

Plasma Group Generalized Plasma Specification

Plasma Group [https://plasma.group] is working on a generalized plasma [https://medium.com/plasma-group/plapps-and-predicates-understanding-the-generalized-plasma-architecture-fc171b25741] construction that supports significantly more functionality than alternative plasma chains.
Generalized plasma chains are complex objects of study.
This website documents the entirety of the Plasma Group design, from the inner workings of the client to the specifics of the plasma smart contract.

#00: Introduction

	Introduction

	Glossary

	Contributors

#01: Core Design Components

	Generalized State System

	State Object Ranges

	Merkle Interval Tree

	Double Layer Merkle Tree

	JSON RPC

#02: Contract Specification

	Contracts Overview

	Deposit Contract

	Commitment Contract

	Predicate Contracts

	Transaction-based Predicate Standard

	Limbo Exit Predicate Standard

#03: Client Specification

	Introduction

	Deposit Generation

	Event Handling

	Transaction Generation

	History Proofs

	History Generation

	History Verification

	Exit Guarding

	State Queries

	Synchronization

	Query Expressions

	RPC Methods

	RPC Error Messages

#04: Operator Specification

	Introduction

	Transaction Ingestion

	Block Generation

	Operator RPC Methods

#05: Client Architecture

	Introduction

	MerkleIntervalTree

	RangeDB

	ContractWrapper

	EventWatcher

	WalletDB

	Wallet

	PredicatePlugin

	PluginManager

	History Proof Structure

	HistoryDB

	HistoryManager

	StateDB

	StateManager

	SyncDB

	SyncManager

	RpcClient

	RpcServer

#06: Operator Architecture

	Introduction

	BlockDB

	BlockManager

	OperatorStateManager

#07: Predicate Specifications

	SimpleOwnership Predicate

Introduction

Hello and welcome to Plasma Group [https://plasma.group]’s Generalized Plasma Specification! We’ve been working toward this spec for a long time now and we’re excited to be able to share it with the public. We’re going to kick the spec off with a high-level overview of our construction and then go into the structure of the spec itself.

TL;DR

Plasma [https://plasma.io] is basically a way to build blockchains on top of blockchains. Plasma chains are sort of like sidechains [https://en.bitcoin.it/wiki/Sidechain], except they’re a little less flexible and a lot more secure. We won’t go into the details here.

Up until now, people have only been able to build very limited plasma chains that accomplish a few specific goals (like make payments or exchange assets). None of these chains support the sort of “smart contracts” that make Ethereum so useful. In order to build a “plasma application”, you’d have to build an entire blockchain from scratch. That’s obviously way too much work.

So we set out to design a general purpose chain. It took a lot of work, but we finally arrived at a design we’re happy with (and that’s what we’ve specified here!). Now, with this new design, developers can build apps and run them on top of a general purpose plasma chain instead of having to build an entire plasma chain from scratch. It’s sort of like the jump of going from Bitcoin to Ethereum.

Required Background Knowledge

You’re going to see a lot of terms and ideas from previous plasma research when you’re reading through this specification. Although we’ve provided references to these terms or ideas wherever possible, we generally try to avoid rehashing what’s already been explained well before. As a result, you should be familiar with the general theory behind plasma and with various specific plasma constructions (like Plasma MVP [https://ethresear.ch/t/minimal-viable-plasma/426] and Plasma Cash [https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298]) before diving into this spec.

You don’t need an extremely deep knowledge of plasma, but you should be comfortable with the idea of deposits, exits, and exit games. If you’re not familiar with these concepts yet, we recommend reading through the original Plasma MVP [https://ethresear.ch/t/minimal-viable-plasma/426] and Plasma Cash [https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298] posts, as well as the content on LearnPlasma [https://learnplasma.org].

Sometimes we have a little trouble remembering that readers don’t have quite as much context as we do. If you feel familiar with these concepts but are still confused by some aspect of the spec, please let us know! We’ve set up a system [https://www.notion.so/Plasma-Group-Generalized-Plasma-Specification-Information-for-Reviewers-d7f42ae99acb4bf2af571bf348e861a0] that makes it easy for anyone to leave review comments in just a few seconds.

Specification Goals

This specification should be detailed, concise, and contained. Readers should have a very clear idea of the system as a whole without relying on guesswork about how a specific mechanism functions. Similarly, developers should be able to create a compliant implementation simply by reading through the specification.

If at any time you feel we haven’t quite achieved that goal, please let us know! We’re always open to constructive criticism. If you find something confusing, it’s likely that others do too.

Specification Structure

We’ve laid out this specification in a very deliberate way that attempts to mirror the layout of the Lightning BOLT specifications [https://github.com/lightningnetwork/lightning-rfc].

Our specification is composed of eight primary sections:

	#00: Introduction

	#01: Core Design Components

	#02: Contract Specifications

	#03: Client Specification

	#04: Operator Specification

	#05: Client Architecture

	#06: Operator Architecture

	#07: Predicate Specifications

The first five sections (00 - 04) form the specification of the generalized plasma system itself. These sections explain, in detail, how the system works and what components someone would have to include in a compliant implementation.

The last three sections (05 - 07) describe the architecture for Plasma Group’s implementation of the specification. A developer would NOT have to use the same architecture in their own implementation, but it may be useful in order to better understand how certain components are supposed to function. Someone who’s primarily interested in understanding the system at a high-level could skip these sections.

Housekeeping

Source

This specification is a living document. You can find the source for this document on the Plasma Group monorepo [https://github.com/plasma-group/pigi].

We need your help! At the end of the day, this specification is meant to help others build better plasma chains. If you find anything confusing, please create an issue on GitHub [https://github.com/plasma-group/pigi/issues] and let us know how we can help. You’re also more than welcome to create a pull request [https://github.com/plasma-group/pigi/pulls] if you feel like you can fix an issue yourself. We’re usually pretty responsive to issues and PRs.

Versioning

Most pages within this specification will continue to evolve as we develop our implementation [https://github.com/plasma-group/pigi/tree/master/packages/core]. We’ve decided to use semantic versioning [https://semver.org/] so that it’s easy to see and understand the difference between versions of this document.

Our semantic versioning strategy is pretty simple, each version follows the format major.minor.patch. Changes to this specification that would make an implementation incompatible with implementations of previous versions are split into different major versions [https://semver.org/#spec-item8]. Changes that simply add functionality but don’t break backwards compatibility bump the minor version [https://semver.org/#spec-item-7]. Finally, fixes that don’t add or remove functionality (layout edits, grammatical fixes, typo fixes) bump the patch version [https://semver.org/#spec-item-6].

Glossary

Miscellaneous

Merkle Interval Tree

Explicit and Implicit Bounds

Commitment

JSON RPC

Plasma

Plasma

Plasma MVP

Plasma Cash

Client

Operator

Deposit

Exit

Checkpoint

Challenges

Deprecated State Challenge

Invalid History Challenge

State System

State Object

Predicate

Predicate Plugin

Transaction

State Update

Range

History Proof

Deposit Proof Elements

Exclusion Proof Elements

State Update Proof Elements

Asset Tree

State Tree

Contributors

	Jinglan Wang [https://twitter.com/jinglanw]

	Karl Floersch [https://twitter.com/karldottech]

	Ben Jones [https://twitter.com/ben_chain]

	Kelvin Fichter [https://twitter.com/kelvinfichter]

	Mikerah Quintyne-Collins [https://twitter.com/badcryptobitch]

Generalized State System

The concept of state and state transitions is relatively universal. However, Layer 2 systems are unusual because they often require that state transitions be efficiently representable on the Layer 1 platform. As a result, existing models of state transitions on plasma are usually quite restrictive.

In order to develop a plasma system that could allow for more general state transitions, we found it important to develop a new system for representing state and state transitions. Our system was particularly designed to make state transitions easily executable on Ethereum.

This page describes our state model and the various terms we use in the rest of this specification. It’s important to understand this model in detail before continuing.

State Objects

State Object Model

The core building block of our model is the “state object”. Each state object represents a particular piece of state within the system and is composed of:

	A globally unique identifier.

	The address of a predicate contract.

	Some arbitrary data.

The TypeScript interface for the state object is:

interface StateObject {
 id: string
 predicate: string
 data: string
}

State objects are unique objects (hence the id) that may be created, destroyed, or mutated. The conditions under which a state object may undergo one of these changes, as well as the effects of such a change, are defined in a predicate. Each state object specifies a prediciate identifier (predicate) that points to the specific predicate that controls (“locks”) the state object.

Requirements

	
	State objects:

	
	MUST have a globally unique identifier.

	MUST specify the 20-byte address of a predicate contract.

	
	MUST specify some additional arbitrary stored data.

	
	MAY specify the empty string in place of arbitrary stored data.

	SHOULD specify the zero address to represent a “burned” state.

Rationale

We wanted our generalized plasma construction to be agnostic to the underlying design (Plasma MVP, Plasma Cash, etc.). As a result, it became important to find a very general-purpose way of representing state.

The idea of a “state object”, an object that can be created, destroyed, or modified, seemed simple and intuitive. Perhaps more importantly, the “state object” model encapsulates both UTXOs and accounts. Ephemeral UTXO-like systems can be represented by objects which can only be created or destroyed, but not modified. Account-like systems can be represented by objects which can be modified.

The state object therefore allows us to simultaneously represent systems like Plasma MVP and Plasma Cash with a single unified notation. We believe this unification will lead to increased collaboration and decreased duplication of work.

Encoding and Decoding

State objects MUST be ABI encoded and decoded [https://solidity.readthedocs.io/en/latest/abi-spec.html] according to the following structure:

[
 id: bytes,
 predicate: address,
 data: bytes
]

Rationale

Plasma Group has decided to write its contracts in Solidity [https://solidity.readthedocs.io/en/v0.5.8/] instead of in Vyper [https://github.com/ethereum/vyper]. We therefore needed an encoding scheme that would be easy to decode within a Solidity contract. Other teams have invested significant resources into developing smart contract libraries for encoding schemes. However, Solidity provides native support for ABI encoding and decoding [https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#abi-encoding-and-decoding-functions]. In order to minimize effort spent on encoding libraries, we’ve decided to simply use the native ABI encoding mechanisms.

Test Vectors

Todo

Add test vectors for encoding and decoding.

Predicates

Predicates are functions that define the ways in which state objects can be mutated. We require that the id of a specific state object never change (since it would then be a different state object). However, the predicate and data can be changed arbitrarily according to the rules defined in the predicate.

Predicate Methods

Predicates can provide one or more methods which take a state object in one state and transform it into another state. For example, a simple “ownership” predicate may define a function that allows the current owner of the object (defined in object.data) to specify a new owner.

For simplicity, we require that predicate methods may only allow input and output types that correspond to the primitive types in Solidity [https://solidity.readthedocs.io/en/latest/types.html].

Rationale

Effectively all blockchain systems provide a model for different “methods” that determine how a given object can be transformed. Bitcoin’s UTXO model allows for multiple “spending conditions” under which a UTXO can be consumed. Ethereum’s account model allows a contract to specify multiple explicit state-transforming functions. The “method” model generalizes this concept.

We require that methods only use the primitive types available in Solidity so that predicates can easily be executed by treating them as Solidity contracts. Defining new types not understood by Solidity would require the development of a completely new EVM language.

Requirements

	
	Predicate methods:

	
	MUST be executable within a single transaction to an Ethereum smart contract.

	MUST only use the primitive types in Solidity [https://solidity.readthedocs.io/en/latest/types.html].

Method Identifiers

Methods within each predicate are given a unique identifier computed as the keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the UTF-8 encoded version of the method’s signature.

For any given method:

function methodName(Param1Type param1, Param2Type param2) public returns (ReturnType)

We get a corresponding signature:

methodName(Param1Type, Param2Type, ...)

