of what’s on the right side, so kerboscript doesn’t bother calculating the
righthand side once the lefthand side is false.

Read the link above for implications of why this matters in programming.

5.1.4 Late Typing

Kerboscript is a language in which there is only one type of variable and it just generically holds any sort of object of
any kind. If you attempt to assign, for example, a string into a variable that is currently holding an integer, this does
not generate an error. It simply causes the variable to change its type and no longer be an integer, becoming a string
now.

In other words, the type of a variable changes dynamically at runtime depending on what you assign into it.

5.1.5 Lazy Globals (variable declarations optional)

Kerboscript is a language in which variables need not be declared ahead of time. If you simply set a variable to a
value, that just “magically” makes the variable exist if it didn’t already. When you do this, the variable will necessarily
be global in scope. kerboscript refers to these variables created implicitly this way as “lazy globals”. It’s a system
designed to make kerboscript easy to use for people new to programming.

But if you are an experienced programmer you might not like this behavior, and there are good arguments for why you
might want to disable it. If you wish to do so, a syntax exists to do so called :ref:NOLAZYGLOBAL.

5.1.6 User Functions

Note: New in version 0.17: This feature did not exist in prior versions of kerboscript.

Kerboscript supports user functions which you can write yourself and call from your own scripts. These are not
structure methods (which as of this writing are a feature which only works for the built-in kOS types, and are not yet
supported by the kerboscript language for user functions you write yourself).

Example:

DECLARE FUNCTION DEGREES_TO_RADIANS {
DECLARE PARAMETER DEG.

RETURN CONSTANT():PI * DEG/180.
}.

5.1. General Features of the KerboScript Language 81



kOS Documentation, Release 0.18.2

SET ALPHA TO 45.
PRINT ALPHA + " degrees is " + DEGREES_TO_RADIANS(ALPHA) + " radians.".

For a more detailed description of how to declare your own user functions, see the Language Syntax Constructs, User
Functions section.

5.1.7 Structures

Structures, introduced above, are variable types that contain more than one piece of information. All structures contain
sub-values or methods that can be accessed with a colon (:) operator. Multiple structures can be chained together with
more than one colon (:) operator:

SET myCraft TO SHIP.
SET myMass TO myCraft:MASS.
SET myVel TO myCraft:VELOCITY:ORBIT.

These terms are referred to as “suffixes”. For example Velocity is a suffix of Vessel. It is possible to set some
suffixes as well. The second line in the following example sets the ETA of a NODE 500 seconds into the future:

SET n TO Node( TIME:SECONDS + 60, 0, 10, 10).
SET n:ETA to 500.

The full list of available suffixes for each type can be found here.

5.2 KerboScript Syntax Specification

This describes what is and is not a syntax error in the KerboScript programming language. It does not describe what
function calls exist or which commands and built-in variables are present. Those are contained in other documents.

Contents

• General Rules
• Braces (statement blocks)
• Functions (built-in)
• Suffixes as Functions (Methods)
• User Functions
• Built-In Special Variable Names
• What does not exist (yet?)

5.2.1 General Rules

Whitespace consisting of consecutive spaces, tabs, and line breaks are all considered identical to each other. Because
of this, indentation is up to you. You may indent however you like.

Note: Statements are ended with a period character (”.”).

The following are reserved command keywords and special operator symbols:

Arithmetic Operators:

82 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

+ - * / ^ e ( )

Logic Operators:

not and or true false <> >= <= = > <

Instructions and keywords:

add all at batch break clearscreen compile copy declare delete
deploy do do edit else file for from from function global if
in list local lock log off on once parameter preserve print reboot
remove rename run set shutdown stage step switch then to toggle
unlock unset until volume wait when

Other symbols:

{ } [ ] , : //

Comments consist of everything from a “//” symbol to the end of the line:

set x to 1. // this is a comment.

Identifiers: Identifiers consist of: a string of (letter, digit, or underscore). The first character must be a letter. The rest
may be letters, digits or underscores. Identifiers are case-insensitive. The following are identical identifiers:

My_Variable my_varible MY_VARAIBLE

case-insensitivity The same case-insensitivity applies throughout the entire language, with all keywords except when
comparing literal strings. The values inside the strings are still case-sensitive, for example, the following will
print “unequal”:

if "hello" = "HELLO" {
print "equal".

} else {
print "unequal".

}

Suffixes Some variable types are structures that contain sub-portions. The separator between the main variable and
the item inside it is a colon character (:). When this symbol is used, the part on the right-hand side of the colon
is called the “suffix”:

list parts in mylist.
print mylist:length. // length is a suffix of mylist

Suffixes can be chained together, as in this example:

print ship:velocity:orbit:x.

In the above example you’d say “velocity is a suffix of ship”, and “orbit is a suffix of ship:velocity”,
and “x is a suffix of ship:velocity:orbit”.

5.2.2 Braces (statement blocks)

Anywhere you feel like, you may insert braces around a list of statements to get the language to treat them all as a
single statement block.

For example: the IF statement expects one statement as its body, like so:

5.2. KerboScript Syntax Specification 83



kOS Documentation, Release 0.18.2

if x = 1
print "it's 1".

But you can put multiple statements there as its body by surrounding them with braces, like so:

if x = 1 { print "it's 1". print "yippieee.". }

(Although this is usually preferred to be indented as follows):

if x = 1 {
print "it's 1".
print "yippieee.".

}

or:

if x = 1
{

print "it's 1".
print "yippieee.".

}

Kerboscript does not require proper indentation of the brace sections, but it is a good idea to make things clear.

You are allowed to just insert braces anywhere you feel like even when the language does not require it, as shown
below:

declare x to 3.
print "x here is " + x.
{

declare x to 5.
print "x here is " + x.
{
declare x to 7.
print "x here is " + x.

}
}

The usual reason for doing this is to create a local scope section for yourself. In the above example, there are actually
3 different variables called ‘x’ - each with a different scope.

5.2.3 Functions (built-in)

There exist a number of built-in functions you can call using their names. When you do so, you can do it like so:

functionName( *arguments with commas between them* ).

For example, the ROUND function takes 2 arguments:

print ROUND(1230.12312, 2).

The SIN function takes 1 argument:

print SIN(45).

When a function requires zero arguments, it is legal to call it using the parentheses or not using them. You can pick
either way:

84 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

// These both work:
CLEARSCREEN.
CLEARSCREEN().

5.2.4 Suffixes as Functions (Methods)

Some suffixes are actually functions you can call. When that is the case, these suffixes are called “method suffixes”.
Here are some examples:

set x to ship:partsnamed("rtg").
print x:length().
x:remove(0).
x:clear().

5.2.5 User Functions

Note: New in version 0.17: This feature did not exist in prior versions of kerboscript.

Help for the new user - What is a Function? In programming terminology, there is a commonly used feature of
many programming languages that works as follows:

• 1. Create a chunk of program instructions that you don’t intend to execute YET.

• 2. Later, when executing other parts of the program, do the following:

– 2.A. Remember the current location in the program.

– 2.B. Jump to the previously created chunk of code from (1) above.

– 2.C. Run the instructions there.

– 2.D. Return to where you remembered from (2.A) and continue from there.

This feature goes by many different names, with slightly different precise meanings: Subroutines, Procedures,
Functions, etc. For the purposes of kerboscript, we will refer to all uses of this feature with the term Function,
whether it technically fits the mathematical definition of a “function” or not.

In kerboscript, you can make your own user functions using the DECLARE FUNCTION command, which is structured
as follows:

declare function identifier { statements } optional dot (.)

Functions are a long enough topic as to require a separate documentation page, here.

5.2.6 Built-In Special Variable Names

Some variable names have special meaning and will not work as identifiers. Understanding this list is crucial to using
kOS effectively, as these special variables are the usual way to query flight state information. The full list of reserved
variable names is on its own page.

5.2. KerboScript Syntax Specification 85



kOS Documentation, Release 0.18.2

5.2.7 What does not exist (yet?)

Concepts that many other languages have, that are missing from KerboScript, are listed below. Many of these are
things that could be supported some day, but at the moment with the limited amount of developer time available they
haven’t become essential enough to spend the time on supporting them.

user-made structures or classes Several of the built-in variables of kOS are essentially “classes” with methods and
fields, however there’s currently no way for user code to create its own classes or structures. Supporting this
would open up a large can of worms, as it would then make the kOS system more complex.

5.3 Flow Control

• BREAK
• IF / ELSE
• LOCK
• UNLOCK
• UNTIL loop
• FOR loop
• FROM loop
• WAIT
• WHEN / THEN
• ON
• PRESERVE
• DECLARE FUNCTION
• Boolean Operators

5.3.1 BREAK

Breaks out of a loop:

SET X TO 1.
UNTIL 0 {

SET X TO X + 1.
IF X > 10 { BREAK. } // Exits the loop when

// X is greater than 10
}

5.3.2 IF / ELSE

Checks if the expression supplied returns true. If it does, IF executes the following command block. Can also have
an optional ELSE to execute when the IF condition is not true. ELSE can have another IF after it, to make a chain of
IF/ELSE conditions:

SET X TO 1.
IF X = 1 { PRINT "X equals one.". } // Prints "X equals one."
IF X > 10 { PRINT "X is greater than ten.". } // Does nothing

// IF-ELSE structure:
IF X > 10 { PRINT "X is large". } ELSE { PRINT "X is small". }

86 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

// An if-else ladder:
IF X = 0 {

PRINT "zero".
} ELSE IF X < 0 {

PRINT "negative".
} ELSE {

PRINT "positive".
}

Note: The period (.) is optional after the end of a set of curly braces like so:

// both of these lines are fine
IF TRUE { PRINT "Hello". }
IF TRUE { PRINT "Hello". }.

In the case where you are using the ELSE keyword, you must not end the previous IF body with a period, as that
terminates the IF command and causes the ELSE keyword to be without a matching IF:

// works:
IF X > 10 { PRINT "Large". } ELSE { PRINT "Small". }.

// syntax error - ELSE without IF.
IF X > 10 { PRINT "Large". }. ELSE { PRINT "Small". }.

5.3.3 LOCK

Locks an identifier to an expression. Each time the identifier is used in an expression, its value will be re-calculated
on the fly:

SET X TO 1.
LOCK Y TO X + 2.
PRINT Y. // Outputs 3
SET X TO 4.
PRINT Y. // Outputs 6

LOCK follows the same scoping rules as the SET command. If the variable name used already exists in local scope,
then the lock command creates a lock function that only lasts as long as the current scope and then becomes unreach-
able after that. If the variable name used does not exist in local scope, then LOCK will create it as a global variable,
unless @NOLAZYGLOBAL is set to off, in which case it will be an error.

Note that a LOCK expression is extremely similar to a user function. Every time you read the value of the “variable”,
it executes the expression again.

Note: If a LOCK expression is used with a flight control such as THROTTLE or STEERING, then it will get continually
evaluated in the background each physics tick.

5.3.4 UNLOCK

Releases a lock on a variable. See LOCK:

UNLOCK X. // Releases a lock on variable X
UNLOCK ALL. // Releases ALL locks

5.3. Flow Control 87



kOS Documentation, Release 0.18.2

5.3.5 UNTIL loop

Performs a loop until a certain condition is met:

SET X to 1.
UNTIL X > 10 { // Prints the numbers 1-10

PRINT X.
SET X to X + 1.

}

Note: If you are writing an UNTIL loop that looks much like the example above, consider the possibility of writing
it as a FROM loop instead.

Note that if you are creating a loop in which you are watching a physical value that you expect to change each iteration,
it’s vital that you insert a small WAIT at the bottom of the loop like so:

SET PREV_TIME to TIME:SECONDS.
SET PREV_VEL to SHIP:VELOCITY.
SET ACCEL to V(9999,9999,9999).
PRINT "Waiting for accellerations to stop.".
UNTIL ACCEL:MAG < 0.5 {

SET ACCEL TO (SHIP:VELOCITY - PREV_VEL) / (TIME:SECONDS - PREV_TIME).
SET PREV_TIME to TIME:SECONDS.
SET PREV_VEL to SHIP:VELOCITY.

WAIT 0.001. // This line is Vitally Important.
}

The full explanation why is in the CPU hardware description page.

5.3.6 FOR loop

Loops over a list collection, letting you access one element at a time. Syntax:

FOR variable1 IN variable2 { use variable1 here. }

Where:

• variable1 is a variable to hold each element one at a time.

• variable2 is a LIST variable to iterate over.

Example:

PRINT "Counting flamed out engines:".
SET numOUT to 0.
LIST ENGINES IN MyList.
FOR eng IN MyList {

IF ENG:FLAMEOUT {
set numOUT to numOUT + 1.

}
}
PRINT "There are " + numOut + "Flamed out engines.".

Note: If you are an experienced programmer looking for something more like the for-loop from C, with its 3-part
clauses of init, check, and increment in the header, see the FROM loop description. The kerboscript ‘for’ loop is more

88 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

like a ‘foreach’ loop from other modern languages like C#.

5.3.7 FROM loop

Identical to the UNTIL loop, except that it also contains an explicit initializer and incrementer section in the header.

Syntax:

FROM { one or more statements } UNTIL Boolean_expression STEP { one or more statements } DO one
statement or a block of statements inside braces ‘{}’

Quick Example:

print "Countdown initiated:".
FROM {local x is 10.} UNTIL x = 0 STEP {set x to x-1.} DO {

print "T -" + x.
}

Note: If you are an experienced programmer, you can think of the FROM loop as just being Kerboscript’s version
of the generic 3-part for-loop for( int x=10; x > 0; --x ) {...} that first appeared in C and is now so
common to many programming languages, except that its Boolean check uses the reverse of that logic because it’s
based on UNTIL loops instead of WHILE loops.

What the parts mean

• FROM { one or more statements }

– Perform these statements at the beginning before starting the first pass through the loop. They may contain
local declarations of new variables. If they do, then the variables will be local to the body of the loop and
won’t be visible outside the loop. In this case the braces { and } are mandatory even when there is only
one statement present. To create a a null FROM clause, give it an empty set of braces.

• UNTIL expression

– Exactly like the UNTIL loop. The loop will run this expression at the start of each pass through the loop
body, and if it’s true, it will abort and stop running the loop. It checks before the initial first pass of the
loop as well, so it’s possible for the check to prevent the loop body from even executing once. Braces
{..‘‘}‘‘ are not used here because this is not technically a complete statement. It is just an expression that
evaluates to a value.

• STEP { one or more statements }

– Perform these statements at the bottom of each loop pass. The purpose is typically to increment or decre-
ment the variable you declared in your FROM clause to get it ready for the next loop pass. In this case
the braces { and } are mandatory even when there is only one statement present. To create a null FROM
clause, give it an empty set of braces.

• DO one statement or a block of statements inside braxes {..‘‘}‘‘:

– This is where the loop body gets put. Much like with the UNTIL and FOR loops, these braces are not
mandatory when there is only exactly one statement in the body, but are a very good idea to have anyway.

5.3. Flow Control 89



kOS Documentation, Release 0.18.2

Why some braces are mandatory

Some braces are mandatory (for the FROM and STEP clauses) even when there is only one statement inside them,
because the period that ends a single statement would look like it’s terminating the entire FROM loop if it was open
and bare. Wrapping it inside braces makes it more visually obvious that it’s not the end of the FROM loop.

Why DO is mandatory

Other loop types don’t require a keyword to begin the loop body. You can just start in with the opening left-brace {.
The reason the additional DO keyword exists in the FROM loop is because otherwise you’d have two back-to-back
brace sections (The end of the STEP clause would abut against the start of the loop body) without any punctuation
between them, and that would look too much like it was starting a brand new thing from scratch.

Other formatting examples

// prints a count from 1 to 10:
FROM {local x is 1.} UNTIL x > 10 STEP {set x to x+1.} DO { print x.}

// Entire header in one line, body indented:
// --------------------------------------------
FROM {local x is 1.} UNTIL x > 10 STEP {set x to x+1.} DO {

print x.
}

// Each header part on its own line, body indented:
// --------------------------------------------
FROM {local x is 1.}
UNTIL x > 10
STEP {set x to x+1.}
DO {

print x.
}

// Fully exploded out: Each header part on its own line,
// each clause indented separately:
// --------------------------------------------
FROM
{

local x is 1. // x will count upward from 1.
local y is 10. // while y is counting downward from 10.

}
UNTIL

x > 10 or y = 0
STEP
{

set x to x+1.
set y to y-1.

}
DO
{

print "x is " + x + ", y is " + y.
}

// ETC.

90 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

Any such combination of indenting styles, or mix and match of them, is understood by the compiler. The compiler
ignores the spacing and indenting. It is recommended that you pick just two of them and stick with them - one compact
one to use for short headers, and one longer exploded one to use for more wordy headers when you have to split it up
across lines.

The literal meaning of FROM

If you have a FROM loop, it ends up being exactly identical to an UNTIL loop written as follows:

If we assume that AAAA, BBBB, CCCC, and DDDD are placeholders referring to the actual script syntax, then in the
generic case, the following is how all FROM loops work:

FROM LOOP:

FROM { AAAA } UNTIL BBBB STEP { CCCC } DO { DDDD }

Is exactly the same as doing this:

{ // start a brace to keep the scope of AAAA local to the loop.
AAAA
UNTIL BBBB {

DDDD

CCCC
}

} // end a brace to throw away the local scope of AAAA

An example of why the FROM loop is useful

Given that the FROM loop is really just an alternate way to write a certain format of UNTIL loop, you might ask why
bother having it. The reason is that in the long run it makes your script easier to edit and maintain. It makes things
more self-contained and cut-and-pasteable:

Above, in the documentation for UNTIL loops, this example was given:

SET X to 1.
UNTIL X > 10 { // Prints the numbers 1-10

PRINT X.
SET X to X + 1.

}

The same example, expressed as a FROM loop is this:

FROM {SET X to 1.} UNTIL X > 10 {SET X to X + 1.} DO {
PRINT X.

}

Kerboscript FROM loop provides a way to place those sections in the loop header so they are declared up front and
let people see the layout of how the loop iterates, leaving the body to just contain the statements to be done for that
iteration.

If you are editing your script and need to cut a loop section and move it elsewhere, the FROM loop makes it more
visually obvious how to cut that loop and move it. It makes the important parts of the loop be self contained in the
header, so you don’t leave the initializer behind when moving the loop.

5.3. Flow Control 91



kOS Documentation, Release 0.18.2

5.3.8 WAIT

Halts execution for a specified amount of time, or until a specific set of criteria are met. Note that running a WAIT
UNTIL statement can hang the machine forever if the criteria are never met. Examples:

WAIT 6.2. // Wait 6.2 seconds
WAIT UNTIL X > 40. // Wait until X is greater than 40
WAIT UNTIL APOAPSIS > 150000. // You can see where this is going

Note that any WAIT statement, no matter what the actual expression is, will always result in a wait time that lasts at
least one physics tick.

Note: The WAIT command only causes mainline code to be suspended. Trigger code such as WHEN, ON, LOCK
STEERING, and LOCK THROTTLE, will continue executing while your program is sitting still on the WAIT com-
mand.

5.3.9 WHEN / THEN

Executes a command when a certain criteria are met. Unlike WAIT, WHEN does not halt execution. It starts a check in
the background that will keep actively looking for the trigger condition while the rest of the code continues. When it
triggers, the body after the THEN will execute exactly once, after which the trigger is removed unless the PRESERVE
is used, in which case the trigger is not removed.

The body of a THEN or an ON statement interrupts the normal flow of a kOS program. When the event that triggers
the body happens, the main kOS program is paused until the body of the THEN completes.

Warning: With the advent of local variable scoping in kOS version 0.17 and above, it’s important to note that the
variables used within the expression of a WHEN or an ON statement should be GLOBAL variables or the results
are unpredictable. If local variables were used, the results could change depending on where you are within the
execution at the time.

Warning: Do not make the body of a WHEN/THEN take a long time to execute. If you attempt to run code that
lasts too long in the body of your WHEN/THEN statement, it will cause an error. Avoid looping during WHEN/THEN
if you can. For details on how to deal with this, see the tutorial on design patterns.

Note: Changed in version 0.12: IMPORTANT BREAKING CHANGE: In previous versions of kOS, the body of
a WHEN/THEN would execute simultaneously in the background with the rest of the main program. This behavior has
changed as of version 0.12 of kOS, as described above, and scripts that used to rely on this behavior will not work
with version 0.12 of kOS

Example:

WHEN BCount < 99 THEN PRINT BCount + " bottles of beer on the wall”.

// Watch in the background for when the altitude is high enough.
// Once it is, then turn on the solar panels and action group 1
WHEN altitude > 70000 THEN {

PRINT "ACTIVATING PANELS AND AG 1.".
PANELS ON.
AG1 ON.

}

92 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

A WHEN/THEN trigger is removed when the program that created it exits, even if it has not occurred yet. The
PRESERVE can be used inside the THEN clause of a WHEN statement. If you are going to make extensive use of
WHEN/THEN triggers, it’s important to understand more details of how they work in the kOS CPU.

5.3.10 ON

The ON command is almost identical to the WHEN/THEN command. ON sets up a trigger in the background that will
run the selected command exactly once when the boolean variable changes state from true to false or from false to
true. This command is best used to listen for action group activations.

Just like with the WHEN/THEN command, the PRESERVE command can be used inside the code block to cause the
trigger to remain active and not go away.

Warning: With the advent of local variable scoping in kOS version 0.17 and above, it’s important to note that the
variables used within the expression of a WHEN or an ON statement should be GLOBAL variables or the results
are unpredictable. If local variables were used, the results could change depending on where you are within the
execution at the time.

How does it differ from WHEN/THEN? The WHEN/THEN triggers are executed whenever the conditional expression
becomes true. ON triggers are executed whenever the boolean variable changes state either from false to true or from
true to false.

The body of an ON statement can be a list of commands inside curly braces, just like for WHEN/THEN. Also just like
with WHEN/THEN, the body of the ON interrupts all of KSP while it runs, so it should be designed to be a short and
finish quickly without getting stuck in a long loop:

ON AG3 {
PRINT "Action Group 3 Activated!”.

}
ON SAS PRINT "SAS system has been toggled”.
ON AG1 {

PRINT "Action Group 1 activated.".
PRESERVE.

}

Warning: DO NOT make the body of an ON statement take a long time to execute. If you attempt to run code
that lasts too long in the body of your ON statement, it will cause an error. For general help on how to deal with
this, see the tutorial on design patterns.

Avoid looping during ON code blocks if you can. If you are going to make extensive use of ON triggers, it’s important
to understand more details of how they work in the kOS CPU.

5.3.11 PRESERVE

PRESERVE is a command keyword that is only valid inside of WHEN/THEN and ON code blocks.

When a WHEN/THEN or ON condition is triggered, the default behavior is to execute the code block body exactly once
and only once, and then the trigger condition is removed and the trigger will never occur again.

To alter this, execute the PRESERVE command anywhere within the body of the code being executed and it tells
the kOS computer to keep the trigger condition active. When it finishes executing the code block of the trigger, if
PRESERVE has happened anywhere within that run of the block of code, it will not remove the trigger. Instead it will
allow it to re-trigger, possibly as soon as the very next tick. If the PRESERVE keyword is executed again and again
each time the trigger occurs, the trigger could remain active indefinitely.

5.3. Flow Control 93



kOS Documentation, Release 0.18.2

The following example sets up a continuous background check to keep looking for if there’s no fuel in the current
stage, and if there is, then it activates the next stage, but no more often than once every half second. Once more than
NUMSTAGES have happened, it allows the check to stop executing but it keeps the check alive until that happens:

SET NUMSTAGES TO 5.
SET COOLDOWN_START TO 0.

WHEN (TIME:SECONDS > COOLDOWN_START + 0.5) AND STAGE:LIQUIDFUEL = 0 {
SET COOLDOWN_START TO TIME:SECONDS.
STAGE.
SET NUMSTAGES TO NUMSTAGES - 1.
IF NUMSTAGES > 0 {

PRESERVE.
}

}

// Continue to the rest of the code

5.3.12 DECLARE FUNCTION

Covered in more depth elsewhere in the documentation, the DECLARE FUNCTION statement creates a user-defined
function that you can then call elsewhere in the code.

5.3.13 Boolean Operators

All conditional statements, like IF, can make use of boolean operators. The order of operations is as follows:

• = < > <= >= <>

• AND

• OR

• NOT

Boolean is a type that can be stored in a variable and used that way as well. The constants True and False (case
insensitive) may be used as values for boolean variables. If a number is used as if it was a Boolean variable, it will be
interpreted in the standard way (zero means false, anything else means true):

IF X = 1 AND Y > 4 { PRINT "Both conditions are true". }
IF X = 1 OR Y > 4 { PRINT "At least one condition is true". }
IF NOT (X = 1 or Y > 4) { PRINT "Neither condition is true". }
IF X <> 1 { PRINT "X is not 1". }
SET MYCHECK TO NOT (X = 1 or Y > 4).
IF MYCHECK { PRINT "mycheck is true." }
LOCK CONTINUOUSCHECK TO X < 0.
WHEN CONTINUOUSCHECK THEN { PRINT "X has just become negative.". }
IF True { PRINT "This statement happens unconditionally." }
IF False { PRINT "This statement never happens." }
IF 1 { PRINT "This statement happens unconditionally." }
IF 0 { PRINT "This statement never happens." }
IF count { PRINT "count isn't zero.". }

5.4 Variables & Statements

94 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

• DECLARE .. TO/IS
– What it does:
– Allowed Syntax:
– See Scoping:
– Initializer required in DECLARE

• DECLARE PARAMETER
• SET
• DEFINED

– Difference between SET and DECLARE LOCAL and DECLARE GLOBAL
– When to use GLOBAL

• LOCK
– Calling a LOCK that was created in another file
– Local lock

• TOGGLE
• ON
• OFF
• Scoping terms
• Scoping syntax

– Presumed defaults
– Explicit scoping keywords
– Explicit Scoping required for @lazyglobal off
– Scoping and Triggers:
– @LAZYGLOBAL directive

5.4.1 DECLARE .. TO/IS

What it does:

Declares a variable, explicitly or implicitly defining what scope it has, and gives it an initial value.

Allowed Syntax:

All the following are legal “declare” statements:

The following alternate versions have identical meaning to each other:

• DECLARE identifier TO expression dot

• DECLARE identifier IS expression dot

• DECLARE LOCAL identifier TO expression dot

• DECLARE LOCAL identifier IS expression dot

• LOCAL identifier TO expression dot

• LOCAL identifier IS expression dot

The following alternate versions have identical meaning to each other:

• DECLARE GLOBAL identifier TO expression dot

• DECLARE GLOBAL identifier IS expression dot

• GLOBAL identifier TO expression dot

5.4. Variables & Statements 95



kOS Documentation, Release 0.18.2

• GLOBAL identifier IS expression dot

Warning: New in version 0.17: *BREAKING CHANGE The meaning, and syntax, of this statement changed
considerably in this update. Prior to this version, DECLARE always created global variables no matter where it
appeared in the script. See ‘initializer required’ below.

Detailed Description of the syntax:

• The statement must begin with either the word DECLARE, LOCAL, or GLOBAL. If it begins with the
word DECLARE it may optionally also contain the word LOCAL or GLOBAL afterward. Note that if
neither GLOBAL nor LOCAL is used, the behavior of LOCAL will be assumed implicitly. Therefore
DECLARE LOCAL and just DECLARE and just LOCAL mean the same thing.

• After that it must contain an identifier.

• After that it must contain either the word TO or the word IS, which mean the same thing here.

• After that it must contain some expression for the initial starting value of the variable.

• After that it must contain a dot (“period”), like all commands in kerboscript.

// These all do the exact same thing - make a local variable:
DECLARE X TO 1. // assumes local when unspecified.
LOCAL X IS 1.
DECLARE LOCAL X IS 1.

// These do the exact same thing - make a global variable:
GLOBAL X IS 1.
DECLARE GLOBAL X IS 1.

If neither the scope word GLOBAL nor the scope word LOCAL appear, a declare statement assumes LOCAL by default.

Any variable declared with DECLARE, DECLARE LOCAL, or LOCAL will only exist inside the code block section it
was created in. After that code block is finished, the variable will no longer exist.

See Scoping:

If you don’t know what the terms “global” or “local” mean, it’s important to read the section below about
scoping.

Note: It is implied that the outermost scope of a program file is the global scope. Therefore if you make a LOCAL
variable at the outermost nesting level of your program it really ends up being GLOBAL. Note that GLOBAL variables
are not only shared between functions of your script, but also can be seen by other programs you run from the current
program, and visa versa.

Alternatively, a variable can be implicitly declared by any SET or LOCK statement, however doing so causes the
variable to always have global scope. The only way to make a variable be local instead of global is to declare it
explicitly with one of these DECLARE statements.

Note: Terminology: “declare statement”: Note that the documentation will often refer to the phrase “declare
statement” even when referring to a statement in which the optional keyword “declare” was left off. A statement
such as LOCAL X IS 1. Will still be referred to as a “declare statement”, even though the word “declare” never
explicitly appeared in it.

96 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

Initializer required in DECLARE

New in version 0.17.

The syntax without the initializer, looking like so:

DECLARE x. // no initializer like "TO 1."

is no longer legal syntax.

Kerboscript now requires the use of the initializer clause (the “TO” keyword) after the identifier name so as to make it
impossible for there to exist any uninitialized variables in a script.

5.4.2 DECLARE PARAMETER

If you put this statement in the main part of your script, it declares variables to be used as a parameter that can be
passed in using the RUN command.

If you put this statement inside of a Function body, then it declares variables to be used as a parameter that can be
passed in to that function when calling the function.

Just as with a declare identifier statement, in a declare parameter statement, the actual keyword declare
need not be used. The word parameter may be used alone and that is legal syntax.

Program 1:

// This is the contents of program1:
DECLARE PARAMETER X.
PARAMETER Y. // omitting the word "DECLARE" - it still means the same thing.
PRINT "X times Y is " + X*Y.

Program 2:

// This is the contents of program2, which calls program1:
SET A TO 7.
RUN PROGRAM1( A, A+1 ).

The above example would give the output:

X times Y is 56.

It is also possible to put more than one parameter into a single DECLARE PARAMETER statement, separated by
commas, as shown below:

DECLARE PARAMETER X, Y, CheckFlag.

// Or you could leave "DECLARE" off like so:
PARAMETER X, Y, CheckFlag.

Either of the above is exactly equivalent to:

PARAMETER X.
PARAMETER Y.
PARAMETER CheckFlag.

Note: Unlike normal variables, Parameter variables are always local to the program. When program A calls program
B and passes parameters to it, program B can alter their values without affecting the values of the variables in program
A.

5.4. Variables & Statements 97



kOS Documentation, Release 0.18.2

Caveat This is only true if the values are primitive singleton values like numbers or booleans. If the values are
Structures like Vectors or Lists, then they do end up behaving as if they were passed by reference, in the usual
way that should be familiar to people who have used languages like Java or C# before.

Illegal to say DECLARE GLOBAL PARAMETER : Because parameters are always local to the location they were
declared at, the keyword GLOBAL is illegal to use in a DECLARE PARAMETER statement.

The DECLARE PARAMETER statements can appear anywhere in a program as long as they are in the file at a point
earlier than the point at which the parameter is being used. The order the arguments need to be passed in by the caller
is the order the DECLARE PARAMETER statements appear in the program being called.

Note: Pass By Value

The following paragraph is important for people familiar with other programming languages. If you are new to
programming and don’t understand what it is saying, that’s okay you can ignore it.

At the moment the only kind of parameter supported is a pass-by-value parameter, and pass-by reference parameters
don’t exist. Be aware, however, that due to the way kOS is implemented on top of a reference-using object-oriented
language (CSharp), if you pass an argument which is a complex aggregate structure (i.e. a Vector, or a List - anything
that kOS lets you use a colon suffix with), then the parameters will behave exactly like being passed by reference
because all you’re passing is the handle to the object rather than the object itself. This should be familiar behavior to
anyone who has written software in Java or C# before.

5.4.3 SET

Sets the value of a variable. Implicitly creates a global variable if it doesn’t already exist:

SET X TO 1.
SET X TO y*2 - 1.

This follows the scoping rules explained below. If the variable can be found in the current local scope, or any scope
higher up, then it won’t be created and instead the existing one will be used.

5.4.4 DEFINED

DEFINED identifier

Returns a boolean true or false according to whether or not an identifer is defined in such a way that you can use it
from this part of the program. (i.e. is it declared and is it in scope and visible right now):

// This part prints 'doesn't exist":
if defined var1 {

print "var1 exists".
} else {

print "var1 doesn't exist."
}

local var1 is 0.

// But now it prints that it does exist:
if defined var1 {

print "var1 exists".
} else {

print "var1 doesn't exist."
}

98 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

The DEFINED operator pays attention to all the normal scoping rules described in the scoping section below. If an
identifier does exist but is not usable from the current scope, it will return false.

Note that DEFINED does not work well on things that are not pure identifiers. for example:

print defined var1:suffix1.

is going to end up printing “False” because it’s looking for pure identifiers, not complex suffix chains, and there’s no
identifier called “var1:suffix1”.

Difference between SET and DECLARE LOCAL and DECLARE GLOBAL

The following three examples look very similar and you might ask why you’d pick one instead of the other:

SET X TO 1.
DECLARE LOCAL X TO 1.
DECLARE GLOBAL X TO 1.

They are slightly different, as follows:

SET X TO 1. Performs the following activity:

1. Attempt to find an already existing local X. If found, set it to 1.

2. Try again for each scoping level outside the current one.

3. If and only if it gets all the way out to global scope and it still hasn’t found an X, then create a new X with value
1, and do so at global scope. This behavior is called making a “lazy global”.

DECLARE LOCAL X TO 1. Performs the following activity:

1. Immediately make a new X right here at the local-most scope. Set it to 1.

DECLARE GLOBAL X TO 1. Performs the following activity:

1. Ignore whether or not there are any existing X’s in a local scope.

2. Immediately go all the way to global scope and make a new X there. Set it to 1.

When to use GLOBAL

You should use a DECLARE GLOBAL statement only sparingly. It mostly exists so that a function can store values
“in the caller” for the caller to get its hands on. It’s generally a “sloppy” design pattern to use, and it’s much better to
keep everything local and only pass back things to the caller as return values.

5.4.5 LOCK

Declares that the identifier will refer to an expression that is always re-evaluated on the fly every time it is used (See
also Flow Control documentation):

SET Y TO 1.
LOCK X TO Y + 1.
PRINT X. // prints "2"
SET Y TO 2.
PRINT X. // prints "3"

Note that because of how LOCK expressions are in fact implemented as mini functions, they cannot have local scope.
A LOCK always has global scope.

5.4. Variables & Statements 99



kOS Documentation, Release 0.18.2

By default a LOCK expression is GLOBAL when made. This is necessary for backward compatibility with older scripts
that use LOCK STEERING from inside triggers, loops, etc, and expect it to affect the global steering value.

Calling a LOCK that was created in another file

If you try to call a lock that is declared in another program file you run, it does not work, and has never worked prior
to kOS 0.17.0:

File1.ks:

run File2.
print "x's locked value is " + x.

File2.ks:

lock x to "this is x".

But now with the kerboscript of kOS 0.17.0, you can make it work by inserting empty parentheses after the lock name
to help give the compiler the hint that you expected x to be a function call (which is what a lock really is):

Change this line:

print "x's locked value is " + x.

To this instead:

print "x's locked value is " + x().

and it should work.

Local lock

You can explicitly make a LOCK statement be LOCAL with the LOCAL keyword, like so:

LOCAL LOCK identifier TO expression.

But be aware that doing so with a cooked steering control such as THROTTLE or STEERING will not actually affect
your ship. The automated cooked steering control is only reading the GLOBAL locks for these settings.

The purpose of making a LOCAL lock is if you only need to use the value temporarily for the duration of a function
call, loop, or if-statement body, and then you don’t care about it anymore after that.

Why do I care about a local lock?

You care because in order to make a LOCK work even after the variables it’s using in its expres-
sion go out of scope (which is necessary for LOCK STEERING or LOCK THROTTLE to work if done
from inside a user function call or trigger body), locks need to preserve a thing called a “closure”. (
http://en.wikipedia.org/wiki/Closure_(computer_programming)

When they do this, it means none of the local variables used in the function body they were declared in truly “go away”
from memory. They live on, taking up space until the lock disappears. Making the lock be local tells the computer
that it can make the lock disappear when it goes out of scope, and thus it doesn’t need to hold that “closure” around
forever.

The tl;dr version: It’s more efficient for memory. If you know for sure that your lock isn’t getting used after your
current section of code is over, make it a local lock.

100 Chapter 5. The KerboScript Language

http://en.wikipedia.org/wiki/Closure_(computer_programming


kOS Documentation, Release 0.18.2

5.4.6 TOGGLE

Toggles a variable between TRUE or FALSE. If the variable in question starts out as a number, it will be converted
to a boolean and then toggled. This is useful for setting action groups, which are activated whenever their values are
inverted:

TOGGLE AG1. // Fires action group 1.
TOGGLE SAS. // Toggles SAS on or off.

This follows the same rules as SET , in that if the variable in question doesn’t already exist, it will end up creating it as
a global variable.

5.4.7 ON

Sets a variable to TRUE. This is useful for the RCS and SAS bindings:

RCS ON. // Turns on the RCS

This follows the same rules as SET , in that if the variable in question doesn’t already exist, it will end up creating it as
a global variable.

5.4.8 OFF

Sets a variable to FALSE. This is useful for the RCS and SAS bindings:

RCS OFF. // Turns off the RCS

This follows the same rules as SET , in that if the variable in question doesn’t already exist, it will end up creating it as
a global variable.

5.4.9 Scoping terms

Note: New in version 0.17: In prior versions of kerboscript, all identifiers other than DECLARE PARAMETER
identifiers were always global variables no matter what, even if you used the DECLARE statement to make them.

What is Scope? The term Scope simply refers to asking the question “where in the code can this variable be used,
and how long does it last before it goes away?” The scope of a variable is the section of the program’s code that
it “works” within. Any section of the program’s code from which the variable cannot be seen is said to be “out
of that variable’s scope”.

Global scope The simplest scope is called “global”. Global scope simply means “this variable can be used from
anywhere in the program”. If you never use the DECLARE statement, then your variables in kerboscript will all
be in global scope. For simple easy scripts used by beginners, this is often enough and you don’t have to read
the rest of this topic until you start advancing to more intermediate scripts.

Local Scope Kerboscript uses block scoping to keep track of local variable scope. This means you can have variables
that are not only local to a function, but are in fact actually local to JUST the current curly-brace block of
statements, even if that block of statements is, say, the body of an IF check, or the body of an UNTIL loop.

Why limit scope? You might be wondering why it’s useful to limit the scope of a variable. Wouldn’t it be easier
just to make all variables global? The answer is twofold: (1) Once a program becomes large enough, trying
to remember the name of every variable in the program, and having to keep coming up with new names for
new variables, can be a large unmanageable chore, especially with programs written by more than one person

5.4. Variables & Statements 101



kOS Documentation, Release 0.18.2

collaborating together. (2) Even if you can keep track of all that in your head, there’s a certain programming
technique known as recursion ( http://en.wikipedia.org/wiki/Recursion#In_computer_science ) in which you
actually NEED to have local variable scope for the technique to even work at all.

If you need to have variables that only have local scope, either just to keep your code more manageable, or because
you literally need local scope to allow for recursive function calls, then you use the DECLARE LOCAL statement (or
just LOCAL for short) to create the variables.

5.4.10 Scoping syntax

Presumed defaults

The DECLARE keyword and the LOCK keyword have some default presumed scoping behaviors:

DECLARE Is assumed to always be LOCAL when not otherwise specified.

FUNCTION Is assumed to always be LOCAL when not otherwise specified.

PARAMETER Cannot be anything but LOCAL to the location it’s mentioned. It is an error to attempt to declare a
parameter with the GLOBAL keyword.

LOCK Is assumed to always be GLOBAL when not otherwise specified. this is necessary to preserve backward
compatibility with how cooked controls such as LOCK STEERING and LOCK THROTTLE work.

Explicit scoping keywords

The DECLARE, FUNCTION, and LOCK commands can be given explicit GLOBAL or LOCAL keywords to define their
intended scoping level:

//
// These are all synonymous with each other:
//
DECLARE X TO 1.
DECLARE LOCAL X TO 1.
LOCAL X TO 1. // 'declare' is implied and optional when scoping words are used
LOCAL X IS 1. // 'declare' is implied and optional when scoping words are used
//
// These are all synonymous with each other:
//
DECLARE GLOBAL X TO 1.
GLOBAL X TO 1. // 'declare' is implied and optional when scoping words are used
GLOBAL X IS 1. // 'declare' is implied and optional when scoping words are used

Even when the word ‘DECLARE’ is left off, the statement can still be referred to as a “declare statement”. The word
“declare” is implied by the use of LOCAL or GLOBAL and you are allowed to leave it off merely to reduce verbosity.

Explicit Scoping required for @lazyglobal off

Note that when operating under the @LAZYGLOBAL OFF directive the keywords LOCAL and GLOBAL are no
longer optional for declare identifier statements, and are in fact required. You are not allowed to rely on these
presumed defaults when you’ve turned off LAZYGLOBAL. (This only applies to trying to make a variable with
declare identifier to value, and not to declare parameter or declare function.)

102 Chapter 5. The KerboScript Language

http://en.wikipedia.org/wiki/Recursion#In_computer_science


kOS Documentation, Release 0.18.2

Locals stated at the global level are global

Note that if you put a statement at the outermost scope of the program, then there is effectively no difference between a
DECLARE LOCAL (or just LOCAL for short) and a DECLARE GLOBAL (or just GLOBAL for short) statement. They
are both going to make a variable at global scope because that’s the scope the program was in when the statement was
encountered.

Examples:

GLOBAL x IS 10. // X is now a global variable with value 10,
SET y TO 20. // Y is now a global variable (implicitly) with value 20.
LOCAL z IS 0. // Z is now a global variable

// because even though this says LOCAL, it was
// stated at the outermost, global scope.

SET sum to -1. // sum is now an implicitly made global variable, containing -1.

// A function to return the mean average of all the items in the list
// passed into it, under the assumption all the items in the list are
// numbers of some sort:
FUNCTION calcAverage {

PARAMETER inputList.

LOCAL sum IS 0. // sum is now local to this function's body.
FOR val IN inputList {
SET sum TO sum + val.

}.
print "Inside calcAverage, sum is " + sum.
RETURN sum / inputList:LENGTH.

}.

SET testList TO LIST(5,10,15);
print "average is " + calcAverage(testList).
print "but out here where it's global, sum is still " + sum.

This example will print:

Inside calcAverage, sum is 30
average is 10
but out here where it's global, sum is still -1

Thus proving that the variable called SUM inside the function is NOT the same variable as the one called SUM out in
the global main code.

Nesting

The scoping rules are nested as well. If you attempt to use a variable that doesn’t exist in the local scope, the next
scope “outside” it will be used, and if it doesn’t exist there, the next scope “outside” that will be used and so on, all
the way up to the global scope. Only if the variable isn’t found at the global scope either will it be implicitly created.

Scoping and Triggers:

Triggers such as:

• WHEN <expression> { <statements> }.

and

5.4. Variables & Statements 103



kOS Documentation, Release 0.18.2

• ON <boolean variable> { <statements> }.

Do not work predictably when you use local variables in the <expression> part of them. They need to be designed
to use global variables only, because they outlive the duration of any particular scoping braces. You can declare local
variables within their <statements> in their bodies, just don’t use local variables in the trigger conditions.

@LAZYGLOBAL directive

Often the fact that you can get an implicit global variable declared without intending to can lead to a lot of code
maintenance headaches down the road. If you make a typo in a variable name, you end up creating a new variable
instead of generating an error. Or you may just forget to mark the variable as local when you intended to.

If you wish to instruct kerboscript to alter its behavior and disable its normal implicit globals, and instead demand
that all variables MUST be explicitly declared and may not use implied lazy scoping, the @LAZYGLOBAL compiler
directive allows you to do that.

If you place the words:

@LAZYGLOBAL OFF.

At the start of your program, you will turn off the compiler’s lazy global feature and it will require you to explic-
itly mention all variables you use in a declaration somewhere (with the exception of the built-in variables such as
THROTTLE, STEERING, SHIP, and so on.)

@LAZYGLOBAL Can only exist at the top of your code.

The @LAZYGLOBAL compile directive is only allowed as the first non-comment thing in the program file. This is
because it instructs the compiler to change its default behavior for the duration of the entire file’s compile.

@LAZYGLOBAL Makes LOCAL and GLOBAL mandatory

Normally the keywords local and global can be left off as optional in declare identifier statements. But when you
turn LAZYGLOBAL off, the compiler starts requiring them to be explicitly stated for declare identifier statements,
to force yourself to be clear and explicit about the difference.

For example, this program, which is valid:

function foo {print "foo ". }
declare x is 1.

print foo() + x.

Starts giving errors when you add @LAZYGLOBAL OFF to the top:

@LAZYGLOBAL OFF.
function foo {print "foo ". }
declare x is 1.

print foo() + x.

Which you fix by explicitly stating the local keyword, as follows:

@LAZYGLOBAL OFF.
function foo {print "foo ". } // This does not need the 'local' keyword added
declare local x is 1. // But this does because it is a declare *identifier* statement.

// you could have also just said:

104 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

// local x is 1.
// without the 'declare' keyword.

print foo() + x.

If you get in the habit of just writing your declare identifier statements like local x is 1. or global x is
1., which is probably nicer to read anyway, the issue won’t come up.

Longer Example of use

Example:

@LAZYGLOBAL off.
global num TO 1.
IF TRUE {

LOCAL Y IS 2.
SET num TO num + Y. // This is fine. num exists already as a global and

// you're adding the local Y to it.
SET nim TO 20. // This typo generates an error. There is

// no such variable "nim" and @LAZYGLOBAL OFF
// says not to implicitly make it.

}.

Why LAZYGLOBAL OFF? The rationale behind LAZYGLOBAL OFF. is to primarily be used in cases where you’re
writing a library of function calls you intend to use elsewhere, and want to be careful not to accidentally make
them dependent on globals outside the function itself.

The @LAZYGLOBAL OFF. directive is meant to mimic Perl’s use strict; directive.

History: Kerboscript began its life as a language in which you never have to declare a variable if you don’t want to.
You can just create any variable implicitly by just using it in a SET statement.

There are a variety of programming languages that work like this, such as Perl, Javascript, and Lua. However,
they all share one thing in common - once you want to allow the possibility of having local variables, you have
to figure out how this should work with the implicit variable declaration feature.

And all those languages went with the same solution, which kerboscript now follows as well. Because implicit
undeclared variables are intended to be a nice easy way for new users to ease into programming, they should
always default to being global so that people who wish to keep programming that way don’t need to understand
or deal with scope.

5.5 KerboScript User Functions

5.5. KerboScript User Functions 105



kOS Documentation, Release 0.18.2

• Help for the new user - What is a Function?
• DECLARE FUNCTION
• Using RUN ONCE
• DECLARE PARAMETER
• Calling a function

– Functions and the terminal interpreter
– Calling a function without parentheses (please don’t)

• LOCAL .. TO
– Initializers are now mandatory for the DECLARE statement
– Difference between declare and set

• RETURN
• Passing by value

– Important exception to passing by value - structures
• Nesting functions inside functions
• Recursion
• User Function Gotchas

– Calling program’s functions from the interpreter
– Inconsistent returns
– Accidentally using globals

This page covers functions created by you, the user of kerboscript, rather than the built-in functions provided by kOS.

5.5.1 Help for the new user - What is a Function?

In programming terminology, there is a commonly used feature of many programming languages that
works as follows:

• 1. Create a chunk of program instructions that you don’t intend to execute YET.

• 2. Later, when executing other parts of the program, do the following:

– 1. Remember the current location in the program.

– 2. Jump to the previously created chunk of code from (1) above.

– 3. Run the instructions there.

– 4. Return to where you remembered from (A) and continue from there.

This feature goes by many different names, with slightly different precise meanings: Subroutines, Pro-
cedures, Functions, etc. For the purposes of kerboscript, we will refer to all uses of this feature with the
term Function, whether it technically fits the mathematical definition of a “function” or not.

Warning: Functions created in programs can only be called from programs, not from the interpreter
terminal prompt.
If you attempt to create a function in a program, and then call it from the interactive prompt in the interpreter
instead of calling it from inside a program, it will definitely not work properly, but the exact error you get will
depend on several “random” factors. This may be fixed later by a later release, but for now, don’t do it. For further
explanation, see the section entitled Functions and the interpreter terminal

5.5.2 DECLARE FUNCTION

In kerboscript, you can make your own user functions using the DECLARE FUNCTION command, which has syntax
as follows:

106 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

[declare] [local] function identifier { statements } optional dot (.)

The statement is called a “declare function” statement even when the optional word “declare” was left off.

The following are all identical in meaning:

declare function hi { print "hello". }
declare local function hi { print "hello". }
local function hi { print "hello". }
function hi { print "hello". }

Functions are presumed to have scope local to the location where they are declared when the explicit local scope
keyword is missing.

At the moment, it is redundant to mention the local keyword, although it is allowed.

It is best to just leave all the optional keywords of and merely say function by itself.

example:

// Print the string you pass in, in one of the 4 corners
// of the terminal:
// mode = 1 for upper-left, 2 for upper-right, 3
// for lower-left, and 4 for lower-right:
//
function print_corner {

parameter mode.
parameter text.

local row is 0.
local col is 0.

if mode = 2 or mode = 4 {
set col to terminal:width - text:length.

}.
if mode = 3 or mode = 4 {
set row to terminal:height - 1.

}.

print text at (col, row).
}.

// An example of calling it:

print_corner(4,"That's me in the corner").

A declare function command can appear anywhere in a kerboscript program, and once its been “parsed” by the com-
piler, the function can be called from anywhere in the program.

The best design pattern is probably to create your library of function calls as one or more separate .ks files that contain
just function definitions and not much else in them. Then when you “run” the file containing the functions, what you’re
really doing is just loading the function definitions into memory so they can be called by other programs. At the top
of your main script you can then “run” the other scripts containing the library of functions to get them compiled into
memory.

5.5.3 Using RUN ONCE

If you want to load a library of functions that ALSO perform some initialization mainline code, but you only want the
mainline code to execute once when the library is first loaded, rather than every time a subprogram runs your library,
then use the ‘once’ keyword with the run command as follows:

5.5. KerboScript User Functions 107



kOS Documentation, Release 0.18.2

// This will run mylib1 3 times, re-running the mainline code in it:`
run mylib1.
run mylib1.
run mylib1.