Example

We’ll use the SimpleOwnership predicate as an example. State objects locked with the SimpleOwnership have an “owner” field stored in object.data. SimpleOwnership defines a method that allows the current “owner” of a state object to specify a new owner:

function send(address _newOwner) public

The signature of this method is:

send(address)

In TypeScript we can compute the method ID as:

import { keccak256 } from 'js-sha3'

const methodId = keccak256('send(address)')

Rationale

We decided on this scheme for computing method signatures for several reasons.

Other languages, like Solidity and Vyper, define the method ID as the first 4 bytes of the keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash. One benefit of the 4-byte scheme is that it reduces the total amount of data on-chain. Unfortunately, this requires checking for any hash collisions between function names. For simplicity, therefore, we decided to use the full 32-byte hash. The additional required 28 bytes do not seem like a significant enough waste of gas to justify more complex collision-detection logic for predicates.

We also chose this system because keccak256 hashes are cheaply computable on Ethereum.

Requirements

	
	Method ID:

	
	MUST be computed as the keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the method signature.

Test Vectors

Todo

Add test vectors for method identifiers.

Predicate API

Predicates MUST provide a Predicate API that allows a client to interact with the predicate. A Predicate API is composed of an array of API elements. Each API element describes a single function, including the function’s inputs and outputs. The structure of the API element has been based off of the Ethereum contract ABI [https://solidity.readthedocs.io/en/latest/abi-spec.html] specification.

TypeScript interfaces for valid Predicate API objects are provided below. Compare to the Ethereum ABI JSON format [https://solidity.readthedocs.io/en/latest/abi-spec.html] to understand similarities and differences.

interface PredicateApiInput {
 name: string
 type: string
}

interface PredicateApiOutput {
 type: string
}

interface PredicateApiItem {
 name: string
 inputs: PredicateApiInput[]
 outputs: PredicateApiOutput[]
 constant: boolean
}

Example

We’re going to describe a valid Predicate API by looking at the SimpleOwnership predicate. SimpleOwnership allows one valid state transition whereby the current owner of a state object may sign off on a new owner:

function send(address _newOwner) public

Note that this is not a constant method because it will update the state of the predicate.

SimpleOwnership also provides a method which returns the current owner:

funtion getOwner() public view returns (address)

This function is a constant method because it only reads information and does not change the state of the object.

Putting these together, the API for this predicate is therefore:

[
 {
 name: "send",
 constant: false,
 inputs: [
 {
 name: "newOwner",
 type: "address"
 }
],
 outputs: []
 },
 {
 name: "getOwner",
 constant: true,
 inputs: [],
 outputs: [
 {
 type: "address"
 }
]
 }
]

Rationale

Todo

Add rationale for Predicate API.

Requirements

Todo

Add requirements for Predicate API.

Transactions

Transaction Model

Mutations to state objects are carried out by transactions. Transactions specify:

	The ID of a state object to mutate.

	The ID of a method to call in the state object’s predicate.

	Parameters to be passed to the object’s predicate.

A TypeScript interface for a transaction:

interface Transaction {
 objectId: string
 methodId: string
 parameters: string
}

A Solidity struct:

struct Transaction {
 bytes objectId;
 bytes32 methodId;
 bytes parameters;
}

methodId corresponds to the identifier computed from the Predicate API of the referenced object’s predicate contract.

Rationale

Todo

Add rationale for transaction model.

Requirements

Todo

Add requirements for transaction model.

Encoding and Decoding

Similarly, transactions MUST be ABI encoded and decoded [https://solidity.readthedocs.io/en/latest/abi-spec.html] in the form:

[objectId: bytes, methodId: bytes, parameters: bytes]``

Rationale

Todo

Add rationale for transaction encoding and decoding.

Requirements

Todo

Add requirements for transaction encoding and decoding.

Test Vectors

Todo

Add test vectors for transaction encoding and decoding.

Transaction Hash

Test Vectors

Todo

Add test vectors for the transaction hash.

State Updates

Todo

Explain state updates at a high level.

State Update Model

Todo

Specify the model for a state update.

Encoding and Decoding

Todo

Specify how to encode and decode state updates.

Rationale

Todo

Add rationale for state update model.

Requirements

Todo

Add requirements for state update model.

State Update Hash

Todo

Explain how to compute state update hash.

Test Vectors

Todo

Add test vectors for computing state update hash.

State Object Ranges

Background

Our generalized state system introduces the idea of state objects, which can be used to control the ownership of assets deposited into the plasma chain. Plasma Cash [https://www.learnplasma.org/en/learn/cash.html] describes a version of the generalized state system in which each state object represents an indivisible asset of fixed value. This system significantly reduces the total amount of data each user of the plasma client must store.

Arbitrary value payments become difficult to make within Plasma Cash. This is primarily because state objects in Plasma cash may not be split apart or combined. A user may only make payments of a given amount if they are in possession of a set of state objects such that the value of these state objects is exactly the payment amount. Compare this, for example, to the simplicity of making payments in Bitcoin-like systems where a UTXO can be arbitrarily broken apart into outputs with different values.

The following diagram shows the basic idea behind transactions in Plasma Cash:

Plasma Cash Transaction DiagramEach of the eight shown transactions can only operate on one of the eight state objects. As a result, they have to be treated as separate objects that a user might have to keep track of.

One method of simplifying payments within such a system is to require that each state object to have an identical small value. Payments of any amount can then be made by sending many state objects simultaneously. In order to support simultaneous transfer of state object, we introduce mechanisms that allow users to reference ranges of state objects within transactions. This was the primary advancement of Plasma Cashflow [https://hackmd.io/DgzmJIRjSzCYvl4lUjZXNQ?view#].

Here’s a diagram of what this looks like in practice:

Plasma Cashflow Transaction DiagramAs you can see, we can manipulate all eight of the state objects with a single transaction. This means we can imagine the state objects as a single larger object, which reduces total storage requirements.

Transactions

The transaction format described in our generalized state system specifies that a transaction MUST provide a reference to the state object, or set of state objects, from which it spends. Conveniently, this allows us to create transactions over ranges of state objects.

The specification for a transaction over a range is very simple. Remember that each objectId in our system is a unique 32 byte identifier. We therefore require that the objectIds field be a 64 byte value. The first 32 bytes of this value represents the start of the transacted range and the last 32 bytes represents the end of the transacted range. Transactions over ranges are, in effect, transactions on each individual state object where object.id falls within the specified range.

Rationale

As described in the background section above, we need to be able to efficiently transact many state objects simultaneously. By allowing transactions to refer to a set of state objects with a range, it’s no longer necessary to submit a transaction for each individual state object.

Requirements

	
	The objectIds field of every transaction:

	
	MUST be a 64 byte value.

	MUST begin with a 32 byte value that represents that start of the transacted range.

	MUST end with a 32 byte value that represents the end of the transacted range.

Merkle Interval Tree

Background

The Plasma Cashflow [https://hackmd.io/DgzmJIRjSzCYvl4lUjZXNQ?view#] construction requires transactions that can efficiently reference ranges of state objects simultaneously. In order to preserve the properties of Plasma Cash [https://www.learnplasma.org/en/learn/cash.html], we require a Merkle tree structure that will not allow for the existence of two transactions that reference the same state object.

We provide a construction for such a tree, called a Merkle Interval Tree. This tree effectively commits to values that refer to corresponding ranges given by a start and an end. The tree provides the property that for any range, there can exist at most one leaf node that references the range and has a valid Merkle proof.

Tree Structure

The Merkle Interval Tree is a binary tree [https://en.wikipedia.org/wiki/Binary_tree] with special structures for leaf nodes and internal nodes.

Leaf Node

The leaf nodes in a Merkle Interval Tree represent a range and a value for that range. We describe leaf nodes as a tuple of (start, end, data).

In TypeScript:

interface MerkleIndexTreeLeafNode {
 start: number
 end: number
 data: string
}

Internal Node

Internal nodes are a tuple of (index, hash).

In TypeScript:

interface MerkleIndexTreeInternalNode {
 index: number
 hash: string
}

Tree Generation

A Merkle Index tree is generated from a list of leaf nodes [https://en.wikipedia.org/wiki/Tree_(data_structure)#leaf]. Merkle Interval Tree generation also requires the use of a hash function [https://en.wikipedia.org/wiki/Hash_function]. Any hash function is suitable, but the security properties of the hash function will impact the properties of the tree.

An algorithm for generating the tree is described below. All lists used are zero-indexed.

The algorithm takes two inputs, a list of leaf nodes and a hash function.

	If the list of leaf nodes is empty, return an empty array.

	Assert that the range described by start and end of each leaf node does not intersect with the range described by any other leaf node. If any intersecting ranges exist, throw an error.

	Sort the list of leaf nodes by their start value.

	Store the list of leaf nodes as the first layer of the tree.

	Generate a corresponding sorted list of internal nodes [https://en.wikipedia.org/wiki/Tree_(data_structure)#external_node_(not_common)] from the leaf nodes by creating an internal for each leaf node such that:

	The index of the node is equal to the start of the leaf node.

	The hash of the node is equal to the hash of the concatenation of start, end, and data of the leaf node, in that order.

	Recursively generate the rest of the tree as follows:

	Store the list of internal nodes at the current height of the tree.

	If the list of internal nodes has only one element, return.

	Pair each node in the list of internal nodes such that any node where node_index % 2 = 0 is paired with the node at node_index + 1. If the node at node_index + 1 does not exist, pair the node with a new node such that pair.index = node.index and pair.hash = 0.

	Generate a list of parent nodes. For each pair of nodes, create a corresponding parent node such that:

	parent.index = left_child.index and parent.hash is the hash of the concatenation of left_child.index, left_child.hash, right_child.index, right_child.hash, in that order.

	Repeat this process for the generated list of parent nodes.

	Return the generated tree.

Pseudocode

A pseudocode version of the above algorithm is given below:

def generate_tree(leaf_nodes, hash_function):
 tree = []

 # Empty tree
 if len(leaf_nodes) == 0:
 return tree

 # Leaves intersect
 for leaf in leaf_nodes:
 for other in leaf_nodes:
 if (intersects(leaf, other)):
 raise Exception()

 # Sort the leaves by start value
 leaf_nodes.sort()

 children = []
 for leaf in leaf_nodes:
 children.append({
 'index': leaf.start,
 'hash': hash_function(leaf.start + leaf.end + leaf.data)
 })

def generate_internal_nodes(children, tree):
 if len(children) == 1:
 return tree

 parents = []
 for x in range(0, len(children)):
 if x % 2 == 0:
 left_child = chilren[x]

 # Create an imaginary node if out of bounds
 if x + 1 == len(children):
 right_child = {
 'index': left_child.index,
 'hash': 0
 }
 else:
 right_child = children[x + 1]

 parents.append({
 'index': left_child.index,
 'hash': hash_function(left_child.index + left_child.hash + right_child.index + right_child.hash)
 })

 tree.append(parents)
 return generate_internal_nodes(parents, tree)

Merkle Proofs

Our tree generation process allows us to create an efficient proof that for a given leaf node and a given Merkle Interval Tree root node such that:

	The leaf node was contained in the tree that generated the root.

	The range described by the leaf node intersects with no other ranges described by any other leaf node in the tree.

Proof Generation

Proofs can be generated after the full Merkle tree has been generated as per the algorithm described above. Proofs consist of a list of internal nodes [https://en.wikipedia.org/wiki/Tree_(data_structure)#external_node_(not_common)] within the Merkle tree.

The proof for a given leaf node is computed as follows:

	If the leaf node is not in the tree, throw an error.

	Find the internal node that corresponds to the leaf node in the bottom-most level of the tree.

	Recursively:

	If the internal node is the root node, return.

	Find the sibling of the node. If no sibling exists, set the sibling to the empty node such that sibling.index = node.index and sibling.hash = 0.

	Insert the sibling into the proof.

	Repeat this process with the parent of the node.

	Return the proof.