// This will run mylib2 only one time, ignoring the additional
// instances:
run once mylib2.
run once mylib2. // mylib2 was already run, will not be run again.
run once mylib2. // mylib2 was already run, will not be run again.

Example: Let’s say you want to have a library that keeps a counter and always returns the next number up every time
it’s called. You want it initialized to start with, but not get re-initialized every time another sub-program includes the
library in its code. So you have this:

prog1, which calls counterlib:

// prog1
run once counterlib.

// Get some unique IDs:
print "prog1: next counter ID = " + counter_next().
print "prog1: next counter ID = " + counter_next().
print "prog1: next counter ID = " + counter_next().

run subprogram.

subprogram, which ALSO calls counterlib:

// subprogram
run once counterlib.

print "subprogram: next counter ID = " + counter_next().
print "subprogram: next counter ID = " + counter_next().
print "subprogram: next counter ID = " + counter_next().

counterlib

// init code:
global current_num is 0.

// counter_next()
function counter_next {

set current_num to current_num + 1.
return current_num.

}

The above example prints this:

prog1: next counter ID = 1
prog1: next counter ID = 2
prog1: next counter ID = 3
subprogram: next counter ID = 4
subprogram: next counter ID = 5
subprogram: next counter ID = 6

whereas, had you used just run counterlib. instead of run once counterlib., then it would have printed
this:

108 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

prog1: next counter ID = 1
prog1: next counter ID = 2
prog1: next counter ID = 3
subprogram: next counter ID = 1
subprogram: next counter ID = 2
subprogram: next counter ID = 3

because subprogram would have run the mainline code global current_num is 0 again when it was run
inside subprogram.

5.5.4 DECLARE PARAMETER

If your function expects to have parameters passed into it, you can use the DECLARE PARAMETER command to do
so. This is the same command as is used to declare parameters for running a whole script. By putting a DECLARE
PARAMETER statement inside a function, you tell the kerboscript compiler that you want the parameter to be for that
function, not for the whole script.

An example of using declare parameter can be seen in the example above, where it is used for the mode and
text parameters.

(Again, even when the word ‘declare’ is missing, we still call them ‘declare parameter’ commands.)

5.5.5 Calling a function

To call a function you created, you call it the same way you call a built-in function, by putting a pair of parentheses to
the right of it, as shown here:

function example_function {
print "hello, this is my example.".

}

example_function().

If the function takes parameters, then you put them in the parentheses just like when running a program. You can see
an example of this above in the previous example where it said:

print_corner(4,"That's me in the corner").

Functions and the terminal interpreter

You cannot call functions from the interpreter interactive command line if they were declared inside of script programs.
If you do, you will get seemingly “random” errors. The reasons for this are complex, but the short version is because
the memory the script files’ pseudo-machine language instructions live in and the memory the interpreter’s pseudo-
machine langauge instructions live in are two different things.

The effect you may see if you attempt this is merely an “Unknown Identifer” error, or worse yet, it may end up jumping
into random parts of your code that have nothing to do with the actual function call you’re trying to make.

As a rule of thumb, in kOS 0.17.0, make sure you only use functions from inside script programs. Don’t try to call
them interactively from the interpreter prompt. You will get very strange and (seemingly) inexplicable errors.

In the future we may find a way to fix this problem, but for right now, just don’t do it.

5.5. KerboScript User Functions 109



kOS Documentation, Release 0.18.2

Calling a function without parentheses (please don’t)

In some cases it is possible to call a function with the parentheses off, as shown below, but this is not recommended:

function example_function {
print "hello, this is my example.".

}

example_function. // please don't do this, even if it works.

This is a holdover from the fact that functions and locks are really the same thing, and you need to be able to call a
lock without the parentheses for old scripts written prior to kOS version 0.17.0 to continue working.

Omitting parentheses only works in the same file

One reason to avoid the above technique (of leaving the parentheses off) is that it really only works when you try
to call a function that was declared in the same file. If you want to call a library function (a function you made for
yourself in another file) then it does not work, for complex reason involving the compiler and late-time binding.

5.5.6 LOCAL .. TO

(aka: local variables)

Syntax:

• DECLARE identifier TO expression dot

• LOCAL identifier IS expression dot

• DECLARE LOCAL identifier IS expression dot

The above are all the same, although the version that just says LOCAL identifier IS expr. is preferred.

Examples:

declare x to 5.
local y is 2*x - 1.
declare local halfSpeed to SHIP:VELOCITY:ORBIT:MAG / 2.

If your function needs to make a local variable, it can do so using the DECLARE command. Whenever the DECLARE
command is seen inside a function, the compiler assumes the variable is meant to be local to that function’s block.
This also works with recursion. If you recursively call a function again and again, there will be new copies stacked up
of all the local variables made with DECLARE, but not of the variables implicitly made global without DECLARE.

An example of using local for a local variable can be seen in the example above, where it is used for the row and
col variables.

A more in-depth explanation of kerboscript’s scoping rules and how they work is found on another page

Initializers are now mandatory for the DECLARE statement

This is now illegal syntax:

declare x. // no initial value for x given.

110 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

Warning: New in version 0.17: Breaking Change: The kerboscript from prior versions of kOS did allow you
do make declare statements without any initializers in them (and in fact you couldn’t provide an initializer for
them in prior versions even if you wanted to.)

In order to avoid the issue of having uninitialized variables in kerboscript, any declare statement requires the use of
the initializer clause.

This is especially important as kerboscript is a late typing language in which it is impossible for the
compiler to choose some implied default initial value for the variable from some language spec. This is
because until a value has been assigned into it, the compiler wouldn’t even know what type of default to
use - a string, an integer, a floating point number, etc.

Difference between declare and set

You may think that:

local x is 5.

is identical to just not using a declare local statement at all, and just performing set x to 5. alone, but it is not.
With declare local (or just declare or just local), a NEW variable called x will be made at the current local
scope, temporarily hiding any existing x variables that may otherwise have been reachable in a more global scope.
With set, if there already is an x variable you can use in a different scope higher than this scope, it will be used, and
only if it doesn’t exist will a new x be made (and that new x will be global, not local).

5.5.7 RETURN

return expression(optional) dot(mandatory)

examples:

return 3*x.

return.

If your function needs to exit early, and/or if it needs to pass a return value back to the user, you can use the RETURN
statement to do so. RETURN accepts an optional argument - the value to pass back to the caller. Note that functions
in kerboscript are very weakly typed with late binding. You cannot declare the expected return type for the function,
and it’s up to you to ensure that all possible returned values are useful and meaningful.

example:

// Note, in this example, the keyword 'declare' is
// spelled out explicitly. You can choose to do so
// if you wish. It's up to you what you aesthetically
// prefer.

// Calculate what component of a vessel's surface
// velocity is Northward:
declare function north_velocity {

declare parameter which_vessel.

return VDOT(which_vessel:velocity:surface, which_vessel:north:vector).
}.

5.5. KerboScript User Functions 111



kOS Documentation, Release 0.18.2

5.5.8 Passing by value

Parameters to user functions in kerboscript are all pass-by-value, with an important caveat. “Pass by value” means that
the function is working on a copy of the variable you passed in, rather than the original variable. This matters when
the function tries to change the value of the parameter, as in this example:

function embiggen {
parameter x.

set x to x + 10.

print "x has been embiggened to " + x.
}.

set global_val to 30.
print global_val.
embiggen(global_val).
print global_val.

The above example will print:

30
x has been embiggened to 40
30

Although the function added 10 to its OWN copy of the parameter, the caller’s copy of the parameter remained
unchanged.

Important exception to passing by value - structures

If the value being sent to the function as its parameter is a complex structure consisting of sub-parts (i.e. if it has
suffixes) rather than being a simple single scalar value like a number, then the copy in the function is really a copy of
the reference pointing to the object, so changes you make in the object really WILL change it, as shown here:

function half_vector {
parameter vec. //vector passed in.

print "full vector is " + vec.

set vec:x to vec:x/2.
set vec:y to vec:y/2.
set vec:z to vec:z/2.

print "half vector is " + vec.
}.

set global_vec to V(10,20,30).
half_vector(global_vec).
print "afterward, global_vec is now " + global_vec.

This will give the following result:

full vector is v(10,20,30)
half vector is v(5,10,15)
afterward, global_vec is now v(5,10,15)

Because a vector is a suffixed structure, it effectively acts as if it was passed in by reference instead of by value, and
so when it was changed in the function, the caller’s original copy is what was being changed.

112 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

This may be hard to get used to for new programmers, however experienced programmers who use some modern
object-oriented languages will find this behavior very familiar. Only primitives are passed by value. Structures are
passed by their reference rather than trying to make a deep copy of the object for the function to use.

This behavior is inherited from the fact that kerboscript is implemented on top of C#, which is one of several OOP
languages that work like this.

5.5.9 Nesting functions inside functions

You are allowed to make a local function existing inside another function.

This means that the containing function is the only place the nested function can be called from.

Example:

function getMean {
parameter aList.

function getSum {
parameter aList. // note, this is a local aList MASKING the other one.

local sum is 0.
for num in aList {

set sum to sum + num.
}.
return sum.

}.

return getSum(aList) / aList:LENGTH.
}.

set L to LIST();
L:ADD(10).
L:ADD(9).
print "mean average is " + getMean(L).

// The following line will give an error because
// getSum is local inside of getMean, and isn't allowed
// to be called from here:
//
print "getSum is " + getSum(L).

5.5.10 Recursion

Recursive algorithms ( http://en.wikipedia.org/wiki/Recursion#In_computer_science ) are possible with kerboscript
functions, provided you remember to always exclusively use local variables made with a declare statement in the body
of the function, and never use global variables for something that you intended to be different per recursive call.

5.5.11 User Function Gotchas

Calling program’s functions from the interpreter

As explained above, kOS 0.17.0 does not support the calling of a function from the interpreter console and if you
attempt it you will get very strange and random errors that you might waste a lot of time trying to track down.

5.5. KerboScript User Functions 113

http://en.wikipedia.org/wiki/Recursion#In_computer_science


kOS Documentation, Release 0.18.2

Inconsistent returns

Note that if you sometimes do and sometimes don’t return a value, from the same function, as in the example here:

// A badly designed function, with inconsistency
// in whether or not it returns a value:
//
DECLARE FUNCTION foo {

DECLARE PARAMETER x.
IF X < 0 {

RETURN. // no return value.
} ELSE {

RETURN "hello". // a string return value
}.

}.

Then the kerboscript compiler is not clever enough to detect this and warn you about it. The internal stack will not
get corrupted by this error, as some experienced programmers might expect upon hearing this (because secretly all
kerboscript user functions return a value even if it’s never used, so there’s universally always something to pop off the
stack even for the empty return statements.) However, you will still have to deal with the fact that the calling program
might be getting nulls back some of the time if you make this programming error.

In general, make sure that if you sometimes return a value from a user function, that you always do so in every path
through your function.

Accidentally using globals

It is possible to accidentally create global variables when you didn’t meant to, just because you made a typo.

For example:

function mean {
parameter the_list.
local sum is 0.

for item in the_list {
set dum to sum + item. // typo - said 'dum' instead of 'sum'.

}.

return sum / the_list:length.
}.

The above example contains a typo that causes a global variable to be made where you didn’t mean to. You wanted to
say “sum” but said “dum” and instead of that being an error, kerboscript happily said “okay, well since you’re setting
a variable name that doesn’t exist yet, I’ll make it for you implicitly” (and it ends up being a global).

When you are writing libraries of code for yourself to call, this can really be annoying. And it’s a very common
problem with “sloppy” declaration languages that allow you to use variable names without declaring them first. Most
such languages have provided a way to catch the problem, and allow you to instruct the compiler “please don’t let me
do that. Please force me to declare everything”.

The way that is done in kerboscript is by using a @LAZYGLOBAL compiler directive, as described here.

Had the function above been compiled under a @LAZYGLOBAL off. compiler directive, the typo would be noticed:

@lazyglobal off.

local function mean {
local parameter the_list.

114 Chapter 5. The KerboScript Language



kOS Documentation, Release 0.18.2

local sum is 0.

for item in the_list {
set dum to sum + item. // error - 'dum' is an unknown identifier.

}.

return sum / the_list:length.
}.

5.5. KerboScript User Functions 115



kOS Documentation, Release 0.18.2

116 Chapter 5. The KerboScript Language



CHAPTER 6

Mathematics and Basic Geometry

6.1 Fundamental Constants

There is a bound variable called CONSTANT which contains some basic fundamental constants about the universe
that you may find handy in your math operations.

New in version 0.18: Prior to kOS version 0.18, constant was a function call, and therefore to say constant:pi,
you had to say constant():pi. The function call constant() still exists and still works, but the new way
without the parentheses is preferred going forward, and the way with the parentheses may become deprecated later.
For the moment, both ways of doing it work.

Identifier Description
G Newton’s Gravitational Constant
E Base of the natural log (Euler’s number)
PI 𝜋
c Speed of light in a vacuum, in m/s.
AtmToKPa Conversion constant: Atmospheres to kiloPascals.
KPaToAtm Conversion constant: kiloPascals to Atmospheres.
DegToRad Conversion constant: Degrees to Radians.
RadToDeg Conversion constant: Radians to Degrees.

Constant:G
Newton’s Gravitational Constant, 6.67384E-11:

PRINT "Gravitational parameter of Kerbin is:".
PRINT constant:G * Kerbin:Mass.

Constant:E
Natural Log base “e”:

PRINT "e^2 is:".
PRINT constant:e ^ 2.

Constant:PI
Ratio of circumference of a circle to its diameter

Constant:C
Speed of light in a vacuum, in meters per second.

Note: In Kerbal Space Program, all physics motion is purely Newtonian. You can go faster than the speed
of light provided you have enough delta-V, and no time dilation effects will occur. The universe will behave

117



kOS Documentation, Release 0.18.2

entirely linearly even at speeds near c.

This constant is provided mainly for the benefit of people who are playing with the mod “RemoteTech” installed,
who may want to perform calculations about signal delays to hypothetical probes. (Note that if the probe already
has a connection, you can ask Remotetech directly what the signal delay is.

Constant:AtmToKPa
A conversion constant.

If you have a pressure measurement expressed in atmospheres of pressure, you can multiply it by this to get the
equivalent in kiloPascals (kiloNewtons per square meter).

Constant:KPaToATM
A conversion constant.

If you have a pressure measurement expressed in kiloPascals (kiloNewtons per square meter), you can multiply
it by this to get the equivalent in atmospheres.

Constant:DegToRad
A conversion constant.

If you have an angle measured in degrees, you can multiply it by this to get the equivalent measure in radians.
It is exactly the same thing as saying constant:pi / 180, except the result is pre-recorded as a constant
number and thus no division is performed at runtime.

Constant:RadToDeg
A conversion constant.

If you have an angle measured in radians, you can multiply it by this to get the equivalent measure in degrees.
It is exactly the same thing as saying 180 / constant:pi, except the result is pre-recorded as a constant
number and thus no division is performed at runtime.

6.2 Mathematical Functions

Function Description
ABS(a) absolute value
CEILING(a) round up
FLOOR(a) round down
LN(a) natural log
LOG10(a) log base 10
MOD(a,b) modulus
MIN(a,b) minimum
MAX(a,b) maximum
RANDOM() random number
ROUND(a) round to whole number
ROUND(a,b) round to nearest place
SQRT(a) square root

ABS(a)
Returns absolute value of input:

PRINT ABS(-1). // prints 1

CEILING(a)
Rounds up to the nearest whole number:

118 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

PRINT CEILING(1.887). // prints 2

FLOOR(a)
Rounds down to the nearest whole number:

PRINT FLOOR(1.887). // prints 1

LN(a)
Gives the natural log of the provided number:

PRINT LN(2). // prints 0.6931471805599453

LOG10(a)
Gives the log base 10 of the provided number:

PRINT LOG10(2). // prints 0.30102999566398114

MOD(a,b)
Returns remainder from integer division. Keep in mind that it’s not a traditional mathematical Euclidean division
where the result is always positive. The result has the same absolute value as mathematical modulo operation
but the sign is the same as the sign of dividend:

PRINT MOD(21,6). // prints 3
PRINT MOD(-21,6). // prints -3

MIN(a,b)
Returns The lower of the two values:

PRINT MIN(0,100). // prints 0

MAX(a,b)
Returns The higher of the two values:

PRINT MAX(0,100). // prints 100

RANDOM()
Returns a random floating point number in the range [0,1]:

PRINT RANDOM(). //prints a random number

ROUND(a)
Rounds to the nearest whole number:

PRINT ROUND(1.887). // prints 2

ROUND(a,b)
Rounds to the nearest place value:

PRINT ROUND(1.887,2). // prints 1.89

SQRT(a)
Returns square root:

PRINT SQRT(7.89). // prints 2.80891438103763

6.2. Mathematical Functions 119



kOS Documentation, Release 0.18.2

6.2.1 Trigonometric Functions

Function
SIN(a)
COS(a)
TAN(a)
ARCSIN(x)
ARCCOS(x)
ARCTAN(x)
ARCTAN2(x,y)

SIN(a)

Parameters

• a – (deg) angle

Returns sine of the angle

PRINT SIN(6). // prints 0.10452846326

COS(a)

Parameters

• a – (deg) angle

Returns cosine of the angle

PRINT COS(6). // prints 0.99452189536

TAN(a)

Parameters

• a – (deg) angle

Returns tangent of the angle

PRINT TAN(6). // prints 0.10510423526

ARCSIN(x)

Parameters

• x – (scalar)

Returns (deg) angle whose sine is x

PRINT ARCSIN(0.67). // prints 42.0670648

ARCCOS(x)

Parameters

• x – (scalar)

Returns (deg) angle whose cosine is x

PRINT ARCCOS(0.67). // prints 47.9329352

ARCTAN(x)

Parameters

• x – (scalar)

120 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

Returns (deg) angle whose tangent is x

PRINT ARCTAN(0.67). // prints 33.8220852

ARCTAN2(y,x)

Parameters

• y – (scalar)

• x – (scalar)

Returns (deg) angle whose tangent is 𝑦
𝑥

PRINT ARCTAN2(0.67, 0.89). // prints 36.9727625

The two parameters resolve ambiguities when taking the arctangent. See the wikipedia page about atan2 for
more details.

6.3 Vectors

Contents

• Creation
• Structure
• Operations and Methods

6.3.1 Creation

V(x,y,z)

Parameters

• x – (scalar) 𝑥 coordinate

• y – (scalar) 𝑦 coordinate

• z – (scalar) 𝑧 coordinate

Returns Vector

This creates a new vector from 3 components in (𝑥, 𝑦, 𝑧):

SET vec TO V(x,y,z).

Here, a new Vector called vec is created . The object Vector represents a three-dimensional euclidean
vector To deeply understand most vectors in kOS, you have to understand a bit about the underlying coordinate
system of KSP. If you are having trouble making sense of the direction the axes point in, go read that page.

Note: Remember that the XYZ grid in Kerbal Space Program uses a left-handed coordinate system.

6.3. Vectors 121

http://en.wikipedia.org/wiki/Atan2
http://en.wikipedia.org/wiki/Euclidean_vector
http://en.wikipedia.org/wiki/Euclidean_vector


kOS Documentation, Release 0.18.2

6.3.2 Structure

structure Vector

Table 6.1: Members
Suffix Type Get Set
X scalar yes yes
Y scalar yes yes
Y scalar yes yes
MAG scalar yes yes
NORMALIZED Vector yes no
SQRMAGNITUDE scalar yes no
DIRECTION Direction yes yes
VEC Vector yes no

Vector:X

Type scalar

Access Get/Set

The 𝑥 component of the vector.

Vector:Y

Type scalar

Access Get/Set

The 𝑦 component of the vector.

Vector:Z

Type scalar

Access Get/Set

The 𝑧 component of the vector.

Vector:MAG

Type scalar

Access Get/Set

The magnitude of the vector, as a scalar number, by the Pythagorean Theorem.

Vector:NORMALIZED

Type Vector

Access Get only

This creates a unit vector pointing in the same direction as this vector. This is the same effect as multiplying the
vector by the scalar 1 / vec:MAG.

Vector:SQRMAGNITUDE

Type scalar

Access Get only

122 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

The magnitude of the vector, squared. Use instead of vec:MAG^2 if you need to square of the magnitude as
this skips the step in the Pythagorean formula where you take the square root in the first place. Taking the square
root and then squaring that would introduce floating point error needlessly.

Vector:DIRECTION

Type Direction

Access Get/Set

GET: The vector rendered into a Direction (see note at the bottom of this page about information loss when
doing this).

SET: Tells the vector to keep its magnitude as it is but point in a new direction, adjusting its (𝑥, 𝑦, 𝑧) numbers
accordingly.

Vector:VEC

Type Vector

Access Get only

This is a suffix that creates a COPY of this vector. Useful if you want to copy a vector and then change the copy.
Normally if you SET v2 TO v1, then v1 and v2 are two names for the same vector and changing one would
change the other.

6.3.3 Operations and Methods

Method / Operator Return Type
* (asterisk) scalar or Vector
+ (plus) Vector
- (minus) Vector
- (unary) Vector
VDOT, VECTORDOTPRODUCT, * scalar
VCRS, VECTORCROSSPRODUCT Vector
VANG, VECTORANGLE scalar (deg)
VXCL, VECTOREXCLUDE Vector

*
Scalar multiplication or dot product of two Vectors. See also VECTORDOTPRODUCT:

SET a TO 2.
SET vec1 TO V(1,2,3).
SET vec2 TO V(2,3,4).
PRINT a * vec1. // prints: V(2,4,6)
PRINT vec1 * vec2. // prints: 20

Note that the unary minus operator is really a multiplication of the vector by a scalar of (-1):

PRINT -vec1. // these two both print the
PRINT (-1)*vec1. // exact same thing.

+, -
Vector addition and subtraction by a scalar or another Vector:

SET a TO 2.
SET vec1 TO V(1,2,3).
SET vec2 TO V(2,3,4).

6.3. Vectors 123



kOS Documentation, Release 0.18.2

PRINT vec1 + vec2. // prints: V(3,5,7)
PRINT vec2 - vec1. // prints: V(1,1,1)

Note that the unary minus operator is the same thing as multiplying the vector by a scalar of (-1), and is not
technically an addition or subtraction operator:

PRINT -vec1. // these two both print the
PRINT (-1)*vec1. // exact same thing.

VDOT(v1,v2)
Same as VECTORDOTPRODUCT(v1,v2) and v1 * v2.

VECTORDOTPRODUCT(v1,v2)

Parameters

• v1 – (Vector)

• v2 – (Vector)

Returns The vector dot-product

Return type scalar

This is the dot product of two vectors returning a scalar number. This is the same as v1 * v2:

SET vec1 TO V(1,2,3).
SET vec2 TO V(2,3,4).

// These will all print the value: 20
PRINT vec1 * vec2.
PRINT VDOT(vec1, vec2).
PRINT VECTORDOTPRODUCT(vec1, vec2).

VCRS(v1,v2)
Same as VECTORCROSSPRODUCT(v1,v2)

VECTORCROSSPRODUCT(v1,v2)

Parameters

• v1 – (Vector)

• v2 – (Vector)

Returns The vector cross-product

Return type Vector

The vector cross product of two vectors in the order (v1,v2) returning a new Vector:

SET vec1 TO V(1,2,3).
SET vec2 TO V(2,3,4).

// These will both print: V(-1,2,-1)
PRINT VCRS(vec1, vec2).
PRINT VECTORCROSSPRODUCT(vec1, vec2).

When visualizing the direction that a vector cross product will point, remember that KSP is using a left-handed
coordinate system, and this means a cross-product of two vectors will point in the opposite direction of what it
would had KSP been using a right-handed coordinate system.

VANG(v1,v2)
Same as VECTORANGLE(v1,v2).

124 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

VECTORANGLE(v1,v2)

Parameters

• v1 – (Vector)

• v2 – (Vector)

Returns Angle between two vectors

Return type scalar

This returns the angle between v1 and v2. It is the same result as:

arccos

(︂
𝑣1 · 𝑣2
|𝑣1 · 𝑣2|

)︂
or in KerboScript:

arccos( (VDOT(v1,v2) / VDOT(v1,v2):MAG ) )

VXCL(v1,v2)
Same as VECTOREXCLUDE(v1,v2)

VECTOREXCLUDE(v1,v2)
This is a vector, v2 with all of v1 excluded from it. In other words, the projection of v2 onto the plane that is
normal to v1.

Some examples of using the Vector object:

// initializes a vector with x=100, y=5, z=0
SET varname TO V(100,5,0).

varname:X. // Returns 100.
V(100,5,0):Y. // Returns 5.
V(100,5,0):Z. // Returns 0.

// Returns the magnitude of the vector
varname:MAG.

// Changes x coordinate value to 111.
SET varname:X TO 111.

// Lengthen or shorten vector to make its magnitude 10.
SET varname:MAG to 10.

// get vector pointing opposite to surface velocity.
SET retroSurf to (-1)*velocity:surface.

// use cross product to find normal to the orbit plane.
SET norm to VCRS(velocity:orbit, ship:body:position).

6.4 Directions

6.4. Directions 125



kOS Documentation, Release 0.18.2

Contents

• Creation
• Structure
• Operations and Methods
• Vectors and Directions

Direction objects represent a rotation starting from an initial point in KSP‘s coordinate system where the initial
state was looking down the +𝑧 axis, with the camera “up” being the +𝑦 axis. This exists primarily to enable automated
steering.

In your thinking, you can largely think of Directions as being Rotations and Rotations as being Directions. The two
concepts can be used interchangeably. Used on its own to steer by, a rotation from the default XYZ axes of the universe
into a new rotation does in fact provide an absolute direction, thus the name Direction for these objects even though
in reality they are just Rotations. It’s important to know that Directions are just rotations because you can use them to
modify other directions or vectors.

Note: When dealing with Directions (which are Rotations) in kOS, it is important to remember that KSP uses a
left-handed coordinate system. This affects the convention of which rotation direction is positive when calculating
angles.

6.4.1 Creation

Method Description
R(pitch,yaw,roll) Euler rotation
Q(x,y,z,rot) Quaternion
HEADING(dir,pitch) Compass heading
LOOKDIRUP(lookAt,lookUp) Looking along vector lookAt, rolled so that lookUp is upward.
ANGLEAXIS(degress,axisVector) A rotation that would rotate the universe around an axis
ROTATEFROMTO(fromVec,toVec) A rotation that would go from vectors fromVec to toVec
FACING From SHIP or TARGET
UP From SHIP
PROGRADE, etc. From SHIP, TARGET or BODY

R(pitch,yaw,roll)
A Direction can be created out of a Euler Rotation, indicated with the R() function, as shown below where
the pitch, yaw and roll values are in degrees:

SET myDir TO R( a, b, c ).

Q(x,y,z,rot)
A Direction can also be created out of a Quaternion tuple, indicated with the Q() function, as shown below
where x, y, and z are a Vector to rotate around, and rot is how many degrees to rotate:

SET myDir TO Q( x, y, z, rot ).

HEADING(dir,pitch)
A Direction can be created out of a HEADING() function. The first parameter is the compass heading, and
the second parameter is the pitch above the horizon:

SET myDir TO HEADING(degreesFromNorth, pitchAboveHorizon).

LOOKDIRUP(lookAt,lookUp)
A Direction can be created with the LOOKDIRUP function by using two vectors. This is like converting a

126 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

vector to a direction directly, except that it also provides roll information, which a single vector lacks. lookAt
is a vector describing the Direction’s FORE orientation (its local Z axis), and lookUp is a vector describing the
direction’s TOP orientation (its local Y axis). Note that lookAt and lookUp need not actually be perpendicualr
to each other - they just need to be non-parallel in some way. When they are not perpendicular, then a vector
resulting from projecting lookUp into the plane that is normal to lookAt will be used as the effective lookUp
instead:

// Aim up the SOI's north axis (V(0,1,0)), rolling the roof to point to the sun.
LOCK STEERING TO LOOKDIRUP( V(0,1,0), SUN:POSITION ).
//
// A direction that aims normal to orbit, with the roof pointed down toward the planet:
LOCK normVec to VCRS(SHIP:BODY:POSITION,SHIP:VELOCITY:ORBIT). // Cross-product these for a normal vector
LOCK STEERING TO LOOKDIRUP( normVec, SHIP:BODY:POSITION).

ANGLEAXIS(degress,axisVector)
A Direction can be created with the ANGLEAXIS function. It represents a rotation of degrees around an
axis of axisVector. To know which way a positive or negative number of degrees rotates, remember this is a
left-handed coordinate system:

// Pick a new rotation that is pitched 30 degrees from the current one, taking into account
// the ship's current orientation to decide which direction is the 'pitch' rotation:
//
SET pitchUp30 to ANGLEAXIS(-30,SHIP:STARFACING).
SET newDir to pitchUp30*SHIP:FACING.
LOCK STEERING TO newDir.

Note: The fact that KSP is using a left-handed coordinate system is important to keep in mind when visualizing the
meaning of an ANGLEAXIS function call. It affects which direction is positive when calculating angles.

ROTATEFROMTO(fromVec,toVec)
A Direction can be created with the ROTATEFROMTO function. It is one of the infinite number of rotations
that could rotate vector fromVec to become vector toVec (or at least pointing in the same direction as toVec, since
fromVec and toVec need not be the same magnitude). Note the use of the phrase “infinite number of”. Because
there’s no guarantee about the roll information, there are an infinite number of rotations that could qualify as
getting you from one vector to another, because there’s an infinite number of roll angles that could result and all
still fit the requirement:

SET myDir to ROTATEFROMTO( v1, v2 ).

Suffix terms from other structures
A Direction can be made from many suffix terms of other structures, as shown below:

SET myDir TO SHIP:FACING.
SET myDir TO TARGET:FACING.
SET myDir TO SHIP:UP.

Whenever a Direction is printed, it always comes out showing its Euler Rotation, regardless of how it was created:

// Initializes a direction to prograde
// plus a relative pitch of 90
SET X TO SHIP:PROGRADE + R(90,0,0).

// Steer the vessel in the direction
// suggested by direction X.
LOCK STEERING TO X.

// Create a rotation facing northeast,

6.4. Directions 127



kOS Documentation, Release 0.18.2

// 10 degrees above horizon
SET Y TO HEADING(45, 10).

// Steer the vessel in the direction
// suggested by direction X.
LOCK STEERING TO Y.

// Set by a rotation in degrees
SET Direction TO R(0,90,0).

6.4.2 Structure

structure Direction
The suffixes of a Direction cannot be altered, so to get a new Direction you must construct a new one.

Suffix Type Description
PITCH scalar

(deg)
Rotation around 𝑥 axis

YAW scalar
(deg)

Rotation around 𝑦 axis

ROLL scalar
(deg)

Rotation around 𝑧 axis

FOREVECTOR Vector This Direction’s forward vector (z axis after rotation).
VECTOR Vector Alias synonym for FOREVECTOR
TOPVECTOR Vector This Direction’s top vector (y axis after rotation).
UPVECTOR Vector Alias synonym for TOPVECTOR
STARVECTOR Vector This Direction’s starboard vector (z axis after rotation).
RIGHTVEC-
TOR

Vector Alias synonym for STARVECTOR

INVERSE DirectionThe inverse of this direction.
unary
minus

DirectionUsing the negation operator “-” on a Direction does the same thing as using
the :INVERSE suffix on it.

The Direction object exists primarily to enable automated steering. You can initialize a Direction using
a Vector or a Rotation. Direction objects represent a rotation starting from an initial point in KSP‘s
coordinate system where the initial state was looking down the +𝑧 axis, with the camera “up” being the +𝑦
axis. So for example, a Direction pointing along the 𝑥 axis might be represented as R(0,90,0), meaning
the initial 𝑧-axis direction was rotated 90 degrees around the 𝑦 axis.

If you are going to manipulate directions a lot, it’s important to note that the order in which the rotations occur
is:

1.First rotate around 𝑧 axis.

2.Then rotate around 𝑥 axis.

3.Then rotate around 𝑦 axis.

What this means is that if you try to ROLL and YAW in the same tuple, like so: R(0,45,45), you’ll end up
rolling first and then yawing, which might not be what you expected. There is little that can be done to change
this as it’s the native way things are represented in the underlying Unity engine.

Also, if you are going to manipulate directions a lot, it’s important to note how KSP‘s native coord system
works.

Direction:PITCH

Type scalar (deg)

128 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

Access Get only

Rotation around the 𝑥 axis.

Direction:YAW

Type scalar (deg)

Access Get only

Rotation around the 𝑦 axis.

Direction:ROLL

Type scalar (deg)

Access Get only

Rotation around the 𝑧 axis.

Direction:FOREVECTOR

Type Vector

Access Get only

Vector of length 1 that is in the same direction as the “look-at” of this Direction. Note that it is the same
meaning as “what the Z axis of the universe would be rotated to if this rotation was applied to the basis axes of
the universe”. When you LOCK STEERING to a direction, that direction’s FOREVECTOR is the vector the
nose of the ship will orient to. SHIP:FACING:FOREVECTOR is the way the ship’s nose is aimed right now.

Direction:TOPVECTOR

Type Vector

Access Get only

Vector of length 1 that is in the same direction as the “look-up” of this Direction. Note that it is the same
meaning as “what the Y axis of the universe would be rotated to if this rotation was applied to the basis axes of
the universe”. When you LOCK STEERING to a direction, that direction’s TOPVECTOR is the vector the roof
of the ship will orient to. SHIP:FACING:TOPVECTOR is the way the ship’s roof is aimed right now.

Direction:STARVECTOR

Type Vector

Access Get only

Vector of length 1 that is in the same direction as the “starboard side” of this Direction. Note that it is the
same meaning as “what the X axis of the universe would be rotated to if this rotation was applied to the basis
axes of the universe”. When you LOCK STEERING to a direction, that direction’s STARVECTOR is the vector
the right wing of the ship will orient to. SHIP:FACING:STARVECTOR is the way the ship’s right wing is aimed
right now.

Direction:INVERSE

Type Direction

Access Get only

Struct Gives a Direction with the opposite rotation around its axes.

Note: The difference between a :struct:‘Direction‘ and a ‘‘Vector‘‘

Vector and a Direction can be represented with the exact same amount of information: a tuple of 3 floating point
numbers. So you might wonder why it is that a Vector can hold information about the magnitude of the line segment,

6.4. Directions 129



kOS Documentation, Release 0.18.2

while a Direction cannot, given that both have the same amount of information. The answer is that a Direction
does contain one thing a Vector does not. A Direction knows which way is “up”, while a Vector does not. If
you tell kOS to LOCK STEERING to a Vector, it will be able to point the nose of the vessel in the correct direction,
but won’t know which way you want the roof of the craft rotated to. This works fine for axial symmetrical rockets but
can be a problem for airplanes.

6.4.3 Operations and Methods

You can use math operations on Direction objects as well. The next example uses a rotation of “UP” which is a
system variable describing a vector directly away from the celestial body you are under the influence of:

Supported Direction Operators:

Direction Multiplied by Direction Dir1 * Dir2 - This operator returns the result of rotating Dir2
by the rotation of Dir1. Note that the order of operations matters here. Dir1*Dir2 is not the same as
Dir2*Dir1. Example:

// A direction pointing along compass heading 330, by rotating NORTH by 30 degrees around UP axis:
SET newDir TO ANGLEAXIS(30,SHIP:UP) * NORTH.

Direction Multiplied by Vector Dir * Vec - This operator returns the result of rotating the vector by
Dir:

// What would the velocity of your ship be if it was angled 20 degrees to your left?
SET Vel to ANGLEAXIS(-20,SHIP:TOPVECTOR) * SHIP:VELOCITY:ORBIT.
// At this point Vel:MAG and SHIP:VELOCITY:MAG should be the same, but they don't point the same way

Direction Added to Direction Dir1 + Dir2 - This operator is less reliable because its exact behavior
depends on the order of operations of the UnityEngine’s X Y and Z axis rotations, and it can result in
gimbal lock. It’s supposed to perform a Euler rotation of one direction by another, but it’s preferred to
use Dir*Dir instead, as that doesn’t experience gimbal lock, and does not require that you know the exact
transformation order of Unity.

For vector operations, you may use the :VECTOR suffix in combination with the regular vector methods:

SET dir TO SHIP:UP.
SET newdir TO VCRS(SHIP:PROGRADE:VECTOR, dir:VECTOR)

6.4.4 Vectors and Directions

There are some consequences when converting from a Direction to a Vector and vice versa which should not be
overlooked.

A Vector and a Direction can be represented with the exact same amount of information: a tuple of 3 floating
point numbers. So you might wonder why it is that a Vector can hold information about the magnitude of the line
segment, while a Direction cannot, given that both have the same amount of information. The answer is that a
Direction does contain one thing a Vector does not. A Direction knows which way is “up”, while a Vector
does not. If you tell kOS to LOCK STEERING to a Vector, it will be able to point the nose of the vessel in the
correct direction, but won’t know which way you want the roof of the craft rotated to. This works fine for axial
symmetrical rockets but can be a problem for airplanes.

Therefore if you do this:

SET MyVec to V(100,200,300).
SET MyDir to MyVec:DIRECTION.

130 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

Then MyDir will be a Direction, but it will be a Direction where you have no control over which way is “up”
for it.

6.5 Geographic Coordinates

Contents

• Creation
• Structure
• Examples Usage

The GeoCoordinates object (also LATLNG) represents a latitude and longitude pair, which is a location on the
surface of a Body.

6.5.1 Creation

LATLNG(lat,lng)

Parameters

• lat – (deg) Latitude

• lng – (deg) Longitude

Returns GeoCoordinates

This function creates a GeoCoordiantes object with the given latitude and longitude. Once created it can’t
be changed. The GeoCoordinates:LAT and GeoCoordinates:LNG suffixes are get-only and cannot be
set. To switch to a new location, make a new call to LATLNG().

It is also possible to obtain a GeoCoordiates from some suffixes of some other structures. For example:

SET spot to SHIP:GEOPOSITION.

6.5.2 Structure

structure GeoCoordinates
Suffix Type Args Description
LAT scalar (deg) none Latitude
LNG scalar (deg) none Longitude
DISTANCE scalar (m) none distance from CPU Vessel
TERRAINHEIGHTscalar (m) none above or below sea level
HEADING scalar (deg) none absolute heading from CPU Vessel
BEARING scalar (deg) none relative direction from CPU Vessel
POSITION Vector (3D

Ship-Raw
coords)

none Position of the surface point.

ALTITUDEPOSITIONVector (3D
Ship-Raw
coords)

scalar (altitude
above sea level)

Position of a point above (or below) the surface
point, by giving the altitude number.

GeoCoordinates:LAT
The latitude of this position on the surface.

6.5. Geographic Coordinates 131



kOS Documentation, Release 0.18.2

GeoCoordinates:LNG
The longitude of this position on the surface.

GeoCoordinates:DISTANCE
Distance from the CPU_Vessel to this point on the surface.

GeoCoordinates:TERRAINHEIGHT
Distance of the terrain above “sea level” at this geographical position. Negative numbers are below “sea level.”

GeoCoordinates:HEADING
The absolute compass direction from the CPU_Vessel to this point on the surface.

GeoCoordinates:BEARING
The relative compass direction from the CPU_Vessel to this point on the surface. For example, if
the vessel is heading at compass heading 45, and the geo-coordinates location is at heading 30, then
GeoCoordinates:BEARING will return -15.

GeoCoordinates:POSITION
The ship-raw 3D position on the surface of the body, relative to the current ship’s Center of mass.

GeoCoordinates:ALTITUDEPOSITION
The ship-raw 3D position above or below the surface of the body, relative to the current ship’s Center of mass.
You pass in an altitude number for the altitude above “sea” level of the desired location.

6.5.3 Examples Usage

SET spot TO LATLNG(10, 20). // Initialize point at latitude 10,
// longitude 20

PRINT spot:LAT. // Print 10
PRINT spot:LNG. // Print 20

PRINT spot:DISTANCE. // Print distance from vessel to x
// (same altitude is presumed)

PRINT spot:HEADING. // Print the heading to the point
PRINT spot:BEARING. // Print the heading to the point

// relative to vessel heading

SET spot TO SHIP:GEOPOSITION. // Make spot into a location on the
// surface directly underneath the
// current ship

SET spot TO LATLNG(spot:LAT,spot:LNG+5). // Make spot into a new
// location 5 degrees east
// of the old one

// Point nose of ship at a spot 100,000 meters altitude above a
// particular known latitude of 50 east, 20.2 north:
LOCK STEERING TO LATLNG(50,20.2):ALTITUDEPOSITION(100000).

// A nice complex example:
// -------------------------
// Drawing an debug arrow in 3D space at the spot where the Geocoordinate 'spot' is:
// It starts at a position 100m above the ground altitude and is aimed down at
// the spot on the ground:
SET VD TO VECDRAWARGS(

spot:ALTITUDEPOSITION(spot:TERRAINHEIGHT+100),
spot:POSITION - spot:ALTITUDEPOSITION(TERRAINHEIGHT+100),

132 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

red, "THIS IS THE SPOT", 1, true).

PRINT "THESE TWO NUMBERS SHOULD BE THE SAME:".
PRINT (SHIP:ALTITIUDE - SHIP:GEOPOSITION:TERRAINHEIGHT).
PRINT ALT:RADAR.

6.6 Reference Frames

This page describes the (𝑥, 𝑦, 𝑧) reference frame used for most of kOS‘s vectors. kOS inherits its reference frame
mostly from the base Kerbal Space Program game itself. The coordinate system of Kerbal Space Program does
some strange things that don’t make a lot of sense at first. For nomenclature, the following terms are used in this
documentation:

Note: Be aware that Kerbal Space program (and in fact many of the games based on the Unity game engine) uses a
LEFT-handed coordinate system. kOS inherits this behavior from KSP.

In all the reference frames mentioned below, the orientation of the axes is left-handed. This means that if you imagine
opening your palm and pointing your fingers down the x-axis, then curling your fingers in the direction of the y-axis,
then sticking your thumb up, that the direction your thumb would have to be pointing to accomplish this task is the
direction of the z-axis if and only if you used your left hand to perform those steps. (If you do those steps with your
right hand, you get a z-axis in the opposite direction and that is known as a right handed coordinate system).

This is an important thing to keep in mind, as most mathematics and physics textbooks tend to draw examples using
a right handed coordinate system, and most students become familiar with that convention first. But for a variety of
reasons, many computer graphics systems have a tradition of using left-handed systems instead, and Kerbal Space
Program is one of them.

SHIP-RAW
The name of the reference frame in which the origin point is CPU Vessel (SHIP), and the rotation is identical to
KSP‘s native raw coordinate grid.

SOI-RAW
The name of the reference frame in which the origin point is the center of the SOI body, and the rotation is
identical to KSP‘s native raw coordinate grid.

RAW-RAW
The name of the reference frame in which both the origin point and the rotation of the axes is identical to KSP‘s
native raw coordinate grid. This is never exposed to the KerbalScript program, because the origin point is
meaningless to work with.

Note: It is hoped that this may be expanded in the future, and conversion routines provided to let people pick a
reference frame that makes sense depending on what the script is trying to do. At the moment the only reference
frames used are SHIP-RAW and SOI-RAW, as they match closely to what KSP is using internally.

6.6.1 Raw Orientation

The Y axis of KSP is the only consistent thing. Imagine a ray starting in the center of the SOI body and pointing
upward out through the north pole. That is the direction of the Y axis. (If you move to the SOI of a body with an
inclined spin, presumably it will also change the angle of the Y axis to point in the new direction of the body’s spin
axis).

6.6. Reference Frames 133



kOS Documentation, Release 0.18.2

The X and Z axes of the coordinate grid are then consequently aligned with the equator plane of the SOI body, 90
degrees to each other. KSP uses a left-handed coordinate system, so the Z axis will always be rotated 90 degrees to
the east of the X axis.

However, the X and Z axes are hard to predict where they’ll exactly be. They keep moving depending on where you
are, to the point where it’s impossible to get a fix on just which direction they’ll point.

6.6.2 Origin Position

The origin position of the (𝑥, 𝑦, 𝑧) coordinate grid in KSP is also a bit messy. It’s usually near but not exactly on the
current ship. kOS performs some conversions for you to make this a bit simpler and keep everything consistent.

Regardless of where the origin of the underlying KSP system is, in kOS, whenever a POSITION is reported, it will
always be reported in a frame of reference where the origin is located at the CPU Vessel.

However, for the sake of VELOCITY, the origin point of all vectors is usually not SHIP, but rather it’s the SOI body’s
center. This is because if the origin point was the SHIP, then the ship’s velocity would always be zero in that frame of
reference, and that would not be useful.

The makers of kOS are aware that this is not technically a proper frame of reference, because the origin point varies

134 Chapter 6. Mathematics and Basic Geometry



kOS Documentation, Release 0.18.2

depending on if you’re getting POSITION or getting VELOCITY. Fixing it at this point would break a lot of existing
scripts, however.

So the rule of thumb is:

• For POSITION returned by KSP, the SHIP-RAW reference frame is used: centered on SHIP, with raw axes
rotation.

• For VELOCITY returned by KSP, the SOI-RAW reference frame is used: centered on SOI Body, with raw axes
rotation.

6.6.3 Converting

Converting between SHIP-RAW and SOI-RAW reference frames is a simple matter of adding or subtracting the
SHIP:BODY:POSITION vector from the coordinate, to move the origin point. This is because both are using the same
axes rotation.

• Any SHIP-RAW vector Minus SHIP:BODY:POSITION Gives the vector in SOI-RAW coordinates.

• Any SOI-RAW vector Plus SHIP:BODY:POSITION Gives the vector in SHIP-RAW coordinates.

6.6. Reference Frames 135



kOS Documentation, Release 0.18.2

136 Chapter 6. Mathematics and Basic Geometry



CHAPTER 7

Command Reference

7.1 Flight Control

7.1.1 Cooked Control

Contents

• Unlocking controls
• Tuning cooked steering
• Advantages/Disadvantages

For more information, check out the documentation for the SteeringManager structure.

In this style of controlling the craft, you do not steer the craft directly, but instead select a goal direction and let kOS
pick the way to steer toward that goal. This method of controlling the craft consists primarily of the following two
commands:

LOCK THROTTLE TO value.
This sets the main throttle of the ship to value. Where value is a floating point number between 0.0 and 1.0. A
value of 0.0 means the throttle is idle, and a value of 1.0 means the throttle is at maximum. A value of 0.5 means
the throttle is at the halfway point, and so on.

LOCK STEERING TO value.
This sets the direction kOS should point the ship where value is a Vector or a Direction created from a
Rotation or Heading:

Rotation

A Rotation expressed as R(pitch,yaw,roll). Note that pitch, yaw and roll are not
based on the horizon, but based on an internal coordinate system used by KSP that is hard
to use. Thankfully, you can force the rotation into a sensible frame of reference by adding
a rotation to a known direction first.

To select a direction that is 20 degrees off from straight up:

LOCK STEERING TO Up + R(20,0,0).

To select a direction that is due east, aimed at the horizon:

LOCK STEERING TO North + R(0,90,0).

137



kOS Documentation, Release 0.18.2

UP and NORTH are the only two predefined rotations.

Heading

A heading expressed as HEADING(compass, pitch). This will aim 30 degrees above
the horizon, due south:

LOCK STEERING TO HEADING(180, 30).

Vector

Any vector can also be used to lock steering:

LOCK STEERING TO V(100,50,10).

Note that the internal coordinate system for (X,Y,Z) is quite complex to explain. To aim
in the opposite of the surface velocity direction:

LOCK STEERING TO (-1) * SHIP:VELOCITY:SURFACE.

The following aims at a vector which is the cross product of velocity and direction down to
the SOI planet - in other words, it aims at the “normal” direction to the orbit:

LOCK STEERING TO VCRS(SHIP:VELOCITY:ORBIT, BODY:POSITION).

Like all LOCK expressions, the steering and throttle continually update on their own when using this style of control.
If you lock your steering to velocity, then as your velocity changes, your steering will change to match it. Unlike with
other LOCK expressions, the steering and throttle are special in that the lock expression gets executed automatically
all the time in the background, while other LOCK expressions only get executed when you try to read the value of the
variable. The reason is that the kOS computer is constantly querying the lock expression multiple times per second as
it adjusts the steering and throttle in the background.

Unlocking controls

If you LOCK the THROTTLE or STEERING, be aware that this prevents the user from manually controlling them.
Until they unlock, the manual controls are prevented from working. You can free up the controls by issuing these two
commands:

UNLOCK STEERING.
UNLOCK THROTTLE.

When the program ends, these automatically unlock as well, which means that to control a craft you must make sure
the program doesn’t end. The moment it ends it lets go of the controls.

Tuning cooked steering

New in version 0.18.0: Version 0.18 of kOS completely gutted the internals of the old steering system and replaced
them with the system described below. Anything said below this point is pertinent to version 0.18 and higher only.

While cooked steering tries to come balanced to perform decently without user interaction, there are some instances
where you may need to help tune the behavior. There are a number of settings you can adjust to tweak the behavior
of the cooked steering if it’s not performing exactly as you’d like. It may be the case that making your own control
mechanism from scratch, while entirely possible with kOS, might be unnecessary if all you really want to do is just
make the cooked steering behave slightly differently.

The adjustments described below all come from the SteeringManager structure, which has its own detailed documen-
tation page.

138 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

Some simple suggestions to try fixing common problems

If you don’t want to understand the intricate details of the cooked steering system, here’s some quick suggestions for
changes to the settings that might help solve some problems, in the list below:

• problem: A large vessel with low torque doesn’t seem to be even trying to rotate very quickly. The controls
may be fluctuating around the zero point, but it doesn’t seem to want to even try to turn faster.

– solution: Increase STEERINGMANAGER:MAXSTOPPINGTIME to about 5 or 10 seconds or so.
Also, slightly increase STEERINGMANAGER:PITCHPID:KD and STEERINGMANAGER:YAWPID:KD
to about 1 or 2 as well to go with it.

– explanation: Once the steering manager gets such a ship rotating at a tiny rate, it stops trying to make it
rotate any faster than that because it’s “afraid” of allowing it to obtain a larger momentum than it thinks
it could quickly stop. It needs to be told that in this case it’s okay to build up more “seconds worth” of
rotational velocity. The reason for increasing the Kd term as well is to tell it to anticipate the need to
starting slowing down rotation sooner than it normally would.

• problem: A vessel seems to reasonably come to the desired direction sensibly, but once it’s there the ship
vibrates back and forth by about 1 degree or less excessively around the setpoint.

– solution: Increase STEERINGMANAGER:PITCHTS and STEERINGMANAGER:YAWTS to several sec-
onds.

– explanation: Once it’s at the desired orientation and it has mostly zeroed the rotational velocity, it’s trying
to hold it there with microadjustments to the controls, and those microadjustments are “too tight”.

• problem: The vessel’s nose seems to be waving slowly back and forth across the set direction, taking too long
to center on it, and you notice the control indicators are pushing all the way to the extremes as it does so.

– solution: Increase STEERINGMANAGER:PITCHPID:KD and STEERINGMANGER:YAWPID:KD.

– explanation: The ship is trying to push its rotation rate too high when almost at the setpoint. It needs to
anticipate the fact that it is going to reach the desired direction and start slowing down BEFORE it gets
there.

• problem: The vessel’s nose seems to be waving slowly back and forth across the set direction, taking too long
to center on it, but you notice that the control indicators are NOT pushing all the way to the extremes as it does
so. Instead they seem to be staying low in magnitude, wavering around zero and may be getting smaller over
time.

– solution: Decrease STEERINGMANAGER:PITCHTS and/or STEERINGMANAGER:YAWTS

– explanation: While larger values for the settling time on the Torque PID controller will help to smooth
out spikes in the controls, it also results in a longer time period before the steering comes to a rest at the
setpoint (also knows as settling). If you had previously increased the settling time to reduce oscillations,
try picking a value half way between the default and the new value you previously selected.

But to understand how to tune the cooked steering in a more complex way than just with that simple list, you first have
to understand what a PID controller is, at least a little bit, so you know what the settings you can tweak actually do.

If you don’t know what a PID controller is and want to learn more, you can read numerous descriptions of the concept
on the internet that can be found in moments by a web search. If you just want to know a two minute explanation for
the sake of tuing the cooked steering a bit, read on.

Quick and Dirty description of a PID controller

You can think of a PID controller as a magic mathematical black box that can learn where to set a control lever in
order to achieve a given goal. A good example of this is cruise control on a car. You tell the cruise control what speed

7.1. Flight Control 139



kOS Documentation, Release 0.18.2

you’d like it to maintain, and it attempts to move the accelerator pedal to the necessary position that will maintain that
constant speed.

That, in a nutshell is the goal of a PID controller - to perform tasks like that. You have control over a lever or dial of
some sort, and it indirectly affects a phenomenon you can measure, and you feed the mathematical black box of the
PID controller the measurement of the phenomenon, and obey its instructions of where to set the control lever. Over
time, the PID controller, under the assumption that you are obeying its instructions of where to set the control lever,
learns how to fine tune its commands about how to set the lever to get the measurement to settle on the value you asked
for.

A more complex discussion of PID controllers than that is outside the scope of this document, but you can check out
the PID Loop tutorial.

Cooked Steering’s use of PID controllers

kOS’s cooked steering uses two nested PID controllers per axis of rotation:

Seek direction Current Direction Measurement
| |
| |

\|/ \|/
+-seek me---------cur val---+
| |
| Rotational Velocity PID |
| |
+-output--------------------+

desired
rotational
velocity
(i.e. "I'd like to be rotating at 3 degrees per second downward")
|
|
| Current Rotational Velocity measurement
| |
| |

\|/ \|/
+-seek me---------cur val---+
| |
| Torque PID |
| |
+-output--------------------+

desired
control
setting
(i.e. "ship:control:pitch should be -0.2")
|
|
|
|

\|/
Feed this control value to KSP. (This is the value you can see
on the control indicator meters in the lower-left of the screen).

The Rotational Velocity PID The first PID controller looks at the current direction the ship is pointed, versus the
direction the ship is meant to be pointed, and uses the offset between the two to decide how to set the desired rotational
velocity (rate at which the angle is changing).

140 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

The suffixes to SteeringManager allow direct manipulation of the rotational velocity’s PID tuning parameters.

The Torque PID But there is no such thing as a lever that directly controls the rotational velocity. What there is, is
a lever that directly controls the rotational acceleration. When you pull on the yoke (i.e. hold down the “S” key), you
are telling the ship to either rotate faster or slower than it already is.

So given a result from the Rotational Velocity PID, with a desired rotational velocity to seek, the second PID controller
takes over, the Torque PID, which uses that information to choose how to set the actual controls themselves (i.e. the
WASDQE controls) to accelerate toward that goal rotational velocity.

The suffixes to SteeringManager don’t quite allow direct manipulation of the torque PID tuning parameters Kp, Ki,
and Kd, because they are calculated indirectly from the ship’s own attributes. However, there are several suffixes to
SteeringManager that allow you to make indirect adjustments to them that are used in calculating the values it uses
for Kp, Ki, and Kd.

This technique of using two different PID controllers, the first one telling the second one which seek value to use, and
the second one actually being connected to the control “lever”, is one of many ways of dealing with a phenomenon
with two levels of indirection from the control.

Keeping the above two things separate, the rotational velocity PID versus the Torque PID, is important in knowing
which setting you need to tweak in order to achieve the desired effect.

One pair of PID’s per axis of rotation The above pair of controllers is replicated per each of the 3 axes of rotation,
for a total of 6 altogether. Some of the settings you can adjust affect all 3 axes together, while others are specific to
just one. See the descriptions of each setting carefully to know which is which.

Corrects 2 axes first, then the 3rd The cooked steering tries to correct first the pitch and yaw, to aim the rocket
at the desired pointing vector, then only after it’s very close to finishing that task does it allow the 3rd axis, the roll
axis, to correct itself. This is because if you try correcting all three at the same time, it causes the cooked steering to
describe a curved arc toward its destination orientation, rather than rotating straight towards it.

This behavior is correct for rockets with radial symmetry, but is probably a bit wrong for trying to steer an airplane to
a new heading while in atmosphere. For flying an airplane to a new heading, it’s still best to make your own control
scheme from scratch with raw steering.

The settings to change First, you can modify how kOS decides how fast the ship should turn:

// MAXSTOPPINGTIME tells kOS how to calculate the maximum allowable
// angular velocity the Rotational Velocity PID is allowed to output.
// Increasing the value will result in the ship turning
// faster, but it may introduce more overshoot.
// Adjust this setting if you have a small amount of torque on a large mass,
// or if your ship appears to oscillate back and forth rapidly without
// moving towards the target direction.
SET STEERINGMANAGER:MAXSTOPPINGTIME TO 10.

// You can also modify the PID constants that calculate desired angular
// velocity based on angular error, in the angular velocity PID controller.
// Note that changes made directly to the PIDLoop's MINIMUM and MAXIMUM
// suffixes will be overwritten based on the value MAXSTOPPINGTIME, the
// ship's torque and moment of inertia.
// These values will require precision and testing to ensure consistent
// performance.
// Beware of large KD values: Due to the way angular velocity and part

7.1. Flight Control 141



kOS Documentation, Release 0.18.2

// facing directions are calculated in KSP, it is normal to have small rapid
// fluctuations which may introduce instability in the derivative component.
SET STEERINGMANAGER:PITCHPID:KP TO 0.85.
SET STEERINGMANAGER:PITCHPID:KI TO 0.5.
SET STEERINGMANAGER:PITCHPID:KD TO 0.1.

Second, you can change how the controls are manipulated to achieve the desired angular velocity. This is for the
Torque PID mentioned above. Internally, kOS uses the ship’s available torque and moment of inertial to dynamically
calculate the PID constants. Then the desired torque is calculated based on the desired angular velocity. The steering
controls are then set based on the the percentage the desired torque is of the available torque. You can change the
settling time for the torque calculation along each axis:

// Increase the settling time to slow down control reaction time and
// reduce control spikes. This is helpful in vessels that wobble enough to
// cause fluctuations in the measured angular velocity.
// This is recommended if your ship turns towards the target direction well
// but then oscillates when close to the target direction.
SET STEERINGMANAGER:PITCHTS TO 10.
SET STEERINGMANAGER:ROLLTS TO 5.

If you find that kOS is regularly miscalculating the available torque, you can also define an adjust bias, or factor.
Check out these SteeringManager suffixes for more details: PITCHTORQUEADJUST, YAWTORQUEADJUST,
ROLLTORQUEADJUST, PITCHTORQUEFACTOR, YAWTORQUEFACTOR, ROLLTORQUEFACTOR

Advantages/Disadvantages

The advantage of “Cooked” control is that it is simpler to write scripts for, but the disadvantage is that you have only
partial control over the details of the motion.

Cooked controls perform best on ships that do not rely heavily on control surfaces, have medium levels of torque,
and are structurally stable. You can improve the control by placing the ship’s root part or control part close to the
center of mass (preferablly both). Adding struts to critical joints (like decouplers) or installing a mod like Kerbal Joint
Reinforcement will also help.

But because of the impossibility of finding one setting that is universally correct for all possible vessels, sometimes
the only way to make cooked steering work well for you is to adjust the parameters as described above, or to make
your own steering control from scratch using raw steering.

7.1.2 Raw Control

If you wish to have your kOS script manipulate a vessel’s flight controls directly in a raw way, rather than relying
on kOS to handle the flying for you, then this is the type of structure you will need to use to do it. This is offered
as an alternative to using the combination of LOCK STEERING and LOCK THROTTLE commands. To obtain the
CONTROL variable for a vessel, use its :CONTROL suffix:

SET controlStick to SHIP:CONTROL.
SET controlStick:PITCH to 0.2.

Unlike with so-called “Cooked” steering, “raw” steering uses the SET command, not the LOCK command. Using
LOCK with these controls won’t work. When controlling the ship in a raw way, you must decide how to move the
controls in detail. Here is another example:

SET SHIP:CONTROL:YAW to 0.2.

This will start pushing the ship to rotate a bit faster to the right, like pushing the D key gently. All the following values
are set between −1 and +1. Zero means the control is neutral. You can set to values smaller in magnitude than −1
and +1 for gentler control:

142 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

print "Gently pushing forward for 3 seconds.".
SET SHIP:CONTROL:FORE TO 0.2.
SET now to time:seconds.
WAIT until time:seconds > now + 3.
SET SHIP:CONTROL:FORE to 0.0.

print "Gently Pushing leftward for 3 seconds.".
SET SHIP:CONTROL:STARBOARD TO -0.2.
SET now to time:seconds.
WAIT until time:seconds > now + 3.
SET SHIP:CONTROL:STARBOARD to 0.0.

print "Starting an upward rotation.".
SET SHIP:CONTROL:PITCH TO 0.2.
SET now to time:seconds.
WAIT until time:seconds > now + 0.5.
SET SHIP:CONTROL:PITCH to 0.0.

print "Giving control back to the player now.".
SET SHIP:CONTROL:NEUTRALIZE to True.

One can use SHIP:CONTROL:ROTATION and SHIP:CONTROL:TRANSLATION to see the ship’s current situation.

Raw Flight Controls Reference

These “Raw” controls allow you the direct control of flight parameters while the current program is running.

Note: The MAINTHROTTLE requires active engines and, of course, sufficient and appropriate fuel. The rotational
controls YAW, PITCH and ROW require active reaction wheels with sufficient energy or RCS to be ON with properly
placed thrusters and appropriate fuel. The translational controls FORE, STARBOARD and TOP require RCS to be ON
with properly placed thrusters and appropriate fuel.

Suffix Type, Range Equivalent Key
MAINTHROTTLE scalar [0,1] LEFT-CTRL, LEFT-SHIFT
YAW scalar [-1,1] D, A
PITCH scalar [-1,1] W, S
ROLL scalar [-1,1] Q, E
ROTATION Vector (YAW,PITCH,ROLL)
YAWTRIM scalar [-1,1] ALT+D, ALT+A
PITCHTRIM scalar [-1,1] ALT+W, ALT+S
ROLLTRIM scalar [-1,1] ALT+Q, ALT+E
FORE scalar [-1,1] N, H
STARBOARD scalar [-1,1] L, J
TOP scalar [-1,1] I, K
TRANSLATION Vector (STARBOARD,TOP,FORE)
WHEELSTEER scalar [-1,1] A, D
WHEELTHROTTLE scalar [-1,1] W, S
WHEELSTEERTRIM scalar [-1,1] ALT+A, ALT+D
WHEELTHROTTLETRIM scalar [-1,1] ALT+W, ALT+S
NEUTRAL boolean Is kOS Controlling?
NEUTRALIZE boolean Releases Control

SHIP:CONTROL:MAINTHROTTLE
Set between 0 and 1 much like the cooked flying LOCK THROTTLE command.

7.1. Flight Control 143



kOS Documentation, Release 0.18.2

SHIP:CONTROL:YAW
This is the rotation about the “up” vector as the pilot faces forward. Essentially left (−1) or right (+1).

SHIP:CONTROL:PITCH
Rotation about the starboard vector up (+1) or down (−1).

SHIP:CONTROL:ROLL
Rotation about the logintudinal axis of the ship left-wing-down (−1) or left-wing-up (+1).

SHIP:CONTROL:ROTATION
This is a Vector object containing (YAW, PITCH, ROLL) in that order.

SHIP:CONTROL:YAWTRIM
Controls the YAW of the rotational trim.

SHIP:CONTROL:PITCHTRIM
Controls the PITCH of the rotational trim.

SHIP:CONTROL:ROLLTRIM
Controls the ROLL of the rotational trim.

SHIP:CONTROL:FORE
Controls the translation of the ship forward (+1) or backward (−1).

SHIP:CONTROL:STARBOARD
Controls the translation of the ship to the right (+1) or left (−1) from the pilot’s perspective.

SHIP:CONTROL:TOP
Controls the translation of the ship up (+1) or down (−1) from the pilot’s perspective.

SHIP:CONTROL:TRANSLATION
Controls the translation as a Vector (STARBOARD, TOP, FORE).

SHIP:CONTROL:WHEELSTEER
Turns the wheels left (−1) or right (+1).

SHIP:CONTROL:WHEELTHROTTLE
Controls the wheels to move the ship forward (+1) or backward (−1) while on the ground.

SHIP:CONTROL:WHEELSTEERTRIM
Controls the trim of the wheel steering.

SHIP:CONTROL:WHEELTHROTTLETRIM
Controls the trim of the wheel throttle.

SHIP:CONTROL:NEUTRAL
Returns true or false depending if kOS has any set controls. This is not settable.

SHIP:CONTROL:NEUTRALIZE
This causes manual control to let go. When set to true, kOS lets go of the controls and allows the player to
manually control them again. This is not gettable.

Unlocking controls

Setting any one of SHIP:CONTROL values will prevent player from manipulating that specific control manually.
Other controls will not be locked. To free any single control, set it back to zero. To give all controls back to the player
you must execute:

SET SHIP:CONTROL:NEUTRALIZE to TRUE.

144 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

Advantages/Disadvantages

The control over RCS translation requires the use of Raw control. Also, with raw control you can choose how gentle
to be with the controls and it can be possible to control wobbly craft better with raw control than with cooked control.

7.1.3 Pilot Input

This is not, strictly speaking, a method of controlling the craft. “Pilot” controls are a way to read the input from
the pilot. Most of these controls share the same name as their flight control, prefixed with PILOT (eg YAW and
PILOTYAW) the one exception to this is the PILOTMAINTHROTTLE. This suffix has a setter and allows you to
change the behavior of the throttle that persists even after the current program ends:

SET SHIP:CONTROL:PILOTMAINTHROTTLE TO 0.

Will ensure that the throttle will be 0 when execution stops. These suffixes allow you to read the input given to the
system by the user.

structure Control
Suffix Type, Range Equivalent Key
PILOTMAINTHROTTLE scalar [0,1] LEFT-CTRL, LEFT-SHIFT
PILOTYAW scalar [-1,1] D, A
PILOTPITCH scalar [-1,1] W, S
PILOTROLL scalar [-1,1] Q, E
PILOTROTATION Vector (YAW,PITCH,ROLL)
PILOTYAWTRIM scalar [-1,1] ALT+D, ALT+A
PILOTPITCHTRIM scalar [-1,1] ALT+W, ALT+S
PILOTROLLTRIM scalar [-1,1] ALT+Q, ALT+E
PILOTFORE scalar [-1,1] N, H
PILOTSTARBOARD scalar [-1,1] L, J
PILOTTOP scalar [-1,1] I, K
PILOTTRANSLATION Vector (STARBOARD,TOP,FORE)
PILOTWHEELSTEER scalar [-1,1] A, D
PILOTWHEELTHROTTLE scalar [-1,1] W, S
PILOTWHEELSTEERTRIM scalar [-1,1] ALT+A, ALT+D
PILOTWHEELTHROTTLETRIM scalar [-1,1] ALT+W, ALT+S
PILOTNEUTRAL boolean Is kOS Controlling?

SHIP:CONTROL:PILOTMAINTHROTTLE
Returns the pilot’s input for the throttle. This is the only PILOT variable that is settable and is used to set the
throttle upon termination of the current kOS program.

SHIP:CONTROL:PILOTYAW
Returns the pilot’s rotation input about the “up” vector as the pilot faces forward. Essentially left (−1) or right
(+1).

SHIP:CONTROL:PILOTPITCH
Returns the pilot’s rotation input about the starboard vector up (+1) or down (−1).

SHIP:CONTROL:PILOTROLL
Returns the pilot’s rotation input about the logintudinal axis of the ship left-wing-down (−1) or left-wing-up
(+1).

SHIP:CONTROL:PILOTROTATION
Returns the pilot’s rotation input as a Vector object containing (YAW, PITCH, ROLL) in that order.

7.1. Flight Control 145



kOS Documentation, Release 0.18.2

SHIP:CONTROL:PILOTYAWTRIM
Returns the pilot’s input for the YAW of the rotational trim.

SHIP:CONTROL:PILOTPITCHTRIM
Returns the pilot’s input for the PITCH of the rotational trim.

SHIP:CONTROL:PILOTROLLTRIM
Returns the pilot’s input for the ROLL of the rotational trim.

SHIP:CONTROL:PILOTFORE
Returns the the pilot’s input for the translation of the ship forward (+1) or backward (−1).

SHIP:CONTROL:PILOTSTARBOARD
Returns the the pilot’s input for the translation of the ship to the right (+1) or left (−1) from the pilot’s perspec-
tive.

SHIP:CONTROL:PILOTTOP
Returns the the pilot’s input for the translation of the ship up (+1) or down (−1) from the pilot’s perspective.

SHIP:CONTROL:PILOTTRANSLATION
Returns the the pilot’s input for translation as a Vector (STARBOARD, TOP, FORE).

SHIP:CONTROL:PILOTWHEELSTEER
Returns the the pilot’s input for wheel steering left (−1) or right (+1).

SHIP:CONTROL:PILOTWHEELTHROTTLE
Returns the the pilot’s input for the wheels to move the ship forward (+1) or backward (−1) while on the
ground.

SHIP:CONTROL:PILOTWHEELSTEERTRIM
Returns the the pilot’s input for the trim of the wheel steering.

SHIP:CONTROL:PILOTWHEELTHROTTLETRIM
Returns the the pilot’s input for the trim of the wheel throttle.

SHIP:CONTROL:PILOTNEUTRAL
Returns true or false if the pilot is active or not.

Be aware that kOS can’t control a control at the same time that a player controls it. If kOS is taking control of the
yoke, then the player can’t manually control it. Remember to run:

SET SHIP:CONTROL:NEUTRALIZE TO TRUE.

after the script is done using the controls, or the player will be locked out of control.

7.1.4 Ship Systems

e.g.:

set somepart to ship:partstagged("my favorite docking port")[0].
somepart:CONTROLFROM().

If you have a handle on a part, from LIST PARTS, you can select that part to set the orientation of the
craft, just like using the “control from here” in the right-click menu in the game. For more information
see Part:CONTROLFROM . All vessels must have at least one “control from” part on them somewhere,
which is why there’s no mechanism for un-setting the “control from” setting other than to pick another
part and set it to that part instead.

RCS

Access Toggle ON/OFF

146 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

Turns the RCS on or off, like using R at the keyboard:

RCS ON.

SAS

Access Toggle ON/OFF

Turns the SAS on or off, like using T at the keybaord:

SAS ON.

SET SASMODE TO value.

Access Get/Set

Type string

Getting this variable will return the currently selected mode. Where value is one of the valid strings listed
below, this will set the stock SAS mode for the cpu vessel:

SET SASMODE TO value.

It is the equivalent to clicking on the buttons next to the nav ball while manually piloting the craft, and
will respect the current mode of the nav ball (orbital, surface, or target velocity). Valid strings for value
are "PROGRADE", "RETROGRADE", "NORMAL", "ANTINORMAL", "RADIALOUT", "RADIALIN",
"TARGET", "ANTITARGET", MANEUVER, "STABILITYASSIST", and "STABILITY". A null or empty
string will default to stability assist mode, however any other invalid string will throw an exception. This feature
will respect career mode limitations, and will throw an exception if the current vessel is not able to use the mode
passed to the command. An exception is also thrown if "TARGET" or "ANTITARGET" are used, but no target
is selected.

Warning: SASMODE does not work with RemoteTech
Due to the way that RemoteTech disables flight control input, the built in SAS modes do not function properly
when there is no connection to the KSC or a Command Center. If you are writing scripts for use with RemoteTech,
make sure to take this into account.

LIGHTS

Access Toggle ON/OFF

Turns the lights on or off, like using the U key at the keyboard:

LIGHTS ON.

BRAKES

Access Toggle ON/OFF

Turns the brakes on or off, like clicking the brakes button, though not like using the B key, because they stay on:

BRAKES ON.

TARGET

Access Get/Set

Type string

Where name is the name of a target vessel or planet, this will set the current target:

SET TARGET TO name.

7.1. Flight Control 147



kOS Documentation, Release 0.18.2

Note that the above options also can refer to a different vessel besides the current ship, for example,
TARGET:THROTTLE to read the target’s throttle. But not all “set” or “lock” options will work with a different
vessel other than the current one, because there’s no authority to control a craft the current program is not attached to.

7.1.5 Time Warping

WARP
You may use the WARPTO(time) function to automatically warp to the specified time (given in seconds game
universal time). If you need more precise control, you can use the other options below.:

WARPTO(TIME:SECONDS + 60 * 10). // warp to a time 10 minutes in the future

The WARP global variable can be set to change the game warp to a value between 0 and 7 (for rails warp) or 0
to 3 (for physics warp):

SET WARP TO 5. // Sets warp to 1000x
SET WARP TO 0. // Sets warp to 1x (real time)

You may also choose which warp mode you wish the WARP command to invoke- physics warp (capped at 4x)
or rails warp:

SET WARPMODE TO "PHYSICS".
SET WARPMODE TO "RAILS".

WARPMODE can be set to a string to choose the warp. It must be one of the two strings mentioned above.

The difference is the same as that experienced in the game between physics warp and ‘rails’ warp (sometimes
called ‘time warp’) although that term is confusingly ambiguous.

Table 7.1: RAILS WARP
MODES

MODE MEANING
0 1x
1 5x
2 10x
3 50x
4 100x
5 1000x
6 10000x
7 100000x

Table 7.2: PHYSICS
WARP MODES

MODE MEANING
0 1x
1 2x
2 3x
3 4x

Unless otherwise stated, all controls that a kOS CPU attempts will be done on the CPU Vessel. There are three styles
of control:

Cooked Give a goal direction to seek, and let kOS find the way to maneuver toward it.

Raw Control the craft just like a manual pilot would do from a keyboard or joystick.

Pilot This is the stock way of controlling craft, the state of which can be read in KerboScript.

148 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

Warning: SAS OVERRIDES kOS
With the current implementation of flight control, you may now leave SAS turned on in "STABILITYASSIST"
mode, and it will not override kOS‘s attempts to steer the ship. However, it will fight and/or override kOS‘s
attempts to steer when using any other mode. In order for kOS to be able to turn the ship in other modes, you
need to set SAS OFF or SET SASMODE TO "STABILITYASSIST". You should take care in your scripts to
manage the use of SAS and SASMODE appropriately. It is common for people writing kOS scripts to explicitly start
them with a use of the SAS OFF and/or SET SASMODE TO "STABILITYASSIST" commands just in case
you forgot to turn it off before running the script. You could also store the current state in a temporary variable,
and re-set it at the conclusion of your script.

7.2 Predictions of Flight Path

Note: Manipulating the maneuver nodes

To alter the maneuver nodes on a vessel’s flight plan, use the ADD and REMOVE commands as described on the
maneuver node manipulation page.

Using the Add and Remove commands as described on that page, you may alter the flight plan of the CPU_vessel,
however kOS does not automatically execute the nodes. You still have to write the code to decide how to successfully
execute a planned maneuver node.

Warning: Be aware that a limitation of KSP makes it so that some vessels’ manuever node systems cannot be
accessed. KSP appears to limit the maneuver node system to only functioning on the current PLAYER vessel,
under the presumption that its the only vessel that needs them, as ever other vessel cannot be manuevered. kOS can
manuever a vessel that is not the player vessel, but it cannot overcome this limitation of the base game that unloads
the maneuver node system for other vessels.
Be aware that the effect this has is that when you try to predict another vessel’s position, it will sometimes give
you answers that presume that other vessel will be purely drifting, and not following its maneuver nodes.

The following prediction functions do take into account the future maneuver nodes planned, and operate under the
assumption that they will be executed as planned.

These return predicted information about the future position and velocity of an object.

POSITIONAT(orbitable,time)

Parameters

• orbitable – A Vessel, Body or other Orbitable object

• time – Time of prediction

Type orbitable Orbitable

Type time TimeSpan

Returns A position Vector expressed as the coordinates in the ship-center-raw-rotation frame

Returns a prediction of where the Orbitable will be at some universal Timestamp. If the Orbitable is a
Vessel, and the Vessel has planned maneuver nodes, the prediction assumes they will be executed exactly
as planned.

VELOCITYAT(orbitable,time)

Parameters

7.2. Predictions of Flight Path 149



kOS Documentation, Release 0.18.2

• orbitable – A Vessel, Body or other Orbitable object

• time – Time of prediction

Type orbitable Orbitable

Type time TimeSpan

Returns An ObitalVelocity structure.

Returns a prediction of what the Orbitable’s velocity will be at some universal Timestamp. If the Orbitable
is a Vessel, and the Vessel has planned maneuver nodes, the prediction assumes they will be executed
exactly as planned.

ORBITAT(orbitable,time)

Parameters

• orbitable – A Vessel, Body or other Orbitable object

• time – Time of prediction

Type orbitable Orbitable

Type time TimeSpan

Returns An Orbit structure.

Returns the Orbit patch where the Orbitable object is predicted to be at some universal Timestamp. If the
Orbitable is a Vessel, and the Vessel has planned maneuver nodes, the prediction assumes they will be
executed exactly as planned.

Examples:

//kOS
// test the future position and velocity prediction.
// Draws a position and velocity vector at a future predicted time.

declare parameter item. // thing to predict for, i.e. SHIP.
declare parameter offset. // how much time into the future to predict.
declare parameter velScale. // how big to draw the velocity vectors.

// If they're far from the camera you should draw them bigger.

set predictUT to time + offset.
set stopProg to false.

set futurePos to positionat( item, predictUT ).
set futureVel to velocityat( item, predictUT ).

set drawPos to vecdrawargs( v(0,0,0), futurePos, green, "future position", 1, true ).
set drawVel to vecdrawargs( futurePos, velScale*futureVel:orbit, yellow, "future velocity", 1, true ).

Example Screenshot:

7.3 LIST Command

A List is a type of Structure that stores a list of variables in it. The LIST command either prints or crates a List
object containing items queried from the game. For more information, see the page about the List structure.

150 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

7.3.1 FOR Loop

Lists need to be iterated over sometimes, to help with this we have the FOR loop, explained on the flow control page.
The LIST Command comes in 4 forms:

1. LIST. When no parameters are given, the LIST command is exactly equivalent to the command:

LIST FILES.

2. LIST ListKeyword. This variant prints items to the termianl sceen. Depending on the ListKeyword used
(see below), different values are printed.

3. LIST ListKeyword IN YourVariable. This variant takes the items that would otherwise have been
printed to the terminal screen, and instead makes a List of them in YourVariable, that you can then
iterate over with a FOR loop if you like.

4. LIST ListKeyword FROM SomeVessel IN YourVariable. This variant is just like variant (3),
except that it gives a list of the items that exist on some other vessel that might not necessarily be the
current CPU_vessel.

7.3.2 Available Listable Keywords

The ListKeyword in the above command variants can be any of the following:

Universal Lists

These generate lists that are not dependent on which Vessel:

Bodies List of Celestial Bodies

Targets List of possible target Vessels

Vessel Lists

These generate lists of items on the Vessel:

Processors List of Processors

Resources List of AggregateResources

Parts List of Parts

Engines List of Engines

Sensors List of Sensors

Elements List of Elements that comprise the current vessel.

DockingPorts list of DockingPorts <DockingPort>

File System Lists

These generate lists about the files in the system:

Files List the files on the current Volume. (note below)

Volumes List all the volumes that exist.

7.3. LIST Command 151



kOS Documentation, Release 0.18.2

Note: LIST FILES. is the default if you give the LIST command no parameters.

Examples:

LIST. // Prints the list of files on current volume.
LIST FILES. // Does the same exact thing, but more explicitly.
LIST VOLUMES. // which volumes can be seen by this CPU?
LIST FILES IN fileList. // fileList is now a LIST() containing file structures.

The file structures returned by LIST FILES IN fileList. are documented on a separate page.

Here are some more examples:

// Prints the list of all
// Celestial bodies in the system.
LIST BODIES.

// Puts the list of bodies into a variable.
LIST BODIES IN bodList.
// Iterate over everything in the list:
SET totMass to 0.
FOR bod in bodList {

SET totMass to totMass + bod:MASS.
}.
PRINT "The mass of the whole solar system is " + totMass.

// Adds variable foo that contains a list of
// resources for my currently target vessel
LIST RESOURCES FROM TARGET IN foo.
FOR res IN foo {

PRINT res:NAME. // Will print the name of every
// resource in the vessel

}.

7.4 Querying a vessel’s parts

This is a quick list to get the idea across fast. The actual details of the meaning of these things is complex enough to
warrant its own topic.

To get the parts of a vessel (such as your current vessel, called SHIP), you can do the following things:

These are equivalent. They get the full list of all the parts:

LIST PARTS IN MyPartList.
SET MyPartlist TO SHIP:PARTS.

This gets all the parts that have the name given, as either a nametag (Part:TAG), a title (Part:TITLE), or a name,
(Part:NAME):

SET MyPartList to SHIP:PARTSDUBBED("something").

These are other ways to get parts that are more specific about what exact nomenclature system is being used:

SET MyPartList to SHIP:PARTSTAGGED("something"). // only gets parts with Part:TAG = "something".
SET MyPartList to SHIP:PARTSTITLED("something"). // only gets parts with Part:TITLE = "something".
SET MyPartList to SHIP:PARTSNAMED("something"). // only gets parts with Part:NAME = "something".

152 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

This gets all the PartModules on a ship that have the same module name:

SET MyModList to SHIP:MODULESNAMED("something").

This gets all the parts that have been defined to have some sort of activity occur from a particular action group:

SET MyPartList to SHIP:PARTSINGROUP( AG1 ). // all the parts in action group 1.

This gets all the modules that have been defined to have some sort of activity occur from a particular action group:

SET MyModList to SHIP:MODULESINGROUP( AG1 ). // all the parts in action group 1.

This gets the primary root part of a vessel (the command core that you placed FIRST when building the ship in the
VAB or SPH):

SET firstPart to SHIP:ROOTPART.

This lets you query all the parts that are immediate children of the current part in the tree:

SET firstPart to SHIP:ROOTPART.
FOR P IN firstPart:CHILDREN {

print "The root part as an immediately attached part called " + P:NAME.
}.

You could keep walking down the tree this way, or go upward with PARENT and HASPARENT:

TODO - NEED TO MAKE A GOOD EXAMPLE OF WALKING THE PARTS TREE HERE WITH RECUR-
SION ONCE THE SYNTAX IS NAILED DOWN FOR THAT.

IF thisPart:HASPARENT {
print "This part's parent part is "+ thisPart:PARENT:NAME.

}.

7.5 File I/O

For information about where files are kept and how to deal with volumes see the Volumes page in the general topics
section of this documentation.

7.5. File I/O 153



kOS Documentation, Release 0.18.2

• Volume and Filename arguments
• COMPILE program (TO compiledProgram).
• COPY programFile FROM/TO Volume|volumeId|volumeName.

– Arguments
• DELETE filename FROM Volume|volumeId|volumeName.

– Arguments
• EDIT program.

– Arguments
• LOG text TO filename.

– Arguments
• RENAME VOLUME Volume|volumeId|oldVolumeName TO name.
• RENAME FILE oldName TO newName.

– Arguments
• RUN [ONCE] <program>.

– Arguments
– Important exceptions to the usual filename rules for RUN

• SWITCH TO Volume|volumeId|volumeName.
– Special handling of files starting with “boot” (example boot.ks)

Note: Limitations on file names used for programs

All file names used as program names with the run command must be valid identifiers. They can not contain spaces
or special characters. For example, you can’t have a program named this is my-file.ks. This rule does not
necessarily apply to other filenames such as log files. However to use a filename that contains spaces, you will have to
put quotes around it.

On case-sensitive filesystems typically found on Linux and Mac, you should name program files used with the run
command entirely with lowercase-only filenames or the system may fail to find them when you use the run command.

Warning: Changed in version 0.15: Archive location and file extension change
The Archive where KerboScript files are kept has been changed from Plugins/PluginData/Archive to
Ships/Script, but still under the top-level KSP installation directory. The file name extensions have also
changes from .txt to .ks.

7.5.1 Volume and Filename arguments

Any of the commands below which use filename arguments, **with the exception of the RUN command**, follow
these rules:

• (expression filenames) A filename may be an expression which evaluates to a string.

• (bareword filenames) A filename may also be an undefined identifier which does not match a variable name,
in which case the bare word name of the identifier will be used as the filename. If the identifier does match a
variable name, then it will be evaluated as an expression and the variable’s contents will be used as the filename.

• A bareword filename may contain file extensions with dots, provided it does not end in a dot.

• If the filename does not contain a file extension, kOS will pad it with a ”.ks” extension and use that.

Putting the above rules together, you can refer to filenames in any of the following ways:

• copy myfilename to 1. // This is an example of a bareword filename.

• copy “myfilename” to 1. // This is an example of an EXPRESSION filename.

154 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

• copy myfilename.ks to 1. // This is an example of a bareword filename.

• copy myfilename.txt to 1. // This is an example of a bareword filename.

• copy “myfilename.ks” to 1. // This is an example of an EXPRESSION filename

• set str to “myfile” + “name” + ”.ks”. copy str to 1. // This is an example of an EXPRESSION filename

Limits:

The following rules apply as limitations to the bareword filenames:

• The RUN command only works with bareword filenames, not expression filenames. Every other command
works with either type of filename.

• Filenames containing any characters other than A-Z, 0-9, underscore, and the period extension separator (‘.’),
can only be referred to using a string expression (with quotes), and cannot be used as a bareword expression
(without quotes).

• If your filesystem is case-sensitive (Linux and sometimes Mac OSX, or even Windows if using some kinds of
remote network drives), then bareword filenames will only work properly on filenames that are all lowercase. If
you try to use a file with capital letters in the name on these systems, you will only be able to do so by quoting
it.

Volumes too:

The rules for filenames also apply to volumes. You may do this for example:

• set volNum to 1. copy “myfile” to volNum.

7.5.2 COMPILE program (TO compiledProgram).

(experimental)

Arguments:

argument 1 Name of source file.

argument 2 Name of destination file. If the optional argument 2 is missing, it will assume it’s the same
as argument 1, but with a file extension changed to *.ksm.

Pre-compiles a script into an Kerboscript ML Exceutable image that can be used instead of executing the program
script directly.

The RUN command (elsewhere on this page) can work with either *.ks script files or *.ksm compiled files.

The full details of this process are long and complex enough to be placed on a separate page.

Please see the details of the Kerboscript ML Executable.

7.5.3 COPY programFile FROM/TO Volume|volumeId|volumeName.

Arguments

• argument 1: Name of target file.

• argument 2: Target volume.

Copies a file to or from another volume. Volumes can be referenced by instances of Volume, their ID numbers or
their names if they’ve been given one. See LIST, SWITCH and RENAME.

Understanding how volumes work is important to understanding this command.

7.5. File I/O 155



kOS Documentation, Release 0.18.2

Example:

SWITCH TO 1. // Makes volume 1 the active volume
COPY file1 FROM 0. // Copies a file called file1.ks from volume 0 to volume 1
COPY file2 TO 0. // Copies a file called file2.ks from volume 1 to volume 0
COPY file1.ks FROM 0. // Copies a file called file1.ks from volume 0 to volume 1
COPY file2.ksm TO 0. // Copies a file called file2.ksm from volume 1 to volume 0
COPY "file1.ksm" FROM 0. // Copies a file called file1.ksm from volume 0 to volume 1
COPY "file1" + "." + "ks" FROM 0. // Copies a file called file1.ks from volume 0 to volume 1
COPY file2.ksm TO CORE:VOLUME. // Copies a file called file2.ksm to active processor's volume
COPY file2.ksm TO "other". // Copies a file called file2.ksm to volume named 'other'

7.5.4 DELETE filename FROM Volume|volumeId|volumeName.

Deletes a file. Volumes can be referenced by instances of Volume, their ID numbers or their names if they’ve been
given one.

Arguments

• argument 1: Name of target file.

• argument 2: (optional) Target volume.

Example:

DELETE file1. // Deletes file1.ks from the active volume.
DELETE "file1". // Deletes file1.ks from the active volume.
DELETE file1.txt. // Deletes file1.txt from the active volume.
DELETE "file1.txt". // Deletes file1.txt from the active volume.
DELETE file1 FROM 1. // Deletes file1.ks from volume 1
DELETE file1 FROM CORE:VOLUME. // Deletes file1.ks from active processor's volume
DELETE file1 FROM "other". // Deletes file1.ks from volume name 'other'

7.5.5 EDIT program.

Edits a program on the currently selected volume.

Arguments

• argument 1: Name of file for editing.

Note: The Edit feature was lost in version 0.11 but is back again after version 0.12.2 under a new guise. The new
editor is unable to show a monospace font for a series of complex reasons involving how Unity works and how squad
bundled the KSP game. The editor works, but will be in a proportional width font, which isn’t ideal for editing code.
The best way to edit code remains to use a text editor external to KSP, however for a fast peek at the code during play,
this editor is useful.

Example:

EDIT filename. // edits filename.ks
EDIT filename.ks. // edits filename.ks
EDIT "filename.ks". // edits filename.ks

156 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

EDIT "filename". // edits filename.ks
EDIT "filename.txt". // edits filename.txt

7.5.6 LOG text TO filename.

Logs the selected text to a file on the local volume. Can print strings, or the result of an expression.

Arguments

• argument 1: Value you would like to log.

• argument 2: Name of file to log into.

Example:

LOG “Hello” to mylog.txt. // logs to "mylog.txt".
LOG 4+1 to "mylog" . // logs to "mylog.ks" because .ks is the default extension.
LOG “4 times 8 is: “ + (4*8) to mylog. // logs to mylog.ks because .ks is the default extension.

7.5.7 RENAME VOLUME Volume|volumeId|oldVolumeName TO name.

7.5.8 RENAME FILE oldName TO newName.

Renames a file or volume. Volumes can be referenced by instances of Volume, their ID numbers or their names if
they’ve been given one.

Arguments

• argument 1: Volume/File Name you would like to change.

• argument 2: New name for $1.

Example:

RENAME VOLUME 1 TO AwesomeDisk
RENAME FILE MyFile TO AutoLaunch.

7.5.9 RUN [ONCE] <program>.

Runs the specified file as a program, optionally passing information to the program in the form of a comma-separated
list of arguments in parentheses.

If the optional ONCE keyword is used after the word RUN, it means the run will not actually occur if the program
has already been run once during the current program context. This is intended mostly for loading library program
files that may have mainline code in them for initialization purposes that you don’t want to get run a second time just
because you use the library in two different subprograms.

RUN ONCE means “Run unless it’s already been run, in which case skip it.”

7.5. File I/O 157



kOS Documentation, Release 0.18.2

Arguments

• <program>: File to run.

• comma-separated-args: a list of values to pass into the program.

Example:

RUN AutoLaunch.ks.
RUN AutoLaunch.ksm.
RUN AutoLaunch. // runs AutoLaunch.ksm if available, else runs AutoLaunch.ks.
RUN AutoLaunch( 75000, true, "hello" ).
RUN AutoLaunch.ks( 75000, true, "hello" ).
RUN AutoLaunch.ksm( 75000, true, "hello" ).

RUN ONCE myLibrary. // run myLibrary unless it's been run already.

The program that is reading the arguments sees them in the variables it mentions in DECLARE PARAMETER.

Important exceptions to the usual filename rules for RUN

The RUN command does not allow the same sorts of generic open-ended filenames that the other file commands allow.
This is very important.

RUN only works when the filename is a bareword filename. It cannot use expression filenames:

RUN "ProgName" // THIS WILL FAIL. Run needs a bareword filename.
SET ProgName to "MyProgram".
RUN ProgName // THIS WILL FAIL also. It will attempt to run a file

// called "ProgName.ksm" or "ProgName.ks", when it sees this,
// rather than "MyProgram".

The reasons for the exception to how filenames work for the RUN command are too complex to go into in large
detail here. Here’s the short version: While the kOS system does defer the majority of the work of actually compiling
subprogram scripts until run-time, it still has to generate some header info about them at compile time, and the filename
has to be set in stone at that time. Changing this would require a large re-write of some of the architecture of the virtual
machine.

7.5.10 SWITCH TO Volume|volumeId|volumeName.

Switches to the specified volume. Volumes can be referenced by instances of Volume, their ID numbers or their names
if they’ve been given one. See LIST and RENAME. Understanding how volumes work is important to understanding
this command.

Example:

SWITCH TO 0. // Switch to volume 0.
RENAME VOLUME 1 TO AwesomeDisk. // Name volume 1 as AwesomeDisk.
SWITCH TO AwesomeDisk. // Switch to volume 1.
PRINT VOLUME:NAME. // Prints "AwesomeDisk".

Special handling of files starting with “boot” (example boot.ks)

(experimental)

158 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

For users requiring even more automation, the feature of custom boot scripts was introduced. If you have at least 1
file in your Archive volume starting with “boot” (for example “boot.ks”, “boot2.ks” or even “boot_custom_script.ks”),
you will be presented with the option to choose one of those files as a boot script for your kOS CPU.

As soon as you vessel leaves VAB/SPH and is being initialised on the launchpad (e.g. its status is PRELAUNCH)
the assigned script will be copied to CPU’s local hard disk with the same name. If kOS is configured to start on the
archive, the file will not be copied locally automatically. This script will be run as soon as CPU boots, e.g. as soon as
you bring your CPU in physics range or power on your CPU if it was turned off. You may get or set the name of the
boot file using the core:bootfilename suffix.

Warning: Changed in version 0.18: boot file name changed
Previously boot files were copied to the local hard disk as “boot.ks”. This behaviour was changed so that boot files
could be handled consistently if kOS is configured to start on the Archive. Some scripts may have terminated with
a generic “delete boot.” line to clear the boot script. Going forward you should use the new core:bootfilename
suffix when dealing the boot file.

Important things to consider:

• kOS CPU hard disk space is limited, avoid using complex boot scripts or increase disk space using MM
config.

• Boot script runs immediately on initialisation, it should avoid interaction with parts/modules until physics
fully load. It is best to wait for couple seconds or until certain trigger.

Possible uses for boot scripts:

• Automatically activate sleeper/background scripts which will run on CPU until triggered by certain condition.

• Create basic station-keeping scripts - you will only have to focus your probes once in a while and let the boot
script do the orbit adjustment automatically.

• Create multi-CPU vessels with certain cores dedicated to specific tasks, triggered by user input or external events
(Robotic-heavy Vessels)

• Anything else you can come up with

7.6 Terminal and game environment

CLEARSCREEN
Clears the screen and places the cursor at the top left:

CLEARSCREEN.

PRINT
Prints the selected text to the screen. Can print strings, or the result of an expression:

PRINT “Hello”.
PRINT 4+1.
PRINT “4 times 8 is: “ + (4*8).

SET TERMINAL:WIDTH. GET TERMINAL:WIDTH
Gets or sets the terminal’s width in characters. For more information see terminal struct.

SET TERMINAL:HEIGHT. GET TERMINAL:HEIGHT
Gets or sets the terminal’s height in characters. For more information see terminal struct.

AT(col,line)

Parameters

7.6. Terminal and game environment 159



kOS Documentation, Release 0.18.2

• col – (integer) column starting with zero (left)

• line – (integer) line starting with zero (top)

Used in combination with PRINT. Prints the selected text to the screen at specified location. Can print strings,
or the result of an expression:

PRINT “Hello” AT(0,10).
PRINT 4+1 AT(0,10).
PRINT “4 times 8 is: “ + (4*8) AT(0,10).

MAPVIEW

Access Get/Set

Type boolean

A variable that controls or queries whether or not the game is in map view:

IF MAPVIEW {
PRINT "You are looking at the map.".

} ELSE {
PRINT "You are looking at the flight view.".

}.

You can switch between map and flight views by setting this variable:

SET MAPVIEW TO TRUE. // to map view
SET MAPVIEW TO FALSE. // to flight view

REBOOT
Reboots the kOS module.

SHUTDOWN
Causes kOS module to shutdown.

7.6.1 GUI display tools

VECDRAW
See VECDRAWARGS, below

VECDRAWARGS
You can draw visual vectors on the screen in kOS to help debugging or to help show the player information.
The full description can be found on the Vecdraw Page.

HUDTEXT
You can make text messages appear on the heads-up display, in the same way that the in-game stock messages
appear, by calling the HUDTEXT function, as follows:

HUDTEXT( string Message,
integer delaySeconds,
integer style,
integer size,
RGBA colour,
boolean doEcho).

Message The message to show to the user on screen

delaySeconds How long to make the message remain onscreen before it goes away. If another message is
drawn while an old message is still displaying, both messages remain, the new message scrolls up the old
message.

160 Chapter 7. Command Reference



kOS Documentation, Release 0.18.2

style Where to show the message on the screen: - 1 = upper left - 2 = upper center - 3 = lower right - 4 =
lower center Note that all these locations have their own defined slightly different fonts and default sizes,
enforced by the stock KSP game.

size A number describing the font point size: NOTE that the actual size varies depending on which of the above
styles you’re using. Some of the locations have a magnifying factor attached to their fonts.

colour The colour to show the text in, using one of the built-in colour names or the RGB constructor to make
one up

doEcho If true, then the message is also echoed to the terminal as “HUD: message”.

Examples:

HUDTEXT("Warning: Vertical Speed too High", 5, 2, 15, red, false).
HUDTEXT("docking mode begun", 8, 1, 12, rgb(1,1,0.5), false).

7.7 Transferring resources

Resource transfer is an important part of many missions in Kerbal Space Program, whether you are gassing up a lander
or refuelling a station. Because of this, we need a way to describe a resource transfer in script and monitor that transfer
to be sure it was successful.

To accomplish all of this we have two new functions

SET transferFoo TO TRANSFER(resourceName, fromParts, toParts, amount).
SET transferBar TO TRANSFERALL(resourceName, fromParts, toParts).

TRANSFER will move the specified amount of a resource, where TRANSFERALL will move the resource until the
source is empty or the destination is full. Both functions return a new ResourceTransfer.

7.7.1 Resource

in all transfers, you must specify a resource by name (eg “oxidizer”, “LIQUIDFUEL”, etc). this term is not case
sensitive.

7.7.2 Source and Destination

In all transfers, you must specify a source and a destination, both of these need to be one of these three types:

• Part

• List of Part

• Element

7.7.3 Examples

Building a list of Element, then transferring all of the oxidizer from one element to another:

LIST ELEMENTS IN elist.
SET foo TO TRANSFERALL("OXIDIZER", elist[0], elist[1]).
SET foo:ACTIVE to TRUE.

Finding two parts by index, then transferring all of the oxidizer from part 1 to part 2:

7.7. Transferring resources 161



kOS Documentation, Release 0.18.2

SET foo TO TRANSFERALL("OXIDIZER", SHIP:PARTS[0], SHIP:PARTS[1]).
SET foo:ACTIVE to TRUE.

Finding two lists of parts by tag, then transferring 100 units of liquidfuel:

SET sourceParts to SHIP:PARTSDUBBED("fooPart").
SET destinationParts to SHIP:PARTSDUBBED("barPart").
SET foo TO TRANSFER("liquidfuel", sourceParts, destinationParts, 100).
SET foo:ACTIVE to TRUE.

7.8 Processors

A vessel can potentially have more than one processor on board. It is possible for them to query information about
each other and interact.

7.8.1 Accessing processors

The easiest way of accessing the vessel’s processors is to use the following function:

PROCESSOR(volumeOrNameTag)

Parameters

• volumeOrNameTag – (Volume | String) can be either an instance of Volume or a string

Depending on the type of the parameter value will either return the processor associated with the given Volume
or the processor with the given name tag.

A list of all processors can be obtained using the List command:

LIST PROCESSORS IN ALL_PROCESSORS.
PRINT ALL_PROCESSORS[0]:NAME.

Finally, processors can be accessed directly, like other parts and modules:

PRINT SHIP:MODULESNAMED("kOSProcessor")[0]:VOLUME:NAME.

162 Chapter 7. Command Reference



CHAPTER 8

Structure Reference

A general discussion of structures can be found here.

• Mathematics

– Fundamental Constants

– Mathematical Functions

– Trigonometric Functions

– Vector

– Direction

– GeoCoordinates

• Waypoint

• Orbits

– Orbit

– Orbitable

– OrbitableVelocity

• Celestial Bodies

– Body

– Atmosphere

• Vessels

– Vessel

– Control

– ManeuverNode

– Engine

– AggregateResource

– DockingPort

– Gimbal

– Stage

– Part

163



kOS Documentation, Release 0.18.2

– PartModule

– Sensor

– VesselSensors

– LoadDistance

• Configuration and Misc

– Config

– FileInfo

– List

– Highlight

– Iterator

– Kuniverse

– Terminal

– core

– Lexicon

– String

– PIDloop

– SteeringManager

– Colors

– Time

– Drawing Vectors

8.1 Orbits

8.1.1 Orbit

Contents

• Structure
• Deprecated Suffix
• Transition Names

Variables of type Orbit hold descriptive information about the elliptical shape of a predicted orbit. Whenever there
are multiple patches of orbit ellipses strung together, for example, when an encounter with a body is expected to alter
the path, or when a maneuver node is planned, then each individual patch of the path is represented by one Orbit
object.

Each Orbitable item such as a Vessel or celestial Body has an :ORBIT suffix that can be used to obtain its
current Orbit.

Whenever you get the Orbit of a Vessel, be aware that its just the current Orbit patch that doesn’t take into
account any planetary encounters (slingshots) or maneuver nodes that may occur. For example, your vessel might
never reach SHIP:ORBIT:APOAPSIS if you’re going to intersect the Mun and be flung by it into a new orbit.