Pseudocode

def generate_proof(tree, leaf_node):
 leaves = tree[0]
 if leaf_node not in leaves:
 raise Exception()

 leaf_index = leaves.index(leaf_node)
 return find_siblings(tree, 1, leaf_index, [])

def find_siblings(tree, height, child_index, proof):
 if height == len(tree):
 return proof

 proof.append(get_sibling(child_index))
 parent_index = get_parent_index(child_index)
 return find_siblings(tree, height + 1, parent_index, proof)

Proof Verification

Verification of Merkle Interval Tree proofs is relatively straightforward. Given a leaf node, the index of that leaf node within the Merkle tree, a proof consisting of a list internal nodes [https://en.wikipedia.org/wiki/Tree_(data_structure)#external_node_(not_common)], and the root of the tree:

	Compute the internal node that corresponds to the leaf node such that node.index = leaf.start and node.hash is the hash of the concatenation of leaf.start, leaf.end, and leaf.data, in that order.

	For each element of the proof:

	Use the index of the leaf node to determine whether the element is a left or right sibling of the current internal node.

	Compute the parent of the two siblings.

	Set the current internal node to be the parent.

	Check if the current internal node is equal to the root node.

Pseudocode

def check_proof(leaf_node, leaf_index, proof, root_node, hash_function):
 current_node = {
 'index': leaf_node.start,
 'hash': hash_function(leaf_node.start + leaf_node.end + leaf_node.data)
 }

 for x in range(0, len(proof)):
 sibling = proof[x]
 if is_left_sibling(leaf_index, x):
 current_node = compute_parent(sibling, current_node)
 else:
 current_node = compute_parent(current_node, sibling)

 return current_node == root_node

Tree Diagram

A diagram of the Merkle Interval Tree is provided below. We’ve highlighted the nodes that one would need to provide to prove inclusion of a given state update.

[image: Merkle Interval Tree]

 Double Layer Merkle Tree

Double Layer Merkle Tree

Background

The amount of data a user needs to store in a Plasma Cash [https://www.learnplasma.org/en/learn/cash.html] chain is linearly proportional to the number of state objects that user “owns” within the chain. Plasma Cashflow [https://hackmd.io/DgzmJIRjSzCYvl4lUjZXNQ?view#], however, relies on the concept of ranges of state objects in order to add a sense of fungibility to Plasma Cash. Users of a Plasma Cashflow chain instead store an amount of data linearly proportional to the number of ranges they own, not the number of individual state objects within those ranges.

The fewer ranges a user needs to track, the less data they need to store. It’s for this reason that we need some sort of mechanism for defragmenting ranges. A detailed explanation of the defragmentation process is described outside of this page.

The basic idea behind defragmentation is that contiguous ranges can be “merged” into a single larger range. Users can execute atomic swaps with others users in order to trade disconnected ranges for contiguous ones. This process is relatively straightforward when the assets underlying the ranges are identical – trading 1 ETH for 1 ETH carries no risk. However, the process is significantly more complex if the underlying assets are different.

We can ensure that the underlying asset will always be the same by reserving some space for the asset. One way to accomplish this is to modify the ID of a state object with a unique prefix for each asset. For example, the range of state object IDs for ETH might be prefixed with a zero ((0)(0 - 2^256)) while the range of IDs for WETH [https://weth.io/] might be prefixed with a one ((1)(0 - 2^256)). This scheme makes sure that the ranges next to yours will always have the same underlying asset.

Another way to achieve the same result is simply to have a different Plasma Cashflow chain for each asset. We do so by creating a unique deposit contract for each asset. The prefix for a range becomes the address of the deposit contract that corresponds to the asset.

However, this means that we’re simultaneously running a lot of plasma chains. We don’t want to have to submit a block root for each individual chain. We get around this by creating a double-layered Merkle Interval Tree. This page explains how the double-layered tree is computed.

State Tree

Todo

Explain the purpose and structure of the state tree.

Address Tree

Todo

Explain the purpose and structure of the address tree.

Tree Diagram

We’ve provided a diagram of the double-layer Merkle Interval Tree below. The diagram explains the relationship between the state updates that form the tree and the tree itself.

[image: Double-Layer Merkle Interval Tree]

 JSON RPC

JSON RPC

Description

We require that the clients via JSON RPC [https://www.jsonrpc.org/specification]. A list of available RPC methods are specified separately.

We chose JSON RPC because the protocol is relatively simple and because it interacts well with TypeScript [https://www.typescriptlang.org/]. Ethereum also uses JSON RPC [https://github.com/ethereum/wiki/wiki/JSON-RPC] for its client communication. The structure of our RPC methods are based heavily on the structure of Ethereum’s RPC methods to reduce cognitive overhead for client developers.

Data Structures

JsonRpcRequest

interface JsonRpcRequest {
 jsonrpc: '2.0'
 method: string
 params?: any
 id: string | number
}

Description

Represents a JSON RPC request [https://www.jsonrpc.org/specification#request_object].

Fields

	jsonrpc - string: MUST be exactly ‘2.0’.

	method - string: Name of the method to call.

	params? - any: Formatted request parameter object.

	id - string | number: Request identifier.

JsonRpcSuccessResponse

interface JsonRpcSuccessResponse {
 jsonrpc: '2.0'
 result: any
 id: string | number
}

Description

Represents a successful JSON RPC response [https://www.jsonrpc.org/specification#response_object].

Fields

	jsonrpc - string: MUST be exactly ‘2.0’.

	result - any: Formatted response to the request.

	id - string | number: Same identifier as the one given during the request.

JsonRpcError

interface JsonRpcError {
 code: number
 message: string
 data: any
}

Description

Represents information about a JSON RPC error [https://www.jsonrpc.org/specification#error_object].

Fields

	code - number: Error code ID.

	message - string: Additional short error message.

	data - any: Additional error information.

JsonRpcErrorResponse

interface JsonRpcErrorResponse {
 jsonrpc: '2.0'
 error: JsonRpcError
}

Description

Represents a JSON RPC error response [https://www.jsonrpc.org/specification#response_object] to request.

Fields

	jsonrpc - string: MUST be exactly ‘2.0’.

	error - JsonRpcError: RPC error object.

JsonRpcResponse

type JsonRpcResponse = JsonRpcSuccessResponse | JsonRpcErrorResponse

Description

Either a success response or an error response.

 Contracts Overview

Contracts Overview

Introduction

The PG contract architecture consists of three modular components which serve as the basis for creating plasma networks. These are:

Commitment contracts - where aggregators submit blocks, and where deposit contracts verify inclusion of State Updates.
Deposit contracts - where users deposit money. Enforces the basic plasma exit game to guarantee safety.
Predicate contracts - communicate with the deposit contract to extend the basic plasma exit game for particular applications (plapps).

Commitment Contract

The commitment contract defines a single public address aggregatorwhich can submit new blocks, and records the blocks in storage for later use. It also provides two functions, verifyAssetStateRootInclusion and verifyStateUpdateInclusion, which may be used by both the predicate and deposit contracts to authenticate block contents.

Deposit Contract

The deposit contract contains the base plasma logic for keeping funds secure. It allows users to deposit funds into it, and only allows withdrawals after an “exit game” has been passed. It provides a standard interface which predicate contracts may access to enforce their particular exit game details.

Predicate Contracts

Predicate contracts implement the specific logic of an exit game, and by extent define the transition logic for that type of state object. Most importantly, they dictate the rules of deprecation – the conditions by which an exit on the given state can be cancelled. For example, the ownership predicate allows an exit to be deprecated if the exiting owner has made a signature sending to another party.

Deposit Contract

The deposit contract custodies users’ funds and enforces the plasma cash exit game on them. The exit game we have chosen is a modification of the exit games first proposed by Lucidity (https://ethresear.ch/t/luciditys-plasma-cash-easy-and-more-efficient/4029/8) and Dan Robinson (https://ethresear.ch/t/a-simpler-exit-game-for-plasma-cash/4917) to work on ranges of coins (cashflow).

Coin Fork Choice Rule

The simplest way to understand the rules the exit game enforces are as follows: for a given coin, the exitable state is that of its earliest state update which cannot be deprecated.

Thus, there are two conditions which a particular state update on a particular must satisfy to be exited. First, it must have no undeprecated state updates in its history. Second, it must itself not be deprecated. We have split these conditions into two distinct games.

Exits

Exits are the game for the second condition above: they represent a claim that some subrange of a state update is not deprecated. At any time, the predicate contract for that state update is allowed to make a call, deprecateExit, which cancels it. Only the predicate for that state update is authenticated to make the call. An exit points at a particular checkpoint.

Checkpoints

Checkpoints are the game for the first condition above: they represent a claim that all prior state updates must be deprecated for the range being exited. Finalization of a checkpoint means that the contract will strictly enforce this, disallowing any exits on a coin which come from an earlier plasma block in which a checkpoint on that coin is finalized.

Challenges

Creating a checkpoint on a state object requires an inclusion proof for a state update over that object. As such, if a state update is included by the aggregator without a previous state being deprecable, this is a malicious action which forces the user to exit. If the aggregator begins a checkpoint on the malicious state update, it may be blocked by a challenge. A challenge points at the earlier exit and a later intersecting checkpoint. That checkpoint is considered invalid unless the earlier exitobject can be deprecated, removing the challenge.

 Deposit Contract

Deposit Contract

Description

Deposit contracts are the Ethereum smart contracts into which assets are deposited–custodying the money as it is transacted on plasma and playing out the exit games to resolve the rightful owners of previously deposited assets. As such, it contains the bulk of the logic for the plasma exit games. The things it does not cover are 1) block commitments, and 2), state deprecation, which are handled by calls to the commitment contract and predicate contracts specifically.

API

Structs

Range

struct Range {
 uint256 start;
 uint256 end;
}

Description

Represents a range of state objects.

Fields

	start - uint256: Start of the range of objects.

	end - uint256: End of the range of objects.

StateObject

struct StateObject {
 string id;
 address predicate;
 bytes data;
}

Description

Represents a state object. Contains the address of the predicate contract and input data to that contract which control the conditions under which the object may be mutated.

Fields

	id - string: A globally unique identifier for this state object.

	predicateAddress - address: Address of the predicate contract that dictates how the object can be mutated.

	data - bytes: Arbitrary state data for the object.

StateUpdate

struct StateUpdate {
 Range range;
 StateObject stateObject;
 address plasmaContract;
 uint256 plasmaBlockNumber;
}

Description

Represents a state update, which contains the contextual information for how a particular range of state objects was mutated.

Fields

	range - Range: Range of state objects that were mutated.

	stateObject - StateObject: Resulting state object created by the mutation of the input objects.

	plasmaContract - address: Address of the plasma contract in which the update was included.

	plasmaBlockNumber - uint256: Plasma block number in which the update occurred.

Checkpoint

struct Checkpoint {
 StateUpdate stateUpdate;
 Range subRange;
}

Description

Represents a checkpoint of a particular state update on which a “checkpoint game” is being or has been played out. Checkpoints which have successfully passed the checkpoint game are considered “finalized”, meaning the plasma contract should ignore all state updates on that range with an older plasma block number.

Fields

	stateUpdate - StateUpdate: State update being checkpointed.

	subRange - Range: Sub-range of the state update being checkpointed. We include this field because the update may be partially spent.

CheckpointStatus

struct CheckpointStatus {
 uint256 challengeableUntil;
 uint256 outstandingChallenges;
}

Description

Status of a particular checkpoint attempt.

Fields

	challengeableUntil - uint256: Ethereum block number until which the checkpoint can still be challenged.

	outstandingChallenges - uint256: Number of outstanding challenges.

Challenge

struct Challenge {
 Checkpoint challengedCheckpoint;
 Checkpoint challengingCheckpoint;
}

Description

Describes a challenge against a checkpoint. A challenge is a claim that the challengingCheckpoint has no valid transactions, meaning that the state update in the challengedCheckpoint could never have been reached and thus is invalid.