164 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Warning: Some of the parameters listed here come directly from KSP’s API and there is a bit of inconsistency
with whether it uses radians or degrees for angles. As much as possible we have tried to present everything in kOS
as degrees for consistency, but some of these may have slipped through. If you see any of these being reported in
radians, please make a bug report.

Structure

structure Orbit

Table 8.1: Members
Suffix Type (units) Description
NAME string name of this orbit
APOAPSIS scalar (m) Maximum altitude
PERIAPSIS scalar (m) Minimum altitude
BODY Body Focal body of orbit
PERIOD scalar (s) orbital period
INCLINATION scalar (deg) orbital inclination
ECCENTRICITY scalar orbital eccentricity
SEMIMAJORAXIS scalar (m) semi-major axis
SEMIMINORAXIS scalar (m) semi-minor axis
LAN scalar (deg) Same as LONGITUDEOFASCENDINGNODE
LONGITUDEOFASCENDINGNODE scalar (deg) Longitude of the ascending node
ARGUMENTOFPERIAPSIS scalar argument of periapsis
TRUEANOMALY scalar true anomaly in degrees (not radians)
MEANANOMALYATEPOCH scalar mean anomaly in degrees (not radians)
TRANSITION string Transition from this orbit
POSITION Vector The current position
VELOCITY Vector The current velocity
NEXTPATCH Orbit Next Orbit
HASNEXTPATCH boolean Has a next Orbit

Orbit:NAME

Type string

Access Get only

a name for this orbit.

Orbit:APOAPSIS

Type scalar (m)

Access Get only

The max altitude expected to be reached.

Orbit:PERIAPSIS

Type scalar (m)

Access Get only

The min altitude expected to be reached.

Orbit:BODY

8.1. Orbits 165

http://en.wikipedia.org/wiki/Orbital_period
http://en.wikipedia.org/wiki/Orbital_inclination
http://en.wikipedia.org/wiki/Orbital_eccentricity
http://en.wikipedia.org/wiki/Semi-major_axis
http://en.wikipedia.org/wiki/Semi-minor_axis
http://en.wikipedia.org/wiki/Argument_of_periapsis
http://en.wikipedia.org/wiki/True_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly


kOS Documentation, Release 0.18.2

Type Body

Access Get only

The celestial body this orbit is orbiting.

Orbit:PERIOD

Type scalar (seconds)

Access Get only

orbital period

Orbit:INCLINATION

Type scalar (degree)

Access Get only

orbital inclination

Orbit:ECCENTRICITY

Type scalar

Access Get only

orbital eccentricity

Orbit:SEMIMAJORAXIS

Type scalar (m)

Access Get only

semi-major axis

Orbit:SEMIMINORAXIS

Type scalar (m)

Access Get only

semi-minor axis

Orbit:LAN
Same as Orbit:LONGITUDEOFASCENDINGNODE.

Orbit:LONGITUDEOFASCENDINGNODE

Type scalar (deg)

Access Get only

The Longitude of the ascening node is the “celestial longitude” where the orbit crosses the body’s equator from
its southern hemisphere to its northern hemisphere

Note that the “celestial longitude” in this case is NOT the planetary longitude of the orbit body. “Celestial
longitudes” are expressed as the angle from the Solar Prime Vector, not from the body’s longitude. In order to
find out where it is relative to the body’s longitude, you will have to take into account body:rotationangle,
and take into account that the body will rotate by the time you get there.

Orbit:ARGUMENTOFPERIAPSIS

Type scalar

Access Get only

argument of periapsis

166 Chapter 8. Structure Reference

http://en.wikipedia.org/wiki/Orbital_period
http://en.wikipedia.org/wiki/Orbital_inclination
http://en.wikipedia.org/wiki/Orbital_eccentricity
http://en.wikipedia.org/wiki/Semi-major_axis
http://en.wikipedia.org/wiki/Semi-minor_axis
http://en.wikipedia.org/wiki/Argument_of_periapsis


kOS Documentation, Release 0.18.2

Orbit:TRUEANOMALY

Type scalar

Access Get only

true anomaly in degrees. Even though orbital parameters are traditionally done in radians, in keeping with the
kOS standard of making everything into degrees, they are given as degrees by kOS.

Orbit:MEANANOMALYATEPOCH

Type scalar

Access Get only

mean anomaly in degrees. Even though orbital parameters are traditionally done in radians, in keeping with the
kOS standard of making everything into degrees, they are given as degrees by kOS.

Orbit:TRANSITION

Type string

Access Get only

Describes the way in which this orbit will end and become a different orbit, with a value taken from this list.

Orbit:POSITION

Type Vector

Access Get only

The current position of whatever the object is that is in this orbit.

Orbit:VELOCITY

Type Vector

Access Get only

The current velocity of whatever the object is that is in this orbit.

Orbit:NEXTPATCH

Type Orbit

Access Get only

When this orbit has a transition to another orbit coming up, this suffix returns the next Orbit patch after this one.
For example, when escaping from a Mun orbit into a Kerbin orbit from which you will escape and hit a Solar
orbit, then the current orbit’s :NEXTPATCH will show the Kerbin orbit, and :NEXTPATCH:NEXTPATCH will
show the solar orbit. The number of patches into the future that you can peek depends on your conic patches
setting in your Kerbal Space Program Settings.cfg file.

Orbit:HASNEXTPATCH
boolean :access: Get only

If :NEXTPATCH will return a valid patch, this is true. If :NEXTPATCH will not return a valid patch because
there are no transitions occurring in the future, then HASNEXTPATCH will be false.

Both :NEXTPATCH and :HASNEXTPATCH both only operate on the current momentum of the object, and do not
take into account any potential changes planned with maneuver nodes. To see the possible new path you would have if a
maneuver node gets executed exactly as planned, you need to first get the orbit that follows the manuever node, by look-
ing at the maneuver node’s :ORBIT suffix <node>, and then look at it’s :NEXTPATCH‘ and ‘‘:HASNEXTPATCH.

8.1. Orbits 167

http://en.wikipedia.org/wiki/True_anomaly
http://en.wikipedia.org/wiki/Mean_anomaly


kOS Documentation, Release 0.18.2

Deprecated Suffix

Orbit:PATCHES

Type List of Orbit Objects

Access Get only

Note: Deprecated since version 0.15: To get the same functionality, you must use Vessel:PATCHES which
is a suffix of the Vessel itself.

Transition Names

INITIAL Refers to the pure of a new orbit, which is a value you will never see from the Orbit:TRANSITION
suffix (it refers to the start of the orbit patch, and Orbit:TRANSITION only refers to the end of the patch.

FINAL Means that no transition to a new orbit is expected. It this orbit is the orbit that will remain forever.

ENCOUNTER Means that this orbit will enter a new SOI of another orbital body that is smaller in scope and is
“inside” the current one. (example: currently in Sun orbit, will enter Duna Orbit.)

ESCAPE Means that this orbit will enter a new SOI of another orbital body that is larger in scope and is “outside”
the current one. (example: currently in Kerbin orbit, will enter Sun Orbit.)

MANEUVER Means that this orbit will end due to a manuever node that starts a new orbit?

8.1.2 Orbitable (Vessels and Bodies)

All objects that can move in orbit around other objects share some similar structure. To help keep things as consistent
as possible, that similar structure is defined here. Everything you see here works for both Vessels and Bodies.

Note: SOI Body

Every where you see the term SOI Body in the descriptions below, it refers to the body at the center of the orbit of
this object - the body in who’s sphere of influence this object is located. It is important to make the distinction that if
this object is itself a Body, the SOI body is the body being orbited, not the body doing the orbiting. I.e. When talking
about the Mun, the SOI body means “Kerbin”. When talking about Kerbin, the SOI body means “Sun”.

structure Orbitable
These terms are all read-only.

168 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Suffix Type (units)
NAME string
BODY Body
HASBODY boolean
HASORBIT boolean
HASOBT boolean
OBT Orbit
ORBIT Orbit
UP Direction
NORTH Direction
PROGRADE Direction
SRFPROGRADE Direction
RETROGRADE Direction
SRFRETROGRADE Direction
POSITION Vector
VELOCITY OrbitableVelocity
DISTANCE scalar (m)
DIRECTION Direction
LATITUDE scalar (deg)
LONGITUDE scalar (deg)
ALTITUDE scalar (m)
GEOPOSITION GeoCoordinates
PATCHES List of Orbits
The Following are deprecated (use apoapsis and periapsis on OBT)
APOAPSIS scalar (m)
PERIAPSIS scalar (m)

Orbitable:NAME

Type string

Access Get only

Name of this vessel or body.

Orbitable:HASBODY

Type boolean

Access Get only

True if this object has a body it orbits (false only when this object is the Sun, pretty much).

Orbitable:HASORBIT

Type boolean

Access Get only

Alias for HASBODY.

Orbitable:HASOBT

Type boolean

Access Get only

Alias for HASBODY.

Orbitable:BODY

Type Body

8.1. Orbits 169



kOS Documentation, Release 0.18.2

Access Get only

The Body that this object is orbiting. I.e. Mun:BODY returns Kerbin.

Orbitable:OBT

Type Orbit

Access Get only

The current single orbit “patch” that this object is on (not the future orbits it might be expected to achieve
after maneuver nodes or encounter transitions, but what the current orbit would be if nothing changed and no
encounters perturbed the orbit.

Orbitable:ORBIT

Type Orbit

Access Get only

This is an alias for OBT, as described above.

Orbitable:UP

Type Direction

Access Get only

pointing straight up away from the SOI body.

Orbitable:NORTH

Type Direction

Access Get only

pointing straight north on the SOI body, parallel to the surface of the SOI body.

Orbitable:PROGRADE

Type Direction

Access Get only

pointing in the direction of this object’s orbitable-frame velocity

Orbitable:SRFPROGRADE

Type Direction

Access Get only

pointing in the direction of this object’s surface-frame velocity. Note that if this Orbitable is itself a body,
remember that this is relative to the surface of the SOI body, not this body.

Orbitable:RETROGRADE

Type Direction

Access Get only

pointing in the opposite of the direction of this object’s orbitable-frame velocity

Orbitable:SRFRETROGRADE

Type Direction

Access Get only

170 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

pointing in the opposite of the direction of this object’s surface-frame velocity. Note that this is relative to the
surface of the SOI body.

Orbitable:POSITION

Type Vector

Access Get only

The position of this object in the SHIP-RAW reference frame

Orbitable:VELOCITY

Type OrbitableVelocity

Access Get only

The orbitable velocity of this object in the SHIP-RAW reference frame

Orbitable:DISTANCE

Type scalar (m)

Access Get only

The scalar distance between this object and the center of SHIP.

Orbitable:DIRECTION

Type Direction

Access Get only

pointing in the direction of this object from SHIP.

Orbitable:LATITUDE

Type scalar (deg)

Access Get only

The latitude in degrees of the spot on the surface of the SOI body directly under this object.

Orbitable:LONGITUDE

Type scalar (deg)

Access Get only

The longitude in degrees of the spot on the surface of the SOI body directly under this object. Longitude returned
will always be normalized to be in the range [-180,180].

Orbitable:ALTITUDE

Type scalar (m)

Access Get only

The altitude in meters above the sea level surface of the SOI body (not the center of the SOI body. To get the
true radius of the orbit for proper math calculations remember to add altitude to the SOI body’s radius.)

Orbitable:GEOPOSITION

Type GeoCoordinates

Access Get only

A combined structure of the latitude and longitude numbers.

Orbitable:PATCHES

8.1. Orbits 171



kOS Documentation, Release 0.18.2

Type List of Orbit “patches”

Access Get only

The list of all the orbit patches that this object will transition to, not taking into account maneuver nodes. The
zero-th patch of the list is the current orbit.

Orbitable:APOAPSIS

Type scalar (deg)

Access Get only

Deprecated since version 0.15: Use OBT:APOAPSIS instead.

Orbitable:PERIAPSIS

Type scalar (deg)

Access Get only

Deprecated since version 0.15: Use OBT:PERIAPSIS instead.

8.1.3 OrbitableVelocity

When any Orbitable object returns its VELOCITY suffix, it returns it as a structure containing a pair of both its
orbit-frame velocity and its surface-frame velocity at the same instant of time. To obtain its velocity as a vector you
must pick whether you want the oribtal or surface velocities by giving a further suffix:

structure OrbitableVelocity

Table 8.2: Members

Suffix Type
ORBIT Vector
SURFACE Vector

OrbitableVelocity:ORBIT

Type Vector

Access Get only

Returns the orbital velocity.

OrbitableVelocity:SURFACE

Type Vector

Access Get only

Returns the surface-frame velocity. Note that this is the surface velocity relative to the surface of the SOI body,
not the orbiting object itself. (i.e. Mun:VELOCITY:SURFACE returns the Mun’s velocity relative to the surface
of its SOI body, Kerbin).

Examples:

SET VORB TO SHIP:VELOCITY:ORBIT
SET VSRF TO SHIP:VELOCITY:SURFACE
SET MUNORB TO MUN:VELOCITY:ORBIT
SET MUNSRF TO MUN:VELOCITY:SURFACE

172 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Note: At first glance it may seem that Mun:VELOCITY:SURFACE is wrong because it creates a vector in the
opposite direction from Mun:VELOCITY:ORBIT, but this is actually correct. Kerbin’s surface rotates once every 6
hours, and the Mun takes a lot longer than 6 hours to orbit Kerbin. Therefore, relative to Kerbin’s surface, the Mun is
going backward.

8.2 Celestial Bodies

8.2.1 Atmosphere

A Structure closely tied to Body A variable of type Atmosphere usually is obtained by the :ATM suffix of a Body .
ALL The following values are read-only. You can’t change the value of a body’s atmosphere.

structure Atmosphere
Suffix Type Description
BODY string Name of the celestial body
EXISTS bool True if this body has an atmosphere
OXYGEN bool True if oxygen is present
SCALE scalar Used to find atmospheric density
SEALEVELPRESSURE scalar (atm) pressure at sea level
HEIGHT scalar (m) advertised atmospheric height

Atmosphere:BODY

Type string

Access Get only

The Body that this atmosphere is around - as a STRING NAME, not a Body object.

Atmosphere:EXISTS

Type bool

Access Get only

True if this atmosphere is “real” and not just a dummy placeholder.

Atmosphere:OXYGEN

Type bool

Access Get only

True if the air has oxygen and could therefore be used by a jet engine’s intake.

Atmosphere:SCALE

Type scalar

Access Get only

A math constant plugged into a formula to find atmosphere density.

Atmosphere:SEALEVELPRESSURE

Type scalar (atm)

Access Get only

Number of Atm’s at planet’s sea level 1.0 Atm’s = same as Kerbin.

8.2. Celestial Bodies 173



kOS Documentation, Release 0.18.2

Atmosphere:HEIGHT

Type scalar (m)

Access Get only

The altitude at which the atmosphere is “officially” advertised as ending. (actual ending value differs, see
below).

Atmospheric Math

Note: [Section deleted]

This documentation used to contain a description of how the math for Kerbal Space Program’s default stock atmo-
spheric model works, but everything that was mentioned here became utterly false when KSP 1.0 was released with
a brand new atmospheric model that invalided pretty much everything that was said here. Rather than teach people
incorrect information, it was deemed that no documentation is better than misleading documentation, so this section
below this point has been removed.

8.2.2 Body

This is any sort of planet or moon. To get a variable referring to a Body, you can do this:

// "name" is the name of the body,
// like "Mun" for example.
SET MY_VAR TO BODY("name").

Also, all bodies have hard-coded variable names as well. You can use the variable Mun to mean the same thing as
BODY("Mun").

Note: Changed in version 0.13: A Celestial Body is now also an Orbitable, and can use all the terms described for
these objects too.

Predefined Celestial Bodies

All of the main celestial bodies in the game are reserved variable names. The following two lines do the exactly the
same thing:

SET the_mun TO Mun.
SET the_mun TO Body("Mun").

• Sun

• Moho

• Eve

– Gilly

• Kerbin

– Mun

– Minmus

174 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

• Duna

– Ike

• Jool

– Laythe

– Vall

– Tylo

– Bop

– Pol

• Eeloo

structure Body
Suffix Type (units)
Every Suffix of Orbitable
NAME string
DESCRIPTION string
MASS scalar (kg)
ALTITUDE scalar (m)
ROTATIONPERIOD scalar (s)
RADIUS scalar (m)
MU scalar (𝑚3𝑠2)
ATM Atmosphere
ANGULARVEL Direction in SHIP-RAW
GEOPOSITIONOF GeoCoordinates in SHIP-RAW
ALTITUDEOF scalar (m)
SOIRADIUS scalar (m)
ROTATIONANGLE scalar (deg)

Body:NAME
The name of the body. Example: “Mun”.

Body:DESCRIPTION
Longer description of the body, often just a duplicate of the name.

Body:MASS
The mass of the body in kilograms.

Body:ALTITUDE
The altitude of this body above the sea level surface of its parent body. I.e. the altitude of Mun above Kerbin.

Body:ROTATIONPERIOD
The length of the body’s day in seconds. I.e. how long it takes for it to make one rotation.

Body:RADIUS
The radius from the body’s center to its sea level.

Body:MU
The Gravitational Parameter of the body.

Body:ATM
A variable that describes the atmosphere of this body.

Body:ANGULARVEL
Despite the name, this is technically not a velocity. It only tells you the axis of rotation, not the speed of rotation
around that axis.

8.2. Celestial Bodies 175

http://en.wikipedia.org/wiki/Standard_gravitational_parameter


kOS Documentation, Release 0.18.2

Body:GEOPOSITIONOF
The geoposition underneath the given vector position. SHIP:BODY:GEOPOSITIONOF(SHIP:POSITION)
should, in principle, give the same thing as SHIP:GEOPOSITION, while
SHIP:BODY:GEOPOSITIONOF(SHIP:POSITION + 1000*SHIP:NORTH) would give you the lat/lng of
the position 1 kilometer north of you. Be careful not to confuse this with :GEOPOSITION (no “OF” in the
name), which is also a suffix of Body by virtue of the fact that Body is an Orbitable, but it doesn’t mean the
same thing.

Body:ALTITUDEOF
The altitude of the given vector position, above this body’s ‘sea level’.
SHIP:BODY:ALTITUDEOF(SHIP:POSITION) should, in principle, give the same thing as SHIP:ALTITUDE.
Example: Eve:ALTITUDEOF(GILLY:POSITION) gives the altitude of gilly’s current position above Eve, even
if you’re not actually anywhere near the SOI of Eve at the time. Be careful not to confuse this with :ALTITUDE
(no “OF” in the name), which is also a suffix of Body by virtue of the fact that Body is an Orbitable, but it
doesn’t mean the same thing.

Body:SOIRADIUS
The radius of the body’s sphere of influence. Measured from the body’s center.

Body:ROTATIONANGLE
The rotation angle is the number of degrees between the Solar Prime Vector and the current positon of the body’s
prime meridian (body longitude of zero).

The value is in constant motion, and once per body’s day, its :rotationangle will wrap around through a
full 360 degrees.

8.3 Vessels and Parts

8.3.1 AggregateResource

A ship can have many parts that contain resources (i.e. fuel, electric charge, etc). kOS has several tools for getting the
summation of each resource.

This is the type returned as the elements of the list from LIST RESOURCES.

IN MyList <list command>

PRINT "THESE ARE ALL THE RESOURCES ON THE SHIP:".
LIST RESOURCES IN RESLIST.
FOR RES IN RESLIST {

PRINT "Resource " + RES:NAME.
PRINT " value = " + RES:AMOUNT.
PRINT " which is "

+ ROUND(100*RES:AMOUNT/RES:CAPACITY)
+ "% full.".

}.

This is also the type returned by STAGE:RESOURCES

PRINT "THESE ARE ALL THE RESOURCES active in this stage:".
SET RESLIST TO STAGE:RESOURCES.
FOR RES IN RESLIST {

PRINT "Resource " + RES:NAME.
PRINT " value = " + RES:AMOUNT.
PRINT " which is "

+ ROUND(100*RES:AMOUNT/RES:CAPACITY)

176 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

+ "% full.".
}.

structure AggregateResource
Suffix Type Description
NAME string Resource name
AMOUNT scalar Total amount remaining
CAPACITY scalar Total amount when full
PARTS List Parts containing this resource

AggregateResource:NAME

Access Get only

Type string

The name of the resource, i.e. “LIQUIDFUEL”, “ELECTRICCHARGE”, “MONOPROP”.

AggregateResource:AMOUNT

Access Get only

Type scalar

The value of how much resource is left.

AggregateResource:CAPACITY

Access Get only

Type scalar

What AMOUNT would be if the resource was filled to the top.

AggregateResource:PARTS

Access Get only

Type List

Because this is a summation of the resources from many parts. kOS gives you the list of all parts that do or
could contain the resource.

8.3.2 ALT

ALT is a special object that exists just to help you get the altitudes of interest for a vessel future. It is grandfathered in
for the sake of backward compatibility, but this information is also available on the Vessel structure as well, which is
the better new way to do it:

structure ALT
Suffix Type Description
APOAPSIS Number, meters altitude in meters of SHIP’s apoapsis. Same as SHIP:APOAPSIS.
PERIAPSIS Number, meters altitude in meters of SHIP’s periapsis. Same as SHIP:PERIAPSIS.
RADAR Number, meters Altitude of SHIP above the ground terrain, rather than above sea level.

8.3.3 CrewMember

Represents a single crew member of a vessel.

8.3. Vessels and Parts 177



kOS Documentation, Release 0.18.2

structure CrewMember
Suffix Type Description
NAME string crew member’s name
GENDER string “Male” or “Female”
EXPERIENCE scalar experience level (number of stars)
TRAIT string “Pilot”, “Engineer” or “Scientist”
TOURIST Boolean true if this crew member is a tourist
PART Part part in which the crew member is located

CrewMember:NAME

Type string

Access Get only

crew member’s name

CrewMember:GENDER

Type string

Access Get only

“Male” or “Female”

CrewMember:EXPERIENCE

Type scalar

Access Get only

experience level (number of stars)

CrewMember:TRAIT

Type string

Access Get only

crew member’s trait (specialization), for example “Pilot”

CrewMember:TOURIST

Type Boolean

Access Get only

true if this crew member is a tourist

CrewMember:PART

Type Part

Access Get only

Part this crew member is located in

8.3.4 DockingPort

Some of the Parts returned by LIST PARTS will be of type DockingPort.

Note: New in version 0.18: The spelling of suffixes AQUIRERANGE, AQUIREFORCE, and AQUIRETORQURE on
the DockingPort structure has been corrected. Please use ACQUIRERANGE, ACQUIREFORCE, and ACQUIRE-

178 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

TORQURE instead. Using the old incorrect spelling, a deprecation exception will be thrown, with instruction to use
the new spelling.

structure DockingPort
Suffix Type Description
All suffixes of Part A DockingPort is a kind of Part
ACQUIRERANGE scalar active range of the port
ACQUIREFORCE scalar force experienced when docking
ACQUIRETORQUE scalar torque experienced when docking
REENGAGEDDISTANCE scalar distance at which the port is reset
DOCKEDSHIPNAME string name of vessel the port is docked to
NODEPOSITION vector coords of where the docking node attachment point is in

SHIP-RAW xyz
NODETYPE string two nodes are only dockable together if their NODETYPE strings

match
PORTFACING Direction facing of the port
STATE string current state of the port
UNDOCK callable to release the dock
TARGETABLE boolean check if this port can be targeted

Note: DockingPort is a type of Part, and therefore can use all the suffixes of Part. Shown below are only the
suffixes that are unique to DockingPort.

DockingPort:ACQUIRERANGE

Type scalar

Access Get only

gets the range at which the port will “notice” another port and pull on it.

DockingPort:ACQUIREFORCE

Type scalar

Access Get only

gets the force with which the port pulls on another port.

DockingPort:ACQUIRETORQUE

Type scalar

Access Get only

gets the rotational force with which the port pulls on another port.

DockingPort:REENGAGEDDISTANCE

Type scalar

Access Get only

how far the port has to get away after undocking in order to re-enable docking.

DockingPort:DOCKEDSHIPNAME

Type string

Access Get only

name of vessel on the other side of the docking port.

8.3. Vessels and Parts 179



kOS Documentation, Release 0.18.2

DockingPort:NODEPOSITION

Type vector

Access Get only

The coordinates of the point on the docking port part where the port attachment spot is located. This is different
from the part’s position itself because that’s the position of the center of the whole part. This is the position of
the face of the docking port. Coordinates are in SHIP-RAW xyz coords.

DockingPort:NODETYPE

Type string

Access Get only

Each docking port has a node type string that specifies its compatibility with other docking ports. In order for
two docking ports to be able to attach to each other, the values for their NODETYPEs must be the same.

The base KSP stock docking port parts all use one of the following three values:

•“size0” for all Junior-sized docking ports.

•“size1” for all Normal-sized docking ports.

•“size2” for all Senior-sized docking ports.

Mods that provide their own new kinds of docking port might use any other value they feel like here, but only
if they are trying to declare that the new part isn’t supposed to be able to connect to stock docking ports. Any
docking port that is meant to connect to stock ports will have to adhere to the above scheme.

DockingPort:PORTFACING

Type Direction

Access Get only

Gets the facing of this docking port which may differ from the facing of the part itself if the docking port is
aimed out the side of the part, as in the case of the inline shielded docking port.

DockingPort:STATE

Type string

Access Get only

One of the following string values:

Ready Docking port is not yet attached and will attach if it touches another.

Docked (docker) One port in the joined pair is called the docker, and has this state

Docked (dockee) One port in the joined pair is called the dockee, and has this state

Docked (same vessel) Sometimes KSP says this instead. It’s unclear what it means.

Disabled Docking port will refuse to dock if it bumps another docking port.

PreAttached Temporary state during the “wobbling” while two ports are magnetically touching but not yet
docked solidly. During this state the two vessels are still tracked as separate vessels and haven’t become
one yet.

DockingPort:UNDOCK()
Call this to cause the docking port to detach.

DockingPort:TARGETABLE

Type boolean

180 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Access Get only

True if this part can be picked with SET TARGET TO.

8.3.5 Element

An element is a docked component of a Vessel. When you dock several vessels together to create one larger vessel,
you can obtain the “chunks” of the larger vessel organized by which original vessel they came from. These “chunks”
are called elements, and they are what the Element structure refers to.

A list of elements from the vessel can be created by using the command:

list elements in eList.
// now eList is a list of elements from the vessel.

Each item of that list is one of the elements. The rest of this page describes the elements and what they do.

Note: Element boundries are not formed between two docking ports that were launched coupled. a craft with such an
arrangement will appear as one element until you uncoupled the nodes and redocked

structure Element
Suffix Type Description
NAME string The name of the docked craft
UID string Unique Identifier
PARTS List all Parts
DOCKINGPORTS List all DockingPorts
VESSEL Vessel the parent Vessel
RESOURCES List all AggrgateResources

Element:UID

Type string

Access Get only

A unique id

Element:NAME

Type string

Access Get/Set

The name of the Element element, is an artifact from the vessel the element belonged to before docking. Cannot
be set to an empty string.

Element:PARTS

Type List of Part objects

Access Get only

A List of all the parts on the Element. SET FOO TO SHIP:PARTS. has exactly the same effect as LIST
PARTS IN FOO.. For more information, see ship parts and modules.

Element:DOCKINGPORTS

Type List of DockingPort objects

Access Get only

A List of all the docking ports on the Element.

8.3. Vessels and Parts 181



kOS Documentation, Release 0.18.2

Element:VESSEL

Type Vessel

Access Get only

The parent vessel containing the element.

Element:RESOURCES

Type List of AggregateResource objects

Access Get only

A List of all the AggregateResources on the element.

8.3.6 Engine

Some of the Parts returned by LIST PARTS will be of type Engine. It is also possible to get just the Engine parts by
executing LIST ENGINES, for example:

LIST ENGINES IN myVariable.
FOR eng IN myVariable {

print "An engine exists with ISP = " + eng:ISP.
}.

structure Engine

182 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Table 8.3: Members

Suffix Type (units) Description
All suffixes of Part
ACTIVATE Turn engine on
SHUTDOWN Turn engine off
THRUSTLIMIT scalar (%) Tweaked thrust limit
MAXTHRUST scalar (kN) Untweaked thrust limit
MAXTHRUSTAT(pressure) scalar (kN) Max thrust at the specified pressure (in standard Kerbin

atmospheres).
THRUST scalar (kN) Current thrust
AVAILABLETHRUST scalar (kN) Available thrust at full throttle accounting for thrust

limiter
AVAILABLETHRUSTAT(pressure)scalar (kN) Available thrust at the specified pressure (in standard

Kerbin atmospheres).
FUELFLOW scalar (l/s

maybe)
Rate of fuel burn

ISP scalar Specific impulse
ISPAT(pressure) scalar Specific impulse at the given pressure (in standard

Kerbin atmospheres).
VACUUMISP scalar Vacuum specific impulse
VISP scalar Synonym for VACUUMISP
SEALEVELISP scalar Specific impulse at Kerbin sealevel
SLISP scalar Synonym for SEALEVELISP
FLAMEOUT boolean Check if no more fuel
IGNITION boolean Check if engine is active
ALLOWRESTART boolean Check if engine can be reactivated
ALLOWSHUTDOWN boolean Check if engine can be shutdown
THROTTLELOCK boolean Check if throttle can not be changed

Note: Engine is a type of Part, and therefore can use all the suffixes of Part. Shown below are only the suffixes
that are unique to Engine.

Engine:ACTIVATE()
Call to make the engine turn on.

Engine:SHUTDOWN()
Call to make the engine turn off.

Engine:THRUSTLIMIT

Access Get/Set

Type scalar (%)

If this an engine with a thrust limiter (tweakable) enabled, what percentage is it limited to?

Engine:MAXTHRUST

Access Get only

Type scalar (kN)

How much thrust would this engine give at its current atmospheric pressure and velocity if the throttle was
max at 1.0, and the thrust limiter was max at 100%. Note this might not be the engine’s actual max thrust it
could have under other air pressure conditions. Some engines have a very different value for MAXTHRUST in

8.3. Vessels and Parts 183

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse


kOS Documentation, Release 0.18.2

vacuum as opposed to at sea level pressure. Also, some jet engines have a very different value for MAXTHRUST
depending on how fast they are currently being rammed through the air.

Engine:MAXTHRUSTAT(pressure)

Parameters

• pressure – atmospheric pressure (in standard Kerbin atmospheres)

Return type scalar (kN)

How much thrust would this engine give if both the throttle and thrust limtier was max at the current velocity,
and at the given atmospheric pressure. Use a pressure of 0.0 for vacuum, and 1.0 for sea level (on Kerbin) (or
more than 1 for thicker atmospheres like on Eve).

Engine:THRUST

Access Get only

Type scalar (kN)

How much thrust is this engine giving at this very moment.

Engine:AVAILABLETHRUST

Access Get only

Type scalar (kN)

Taking into account the thrust limiter tweakable setting, how much thrust would this engine give if the throttle
was max at its current thrust limit setting and atmospheric pressure and velocity conditions.

Engine:AVAILABLETHRUSTAT(pressure)

Parameters

• pressure – atmospheric pressure (in standard Kerbin atmospheres)

Return type scalar (kN)

Taking into account the thrust limiter tweakable setting, how much thrust would this engine give if the throttle
was max at its current thrust limit setting and velocity, but at a different atmospheric pressure you pass into it.
The pressure is measured in ATM’s, meaning 0.0 is a vacuum, 1.0 is seal level at Kerbin.

Engine:FUELFLOW

Access Get only

Type scalar (Liters/s? maybe)

Rate at which fuel is being burned. Not sure what the units are.

Engine:ISP

Access Get only

Type scalar

Specific impulse

Engine:ISPAT(pressure)

Parameters

• pressure – atmospheric pressure (in standard Kerbin atmospheres)

Return type scalar

184 Chapter 8. Structure Reference

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse


kOS Documentation, Release 0.18.2

Specific impulse at the given atmospheric pressure. Use a pressure of 0 for vacuum, and 1 for sea level (on
Kerbin).

Engine:VACUUMISP

Access Get only

Type scalar

Vacuum specific impulse

Engine:VISP

Access Get only

Type scalar

Synonym for :VACUUMISP

Engine:SEALEVELISP

Access Get only

Type scalar

Specific impulse at Kerbin sealevel.

Engine:SLISP

Access Get only

Type scalar

Synonym for :SEALEVELISP

Engine:FLAMEOUT

Access Get only

Type boolean

Is this engine failed because it is starved of a resource (liquidfuel, oxidizer, oxygen)?

Engine:IGNITION

Access Get only

Type boolean

Has this engine been ignited? If both Engine:IGNITION and Engine:FLAMEOUT are true, that means the
engine could start up again immediately if more resources were made available to it.

Engine:ALLOWRESTART

Access Get only

Type boolean

Is this an engine that can be started again? Usually True, but false for solid boosters.

Engine:ALLOWSHUTDOWN

Access Get only

Type boolean

Is this an engine that can be shut off once started? Usually True, but false for solid boosters.

Engine:THROTTLELOCK

Access Get only

8.3. Vessels and Parts 185

http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse
http://wiki.kerbalspaceprogram.com/wiki/Specific_impulse


kOS Documentation, Release 0.18.2

Type boolean

Is this an engine that is stuck at a fixed throttle? (i.e. solid boosters)

8.3.7 ETA

ETA is a special object that exists just to help you get the times from now to certain events in a vessel’s future. It
always presumes you’re operating on the current SHIP vessel:

structure ETA
Suffix Type Description
APOAPSIS Number, seconds Seconds until SHIP hits its apoapsis.
PERIAPSIS Number, seconds Seconds until SHIP hits its periapsis.
TRANSITION Number, seconds Seconds until SHIP hits the next orbit patch.

ETA:APOAPSIS

Type Number, seconds

Access Get only

Seconds until SHIP hits its apoapsis. If the ship is on an escape trajectory (hyperbolic orbit) such that you will
never reach apoapsis, it will return zero.

ETA:PERIAPSIS

Type Number, seconds

Access Get only

Seconds until SHIP hits its periapsis. If the ship is on an intersect with the ground, such that you’ll hit the ground
first before you’d get to periapsis, it will still return the hypothetical number of seconds it would have taken to
get to periapsis if you had the magical ability to pass through the ground as if it wasn’t there.

ETA:TRANSITION

Type Number, seconds

Access Get only

Seconds until SHIP hits its the end of its current orbit patch and transitions into another one, ignoring the effect
of any intervening manuever nodes it might hit before it gets there.

8.3.8 Gimbal

Many engines in KSP have thrust vectoring gimbals and in ksp they are their own module

structure Gimbal
Suffix Type Description
RANGE scalar The Gimbal’s Possible Range of movement
RESPONSESPEED scalar The Gimbal’s Possible Rate of travel
PITCHANGLE scalar Current Gimbal Pitch
YAWANGLE scalar Current Gimbal Yaw
ROLLANGLE scalar Current Gimbal Roll
LOCK boolean Is the gimbal free to travel?

Gimbal:RANGE

Type scalar

Access Get only

186 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

The maximum extent of travel possible for the gimbal along all 3 axis (Pitch, Yaw, Roll)

Gimbal:RESPONSESPEED

Type scalar

Access Get only

A Measure of the rate of travel for the gimbal

Gimbal:PITCHANGLE

Type scalar

Access Get only

The gimbals current pitch, has a range of -1 to 1. Will always be 0 when LOCK is true

Gimbal:YAWANGLE

Type scalar

Access Get only

The gimbals current yaw, has a range of -1 to 1. Will always be 0 when LOCK is true

Gimbal:ROLLANGLE

Type scalar

Access Get only

The gimbals current roll, has a range of -1 to 1. Will always be 0 when LOCK is true

Gimbal:LOCK

Type string

Access Get/Set

Can this Gimbal produce torque right now, when you set it to false it will snap the engine back to 0s for pitch,yaw
and roll

8.3.9 kOSProcessor

The type of structures returned by kOS when querying a module that contains a kOS processor.

structure kOSProcessor
Suffix Type Description
All suffixes of PartModule kOSProcessor objects are a type of PartModule
MODE String OFF, READY or STARVED
ACTIVATE None Activates this processor
DEACTIVATE None Deactivates this processor
TAG String This processor’s name tag
VOLUME Volume This processor’s hard disk
BOOTFILENAME String The filename for the boot file on this processor

Note: A kOSProcessor is a type of PartModule, and therefore can use all the suffixes of PartModule.

kOSProcessor:MODE

Access Get only

Type String

8.3. Vessels and Parts 187



kOS Documentation, Release 0.18.2

Indicates the current state of this processor. OFF - deactivated, READY - active, or STARVED - no power.

kOSProcessor:ACTIVATE()

Returns None

Activate this processor

kOSProcessor:DEACTIVATE()

Returns None

Deactivate this processor

kOSProcessor:TAG

Access Get only

Type String

This processor’s name tag

kOSProcessor:VOLUME

Access Get only

Type Volume

This processor’s hard disk.

kOSProcessor:BOOTFILENAME

Access Get or Set

Type String

The filename for the boot file on this processor. This may be set to an empty string “” or to “None” to disable
the use of a boot file.

8.3.10 Maneuver Node

Contents

• NODE()

• ADD

• REMOVE

• NEXTNODE

• ManeuverNode

A planned velocity change along an orbit. These are the nodes that you can set in the KSP user interface. Setting one
through kOS will make it appear on the in-game map view, and creating one manually on the in-game map view will
cause it to be visible to kOS.

188 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Warning: Be aware that a limitation of KSP makes it so that some vessels’ manuever node systems cannot be
accessed. KSP appears to limit the maneuver node system to only functioning on the current PLAYER vessel,
under the presumption that its the only vessel that needs them, as ever other vessel cannot be manuevered. kOS can
manuever a vessel that is not the player vessel, but it cannot overcome this limitation of the base game that unloads
the maneuver node system for other vessels.
Be aware that the effect this has is that when you try to use some of these commands on some vessels, they won’t
work because those vessels do not have their manuever node system in play. This is mostly only going to happen
when you try to run a script on a vessel that is not the current player active vessel.

Creation

NODE(utime, radial, normal, prograde)

Parameters

• utime – (sec) Time of this maneuver

• radial – (m/s) Delta-V in radial-out direction

• normal – (m/s) Delta-V normal to orbital plane

• prograde – (m/s) Delta-V in prograde direction

Returns ManeuverNode

You can make a maneuver node in a variable using the NODE function:

SET myNode to NODE( TIME:SECONDS+200, 0, 50, 10 ).

Once you have a maneuver node in a variable, you use the ADD and REMOVE commands to attach it to your
vessel’s flight plan. A kOS CPU can only manipulate the flight plan of its CPU vessel.

Warning: When constructing a new node using the NODE function call, you use the universal time (you
must add the ETA time to the current time to arrive at the value to pass in), but when using the suffix
ManeuverNode:ETA, you do NOT use universal time, instead just giving the number of seconds from
now.

Once you have created a node, it’s just a hypothetical node that hasn’t been attached to anything yet. To attach
a node to the flight path, you must use the command ADD to attach it to the ship.

ADD
To put a maneuver node into the flight plan of the current CPU vessel (i.e. SHIP), just ADD it like so:

SET myNode to NODE( TIME:SECONDS+200, 0, 50, 10 ).
ADD myNode.

You should immediately see it appear on the map view when you do this. The ADD command can add nodes
anywhere within the flight plan. To insert a node earlier in the flight than an existing node, simply give it a
smaller ETA time and then ADD it.

Warning: As per the warning above at the top of the section, ADD won’t work on vessels that are not the active
vessel.

REMOVE
To remove a maneuver node from the flight path of the cur:rent CPU vessel (i.e. SHIP), just REMOVE it like so:

8.3. Vessels and Parts 189



kOS Documentation, Release 0.18.2

REMOVE myNode.

Warning: As per the warning above at the top of the section, REMOVE won’t work on vessels that are not the
active vessel.

NEXTNODE
NEXTNODE is a built-in variable that always refers to the next upcoming node that has been added to your flight
plan:

SET MyNode to :global:`NEXTNODE`.
PRINT :global:`NEXTNODE`:PROGRADE.
REMOVE :global:`NEXTNODE`.

Currently, if you attempt to query NEXTNODE and there is no node on your flight plan, it produces a run-time
error. (This needs to be fixed in a future release so it is possible to query whether or not you have a next node).

Warning: As per the warning above at the top of the section, NEXTNODE won’t work on vessels that are not the
active vessel.
If you need to query whether or not you have a NEXTNODE, the following has been suggested as a workaround in
the meantime: Set a node really far into the future, beyond any reasonable amount of time. Add it to your flight
plan. Then check NEXTNODE to see if it returns THAT node, or an earlier one. If it returns an earlier one, then that
earlier one was there all along and is the real NEXTNODE. If it returns the fake far-future node you made instead,
then there were no nodes before that point. In either case, remove the far-future node after you perform the test.
The special identifier NEXTNODE is a euphemism for “whichever node is coming up soonest on my flight path”.
Therefore you can remove a node even if you no longer have the maneuver node variable around, by doing this:

REMOVE :global:`NEXTNODE`.

Structure

structure ManeuverNode
Here are some examples of accessing the suffixes of a ManeuverNode:

// creates a node 60 seconds from now with
// prograde = 100 m/s
SET X TO NODE(TIME:SECONDS+60, 0, 0, 100).

ADD X. // adds maneuver to flight plan

PRINT X:PROGRADE. // prints 100.
PRINT X:ETA. // prints seconds till maneuver
PRINT X:DELTAV // prints delta-v vector

REMOVE X. // remove node from flight plan

// Create a blank node
SET X TO NODE(0, 0, 0, 0).

ADD X. // add Node to flight plan
SET X:PROGRADE to 500. // set prograde dV to 500 m/s
SET X:ETA to 30. // Set to 30 sec from now

PRINT X:ORBIT:APOAPSIS. // apoapsis after maneuver
PRINT X:ORBIT:PERIAPSIS. // periapsis after maneuver

190 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Table 8.4: Members

Suffix Type (units) Access Description
DELTAV Vector (m/s) Get only The burn vector with magnitude equal to delta-V
BURNVECTOR Vector (m/s) Get only Alias for DELTAV
ETA scalar (s) Get/Set Time until this maneuver
PROGRADE scalar (m/s) Get/Set Delta-V along prograde
RADIALOUT scalar (m/s) Get/Set Delta-V along radial to orbited Body
NORMAL scalar (m/s) Get/Set Delta-V along normal to the Vessel‘s Orbit
ORBIT Orbit Get only Expected Orbit after this maneuver

ManeuverNode:DELTAV

Access Get only

Type Vector

The vector giving the total burn of the node. The vector can be used to steer with, and its magnitude is the delta
V of the burn.

ManeuverNode:BURNVECTOR
Alias for ManeuverNode:DELTAV .

ManeuverNode:ETA

Access Get/Set

Type scalar

The number of seconds until the expected burn time. If you SET this, it will actually move the maneuver node
along the path in the map view, identically to grabbing the maneuver node and dragging it.

ManeuverNode:PROGRADE

Access Get/Set

Type scalar

The delta V in (meters/s) along just the prograde direction (the yellow and green ‘knobs’ of the maneuver node).
A positive value is a prograde burn and a negative value is a retrograde burn.

ManeuverNode:RADIALOUT

Access Get/Set

Type scalar

The delta V in (meters/s) along just the radial direction (the cyan knobs’ of the maneuver node). A positive
value is a radial out burn and a negative value is a radial in burn.

ManeuverNode:NORMAL

Access Get/Set

Type scalar

The delta V in (meters/s) along just the normal direction (the purple knobs’ of the maneuver node). A positive
value is a normal burn and a negative value is an anti-normal burn.

ManeuverNode:ORBIT

Access Get only

Type Orbit

8.3. Vessels and Parts 191



kOS Documentation, Release 0.18.2

The new orbit patch that will begin starting with the burn of this node, under the assumption that the burn will
occur exactly as planned.

8.3.11 Part

These are the generic properties every PART has. You can obtain a list of values of type Part using the LIST PARTS
command.

structure Part

Table 8.5: Members

Suffix Type Description
NAME string Name of this part
TITLE string Title as it appears in KSP
MASS scalar Current mass of part and its resources
DRYMASS scalar Mass of part if all resources were empty
WETMASS scalar Mass of part if all resources were full
TAG string Name-tag if assigned by the player
CONTROLFROM Void Call to control-from to this part
STAGE scalar The stage this is associated with
UID string Unique identifying number of this part
ROTATION Direction The rotation of this part’s 𝑥-axis
POSITION Vector The location of this part in the universe
FACING Direction the direction that this part is facing
RESOURCES List list of the Resource in this part
TARGETABLE boolean true if this part can be selected as a target
SHIP Vessel the vessel that contains this part
GETMODULE(name) PartModule Get one of the PartModules by name
MODULES List Names (string) of all PartModules
ALLMODULES List Same as MODULES
PARENT Part Adjacent Part on this Vessel.
HASPARENT boolean Check if this part has a parent Part
HASPHYSICS boolean Does this part have mass or drag
CHILDREN List List of attached Parts

Part:NAME

Access Get only

Type string

Name of part as it is used behind the scenes in the game’s API code.

A part’s name is the name it is given behind the scenes in KSP. It never appears in the normal GUI for the user
to see, but it is used in places like Part.cfg files, the saved game persistence file, the ModuleManager mod, and
so on.

Part:TITLE

Access Get only

Type string

The title of the part as it appears on-screen in the gui.

A part’s title is the name it has inside the GUI interface on the screen that you see as the user.

192 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Part:TAG

Access Get / Set

Type string

The name tag value that may exist on this part if you have given the part a name via the name-tag system.

A part’s tag is whatever custom name you have given it using the name-tag system described here. This is
probably the best naming convention to use because it lets you make up whatever name you like for the part and
use it to pick the parts you want to deal with in your script.

WARNING: This suffix is only settable for parts attached to the CPU Vessel

This example assumes you have a target vessel picked, and that the target vessel is loaded into full-physics range
and not “on rails”. vessels that are “on rails” do not have their full list of parts entirely populated at the moment:

LIST PARTS FROM TARGET IN tParts.

PRINT "The target vessel has a".
PRINT "partcount of " + tParts:LENGTH.

SET totTargetable to 0.
FOR part in tParts {

IF part:TARGETABLE {
SET totTargetable TO totTargetable + 1.

}
}

PRINT "...and " + totTargetable.
PRINT " of them are targetable parts.".

Part:CONTROLFROM

Access Callable function only

Type void

Call this function to cause the game to do the same thing as when you right-click a part on a vessel and select
“control from here” on the menu. It rotates the control orientation so that fore/aft/left/right/up/down now match
the orientation of this part. NOTE that this will not work for every type of part. It only works for those parts
that KSP itself allows this for (control cores and docking ports). It accepts no arguments, and returns no value.
All vessels must have at least one “control from” part on them somewhere, which is why there’s no mechanism
for un-setting the “control from” setting other than to pick another part and set it to that part instead.

WARNING: This suffix is only callable for parts attached to the CPU Vessel

Part:STAGE

Access Get only

Type scalar

the stage this part is part of.

Part:UID

Access Get only

Type string

All parts have a unique ID number. Part’s uid never changes because it is the same value as stored in persis-
tent.sfs. Although you can compare parts by comparing their uid it is recommended to compare parts directly if
possible.

8.3. Vessels and Parts 193



kOS Documentation, Release 0.18.2

Part:ROTATION

Access Get only

Type Direction

The rotation of this part’s X-axis, which points out of its side and is probably not what you want. You probably
want the Part:FACING suffix instead.

Part:POSITION

Access Get only

Type Vector

The location of this part in the universe. It is expressed in the same frame of reference as all the other positions
in kOS, and thus can be used to help do things like navigate toward the position of a docking port.

Part:FACING

Access Get only

Type Direction

the direction that this part is facing.

Part:MASS

Access Get only

Type scalar

The current mass or the part and its resources. If the part has no physics this will always be 0.

Part:WETMASS

Access Get only

Type scalar

The mass of the part if all of its resources were full. If the part has no physics this will always be 0.

Part:DRYMASS

Access Get only

Type scalar

The mass of the part if all of its resources were empty. If the part has no physics this will always be 0.

Part:RESOURCES

Access Get only

Type List

list of the Resource in this part.

Part:TARGETABLE

Access Get only

Type boolean

true if this part can be selected by KSP as a target.

Part:SHIP

Access Get only

Type Vessel

194 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

the vessel that contains this part.

Part:GETMODULE(name)

Parameters

• name – (string) Name of the part module

Returns PartModule

Get one of the PartModules attached to this part, given the name of the module. (See Part:MODULES for
a list of all the names available).

Part:MODULES

Access Get only

Type List of strings

list of the names of PartModules enabled for this part.

Part:ALLMODULES
Same as Part:MODULES

Part:PARENT

Access Get only

Type Part

When walking the tree of parts, this is the part that this part is attached to on the way “up” toward the root part.

Part:HASPHYSICS

Access Get only

Type bool

This comes from a part’s configuration and is an artifact of the KSP simulation.

For a list of stock parts that have this attribute and a fuller explanation see the KSP wiki page about massless
parts.

Part:HASPARENT

Access Get only

Type boolean

When walking the tree of parts, this is true as long as there is a parent part to this part, and is false if this part
has no parent (which can only happen on the root part).

Part:CHILDREN

Access Get only

Type List of Parts

When walking the tree of parts, this is all the parts that are attached as children of this part. It returns a list of
zero length when this part is a “leaf” of the parts tree.

8.3.12 PartModule

Almost everything done with at right-click menus and action group action can be accessed via the PartModule
objects that are attached to Parts of a Vessel.

8.3. Vessels and Parts 195

http://wiki.kerbalspaceprogram.com/wiki/Massless_part
http://wiki.kerbalspaceprogram.com/wiki/Massless_part


kOS Documentation, Release 0.18.2

The exact arrangement of PartModule to Parts to Vessels, and how to make use of a PartModule is a
complex enough topic to warrant its own separate subject, described on the Ship parts and Modules page. If you have
not read that page, it is recommended that you do so before using PartModules. The page you are reading now is
meant as just a reference summary, not a tutorial.

Once you have a PartModule, you can use it to invoke the behaviors that are connected to its right-click menu and
to its action groups.

structure PartModule

Table 8.6: Members

Suffix Type Description
NAME string Name of this part module
PART Part Part attached to
ALLFIELDS List of strings Accessible fields
ALLFIELDNAMES List of strings Accessible fields (name only)
ALLEVENTS List of strings Triggerable events
ALLEVENTNAMES List of strings Triggerable event names
ALLACTIONS List of strings Triggerable actions
ALLACTIONNAMES List of strings Triggerable event names
GETFIELD(name) Get value of a field by name
SETFIELD(name,value) Set value of a field by name
DOEVENT(name) Trigger an event button
DOACTION(name,bool) Activate action by name with True or False
HASFIELD(name) boolean Check if field exists
HASEVENT(name) boolean Check if event exists
HASACTION(name) boolean Check if action exists

PartModule:NAME

Access Get only

Test string

Get the name of the module. Note that it’s the same as the name given in the MODULE section of the Part.cfg
file for the part.

PartModule:PART

Access Get only

Test Part

Get the Part that this PartModule is attached to.

PartModule:ALLFIELDS

Access Get only

Test List of strings

Get a list of all the names of KSPFields on this PartModule that the kos script is CURRENTLY allowed to get or
set with :GETFIELD or :SETFIELD. Note the Security access comments below. This list can become obsolete
as the game continues running depending on what the PartModule chooses to do.

PartModule:ALLFIELDNAMES

Access Get only

Test List of strings

196 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Similar to :ALLFIELDS except that it returns the string without the formatting to make it easier to use in a
script. This list can become obsolete as the game continues running depending on what the PartModule chooses
to do.

PartModule:ALLEVENTS

Access Get only

Test List of strings

Get a list of all the names of KSPEvents on this PartModule that the kos script is CURRENTLY allowed to
trigger with :DOEVENT. Note the Security access comments below. This list can become obsolete as the game
continues running depending on what the PartModule chooses to do.

PartModule:ALLEVENTNAMES

Access Get only

Test List of strings

Similar to :ALLEVENTS except that it returns the string without the formatting to make it easier to use in a
script. This list can become obsolete as the game continues running depending on what the PartModule chooses
to do.

PartModule:ALLACTIONS

Access Get only

Test List of strings

Get a list of all the names of KSPActions on this PartModule that the kos script is CURRENTLY allowed to
trigger with :DOACTION. Note the Security access comments below.

PartModule:ALLACTIONNAMES

Access Get only

Test List of strings

Similar to :ALLACTIONS except that it returns the string without the formatting to make it easier to use in a
script. This list can become obsolete as the game continues running depending on what the PartModule chooses
to do.

PartModule:GETFIELD(name)

Parameters

• name – (string) Name of the field

Returns varies

Get the value of one of the fields that this PartModule has placed onto the rightclick menu for the part. Note the
Security comments below.

PartModule:SETFIELD(name,value)

Parameters

• name – (string) Name of the field

Set the value of one of the fields that this PartModule has placed onto the rightclick menu for the part. Note the
Security comments below.

WARNING: This suffix is only settable for parts attached to the CPU Vessel

PartModule:DOEVENT(name)

Parameters

8.3. Vessels and Parts 197



kOS Documentation, Release 0.18.2

• name – (string) Name of the event

Trigger an “event button” that is on the rightclick part menu at the moment. Note the Security comments below.

WARNING: This suffix is only callable for parts attached to the CPU Vessel

PartModule:DOACTION(name,bool)

Parameters

• name – (string) Name of the action

• bool – (boolean) Value to set: True or False

Activate one of this PartModule’s action-group-able actions, bypassing the action group system entirely by just
activating it for this one part directly. The boolean value decides whether you are toggling the action ON or
toggling it OFF. Note the Security comments below.

WARNING: This suffix is only callable for parts attached to the CPU Vessel

PartModule:HASFIELD(name)

Parameters

• name – (string) Name of the field

Returns boolean

Return true if the given field name is currently available for use with :GETFIELD or :SETFIELD on this Part-
Module, false otherwise.

PartModule:HASEVENT(name)

Parameters

• name – (string) Name of the event

Returns boolean

Return true if the given event name is currently available for use with :DOEVENT on this PartModule, false
otherwise.

PartModule:HASACTION(name)

Parameters

• name – (string) Name of the action

Returns boolean

Return true if the given action name is currently available for use with :DOACTION on this PartModule, false
otherwise.

Notes

In all the above cases where there is a name being passed in to :GETFIELD, :SETFIELD, :DOEVENT, or :DOAC-
TION, the name is meant to be the name that is seen by you, the user, in the GUI screen, and NOT necessarily the
actual name of the variable that the programmer of that PartModule chose to call the value behind the scenes. This is
so that you can view the GUI rightclick menu to see what to call things in your script.

Note: Security and Respecting other Mod Authors

198 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

There are often a lot more fields and events and actions that a partmodule can do than are usable via kOS. In designing
kOS, the kOS developers have deliberately chosen NOT to expose any “hidden” fields of a partmodule that are not
normally shown to the user, without the express permission of a mod’s author to do so.

The access rules that kOS uses are as follows:

KSPFields

Is this a value that the user can normally see on the right-click context menu for a part? If so, then let kOS scripts GET
the value. Is this a value that the user can normally manipulate via “tweakable” adjustments on the right-click context
menu for a part, AND, is that tweakable a CURRENTLY enabled one? If so, then let KOS scripts SET the value, BUT
they must set it to one of the values that the GUI would normally allow, according to the following rules.

• If the KSPField is boolean:

– The value must be true, false, or 0 or 1.

• If the KSPField is an integer:

– The value must be a whole number.

• If the KSPField is a floating point sliding number:

– The GUI for this field will be defined as a slider with a min value, a max value, with a fixed increment
interval where the detents are. When setting such a value, you will be constrained to the limits of this
slider. For example: If a slider is defined to have a minimum value of 2.0, a maximum value of 5.0,
and a minimum allowed delta increment of 0.1:

– If you try to set it to 0, it will instead become 2, the minimum allowed value. If you try to set it to 9,
it will instead become 5, the maximum allowed value. If you try to set it to 3.14159, it will instead
become 3.1, because that’s rounding to the nearest increment step the slider supports.

• If the KSPField is a string:

– There is currently no way to set these because kOS uses the existence of a gui tweakable as “proof”
that it’s okay to modify the field, and in the stock game there are no gui tweakables for string fields.
This may change in the future if mods that extend the tweakables system are taken into account.

KSPEvents

Is this an event that has a GUI button associated with it that is currently visible on the right-click menu? If the answer
is yes, then it will also be triggerable by kOSScripts, otherwise it won’t.

KSPActions

Is this an action that the KSP user would have been allowed to set as part of an action group during building in the
VAB or SPH? If so, then allow a kOS script to use it, EVEN IF it has never actually been added to an action group for
this vessel.

Note: If a KSPField, KSPEvent, or KSPAction has been disallowed, often in kOS it won’t even appear to be a
field of the PartModule at all.

8.3. Vessels and Parts 199



kOS Documentation, Release 0.18.2

This is necessary because for some modules, the number of fields you can use are far outnumberd by the number of
fields that exist but are normally hidden from view. It would become unworkable if all of the unusable ones were
exposed to kOS scripts to see as fields.

Note: Which KSPFields, KSPEvents, and KSPActions exist on a PartModule can change during runtime!

A PartModule is allowed to change the look and feel of its rightclick menu fields on the fly as the game runs. Therefore
a field that didn’t exist the last time you looked might now exist, and might not exist again next time. The list of what
fields exist is context dependant. For example, a docking port may have an event button on it called “Undock Node”,
that only exists when that port is connected to another port. If it’s not connected, the button may be gone. Similarly,
a PartModule might toggle something by using a pair of two events that swap in and out depending on the current
state. For example, many of the stock lights in the game have a “Turn on” button that after it’s been clicked, gets
replaced with a “Turn off” button until it’s clicked again. A boolean toggle with a KSPFIeld would be simpler, but
until “tweakables” existed in the main game, that wasn’t an option so a lot of older Partmodules still do things the old
way with two KSPEvents that swap in and out.

8.3.13 Resource

A single resource value a thing holds (i.e. fuel, electric charge, etc). This is the type returned by the
Part:RESOURCES suffix

structure Resource
Suffix Type Description
NAME string Resource name
AMOUNT scalar Amount of this resource left
DENSITY scalar Density of this resource
CAPACITY scalar Maximum amount of this resource
TOGGLEABLE boolean Can this tank be removed from the fuel flow
ENABLED boolean Is this tank currently in the fuel flow

Resource:NAME

Access Get only

Type string

The name of the resource, i.e. “LIQUIDFUEL”, “ELECTRICCHARGE”, “MONOPROP”.

Resource:AMOUNT

Access Get only

Type scalar

The value of how much resource is left.

Resource:DENSITY

Access Get only

Type scalar

The density value of this resource, expressed in Megagrams f mass per Unit of resource. (i.e. a value of 0.005
would mean that each unit of this resource is 5 kilograms. Megagrams [metric tonnes] is the usual unit that most
mass in the game is represented in.)

Resource:CAPACITY

Access Get only

200 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Type scalar

What AMOUNT would be if the resource was filled to the top.

Resource:TOGGLEABLE

Access Get only

Type boolean

Many, but not all, resources can be turned on and off, this removes them from the fuel flow.

Resource:ENABLED

Access Get/Set

Type boolean

If the resource is TOGGLEABLE, setting this to false will prevent the resource from being taken out normally.

8.3.14 ScienceExperimentModule

The type of structures returned by kOS when querying a module that contains a science experiment.

Some of the science-related tasks are normally not available to kOS scripts. It is for example possible to deploy a
science experiment:

SET P TO SHIP:PARTSNAMED("GooExperiment")[1].
SET M TO P:GETMODULE("ModuleScienceExperiment").
M:DOEVENT("observe mystery goo").

Hovewer, this results in a dialog being shown to the user. Only from that dialog it is possible to reset the experiment or
transmit the experiment results back to Kerbin. ScienceExperimentModule structure introduces a few suffixes
that allow the player to perform all science-related tasks without any manual intervention:

SET P TO SHIP:PARTSNAMED("GooExperiment")[0].
SET M TO P:GETMODULE("ModuleScienceExperiment").
M:DEPLOY.
WAIT UNTIL M:HASDATA.
M:TRANSMIT.

structure ScienceExperimentModule
Suffix Type Description
All suffixes of
PartModule

ScienceExperimentModule objects are a type of
PartModule

DEPLOY() Deploy and run the science experiment
RESET() Reset this experiment if possible
TRANSMIT() Transmit the scientific data back to Kerbin
DUMP() Discard the data
INOPERABLE boolean Is this experiment inoperable
RERUNNABLE boolean Can this experiment be run multiple times
DEPLOYED boolean Is this experiment deployed
HASDATA boolean Does the experiment have scientific data

Note: A ScienceExperimentModule is a type of PartModule, and therefore can use all the suffixes of
PartModule.

8.3. Vessels and Parts 201



kOS Documentation, Release 0.18.2

ScienceExperimentModule:DEPLOY()
Call this method to deploy and run this science experiment. This method will fail if the experiment already
contains scientific data or is inoperable.

ScienceExperimentModule:RESET()
Call this method to reset this experiment. This method will fail if the experiment is inoperable.

ScienceExperimentModule:TRANSMIT()
Call this method to transmit the results of the experiment back to Kerbin. This will render the experiment
inoperable if it is not rerunnable. This method will fail if there is no data to send.

ScienceExperimentModule:DUMP()
Call this method to discard the data obtained as a result of running this experiment. This will render the experi-
ment inoperable if it is not rerunnable.

ScienceExperimentModule:INOPERABLE

Access Get only

Type boolean

True if this experiment is no longer operable.

ScienceExperimentModule:RERUNNABLE

Access Get only

Type boolean

True if this experiment can be run multiple times.

ScienceExperimentModule:DEPLOYED

Access Get only

Type boolean

True if this experiment is deployed.

ScienceExperimentModule:HASDATA

Access Get only

Type boolean

True if this experiment has scientific data stored.

8.3.15 Sensor

The type of structures returned by LIST SENSORS IN SOMEVARIABLE. This is not fully understood because the
type of PartModule in the KSP API called ModuleEnviroSensor, which all Sensors are a kind of, is not well
documented. Here is an example of using Sensor:

PRINT "Full Sensor Dump:".
LIST SENSORS IN SENSELIST.

// TURN EVERY SINGLE SENSOR ON
FOR S IN SENSELIST {

PRINT "SENSOR: " + S:TYPE.
PRINT "VALUE: " + S:DISPLAY.
IF S:ACTIVE {
PRINT " SENSOR IS ALREADY ON.".

} ELSE {
PRINT " SENSOR WAS OFF. TURNING IT ON.".

202 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

S:TOGGLE().
}

}

structure Sensor
Suffix Type Description
All suffixes of Part Sensor objects are a type of Part
ACTIVE boolean Check if this sensor is active
TYPE
DISPLAY string Value of the readout
POWERCONSUMPTION scalar Rate of required electric charge
TOGGLE() Call to activate/deactivate

Note: A Sensor is a type of Part, and therefore can use all the suffixes of Part.

Sensor:ACTIVE

Access Get only

Type boolean

True of the sensor is enabled. Can SET to cause the sensor to activate or de-activate.

Sensor:TYPE

Access Get only

Sensor:DISPLAY

Access Get only

Type string

The value of the sensor’s readout, usualy including the units.

Sensor:POWERCONSUMPTION

Access Get only

Type scalar

The rate at which this sensor drains ElectricCharge.

Sensor:TOGGLE()
Call this method to cause the sensor to switch between active and deactivated or visa versa.

8.3.16 Stage

Contents

• EXAMPLE

• Stage

You access the current stage for the vessel the kOS core is attached to with the STAGE: command.

Structure

structure Stage

8.3. Vessels and Parts 203



kOS Documentation, Release 0.18.2

Table 8.7: Members

Suffix Type
(units)

Ac-
cess

Description

READY bool Get
only

Is the craft ready to activate the next stage.

NUMBER scalar Get
only

The current stage number for the craft

RESOURCES List Get
only

the List of Resource in the current stage

RESOURCESLEXList Get
only

the Lexicon of name String keyed Resource values in the
current stage

Stage:READY

Access Get only

Type bool

Kerbal Space Program enforces a small delay between staging commands, this is to allow the
last staging command to complete. This bool value will let you know if kOS can activate the
next stage.

Stage:NUMBER

Access Get only

Type scalar

Every craft has a current stage, and that stage is represented by a number, this is it!

Stage:Resources

Access Get

Type List

This is a collection of the available Resource for the current stage.

Stage:Resourceslex

Access Get

Type Lexicon

This is a dictionary style collection of the available Resource for the current stage. The String key in the
lexicon will match the name suffix on the Resource. This suffix walks the parts list entirely on every call, so
it is recommended that you cache the value if it will be reference repeatedly.

8.3.17 Vessel

All vessels share a structure. To get a variable referring to any vessel you can do this:

// Get a vessel by it's name.
// The name is Case Sensitive.
SET MY_VESS TO VESSEL("Some Ship Name").

// Save the current vessel in a variable,
// in case the current vessel changes.
SET MY_VESS TO SHIP.

// Save the target vessel in a variable,

204 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

// in case the target vessel changes.
SET MY_VESS TO TARGET.

Note: New in version 0.13: A vessel is now a type of Orbitable. Much of what a Vessel can do can now by done
by any orbitable object. The documentation for those abilities has been moved to the orbitable page.

structure Vessel

Suffix Type Description
Every suffix of Orbitable
CONTROL Control Raw flight controls
BEARING scalar (deg) relative heading to this vessel
HEADING scalar (deg) Absolute heading to this vessel
MAXTHRUST scalar Sum of active maximum thrusts
MAXTHRUSTAT(pressure) scalar Sum of active maximum thrusts at the given atmospheric pressure
AVAILABLETHRUST scalar Sum of active limited maximum thrusts
AVAILABLETHRUSTAT(pressure) scalar Sum of active limited maximum thrusts at the given atmospheric pressure
FACING Direction The way the vessel is pointed
MASS scalar (metric tons) Mass of the ship
WETMASS scalar (metric tons) Mass of the ship fully fuelled
DRYMASS scalar (metric tons) Mass of the ship with no resources
DYNAMICPRESSURE scalar (kilopascals) Air Pressure surrounding the vessel
Q scalar (kilopascals) Alias name for DYNAMICPRESSURE
VERTICALSPEED scalar (m/s) How fast the ship is moving “up”
GROUNDSPEED scalar (m/s) How fast the ship is moving “horizontally”
AIRSPEED scalar (m/s) How fast the ship is moving relative to the air
TERMVELOCITY scalar (m/s) terminal velocity of the vessel
SHIPNAME string The name of the vessel
NAME string Synomym for SHIPNAME
STATUS string Current ship status
TYPE string Ship type
ANGULARMOMENTUM Vector In SHIP_RAW
ANGULARVEL Vector In SHIP_RAW
SENSORS VesselSensors Sensor data
LOADED Boolean loaded into KSP physics engine or “on rails”
LOADDISTANCE LoadDistance the LoadDistance object for this vessel
ISDEAD Boolean True if the vessel refers to a ship that has gone away.
PATCHES List Orbit patches
ROOTPART Part Root Part of this vessel
PARTS List all Parts
DOCKINGPORTS List all DockingPorts
ELEMENTS List all Elements
RESOURCES List all AggrgateResources
PARTSNAMED(name) List Parts by NAME
PARTSTITLED(title) List Parts by TITLE
PARTSTAGGED(tag) List Parts by TAG
PARTSDUBBED(name) List Parts by NAME, TITLE or TAG
MODULESNAMED(name) List PartModules by NAME
PARTSINGROUP(group) List Parts by action group

Continued on next page

8.3. Vessels and Parts 205



kOS Documentation, Release 0.18.2

Table 8.8 – continued from previous page
Suffix Type Description
MODULESINGROUP(group) List PartModules by action group
ALLPARTSTAGGED() List Parts that have non-blank nametags
CREWCAPACITY scalar Crew capacity of this vessel
CREW() List all CrewMembers

Vessel:CONTROL

Type Control

Access Get only

The structure representing the raw flight controls for the vessel.

WARNING: This suffix is only gettable for CPU Vessel

Vessel:BEARING

Type scalar

Access Get only

relative compass heading (degrees) to this vessel from the CPU Vessel, taking into account the CPU Vessel’s
own heading.

Vessel:HEADING

Type scalar

Access Get only

absolute compass heading (degrees) to this vessel from the CPU Vessel

Vessel:MAXTHRUST

Type scalar

Access Get only

Sum of all the engines’ MAXTHRUSTs of all the currently active engines In Kilonewtons.

Vessel:MAXTHRUSTAT(pressure)

Parameters

• pressure – atmospheric pressure (in standard Kerbin atmospheres)

Return type scalar (kN)

Sum of all the engines’ MAXTHRUSTATs of all the currently active engines In Kilonewtons at the given atmo-
spheric pressure. Use a pressure of 0 for vacuum, and 1 for sea level (on Kerbin).

Vessel:AVAILABLETHRUST

Type scalar

Access Get only

Sum of all the engines’ AVAILABLETHRUSTs of all the currently active engines taking into acount their throt-
tlelimits. Result is in Kilonewtons.

Vessel:AVAILABLETHRUSTAT(pressure)

Parameters

• pressure – atmospheric pressure (in standard Kerbin atmospheres)

206 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Return type scalar (kN)

Sum of all the engines’ AVAILABLETHRUSTATs of all the currently active engines taking into acount their
throttlelimits at the given atmospheric pressure. Result is in Kilonewtons. Use a pressure of 0 for vacuum, and
1 for sea level (on Kerbin).

Vessel:FACING

Type Direction

Access Get only

The way the vessel is pointed.

Vessel:MASS

Type scalar (metric tons)

Access Get only

The mass of the ship

Vessel:WETMASS

Type scalar (metric tons)

Access Get only

The mass of the ship if all resources were full

Vessel:DRYMASS

Type scalar (metric tons)

Access Get only

The mass of the ship if all resources were empty

Vessel:DYNAMICPRESSURE

Type scalar (kiloPascals, kPa)

Access Get only

Returns what the air pressure is in the atmosphere surrounding the vessel.

Vessel:Q

Type scalar (kiloPascals, kPa)

Access Get only

Alias for DYNAMICPRESSURE

Vessel:VERTICALSPEED

Type scalar (m/s)

Access Get only

How fast the ship is moving. in the “up” direction relative to the SOI Body’s sea level surface.

Vessel:GROUNDSPEED

Type scalar (m/s)

Access Get only

8.3. Vessels and Parts 207



kOS Documentation, Release 0.18.2

How fast the ship is moving in the two dimensional plane horizontal to the SOI body’s sea level surface. The
vertical component of the ship’s velocity is ignored when calculating this.

Note: New in version 0.18.

The old name for this value was SURFACESPEED. The name was changed because it was confusing before.
“surface speed” implied it’s the scalar magnitude of “surface velocity”, but it wasn’t, because of how it ignores
the vertical component.

Vessel:AIRSPEED

Type scalar (m/s)

Access Get only

How fast the ship is moving relative to the air. KSP models atmosphere as simply a solid block of air “glued”
to the planet surface (the weather on Kerbin is boring and there’s no wind). Therefore airspeed is generally the
same thing as as the magnitude of the surface velocity.

Vessel:TERMVELOCITY

Type scalar (m/s)

Access Get only

terminal velocity of the vessel in freefall through atmosphere, based on the vessel’s current altitude above sea
level, and its drag properties. Warning, can cause values of Infinity if used in a vacuum, and kOS sometimes
does not let you store Infinity in a variable.

Vessel:SHIPNAME

Type string

Access Get/Set

The name of the vessel as it appears in the tracking station. When you set this, it cannot be empty.

Vessel:NAME
Same as Vessel:SHIPNAME.

Vessel:STATUS

Type string

Access get only

The current status of the vessel possible results are: LANDED, SPLASHED, PRELAUNCH, FLYING,
SUB_ORBITAL, ORBITING, ESCAPING and DOCKED.

Vessel:TYPE

Type string

Access Get/Set

The ship’s type as described on the KSP wiki.

Vessel:ANGULARMOMENTUM

Type Direction

Access Get only

208 Chapter 8. Structure Reference

http://wiki.kerbalspaceprogram.com/wiki/Craft#Vessel_types


kOS Documentation, Release 0.18.2

Given in SHIP_RAW reference frame. The vector represents the axis of the rotation, and its magnitude is the
angular momentum of the rotation, which varies not only with the speed of the rotation, but also with the angular
inertia of the vessel.

Note: Changed in version 0.15.4: This has been changed to a vector, as it should have been all along.

Vessel:ANGULARVEL

Type Direction

Access Get only

Given in SHIP_RAW reference frame. The vector represents the axis of the rotation, and its magnitude is the
speed of that rotation (Presumably in degrees per second? This is not documented in the KSP API and may take
some experimentation to discover if it’s radians or degrees).

Note: Changed in version 0.15.4: This has been changed to a vector, as it should have been all along.

Vessel:SENSORS

Type VesselSensors

Access Get only

Structure holding summary information of sensor data for the vessel

Vessel:LOADED

Type Boolean

Access Get only

true if the vessel is fully loaded into the complete KSP physics engine (false if it’s “on rails”).

Vessel:LOADDISTANCE

Type LoadDistance

Access Get only

Returns the load distance object for this vessel. The suffixes of this object may be adjusted to change the loading
behavior of this vessel. Note: these settings are not persistant across flight instances, and will reset the next time
you lauch a craft from an editor or the tracking station.

Vessel:ISDEAD

Type Boolean

Access Get only

It is possible to have a variable that refers to a vessel that doesn’t exist in the Kerbal Space Program universe
anymore, but did back when you first got it. For example: you could do: SET VES TO VESSEL(“OTHER”).
WAIT 10. And in that intervening waiting time, the vessel might have crashed into the ground. Checking
:ISDEAD lets you see if the vessel that was previously valid isn’t valid anymore.

Vessel:PATCHES

Type List

Access Get only

8.3. Vessels and Parts 209



kOS Documentation, Release 0.18.2

The list of orbit patches that describe this vessel’s current travel path based on momentum alone with no
thrusting changes. If the current path has no transitions to other bodies, then this will be a list of only
one orbit. If the current path intersects other bodies, then this will be a list describing the transitions into
and out of the intersecting body’s sphere of influence. SHIP:PATCHES[0] is always exactly the same as
SHIP:OBT, SHIP:PATCHES[1] is the same as SHIP:OBT:NEXTPATCH, SHIP:PATCHES[2] is the same as
SHIP:OBT:NEXTPATCH:NEXTPATCH, and so on. Note that you will only see as far into the future as your
KSP settings allow. (See the setting CONIC_PATCH_LIMIT in your settings.cfg file)

Vessel:ROOTPART

Type Part

Access Get only

The ROOTPART is usually the first Part that was used to begin the ship design - the command core. Vessels
in KSP are built in a tree-structure, and the first part that was placed is the root of that tree. It is possible to
change the root part in VAB/SPH by using Root tool, so ROOTPART does not always point to command core
or command pod. Vessel:ROOTPART may change in flight as a result of docking/undocking or decoupling of
some part of a Vessel.

Vessel:PARTS

Type List of Part objects

Access Get only

A List of all the parts on the vessel. SET FOO TO SHIP:PARTS. has exactly the same effect as LIST
PARTS IN FOO.. For more information, see ship parts and modules.

Vessel:DOCKINGPORTS

Type List of DockingPort objects

Access Get only

A List of all the docking ports on the Vessel.

Vessel:ELEMENTS

Type List of Element objects

Access Get only

A List of all the elements on the Vessel.

Vessel:RESOURCES

Type List of AggregateResource objects

Access Get only

A List of all the AggregateResources on the vessel. SET FOO TO SHIP:RESOURCES. has exactly the same
effect as LIST RESOURCES IN FOO..

Vessel:PARTSNAMED(name)

Parameters

• name – (string) Name of the parts

Returns List of Part objects

Part:NAME. The matching is done case-insensitively. For more information, see ship parts and modules.

Vessel:PARTSTITLED(title)

Parameters

210 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

• title – (string) Title of the parts

Returns List of Part objects

Part:TITLE. The matching is done case-insensitively. For more information, see ship parts and modules.

Vessel:PARTSTAGGED(tag)

Parameters

• tag – (string) Tag of the parts

Returns List of Part objects

Part:TAG value. The matching is done case-insensitively. For more information, see ship parts and modules.

Vessel:PARTSDUBBED(name)

Parameters

• name – (string) name, title or tag of the parts

Returns List of Part objects

name regardless of whether that name is the Part:Name, the Part:Tag, or the Part:Title. It is effectively the
distinct union of :PARTSNAMED(val), :PARTSTITLED(val), :PARTSTAGGED(val). The matching is done
case-insensitively. For more information, see ship parts and modules.

Vessel:MODULESNAMED(name)

Parameters

• name – (string) Name of the part modules

Returns List of PartModule objects

match the given name. The matching is done case-insensitively. For more information, see ship parts and
modules.

Vessel:PARTSINGROUP(group)

Parameters

• group – (integer) the action group number

Returns List of Part objects

one action triggered by the given action group. For more information, see ship parts and modules.

Vessel:MODULESINGROUP(group)

Parameters

• group – (integer) the action group number

Returns List of PartModule objects

have at least one action triggered by the given action group. For more information, see ship parts and modules.

Vessel:ALLPARTSTAGGED()

Returns List of Part objects

nametag on them of any sort that is nonblank. For more information, see ship parts and modules.

Vessel:CREWCAPACITY

Type scalar

Access Get only

8.3. Vessels and Parts 211



kOS Documentation, Release 0.18.2

crew capacity of this vessel

Vessel:CREW()

Returns List of CrewMember objects

list of all kerbonauts aboard this vessel

8.3.18 VesselSensors

When you ask a Vessel to tell you its Vessel:SENSORS suffix, it returns an object of this type. It is a snapshot of
sensor data taken at the moment the sensor reading was requested.

Note: These values are only enabled if you have the proper type of sensor on board the vessel. If you don’t have a
thermometer, for example, then the :TEMP suffix will always read zero.

If you store this in a variable and wait, the numbers are frozen in time and won’t change as the vessel’s condition
changes.

structure VesselSensors

Table 8.9: Members

Suffix Type Description
ACC Vector Acceleration experienced by the Vessel
PRES scalar Atmospheric Pressure outside this Vessel
TEMP scalar Temperature outside this Vessel
GRAV Vector (g’s) Gravitational acceleration
LIGHT scalar Sun exposure on the solar panels of this Vessel

VesselSensors:ACC

Access Get only

Type Vector

Accelleration the vessel is undergoing. A combination of both the gravitational pull and the engine thrust.

VesselSensors:PRES

Access Get only

Type scalar

The current pressure of this ship.

VesselSensors:TEMP

Access Get only

Type scalar

The current temperature.

VesselSensors:GRAV

Access Get only

Type Vector

212 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Magnitude and direction of gravity acceleration where the vessel currently is. Magnitude is expressed in “G“‘s
(multiples of 9.802 m/s^2).

VesselSensors:LIGHT

Access Get only

Type scalar

The total amount of sun exposure that exists here - only readable if there are solar panels on the vessel.

8.3.19 Volume

Represents a kOSProcessor hard disk or the archive.

structure Volume
Suffix Type Description
FREESPACE scalar Free space left on the volume
CAPACITY scalar Total space on the volume
NAME String Volume name
RENAMEABLE scalar True if the name can be changed
FILES List List of all files on the volume
POWERREQUIREMENT scalar Amount of power consumed when this volume is set as the current

volume

Volume:FREESPACE

Type scalar

Access Get only

Free space left on the volume

Volume:CAPACITY

Type scalar

Access Get only

Total space on the volume

Volume:NAME

Type String

Access Get only

Volume name. This name can be used instead of the volumeId with some file and volume-related commands

Volume:RENAMEABLE

Type boolean

Access Get only

True if the name of this volume can be changed. Currently only the name of the archive can’t be changed.

Volume:FILES

Type List of FileInfo

Access Get only

List of files on this volume

Volume:POWERREQUIREMENT

8.3. Vessels and Parts 213



kOS Documentation, Release 0.18.2

Type scalar

Access Get only

Amount of power consumed when this volume is set as the current volume

8.4 Waypoints

Waypoints are the location markers you can see on the map view showing you where contracts are targeted for. With
this structure, you can obtain coordinate data for the locations of these waypoints.

WAYPOINT(name)

Parameters

• name – (string) Name of the waypoint as it appears on the map or in the contract description

Returns Waypoint

This creates a new Waypoint from a name of a waypoint you read from the contract paramters. Note that this
only works on contracts you’ve accpted. Waypoints for proposed contracts haven’t accepted yet do not actually
work in kOS.

SET spot TO WAYPOINT(“herman’s folly beta”).

The name match is case-insensitive.

ALLWAYPOINTS()

Returns List of Waypoint

This creates a List of Waypoint structures for all accepted contracts. Waypoints for proposed contracts you
haven’t accepted yet do not appear in the list.

structure Waypoint

Table 8.10: Members
Suffix Type
NAME string
BODY BodyTarget
GEOPOSITION GeoCoordinates
POSITION Vector
ALTITUDE scalar
AGL scalar
NEARSURFACE boolean
GROUNDED boolean
INDEX scalar
CLUSTERED boolean

Waypoint:NAME

Type string

Access Get only

Name of waypoint as it appears on the map and contract

Waypoint:BODY

Type BodyTarget

214 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Access Get only

Celestial body the waypoint is attached to

Waypoint:GEOPOSITION

Type GeoCoordinates

Access Get only

The LATLNG of this waypoint

Waypoint:POSITION

Type Vector

Access Get only

The Vector position of this waypoint in 3D space, in ship-raw coords.

Waypoint:ALTITUDE

Type scalar

Access Get only

Altitude of waypoint above “sea” level. Warning, this a point somewhere in the midst of the contract altitude
range, not the edge of the altitude range. It corresponds towhere the marker tip hovers on the map, which is
not actually at the very edge of the contract condition’s range. It represents a typical midling location inside the
contract’s altitude range.

Waypoint:AGL

Type scalar

Access Get only

Altitude of waypoint above ground. Warning, this a point somewhere in the midst of the contract altitude
range, not the edge of the altitude range. It corresponds to where the marker tip hovers on the map, which is
not actually at the very edge of the contract condition’s range. It represents a typical midling location inside the
contract’s altitude range.

Waypoint:NEARSURFACE

Type boolean

Access Get only

True if waypoint is a point near or on the body rather than high in orbit.

Waypoint:GROUNDED

Type boolean

Access Get only

True if waypoint is actually glued to the ground.

Waypoint:INDEX

Type scalar

Access Get only

The integer index of this waypoint amongst its cluster of sibling waypoints. In other words, when you have a
cluster of waypoints called “Somewhere Alpha”, “Somewhere Beta”, and “Somewhere Gamma”, then the alpha
site has index 0, the beta site has index 1 and the gamma site has index 2. When Waypoint:CLUSTERED is
false, this value is zero but meaningless.

8.4. Waypoints 215



kOS Documentation, Release 0.18.2

Waypoint:CLUSTERED

Type boolean

Access Get only

True if this waypoint is part of a set of clustered waypoints with greek letter names appended (Alpha, Beta,
Gamma, etc). If true, there should be a one-to-one correspondence with the greek letter name and the :INDEX
suffix. (0 = Alpha, 1 = Beta, 2 = Gamma, etc).

8.5 Configurations and Miscellany

8.5.1 Colors

Any place you need to specify a color in the game (at the moment this is just with VECDRAW, HIGHLIGHT . and
HUDTEXT) You do so with a rgba color structure defined as follows:

Method 1: Use one of these pre-arranged named colors:

• RED

• GREEN

• BLUE

• YELLOW

• CYAN

• MAGENTA

–PURPLE
(Alias of MAGENTA)

• WHITE

• BLACK

RGB(r,g,b)
This global function creates a color from red green and blue values:

SET myColor TO RGB(r,g,b).

where:

r A floating point number from 0.0 to 1.0 for the red component.

g A floating point number from 0.0 to 1.0 for the green component.

b A floating point number from 0.0 to 1.0 for the blue component.

RGBA(r,g,b,a)
Same as RGB() but with an alpha (transparency) channel:

SET myColor TO RGBA(r,g,b,a).

r, g, b are the same as above.

a A floating point number from 0.0 to 1.0 for the alpha component. (1.0 means opaque, 0.0 means invisibly
transparent).

216 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

structure RGBA

Table 8.11: Members

Suffix Type Description
:R or :RED scalar the red component of the color
:G or
:GREEN

scalar the green component of the color

:B or
:BLUE

scalar the blue component of the color

:A or
:ALPHA

scalar the alpha (how opaque: 1 = opaque, 0 = transparent) component of the color

:HTML or
:HEX

string the color rendered into a HTML tag string i.e. “#ff0000”. This format ignores the
alpha channel and treats all colors as opaque.

Examples:

SET myarrow TO VECDRAW.
SET myarrow:VEC to V(10,10,10).
SET myarrow:COLOR to YELLOW.
SET mycolor TO YELLOW.
SET myarrow:COLOR to mycolor.
SET myarrow:COLOR to RGB(1.0,1.0,0.0).

// COLOUR spelling works too
SET myarrow:COLOUR to RGB(1.0,1.0,0.0).

// half transparent yellow.
SET myarrow:COLOR to RGBA(1.0,1.0,0.0,0.5).

PRINT GREEN:HTML. // prints #00ff00

HSV(h,s,v)
This global function creates a color from hue, saturation and value:

SET myColor TO HSV(h,s,v).

`More Information about HSV <http://en.wikipedia.org/wiki/HSL_and_HSV>`_,

where:

h A floating point number from 0.0 to 360.0 for the hue component.

s A floating point number from 0.0 to 1.0 for the saturation component.

v A floating point number from 0.0 to 1.0 for the value component.

HSVA(h,s,v,a)
Same as HSV() but with an alpha (transparency) channel:

SET myColor TO HSVA(h,s,v,a).

h, s, v are the same as above.

a A floating point number from 0.0 to 1.0 for the alpha component. (1.0 means opaque, 0.0 means invisibly
transparent).

structure HSVA
The HSVA structure contains all of the suffixes from the RGBA structure in addition to these

8.5. Configurations and Miscellany 217



kOS Documentation, Release 0.18.2

Table 8.12: Members

Suffix Type Description
:H or :HUE scalar the hue component of the color. It is a value from 0.0 to 360.0
:S or :SATURATION scalar the saturation component of the color. It has a value from 0.0 to 1.0
:V or :VALUE scalar the value component of the color. It has a value from 0.0 to 1.0

Examples:

SET myarrow TO VECDRAW.
SET myarrow:VEC to V(10,10,10).
SET myarrow:COLOR to HSV(60,1,1). // Yellow
SET myarrow:COLOR:S to 0.5. // Light yellow
SET myarrow:COLOR:H to 0. // pink

8.5.2 Configuration of kOS

structure Config
Config is a special structure that allows your kerboscript programs to set or get the values stored in the kOS
plugin’s config file.

The options here can also be set by using the user interface panel shown here. This control panel is part of the
App Control Panel

In either case, whether the setting is changed via the GUI panel, or via script code, these are settings that affect
the kOS mod in all saved games as soon as the change is made. It’s identical to editing the config file in the
kOS installation directory, and in fact will actually change that file the next time the game saves its state.

Table 8.13: Members (all Gettable and Settable)

Suffix Type Default Description
IPU integer 150 Instructions per update
UCP boolean False Use compressed persistence
STAT boolean False Print statistics to screen
RT2 boolean False Enable RemoteTech2 integration
ARCH boolean False Start on archive (instead of volume 1)
SAFE boolean False Enable safe mode
AUDIOERR boolean False Enable sound effect on kOS error
VERBOSE boolean False Enable verbose exceptions
TELNET boolean False activate the telnet server
TPORT integer 5410 set the port the telnet server will run on
LOOPBACK boolean True Force the telnet server to use loopback (127.0.0.1) address

Config:IPU

Access Get/Set

Type integer. range = [50,2000]

Configures the InstructionsPerUpdate setting.

This is the number of kRISC psuedo-machine-langauge instructions that each kOS CPU will attempt to execute
from the main program per physics update tick.

This value is constrained to stay within the range [50..2000]. If you set it to a value outside that range, it will
reset itself to remain in that range.

Config:UCP

218 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Access Get/Set

Type boolean

Configures the UseCompressedPersistence setting.

If true, then the contents of the kOS local volume ‘files’ stored inside the campaign save’s persistence file will
be stored using a compression algorithm that has the advantage of making them take less space, but at the cost
of making the data impossible to decipher with the naked human eye when looking at the persistence file.

Config:STAT

Access Get/Set

Type boolean

Configures the ShowStatistics setting.

If true, then executing a program will log numbers to the screen showing execution speed statistics.

Config:RT2

Access Get/Set

Type boolean

Configures the EnableRT2Integration setting.

If true, then the kOS mod will attempt to interact with the Remote Tech 2 mod, letting RT2 make decisions
about whether or not a vessel is within communications range rather than having kOS use its own more primitive
algorithm for it.

Due to a long stall in the development of the RT2 mod, this setting should still be considered experimental at
this point.

Config:ARCH

Access Get/Set

Type boolean

Configures the StartOnArchive setting.

If true, then when a vessel is first loaded onto the launchpad or runway, the initial default volume will be set to
volume 0, the archive, instead of volume 1, the local drive.

Config:SAFE

Access Get/Set

Type boolean

Configures the EnableSafeMode setting.

If true, then it enables the following error messages:

Tried to push NaN into the stack.
Tried to push Infinity into the stack.

They will be triggered any time any mathematical operation would result in something that is not a real number,
such as dividing by zero, or trying to take the square root of a negative number, or the arccos of a number larger
than 1. Performing such an operation will immediately terminate the program with one of the error messages
shown above.

If false, then these operations are permitted, but the result may lead to code that does not function correctly if
you are not careful about how you use it. Using a value that is not a real number may result in freezing Kerbal
Space Program itself if that value is used in a variable that is passed into Kerbal Space Program’s API routines.

8.5. Configurations and Miscellany 219



kOS Documentation, Release 0.18.2

KSP’s own API interface does not seem to have any protective checks in place and will faithfully try to use
whatever values its given.

Config:AUDIOERR

Access Get/Set

Type boolean

Configures the AudibleExceptions setting.

If true, then it enables a mode in which errors coming from kOS will generte a sound effect of a short little
warning bleep to remind you that an exception occurred. This can be useful when you are flying hands-off and
need to realize your autopilot script just died so you can take over.

Config:VERBOSE

Access Get/Set

Type boolean

Configures the VerboseExceptions setting.

If true, then it enables a mode in which errors coming from kOS are very long and verbose, trying to explain
every detail of the problem.

Config:TELNET

Access Get/Set

Type boolean

Configures the EnableTelnet setting.

When set to true, it activates a kOS telnet server in game that allows you to connect external terminal programs
like Putty and Xterm to it. Turning the option off or on immediately toggles the server. (When you change it
from false to true, it will start the server right then. When you change it from true to false, it will stop the server
right then.) Therefore to restart the server after changing a setting like TPORT, DO this:

// Restart telnet server:
SET CONFIG:TELNET TO FALSE.
WAIT 0.5. // important to give kOS a moment to notice and kill the old server.
SET CONFIG:TELNET TO TRUE.

Of course, you can do the equivalent of that by using the GUI config panel and just clicking the button off then
clicking it on.

Config:TPORT

Access Get/Set

Type boolean

Configures the TelnetPort setting.

Changes the TCP/IP port number that the kOS telnet server in game will listen to.

To make the change take effect you may have to stop, then restart the telnet server, as described above.

Config:LOOPBACK

Access Get/Set

Type boolean

220 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Configures the TelnetLoopback setting.

If true, then it tells the kOS telnet server in game to refuse to use the computer’s actual IP address, and instead use
the loopback address (127.0.0.1). This is the default mode the kOS mod ships in, in order to make it impossible
get external access to your computer.

To make the change take effect you may have to stop, then restart the telnet server, as described above.

8.5.3 File Information

File name and size information. You can obtain a list of values of type FileInfo using the LIST FILES command.

structure FileInfo

Table 8.14: Members

Suffix Type Description
NAME string Name of the file including extension
FILETYPE string Type of the file
SIZE integer (bytes) Size of the file

FileInfo:NAME

Access Get only

Type string

name of the file, including its file extension.

FileInfo:FILETYPE

Access Get only

Type string

Type of the file as a string. Can be one of the following:

ASCII A file containing ASCII text, like the result of a LOG command.

KERBOSCRIPT (unimplemented) A type of ASCII file containing Kerboscript ascii code. At the moment
this type does not ever get returned. You will always get files of type ASCII instead.

KSM A type of file containing KerboMachineLanguage compiled code, that was created from the COMPILE
command.

UNKNOWN Any other type of file.

FileInfo:SIZE

Access Get only

Type scalar

size of the file, in bytes.

8.5.4 Part Highlighting

Being able to color tint a part or a collection of parts can be a powerful visualization to show their placement and
status. The part highlighting structure is defined as follows:

8.5. Configurations and Miscellany 221



kOS Documentation, Release 0.18.2

HIGHLIGHT(p,c)
This global function creates a part highlight:

SET foo TO HIGHLIGHT(p,c).

where:

p A single part, a list of parts or an element

c A color

structure HIGHLIGHT

Table 8.15: Members

Suffix Type Description
:COLOR color the color that will be used by the highlight
:ENABLED bool controls the visibility of the highlight

Example:

list elements in elist.

// Color the first element pink
SET foo TO HIGHLIGHT( elist[0], HSV(350,0.25,1) ).

// Turn the highlight off
SET foo:ENABLED TO FALSE

// Turn the highlight back on
SET foo:ENABLED TO TRUE

8.5.5 Iterator

An iterator can be obtained from List:ITERATOR. Once a List has given you an Iterator object, you can use
it to access elements inside the List. An ITERATOR is a generic computer programming concept. In the general
case it’s a variable type that allows you to get the value at a position in some collection, as well as increment to the next
item in the collection in order to operate on all objects in the collection one at a time. In kOS it operates on Lists.

A loop using an Iterator on a List might look like this:

// Starting with a list that was built like this
SET MyList To LIST( "Hello", "Aloha", "Bonjour").

// It could be looped over like this
SET MyCurrent TO MyList:ITERATOR.
MyCurrent:RESET().
PRINT "After reset, position = " + MyCurrent:INDEX.
UNTIL NOT MyCurrent:NEXT {

PRINT "Item at position " + MyIter:INDEX + " is [" + MyIter:VALUE + "].".
}

Which would result in this output:

After reset, position = -1.
Item at position 0 is [Hello].
Item at position 1 is [Aloha].
Item at position 2 is [Bonjour].

222 Chapter 8. Structure Reference

http://en.wikipedia.org/wiki/Iterator


kOS Documentation, Release 0.18.2

structure Iterator

Table 8.16: Members

Suffix Type Description
RESET Rewind to the just before the beginning
NEXT boolean Move iterator to the next item
ATEND boolean Check if iterator is at the end of the list
INDEX integer Current index starting from zero
VALUE varies The object currently being pointed to

Iterator:RESET()
Call this to rewind the iterator to just before the beginning of the list. After a call to Iterator:RESET, the
iterator must be moved with Iterator:NEXT before it gets to the first value in the list.

Iterator:NEXT()

Returns boolean

Call this to move the iterator to the next item in the list. Returns true if there is such an item, or false if no such
item exists because it’s already at the end of the list.

Iterator:ATEND

Access Get only

Type boolean

Returns true if the iterator is at the end of the list and therefore cannot be “NEXTed”, false otherwise.

Iterator:INDEX

Access Get only

Type integer

Returns the numerical index of how far you are into the list, starting the counting at 0 for the first item in the
list. The last item in the list is numbered N-1, where N is the number of items in the list.

Note: If you have just used Iterator:RESET or have just created the ITERATOR, then the value of
Iterator:INDEX is -1. It only becomes 0 after the first call to Iterator:NEXT.

Iterator:VALUE

Access Get only

Type varies

Returns the thing stored at the current position in the list.

8.5.6 KUniverse 4th wall methods

structure KUniverse
KUniverse is a special structure that allows your kerboscript programs to access some of the functions that
break the “4th Wall”. It serves as a place to access object directly connected to the KSP game itself, rather than
the interaction with the KSP world (vessels, planets, orbits, etc.).

8.5. Configurations and Miscellany 223



kOS Documentation, Release 0.18.2

Table 8.17: Members and Methods

Suffix Type Get/Set Description
CANREVERT boolean Get Is any revert possible?
CANREVERTTOLAUNCHboolean Get Is revert to launch possible?
CANREVERTTOEDITORboolean Get Is revert to editor possible?
REVERTTOLAUNCH none Method Invoke revert to launch
REVERTTOEDITOR none Method Invoke revert to editor
REVERTTO(name) string Method Invoke revert to the named editor
ORIGINEDITOR string Get Returns the name of this vessel’s editor, “SPH” or

“VAB”.
DEBUGLOG(message)none Method Causes a string to append to the Unity debug log file.
DEFAULTLOADDISTANCELoadDistanceGet Returns the set of default load and pack distances for

the game.
ACTIVEVESEL Vessel Get/Set Returns the active vessel, or lets you set the active

vesssel.
FORCEACTIVE(vessel)n/a Set Lets you switch active vessels even when the game

refuses to allow it.

KUniverse:CANREVERT

Access Get

Type boolean.

Returns true if either revert to launch or revert to editor is available. Note: either option may still be unavailable,
use the specific methods below to check the exact option you are looking for.

KUniverse:CANREVERTTOLAUNCH

Access Get

Type boolean.

Returns true if either revert to launch is available.

KUniverse:CANREVERTTOEDITOR

Access Get

Type boolean.

Returns true if either revert to the editor is available. This tends to be false after reloading from a saved game
where the vessel was already in existence in the saved file when you loaded the game.

KUniverse:REVERTTOLAUNCH

Access Method

Type None.

Initiate the KSP game’s revert to launch function. All progress so far will be lost, and the vessel will be returned
to the launch pad or runway at the time it was initially launched.

KUniverse:REVERTTOEDITOR

Access Method

Type None.

Initiate the KSP game’s revert to editor function. The game will revert to the editor, as selected based on the
vessel type.

KUniverse:REVERTTO(editor)

224 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Parameters

• editor – The editor identifier

Returns none

Revert to the provided editor. Valid inputs are “VAB” and “SPH”.

KUniverse:ORIGINEDITOR

Access Get

Type string.

Returns the name of the orginating editor based on the vessel type. The value is one of:

•“SPH” for things built in the space plane hangar,

•“VAB” for things built in the vehicle assembly building.

•“” (empty string) for cases where the vehicle cannot remember its editor (when KUni-
verse:CANREVERTTOEDITOR is false.)

KUniverse:DEFAULTLOADDISTANCE

Access Get

Type LoadDistance.

Get or set the default loading distances for vessels loaded in the future. Note: this setting will not affect any
vessel currently in the universe for the current flight session. It will take effect the next time you enter a flight
scene from the editor or tracking station, even on vessels that have already existed beforehand. The act of
loading a new scene causes all the vessels in that scene to inherit these new default values, forgetting the values
they may have had before.

(To affect the value on a vessel already existing in the current scene you have to use the :LOADDISTANCE
suffix of the Vessel structure.)

KUniverse:ACTIVEVESSEL

Access Get/Set

Type Vessel.

Returns the active vessel object and allows you to set the active vessel. Note: KSP will not allow you to change
vessels by default when the current active vessel is in the atmosphere or under acceleration. Use FORCEACTIVE
under those circumstances.

KUniverse:FORCEACTIVE(vessel)

Parameters

• vessel – Vessel to switch to.

Returns none

Force KSP to change the active vessel to the one specified. Note: Switching the active vessel under conditions
that KSP normally disallows may cause unexpected results on the initial vessel. It is possible that the vessel will
be treated as if it is re-entering the atmosphere and deleted.

KUniverse:DEBUGLOG(message)

Parameters

• message – string message to append to the log.

Returns none

8.5. Configurations and Miscellany 225



kOS Documentation, Release 0.18.2

All Unity games (Kerbal Space Program included) have a standard “log” file where they can store a lot of
verbose messages that help developers trying to debug their games. Sometimes it may be useful to make your
script log a message to THAT debug file, instead of using kOS’s normal Log function to append a message to
some file of your own making.

This is useful for cases where you are trying to work with a kOS developer to trace the cause of a problem and
you want your script to mark the moments when it hit different parts of the program, and have those messages
get embedded in the log interleaved with the game’s own diagnostic messages.

Here is an example. Say you suspected the game was throwing an error every time you tried to lock steering to
up. So you experiment with this bit of code:

kuniverse:debuglog("=== Now starting test ===").
kuniverse:debuglog("--- Locking steering to up----").
lock steering to up.
kuniverse:debuglog("--- Now forcing a physics tick ----").
wait 0.001.
kuniverse:debuglog("--- Now unlocking steering again ----").
unlock steering.
wait 0.001.
kuniverse:debuglog("=== Now done with test ===").