Fields

	challengedCheckpoint - Checkpoint: Checkpoint being challenged.

	challengingCheckpoint - Checkpoint: Checkpoint being used to challenge.

Public Variables

COMMITMENT_ADDRESS

address constant COMMITMENT_ADDRESS;

Description

Address of the commitment contract where block headers for the plasma chain are being published.

Requirements

Deposit contracts MUST specify the address of a commitment contract where plasma chain block headers are being published.

Rationale

Deposit contracts handle deposits and exits from a specific plasma chain. Commitment contracts hold the plasma block headers for that plasma chain and therefore make it possible to verify inclusion proofs.

TOKEN_ADDRESS

address constant TOKEN_ADDRESS;

Description

Address of the ERC-20 token [https://en.wikipedia.org/wiki/ERC-20] which this deposit contract custodies.

Requirements

	
	The deposit contract:

	
	MUST only support deposits of a single ERC-20 token [https://en.wikipedia.org/wiki/ERC-20].

	
	TOKEN_ADDRESS:

	
	MUST be the address of an ERC-20 token.

Rationale

Each asset type needs to be allocated its own large contiguous “sub-range” within the larger Plasma Cashflow chain. Without these sub-ranges, defragmentation becomes effectively impossible. Although it’s possible to achieve this result within a single deposit contract, it’s easier to simply require that each asset have its own deposit contract and to allocate a large sub-range to every deposit contract.

CHALLENGE_PERIOD

uint256 constant CHALLENGE_PERIOD;

Description

Number of Ethereum blocks for which a checkpoint may be challenged.

EXIT_PERIOD

uint256 constant EXIT_PERIOD;

Description

Number of Ethereum blocks before an exit can be finalized.

totalDeposited

uint256 public totalDeposited;

Description

Total amount deposited into this contract.

checkpoints

mapping (bytes32 => CheckpointStatus) public checkpoints;

Description

Mapping from the ID of a checkpoint to the checkpoint’s status.

depositedRanges

mapping (uint256 => Range) public depositedRanges;

Description

Stores the list of ranges that have not been exited as a mapping from the start of a range to the full range. Prevents multiple exits from the same range of objects.

exitRedeemableAfter

mapping (bytes32 => uint256) public exitRedeemableAfter;

Description

Mapping from the ID of an exit to the Ethereum block after which the exit can be finalized.

challenges

mapping (bytes32 => bool) public challenges;

Description

Mapping from the ID of a challenge to whether or not the challenge is currently active.

Events

CheckpointStarted

event CheckpointStarted(
 Checkpoint checkpoint,
 uint256 challengeableUntil
);

Description

Emitted whenever a user attempts to checkpoint a state update.

Fields

	checkpoint - bytes32: ID of the checkpoint that was started.

	challengeableUntil - uint256: Ethereum block in which the checkpoint was started.

CheckpointChallenged

event CheckpointChallenged(
 Challenge challenge
);

Description

Emitted whenever an invalid history challenge has been started on a checkpoint.

Fields

	challenge - Challenge: The details of the challenge .

CheckpointFinalized

event CheckpointFinalized(
 bytes32 checkpoint
);

Description

Emitted whenever a checkpoint is finalized.

Fields

	checkpoint - bytes32: ID of the checkpoint that was finalized.

ExitStarted

event ExitStarted(
 bytes32 exit,
 uint256 redeemableAfter
);

Description

Emitted whenever an exit is started.

Fields

	exit - bytes32: ID of the exit that was started.

	redeembleAfter - uint256: Ethereum block in which the exit will be redeemable.

ExitFinalized

event ExitFinalized(
 Checkpoint exit
);

Description

Emitted whenever an exit is finalized.

Fields

	exit - Checkpoint: The checkpoint that had its exit finalized.

Methods

deposit

function deposit(
 address _depositer,
 uint256 _amount,
 StateObject _initialState
) public

Description

Allows a user to submit a deposit to the contract. Only allows users to submit deposits for the asset represented by this contract.

Parameters

	_depositer - address: the account which has approved the ERC20 deposit.

	_amount - uint256: Amount of the asset to deposit.

	_initialState - StateObject: Initial state to put the deposited assets into. Can be any valid state object.

Requirements

	MUST keep track of the total deposited assets, totalDeposited.

	MUST transfer the deposited amount from the depositer to the deposit contract’s address.

	MUST create a state update with a state object equal to the provided initialState.

	MUST compute the range of the created state update as totalDeposited to totalDeposited + amount.

	MUST update the total amount deposited after the deposit is handled.

	MUST insert the created state update into the checkpoints mapping with challengeableUntil being the current block number - 1.

	MUST emit a CheckpointFinalized event for the inserted checkpoint.

Rationale

Depositing is the mechanism which locks an asset into the plasma escrow agreement, allowing it to be transacted off-chain. The initialState defines its spending conditions, in the same way that a StateUpdate does once further transactions are made. Because deposits are verified on-chain transactions, they can be treated as checkpoints which are unchallengeable.

startCheckpoint

function startCheckpoint(
 Checkpoint _checkpoint,
 bytes _inclusionProof,
 uint256 _depositedRangeId
) public

Description

Starts a checkpoint for a given state update.

Parameters

	_checkpoint - Checkpoint: Checkpoint to be initiated.

	_inclusionProof - bytes: Proof that the state update was included in the block specified within the update.

	_depositedRangeId - uint256: The key in the depositedRanges mapping which includes the subRange as a subrange.

Requirements

	MUST verify the that checkpoint.stateUpdate was included with inclusionProof.

	MUST verify that subRange is actually a sub-range of stateUpdate.range.

	MUST verify that the subRange is still exitable with the depositedRangeId .

	MUST verify that an indentical checkpoint has not already been started.

	MUST add the new pending checkpoint to checkpoints with challengeableUntil equalling the current ethereum block.number + CHALLENGE_PERIOD .

	MUST emit a CheckpointStarted event.

Rationale

Checkpoints are assertions that a certain state update occured/was included, and that it has no intersecting unspent state updates in its history. Because the operator may publish an invalid block, it must undergo a challenge period in which the parties who care about the unspent state update in the history exit it, and use it to challenge the checkpoint.

deleteExitOutdated

function deleteExitOutdated(
 Checkpoint _olderExitt,
 Checkpoint _newerCheckpoint
) public

Description

Deletes an exit by showing that there exists a newer finalized checkpoint. Immediately cancels the exit.

Parameters

	olderExitt - Checkpoint: `The exit` to delete.

	_newerCheckpoint - Checkpoint: The checkpoint used to challenge.

Requirements

	MUST ensure the checkpoint ranges intersect.

	MUST ensure that the plasma blocknumber of the _olderExitt is less than that of _newerCheckpoint.

	MUST ensure that the newerCheckpoint has no challenges.

	MUST ensure that the newerCheckpoint is no longer challengeable.

	MUST delete the entries in exitRedeemableAfter.

Rationale

If a checkpoint game has finalized, the safety property should be that nothing is valid in that range’s previous blocks–”the history has been erased.” However, since there still might be some StateUpdates included in the blocks prior, invalid checkpoints can be initiated. This method allows the rightful owner to demonstrate that the initiated olderCheckpoint is invalid and must be deleted.

challengeCheckpoint

function challengeCheckpoint(
 Challenge _challenge
) public

Description

Starts a challenge for a checkpoint by pointing to an exit that occurred in an earlier plasma block. Does not immediately cancel the checkpoint. Challenge can be blocked if the exit is cancelled.

Parameters

	_challenge - Challenge: Challenge to submit.

Requirements

	MUST ensure that the checkpoint being used to challenge exists.

	MUST ensure that the challenge ranges intersect.

	MUST ensure that the checkpoint being used to challenge has an older plasmaBlockNumber.

	MUST ensure that an identical challenge is not already underway.

	MUST ensure that the current ethereum block is not greater than the challengeableUntil block for the checkpoint being challenged.

	MUST increment the outstandingChallenges for the challenged checkpoint.

	MUST set the challenges mapping for the challengeId to true.

Rationale

If the operator includes an invalid StateUpdate (i.e. there is not a deprecation for the last valid StateUpdate on an intersecting range), they may checkpoint it and attempt a malicious exit. To prevent this, the valid owner must checkpoint their unspent state, exit it, and create a challenge on the invalid checkpoint.

removeChallenge

function removeChallenge(
 Challenge _challenge
) public

Description

Decrements the number of outstanding challenges on a checkpoint by showing that one of its challenges has been blocked.

Parameters

	challenge - Challenge: `The challenge` that was blocked.

Requirements

	MUST check that the challenge was not already removed.

	MUST check that the challenging exit has since been removed.

	MUST remove the challenge if above conditions are met.

	MUST decrement the challenged checkpoint’s outstandingChallenges if the above conditions are met.

Rationale

Anyone can exit a prior state which was since spent and use it to challenge despite it being deprecated. To remove this invalid challenge, the challenged checkpointer may demonstrate the exit is deprecated, deleting it, and then call this method to remove the challenge.

startExit

function startExit(Checkpoint _checkpoint) public

Description

Allows the predicate contract to start an exit from a checkpoint. Checkpoint may be pending or finalized.

Parameters

	_checkpoint - Checkpoint: The checkpoint from which to exit.

Requirements

	MUST ensure the checkpoint exists.

	MUST ensure that the msg.sender is the _checkpoint.stateUpdate.predicateAddress to authenticate the exit’s initiation.

	MUST ensure an exit on the checkpoint is not already underway.

	MUST set the exit’s redeemableAfter status to the current Ethereum block.number + LOCKUP_PERIOD.

	MUST emit an exitStarted event.

Rationale

For a user to redeem state from the plasma chain onto the main chain, they must checkpoint it and respond to all challenges on the checkpoint, and await a LOCKUP_PERIOD to demonstrate that the checkpointed subrange has not been deprecated. This is the method which starts the latter process on a given checkpoint.

deprecateExit

function deprecateExit(
 Checkpoint _checkpoint
) public

Description

Allows the predicate address to cancel an exit which it determines is deprecated.

Parameters

	_checkpoint - Checkpoint: The checkpoint referenced by the exit.

Requirements

	MUST ensure the msg.sender is the _checkpoint.stateUpdate.predicateAddress to ensure the deprecation is authenticated.

	MUST delete the exit from exitRedeemableAfter at the checkpointId .

Rationale

If a transaction exists spending from a checkpoint, the checkpoint may still be valid, but an exit on it is not. This method allows the predicate to remove the exit if it has determined it to be outdated.

finalizeExit

function finalizeExit(Checkpoint _exit, uint256 _depositedRangeId) public

Description

Finalizes an exit that has passed its exit period and has not been successfully challenged.

Parameters

	_exit - Checkpoint: The checkpoint on which the exit is not finalizable.

	_depositedRangeId - uint256: the entry in depositedRanges demonstrating the range is not yet exited.

Requirements

	MUST ensure that the exit finalization is authenticated from the predicate by msg.sender == _exit.stateUpdate.state.predicateAddress.

	MUST ensure that the checkpoint is finalized (current Ethereum block exceeds checkpoint.challengeableUntil).

	MUST ensure that the checkpoint’s outstandingChallenges is 0.

	MUST ensure that the exit is finalized (current Ethereum block exceeds redeemablAfter).

	MUST ensure that the checkpoint is on a subrange of the currently exitable ranges via depositedRangeId.

	MUST make an ERC20 transfer of the end - start amount to the predicate address.

	MUST delete the exit.

	MUST remove the exited range by updating the depositedRanges mapping.

	MUST delete the checkpoint.

	MUST emit an exitFinalized event.

Rationale

Exit finalization is the step which actually allows the assets locked in plasma to be used on the main chain again. Finalization requires that the exit and checkpoint games have completed successfully.

 Commitment Contract

Commitment Contract

Description

Each plasma chain MUST have at least one commitment contract. Commitment contracts hold the block headers for the plasma chain. Whenever the operator creates a new plasma block, they MUST publish this block to the commitment contract.

API

Events

BlockSubmitted

event BlockSubmitted(
 uint256 _number,
 bytes _header
);

Description

Emitted whenever a new block root has been published.

Fields

	_number - uint256: Block number that was published.

	_header - bytes: Header for that block.

Rationale

Users need to know whenever a new block has been published so that they can stay in sync with the operator.

Public Variables

currentBlock

uint256 public currentBlock;

Description

Block number of the most recently published plasma block.

Rationale

Users need to know the current plasma block for various operations. Contract also needs to keep track of this so it knows what block is being published when submitBlock is called.

blocks

mapping (uint256 => bytes) public blocks;

Description

Mapping from block number to block header.

Rationale

It’s often important to be able to pull a specific block header given a block number. This is necessary, for example, when verifying `inclusion proofs`_.

Other implementations often represent this mapping as uint256 -> bytes32 under the assumption that the block header will always be a bytes32 Merkle tree root. We instead represent the mapping as uint256 -> bytes for more flexibility in the structure of the block root.

Methods

submitBlock

function submitBlock(bytes _header) public

Description

Allows a user to submit a block with the given header.

Parameters

	_header - bytes: Block header to publish.

Rationale

It’s obviously necessary to expose some functionality that allows a user to submit a block header. However, the rationale around authentication logic is more interesting here.

Authentication in our original construction was handled by checking that msg.sender was the operator. This works well in a single-operator construction, but it doesn’t work if we wanted some more complex system. In order to solve this problem, we initinally wanted to add a witness: bytes parameter to the method which could then be used to authenticate the submitted header. Fortunately, we stumbled on an even better solution.

Conveniently, if a contract calls another contract, then msg.sender within that second contract will be the address of the first contract. We can therefore outsource verification of a given block to some external contract and simply check that msg.sender is that contract.

Requirements

	SHOULD authenticate the block header in some manner.

	MUST increment currentBlock by one.

	MUST store the block header in blocks at currentBlock.

	MUST emit a BlockSubmitted event.

 Predicate Contracts

Predicate Contracts

Description

Predicate contracts define the rules for particular state objects’ exit game. The most fundamental thing they define is the deprecation logic, which informs the plasma contract that an exit on some state is invalid because it is outdated. Usually, this logic revolves around proving to the predicate that some transaction has invalidated a previous exit. Because the predicate contract is a stateful main-chain contract, more advanced predicates can also define custom exit logic which must be evaluated before any state transitions are approved by the predicate. Thus, predicates can be used as fully customized extensions to the base plasma cash exit game.

Deprecation

The foremost thing a predicate accomplishes is to enable the deprecation of its state, so that a new state included by the operator becomes valid. This enables state transitions to occur. Because the deposit contract only allows an exit’s predicateAddress to call deprecateExit, the predicate must enable some function which leads to a subcall on depositContract.deprecateExit.

Exit Initiation

Just like the msg.sender check by the deposit contract for deprecations, only the predicate is allowed to begin an exit for a given checkpoint. Thus, the predicate must provide some method which leads to a subcall on depositContract.beginExit. This enables the predicate to prevent unwanted exits, e.g. by only allowing the current owner to start an exit.

Exit Finalization

If the predicate contract has custom/stateful exit logic, it may not know who to send money to even after the standard plasma exit period has elapsed. Thus, we require that the msg.sender == predicateAddress for a given exit to be finalized and funds to be released. This requires a call by the predicate to the depositContract.finalizeExit.

These are the only real requirements for a predicate contract to be compatible with the deposit contract spec. However, it lacks a useful abstraction usually made by blockchains and plasma implementations: the notion of transactions and state transitions. In the next section, we define a standard predicate base which is used throughout the rest of the spec, that treats deprecations, exits, etc. in terms of transactions and state transitions.

 Transaction-based Predicate Standard

Transaction-based Predicate Standard

Description

Most developers are more familiar with a transaction-based model of cryptocurrencies, where state transitions as the result of transactions form the basis for computation. Our client and operator implementations also work this way–it’s really a great model! The transaction-based predicate standard helps us to do this cleanly, by providing a wrapper which interprets transactions in the context of deprecation and disputes.

In essence, the way to enable this is: if a transaction from one state has been authenticated (e.g. signed by its single owner or signed by the multiple participants of a multisig), it must be deprecable using that transaction.

Transaction Execution

verifyTransaction

function verifyTransaction(
 StateUpdate _preState,
 Transaction _transaction,
 bytes _witness,
 StateUpdate _postState
) public

Description

The main thing that must be defined for a state transition model is this verifyTransaction function which accepts a preState state update, and verifies against a transaction and witness that a given postState is correct.

Parameters

	_preState - StateUpdate: the state update which the transaction is being applied on.

	_transaction - Transaction: The transaction being applied. Follows the standard format as outlined in the transaction generation page in Section #03.

	_witness - bytes: Additional witness data which authenticates the transaction validity, e.g. a signature. Defined on a per-predicate basis.

	_postState - StateUpdate: the output of the transaction to be verified.

Requirements

	Predicates MUST define a custom _witness struct for their particular type of state.

	Predicates MUST disallow state transitions which pass verification without some interested party’s consent, e.g. the owner’s signature

Deprecation

proveDeprecation

function proveExitDeprecation(
 Checkpoint _deprecatedExit,
 Transaction _transaction,
 bytes _witness,
 StateUpdate _postState
) public

Description

If a state transition away from a given state update exists, then it is not valid to exit that state–it should be deprecated! This function allows a user to demonstrate this to the predicate so that it may cancel an exit

Parameters

	_deprecatedExit - Checkpoint: the deprecated checkpoint being exited.

	_transaction - Transaction: The transaction which deprecates the exit. Follows the standard format as outlined in the transaction generation page in Section #03.

	_witness - bytes: Additional witness data which authenticates the transaction validity, e.g. a signature. Defined on a per-predicate basis.

	_postState - StateUpdate: the output of the transaction to be verified.

Requirements

	MUST check that the transaction is valid with a call to verifyTransaction(_deprecatedExit.stateUpdate, _transaction, _witness, _postState.

	MUST check that the _postState.range intersects the _deprecatedExit.subrange

	MUST call deprecateExit(_deprecatedExit) on the _deprecatedExit.stateUpdate.state.predicateAddress.

 Limbo Exit Predicate Standard

Limbo Exit Predicate Standard

Explanation

An important attack on plasma systems is for the operator to start withholding blocks after they have been sent a transaction. For instance, if Alice signs off agreeing to send to Bob, but the operator does not reveal the corresponding Bob ownership StateUpdate, then there is insufficient information to exit because Alice’s exit can be deprecated by her signature, but Bob doesn’t have an inclusion proof to exit.

One solution is confirmation signatures, in which Alice does not create a signature until she sees inclusion of the Bob ownership state. However, this has bad UX properties–for one, Alice has to wait until the next block before she can sign, which means she cannot simply send a signature and go offline. Further, it requires an out-of-protocol authentication process: how does the operator know to include the Bob ownership before Alice has signed?

Limbo exits are a better way to solve this problem. They allow Alice to sign a transaction before the block is submitted, go offline, and have Bob receive the coin at a later time, without reducing safety or extending the exit period.

Intuitively, limbo exits work by allowing Alice to exit her ownership state on Bob’s behalf. A limbo-compatible ownership predicate allows Alice to exit her ownership state “to Bob.” Once she does this, the finalizeExit call will send the money to Bob instead of Alice. So, if Alice agrees to a limbo exit, it cannot be deprecated by her spend to Bob.

There are two ways to deprecate a limbo exit. One is to show a conflicting spend other than the one the limbo exit claims to be valid: for example, if Alice limbo exits to Bob, this can be deprecated by providing an alternate spend, e.g. from Alice to Carol. The other way is to show that the limbo “target” is itself deprecated: for example, if Alice sends to Bob, and Bob sends to Carol, a limbo exit from Alice to Bob may be cancelled by showing Bob’s transaction to Carol.

Note that this all means limbo exits have a stronger notion of state than the deposit contract requires–instead of just dealing with deprecation, they must have a notion of transactions and state transitions. Luckily, this is just generally a great idea–Plasma Group will support transaction and limbo functionality across all predicates we create. This page will document the standard interface which predicates supporting limbo functionality must follow, so that it doesn’t have to be reecreated for different predicates.

API

Structs

LimboStatus

struct LimboStatus {
 bytes32 targetId;
 bool wasReturned;
}

Description

Represents the status of a limbo exit.

Fields

	targetId - bytes32: Hash of the target StateUpdate being limbo exited “to”.

	wasReturned - bool: Whether the state being limbo exited to cooperatively agreed to return the limbo exit back to the limbo source.

Public Variables

limboTargets

mapping (bytes32 => LimboStatus) public limboExits;

Description

This mapping maps the limbo exit IDs to their current status.

Rationale

This is the storage on which limbo exit logic is based. If Alice is limbo exiting to Bob, we record the Bob ownership in targetId field, and if Bob cooperatively decides to return the outcome of the exit to Alice, we store that in wasReturned.

Events

CheckpointStarted

event LimboTargeted(
 Checkpoint limboExitSource,
 StateUpdate limboExitTarget
);

Description

Emitted whenever a deposit contract exit is targeted as a

Fields

	limboExitSource - Checkpoint: The exit being converted into a limbo exit.

	limboExitTarget - StateUpdpate: The “target” of a limbo exit. A transaction resulting in the limboExitTarget cannot be used to deprecate limboExitSource once this event has been emitted.

limboExitReturned

event limboExitReturned(
 Checkpoint limboExitSource,
);

Description

Emitted whenever a deposit contract exit is targeted as a

Fields

	limboExitSource - Checkpoint: The exit returned by the limbo target to the source state.

Methods

targetLimboExit

targetLimboExit(originCheckpoint, transaction, target)

function targetLimboExit(
 Checkpoint _sourceExit,
 Transaction _transaction,
 bytes _witness
 StateUpdate _limboTarget
) public

Description

Allows a user to convert a normal exit into a limbo exit by “targeting” a transaction which they made but cannot prove inclusion of.

Parameters

	_sourceExit - Checkpoint: the exit being converted into a limbo exit

	_transaction - Transaction: The transaction from the _sourceExit.stateUpdate.

	_witness - bytes: the witness which proves the transaction validity.

	_limboTarget - StateUpdate: the output of the transaction being verified.

Requirements

	MUST ensure that the transaction is valid by calling verifyTransaction(_sourceExit.stateUpdate, _transaction, _witness, _limboTarget.

	MUST ensure the _limboTarget.range is a subrange of the _sourceExit.subRange.

	MUST ensure the _sourceExit has not already been made a limbo exit.

	MUST call onTargetedForLimboExit(_sourceExit, _target) on the _target predicate.

	MUST set the limboTargets mapping with a key of the ID of _sourceExit and value of hash(_limboTarget)

	MUST emit a LimboTargeted event.

Justification

This is the base function which converts a regular exit into a limbo exit. Both the source and target predicates must support the limbo interface outlined here for it to work. For example, if Alice limbo exits to a Bob and Carol multisig, she exits her ownership, then limbo targets the mutisig with her transaction. This is because the ownership targetLimboExit method subcalls the onTargetedForLimboExit of the mutisig.

Functions

onTargetedForLimboExit

function onTargetedForLimboExit(
 Checkpoint _sourceExit,
 StateUpdate _limboTarget
) public

Description

Hook allowing for the target predicate to initiate any custom logic needed for stateful limbo exits.

Parameters

	_sourceExit - Checkpoint: the exit being converted into a limbo exit

	_limboTarget - StateUpdate: the output of the transaction being verified.

Requirements

N/A

Justification

This method will simply return true for basic predicates like ownership or multisigs, but allows for more complex stateful exit subgames to be initiated if they need to happen during limbo exits.

proveDeprecation

function proveExitDeprecation(
 Checkpoint _deprecatedExit,
 Transaction _transaction,
 bytes _witness,
 StateUpdate _postState
) public

Description

This function serves the same purpose as regular state transition predicates, on the condition that the _deprecatedExit is not a limbo exit.