This would cause the messages you wrote to appear in the debug log, interleaved with any error messages kOS,
and any other parts of the entire Kerbal Space Program game, dump into the same log.

The location of this log varies depending on your platform. For some reason, Unity chooses a different filename
convention for each OS. Consult the list below to see where it is on your platform.

•Windows 32-bit: [install_dir]KSP_Dataoutput_log.txt

•Windows 64-bit: [install_dir]KSP_x64_Dataoutput_log.txt (not officially supported)

•Mac OS X: ~/Library/Logs/Unity/Player.log

•Linux: ~/.config/unity3d/Squad/”Kerbal Space Program”/Player.log

For an example of what it looks like in the log, this:

kuniverse:debuglog("this is my message").

ends up resulting in this in the KSP output log:

kOS: (KUNIVERSE:DEBUGLOG) this is my message

8.5.7 Examples

Switch to an active vessel called “vessel 2”:

SET KUNIVERSE:ACTIVEVESSEL TO VESSEL("vessel 2").

Revert to VAB, but only if allowed:

PRINT "ATTEMPTING TO REVERT TO THE Vehicle Assembly Building."
IF KUNIVERSE:CANREVERTTOEDITOR {
IF KUNIVERSE:ORIGINEDITOR = "VAB" {
PRINT "REVERTING TO VAB.".
KUNIVERSE:REVERTTOEDITOR().

} ELSE {
PRINT "COULD REVERT, But only to space plane hanger, so I won't.".

226 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

}
} ELSE {

PRINT "Cannot revert to any editor.".
}

8.5.8 Lexicon

A Lexicon is an associative array, and is similar to the LIST type. If you are an experienced programmer who already
knows what “associative array” means, you can probably skip this section and go to the next part of the page further
down, otherwise read on:

In a normal array, or in kerboscript’s LIST type you specify which item in the list you want by giving its integer position
in the list.

But in a Lexicon, you store pairs of keys and values, where the keys can be any type of thing you like, not just
integers, and then you specify which item you want by using that key’s value.

Here’s a small example:

set arr to lexicon().
arr:add( "ABC", 1234.1 ).
arr:add( "Carmine", 4.1 ).
print arr["ABC"]. // prints 1234.1
print arr["Carmine"]. // prints 4.1

Notice how it looks a lot like a list, but the values in the index brackets are strings instead of integers. This is the most
common use of a lexicon, to use strings as the key index values (and in fact why it’s called “lexicon”). However you
can really use any value you feel like for the keys - strings, RGB colors, numbers, etc.

Lexicons are case-insensitive

One important difference between Lexicons in kerboscript and associative arrays in most other languages is that
kerboscript Lexicons use case-insensitive keys by default (when the keys are strings). This behaviour can be changed
with the :CASESENSITIVE flag described below.

Constructing a lexicon

If you wish to make your own lexicon from scratch you can do so with the LEXICON() built-in function:

// Make an empty lexicon with zero items in it:
set mylexicon to lexicon().

The keys and the values of a lexicon can be any type you feel like, and do not need to be of a homogeneous type.

Structure

structure Lexicon

8.5. Configurations and Miscellany 227

https://en.wikipedia.org/wiki/Associative_array


kOS Documentation, Release 0.18.2

Table 8.18: Members

Suffix Type Description
ADD(key,value)None append an item to the lexicon
CASESENSITIVEbool changes the behaviour of string based keys. Which are by default case

insensitive. Setting this will clear the lexicon.
CASE bool A synonym for CASESENSITIVE
CLEAR None remove all items in the lexicon
COPY Lexiconreturns a (shallow) copy of the contents of the lexicon
DUMP string verbose dump of all contained elements
HASKEY(keyvalue)bool does the lexicon have a key of the given value?
HASVALUE(value)bool does the lexicon have a value of the given value?
KEYS List gives a flat List of the keys in the lexicon
VALUES List gives a flat List of the values in the lexicon
LENGTH integer number of pairs in the lexicon
REMOVE(keyvalue)None removes the pair with the given key

Lexicon:ADD(key, value)

Parameters

• key – (any type) a unique key

• value – (any type) a value that is to be associated to the key

Adds an additional pair to the lexicon.

Lexicon:CASESENSITIVE

Type Boolean

Access Get or Set

The case sensitivity behaviour of the lexicon when the keys are strings. By default, all kerboscript lexicons use
case-insensitive keys, at least for those keys that are string types, meaning that mylexicon[”AAA”] means the
same exact thing as mylexicon[”aaa”]. If you do not want this behaviour, and instead want the key “AAA” to be
different from the key “aaa”, you can set this value to true.

Be aware, however, that if you change this, it has the side effect of clearing out the entire contents of the lexicon.
This is done so as to avoid any potential clashes when the rules about what constitutes a duplicate key changed
after the lexicon was already populated. Therefore you should probably only set this on a brand new lexicon,
right after you’ve created it, and never change it after that.

Lexicon:CASE

Type Boolean

Access Get or Set

Synonym for CASESENSITIVE (see above).

Lexicon:REMOVE(key)

Parameters

• key – the keyvalue of the pair to be removed

Remove the pair with the given key from the lexicon.

Lexicon:CLEAR()
Removes all of the pairs from the lexicon. Making it empty.

Lexicon:LENGTH

228 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Type integer

Access Get only

Returns the number of pairs in the lexicon.

Lexicon:COPY()

Return type Lexicon

Access Get only

Returns a new lexicon that contains the same set of pairs as this lexicon. Note that this is a “shallow” copy,
meaning that if there is a value in the list that refers to, for example, another Lexicon, or a Vessel, or a Part, the
new copy will still be referring to the same object as the original copy in that value.

Lexicon:HASKEY(key)

Parameters

• key – (any type)

Returns boolean

Returns true if the lexicon contains the provided key

Lexicon:HASVALUE(key)

Parameters

• key – (any type)

Returns boolean

Returns true if the lexicon contains the provided value

Lexicon:DUMP

Type string

Access Get only

Returns a string containing a verbose dump of the lexicon’s contents.

The difference between a DUMP and just the normal printing of a Lexicon is in whether or not it recursively
shows you the contents of every complex object inside the Lexicon.

i.e:: // Just gives a shallow list: print mylexicon.

// Walks the entire tree of contents, descending down into // any Lists or Lexicons that are stored inside
this Lexicon: print mylexicon:dump.

Lexicon:KEYS

Type List

Access Get only

Returns a List of the keys stored in this lexicon.

Lexicon:VALUES

Type List

Access Get only

Returns a List of the values stored in this lexicon.

8.5. Configurations and Miscellany 229



kOS Documentation, Release 0.18.2

Access to Individual Elements

lexicon[expression] operator: another syntax to access the element at position ‘expression’. Works for get or
set. Any arbitrary complex expression may be used with this syntax, not just a number or variable name.

FOR VAR IN LEXICON.KEYS { ... }. A type of loop in which var iterates over all the items of lexicon
from item 0 to item LENGTH-1.

Implicit ADD when using index brackets with new key values

(a.k.a. The difference between GETTING and SETTING with nonexistant keys)

If you attempt to use a key that does not exist in the lexicon, to GET a value, as follows:

SET ARR TO LEXICON().
SET X TO ARR["somekey"]. // this will produce an error.

Then you will get a KOSKeyNotFoundException error, as you might expect, because the key "somekey" isn’t there
in the empty lexicon you just made.

However if you use a key that does not exist yet to SET a value rather than to GET a value, you don’t get an error.
Instead it actually implicitly ADDS the new value to the lexicon with that key. The example below will not give you
an error:

SET ARR TO LEXICON().
SET ARR["somekey"] TO 100. // adds new value to the lexicon.

The above ends up doing the same thing as if you had done this:

SET ARR TO LEXICON().
ARR:ADD("somekey",100).

Note that while using :ADD() to make a new value in the lexicon will give you a duplicate key error if the value
already does exist, using SET to create the value implicitly won’t because it simply replaces the existing value in-
place rather than trying to make a new one.

This gives a duplicate key error:

SET ARR TO LEXICON().
ARR:ADD("somekey",100).
ARR:ADD("somekey",200). // error, because "somekey" already exists.

While this does not:

SET ARR TO LEXICON().
SET ARR["somekey"] to 100.
SET ARR["somekey"] to 200. // no error, because it replaces the value 100 with a 200.

In a nutshell, using [..] to set a value in a lexicon does this: If the key already exists, replace the value with the new
value. If the key does not already exist, make it exist and give it this new value.

Examples

SET BAR TO LEXICON(). // Creates a new empty lexicon in BAR variable
BAR:ADD("FIRST",10). // Adds a new element to the lexicon with the key of "FIRST"
BAR:ADD("SECOND",20). // Adds a new element to the lexicon with the key of "SECOND"
BAR:ADD("LAST",30). // Adds a new element to the lexicon with the key of "LAST"

230 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

PRINT BAR["FIRST"]. // Prints 10
PRINT BAR["SECOND"]. // Prints 20
PRINT BAR["LAST"]. // Prints 30

SET FOO TO LEXICON(). // Creates a new empty lexicon in FOO variable
FOO:ADD("ALTITUDE", ALTITUDE). // Adds current altitude number to the lexicon
FOO:ADD("ETA", ETA:APOAPSIS). // Adds current seconds to apoapsis to the lexicon at the index "ETA"

// As a reminder, at this point your lexicon, if you did all the above
// steps in order, would look like this now:
//
// FOO["ALTITUDE"] = 99999. // or whatever your altitude was when you added it.
// FOO["ETA"] = 99. // or whatever your ETA:APOAPSIS was when you added it.

PRINT FOO:LENGTH. // Prints 2
PRINT FOO:LENGTH(). // Also prints 2. LENGTH is a method that, because it takes zero arguments, can omit the parentheses.
SET x TO "ALTITUDE". PRINT FOO[x]. // Prints the same thing as FOO["ALTITUDE"].

FOO:REMOVE("ALTITUDE"). // Removes the element at "ALTITUDE" from the lexicon.

8.5.9 List

A List is a collection of any type in kOS. Many places throughout the system return variables of the List type, and
you can create your own List variables as well. One of the places you are likely to find that kOS gives you a List
is when you use the LIST command to list some query into one of your variables.

Constructing a list

Numerous built-in functions in kOS return a list. If you wish to make your own list from scratch you can do so with
the LIST() built-in function. You pass a varying number of arguments into it to pre-populate the list with an initial list
of items:

// Make an empty list with zero items in it: set mylist to list().

// Make a list with 3 numbers in it: set mylist to list(10,20,30).

// Make a list with 3 strings in it: set mylist to list(“10”,”20”,”30”).

// Make a two dimensional 2x3 list with heterogenious contents // mixing strings and numbers: set mylist
to list( list(“a”,”b”,”c”), list(1,2,3) ).

The contents of a list can be any objects you feel like, and do not need to be of a homogeneous type.

Structure

structure List

8.5. Configurations and Miscellany 231



kOS Documentation, Release 0.18.2

Table 8.19: Members

Suffix Type Description
ADD(item) None append an item
INSERT(index,item) None insert item at index
REMOVE(index) None remove item by index
CLEAR None remove all elements
LENGTH integer number of elements in list
ITERATOR Iterator for iterating over the list
COPY List a new copy of this list
CONTAINS(item) boolean check if list contains an item
SUBLIST(index,length) List new list of given length starting with index
EMPTY boolean check if list if empty
DUMP string verbose dump of all contained elements

List:ADD(item)

Parameters

• item – (any type) item to be added

Appends the new value given to the end of the list.

List:INSERT(index,item)

Parameters

• index – (integer) position in list (starting from zero)

• item – (any type) item to be added

Inserts a new value at the position given, pushing all the other values in the list (if any) one spot to the right.

List:REMOVE(index)

Parameters

• index – (integer) position in list (starting from zero)

Remove the item from the list at the numeric index given, with counting starting at the first item being item zero

List:CLEAR
Use this for its side-effect. Whenever myList:CLEAR exists in an expression, myList will be zeroed out,
regardless of what you do with the value of the expression:

SET dummy TO myList:CLEAR.

List:LENGTH

Type integer

Access Get only

Returns the number of elements in the list.

List:ITERATOR

Type Iterator

Access Get only

An alternate means of iterating over a list. See: Iterator.

List:COPY

Type List

232 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Access Get only

Returns a new list that contains the same thing as the old list.

List:CONTAINS(item)

Parameters

• index – (integer) starting index (from zero)

Returns boolean

Returns true if the list contains an item equal to the one passed as an argument

List:SUBLIST(index,length)

Parameters

• index – (integer) starting index (from zero)

• length – (integer) resulting length of returned List

Returns List

Returns a new list that contains a subset of this list starting at the given index number, and running for the given
length of items.

List:EMPTY

Type boolean

Access Get only

Returns true if the list has zero items in it.

List:DUMP

Type string

Access Get only

Returns a string containing a verbose dump of the list’s contents.

Access to Individual Elements

All list indexes start counting at zero. (The list elements are numbered from 0 to N-1 rather than from 1 to N.)

list[expression] operator: another syntax to access the element at position ‘expression’. Works for get or set.
Any arbitrary complex expression may be used with this syntax, not just a number or variable name. This syntax
is preferred over the older “#” syntax, which is kept only for backward compatibility.

FOR VAR IN LIST { ... }. A type of loop in which var iterates over all the items of list from item 0 to item
LENGTH-1.

ITERATOR An alternate means of iterating over a list. See Iterator.

list#x (deprecated) operator: access the element at postion x. Works for get or set. X must be a hardcoded number
or a variable name. This is here for backward compatibility. The syntax in the next bullet point is preferred over
this.

Examples:

SET BAR TO LIST(5,3,6). // Creates a new list with 3 integers in it.
SET FOO TO LIST(). // Creates a new empty list in FOO variable
FOO:ADD(5). // Adds a new element to the end of the list
FOO:ADD( ALTITUDE ). // Adds current altitude number to the end of the list

8.5. Configurations and Miscellany 233



kOS Documentation, Release 0.18.2

FOO:ADD(ETA:APOAPSIS). // Adds current seconds to apoapsis to the end of the list

// As a reminder, at this point your list, if you did all the above
// steps in order, would look like this now:
//
// FOO[0] = 5.
// FOO[1] = 99999. // or whatever your altitude was when you added it.
// FOO[2] = 99. // or whatever your ETA:APOAPSIS was when you added it.

PRINT FOO:LENGTH. // Prints 3
PRINT FOO:LENGTH(). // Also prints 3. LENGTH is a method that, because it takes zero arguments, can omit the parentheses.
PRINT FOO#0. // Prints 5, using deprecated old '#' syntax.
PRINT FOO[0]. // Prints 5, using newer preferred '[]' syntax.
PRINT FOO[1]. // Prints altitude number.
PRINT FOO[2]. // Prints eta:apoapsis number.
SET x TO 2. PRINT FOO#x. // Prints the same thing as FOO[2], using deprecated old '#' syntax.
SET x TO 2. PRINT FOO[x].// Prints the same thing as FOO[2].
SET y to 3. PRINT FOO[ y/3 + 1 ].

// Prints the same thing as FOO#2, using a mathematical expression as the index.
SET FOO#0 to 4. // Replace the 5 at position 0 with a 4.
FOO:INSERT(0,"skipper 1"). // Inserts the string "skipper 1" to the start of the list, pushing the rest of the contents right.
FOO:INSERT(2,"skipper 2"). // Inserts the string "skipper 2" at position 2 of the list, pushing the rest of the contents right.

// As a reminder, at this point your list, if you did all the above
// steps in order, would look like this now:
//
// FOO[0] = "skipper 1".
// FOO[1] = 5.
// FOO[2] = "skipper 2".
// FOO[3] = 99999. // or whatever your altitude was when you added it.
// FOO[4] = 99. // or whatever your ETA:APOAPSIS was when you added it.

FOO:REMOVE( 1). // Removes the element at index 1 from the list, moving everything else back one.
FOO:REMOVE(FOO:LENGTH - 1). // Removes whatever element happens to be at the end of the list, at position length-1.

// As a reminder, at this point your list, if you did all the above
// steps in order, would look like this now:
//
// FOO[0] = "skipper 1".
// FOO[1] = "skipper 2".
// FOO[2] = 99999. // or whatever your altitude was when you added it.

SET BAR TO FOO:COPY. // Makes a copy of the FOO list
FOO:CLEAR. // Removes all elements from the FOO list.
FOO:CLEAR(). // Also removes all elements from the FOO list. The parentheses are optional because the method takes zero arguments.
FOR var in BAR { // --.

print var. // |-- Print all the contents of FOO.
}. // --'

Multidimensional Arrays

A 2-D array is a List who’s elements are themselves also Lists. A 3-D array is a List of Lists of Lists. Any
number of dimensions is possible.

list[x][y] (or list#x#y) Access the element at position x,y of the 2-D array (list of lists). The use of the
‘#’ syntax is deprecated and exists for backward compatibility only. The newer ‘[]’ square-bracket syntax is
preferred.

234 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

• The elements of the array need not be uniform (any mix of strings, numbers, structures is allowed).

• The dimensions of the array need not be uniform (row 1 might have 3 columns while row 2 has 5 columns):

SET FOO TO LIST(). // Empty list.
FOO:ADD( LIST() ). // Element 0 is now itself a list.
FOO[0]:ADD( "A" ). // Element 0,0 is now "A".
FOO[0]:ADD( "B" ). // Element 0,1 is now "B".
FOO:ADD(LIST()). // Element 1 is now itself a list.
FOO[1]:ADD(10). // Element 1,0 is now 10.
FOO[1]:ADD(20). // Element 1,1 is now 20.
FOO:ADD(LIST()). // Element 2 is now itself a list.

FOO[ FOO:LENGTH -1 ]:ADD(3.14159).
// Element 2,0 is now 3.1519, using a more complex
// expression to dynamically obtain the current
// maximum index of '2'.

FOO[ FOO:LENGTH -1 ]:ADD(7).
// Element 2,1 is now 7, using a more complex
// expression to dynamically obtain the current
// maximum index of '2'.

// FOO is now a 2x3 matrix looking like this:
// A B
// 10 20
// 3.14159 7

// or like this, depending on how you want
// to visualize it as a row-first or column-first table:
// A 10 3.14159
// B 20 7

PRINT FOO[0][0]. // Prints A.
PRINT FOO[0][1]. // Prints B.
PRINT FOO[1][0]. // Prints 10.
PRINT FOO[1][1]. // Prints 20.
PRINT FOO[2][0]. // Prints 3.14159.
PRINT FOO[2][1]. // Prints 7.

PRINT FOO#2#0. // Prints 3.14159, using deprecated syntax.

Comparing two lists

Note that if you have two lists, LISTA and LISTB, and you tried to compare if they were the same, in this way:

if LISTA = LISTB {
print "they are equal".

}

Then the check will only be true if LISTA and LISTB are both actually the same list - not just two lists with equal
contents, but in fact just two variables pointing to the same list.

This is because a LIST is a complex structure object, and like most complex structure objects, the equality check is
just testing whether or not they refer to the same object, not whether or not they have equivalent content.

To test if the contents are equivalent, you have to check them item by item, like so:

8.5. Configurations and Miscellany 235



kOS Documentation, Release 0.18.2

set still_same to true.
FROM {local i is 0.}

UNTIL i > LISTA:LENGTH or not still_same
STEP {set i to i + 1.}

DO
{

set still_same to (LISTA[i] = LISTB[i]).
}
if still_same {

print "they are equal".
}

8.5.10 Vessel Load Distance

structure LoadDistance
(The “on rails” settings)

LoadDistance describes the set of distances at which the game causes vessels to unload, and the distances
that cause a vessel to become “packed”. This requires some explanation.

Before entering into that explanation, first here’s a list of example cases where you might want to use this feature
to change these values:

•Trying to have one airplane follow another.

•Trying to have two rockets fly in formation into orbit together.

•Trying to have a rover race to a flag, with several rovers seeing who gets there first.

Basically, any time you might have more than just the current active vessel running a kOS script, this is a setting
you probably will want to understand and tweak.

The explanation:

Most players of KSP eventually discover a concept called being “on rails”. This is a term used by the player
community to describe the fact that vessels that are far away from the active vessel aren’t being micro-managed
under the full physics engine. At that distance, changes in movement due to things like the atmosphere, are
not applied. The vessel’s physics are calculated based only on orbital motion, much like the effects of using
timewarp (not physics warp).

But the actual behavior in the game is a bit more complex than that, and understanding it is necessary to use this
structure.

The term “on rails” actually refers to two entirely different things that are controlled by separate settings, as
described below:

loaded : A vessel is LOADED when all its parts are being rendered by the graphics engine and it’s possible to
actually see what it looks like. A vessel that is UNLOADED doesn’t even have its parts in memory and is just
a single dot in space with no dimensions. An unloaded vessel is literally impossible to see on your screen no
matter how much you squint because it’s not even being rendered on camera at all. Unloaded vessels only exist
as a marker icon in space, with a possible label text.

packed : A vessel is PACKED when it is close enough to be loaded (see above), but still far enough away that its
full capabilities aren’t enabled. A vessel that is loaded, but still packed will be unable to have its parts interact,
and the vessel will appear stuck in the same location, unmoving. You can see a vessel that is loaded but packed,
but the vessel won’t actually be able to do anything. In this state, the game is still treating the entire object as if
it was one single part. It’s added all the graphic models of all the parts together into one conglomerate “object”
(thus the term “packed”) that exists purely so you can look at it, even though it doesn’t actually work until you
get closer and it becomes unpacked.

236 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

THE NEXT SENTENCE IS VERY IMPORTANT AND VITAL:

The kOS processor is able to run scripts any time that a vessel is loaded, but the script is not guaranteed access
to all features when a ship is LOADED but not UNPACKED. KSP limits some features (like throttle control)
to only vessels that are unpacked. You may check the UNPACKED suffix of the SHIP variable to determine if
these features are available.

This structure allows you to read or change the stock KSP game’s distance settings for how far a vessel has to
get from the active vessel in order for it to trigger its UNLOAD or PACK states.

The distance settings are different for different vessel situations. It’s important to first read the existing values
before changing them, to see what the stock game thought were reasonable for them.

Some distances are very short. For example, the fact that the pack distance for a landed vessel is short is what
allows landers to stay “parked” in place without tipping over when you leave them on a long distance EVA.

Each of these suffixes returns a SituationLoadDistance, which is a tuple of values for the loading and
packing distances in that situation.

Wait between LOAD and PACK changes!

Due to a strange way the game behaves, it is unsafe to change both the load/unload distance and the unpack/pack
distance at the same time in the same physics tick. If you are going to increase both, then increase the load/unload
distances first, followed by a WAIT 0.001. to force a new physics tick and let the change take effect, then
increase the unpack/pack distances after the wait is over.

Beware the space kraken when changing these:

There’s a reason the stock game has these distance limitations. Setting them very large can degrade your per-
formance, and can cause buggy inaccuracies in the position and velocity calculations that cause the game to
think things have collided together when they haven’t. This is the classic “space kraken” that KSP players talk
about a lot. Computer floating point numbers get less precise the farther from zero they are. So allowing the
game to try to perform microcalculations on tiny time scales using floating point numbers that have imprecision
because they are large in magnitude (i.e. the positions of parts that are many kilometers away from you), can
cause phantom collisions, which make the game explode things for “no reason”.

These distance limits were put in place by SQUAD specifically for the purpose of trying to avoid the space
kraken. If you set them too large again, you can risk invoking the Kraken again. They typically CAN be
enlarged some, because the settings are very low to provide a overly large safety margin, but be careful with it.
Don’t go overboard and set the ranges to several thousand kilometers.

Also, don’t set the PACK distance to be higher than the LOAD distance, as that is undefined behavior in the
main game. Always keep the LOAD distance higher than or equal to the PACK distance.

Table 8.20: Members and Methods

Suffix Type Get/Set Description
ESCAPING SituationLoadDistanceGet Load and pack Distances while escaping the

current body
FLYING SituationLoadDistanceGet Load and pack Distances while flying in

atmosphere
LANDED SituationLoadDistanceGet Load and pack Distances while landed on the

surface
ORBIT SituationLoadDistanceGet Load and pack Distances while in orbit
PRELAUNCH SituationLoadDistanceGet Load and pack Distances while on the launch pad

or runway
SPLASHED SituationLoadDistanceGet Load and pack Distances while splashed in water
SUBORBITAL SituationLoadDistanceGet Load and pack Distances while on a suborbital

trajectory

8.5. Configurations and Miscellany 237



kOS Documentation, Release 0.18.2

8.5.11 Situation Load Distance

Each of the above

structure SituationLoadDistance
SituationLoadDistance is what is returned by each of the above suffixes mentioned in the LoadDistance
suffix list above.

Order Matters. - Becuse of the protections in place to prevent you from setting some values bigger than others
(see the descriptions below), sometimes the order in which you change the values matters and you have to be
careful to change them in the correct order, or else the attempt to change them will be denied.

Table 8.21: Members and Methods

Suffix Type Get/Set Description
LOAD scalar, in meters Get/Set The load distance
UNLOAD scalar, in meters Get/Set The unload distance
UNPACK scalar, in meters Get/Set The unpack distance
PACK scalar, in meters Get/Set The pack distance

SituationLoadDistance:LOAD

Access Get/Set

Type scalar, in meters

Get or set the load distance. When another vessel is getting closer to you, because you are moving toward it or
it is moving toward you, when that vessel becomes this distance or closer to the active vessel, it will transition
from being unloaded to being loaded. See the description above for what it means for a vessel to be loaded.

This value must be greater than UNLOAD, and will automatically be adjusted accordingly.

SituationLoadDistance:UNLOAD

Access Get/Set

Type scalar, in meters

Get or set the unload distance. When another vessel is becoming more distant as you move away from it, or it
moves away from you, when that vessel becomes this distance or greater from the active vessel, it will transition
from being loaded to being unloaded. See the description above for what it means for a vessel to be loaded.

This value must be less than LOAD, and will automatically be adjusted accordingly.

SituationLoadDistance:UNPACK

Access Get/Set

Type scalar, in meters

Get or set the unpack distance. When another vessel is getting closer to you, because you are moving toward it
or it is moving toward you, when that vessel becomes this distance or closer to the active vessel, it will transition
from being packed to being unpacked. See the description above for what it means for a vessel to be packed.

This value must be less than PACK, and will automatically be adjusted accordingly.

SituationLoadDistance:PACK

Access Get/Set

Type scalar, in meters

Get or set the pack distance. When another vessel is getting farther away from you, because you are moving
away from it or it is moving away from you, when that vessel becomes this distance or greater from the active

238 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

vessel, it will transition from being unpacked to being packed. See the description above for what it means for
a vessel to be packed.

This value must be greater than UNPACK, and will automatically be adjusted accordingly.

===Examples===

Print out all the current settings:

SET distances TO KUNIVERSE:DEFAULTLOADDISTANCE.

PRINT "escaping distances:".
print " load: " + distances:ESCAPING:LOAD + "m".
print " unload: " + distances:ESCAPING:UNLOAD + "m".
print " unpack: " + distances:ESCAPING:UNPACK + "m".
print " pack: " + distances:ESCAPING:PACK + "m".
PRINT "flying distances:".
print " load: " + distances:FLYING:LOAD + "m".
print " unload: " + distances:FLYING:UNLOAD + "m".
print " unpack: " + distances:FLYING:UNPACK + "m".
print " pack: " + distances:FLYING:PACK + "m".
PRINT "landed distances:".
print " load: " + distances:LANDED:LOAD + "m".
print " unload: " + distances:LANDED:UNLOAD + "m".
print " unpack: " + distances:LANDED:UNPACK + "m".
print " pack: " + distances:LANDED:PACK + "m".
PRINT "orbit distances:".
print " load: " + distances:ORBIT:LOAD + "m".
print " unload: " + distances:ORBIT:UNLOAD + "m".
print " unpack: " + distances:ORBIT:UNPACK + "m".
print " pack: " + distances:ORBIT:PACK + "m".
PRINT "prelaunch distances:".
print " load: " + distances:PRELAUNCH:LOAD + "m".
print " unload: " + distances:PRELAUNCH:UNLOAD + "m".
print " unpack: " + distances:PRELAUNCH:UNPACK + "m".
print " pack: " + distances:PRELAUNCH:PACK + "m".
PRINT "splashed distances:".
print " load: " + distances:SPLASHED:LOAD + "m".
print " unload: " + distances:SPLASHED:UNLOAD + "m".
print " unpack: " + distances:SPLASHED:UNPACK + "m".
print " pack: " + distances:SPLASHED:PACK + "m".
PRINT "suborbital distances:".
print " load: " + distances:SUBORBITAL:LOAD + "m".
print " unload: " + distances:SUBORBITAL:UNLOAD + "m".
print " unpack: " + distances:SUBORBITAL:UNPACK + "m".
print " pack: " + distances:SUBORBITAL:PACK + "m".

Change the settings while flying or landed or splashed or on launchpad or runway, For the purpose of allowing more
vessels to fly around the Kerbal Space Center at a greater distances from each other:

// 30 km for in-flight
// Note the order is important. set UNLOAD BEFORE LOAD,
// and PACK before UNPACK. Otherwise the protections in
// place to prevent invalid values will deny your attempt
// to change some of the values:
SET KUNIVERSE:DEFAULTLOADDISTANCE:FLYING:UNLOAD TO 29500.
SET KUNIVERSE:DEFAULTLOADDISTANCE:FLYING:LOAD TO 30000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"
SET KUNIVERSE:DEFAULTLOADDISTANCE:FLYING:PACK TO 29999.
SET KUNIVERSE:DEFAULTLOADDISTANCE:FLYING:UNPACK TO 29000.

8.5. Configurations and Miscellany 239



kOS Documentation, Release 0.18.2

WAIT 0.001. // See paragraph above: "wait between load and pack changes"

// 30 km for parked on the ground:
// Note the order is important. set UNLOAD BEFORE LOAD,
// and PACK before UNPACK. Otherwise the protections in
// place to prevent invalid values will deny your attempt
// to change some of the values:
SET KUNIVERSE:DEFAULTLOADDISTANCE:LANDED:UNLOAD TO 29500.
SET KUNIVERSE:DEFAULTLOADDISTANCE:LANDED:LOAD TO 30000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"
SET KUNIVERSE:DEFAULTLOADDISTANCE:LANDED:PACK TO 39999.
SET KUNIVERSE:DEFAULTLOADDISTANCE:LANDED:UNPACK TO 29000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"

// 30 km for parked in the sea:
// Note the order is important. set UNLOAD BEFORE LOAD,
// and PACK before UNPACK. Otherwise the protections in
// place to prevent invalid values will deny your attempt
// to change some of the values:
SET KUNIVERSE:DEFAULTLOADDISTANCE:SPLASHED:UNLOAD TO 29500.
SET KUNIVERSE:DEFAULTLOADDISTANCE:SPLASHED:LOAD TO 30000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"
SET KUNIVERSE:DEFAULTLOADDISTANCE:SPLASHED:PACK TO 29999.
SET KUNIVERSE:DEFAULTLOADDISTANCE:SPLASHED:UNPACK TO 29000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"

// 30 km for being on the launchpad or runway
// Note the order is important. set UNLOAD BEFORE LOAD,
// and PACK before UNPACK. Otherwise the protections in
// place to prevent invalid values will deny your attempt
// to change some of the values:
SET KUNIVERSE:DEFAULTLOADDISTANCE:PRELAUNCH:UNLOAD TO 29500.
SET KUNIVERSE:DEFAULTLOADDISTANCE:PRELAUNCH:LOAD TO 30000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"
SET KUNIVERSE:DEFAULTLOADDISTANCE:PRELAUNCH:PACK TO 29999.
SET KUNIVERSE:DEFAULTLOADDISTANCE:PRELAUNCH:UNPACK TO 29000.
WAIT 0.001. // See paragraph above: "wait between load and pack changes"

8.5.12 PIDLoop

The PIDLoop has multiple constructors available. Valid syntax can be seen here:

// Create a loop with default parameters
// kp = 1, ki = 0, kd = 0
// maxoutput = maximum number value
// minoutput = minimum number value
SET PID TO PIDLOOP().

// Other constructors include:
SET PID TO PIDLOOP(KP).
SET PID TO PIDLOOP(KP, KI, KD).
// you must specify both minimum and maximum output directly.
SET PID TO PIDLOOP(KP, KI, KD, MINOUTPUT, MAXOUTPUT).

// remember to update both minimum and maximum output if the value changes symmetrically
SET LIMIT TO 0.5.
SET PID:MAXOUTPUT TO LIMIT.

240 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

SET PID:MINOUTPUT TO -LIMIT.

// call the update suffix to get the output
SET OUT TO PID:UPDATE(TIME:SECONDS, IN).

// you can also get the output value later from the PIDLoop object
SET OUT TO PID:OUTPUT.

Please see the bottom of this page for information on the derivation of the loop’s output.

Note: New in version 0.18: While the PIDLOOP structure was added in version 0.18, you may feel free to continue
to use any previously implemented PID logic. This loop is intended to be a basic and flexible PID, but you may still
find benefit in using customized logic.

structure PIDLoop
Suffix Type Description
LASTSAMPLETIME scalar decimal value of the last sample time
KP scalar The proportional gain factor
KI scalar The integral gain factor
KD scalar The derivative gain factor
INPUT scalar The most recent input value
SETPOINT scalar The current setpoint
ERROR scalar The most recent error value
OUTPUT scalar The most recent output value
MAXOUTPUT scalar The maximum output value
MINOUTPUT scalar The maximum output value
ERRORSUM scalar The time weighted sum of error
PTERM scalar The proportional component of output
ITERM scalar The integral component of output
DTERM scalar The derivative component of output
CHANGERATE scalar (/s) The most recent input rate of change
RESET none Reset the integral component
UPDATE(time, input) scalar Returns output based on time and input

PIDLoop:LASTSAMPLETIME

Type scalar

Access Get only

The value representing the time of the last sample. This value is equal to the time parameter of the UPDATE
method.

PIDLoop:KP

Type scalar

Access Get/Set

The proportional gain factor.

PIDLoop:KI

Type scalar

Access Get/Set

The integral gain factor.

8.5. Configurations and Miscellany 241



kOS Documentation, Release 0.18.2

PIDLoop:KD

Type scalar

Access Get/Set

The derivative gain factor

PIDLoop:INPUT

Type scalar

Access Get only

The value representing the input of the last sample. This value is equal to the input parameter of the UPDATE
method.

PIDLoop:SETPOINT

Type scalar

Access Get/Set

The current setpoint. This is the value to which input is compared when UPDATE is called. It may not be synced
with the last sample.

PIDLoop:ERROR

Type scalar

Access Get only

The calculated error from the last sample (setpoint - input).

PIDLoop:OUTPUT

Type scalar

Access Get only

The calculated output from the last sample.

PIDLoop:MAXOUTPUT

Type scalar

Access Get/Set

The current maximum output value. This value also helps with regulating integral wind up mitigation.

PIDLoop:MINOUTPUT

Type scalar

Access Get/Set

The current minimum output value. This value also helps with regulating integral wind up mitigation.

PIDLoop:ERRORSUM

Type scalar

Access Get only

The value representing the time weighted sum of all errrors. It will be equal to ITERM / KI. This value is
adjusted by the integral windup mitigation logic.

PIDLoop:PTERM

Type scalar

242 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Access Get only

The value representing the proportional component of OUTPUT.

PIDLoop:ITERM

Type scalar

Access Get only

The value representing the integral component of OUTPUT. This value is adjusted by the integral windup miti-
gation logic.

PIDLoop:DTERM

Type scalar

Access Get only

The value representing the derivative component of OUTPUT.

PIDLoop:CHANGERATE

Type scalar

Access Get only

The rate of change of the INPUT during the last sample. It will be equal to (input - last input) / (change in time).

PIDLoop:RESET()

Returns none

Call this method to clear the ERRORSUM and ITERM components of the PID calculation.

PIDLoop:UPDATE(time, input)

Parameters

• time – (scalar) the decimal time in seconds

• input – (scalar) the input variable to compare to the setpoint

Returns scalar representing the calculated output

Upon calling this method, the PIDLoop will calculate the output based on this this basic framework (see be-
low for detailed derivation): output = error * kp + errorsum * ki + (change in input) / (change in time) *
kd. This method is usually called with the current time in seconds (TIME:SECONDS), however it may be
called using whatever rate measurement you prefer. Windup mitigation is included, based on MAXOUTPUT and
MINOUTPUT. Both integral components and derivative components are guarded against a change in time greater
than 1s, and will not be calculated on the first iteration.

PIDLoop Update Derivation

The internal update method of the PIDLoop structure is the equivalent of the following in kerboscript

// assume that the terms LastSampleTime, Kp, Ki, Kd, Setpoint, MinOutput, and MaxOutput are previously defined
declare function Update {

declare parameter sampleTime, input.
set Error to Setpoint - input.
set PTerm to error * Kp.
set ITerm to 0.
set DTerm to 0.
if (LastSampleTime < sampleTime) {

set dt to sampleTime - LastSampleTime.

8.5. Configurations and Miscellany 243



kOS Documentation, Release 0.18.2

if dt < 1 {
// only calculate integral and derivative if the time
// difference is less than one second, and their gain is not 0.
if Ki <> 0 {

ITerm = (ErrorSum + Error) * dt * Ki.
}
set ChangeRate to (input - LastInput) / dt.
if Kd <> 0 {

DTerm = ChangeRate * Kd.
}

}
}
set Output to pTerm + iTerm + dTerm.
// if the output goes beyond the max/min limits, reset it and adjust ITerm.
if Output > MaxOutput {

set Output to MaxOutput.
// adjust the value of ITerm as well to prevent the value
// from winding up out of control.
if (Ki != 0) and (LastSampleTime < sampleTime) {

set ITerm to Output - Pterm - DTerm.
}

}
else if Output < MinOutput {

set Output to MinOutput.
// adjust the value of ITerm as well to prevent the value
// from winding up out of control.
if (Ki != 0) and (LastSampleTime < sampleTime) {

set ITerm to Output - Pterm - DTerm.
}

}
LastSampleTime = sampleTime.
if Ki <> 0 set ErrorSum to ITerm / Ki.
else ErrorSum = 0.
return Output.

}

8.5.13 Queue

A Queue is a collection of any type in kOS. Queues work according to First-In first-out principle. It may be useful
to contrast Queue with Stack to better understand how both structures work. You can read more about queues on
Wikipedia.

Using a queue

SET Q TO QUEUE().
Q:PUSH("alice").
Q:PUSH("bob").

PRINT Q:POP. // will print 'alice'
PRINT Q:POP. // will print 'bob'

244 Chapter 8. Structure Reference

https://en.wikipedia.org/wiki/FIFO_and_LIFO_accounting
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)


kOS Documentation, Release 0.18.2

Structure

structure Queue

Table 8.22: Members

Suffix Type Description
PUSH(item) None add item to the end of the queue
POP() any type returns the first element in the queue and removes it
PEEK() any type returns the first element in the queue without removing it
LENGTH integer number of elements in the queue
CLEAR() None remove all elements
ITERATOR Iterator for iterating over the queue
COPY Queue a new copy of this queue
CONTAINS(item) boolean check if queue contains an item
EMPTY boolean check if queue if empty
DUMP string verbose dump of all contained elements

Queue:PUSH(item)

Parameters

• item – (any type) item to be added

Adds the item to the end of the queue.

Queue:POP()
Returns the item in the front of the queue and removes it.

Queue:PEEK()
Returns the item in the front of the queue without removing it.

Queue:CLEAR()
Removes all elements from the queue.

Queue:LENGTH

Type integer

Access Get only

Returns the number of elements in the queue.

Queue:ITERATOR

Type Iterator

Access Get only

An alternate means of iterating over a queue. See: Iterator.

Queue:COPY

Type Queue

Access Get only

Returns a new queue that contains the same thing as the old one.

Queue:CONTAINS(item)

Parameters

• index – (integer) starting index (from zero)

8.5. Configurations and Miscellany 245



kOS Documentation, Release 0.18.2

Returns boolean

Returns true if the queue contains an item equal to the one passed as an argument

Queue:EMPTY

Type boolean

Access Get only

Returns true if the queue has zero items in it.

Queue:DUMP

Type string

Access Get only

Returns a string containing a verbose dump of the queue’s contents.

8.5.14 Resource Transfer

Usage is covered elsewhere <../commands/resource_transfer.html>‘__

Structure

structure ResourceTransfer

Table 8.23: Members

Suffix Type
(units)

Ac-
cess

Description

STATUS string Get
only

The string status of the transfer (eg “Inactive”, “Transferring”,
“Failed”, “Finished”)

MESSAGE string Get
only

A message about the current status

GOAL scalar Get
only

This is how much of the resource will be transferred.

TRANSFERREDscalar Get
only

This is how much of the resource has been transferred.

RESOURCE string Get
only

The name of the resource (eg oxidizer, liquidfuel)

ACTIVE bool Get /
Set

Setting this value will either start, pause or restart a transfer.
Default is false.

RESOURCETRANSFER:STATUS

Access Get only

Type string

This enumerated type shows the status of the transfer. the possible values are:

•Inactive (default)

– Transfer is stopped

•Finished

– Transfer has reached its goal

246 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

•Failed

– There was an error in the transfer, see MESSAGE for details

•Transferring

– The transfer is in progress.

RESOURCETRANSFER:MESSAGE

Access Get only

Type string

This shows the detail related to STATUS

RESOURCETRANSFER:GOAL

Access Get only

Type scalar

If you specified an amount to transfer in your transfer request, it will be shown here. If you did not, this will
return the sentinel value -1.

RESOURCETRANSFER:TRANSFERRED

Access Get only

Type scalar

Returns the amount of the specified resource that has been transferred by this resource transfer.

RESOURCETRANSFER:RESOURCE

Access Get only

Type string

The name of the resource that will be transferred. (eg, oxidizer, liquidfuel)

RESOURCETRANSFER:ACTIVE

Access Get / Set

Type bool

When getting, this suffix is simply a shortcut to tell you if STATUS is Transferring. Setting true will change the
status of the transfer to Transferring, setting false will change status to inactive.

8.5.15 Stack

A Stack is a collection of any type in kOS. Stacks work according to Last-In first-out principle. It may be useful
to contrast Stack with Queue to better understand how both structures work. You can read more about stacks on
Wikipedia.

Using a stack

SET S TO STACK().
S:PUSH("alice").
S:PUSH("bob").

PRINT S:POP. // will print 'bob'
PRINT S:POP. // will print 'alice'

8.5. Configurations and Miscellany 247

https://en.wikipedia.org/wiki/FIFO_and_LIFO_accounting
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)


kOS Documentation, Release 0.18.2

Structure

structure Stack

Table 8.24: Members

Suffix Type Description
PUSH(item) None add item to the top of the stack
POP() any type returns the item on top of the stack and removes it
PEEK() any type returns the item on top of the stack without removing it
LENGTH integer number of elements in the stack
CLEAR() None remove all elements
ITERATOR Iterator for iterating over the stack
COPY Stack a new copy of this stack
CONTAINS(item) boolean check if stack contains an item
EMPTY boolean check if stack if empty
DUMP string verbose dump of all contained elements

Stack:PUSH(item)

Parameters

• item – (any type) item to be added

Adds the item to the top of the stack.

Stack:POP()
Returns the item on top of the stack and removes it.

Stack:PEEK()
Returns the item on top of the stack without removing it.

Stack:CLEAR()
Removes all elements from the stack.

Stack:LENGTH

Type integer

Access Get only

Returns the number of elements in the stack.

Stack:ITERATOR

Type Iterator

Access Get only

An alternate means of iterating over a stack. See: Iterator.

Stack:COPY

Type Stack

Access Get only

Returns a new stack that contains the same thing as the old one.

Stack:CONTAINS(item)

Parameters

• index – (integer) starting index (from zero)

248 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Returns boolean

Returns true if the stack contains an item equal to the one passed as an argument

Stack:EMPTY

Type boolean

Access Get only

Returns true if the stack has zero items in it.

Stack:DUMP

Type string

Access Get only

Returns a string containing a verbose dump of the stack’s contents.

8.5.16 SteeringManager

See the cooked control tuning explanation for information to help with tuning the steering manager. It’s important to
read that section first to understand which setting below is affecting which portion of the steering system.

The SteeringManager is a bound variable, not a suffix to a specific vessel. This prevents access to the SteeringManager
of other vessels. You can access the steering manager as shown below:

// Display the ship facing, target facing, and world coordinates vectors.
SET STEERINGMANAGER:SHOWFACINGVECTORS TO TRUE.

// Change the torque calculation to multiply the available torque by 1.5.
SET STEERINGMANAGER:ROLLTORQUEFACTOR TO 1.5.

Note: New in version 0.18: The SteeringManager was added to improve the accuracy of kOS’s cooked steering.
While this code is a significant improvement over the old system, it is not perfect. Specifically it does not properly
calculate the effects of control surfaces, nor does it account for atmospheric drag. It also does not adjust for asymmetric
RCS or Engine thrust. It does allow for some modifications to the built in logic through the torque adjustments and
factors. However, if there is a condition for which the new steering manager is unable to provide accurate control, you
should continue to fall back to raw controls.

structure SteeringManager

8.5. Configurations and Miscellany 249



kOS Documentation, Release 0.18.2

Suffix Type Description
PITCHPID PIDLoop The PIDLoop for the pitch rotational velocity PID.
YAWPID PIDLoop The PIDLoop for the yaw rotational velocity PID.
ROLLPID PIDLoop The PIDLoop for the roll rotational velocity PID.
ENABLED bool Returns true if the SteeringManager is currently controlling the

vessel
TARGET Direction The direction that the vessel is currently steering towards
RESETPIDS() none Called to call RESET on all steering PID loops.
SHOWFACINGVECTORS bool Enable/disable display of ship facing, target, and world

coordinates vectors.
SHOWANGULARVECTORSbool Enable/disable display of angular rotation vectors
SHOWTHRUSTVECTORS bool Enable/disable display of engine thrust vectors
SHOWRCSVECTORS bool Enable/disable display of rcs thrust vectors
SHOWSTEERINGSTATS bool Enable/disable printing of the steering information on the terminal
WRITECSVFILES bool Enable/disable logging steering to csv files.
PITCHTS scalar (s) Settling time for the pitch torque calculation.
YAWTS scalar (s) Settling time for the yaw torque calculation.
ROLLTS scalar (s) Settling time for the roll torque calculation.
MAXSTOPPINGTIME scalar (s) The maximum amount of stopping time to limit angular turn rate.
ANGLEERROR scalar (deg) The angle between vessel:facing and target directions
PITCHERROR scalar (deg) The angular error in the pitch direction
YAWERROR scalar (deg) The angular error in the yaw direction
ROLLERROR scalar (deg) The angular error in the roll direction
PITCHTORQUEADJUST scalar (kN) Additive adjustment to pitch torque (calculated)
YAWTORQUEADJUST scalar (kN) Additive adjustment to yaw torque (calculated)
ROLLTORQUEADJUST scalar (kN) Additive adjustment to roll torque (calculated)
PITCHTORQUEFACTOR scalar Multiplicative adjustment to pitch torque (calculated)
YAWTORQUEFACTOR scalar Multiplicative adjustment to yaw torque (calculated)
ROLLTORQUEFACTOR scalar Multiplicative adjustment to roll torque (calculated)

SteeringManager:PITCHPID

Type PIDLoop

Access Get only

Returns the PIDLoop object responsible for calculating the target angular velocity in the pitch direction. This
allows direct manipulation of the gain parameters, and other components of the PIDLoop structure. Changing
the loop’s MAXOUTPUT or MINOUTPUT values will have no effect as they are overwritten every physics
frame. They are set to limit the maximum turning rate to that which can be stopped in a MAXSTOPPINGTIME
seconds (calculated based on available torque, and the ship’s moment of inertia).

SteeringManager:YAWPID

Type PIDLoop

Access Get only

Returns the PIDLoop object responsible for calculating the target angular velocity in the yaw direction. This
allows direct manipulation of the gain parameters, and other components of the PIDLoop structure. Changing
the loop’s MAXOUTPUT or MINOUTPUT values will have no effect as they are overwritten every physics
frame. They are set to limit the maximum turning rate to that which can be stopped in a MAXSTOPPINGTIME
seconds (calculated based on available torque, and the ship’s moment of inertia).

SteeringManager:ROLLPID

Type PIDLoop

Access Get only

250 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Returns the PIDLoop object responsible for calculating the target angular velocity in the roll direction. This
allows direct manipulation of the gain parameters, and other components of the PIDLoop structure. Changing
the loop’s MAXOUTPUT or MINOUTPUT values will have no effect as they are overwritten every physics
frame. They are set to limit the maximum turning rate to that which can be stopped in a MAXSTOPPINGTIME
seconds (calculated based on available torque, and the ship’s moment of inertia).

Note: The SteeringManager will ignore the roll component of steering until after both the pitch and yaw
components are close to being correct. In other words it will try to point the nose of the craft in the right
direction first, before it makes any attempt to roll the craft into the right orientation. As long as the pitch or yaw
is still far off from the target aim, this PIDloop won’t be getting used at all.

SteeringManager:ENABLED

Type bool

Access Get only

Returns true if the SteeringManager is currently controlling the vessel steering.

SteeringManager:TARGET

Type Direction

Access Get only

Returns direction that the is currently being targeted. If steering is locked to a vector, this will return the
calculated direction in which kOS chose an arbitrary roll to go with the vector. If steering is locked to “kill”,
this will return the vessel’s last facing direction.

SteeringManager:RESETPIDS()

Returns none

Resets the integral sum to zero for all six steering PID Loops.

SteeringManager:SHOWFACINGVECTORS

Type bool

Access Get/Set

Setting this suffix to true will cause the steering manager to display graphical vectors (see VecDraw) repre-
senting the forward, top, and starboard of the facing direction, as well as the world x, y, and z axis orientation
(centered on the vessel). Setting to false will hide the vectors, as will disabling locked steering.

SteeringManager:SHOWANGULARVECTORS

Type bool

Access Get/Set

Setting this suffix to true will cause the steering manager to display graphical vectors (see VecDraw) repre-
senting the current and target angular velocities in the pitch, yaw, and roll directions. Setting to false will hide
the vectors, as will disabling locked steering.

SteeringManager:SHOWTHRUSTVECTORS

Type bool

Access Get/Set

Setting this suffix to true will cause the steering manager to display graphical vectors (see VecDraw) represent-
ing the thrust and torque for each active engine. Setting to false will hide the vectors, as will disabling locked
steering.

8.5. Configurations and Miscellany 251



kOS Documentation, Release 0.18.2

SteeringManager:SHOWRCSVECTORS

Type bool

Access Get/Set

Setting this suffix to true will cause the steering manager to display graphical vectors (see VecDraw) repre-
senting the thrust and torque for each active RCS block. Setting to false will hide the vectors, as will disabling
locked steering.