Parameters

	_deprecatedExit - Checkpoint: the deprecated checkpoint being exited.

	_transaction - Transaction: The transaction which deprecates the exit. Follows the standard format as outlined in the transaction generation page in Secion #03.

	_witness - bytes: Additional witness data which authenticates the transaction validity, e.g. a signature. Defined on a per-predicate basis.

	_postState - StateUpdate: the output of the transaction to be verified.

Requirements

	MUST ensure that the _deprecatedExit is not a limbo exit by checking the limboTargets mapping.

	MUST check that the transaction is valid with a call to verifyTransaction(_deprecatedExit.stateUpdate, _transaction, _witness, _postState on the source predicate (i.e. this predicate itself).

	MUST check that the _postState.range intersects the _deprecatedExit.subrange

	MUST call deprecateExit(_deprecatedExit) on the _deprecatedExit.stateUpdate.plasmaContractAddress.

Justification

If the exit is not a limbo exit, deprecation may occur normally, by proving an intersecting transaction spending the exit.

proveTargetDeprecation

function proveTargetDeprecation(
 Checkpoint _limboSource,
 StateUpdate _limboTarget
 Transaction _transaction,
 bytes _witness,
 StateUpdate _postState
) public

Description

This function allows a limbo exit to be cancelled if the target has been spent.

Parameters

	_limboSource - Checkpoint: the limbo exit whose target state update is deprecable.

	_limboTarget - StateUpdate the target of the limbo exit which is deprecable.

	_transaction - Transaction: The transaction which spends from the _limboTarget

	_witness - bytes: Additional witness data which authenticates the transaction validity.

	_postState - StateUpdate: the output of the transaction on the target.

Requirements

	MUST ensure that the _limboSource is indeed a limbo exit with the hash(_limboTarget) in its limboTargets value.

	MUST check that the transaction is valid with a call to the target predicate’s verifyTransaction(_deprecatedExit.stateUpdate, _transaction, _witness, _postState.

	MUST check that the _postState.range intersects the _limboTarget.range.

	MUST call deprecateExit(_limboSource) on the _limboSource.stateUpdate.plasmaContractAddress.

	MUST clear the limbo exit from the limboTargets mapping.

Justification

An example usage of this would be: if Alice->Bob->Carol, and Alice limbo exits with Bob ownership as the target, this function will be used to cancel the exit by showing Bob->Carol.

proveSourceDoubleSpend

function proveSourceDoubleSpend(
 Checkpoint _limboSource,
 StateUpdate _limboTarget
 Transaction _conflictingTransaction,
 bytes _conflictingWitness,
 StateUpdate _conflictingPostState
) public

Description

This function allows a limbo exit which has an alternate transaction spending from the source to be deprecated.

Parameters

	_limboSource - Checkpoint: the limbo exit which has a double spend which conflicting its target.

	_limboTarget - StateUpdate the target of the limbo exit which has a conflicting spend

	_conflictingTransaction - Transaction: The transaction which spends from the _limboTarget

	_conflictingWitness - bytes: Additional witness data which authenticates the transaction validity.

	_conflictingPostState - StateUpdate: the output of the transaction on the source which has a different state than the target.

Requirements

	MUST ensure that the _limboSource is indeed a limbo exit with the hash(_limboTarget) in its limboTargets value.

	MUST check that the transaction is valid with a call to the source predicate’s verifyTransaction(_deprecatedExit.stateUpdate, _transaction, _witness, _postState.

	MUST check that the _postState.range intersects the _limboTarget.range.

	MUST check that the _postState.state is not equal to the _conflictingPostState.state.

	MUST call deprecateExit(_limboSource) on the _limboSource.stateUpdate.plasmaContractAddress.

	MUST clear the limbo exit from the limboTargets mapping.

Justification

An example usage of this would be: if Alice->Bob->Carol, and Alice limbo exits with Mallory ownership as the target, this function will be used to cancel the exit by showing Alice->Bob–a double spend.

returnLimboExit

function returnLimboExit(
 Checkpoint _limboSource,
 StateUpdate _limboTarget
 bytes _witness
) public

Description

This function allows the source state of a limbo exit to agree to give the money back to the source state of the limbo exit.

Parameters

	_limboSource - Checkpoint: the limbo exit which is being returned

	_limboTarget - StateUpdate the target of the limbo exit which has a conflicting spend

	_witness - bytes: Arbitrary witness data used by the target predicate to authenticate the return. Not necessarily the same as a transaction witness.

Requirements

	MUST ensure that the _limboSource is indeed a limbo exit with the hash(_limboTarget) in its status.

	MUST ensure that the target state is allowing the return by calling the target predicate’s canReturnLimboExit(_limboSource, _limboTarget, _witness)

	MUST set wasReturned to true for the limbo exit’s status.

	MUST emit a limboExitReturned event.

Justification

If Alice sends a transaction to Bob and then observes block withholding, she must limbo exit with Bob as the target. However, because of the proveSourceDoubleSpend method, Bob cannot guarantee until the exit period has passed that Alice will not sign a conflicting message and deprecate the exit. Thus, we want Bob to be able to return the exit to Alice, perhaps conditionally on some payment which he can validate without waaaiting a full exit period

canReturnLimboExit

function canReturnLimboExit(
 Checkpoint _limboSource,
 StateUpdate _limboTarget
 bytes _witness
) public returns (bool)

Description

This function allows the target state of a limbo exit to authenticate a guaranteed return to the source as described above.

Parameters

	_limboSource - Checkpoint: the limbo exit which requesting to be returned.

	_limboTarget - StateUpdate the target of the limbo exit which has a conflicting spend

	_witness - bytes: Arbitrary witness data used by the target predicate to authenticate the return. Not necessarily the same as a transaction witness.

Requirements

	MUST handle some sort of authentication which provides the target state a guarantee that it will not be returnable without permission.

Justification

See justification for returnLimboExit above, which explains this function.

finalizeExit

function finalizeExit(
 Checkpoint _exit
) public

Description

Finalizes an exit which is either not a limbo exit or has been returned

Parameters

	_exit - Checkpoint: the exit being finalized.

Requirements

	
	MUST check that the exit is either:

	
	not a limbo exit, or

	is a limbo exit which wasReturned.

	MUST call finalizeExit on the deposit contract.

	MUST handle the resulting ERC20 transfer of the exit amount in some way.

Justification

If an exit is not a limbo exit or was returned by the target state, we execute a normal exit procedure for the exited Checkpoint.

finalizeLimboExit

function finalizeExit(
 Checkpoint _exit,
 StateUpdte _target
) public

Description

Finalizes a successful, unreturned limbo exit.

Parameters

	_exit - Checkpoint: the limbo exit being finalized.

	_target - StateUpdate: the target of the limbo exit.

Requirements

	MUST ensure that the _limboSource is indeed a limbo exit with the hash(_limboTarget) in its status.

	MUST ensure that the limbo exit was not returned.

	MUST call finalizeExit on the deposit contract.

	MUST transfer ALL ERC20 funds from the deposit contract to the target predicate.

	MUST call onFinalizeTargetedExit on the target predicate.

Justification

If an exit is a limbo exit which was not returned, the source predicate finalizes the exit, sends it to the target, and allows the target to handle the receipt.

onFinalizeTargetedExit

function onFinalizeTargetedExit(
 Checkpoint _exit,
 StateUpdate _target
) public

Description

Logic for the target of a limbo exit to handle the exit’s finalization.

Parameters

	_exit - Checkpoint: the limbo exit being finalized.

	_target - StateUpdate: the target of the limbo exit.

Requirements

	MUST handle the money received from the exit as it pertains to this target.

Justification

The target of a limbo exit must be able to handle the money arbitrarily, this logic is called by the source predicate on the target to perform that logic.

 Introduction

Introduction

Todo

Write introduction for client.

 Deposit Generation

Deposit Generation

Users will usually first interact with a plasma chain by depositing their assets into a plasma deposit contract. Deposits usually consist of a single Ethereum transaction that locks some assets into the depoist contract. This page describes how a client can make a deposit and start using a plasma chain.

Plasma chain transactions transform the state of a range of state objects. The state of each range at a moment in time is described by a state object. Each state object specifies the address of a predicate contract and some additional arbitrary data which are used in tandem to manage ownership of an asset.

Users submit deposit transactions to a plasma deposit contract. Each deposit contract exposes a method deposit:

function deposit(uint256 _amount, StateObject _state) public payable

Where StateObject is the following struct:

struct StateObject {
 address predicate;
 bytes data;
}

deposit requires that users specify the _amount the asset being deposited and an initial state object, _state, that controls ownership of the asset. For example, users might use the SimpleOwnership predicate to control their asset.

 Event Handling

Event Handling

Checkpoint Events

Todo

Explain how to handle checkpoint events.

Exit Game Events

Todo

Explain how to handle exit game events.

 Transaction Generation

Transaction Generation

Once a user has submitted a deposit, they’re ready to start making transactions. It’s important that transactions are relatively standardized so that transaction generation is as simple as possible. This page describes a standard transaction format and generation process that clients MUST adhere to.

Transaction Format

From the perspective of each predicate, a transaction just consists of an arbitrary string of bytes. Each predicate could parse these bytes in a unique way and therefore define its own transaction format. However, clients should be able to correctly generate a transaction for any given predicate. As a result, we’ve developed a standard transaction format that simplifies the transaction generation process.

The interface for a Transaction object looks like this:

interface Transaction {
 plasmaContract: string
 start: number
 end: number
 methodId: string
 parameters: string
}

Where the components of this interface are:

	plasmaContract - string: The address of the specific plasma deposit contract which identifies the asset being transferred. This is somewhat equivalent to Ethereum’s chain ID [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md] transaction parameter.

	start - number: Start of the range being transacted.

	end - number: End of the range being transacted.

	methodId - string: A unique method identifier that tells a given predicate what type of state transition a user is trying to execute. This is necessary because a predicate may define multiple ways in which a state object can be mutated. methodId should be computed as the keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the method’s signature, as given by the Predicate API.

	parameters - string: Input parameters to be sent to the predicate along with method to compute the state transiton. Must be ABI encoded [https://solidity.readthedocs.io/en/latest/abi-spec.html#argument-encoding] according to the Predicate API. This is similar to the transaction input value encoding in Ethereum [https://solidity.readthedocs.io/en/latest/abi-spec.html#argument-encoding].

Transaction Encoding and Decoding

Plasma transactions must be ABI encoded or decoded [https://solidity.readthedocs.io/en/latest/abi-spec.html#argument-encoding] according to the following schema:

{
 plasmaContract: address,
 start: uint256,
 end: uint256,
 methodId: bytes32,
 parameters: bytes
}

Sending Transactions

The client SHOULD verify the history of the range being transacted before sending the transaction to the operator. Doing so will confirm that no `invalid transactions`_ have been maliciously inserted into the blockchain by the operator between the block in which the user received a state update and the latest block. Otherwise the client may have to start `limbo exit`_, which is more costly than a standard exit.

Transactions can be submitted to a node via the sendTransaction RPC method. If the node that receives this request is not the operator, then it will forward the transaction to the operator on the requester’s behalf.

Example: SimpleOwnership Predicate

We’re going to look at the whole process for generating a valid transaction to interact with some state objects locked by the SimpleOwnership predicate. This example will explain how a client can use the Predicate API to generate a valid state-changing transaction. In this case, we’ll generate a transaction that changes the ownership of the objects. We’ll then look at the process of encoding the transaction and sending it to the operator.

First, let’s pick some arbitary values for plasmaContract, start, and end. Users will know these values in advance, so we don’t really need to explain the process of getting them in the first place. Let’s say that the plasmaContract of the SimpleOwnership predicate is 0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c and we want to send the range (0, 100).

Now we just need to figure out our values for methodId and parameters. We’re going to use the Predicate API for SimpleOwnership in order to generate these values. Users can get this API from a variety of places, but it’s likely that most wallet software will come with a hard-coded API. Once we have the API, we know that send looks like this:

{
 name: "send",
 constant: false,
 inputs: [
 {
 name: "newOwner",
 type: "address"
 }
],
 outputs: []
}

This is already enough information to generate methodId and parameters. As we previously described, methodId is generated by taking the keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the method’s signature. In this case:

const methodId = keccak256('send(bytes)')

Now let’s generate parameters. Our only parameter to send is newOwner. We’re going to send to a random address, 0xd98165d91efb90ecef0ddf089ce06a06f6251372. We need to ABI encode [https://solidity.readthedocs.io/en/latest/abi-spec.html#argument-encoding] this address:

const newOwner = '0xd98165d91efb90ecef0ddf089ce06a06f6251372'
const parameters = abi.encode(['address'], newOwner)

This is all we need to generate the transaction:

const transaction = abi.encode([
 'address',
 'uint256',
 'uint256',
 'bytes32',
 'bytes'
], [
 plasmaContract,
 start,
 end,
 methodId,
 parameters
])

Finally, we need to generate a valid witness for this transaction. SimpleOwnership requires a signature from the previous owner over the whole encoded transaction (except, of course, the signature itself) as a witness:

const key = '0x...'
const witness = sign(transaction, key)

We now have everything we need to send this transaction off to the operator!

 History Proofs

History Proofs

Introduction

In every plasma block, a range of state objects can either be deposited, transacted, or not transacted. Whenever clients want to verify a transaction on a specific range, they need to verify the entire “history” of what happened to the range between the block in which it was first deposited and the block in which the transaction occurred.

For example, let’s imagine that a range (0, 100) was deposited in block 1, not transacted in block 2, and then transacted in block 3. The history proof for a transaction in block 4 would contain the deposit, a proof that the range wasn’t transacted in block 2, and a proof that the range was transacted in block 3.

This page describes the basic components of the history proof. Details about generating a history proof and verifying a history proof are described later.

Proof Elements

History proofs consist of a series of “proof elements”, which correspond to some action that took place within a specific plasma block. A proof element can be a Deposit Proof Element, Exclusion Proof Element, or a State Update Proof Element. Each element type conveys different information and needs to be handled differently.

Deposit Proof Elements

Deposit Proof Elements consist of a deposit ID. Deposit IDs correspond to a deposit on Ethereum. Deposits on Ethereum contain a state update, which a client can query and insert into their local state.

Exclusion Proof Elements

Exclusion Proof Elements consist of a single state update and an inclusion proof for that state update. They prove that a specific range was not transacted during a given block, but they do not prove that the given state update is valid.

These proof elements take advantage of the fact that items of our Merkle Interval Tree have both an explicit range and an implicit range. A valid inclusion proof for an item in the tree also proves that there aren’t any valid items that intersect with that element’s implicit range. A user can check the inclusion proof for the state update in the Exclusion Proof Element and be sure that its implicit range wasn’t transacted in the given block.

State Update Proof Elements

State Update Proof Elements prove that a given state update was correctly created from the previous state update. Despite the name, State Update Proof Elements actually include transactions and not state updates. The provided transactions are used to compute the newer state update. These elements also include a block number in which the computed state update was included and an inclusion proof that the update was actually included.

 History Generation

History Generation

Clients need to be able to correctly generate history proofs. This page describes the process of querying and generating these proofs.

History Query

Clients can query a history proof by creating a HistoryQuery:

interface HistoryQuery {
 plasmaContract: string
 start: number
 end: number
 startBlock?: number
 endBlock?: number
}

Where:

	plasmaContract - string: Address of the specific plasma contract to query. Clients may watch several plasma contracts simultaneously, so this parameter is required for the client to return the correct history.

	start - number: Start of the range of state objects to query.

	end - number: End of the range of state objects to query.

	startBlock - number: Block to start querying history from. If not provided, will default to 0.

	endBlock - number: Block to query history to. If not provided, will default to the latest block known by the client.

Once created, these queries can be sent to a node via the history query RPC method.

History Calculation

When a node receives a history query, they MUST follow the following process to generate the correct history proof.

Range Intersection

Generation of a history for a given range begins by performing an intersection of the range with the historical state for the provided block range. Intersection MUST be performed on a start-inclusive, end-exclusive basis. Basically, for each block in the block range, the client needs to find all historical state updates with an implicit range or an explicit range that intersects with the queried range.

Intersection with the historical state will return three types of relevant elements: Deposit Proof Elements, Exclusion Proof Elements, and State Update Proof Elements. Each of these elements are necessary to generate a full history proof. However, each element must be handled differently during the proof generation process. A more detailed explanation of these elements can be found here.

Deposit Proof Elements and State Update Proof Elements will be found when the explicit range described by a state update directly intersects with queried range.

Exclusion Proof Elements are found when the implicit range described by a state update intersects with the queried range but the explicit range does not. Exclusion Proof Elements prove that a given range was not transacted during a specific block but do not prove that the given state update was actually valid.

Proof Generation

Deposit Proof Elements, and Exclusion Proof Elements, and State Update Proof Elements must each be handled individually when generating proofs. The process for handling each element is described below.

For each element returned by the range intersection, the client MUST generate a corresponding proof element according to the following rules. Proof elements MUST be returned in ascending block number order.

Deposit Proof Elements

Deposit Proof Elements consist of state updates that are created on the plasma chain when a deposit is submitted on Ethereum. Because we assume that clients have access to Ethereum, we SHOULD NOT include the full state update in the proof. Instead, clients MUST include the deposit ID logged on Ethereum when the deposit was submitted.

Exclusion Proof Elements

State updates are all associated with two ranges. A state update’s explicit range is the range of state objects the update mutates. An update’s implicit range is the range of objects that the update proves are not spent within a given block. This mechanism is a byproduct of our Merkle Interval Tree construction.

An Exclusion Proof Element consists of a state update and an inclusion proof . For each Exclusion Proof Element, the client MUST provide an inclusion proof that shows the element was included in a block. An Exclusion Proof Element does not prove that the given state update is valid. Therefore, the client SHOULD NOT provide any information that proves the validity of the state update beyond the inclusion proof.

State Update Proof Elements

State Update Proof Elements describe the transition of one or more state objects that fall within the specified range. State Update Proof Elements correspond to one or more transactions that generated the state update.

For each state update, the client MUST provide all transactions that produced the state update. However, as these transaction can be used to calculate the state update, the client SHOULD NOT provide the state update itself.

The client MUST also provide an inclusion proof for the state update that proves the update was included in the block specified in the state update

It’s possible that the validity of a given transaction may also rely on the existence of some other plasma transaction. When this is the case, the verifier must first verify some additional proof elements before executing a given transaction. For each transaction that corresponds to a state update, the client MUST ask for a list of additional proof elements from the predicate plugin of the state objects from which the transaction spends. Any additional proof elements MUST be inserted before the transaction itself so that the client can verify the necessary state before verifying the transaction.

 History Verification

History Verification

Once a client has received a history proof, they need to be able to correctly check the proof’s validity. This page describes the process for applying each individual proof element and determining the overal validity of the proof.

Proof Structure

A HistoryProof consists of a series of “proof elements”. Each of these elements is either a Deposit Proof Element, an Exclusion Proof Element, or a State Update Proof Element. Elements of each different element type must be handled differently as they convey different information.

Applying Proof Elements

Proof elements each correspond to some action that took place within a specific plasma block. Proof elements MUST be applied in ascending block order. Otherwise, a client may not have the necessary information to verify a specific state transition.

Deposit Proof Elements

Deposit Proof Elements consist of a deposit ID. Deposit IDs correspond to a deposit on Ethereum, which contains a state update. Whenever the client encounters a Deposit Proof Element, the client MUST download the deposit with the given ID by querying for the checkpoint with the same ID.

For efficiency, the client SHOULD check their local database for the deposit before querying Ethereum. It’s possible that the client already downloaded while verifying another history proof.

If the deposit is not found, the client MUST either throw an error or skip the element.

Once the client has downloaded the corresponding deposit, the client MUST insert the deposit’s state update into their local state. The client does not need to verify anything about this state update since it came directly from a deposit.

Exclusion Proof Elements

Elements of our Merkle Interval Tree have both an explicit range and an implicit range. A valid inclusion proof for an element of the tree also conveys the fact that no other elements intersect with the included element’s implicit range.

Exclusion Proof Elements simply consist of a state update and an inclusion proof. These elements make no statements about the validity of the state update, but prove that there were no valid transactions on the update’s implicit range.

The client MUST verify the inclusion proof for each Exclusion Proof Element. If the inclusion proof fails, the client MUST either throw an error or skip to the next proof element.

The client MUST then find all state updates that intersect with the implicit range of the proof element where update.verifiedBlockNumber is equal to element.block - 1. We’re only interested in these state updates because the implicit proof only applies to the element.block but not any previous blocks.

Next, for each found state update, the client MUST split any elements where the implicit range only partially covers the intersected update. For example, if the implicit range is (50, 100) but the found update is over (0, 100), the client will split the update into two elements that cover (0, 50) and (50, 100). This process will leave the client with a set of state updates that are entirely covered by the implicit range and a set that no longer intersect at all.

Next, for each element that is entirely covered by the implicit range, the client MUST set update.verifiedBlockNumber to element.block. This process effectively finds any state updates covered by the implicit range and “bumps up” the block to which they’re considered valid.

State Update Proof Elements

State Update Proof Elements prove that a given state update has transitioned to a newer one. Despite the name, State Update Proof Elements actually consist of transactions and not state updates. The provided transactions are used to compute the newer state update. These elements also include a block number in which the computed state update was included and an inclusion proof that the state update was actually included in the given block.

For simplicity, we require that all of the transactions within a single State Update Proof Element refer to the same range. If any of the transactions do not refer to the same range, the client MUST either throw an error or skip to the next element.

Next, the client MUST find all previously verified state updates that intersect with the range on the transations and where update.verifiedBlockNumber is equal to element.block - 1.

For each update found in the previous step, the client then MUST execute each transaction against the update. Each transaction execution will generate a resulting state update.

After executing the transactions against all updates, the client MUST verify that the resulting state updates are all equivalent. If any state update is not equivalent, the client MUST either throw an error or skip to the next proof element. The resulting update MUST have a block number equal to element.block.

The client then MUST verify the inclusion proof provided as part of the proof element. If the inclusion proof is invalid, the client MUST either throw an error or skip to the next proof element.

Finally, the client MUST insert the resulting state update into the local state. This process MUST split or overwrite any existing state updates over the same range. For example, if the local state contains an update that covers (0, 100) and the computed update covers (50, 100), the client will modify the first update such that it only covers (0, 50).

 Exit Guarding

Exit Guarding

Event Handling

Predicate Event Watching

Todo

Explain how predicate plugins can watch for exit events.

Predicate Guarding

Exit Validity Determination

Todo

Explain how predicate plugins determine whether an exit is valid or not.

Challenge Generation

Todo

Explain how predicate plugins generate a challenge.

Challenge Submission

Todo

Explain how predicate plugins actually send the challenge to Ethereum.

 State Queries

State Queries

Clients need to be able to query the local state to build effective front-ends. For example, a wallet might be interested in querying all state objects that a specific user owns. We’ve designed a querying system to make this process as easy as possible.

Query Generation

Parsing Predicate API

The Predicate API provided by each predicate specifies a list of queries that can be made on state objects locked with that predicate. For example, the API of the SimpleOwnership predicate specifies the following function:

{
 "name": "getOwner",
 "constant": true,
 "inputs": [],
 "outputs": [
 {
 "name": "owner",
 "type": "address"
 }
]
}

Users first need to parse this API to figure out what methods are available for the predicate they’re attempting to query. Once the user has determined the name and required parameters for the method they want to query, they can generate a StateQuery. The user can then send this query to a client via the state query RPC method.