SteeringManager:SHOWSTEERINGSTATS

Type bool

Access Get/Set

Setting this suffix to true will cause the steering manager to clear the terminal screen and print steering data each
update.

SteeringManager:WRITECSVFILES

Type bool

Access Get/Set

Setting this suffix to true will cause the steering manager log the data from all 6 PIDLoops calculating target
angular velocity and target torque. The files are stored in the [KSP Root]GameDatakOSPluginsPluginDatakOS
folder, with one file per loop and a new file created for each new manager instance (i.e. every launch, every
revert, and every vessel load). These files can grow quite large, and add up quickly, so it is recommended to
only set this value to true for testing or debugging and not normal operation.

SteeringManager:PITCHTS

Type scalar

Access Get/Set

Represents the settling time for the PID calculating pitch torque based on target angular velocity. The propor-
tional and integral gain is calculated based on the settling time and the moment of inertia in the pitch direction.
Ki = (moment of inertia) * (4 / (settling time)) ^ 2. Kp = 2 * sqrt((moment of inertia) * Ki).

SteeringManager:YAWTS

Type scalar

Access Get/Set

Represents the settling time for the PID calculating yaw torque based on target angular velocity. The propor-
tional and integral gain is calculated based on the settling time and the moment of inertia in the yaw direction.
Ki = (moment of inertia) * (4 / (settling time)) ^ 2. Kp = 2 * sqrt((moment of inertia) * Ki).

SteeringManager:ROLLTS

Type scalar

Access Get/Set

Represents the settling time for the PID calculating roll torque based on target angular velocity. The propor-
tional and integral gain is calculated based on the settling time and the moment of inertia in the roll direction.
Ki = (moment of inertia) * (4 / (settling time)) ^ 2. Kp = 2 * sqrt((moment of inertia) * Ki).

SteeringManager:MAXSTOPPINGTIME

Type scalar (s)

Access Get/Set

252 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

This value is used to limit the turning rate when calculating target angular velocity. The ship will not turn faster
than what it can stop in this amount of time. The maximum angular velocity about each axis is calculated as:
(max angular velocity) = MAXSTOPPINGTIME * (available torque) / (moment of inertia).

Note: This setting affects all three of the rotational velocity PID’s at once (pitch, yaw, and roll), rather than
affecting the three axes individually one at a time.

SteeringManager:ANGLEERROR

Type scalar (deg)

Access Get only

The angle between the ship’s facing direction forward vector and the target direction’s forward. This is the
combined pitch and yaw error.

SteeringManager:PITCHERROR

Type scalar (deg)

Access Get only

The pitch angle between the ship’s facing direction and the target direction.

SteeringManager:YAWERROR

Type scalar (deg)

Access Get only

The yaw angle between the ship’s facing direction and the target direction.

SteeringManager:ROLLERROR

Type scalar (deg)

Access Get only

The roll angle between the ship’s facing direction and the target direction.

SteeringManager:PITCHTORQUEADJUST

Type scalar (kNm)

Access Get/Set

You can set this value to provide an additive bias to the calculated available pitch torque used in the pitch torque
PID. (available torque) = ((calculated torque) + PITCHTORQUEADJUST) * PITCHTORQUEFACTOR.

SteeringManager:YAWTORQUEADJUST

Type scalar (kNm)

Access Get/Set

You can set this value to provide an additive bias to the calculated available yaw torque used in the yaw torque
PID. (available torque) = ((calculated torque) + YAWTORQUEADJUST) * YAWTORQUEFACTOR.

SteeringManager:ROLLTORQUEADJUST

Type scalar (kNm)

Access Get/Set

You can set this value to provide an additive bias to the calculated available roll torque used in the roll torque
PID. (available torque) = ((calculated torque) + ROLLTORQUEADJUST) * ROLLTORQUEFACTOR.

8.5. Configurations and Miscellany 253



kOS Documentation, Release 0.18.2

SteeringManager:PITCHTORQUEFACTOR

Type scalar (kNm)

Access Get/Set

You can set this value to provide an multiplicative factor bias to the calculated available pitch torque used in the
torque PID. (available torque) = ((calculated torque) + PITCHTORQUEADJUST) * PITCHTORQUEFACTOR.

SteeringManager:YAWTORQUEFACTOR

Type scalar (kNm)

Access Get/Set

You can set this value to provide an multiplicative factor bias to the calculated available yaw torque used in the
torque PID. (available torque) = ((calculated torque) + YAWTORQUEADJUST) * YAWTORQUEFACTOR.

SteeringManager:ROLLTORQUEFACTOR

Type scalar (kNm)

Access Get/Set

You can set this value to provide an multiplicative factor bias to the calculated available roll torque used in the
torque PID. (available torque) = ((calculated torque) + ROLLTORQUEADJUST) * ROLLTORQUEFACTOR.

8.5.17 String

A String is an immutable sequence of characters in kOS.

Creating strings

Unlike other structures, strings are created with a special syntax:

// Create a new string
SET s TO "Hello, Strings!".

Strings are immutable. This means, once a string has been created, it can not be directly modified. However, new
strings can be created out of existing strings. For example:

// Create a new string with "Hello" replaced with "Goodbye"
SET s TO "Hello, Strings!".
SET t TO s:REPLACE("Hello", "Goodbye").

CASE SENSITIVIY

NOTE: All string comparisons, substring matches, and searches, are currently case in sensive, meaning that for exam-
ple the letter “A” and the letter “a” are indistinguishable. There are future plans to add mechanisms that will let you
choose case-sensitivity when you prefer.

Structure

structure String

254 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Table 8.25: Members

Suffix Type Description
CONTAINS(string) boolean True if the given string is contained within this string
ENDSWITH(string) boolean True if this string ends with the given string
FIND(string) inte-

ger
Returns the index of the first occurrence of the given string in this
string (starting from 0)

FINDAT(string,
startAt)

inte-
ger

Returns the index of the first occurrence of the given string in this
string (starting from startAt)

FINDLAST(string) inte-
ger

Returns the index of the last occurrence of the given string in this
string (starting from 0)

FINDLASTAT(string,
startAt)

inte-
ger

Returns the index of the last occurrence of the given string in this
string (starting from startAt)

INDEXOF(string) inte-
ger

Alias for FIND(string)

INSERT(index,
string)

StringReturns a new string with the given string inserted at the given index
into this string

LASTINDEXOF(string) inte-
ger

Alias for FINDLAST(string)

LENGTH inte-
ger

Number of characters in the string

PADLEFT(width) StringReturns a new right-aligned version of this string padded to the
given width by spaces

PADRIGHT(width) StringReturns a new left-aligned version of this string padded to the given
width by spaces

REMOVE(index,count) StringReturns a new string out of this string with the given count of
characters removed starting at the given index

REPLACE(oldString,
newString)

StringReturns a new string out of this string with any occurrences of
oldString replaced with newString

SPLIT(separator) StringBreaks this string up into a list of smaller strings on each occurrence
of the given separator

STARTSWITH(string) boolean True if this string starts with the given string
SUBSTRING(start,
count)

StringReturns a new string with the given count of characters from this
string starting from the given start position

TOLOWER StringReturns a new string with all characters in this string replaced with
their lower case versions

TOUPPER StringReturns a new string with all characters in this string replaced with
their upper case versions

TRIM Stringreturns a new string with no leading or trailing whitespace
TRIMEND Stringreturns a new string with no trailing whitespace
TRIMSTART Stringreturns a new string with no leading whitespace

String:CONTAINS(string)

Parameters

• string – String to look for

Return type boolean

True if the given string is contained within this string.

String:ENDSWITH(string)

Parameters

• string – String to look for

8.5. Configurations and Miscellany 255



kOS Documentation, Release 0.18.2

Return type boolean

True if this string ends with the given string.

String:FIND(string)

Parameters

• string – String to look for

Return type String

Returns the index of the first occurrence of the given string in this string (starting from 0).

String:FINDAT(string, startAt)

Parameters

• string – String to look for

• startAt – integer index to start searching at

Return type String

Returns the index of the first occurrence of the given string in this string (starting from startAt).

String:FINDLAST(string)

Parameters

• string – String to look for

Return type String

Returns the index of the last occurrence of the given string in this string (starting from 0)

String:FINDLASTAT(string, startAt)

Parameters

• string – String to look for

• startAt – integer index to start searching at

Return type String

Returns the index of the last occurrence of the given string in this string (starting from startAt)

String:INDEXOF(string)
Alias for FIND(string)

String:INSERT(index, string)

Parameters

• index – integer index to add the string at

• string – String to insert

Return type String

Returns a new string with the given string inserted at the given index into this string

String:LASTINDEXOF(string)
Alias for FINDLAST(string)

String:LENGTH

Type integer

Access Get only

256 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Number of characters in the string

String:PADLEFT(width)

Parameters

• width – integer number of characters the resulting string will contain

Return type String

Returns a new right-aligned version of this string padded to the given width by spaces.

String:PADRIGHT(width)

Parameters

• width – integer number of characters the resulting string will contain

Return type String

Returns a new left-aligned version of this string padded to the given width by spaces.

String:REMOVE(index,count)

Parameters

• index – integer position of the string from which characters will be removed from the
resulting string

• count – integer number of characters that will be removing from the resulting string

Return type String

Returns a new string out of this string with the given count of characters removed starting at the given index.

String:REPLACE(oldString,newString)

Parameters

• oldString – String to search for

• newString – String that all occurances of oldString will be replaced with

Return type String

Returns a new string out of this string with any occurrences of oldString replaced with newString.

String:SPLIT(separator)

Parameters

• separator – String delimiter on which this string will be split

Returns List

Breaks this string up into a list of smaller strings on each occurrence of the given separator. This will return a
list of strings, none of which will contain the separator character(s).

String:STARTSWITH(string)

Parameters

• string – String to look for

Return type boolean

True if this string starts with the given string .

String:SUBSTRING(start,count)

Parameters

8.5. Configurations and Miscellany 257



kOS Documentation, Release 0.18.2

• start – (integer) starting index (from zero)

• count – (integer) resulting length of returned String

Returns String

Returns a new string with the given count of characters from this string starting from the given start position.

String:TOLOWER

Type String

Access Get only

Returns a new string with all characters in this string replaced with their lower case versions

String:TOUPPER

Type String

Access Get only

Returns a new string with all characters in this string replaced with their upper case versions

String:TRIM

Type String

Access Get only

returns a new string with no leading or trailing whitespace

String:TRIMEND

Type String

Access Get only

returns a new string with no trailing whitespace

String:TRIMSTART

Type String

Access Get only

returns a new string with no leading whitespace

Access to Individual Characters

All string indexes start counting at zero. (The characters are numbered from 0 to N-1 rather than from 1 to N.)

string[expression] operator: access the character at position ‘expression’. Any arbitrary complex expression
may be used with this syntax, not just a number or variable name.

FOR VAR IN STRING { ... }. A type of loop in which var iterates over all the characters of the string from
0 to LENGTH-1.

Examples:

// CORRECT OUTPUTS
SET s TO "Hello, Strings!". // ---------------
PRINT "Original String: " + s. // Hello, Strings!
PRINT "string[7]: " + s[7]. // S
PRINT "LENGTH: " + s:LENGTH. // 15
PRINT "SUBSTRING(7, 6): " + s:SUBSTRING(7, 6). // String
PRINT "CONTAINS(''ring''): " + s:CONTAINS("ring"). // True

258 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

PRINT "CONTAINS(''bling''): " + s:CONTAINS("bling"). // False
PRINT "ENDSWITH(''ings!''): " + s:ENDSWITH("ings!"). // True
PRINT "ENDSWITH(''outs!''): " + s:ENDSWITH("outs"). // False
PRINT "FIND(''l''): " + s:FIND("l"). // 2
PRINT "FINDLAST(''l''): " + s:FINDLAST("l"). // 3
PRINT "FINDAT(''l'', 0): " + s:FINDAT("l", 0). // 2
PRINT "FINDAT(''l'', 3): " + s:FINDAT("l", 3). // 3
PRINT "FINDLASTAT(''l'', 9): " + s:FINDLASTAT("l", 9). // 3
PRINT "FINDLASTAT(''l'', 2): " + s:FINDLASTAT("l", 2). // 2
PRINT "INSERT(7, ''Big ''): " + s:INSERT(7, "Big "). // Hello, Big Strings!

PRINT " ".
PRINT " |------ 18 ------|".
PRINT "PADLEFT(18): " + s:PADLEFT(18). // Hello, Strings!
PRINT "PADRIGHT(18): " + s:PADRIGHT(18). // Hello, Strings!
PRINT " ".

PRINT "REMOVE(1, 3): " + s:REMOVE(1, 3). // Ho, Strings!
PRINT "REPLACE(''Hell'', ''Heaven''): " + s:REPLACE("Hell", "Heaven"). // Heaveno, Strings!
PRINT "STARTSWITH(''Hell''): " + s:STARTSWITH("Hell"). // True
PRINT "STARTSWITH(''Heaven''): " + s:STARTSWITH("Heaven"). // False
PRINT "TOUPPER: " + s:TOUPPER(). // HELLO, STRINGS!
PRINT "TOLOWER: " + s:TOLOWER(). // hello, strings!

PRINT " ".
PRINT "'' Hello! '':TRIM(): " + " Hello! ":TRIM(). // Hello!
PRINT "'' Hello! '':TRIMSTART(): " + " Hello! ":TRIMSTART(). // Hello!
PRINT "'' Hello! '':TRIMEND(): " + " Hello! ":TRIMEND(). // Hello!

PRINT " ".
PRINT "Chained: " + "Hello!":SUBSTRING(0, 4):TOUPPER():REPLACE("ELL", "ELEPHANT"). // HELEPHANT

8.5.18 Terminal

The TERMINAL identifier refers to a special structure that lets you access some of the information about the screen
you are running on.

Structure

structure Terminal

Table 8.26: Members

Suffix Type Get/Set Description
WIDTH inte-

ger
get and
set

Terminal width in characters

HEIGHT inte-
ger

get and
set

Terminal height in characters

REVERSE Boolean get and
set

Determines if the screen is displayed with foreground and background
colors swapped.

VISUALBEEPBoolean get and
set

Turns beeps into silent visual screen flashes instead.

Terminal:WIDTH

8.5. Configurations and Miscellany 259



kOS Documentation, Release 0.18.2

Access Get/Set

Type integer.

If you read the width it will return a number of character cells wide the terminal is. If you set this value, it will
cause the terminal to resize. If there’s multiple terminals connected to the same CPU part via telnet clients, then
kOS will attempt to keep them all the same size, and one terminal being resized will resize them all. (caveat:
Some terminal types cannot be resized from the server side, and therefore this doesn’t always work in both
directions).

This setting is different per kOS CPU part. Different terminal windows can have different settings for this value.

Terminal:HEIGHT

Access Get/Set

Type integer.

If you read the width it will return a number of character cells tall the terminal is. If you set this value, it will
cause the terminal to resize. If there’s multiple terminals connected to the same CPU part via telnet clients, then
kOS will attempt to keep them all the same size, and one terminal being resized will resize them all. (caveat:
Some terminal types cannot be resized from the server side, and therefore this doesn’t always work in both
directions).

This setting is different per kOS CPU part. Different terminal windows can have different settings for this value.

Terminal:REVERSE

Access Get/Set

Type Boolean.

If true, then the terminal window is currently set to show the whole screen in reversed color - swapping the
background and foreground colors. Both the telnet terminals and the in-game GUI terminal respond to this
setting equally.

Note, this setting can also be toggled with a radio-button on the in-game GUI terminal window.

This setting is different per kOS CPU part. Different terminal windows can have different settings for this value.

Terminal:VISUALBEEP

Access Get/Set

Type Boolean.

If true, then the terminal window is currently set to show any BEEP characters by silently flashing the screen
for a moment (inverting the background/foreground for a fraction of a second), instead of making a sound.

Note, this setting can also be toggled with a radio-button on the in-game GUI terminal window.

This will only typically affect the in-game GUI terminal window, and not a telnet client’s terminal window.

To affect the window you are using in a telnet session, you will have to use whatever your terminal or terminal
emulator’s local settings panel has for it. Most do have some sort of visual beep setting, but it is usually not
settable via a control character sequence sent across the connection. The terminals are designed to assume it’s a
local user preference that isn’t overridable by the software you are running.

This setting is different per kOS CPU part. Different terminal windows can have different settings for this value.

8.5.19 Time Span

In several places the game uses a TimeSpan format. This is a strucure that gives the time in various formats. It also
allows you to peform arithmetic on the time.

260 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

TimeSpan represents SIMULATED time

When you are examining a TimeSpan you are looking at the “in character” simulated time, not the “out of character”
real world time. This is a very important distinction to remember, as the following points illustrate:

• A TimeSpan does not count the time that was passing while the game was paused.

• If you turn off your computer and don’t play the game for several days, the TimeSpan does not count this time.

• If your game lags and stutters such that the simulation is taking 2 seconds of real time to calculate 1 second
of game time, then the number of seconds that have passed according to a TimeSpan will be fewer than the
number of seconds that have passed in the real world.

This allows you to use a TimeSpan such as is returned by the TIME special variable to make correct physics calcu-
lations.

Special variable TIME

TIME

Access Get only

Type TimeSpan

The special variable TIME is used to get the current time.

Any time you perform arithmetic on TIME you get a result back that is also a TimeSpan. In other words,
TIME is a TimeSpan, but TIME + 100 is also a TimeSpan.

Note that Kerbals do not have the concept of “months”:

TIME // Gets the current universal time
TIME:CLOCK // Universal time in H:M:S format(1:50:26)
TIME:CALENDAR // Year 1, day 134
TIME:YEAR // 1
TIME:DAY // 134
TIME:HOUR // 1
TIME:MINUTE // 50
TIME:SECOND // 26
TIME:SECONDS // Total Seconds since campaign began

Using TIME to detect when the physics have been updated ‘one tick’

kOS programs run however fast your computer’s animation rate will allow, which can flow and change from one
moment to the next depending on load. However, the physics of the universe get updated at a fixed rate according to
your game settings (the default, as of KSP 0.25, is 25 physics updates per second)

You can use the TIME special variable to detect whether or not a real physics ‘tic’ has occurred yet, which can be
important for scripts that need to take measurements from the simulated universe. If no physics tic has occurred, then
TIME will still be exactly the same value.

Warning: Please be aware that the kind of calendar TimeSpan‘s use will depend on your KSP settings. The
main KSP game supports both Kerbin time and Earth time and changing that setting will affect how TimeSpan
works in kOS.
The difference is whether 1 day = 6 hours or 1 day = 24 hours.

8.5. Configurations and Miscellany 261



kOS Documentation, Release 0.18.2

Warning: Beware the pitfall of confuising the TimeSpan:SECOND (singular) suffix with the
TimeSpan:SECONDS (plural) suffix.
TimeSpan:SECOND

This is the number of remainder seconds leftover after all whole-number minutes, hours, days, and
years have been subtracted out, and it’s never outside the range [0..60). It’s essentially the ‘seconds
hand’ on a clock.

TimeSpan:SECONDS
This is the number of seconds total if you want to represent time as just a simple flat number without
all the components. It’s the total count of the number of seconds since the beginning of time (Epoch).
Because it’s a floating point number, it can store times less than 1 second. Note this is a measure of how
much simulated Kerbal time has passed since the game began. People experienced at programming
will be familiar with this concept. It’s the Kerbal’s version of “unix time”.
The epoch (time zero) in the KSP game is the time at which you first started the new campaign. All
campaign games begin with the planets in precisely the same position and the clock set to zero years,
zero days, zero hours, and so on.

Warning: Beware that the times returned from FileInfo for the time a file was modified or created are NOT
in this TimeSpan structure but instead are just raw strings. That is because they represent the time the file was
affected in the real world and NOT times taken from the KSP simulation clock. That is a necessity because your
files in the Archive exist globally across all multiple saved games. Different saved games won’t have synchronized
calendars with each other.

structure TimeSpan
Suffix Type Description
CLOCK string “HH:MM:SS”
CALENDAR string “Year YYYY, day DDD”
SECOND integer (0-59) Second-hand number
MINUTE integer (0-59) Minute-hand number
HOUR integer (0-5) Hour-hand number
DAY integer (1-426) Day-hand number
YEAR integer Year-hand number
SECONDS Number (float) Total Seconds since Epoch

TimeSpan:CLOCK

Access Get only

Type string

Time in (HH:MM:SS) format.

TimeSpan:CALENDAR

Access Get only

Type string

Day in “Year YYYY, day DDD” format. (Kerbals don’t have ‘months’.)

TimeSpan:SECOND

Access Get only

Type integer (0-59)

Second-hand number.

TimeSpan:MINUTE

Access Get only

262 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Type integer (0-59)

Minute-hand number

TimeSpan:HOUR

Access Get only

Type integer (0-5) or (0-23)

Hour-hand number. Kerbin has six hours in its day.

TimeSpan:DAY

Access Get only

Type integer (1-426) or (1-356)

Day-hand number. Kerbin has 426 days in its year.

TimeSpan:YEAR

Access Get only

Type integer

Year-hand number

TimeSpan:SECONDS

Access Get only

Type Number (float)

Total Seconds since Epoch. Epoch is defined as the moment your current saved game’s universe began (the
point where you started your campaign). Can be very precise.

8.5.20 Drawing Vectors on the Screen

VECDRAW() or VECDRAWARGS()
Build the suffix fields one at a time using the VecDraw empty construction function. This creates an empty
VecDraw with nothing populated yet. You have to follow it up with calls to the suffixes as shown here:

SET anArrow TO VECDRAW().
SET anArrow:VEC TO V(a,b,c).
SET anArrow:SHOW TO true.
// At this point you have done the minimal necessary to make the arrow appear
// and it shows up on the scren immediately.

// Further options can also be set:
SET anArrow:START TO V(0,0,0).
SET anArrow:COLOR TO RGB(1,0,0).
SET anArrow:LABEL TO "See the arrow?".
SET anArrow:SCALE TO 5.0.

VECDRAW(start, vec, color, label, scale, show) or VECDRAWARGS(start, vec, color, label, scale, show)
This variant builds the VecDraw all at once. It lets you specify all of the attributes in a list of arguments at
once:

SET anArrow TO VECDRAW(
V(0,0,0),
V(a,b,c),
RGB(1,0,0),
"See the arrow?",

8.5. Configurations and Miscellany 263



kOS Documentation, Release 0.18.2

5.0,
TRUE

).

// Saying VECDRAWARGS gives the same exact result:
SET anArrow TO VECDRAWARGS(

V(0,0,0),
V(a,b,c),
RGB(1,0,0),
"See the arrow?",
5.0,
TRUE

).

The above two examples make the same thing. The arrow should be visible on both the map view and the in-flight
view, but on the map view it will have to be a long arrow to be visible. VecDraw‘s do not auto-update for changes in
the vector like a LOCK would, but if you repeatedly SET the :VEC suffix in a loop, it will adjust the arrow picture to
match as you do so:

set xAxis to VECDRAWARGS( V(0,0,0), V(1,0,0), RGB(1.0,0.5,0.5), "X axis", 5, TRUE ).
set yAxis to VECDRAWARGS( V(0,0,0), V(0,1,0), RGB(0.5,1.0,0.5), "Y axis", 5, TRUE ).
set zAxis to VECDRAWARGS( V(0,0,0), V(0,0,1), RGB(0.5,0.5,1.0), "Z axis", 5, TRUE ).

To make a VecDraw disappear, you can either set its VecDraw:SHOW to false or just UNSET the variable, or
re-assign it. An example using VecDraw can be seen in the documentation for POSITIONAT().

Note: Historical note: Once upon a time VECDRAW() took zero arguments, and VECDRAWARGS() took the 6
arguments. This was before we added the ability to have varying numbers of arguments for built-in functions. Now
that varying arguments exist, both names have become synonyms for the same thing, for backward compatibility. You
can use them interchangably.

CLEARVECDRAWS()
Sets all visible vecdraws to invisible, everywhere in this kOS CPU. This is useful if you have lost track of the
handles to them and can’t turn them off one by one, or if you don’t have the variable scopes present anymore
to access the variables that hold them. The system does attempt to clear any vecdraws that go “out of scope”,
however the “closures” that keep local variables alive for LOCK statements and for other reasons can keep
them from every truely going away in some circumstances. To make the arrow drawings all go away, just call
CLEARVECDRAWS() and it will have the same effect as if you had done SET varname:show to FALSE
for all vecdraw varnames in the entire system.

structure VecDraw
This is a structure that allows you to make a drawing of a vector on the screen in map view or in flight view.

Table 8.27: Members

Suffix Type Description
START Vector Start position of the vector
VEC Vector The vector to draw
COLOR Color Color of the vector
COLOUR Same as COLOR
LABEL string Text to show next to vector
SCALE integer Scale START and VEC
SHOW boolean Draw vector to screen

VecDraw:START

264 Chapter 8. Structure Reference



kOS Documentation, Release 0.18.2

Access Get/Set

Type Vector

Optional, defaults to V(0,0,0) - position of the tail of the vector to draw in SHIP-RAW coords. V(0,0,0) means
the ship Center of Mass.

VecDraw:VEC

Access Get/Set

Type Vector

Mandatory - The vector to draw, SHIP-RAW Coords.

VecDraw:COLOR

Access Get/Set

Type Color

Optional, defaults to white. This is the color to draw the vector. There is a hard-coded fade effect where the tail
is a bit more transparent than the head.

VecDraw:COLOUR

Access Get/Set

Type Color

Alias for VecDraw:COLOR

VecDraw:LABEL

Access Get/Set

Type string

Optional, defaults to “”. Text to show on-screen at the midpoint of the vector.

VecDraw:SCALE

Access Get/Set

Type integer

Optional, defauls to 1. Scalar to multiply by both the START and the VEC

VecDraw:SHOW

Access Get/Set

Type boolean

Set to true to make the arrow appear, false to hide it. Defaults to false until you’re ready to set it to true.

8.6 Core

Core represents your ability to identify and interact directly with the running kOS processor. You can use it to access
the parent vessel, or to perform operations on the processor’s part. You obtain a CORE structure by using the bound
variable core.

structure CORE

8.6. Core 265



kOS Documentation, Release 0.18.2

Table 8.28: Members
Suffix Type
All suffixes of kOSProcessor CORE objects are a type of kOSProcessor
VESSEL Vessel
ELEMENT Element
VERSION Version
CURRENTVOLUME Volume

CORE:VESSEL

Type VesselTarget

Access Get only

The vessel containing the current processor.

CORE:ELEMENT

Type Element

Access Get only

The element object containing the current processor.

CORE:VERSION

Type VersionInfo

Access Get only

The kOS version currently running.

CORE:CURRENTVOLUME

Type Volume

Access Get only

The currently selected volume for the current processor. This may be useful to prevent deleting files on the
Archive, or for interacting with multiple local hard disks.

266 Chapter 8. Structure Reference



CHAPTER 9

Addon Reference

This section is for ways in which kOS has special case exceptions to its normal generic behaviours, in
order to accommodate other KSP mods. If you don’t use any of KSP mods mentioned, you don’t need to
read this section.

9.1 Action Groups Extended

• Download: https://github.com/SirDiazo/AGExt/releases

• Forum thread, including full instructions: http://forum.kerbalspaceprogram.com/threads/74195

Increase the action groups available to kOS from 10 to 250. Also adds the ability to edit actions in flight as well as the
ability to name action groups so you can describe what a group does.

Includes a Script Trigger action that can be used to control a running program and visual feedback if an action group
is currently activated.

Usage: Adds action groups AG11 through AG250 to kOS that are interacted with the same way as the AG1 through
AG10 bindings in base kOS are.

Anywhere you use AG1, you can use AG15 in the same way. (AG11 through AG250 explicitly behave the same as the
10 stock groups. Please file a bug report if they do not.)

Script Trigger action: Installing AGX adds the “Script Trigger” action to all kOS computer parts. This action is a
null action that does not activate anything but serves as a placeholder to enhance action groups in kOS.

When an action group has the Script Trigger action assigned, on that action group you can now:

• Name the action group so you remember what that action group does in your code when you trigger it.

• Activate the action group with a mouse click on-screen, no more tying up your entire keyboard with various
script trigger keys.

• Enable group state feedback so you can have your script change the groups state as feedback as to what the
script is doing. Green being On and Red being Off. (Toggle option in AGX.)

Basic Quick Start:

Note that this mod only adds action groups 11 through 250, it does not change how action groups 1 through 10 behave
in any way and groups 11 through 250 should behave the same way.

Known limitations (Action groups 11 through 250 only):

• On a nearby vessel that is not your current focus, an action group with no actions assigned will always return a
state of False and can not be set to a state of true via the “AG15 on.” command. Assign the Script Trigger action
as a work-around for this.

267

https://github.com/SirDiazo/AGExt/releases
http://forum.kerbalspaceprogram.com/threads/74195


kOS Documentation, Release 0.18.2

268 Chapter 9. Addon Reference



kOS Documentation, Release 0.18.2

• At this point, AG11 through AG250 do not officially support RemoteTech through kOS. (Support will happen
once all three mods involved have updated to KSP version 1.0 and made any internal changes necessary.) All
three mods can be installed at the same time without issue, just be aware there may be unexpected behaviour
when using action groups 11 through 250 from a kOS script in terms of RemoteTech signal delay and connection
state.

Action state monitoring

Note that the state of action groups is tracked on a per-action basis, rather then on a per-group basis. This results in
the group state being handled differently.

• The Script Trigger action found on the kOS computer module is not subject to the below considerations and is
the recommended action to use when interacting with a running kOS script.

• The state of actions are monitored on the part and updated automatically. A closed solar panel will return a state
of false for all it’s actions. (Extend Panels, Retract Panels, Toggle Panels) When you extend the solar panel with
either the Extend Panels or Toggle Panels action, all three actions will change to a state of True. Retract the
panels and the state of all three actions will become False. Note that this state will update in any action group
that contains that action, not just the action group that was activated.

• This can result in an action group have actions in a mixed state where some actions are on and some are off. In
this case querying the group state will result in a state of False. For the purposes of the group state being True
or False, if all actions in the action group are true, the group state will return true. If any actions in the group
are false,the group state with return False.

• When an action triggers an animation, the state of the action will be uncertain until the animation finishes
playing. Some parts will report True during the animation and some will report False. It depends on how the
part creator set things up and not something AGX can control.

• For clarity, visual feedback can be provided of the current state of an action group. When editing action groups,
find the “Toggle Grp.” button just below the text entry field for the group name in the main AGX window and
enable it. (It is enabled/disabled for the current action group when you click the button.) Once you do this, the
text displaying that group will change from gray to colored. Green: Group is activated (state True). Red: Group
is deactivated (state False). Yellow: Group is in a mixed state, will return a state False when queried.

• It is okay to activate an already activated group and deactivate a non-activated group. Actions in the group will
still try to execute as normal. Exact behaviour of a specific action will depend on how the action’s creator set
things up.

Example code:

Print to the terminal any time you activate action group 15. Use this to change variables within a running kOS script
and the “Script Trigger” action found on the kOS computer part:

AG15 on. // Activate action group 15.
print AG15. // Print action group 15's state to the terminal. (True/False)

on AG15 { //Prints "Action group 15 clicked!" to the console when AG15 is toggled, either via "AG15 on." or in-game with an assigned key.
print "Action group 15 clicked!".
preserve.

}

Animation Delay:

• Using the above code on a stock solar panel’s Toggle Panels action, the player activates AG15, AG15’s state
goes from false to true and the actions are triggered. AG15 False -> True and prints to the terminal.

• On it’s next update pass (100ms to 250ms later), AGX checks AG15’s state and sees the solar panel is still
deploying which means that AG15’s state is false and so sets it that way. AG15 True -> False and prints
to the terminal.

9.1. Action Groups Extended 269



kOS Documentation, Release 0.18.2

• A few seconds later, the solar panel finishes it’s deployment animation. On it’s next update pass AGX checks
AG15’s state and sees the solar panel is now deployed which means that AG15’s state is now true and so sets it
that way. AG15 False -> True and prints to the terminal a third time.

As a workaround, you need to add a cooldown:

declare cooldownTimeAG15 to 0.
on AG15 {

if cooldownTimeAG15 + 10 < time:seconds {
print "Solar Panel Toggled!".
set cooldownTimeAG15 to time.

}
preserve.

}

Note the 10 in the second line, that is your cooldown time in seconds. Set this to a number of seconds that is longer
then your animation time and the above code will limit whatever is inside the IF statement so it can only activate after
10 seconds have passed since the previous activation and will not try to activate a second time while the solar panel
animation is still playing.

9.2 RemoteTech

RemoteTech is a modification for Squad’s “Kerbal Space Program” (KSP) which overhauls the unmanned space pro-
gram. It does this by requiring unmanned vessels have a connection to Kerbal Space Center (KSC) to be able to be
controlled. This adds a new layer of difficulty that compensates for the lack of live crew members.

• Download: http://kerbalstuff.com/mod/134/RemoteTech

• Sources: https://github.com/RemoteTechnologiesGroup/RemoteTech

• Documentation: http://remotetechnologiesgroup.github.io/RemoteTech/

9.2.1 Interaction with kOS

When you have RemoteTech installed you can only interact with the core’s terminal when you have a connection to
KSC on any unmanned craft. Scripts launched when you still had a connection will continue to execute even if your
unmanned craft loses connection to KSC. But you should note, that when there is no connection to KSC the archive
volume is inaccessible. This will require you to plan ahead and copy necessary scripts for your mission to probe hard
disk, if your kerbals and/or other scripts need to use them while not connected.

If you launch a manned craft while using RemoteTech, you are still able to input commands from the terminal even if
you do not have a connection to the KSC. The archive will still be inaccessible without a connection to the KSC. Under
the current implementation, there is no delay when accessing the archive with a local terminal. This implementation
may change in the future to account for delays in reading and writing data over the connection.

It is possible to activate/deactivate RT antennas, as well as set their targets using kOS:

SET p TO SHIP:PARTSNAMED("mediumDishAntenna")[0].
SET m to p:GETMODULE("ModuleRTAntenna").
m:DOEVENT("activate").
m:SETFIELD("target", "mission-control").
// or
m:SETFIELD("target", mun).
m:SETFIELD("target", "minmus").

Acceptable values for “target” are: “no-target”, “active-vessel”, “mission-control”, a Body , a Vessel, or a string
containing the name of a body or vessel.

270 Chapter 9. Addon Reference

http://kerbalstuff.com/mod/134/RemoteTech
https://github.com/RemoteTechnologiesGroup/RemoteTech
http://remotetechnologiesgroup.github.io/RemoteTech/


kOS Documentation, Release 0.18.2

Starting version 0.17 of kOS you can access structure RTAddon via ADDONS:RT.

structure RTAddon
Suffix Type Description
AVAILABLE bool(readonly) True if RT is installed and RT integration enabled.
DELAY(vessel) double Get shortest possible delay to given Vessel
KSCDELAY(vessel) double Get delay from KSC to given Vessel
HASCONNECTION(vessel) bool True if given Vessel has any connection
HASKSCCONNECTION(vessel) bool True if given Vessel has connection to KSC
HASLOCALCONTROL(vessel) bool True if given Vessel has local control

RTADDON:AVAILABLE

Type bool

Access Get only

True if RT is installed and RT integration enabled.

RTAddon:DELAY(vessel)

Parameters

• vessel – Vessel

Returns (double) seconds

Returns shortest possible delay for vessel (Will be less than KSC delay if you have a local command post).

RTAddon:KSCDELAY(vessel)

Parameters

• vessel – Vessel

Returns (double) seconds

Returns delay in seconds from KSC to vessel.

RTAddon:HASCONNECTION(vessel)

Parameters

• vessel – Vessel

Returns bool

Returns True if vessel has any connection (including to local command posts).

RTAddon:HASKSCCONNECTION(vessel)

Parameters

• vessel – Vessel

Returns bool

Returns True if vessel has connection to KSC.

RTAddon:HASLOCALCONTROL(vessel)

Parameters

• vessel – Vessel

Returns bool

Returns True if vessel has local control (and thus not requiring a RemoteTech connection).

9.2. RemoteTech 271



kOS Documentation, Release 0.18.2

9.3 Kerbal Alarm Clock

• Download: https://github.com/TriggerAu/KerbalAlarmClock/releases

• Alternative download https://kerbalstuff.com/mod/231/Kerbal%20Alarm%20Clock

• Forum thread, including full instructions: http://forum.kerbalspaceprogram.com/threads/24786

The Kerbal Alarm Clock is a plugin that allows you to create reminder alarms at future periods to help you manage
your flights and not warp past important times.

Creator of the KAC provides API for integration with other mods. In KOS we provide limited access to KAC alarms
via following structure and functions.

Access structure KACAddon via ADDONS:KAC.

structure KACAddon
Suffix Type Description
AVAILABLE bool(readonly) True if KAC is installed and KAC integration enabled.
ALARMS() List List all alarms

KACAddon:AVAILABLE

Type bool

Access Get only

True if KAC is installed and KAC integration enabled. Example of use:

if ADDONS:KAC:AVAILABLE
{

//some KAC dependent code
}

KACAddon:ALARMS()

Returns List of KACAlarm objects

List all the alarms set up in Kerbal Alarm Clock. Example of use:

for i in ADDONS:KAC:ALARMS
{

print i:NAME + " - " + i:REMAINING + " - " + i:TYPE+ " - " + i:ACTION.
}

structure KACAlarm
Suffix Type Description
ID string

(readonly)
Unique identifier

NAME string Name of the alarm
ACTION string What should the Alarm Clock do when the alarm fires
TYPE string

(readonly)
What type of Alarm is this - affects icon displayed and some calc
options

NOTES string Long description of the alarm (optional)
REMAINING scalar (s) Time remaining until alarm is triggered
REPEAT bool Should the alarm be repeated once it fires
REPEATPERIOD scalar (s) How long after the alarm fires should the next alarm be set up
ORIGINBODY string Name of the body the vessel is departing from
TARGETBODY string Name of the body the vessel is arriving at

272 Chapter 9. Addon Reference

https://github.com/TriggerAu/KerbalAlarmClock/releases
https://kerbalstuff.com/mod/231/Kerbal%20Alarm%20Clock
http://forum.kerbalspaceprogram.com/threads/24786


kOS Documentation, Release 0.18.2

KACAlarm:ID

Type string

Access Get only

Unique identifier of the alarm.

KACAlarm:NAME

Type string

Access Get/Set

Name of the alarm. Displayed in main KAC window.

KACAlarm:ACTION

Type string

Access Get/Set

Should be one of the following

•MessageOnly - Message Only-No Affect on warp

•KillWarpOnly - Kill Warp Only-No Message

•KillWarp - Kill Warp and Message

•PauseGame - Pause Game and Message

If set incorrectly will log a warning in Debug log and revert to previous or default value.

KACAlarm:TYPE

Type string

Access Get only

Can only be set at Alarm creation. Could be one of the following as per API

•Raw (default)

•Maneuver

•ManeuverAuto

•Apoapsis

•Periapsis

•AscendingNode

•DescendingNode

•LaunchRendevous

•Closest

•SOIChange

•SOIChangeAuto

•Transfer

•TransferModelled

•Distance

•Crew

9.3. Kerbal Alarm Clock 273



kOS Documentation, Release 0.18.2

•EarthTime

Warning: Unless you are 100% certain you know what you’re doing, create only “Raw” AlarmTypes to avoid
unnecessary complications.

KACAlarm:NOTES

Type string

Access Get/Set

Long description of the alarm. Can be seen when alarm pops or by double-clicking alarm in UI.

Warning: This field may be reserved in the future version of KAC-KOS integration for automated script execu-
tion upon triggering of the alarm.

KACAlarm:REMAINING

Type double

Access Get only

Time remaining until alarm is triggered.

KACAlarm:REPEAT

Type bool

Access Get/Set

Should the alarm be repeated once it fires.

KACAlarm:REPEATPERIOD

Type double

Access Get/Set

How long after the alarm fires should the next alarm be set up.

KACAlarm:ORIGINBODY

Type string

Access Get/Set

Name of the body the vessel is departing from.

KACAlarm:TARGETBODY

Type string

Access Get/Set

Name of the body the vessel is arriving to.

9.3.1 Available Functions

Function Description
ADDALARM(AlarmType, UT, Name, Notes) Create new alarm of AlarmType at UT
LISTALARMS(alarmType) List alarms with type alarmType.
DELETEALARM(alarmID) Delete alarm with ID = alarmID

ADDALARM(AlarmType, UT, Name, Notes)
Creates alarm of type KACAlarm:ALARMTYPE at UT with Name and Notes attributes set. Attaches alarm to
current CPU Vessel. Returns KACAlarm object if creation was successful and empty string otherwise:

274 Chapter 9. Addon Reference



kOS Documentation, Release 0.18.2

set na to addAlarm("Raw",time:seconds+300, "Test", "Notes").
print na:NAME. //prints 'Test'
set na:NOTES to "New Description".
print na:NOTES. //prints 'New Description'

LISTALARMS(alarmType)
If alarmType equals “All”, returns List of all KACAlarm objects attached to current vessel or have no vessel
attached. Otherwise returns List of all KACAlarm objects with KACAlarm:TYPE equeal to alarmType and
attached to current vessel or have no vessel attached.:

set al to listAlarms("All").
for i in al
{

print i:ID + " - " + i:name.
}

DELETEALARM(alarmID)
Deletes alarm with ID equal to alarmID. Returns True if successful, false otherwise:

set na to addAlarm("Raw",time:seconds+300, "Test", "Notes").
if (DELETEALARM(na:ID))
{

print "Alarm Deleted".
}

9.4 Infernal Robotics

• Download: http://kerbal.curseforge.com/ksp-mods/220267

• Alternative download: https://kerbalstuff.com/mod/8/Magic_Smoke_Industries_Infernal_Robotics

• Forum thread, including full instructions: http://forum.kerbalspaceprogram.com/threads/116064

Infernal Robotics introduces robotics parts to the game, letting you create moving or spinning contraptions that just
aren’t possible under stock KSP. .. figure:: http://i.imgur.com/O94LBvF.png

Starting version 0.20 of the Infernal Robotics, mod creators introduced API to for easier access to robotic features.

Access structure IRAddon via ADDONS:IR.

structure IRAddon
Suffix Type Description
AVAILABLE bool(readonly)Returns True if mod Infernal Robotics is installed, available to KOS and

applicable to current craft.
GROUPS List

(readonly)
Lists all Servo Groups for current focused vessel

ALLSERVOS List
(readonly)

Lists all Servos for current focused vessel

IRAddon:AVAILABLE

Type bool

Access Get only

Returns True if mod Infernal Robotics is installed, available to KOS and applicable to current craft. Example of
use:

9.4. Infernal Robotics 275

http://kerbal.curseforge.com/ksp-mods/220267
https://kerbalstuff.com/mod/8/Magic_Smoke_Industries_Infernal_Robotics
http://forum.kerbalspaceprogram.com/threads/116064
http://i.imgur.com/O94LBvF.png


kOS Documentation, Release 0.18.2

if ADDONS:IR:AVAILABLE
{

//some IR dependent code
}

IRAddon:GROUPS

Type List of IRControlGroup objects

Access Get only

Lists all Servo Groups for current focused vessel. Example of use:

for g in ADDONS:IR:GROUPS
{

Print g:NAME + " contains " + g:SERVOS:LENGTH + " servos".
}

IRAddon:ALLSERVOS

Type List of IRServo objects

Access Get only

Lists all Servos for current focused vessel. Example of use:

for s in ADDONS:IR:ALLSERVOS
{

print "Name: " + s:NAME + ", position: " + s:POSITION.
}

structure IRControlGroup
Suffix Type Description
NAME string Name of the Control Group
SPEED float Speed multiplier set in the IR UI
EXPANDED bool True if Group is expanded in IR UI
FORWARDKEY string Key assigned to forward movement
REVERSEKEY string Key assigned to reverse movement
SERVOS List (readonly) List of servos in the group
MOVERIGHT() void Commands servos in the group to move in positive direction
MOVELEFT() void Commands servos in the group to move in negative direction
MOVECENTER() void Commands servos in the group to move to default position
MOVENEXTPRESET() void Commands servos in the group to move to next preset
MOVEPREVPRESET() void Commands servos in the group to move to previous preset
STOP() void Commands servos in the group to stop

IRControlGroup:NAME

Type string

Access Get/Set

Name of the Control Group (cannot be empty).

IRControlGroup:SPEED

Type float

Access Get/Set

Speed multiplier as set in the IR user interface. Avoid setting it to 0.

IRControlGroup:EXPANDED

276 Chapter 9. Addon Reference



kOS Documentation, Release 0.18.2

Type bool

Access Get/Set

True if Group is expanded in IR UI

IRControlGroup:FORWARDKEY

Type string

Access Get/Set

Key assigned to forward movement. Can be empty.

IRControlGroup:REVERSEKEY

Type string

Access Get/Set

Key assigned to reverse movement. Can be empty.

IRControlGroup:SERVOS

Type List of IRServo objects

Access Get only

Lists Servos in the Group. Example of use:

for g in ADDONS:IR:GROUPS
{

Print g:NAME + " contains " + g:SERVOS:LENGTH + " servos:".
for s in g:servos
{

print " " + s:NAME + ", position: " + s:POSITION.
}

}

IRControlGroup:MOVERIGHT()

Returns void

Commands servos in the group to move in positive direction.

IRControlGroup:MOVELEFT()

Returns void

Commands servos in the group to move in negative direction.

IRControlGroup:MOVECENTER()

Returns void

Commands servos in the group to move to default position.

IRControlGroup:MOVENEXTPRESET()

Returns void

Commands servos in the group to move to next preset

IRControlGroup:MOVEPREVPRESET()

Returns void

Commands servos in the group to move to previous preset

IRControlGroup:STOP()

9.4. Infernal Robotics 277



kOS Documentation, Release 0.18.2

Returns void

Commands servos in the group to stop

structure IRServo
Suffix Type Description
NAME string Name of the Servo
UID int Unique ID of the servo part (part.flightID).
HIGHLIGHT bool

(set-only)
Set Hightlight status of the part.

POSITION float
(readonly)

Current position of the servo.

MINCFGPOSITION float
(readonly)

Minimum position for servo as defined by part creator
in part.cfg

MAXCFGPOSITION float
(readonly)

Maximum position for servo as defined by part creator
in part.cfg

MINPOSITION float Minimum position for servo, from tweakable.
MAXPOSITION float Maximum position for servo, from tweakable.
CONFIGSPEED float

(readonly)
Servo movement speed as defined by part creator in
part.cfg

SPEED float Servo speed multiplier, from tweakable.
CURRENTSPEED float

(readonly)
Current Servo speed.

ACCELERATION float Servo acceleration multiplier, from tweakable.
ISMOVING bool

(readonly)
True if Servo is moving

ISFREEMOVING bool
(readonly)

True if Servo is uncontrollable (ex. docking washer)

LOCKED bool Servo’s locked status, set true to lock servo.
INVERTED bool Servo’s inverted status, set true to invert servo’s axis.
PART Part A reference to a Part containing servo module.
MOVERIGHT() void Commands servo to move in positive direction
MOVELEFT() void Commands servo to move in negative direction
MOVECENTER() void Commands servo to move to default position
MOVENEXTPRESET() void Commands servo to move to next preset
MOVEPREVPRESET() void Commands servo to move to previous preset
STOP() void Commands servo to stop
MOVETO(position,
speedMult)

void Commands servo to move to position with speedMult
multiplier

IRServo:NAME

Type string

Access Get/Set

Name of the Control Group (cannot be empty).

IRServo:UID

Type int

Access Get

Unique ID of the servo part (part.flightID).

IRServo:HIGHLIGHT

Type bool

278 Chapter 9. Addon Reference



kOS Documentation, Release 0.18.2

Access Set

Set Hightlight status of the part.

IRServo:POSITION

Type float

Access Get

Current position of the servo.

IRServo:MINCFGPOSITION

Type float

Access Get

Minimum position for servo as defined by part creator in part.cfg

IRServo:MAXCFGPOSITION

Type float

Access Get

Maximum position for servo as defined by part creator in part.cfg

IRServo:MINPOSITION

Type float

Access Get/Set

Minimum position for servo, from tweakable.

IRServo:MAXPOSITION

Type float

Access Get/Set

Maximum position for servo, from tweakable.

IRServo:CONFIGSPEED

Type float

Access Get

Servo movement speed as defined by part creator in part.cfg

IRServo:SPEED

Type float

Access Get/Set

Servo speed multiplier, from tweakable.

IRServo:CURRENTSPEED

Type float

Access Get

Current Servo speed.

IRServo:ACCELERATION

Type float

9.4. Infernal Robotics 279



kOS Documentation, Release 0.18.2

Access Get/Set

Servo acceleration multiplier, from tweakable.

IRServo:ISMOVING

Type bool

Access Get

True if Servo is moving

IRServo:ISFREEMOVING

Type bool

Access Get

True if Servo is uncontrollable (ex. docking washer)

IRServo:LOCKED

Type bool

Access Get/Set

Servo’s locked status, set true to lock servo.

IRServo:INVERTED

Type bool

Access Get/Set

Servo’s inverted status, set true to invert servo’s axis.

IRServo:PART

Type Part

Access Get

Returns reference to the Part containing servo module. Please note that Part:UID does not equal IRServo:UID.

IRServo:MOVERIGHT()

Returns void

Commands servo to move in positive direction

IRServo:MOVELEFT()

Returns void

Commands servo to move in negative direction

IRServo:MOVECENTER()

Returns void

Commands servo to move to default position

IRServo:MOVENEXTPRESET()

Returns void

Commands servo to move to next preset

IRServo:MOVEPREVPRESET()

Returns void

280 Chapter 9. Addon Reference



kOS Documentation, Release 0.18.2

Commands servo to move to previous preset

IRServo:STOP()

Returns void

Commands servo to stop

IRServo:MOVETO(position, speedMult)

Parameters

• position – (float) Position to move to

• speedMult – (float) Speed multiplier

Returns void

Commands servo to move to position with speedMult multiplier.

Example code:

print "IR Iavailable: " + ADDONS:IR:AVAILABLE.

Print "Groups:".

for g in ADDONS:IR:GROUPS
{

Print g:NAME + " contains " + g:SERVOS:LENGTH + " servos:".
for s in g:servos
{

print " " + s:NAME + ", position: " + s:POSITION.
if (g:NAME = "Hinges" and s:POSITION = 0)
{

s:MOVETO(30, 2).
}
else if (g:NAME = "Hinges" and s:POSITION > 0)
{

s:MOVETO(0, 1).
}

}
}

To help KOS scripts identify whether or not certain mod is installed and available following suffixed functions were
introduced in version 0.17

9.5 ADDONS:AGX:AVAILABLE

Returns True if mod Action Group Extended is installed and available to KOS.

9.6 ADDONS:RT:AVAILABLE

Returns True if mod RemoteTech is installed and available to KOS. See more RemoteTech functions here.

9.5. ADDONS:AGX:AVAILABLE 281



kOS Documentation, Release 0.18.2

9.7 ADDONS:KAC:AVAILABLE

Returns True if mod Kerbal Alarm Clock is installed and available to KOS.

9.8 ADDONS:IR:AVAILABLE

Returns True if mod Infernal Robotics is installed, available to KOS and applicable to current craft. See more here.

282 Chapter 9. Addon Reference



CHAPTER 10

Contribute

10.1 How to Contribute to this Project

Do you know or are willing to learn C# and the KSP public API? Great, we could use your help! The source code for
kOS is kept on github and is currently maintained by Chris Woerz and Steven Mading. The first steps you will want
to take is to clone the latest version of kOS from github and try to build it using your favorite C# compiler suite.

10.2 How to Edit this Documentation

This documentation was written using reStructuredText and compiled into HTML using Sphinx and the Read The
Docs Theme. It is maintained by Steven Mading, Chris Woerz and Johann Goetz

283

https://github.com/KSP-KOS
https://github.com/erendrake
https://github.com/Dunbaratu
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://github.com/snide/sphinx_rtd_theme
https://github.com/snide/sphinx_rtd_theme
https://github.com/Dunbaratu
https://github.com/erendrake
http://github.com/theodoregoetz


kOS Documentation, Release 0.18.2

284 Chapter 10. Contribute



CHAPTER 11

Changes from version to version

This is a slightly more verbose version of the new features mentioned in the CHANGELOG, specifically for new
features and for users familiar with older versions of the documentation who want only a quick update to the docs
without reading the entire set of documentation again from scratch.

285



kOS Documentation, Release 0.18.2

• Changes in 0.18.2
– Queue and Stack
– Run Once
– Volumes and Processors integration
– Debuglog

• Changes in 0.18.1
• Changes in 0.18 - Steering Much Betterer

– Steering Overhaul
– Lexicon
– String methods
– Science Experiment Control
– Crew Member API
– LOADISTANCE
– Infernal Robotics Part suffix
– Renamed built-ins
– Enforces control of own-vessel only
– New quickstart tutorial
– A few more constants
– Dynamic pressure
– DEFINED keyword
– KUNIVERSE
– SolarPrimeVector

• Changes in 0.17.3
– New Looping control flow, the FROM loop
– Short-Circuit Booleans
– New Infernal Robotics interface
– New RemoteTech interface
– Deprecated INCOMMRANGE
– Updated thrust calculations for 1.0.x
– New CORE struct
– Updated boot file name handling
– Docking port, element, and vessel references
– New sounds and terminal features
– Clear vecdraws all at once

• Changes in 0.17.0
– Variables can now be local
– Kerboscript has User Functions
– Community Examples Library
– Physics Ticks not Update Ticks
– Ability to use SAS modes from KSP 0.90
– Blizzy ToolBar Support
– Ability to define colors using HSV
– Ability to highlight a part in color
– Better user interface for selecting boot scripts
– Disks can be made bigger with tweakable slider
– You Can Transfer Resources
– Kerbal Alarm Clock support
– Query the docked elements of a vessel
– Support for Action Groups Extended
– LIST constructor can now initialize lists
– ISDEAD suffix for Vessel

286 Chapter 11. Changes from version to version



kOS Documentation, Release 0.18.2

11.1 Changes in 0.18.2

11.1.1 Queue and Stack

Queues and Stacks are now a feature you can use along with lists.

11.1.2 Run Once

New ONCE argment to the run command

11.1.3 Volumes and Processors integration

Volumes now get a default name equal to the core processor’s nametag, and have several suffixes that can be queried.

Get the volume that goes with a core

11.1.4 Debuglog

Debuglog suffix of KUNIVERSE for writing messages to the Unity log file.

11.2 Changes in 0.18.1

(This update had only bug fixes and nothing that affected these user documentation pages.)

11.3 Changes in 0.18 - Steering Much Betterer

11.3.1 Steering Overhaul

A major change to Cooked Steering!

Should help people using torque-less craft like with Realism Overhaul. Removed the old steering logic and replaced
it with a nice auto-tuning system.

SteeringManager structure now lests you acccess and alter parts of the cooked steering system.

PIDLoop structure now lets you borrow the PID mechanism used by the new cooked steering, for your own purposes.

11.3.2 Lexicon

New Lexicon structure now allows associative arrays.

11.3.3 String methods

New String structure now allows string manipulations.

11.1. Changes in 0.18.2 287



kOS Documentation, Release 0.18.2

11.3.4 Science Experiment Control

New ScienceExperimentModule allows you to fire off science experiments bypassing the user interface dialog.

11.3.5 Crew Member API

New CrewMember structure allows you to query the registered crew - their class, gender, and skill.

11.3.6 LOADISTANCE

New LOADDISTANCE obsoletes the previous way it worked.

11.3.7 Infernal Robotics Part suffix

11.3.8 Renamed built-ins

“AQUIRE” on docking ports is now “ACQUIRE”. “SURFACESPEED” is now “GROUNDSPEED” instead.

11.3.9 Enforces control of own-vessel only

It was previously possible to control vessels that weren’t attached to the kOS computer running the script. This has
been corrected.

11.3.10 New quickstart tutorial

http://ksp-kos.github.io/KOS_DOC/tutorials/quickstart.html

11.3.11 A few more constants

constants

11.3.12 Dynamic pressure

DYNAMICPRESSURE, or Q, a new suffix of Vessel.

11.3.13 DEFINED keyword

DEFINED keyword that can be used to check if a variable has been declared.

11.3.14 KUNIVERSE

KUniverse structure letting you break the 4th wall and revert from a script

288 Chapter 11. Changes from version to version

http://ksp-kos.github.io/KOS_DOC/tutorials/quickstart.html


kOS Documentation, Release 0.18.2

11.3.15 SolarPrimeVector

SolarPrimeVector, a bound variable to provide universal longitude direction.

11.4 Changes in 0.17.3

11.4.1 New Looping control flow, the FROM loop

There is now a new kind of loop, the FROM loop, which is a bit like the typical 3-part for-loop seen in a lot of other
languages with a separate init, check, and increment section.

11.4.2 Short-Circuit Booleans

Previously, kerboscript’s AND and OR operators were not short-circuiting. Now they are.

11.4.3 New Infernal Robotics interface

There are a few new helper addon utilities for the Infernal Robotics mod, on the IR addon page.

11.4.4 New RemoteTech interface

There are a few new helper addon utilities for the RemoteTech mod, on the RemoteTech addon page.

11.4.5 Deprecated INCOMMRANGE

Reading from the INCOMMRANGE bound variable will now throw a deprecation exception with instructions to use
the new RTAddon structure for the RT mod.

11.4.6 Updated thrust calculations for 1.0.x

KSP 1.0 caused the thrust calculations to become a LOT more complex than they used to be and kOS hadn’t caught
up yet. For a lot of scripts, trying to figure out a good throttle setting is no longer a matter of just taking a fraction of
the engine’s MAXTHRUST.

We fixed the existing suffixes of MAXTHRUST and AVAILABLETHRUST for engine and vessel to account for
the new changes in thrust based on ISP at different altitudes. MAXTHRUST is now the max the engine can put out at
the CURRENT atmospheric pressure and current velocity. It might not be the maximum it could put out under other
conditions. The AVAILABLETHRUST suffix is now implemented for engines (it was previously only available on
vessels). There are also new suffixes MAXTHRUSTAT (engines and vessels), AVAILABLETHRUSTAT (engines and
vessels), and ISPAT (engines only) to read the applicable value at a given atmospheric pressure.

11.4.7 New CORE struct

The core bound variable gives you a structure you can use to access properties of the current in-game CPU the script
is running on, including the vessel part it’s inside of, and the vessel it’s inside of, as well as the currently selected
volume. Moving forward this will be the struct where we enable features that interact with the processor itself, like
local configuration or current operational status.

11.4. Changes in 0.17.3 289



kOS Documentation, Release 0.18.2

11.4.8 Updated boot file name handling

Boot files are now copied to the local hard disk using their original file name. This allows for uniform file name access
either on the archive or local drive and fixes boot files not working when kOS is configured to start on the Archive.
You can also get or set the boot file using the BOOTFILENAME suffix of the CORE bound variable.

11.4.9 Docking port, element, and vessel references

You can now get a list of docking ports on any element or vessel using the DOCKINGPORTS suffix. Vessels also
expose a list of their elements (the ELEMENTS suffix) and an element will refernce it’s parent vessel (the VESSEL
suffix).

11.4.10 New sounds and terminal features

For purely cosmetic purpopses, there are new sound features and a few terminal tweaks.

• A terminal keyclick option for the in-game GUI terminal.

• The ability to BEEP when printing ascii code 7 (BEL), although the only way currently to achieve this is with
the KSlib’s spec_char.ksm file, as kOS has no BEL char, but this will be addressed later.

• A sound effect on exceptions, which can be turned off on the CONFIG panel.

11.4.11 Clear vecdraws all at once

For convenience, you can clear all vecdraws off the screen at once now with the clearvecdraws() function.

11.5 Changes in 0.17.0

11.5.1 Variables can now be local

Previously, the kOS runtime had a serious limitation in which it could only support one flat namespace of global-only
variables. Considerable archetecture re-work has been done to now support block-scoping in the underlying runtime,
which can be controlled through the use of local declarations in your kerboscript files.

11.5.2 Kerboscript has User Functions

The primary reason for the local scope variables rework was in support of the new user functions feature which has
been a long-wished-for feature for kOS to support.

11.5.3 Community Examples Library

There is now a new fledgling repository of examples and library scripts that we hope to be something the user com-
munity contributes to. Some of the examples shown in the kOS 0.17.0 release video are located there. The addition of
the ability to make user functions now makes the creation of such a library a viable option.

290 Chapter 11. Changes from version to version



kOS Documentation, Release 0.18.2

11.5.4 Physics Ticks not Update Ticks

The updates have been moved to the physics update portion of Unity, instead of the animation frame rate updates. This
may affect your preferred CONFIG:IPU setting. The new move creates a much more uniform performance across all
users, without penalizing the users of faster computers anymore. (Previously, if your computer was faster, you’d be
charged more electricity as the updates came more often).

11.5.5 Ability to use SAS modes from KSP 0.90

Added a new third way to control the ship, by leaving SAS on, and just telling KSP which mode (prograde, retrograde,
normal, etc) to put the SAS into.

11.5.6 Blizzy ToolBar Support

If you have the Blizzy Toolbar mod installed, you should be able to put the kOS control panel window under its control.

11.5.7 Ability to define colors using HSV

When a color is called for, such as with VECDRAW or HIGHLIGHT, you can now use the HSV color system (hue,
saturation, value) instead of RGB, if you prefer.

11.5.8 Ability to highlight a part in color

Any time your script needs to communicate something to the user about which part or parts it’s dealing with, it can
use KSP’s part highlighting feature to show a part.

11.5.9 Better user interface for selecting boot scripts

The selection of boot scripts for your vessel has been improved.

11.5.10 Disks can be made bigger with tweakable slider

All parts that have disk space now have a slider you can use in the VAB or SPH editors to tweak the disk space to
choose whether you want it to have 1x, 2x, or 4x as much as its default size. Increasing the size increases its price and
its weight cost.

11.5.11 You Can Transfer Resources

You can now use kOS scripts to transfer resources between parts for things like fuel, in the same way that a manual
user can do by using the right-click menus.

11.5.12 Kerbal Alarm Clock support

If you have the Kerbal Alarm Clock Mod isntalled, you can now query and manipulate its alarms from within your
kOS scripts.

11.5. Changes in 0.17.0 291



kOS Documentation, Release 0.18.2

11.5.13 Query the docked elements of a vessel

You can get the docked components of a joined-together vessel as separate collections of parts now.

11.5.14 Support for Action Groups Extended

While there was some support for the Action Groups Extended mod before, it has been greatly improved.

11.5.15 LIST constructor can now initialize lists

You can now do this:

set mylist to list(2,6,1,6,21).

to initialize a list of values from the start, so you no longer have to have a long list of list:ADD commands to populate
it.

11.5.16 ISDEAD suffix for Vessel

Vessels now have an :ISDEAD suffix you can use to detect if the vessel has gone away since the last time you got the
handle to it. (for example, you LIST TARGETS IN FOO, then the ship foo[3] blows up, then foo[3]:ISDEAD should
become true to clue you in to this fact.)

292 Chapter 11. Changes from version to version



CHAPTER 12

About kOS and KerboScript

kOS was originally created by Nivekk. It is under active development by the kOS Team and is licensed under terms of
GNU General Public License Version 3, 29 June 2007, Copyright © 2007 Free Software Foundation, Inc.

293

https://github.com/orgs/KSP-KOS/people
http://fsf.org/


kOS Documentation, Release 0.18.2

294 Chapter 12. About kOS and KerboScript



CHAPTER 13

Introduction to kOS and KerboScript

KerboScript is the language used to program the CPU device attached to your vessel and kOS is the operating system
that interprets the code you write. The program can be as simple as printing the current altitude of the vessel and as
complicated as a six-axis autopilot controller taking your vessel from the launchpad to Duna and back! With kOS, the
sky is not the limit.

This mod is compatible with RemoteTech, you just have to make sure you copy the program onto the local CPU before
it goes out of range of KSC.

13.1 Installation

Like other mods, simply merge the contents of the zip file into your Kerbal Space Program folder.

13.2 KerboScript

KerboScript is a programming language that is derived from the language of planet Kerbin, which sounds like gib-
berish to non-native speakers but for some reason is written exactly like English. As a result, KerboScript is very
English-like in its syntax. For example, it uses periods as statement terminators.

The language is designed to be easily accessible to novice programmers, therefore it is case-insensitive, and types are
cast automatically whenever possible.

A typical command in KerboScript might look like this:

PRINT "Hello World".

295

https://kerbalstuff.com/mod/134/RemoteTech


kOS Documentation, Release 0.18.2

296 Chapter 13. Introduction to kOS and KerboScript



CHAPTER 14

Indices and tables

• genindex

• modindex

• search

297



kOS Documentation, Release 0.18.2

298 Chapter 14. Indices and tables



Index

A
ABS(), 118
ADD, 189
ADDALARM(), 274
AggregateResource [struct], 177
AggregateResource:AMOUNT, 177
AggregateResource:CAPACITY, 177
AggregateResource:NAME, 177
AggregateResource:PARTS, 177
ALLWAYPOINTS(), 214
ALT [struct], 177
ANGLEAXIS(), 127
ARCCOS(), 120
ARCSIN(), 120
ARCTAN(), 120
ARCTAN2(), 121
AT(), 159
Atmosphere [struct], 173
Atmosphere:BODY, 173
Atmosphere:EXISTS, 173
Atmosphere:HEIGHT, 173
Atmosphere:OXYGEN, 173
Atmosphere:SCALE, 173
Atmosphere:SEALEVELPRESSURE, 173

B
BLACK, 216
BLUE, 216
Body [struct], 175
Body:ALTITUDE, 175
Body:ALTITUDEOF, 176
Body:ANGULARVEL, 175
Body:ATM, 175
Body:DESCRIPTION, 175
Body:GEOPOSITIONOF, 175
Body:MASS, 175
Body:MU, 175
Body:NAME, 175
Body:RADIUS, 175
Body:ROTATIONANGLE, 176

Body:ROTATIONPERIOD, 175
Body:SOIRADIUS, 176
Boolean Operators, 94
BRAKES, 147
BREAK, 86

C
Career [struct], 77
Career:CANDOACTIONS, 77
Career:CANMAKENODES, 77
Career:CANTRACKOBJECTS, 77
Career:PATCHLIMIT, 77
CEILING(), 118
CLEARSCREEN, 159
CLEARVECDRAWS(), 264
Config [struct], 218
Config:ARCH, 219
Config:AUDIOERR, 220
Config:IPU, 218
Config:LOOPBACK, 220
Config:RT2, 219
Config:SAFE, 219
Config:STAT, 219
Config:TELNET, 220
Config:TPORT, 220
Config:UCP, 218
Config:VERBOSE, 220
Constant:AtmToKPa, 118
Constant:C, 117
Constant:DegToRad, 118
Constant:E, 117
Constant:G, 117
Constant:KPaToATM, 118
Constant:PI, 117
Constant:RadToDeg, 118
Control [struct], 145
CORE [struct], 265
CORE:CURRENTVOLUME, 266
CORE:ELEMENT, 266
CORE:VERSION, 266
CORE:VESSEL, 266

299



kOS Documentation, Release 0.18.2

COS(), 120
CrewMember [struct], 177
CrewMember:EXPERIENCE, 178
CrewMember:GENDER, 178
CrewMember:NAME, 178
CrewMember:PART, 178
CrewMember:TOURIST, 178
CrewMember:TRAIT, 178
CYAN, 216

D
DELETEALARM(), 275
Direction [struct], 128
Direction:FOREVECTOR, 129
Direction:INVERSE, 129
Direction:PITCH, 128
Direction:ROLL, 129
Direction:STARVECTOR, 129
Direction:TOPVECTOR, 129
Direction:YAW, 129
DockingPort [struct], 179
DockingPort:ACQUIREFORCE, 179
DockingPort:ACQUIRERANGE, 179
DockingPort:ACQUIRETORQUE, 179
DockingPort:DOCKEDSHIPNAME, 179
DockingPort:NODEPOSITION, 179
DockingPort:NODETYPE, 180
DockingPort:PORTFACING, 180
DockingPort:REENGAGEDDISTANCE, 179
DockingPort:STATE, 180
DockingPort:TARGETABLE, 180
DockingPort:UNDOCK(), 180

E
Element [struct], 181
Element:DOCKINGPORTS, 181
Element:NAME, 181
Element:PARTS, 181
Element:RESOURCES, 182
Element:UID, 181
Element:VESSEL, 181
Engine [struct], 182
Engine:ACTIVATE(), 183
Engine:ALLOWRESTART, 185
Engine:ALLOWSHUTDOWN, 185
Engine:AVAILABLETHRUST, 184
Engine:AVAILABLETHRUSTAT(), 184
Engine:FLAMEOUT, 185
Engine:FUELFLOW, 184
Engine:IGNITION, 185
Engine:ISP, 184
Engine:ISPAT(), 184
Engine:MAXTHRUST, 183
Engine:MAXTHRUSTAT(), 184

Engine:SEALEVELISP, 185
Engine:SHUTDOWN(), 183
Engine:SLISP, 185
Engine:THROTTLELOCK, 185
Engine:THRUST, 184
Engine:THRUSTLIMIT, 183
Engine:VACUUMISP, 185
Engine:VISP, 185
ETA [struct], 186
ETA:APOAPSIS, 186
ETA:PERIAPSIS, 186
ETA:TRANSITION, 186

F
FileInfo [struct], 221
FileInfo:FILETYPE, 221
FileInfo:NAME, 221
FileInfo:SIZE, 221
FLOOR(), 119
FOR, 88
FROM, 89
Fundamental Constants, 117

G
GeoCoordinates [struct], 131
GeoCoordinates:ALTITUDEPOSITION, 132
GeoCoordinates:BEARING, 132
GeoCoordinates:DISTANCE, 132
GeoCoordinates:HEADING, 132
GeoCoordinates:LAT, 131
GeoCoordinates:LNG, 131
GeoCoordinates:POSITION, 132
GeoCoordinates:TERRAINHEIGHT, 132
Gimbal [struct], 186
Gimbal:LOCK, 187
Gimbal:PITCHANGLE, 187
Gimbal:RANGE, 186
Gimbal:RESPONSESPEED, 187
Gimbal:ROLLANGLE, 187
Gimbal:YAWANGLE, 187
GREEN, 216

H
HEADING(), 126
HIGHLIGHT [struct], 222
HIGHLIGHT(), 221
HSV(), 217
HSVA [struct], 217
HSVA(), 217
HUDTEXT, 160

I
IF, 86
IRAddon [struct], 275

300 Index



kOS Documentation, Release 0.18.2

IRAddon:ALLSERVOS, 276
IRAddon:AVAILABLE, 275
IRAddon:GROUPS, 276
IRControlGroup [struct], 276
IRControlGroup:EXPANDED, 276
IRControlGroup:FORWARDKEY, 277
IRControlGroup:MOVECENTER(), 277
IRControlGroup:MOVELEFT(), 277
IRControlGroup:MOVENEXTPRESET(), 277
IRControlGroup:MOVEPREVPRESET(), 277
IRControlGroup:MOVERIGHT(), 277
IRControlGroup:NAME, 276
IRControlGroup:REVERSEKEY, 277
IRControlGroup:SERVOS, 277
IRControlGroup:SPEED, 276
IRControlGroup:STOP(), 277
IRServo [struct], 278
IRServo:ACCELERATION, 279
IRServo:CONFIGSPEED, 279
IRServo:CURRENTSPEED, 279
IRServo:HIGHLIGHT, 278
IRServo:INVERTED, 280
IRServo:ISFREEMOVING, 280
IRServo:ISMOVING, 280
IRServo:LOCKED, 280
IRServo:MAXCFGPOSITION, 279
IRServo:MAXPOSITION, 279
IRServo:MINCFGPOSITION, 279
IRServo:MINPOSITION, 279
IRServo:MOVECENTER(), 280
IRServo:MOVELEFT(), 280
IRServo:MOVENEXTPRESET(), 280
IRServo:MOVEPREVPRESET(), 280
IRServo:MOVERIGHT(), 280
IRServo:MOVETO(), 281
IRServo:NAME, 278
IRServo:PART, 280
IRServo:POSITION, 279
IRServo:SPEED, 279
IRServo:STOP(), 281
IRServo:UID, 278
Iterator [struct], 222
Iterator:ATEND, 223
Iterator:INDEX, 223
Iterator:NEXT(), 223
Iterator:RESET(), 223
Iterator:VALUE, 223

K
KACAddon [struct], 272
KACAddon:ALARMS(), 272
KACAddon:AVAILABLE, 272
KACAlarm [struct], 272
KACAlarm:ACTION, 273

KACAlarm:ID, 272
KACAlarm:NAME, 273
KACAlarm:NOTES, 274
KACAlarm:ORIGINBODY, 274
KACAlarm:REMAINING, 274
KACAlarm:REPEAT, 274
KACAlarm:REPEATPERIOD, 274
KACAlarm:TARGETBODY, 274
KACAlarm:TYPE, 273
kOSProcessor [struct], 187
kOSProcessor:ACTIVATE(), 188
kOSProcessor:BOOTFILENAME, 188
kOSProcessor:DEACTIVATE(), 188
kOSProcessor:MODE, 187
kOSProcessor:TAG, 188
kOSProcessor:VOLUME, 188
KUniverse [struct], 223
KUniverse:ACTIVEVESSEL, 225
KUniverse:CANREVERT, 224
KUniverse:CANREVERTTOEDITOR, 224
KUniverse:CANREVERTTOLAUNCH, 224
KUniverse:DEBUGLOG(), 225
KUniverse:DEFAULTLOADDISTANCE, 225
KUniverse:FORCEACTIVE(), 225
KUniverse:ORIGINEDITOR, 225
KUniverse:REVERTTO(), 224
KUniverse:REVERTTOEDITOR, 224
KUniverse:REVERTTOLAUNCH, 224

L
LATLNG(), 131
Lexicon [struct], 227
Lexicon:ADD(), 228
Lexicon:CASE, 228
Lexicon:CASESENSITIVE, 228
Lexicon:CLEAR(), 228
Lexicon:COPY(), 229
Lexicon:DUMP, 229
Lexicon:HASKEY(), 229
Lexicon:HASVALUE(), 229
Lexicon:KEYS, 229
Lexicon:LENGTH, 228
Lexicon:REMOVE(), 228
Lexicon:VALUES, 229
LIGHTS, 147
LIST (command), 150
List [struct], 231
List:ADD(), 232
List:CLEAR, 232
List:CONTAINS(), 233
List:COPY, 232
List:DUMP, 233
List:EMPTY, 233
List:INSERT(), 232

Index 301



kOS Documentation, Release 0.18.2

List:ITERATOR, 232
List:LENGTH, 232
List:REMOVE(), 232
List:SUBLIST(), 233
LISTALARMS(), 275
LN(), 119
LoadDistance [struct], 236
LOCK, 87
LOG10(), 119
LOOKDIRUP(), 126

M
MAGENTA, 216
ManeuverNode [struct], 190
ManeuverNode:BURNVECTOR, 191
ManeuverNode:DELTAV, 191
ManeuverNode:ETA, 191
ManeuverNode:NORMAL, 191
ManeuverNode:ORBIT, 191
ManeuverNode:PROGRADE, 191
ManeuverNode:RADIALOUT, 191
MAPVIEW, 160
Mathematical Functions, 118
MAX(), 119
MIN(), 119
MOD(), 119

N
NEXTNODE, 190
NODE(), 189

O
ON, 93
Orbit [struct], 165
Orbit:APOAPSIS, 165
Orbit:ARGUMENTOFPERIAPSIS, 166
Orbit:BODY, 165
Orbit:ECCENTRICITY, 166
Orbit:HASNEXTPATCH, 167
Orbit:INCLINATION, 166
Orbit:LAN, 166
Orbit:LONGITUDEOFASCENDINGNODE, 166
Orbit:MEANANOMALYATEPOCH, 167
Orbit:NAME, 165
Orbit:NEXTPATCH, 167
Orbit:PATCHES, 168
Orbit:PERIAPSIS, 165
Orbit:PERIOD, 166
Orbit:POSITION, 167
Orbit:SEMIMAJORAXIS, 166
Orbit:SEMIMINORAXIS, 166
Orbit:TRANSITION, 167
Orbit:TRUEANOMALY, 166
Orbit:VELOCITY, 167

Orbitable [struct], 168
Orbitable:ALTITUDE, 171
Orbitable:APOAPSIS, 172
Orbitable:BODY, 169
Orbitable:DIRECTION, 171
Orbitable:DISTANCE, 171
Orbitable:GEOPOSITION, 171
Orbitable:HASBODY, 169
Orbitable:HASOBT, 169
Orbitable:HASORBIT, 169
Orbitable:LATITUDE, 171
Orbitable:LONGITUDE, 171
Orbitable:NAME, 169
Orbitable:NORTH, 170
Orbitable:OBT, 170
Orbitable:ORBIT, 170
Orbitable:PATCHES, 171
Orbitable:PERIAPSIS, 172
Orbitable:POSITION, 171
Orbitable:PROGRADE, 170
Orbitable:RETROGRADE, 170
Orbitable:SRFPROGRADE, 170
Orbitable:SRFRETROGRADE, 170
Orbitable:UP, 170
Orbitable:VELOCITY, 171
OrbitableVelocity [struct], 172
OrbitableVelocity:ORBIT, 172
OrbitableVelocity:SURFACE, 172
ORBITAT(), 150

P
Part [struct], 192
Part:ALLMODULES, 195
Part:CHILDREN, 195
Part:CONTROLFROM, 193
Part:DRYMASS, 194
Part:FACING, 194
Part:GETMODULE(), 195
Part:HASPARENT, 195
Part:HASPHYSICS, 195
Part:MASS, 194
Part:MODULES, 195
Part:NAME, 192
Part:PARENT, 195
Part:POSITION, 194
Part:RESOURCES, 194
Part:ROTATION, 193
Part:SHIP, 194
Part:STAGE, 193
Part:TAG, 192
Part:TARGETABLE, 194
Part:TITLE, 192
Part:UID, 193
Part:WETMASS, 194

302 Index



kOS Documentation, Release 0.18.2

PartModule [struct], 196
PartModule:ALLACTIONNAMES, 197
PartModule:ALLACTIONS, 197
PartModule:ALLEVENTNAMES, 197
PartModule:ALLEVENTS, 197
PartModule:ALLFIELDNAMES, 196
PartModule:ALLFIELDS, 196
PartModule:DOACTION(), 198
PartModule:DOEVENT(), 197
PartModule:GETFIELD(), 197
PartModule:HASACTION(), 198
PartModule:HASEVENT(), 198
PartModule:HASFIELD(), 198
PartModule:NAME, 196
PartModule:PART, 196
PartModule:SETFIELD(), 197
PIDLoop [struct], 241
PIDLoop:CHANGERATE, 243
PIDLoop:DTERM, 243
PIDLoop:ERROR, 242
PIDLoop:ERRORSUM, 242
PIDLoop:INPUT, 242
PIDLoop:ITERM, 243
PIDLoop:KD, 241
PIDLoop:KI, 241
PIDLoop:KP, 241
PIDLoop:LASTSAMPLETIME, 241
PIDLoop:MAXOUTPUT, 242
PIDLoop:MINOUTPUT, 242
PIDLoop:OUTPUT, 242
PIDLoop:PTERM, 242
PIDLoop:RESET(), 243
PIDLoop:SETPOINT, 242
PIDLoop:UPDATE(), 243
POSITIONAT(), 149
PRESERVE, 93
PRINT, 159
PROCESSOR(), 162
PURPLE, 216

Q
Q(), 126
Queue [struct], 245
Queue:CLEAR(), 245
Queue:CONTAINS(), 245
Queue:COPY, 245
Queue:DUMP, 246
Queue:EMPTY, 246
Queue:ITERATOR, 245
Queue:LENGTH, 245
Queue:PEEK(), 245
Queue:POP(), 245
Queue:PUSH(), 245

R
R(), 126
RANDOM(), 119
RAW-RAW (Reference Frame), 133
RCS, 146
REBOOT, 160
RED, 216
REMOVE, 189
Resource [struct], 200
Resource:AMOUNT, 200
Resource:CAPACITY, 200
Resource:DENSITY, 200
Resource:ENABLED, 201
Resource:NAME, 200
Resource:TOGGLEABLE, 201
ResourceTransfer [struct], 246
RESOURCETRANSFER:ACTIVE, 247
RESOURCETRANSFER:GOAL, 247
RESOURCETRANSFER:MESSAGE, 247
RESOURCETRANSFER:RESOURCE, 247
RESOURCETRANSFER:STATUS, 246
RESOURCETRANSFER:TRANSFERRED, 247
RGB(), 216
RGBA [struct], 216
RGBA(), 216
ROTATEFROMTO(), 127
ROUND(), 119
RTAddon [struct], 271
RTADDON:AVAILABLE, 271
RTAddon:DELAY(), 271
RTAddon:HASCONNECTION(), 271
RTAddon:HASKSCCONNECTION(), 271
RTAddon:HASLOCALCONTROL(), 271
RTAddon:KSCDELAY(), 271

S
SAS, 147
ScienceExperimentModule [struct], 201
ScienceExperimentModule:DEPLOY(), 201
ScienceExperimentModule:DEPLOYED, 202
ScienceExperimentModule:DUMP(), 202
ScienceExperimentModule:HASDATA, 202
ScienceExperimentModule:INOPERABLE, 202
ScienceExperimentModule:RERUNNABLE, 202
ScienceExperimentModule:RESET(), 202
ScienceExperimentModule:TRANSMIT(), 202
Sensor [struct], 203
Sensor:ACTIVE, 203
Sensor:DISPLAY, 203
Sensor:POWERCONSUMPTION, 203
Sensor:TOGGLE(), 203
Sensor:TYPE, 203
SET TERMINAL:HEIGHT. GET TERMINAL:HEIGHT,

159

Index 303



kOS Documentation, Release 0.18.2

SET TERMINAL:WIDTH. GET TERMINAL:WIDTH,
159

SHIP-RAW (Reference Frame), 133
SHUTDOWN, 160
SIN(), 120
SituationLoadDistance [struct], 238
SituationLoadDistance:LOAD, 238
SituationLoadDistance:PACK, 238
SituationLoadDistance:UNLOAD, 238
SituationLoadDistance:UNPACK, 238
SOI-RAW (Reference Frame), 133
SQRT(), 119
Stack [struct], 248
Stack:CLEAR(), 248
Stack:CONTAINS(), 248
Stack:COPY, 248
Stack:DUMP, 249
Stack:EMPTY, 249
Stack:ITERATOR, 248
Stack:LENGTH, 248
Stack:PEEK(), 248
Stack:POP(), 248
Stack:PUSH(), 248
Stage [struct], 203
Stage:NUMBER, 204
Stage:READY, 204
Stage:Resources, 204
Stage:Resourceslex, 204
SteeringManager [struct], 249
SteeringManager:ANGLEERROR, 253
SteeringManager:ENABLED, 251
SteeringManager:MAXSTOPPINGTIME, 252
SteeringManager:PITCHERROR, 253
SteeringManager:PITCHPID, 250
SteeringManager:PITCHTORQUEADJUST, 253
SteeringManager:PITCHTORQUEFACTOR, 253
SteeringManager:PITCHTS, 252
SteeringManager:RESETPIDS(), 251
SteeringManager:ROLLERROR, 253
SteeringManager:ROLLPID, 250
SteeringManager:ROLLTORQUEADJUST, 253
SteeringManager:ROLLTORQUEFACTOR, 254
SteeringManager:ROLLTS, 252
SteeringManager:SHOWANGULARVECTORS, 251
SteeringManager:SHOWFACINGVECTORS, 251
SteeringManager:SHOWRCSVECTORS, 251
SteeringManager:SHOWSTEERINGSTATS, 252
SteeringManager:SHOWTHRUSTVECTORS, 251
SteeringManager:TARGET, 251
SteeringManager:WRITECSVFILES, 252
SteeringManager:YAWERROR, 253
SteeringManager:YAWPID, 250
SteeringManager:YAWTORQUEADJUST, 253
SteeringManager:YAWTORQUEFACTOR, 254

SteeringManager:YAWTS, 252
String [struct], 254
String:CONTAINS(), 255
String:ENDSWITH(), 255
String:FIND(), 256
String:FINDAT(), 256
String:FINDLAST(), 256
String:FINDLASTAT(), 256
String:INDEXOF(), 256
String:INSERT(), 256
String:LASTINDEXOF(), 256
String:LENGTH, 256
String:PADLEFT(), 257
String:PADRIGHT(), 257
String:REMOVE(), 257
String:REPLACE(), 257
String:SPLIT(), 257
String:STARTSWITH(), 257
String:SUBSTRING(), 257
String:TOLOWER, 258
String:TOUPPER, 258
String:TRIM, 258
String:TRIMEND, 258
String:TRIMSTART, 258

T
TAN(), 120
TARGET, 147
Terminal [struct], 259
Terminal:HEIGHT, 260
Terminal:REVERSE, 260
Terminal:VISUALBEEP, 260
Terminal:WIDTH, 259
TIME, 261
TimeSpan [struct], 262
TimeSpan:CALENDAR, 262
TimeSpan:CLOCK, 262
TimeSpan:DAY, 263
TimeSpan:HOUR, 263
TimeSpan:MINUTE, 262
TimeSpan:SECOND, 262
TimeSpan:SECONDS, 263
TimeSpan:YEAR, 263
Trigonometric Functions, 119

U
UNLOCK, 87
UNTIL, 87

V
V(), 121
VANG(), 124
VCRS(), 124
VDOT(), 124

304 Index



kOS Documentation, Release 0.18.2

VECDRAW, 160
VecDraw [struct], 264
VECDRAW(), 263
VecDraw:COLOR, 265
VecDraw:COLOUR, 265
VecDraw:LABEL, 265
VecDraw:SCALE, 265
VecDraw:SHOW, 265
VecDraw:START, 264
VecDraw:VEC, 265
VECDRAWARGS, 160
vector addition, 123
vector multiplication, 123
vector subtraction, 123
Vector [struct], 122
Vector:DIRECTION, 123
Vector:MAG, 122
Vector:NORMALIZED, 122
Vector:SQRMAGNITUDE, 122
Vector:VEC, 123
Vector:X, 122
Vector:Y, 122
Vector:Z, 122
VECTORANGLE(), 124
VECTORCROSSPRODUCT(), 124
VECTORDOTPRODUCT(), 124
VECTOREXCLUDE(), 125
VELOCITYAT(), 149
Vessel [struct], 205
Vessel:AIRSPEED, 208
Vessel:ALLPARTSTAGGED(), 211
Vessel:ANGULARMOMENTUM, 208
Vessel:ANGULARVEL, 209
Vessel:AVAILABLETHRUST, 206
Vessel:AVAILABLETHRUSTAT(), 206
Vessel:BEARING, 206
Vessel:CONTROL, 206
Vessel:CREW(), 212
Vessel:CREWCAPACITY, 211
Vessel:DOCKINGPORTS, 210
Vessel:DRYMASS, 207
Vessel:DYNAMICPRESSURE, 207
Vessel:ELEMENTS, 210
Vessel:FACING, 207
Vessel:GROUNDSPEED, 207
Vessel:HEADING, 206
Vessel:ISDEAD, 209
Vessel:LOADDISTANCE, 209
Vessel:LOADED, 209
Vessel:MASS, 207
Vessel:MAXTHRUST, 206
Vessel:MAXTHRUSTAT(), 206
Vessel:MODULESINGROUP(), 211
Vessel:MODULESNAMED(), 211

Vessel:NAME, 208
Vessel:PARTS, 210
Vessel:PARTSDUBBED(), 211
Vessel:PARTSINGROUP(), 211
Vessel:PARTSNAMED(), 210
Vessel:PARTSTAGGED(), 211
Vessel:PARTSTITLED(), 210
Vessel:PATCHES, 209
Vessel:Q, 207
Vessel:RESOURCES, 210
Vessel:ROOTPART, 210
Vessel:SENSORS, 209
Vessel:SHIPNAME, 208
Vessel:STATUS, 208
Vessel:TERMVELOCITY, 208
Vessel:TYPE, 208
Vessel:VERTICALSPEED, 207
Vessel:WETMASS, 207
VesselSensors [struct], 212
VesselSensors:ACC, 212
VesselSensors:GRAV, 212
VesselSensors:LIGHT, 213
VesselSensors:PRES, 212
VesselSensors:TEMP, 212
Volume [struct], 213
Volume:CAPACITY, 213
Volume:FILES, 213
Volume:FREESPACE, 213
Volume:NAME, 213
Volume:POWERREQUIREMENT, 213
Volume:RENAMEABLE, 213
VXCL(), 125

W
WAIT, 91
WARP, 148
Waypoint [struct], 214
WAYPOINT(), 214
Waypoint:AGL, 215
Waypoint:ALTITUDE, 215
Waypoint:BODY, 214
Waypoint:CLUSTERED, 215
Waypoint:GEOPOSITION, 215
Waypoint:GROUNDED, 215
Waypoint:INDEX, 215
Waypoint:NAME, 214
Waypoint:NEARSURFACE, 215
Waypoint:POSITION, 215
WHEN, 92
WHITE, 216

Y
YELLOW, 216

Index 305


	Downloads and Video Links
	Obtaining kOS itself
	Change Log
	Show and Tell, and Tutorials

	Tutorials
	Quick Start Tutorial
	First example: Hello World
	Step 1: Start a new sandbox-mode game
	Step 2: Make a vessel in the Vehicle Assembly Bay
	Step 3: Put the vessel on the launchpad
	Step 4: Invoke the terminal
	Step 5: See what an interactive command is like
	Step 6: Okay that's great, but how can you make that happen in a program script instead?
	Step 7: Okay, but where is this program?
	Step 8: I don't like the idea that the program is stored only on this vessel. Can't I save it somewhere better? More permanent?

	Second Example: Doing something real
	Step 1: Make a vessel
	Step 2: Make the start of the script
	Step 3: Make the script actually do something
	Step 4: Make the script actually control steering
	Step 5: Add staging logic
	Step 6: Now to make it turn
	Step 7: Putting it all together


	Design Patterns and Considerations with kOS
	The Major Design Patterns of kOS Control Programs
	1. Sequential Programs
	2. Loops with Condition Checking
	3. Loops with Triggers
	Bringing It All Together

	General Guidelines for kOS Scripts
	1. Minimize Time Spent in WHEN/THEN Blocks
	2. Minimize Trigger Conditions


	PID Loops in kOS
	Proportional Feedback Loop (P-loop)
	Proportional-Integral Feedback Loop (PI-loop)
	Proportional-Integral-Derivative Feedback Loop (PID-loop)
	Final Touches
	Tuning a PID-loop
	Final Thoughts

	Advanced Tutorial
	Introductory
	Intermediate

	Community Examples Library
	General Topics
	Catalog of Bound Variable Names
	NAMED VESSELS AND BODIES
	Alias shortcuts for SHIP fields
	Constants (pi, e, etc)
	Terminal
	Core
	Stage
	NextNode
	Resource Types
	ALT ALIAS
	ETA ALIAS
	ENCOUNTER
	BOOLEAN TOGGLE FIELDS:
	Flight Control
	Controls that must be used with LOCK

	Time
	System Variables
	Config
	WARP and WARPMODE
	MAPVIEW
	LOADDISTANCE

	SOLARPRIMEVECTOR
	What is the Solar Prime Reference Vector?

	Addons
	Colors

	CPU Vessel (SHIP)
	The kOS CPU hardware
	Update Ticks and Physics Ticks
	Triggers
	Do Not Loop a Long Time in a Trigger Body!
	But I Want a Loop!!
	Wait!!!

	The Frozen Universe

	kOS Control Panel
	The kOS Telnet Server
	Telnet clients
	Using it
	Special Keys
	HOWTO: Putty client
	HOWTO: Command-line client
	HOWTO: Other client
	Security
	Homemade telnet clients

	Files and Volumes
	Script Files
	File Storage Behind the Scenes
	You can get more space by paying extra cost in money and mass
	Multiple Volumes on One Vessel
	Naming Volumes
	Archive

	KerboScript Machine Code
	Compiling to a KSM File
	Why Do I Care?

	How to Use KSM Files
	Default File Naming Conventions
	Downsides to Using KSM Files
	More Reading and Fiddling with Your Bits

	The Name Tag System
	Giving a Part a Name
	Cloning with Symmetry
	Where is it saved?
	Examples of Using the Name

	Ship Parts and PartModules
	Tutorial
	Parts
	Accessing the parts by various naming systems
	Accessing the parts list as a tree
	Accessing the parts list as a list
	Shortcuts to smaller lists of parts

	PartModules and the right-click menu:
	PartModules, Stock vs Mods:
	PartModules and ModuleManager-like behavior:

	What a PartModule means to a kOS script
	KSPFields
	KSPEvents
	KSPActions:

	Exploring what's there to find Field/Event/Action Names:
	What PartModules are there on a part?
	What are the names of the stuff that a PartModule can do?
	BE WARNED! Names are able to dynamically change!


	Career Limits
	The rules being enforced
	Structure


	The KerboScript Language
	General Features of the KerboScript Language
	Case Insensitivity
	Expressions
	1. Numbers
	2. Strings
	3. Structures
	4. Structure Methods

	Short-circuiting booleans
	Late Typing
	Lazy Globals (variable declarations optional)
	User Functions
	Structures

	KerboScript Syntax Specification
	General Rules
	Braces (statement blocks)
	Functions (built-in)
	Suffixes as Functions (Methods)
	User Functions
	Built-In Special Variable Names
	What does not exist (yet?)

	Flow Control
	BREAK
	IF / ELSE
	LOCK
	UNLOCK
	UNTIL loop
	FOR loop
	FROM loop
	Syntax:
	What the parts mean
	Why some braces are mandatory
	Why DO is mandatory
	Other formatting examples
	The literal meaning of FROM
	An example of why the FROM loop is useful

	WAIT
	WHEN / THEN
	ON
	PRESERVE
	DECLARE FUNCTION
	Boolean Operators

	Variables & Statements
	DECLARE .. TO/IS
	What it does:
	Allowed Syntax:
	All the following are legal ``declare'' statements:
	Detailed Description of the syntax:

	See Scoping:
	Initializer required in DECLARE

	DECLARE PARAMETER
	SET
	DEFINED
	Difference between SET and DECLARE LOCAL and DECLARE GLOBAL
	When to use GLOBAL

	LOCK
	Calling a LOCK that was created in another file
	Local lock
	Why do I care about a local lock?


	TOGGLE
	ON
	OFF
	Scoping terms
	Scoping syntax
	Presumed defaults
	Explicit scoping keywords
	Explicit Scoping required for @lazyglobal off
	Locals stated at the global level are global
	Nesting

	Scoping and Triggers:
	@LAZYGLOBAL directive
	@LAZYGLOBAL Can only exist at the top of your code.
	@LAZYGLOBAL Makes LOCAL and GLOBAL mandatory
	Longer Example of use



	KerboScript User Functions
	Help for the new user - What is a Function?
	DECLARE FUNCTION
	Using RUN ONCE
	DECLARE PARAMETER
	Calling a function
	Functions and the terminal interpreter
	Calling a function without parentheses (please don't)
	Omitting parentheses only works in the same file


	LOCAL .. TO
	Initializers are now mandatory for the DECLARE statement
	Difference between declare and set

	RETURN
	Passing by value
	Important exception to passing by value - structures

	Nesting functions inside functions
	Recursion
	User Function Gotchas
	Calling program's functions from the interpreter
	Inconsistent returns
	Accidentally using globals



	Mathematics and Basic Geometry
	Fundamental Constants
	Mathematical Functions
	Trigonometric Functions

	Vectors
	Creation
	Structure
	Operations and Methods

	Directions
	Creation
	Structure
	Operations and Methods
	Vectors and Directions

	Geographic Coordinates
	Creation
	Structure
	Examples Usage

	Reference Frames
	Raw Orientation
	Origin Position
	Converting


	Command Reference
	Flight Control
	Cooked Control
	Unlocking controls
	Tuning cooked steering
	Some simple suggestions to try fixing common problems
	Quick and Dirty description of a PID controller
	Cooked Steering's use of PID controllers

	Advantages/Disadvantages

	Raw Control
	Raw Flight Controls Reference
	Unlocking controls
	Advantages/Disadvantages

	Pilot Input
	Ship Systems
	Time Warping

	Predictions of Flight Path
	LIST Command
	FOR Loop
	Available Listable Keywords
	Universal Lists
	Vessel Lists
	File System Lists


	Querying a vessel's parts
	File I/O
	Volume and Filename arguments
	COMPILE program (TO compiledProgram).
	COPY programFile FROM/TO Volume|volumeId|volumeName.
	Arguments

	DELETE filename FROM Volume|volumeId|volumeName.
	Arguments

	EDIT program.
	Arguments

	LOG text TO filename.
	Arguments

	RENAME VOLUME Volume|volumeId|oldVolumeName TO name.
	RENAME FILE oldName TO newName.
	Arguments

	RUN [ONCE] <program>.
	Arguments
	Important exceptions to the usual filename rules for RUN

	SWITCH TO Volume|volumeId|volumeName.
	Special handling of files starting with ``boot'' (example boot.ks)


	Terminal and game environment
	GUI display tools

	Transferring resources
	Resource
	Source and Destination
	Examples

	Processors
	Accessing processors


	Structure Reference
	Orbits
	Orbit
	Structure
	Deprecated Suffix
	Transition Names

	Orbitable (Vessels and Bodies)
	OrbitableVelocity

	Celestial Bodies
	Atmosphere
	Atmospheric Math

	Body
	Predefined Celestial Bodies


	Vessels and Parts
	AggregateResource
	ALT
	CrewMember
	DockingPort
	Element
	Engine
	ETA
	Gimbal
	kOSProcessor
	Maneuver Node
	Creation
	Structure

	Part
	PartModule
	Notes
	KSPFields
	KSPEvents
	KSPActions


	Resource
	ScienceExperimentModule
	Sensor
	Stage
	Structure

	Vessel
	VesselSensors
	Volume

	Waypoints
	Configurations and Miscellany
	Colors
	Configuration of kOS
	File Information
	Part Highlighting
	Iterator
	KUniverse 4th wall methods
	Examples
	Lexicon
	Lexicons are case-insensitive
	Constructing a lexicon
	Structure
	Access to Individual Elements
	Implicit ADD when using index brackets with new key values
	Examples

	List
	Constructing a list
	Structure
	Access to Individual Elements
	Multidimensional Arrays
	Comparing two lists

	Vessel Load Distance
	Situation Load Distance
	PIDLoop
	PIDLoop Update Derivation

	Queue
	Using a queue
	Structure

	Resource Transfer
	Structure

	Stack
	Using a stack
	Structure

	SteeringManager
	String
	Creating strings
	CASE SENSITIVIY

	Structure
	Access to Individual Characters

	Terminal
	Structure

	Time Span
	TimeSpan represents SIMULATED time
	Special variable TIME
	Using TIME to detect when the physics have been updated `one tick'


	Drawing Vectors on the Screen

	Core

	Addon Reference
	Action Groups Extended
	RemoteTech
	Interaction with kOS

	Kerbal Alarm Clock
	Available Functions

	Infernal Robotics
	ADDONS:AGX:AVAILABLE
	ADDONS:RT:AVAILABLE
	ADDONS:KAC:AVAILABLE
	ADDONS:IR:AVAILABLE

	Contribute
	How to Contribute to this Project
	How to Edit this Documentation

	Changes from version to version
	Changes in 0.18.2
	Queue and Stack
	Run Once
	Volumes and Processors integration
	Debuglog

	Changes in 0.18.1
	Changes in 0.18 - Steering Much Betterer
	Steering Overhaul
	Lexicon
	String methods
	Science Experiment Control
	Crew Member API
	LOADISTANCE
	Infernal Robotics Part suffix
	Renamed built-ins
	Enforces control of own-vessel only
	New quickstart tutorial
	A few more constants
	Dynamic pressure
	DEFINED keyword
	KUNIVERSE
	SolarPrimeVector

	Changes in 0.17.3
	New Looping control flow, the FROM loop
	Short-Circuit Booleans
	New Infernal Robotics interface
	New RemoteTech interface
	Deprecated INCOMMRANGE
	Updated thrust calculations for 1.0.x
	New CORE struct
	Updated boot file name handling
	Docking port, element, and vessel references
	New sounds and terminal features
	Clear vecdraws all at once

	Changes in 0.17.0
	Variables can now be local
	Kerboscript has User Functions
	Community Examples Library
	Physics Ticks not Update Ticks
	Ability to use SAS modes from KSP 0.90
	Blizzy ToolBar Support
	Ability to define colors using HSV
	Ability to highlight a part in color
	Better user interface for selecting boot scripts
	Disks can be made bigger with tweakable slider
	You Can Transfer Resources
	Kerbal Alarm Clock support
	Query the docked elements of a vessel
	Support for Action Groups Extended
	LIST constructor can now initialize lists
	ISDEAD suffix for Vessel


	About kOS and KerboScript
	Introduction to kOS and KerboScript
	Installation
	KerboScript

	Indices and tables