Parsing Query Results

The result of a state query is a list of `StateQueryResult`_ objects. If a filter was provided as part of the StateQuery, only StateQueryResult objects that passed the provided filter will be returned.

Example: SimpleOwnership

We’ll now provide an example state query for the getOwner method of the SimpleOwnership predicate. The Predicate API for SimpleOwnership describes getOwner as:

{
 "name": "getOwner",
 "constant": true,
 "inputs": [],
 "outputs": [
 {
 "name": "owner",
 "type": "address"
 }
]
}

Let’s assume that our plasmaContract is 0x1b33c35be86be9d214f54af218c443c2623d3d0a and our SimpleOwnership predicate is located at 0xf25746ac8621a7998e0992b9d88e260c117c145f.

To query all state updates where 0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c is the owner, we construct the following query:

const query: StateQuery = {
 plasmaContract: '0x1b33c35be86be9d214f54af218c443c2623d3d0a',
 predicateAddress: '0xf25746ac8621a7998e0992b9d88e260c117c145f',
 method: 'getOwner',
 params: [],
 filter: {
 $eq: ['$0', '0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c']
 }
}

Our filter here specifies that the first output of the function call (which we know to be the owner in this case) should be equal to a given address. Results where this is not the case will not be returned.

Once we send this request via the state query RPC method, we’ll receive a result that looks like this:

[
 {
 stateUpdate: {
 block: 123,
 start: 0,
 end: 100,
 predicate: '0xf25746ac8621a7998e0992b9d88e260c117c145f',
 data: '0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c'
 },
 result: ['0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c']
 },
 ...
]

We can then present this data in any way that we might want to.

Query Handling

Range Intersection

Clients will receive a StateQuery object when receiving a state query. Clients first MUST use the range provided by the StateQuery to find all state updates in the current head state that match the provided predicateAddress.

Passing Queries to Predicate Plugins

Once the client has found all relevant state updates, they MUST call the queryState method in the predicate plugin that corresponds to the provided predicateAddress. queryState takes the method and parameters from the StateQuery and returns an array of results.

Filtering Queries

Users filter their results by providing an Expression that performs some operation on the provided result. If a filter was given in the StateQuery, then the client MUST correctly remove results according to the filter. More information about filters is given in the page about Expressions.

Users can filter based on the outputs of the query method by inserting strings in the form of \$[0-9]+ (starting at $0).

For example, a user could filter results where the first output is greater than 0 and the second result is less than 100 like this:

{
 $and: [
 { $gt: ['$0', 0] },
 { $lt: ['$1', 100] }
]
}

Any results that have not been removed by the filter can then be returned to the requesting client.

 Synchronization

Synchronization

Introduction

Clients need to be able to synchronize their local state with that of the operator. However, this process is somewhat non-trivial as clients may be simultaneously connected to multiple plasma chains.

The actual process for synchronizing a client can generally be determined by the client implementer. However, we’re going to go through some recommendations that will ensure that the client is as feature-complete as possible.

Deposit and Commitment Contracts

Our plasma construction makes use of deposit contracts that store the assets that users transact on the plasma chain. These deposit contracts act like their own individual plasma chains. For example, the range (0, 100) will be valid on two different deposit contracts but will refer to different assets.

Furthermore, we’re generally using a single deposit contract per asset type to simplify things for the client. It’s therefore very likely that a client will be interested in transactions on several different deposit contracts. As a result, clients SHOULD be able to send and receive transactions on multiple deposit contracts simultanously.

We’re also using the new concept of commitment contracts that store plasma block commitments instead of throwing all of this logic inside the deposit contract. Each deposit contract points to a specific commitment contract, and it’s possible for multiple deposit contracts to point to the same contract. Therefore a client SHOULD also be able to watch for commitments to multiple commitment contracts and SHOULD maintain a mapping between commitment contracts and deposit contracts.

Receiving Transactions

Transactions are unique to a given deposit contract, but blocks are unique to a commitment contract. For each commitment contract the client is interested in, clients SHOULD watch for new blocks being published to Ethereum.

It’s important to note that, unlike in previous plasma constructions, there’s no easy way for an operator to tell that a given address will be interested in a specific transaction. Instead, clients SHOULD, upon seeing the publication of a new block, send a `state query`_ to the operator for all state updates the client is interested in.

For example, imagine we have a predicate that allows anyone to mutate a state object as long as they have the pre-image to some hash. Without the pre-image, the operator has no way to know which user “owns” that state object. A client would have to specifically form a query for all state objects that use that predicate and lock the state object with a specific hash.

 Query Expressions

Query Expressions

Description

We provide a system for filtering state queries via expressions similar to those used by mongoDB [https://docs.mongodb.com/manual/reference/operator/].

Data Structures

Expression

interface Expression {
 [operator: string]: Array<string | number | Expression>
}

Description

Represents an expression. All expressions consist of an operator and a list of input values. Some expressions take other operators as input values.

Operators

Boolean Operators

$and

{ $and: [<expression1>, <expression2>, ...] }

Description

Returns true if all arguments evaluate to true.

Parameters

	expressions - Expression[]: Any number of Expression objects.

Returns

boolean: true if all arguments resolve to true, false otherwise.

$not

{ $not: [<expression>] }

Description

Returns the boolean opposite of the result of the argument expression.

Parameters

	expression: Expression: A single Expression object.

Returns

boolean: true if the expression resolves to false, false otherwise.

$or

{ $or: [<expression1>, <expression2>, ...] }

Description

Returns true if any argument evaluates to true.

Parameters

	expressions - Expression[]: Any number of Expression objects.

Returns

boolean: true if any argument resolves to true, false otherwise.

Comparison Operators

$eq

{ $eq: [<argument1>, <argument2>, ...] }

Description

Checks if all arguments are equal.

Parameters

	arguments - any[]: List of input values.

Returns

boolean: true if all arguments are equal, false otherwise.

$gt

{ $gt: [<argument1>, <argument2>] }

Description

Checks if the first argument is greater than the second.

Parameters

	argument1 - any: First input value.

	argument2 - any: Second input value.

Returns

boolean: true if the first argument is greater than the second, false otherwise.

$gte

{ $gte: [<argument1>, <argument2>] }

Description

Checks if the first value is greater than or equal to the second.

Parameters

	argument1 - any: First input value.

	argument2 - any: Second input value.

Returns

boolean: true if the first value is greater than or equal to the second, false otherwise.

$lt

{ $lt: [<argument1>, <argument2>] }

Description

Checks if the first value is less than the second.

Parameters

	argument1 - any: First input value.

	argument2 - any: Second input value.

Returns

boolean: true if the first value is less than the second, false otherwise.

$lte

{ $lte: [<argument1>, <argument2>] }

Description

Checks if the first value is less than or equal to the second.

Parameters

	argument1 - any: First input value.

	argument2 - any: Second input value.

Returns

boolean: true if the first value is less than or equal to the second, false otherwise.

$ne

{ $ne: [<argument1>, <argument2>, ...] }

Description

Returns true if input values are not all equivalent.

Parameters

	arguments - any[]: List of input values.

Returns

boolean: true if input values are not equivalent, false otherwise.

 RPC Methods

RPC Methods

Description

We require that the clients interact via JSON RPC [https://www.jsonrpc.org/specification]. Here we provide a list of available RPC methods that the client MUST implement.

Methods

pg_accounts

Description

Returns the list accounts in the client’s wallet.

Returns

string[]: List of addresses owned by the client.

pg_blockNumber

Description

Returns the current plasma block number.

Returns

number: Current plasma block number.

pg_sign

Description

Signs a message with the private key of a specified account.

Parameters

	account - string: Address of the account to sign with.

	message - string: Message to sign.

Returns

string: Signature over the given message.

pg_sendRawTransaction

Description

Sends a transaction to the client. If the client is not the operator, the transaction will be forwarded to the operator.

Parameters

	transaction - string: Properly encoded transaction to send to the operator.

Returns

string: Receipt for the transaction.

pg_sendQuery

Description

Sends a state query to the client.

Parameters

	query - StateQuery: A StateQuery object.

Returns

any[]: Result of the state query. Returns one query result for each state object that intersected with the range specified in the StateQuery.

pg_getTransactionByHash

Description

Returns a full transaction from a transaction hash.

Parameters

	hash - string: Hash of the transaction to query.

Returns

Transaction: The Transaction object with the given hash.

pg_getProof

Description

Returns a history proof for a given range.

Parameters

	query - HistoryQuery: A HistoryQuery object.

Returns

HistoryProof: A HistoryProof composed of a list of proof elements that can be ingested.

pg_getInstalledPredicatePlugins

Description

Returns the list of predicates installed by the client.

Returns

string[]: Address of each predicate for which the client has an installed plugin.

pg_clientVersion

Description

Returns the name and version of the client.

Returns

string: Version and name of the client in the form <name>/<version>/<os>.

 RPC Error Messages

RPC Error Messages

Wallet

Account Not Found

{
 code: -20001,
 message: "Account Not Found",
 data: <address>
}

Description

Error returned when an account has not been found for a given address.

Code

-20001

Data

	address - string: Address of the queried account.

Invalid Password

{
 code: -20002,
 message: "Invalid Password",
 data: <address>
}

Description

Returned when the user attempts to unlock an account with an invalid password.

Code

-20002

Data

	address - string: Address of the account the user attempted to unlock.

Account Locked

{
 code: -20003,
 message: "Account Locked",
 data: <address>
}

Description

Returned when a user attempts to sign some data with a locked account.

Code

-20003

Data

	address - string: Address of the account the user attempted to sign with.

Transactions

Invalid Transaction Encoding

{
 code: -20004,
 message: "Invalid Transaction Encoding"
}

Description

Returned when a user attempts to submit an incorrectly encoded transaction.

Code

-20004

Invalid Transaction

{
 code: -20005,
 message: "Invalid Transaction"
}

Description

Returned when a user submits a transaction that executes incorrectly.

Code

-20005

State Queries

Invalid State Query

{
 code: -20006,
 message: "Invalid State Query"
}

Description

Returned when the user attempts to make an invalid state query.

Code

-20006

 Introduction

Introduction

 Transaction Ingestion

Transaction Ingestion

Incoming Transaction Endpoint

Clients send transactions to the operator via the send transaction RPC method, which is then received by the RPC server. The RPC server then pipes the transaction to the operator’s state manager.

Transaction Decoding

Before the operator can execute the transaction, it MUST first check that the transaction is correctly formatted by attempting to decode the transaction.

If decoding fails, the operator MUST return an Invalid Transaction Encoding error response.

Transaction Execution

Once the operator has determined that the transaction was correctly encoded, they can attempt to execute the transaction against the local state.

State Update Resolution

The operator MUST resolve the set of state updates that the transaction operates on. The operator uses the start and end values from the transaction and finds all state updates the range overlaps with.

Once the operator finds all overlapping state updates, they MUST assert that the entire range described by the transaction is covered by existing state updates. If this is not the case, the operator MUST return an Invalid Transaction error response.

State Transition Execution

For each state update resolved in the previous step, the operator then MUST call the executeStateTransition method of the plugin that corresponds to the predicate address specified in the state update. This function call will return a new resulting state update. If any of these calls throw an error, the operator MUST return an Invalid Transaction error response.

The operator MUST then validate that all of the resulting state updates are identical. If any state update is not identical, the operator MUST return an Invalid Transaction error response.

Transaction Queueing

Once the transaction has been verified, the operator can add the resulting state update to the queue of state updates to be published in the next block. If the queue already contains a state update on the range specified in the transaction, the operator MUST return a Duplicate Transaction error response.

Transaction Receipt

Finally, once the new state update has been added to the block queue, the operator MUST return a transaction receipt to the client.

 Block Generation

Block Generation

Transaction Ingestion

Block Merklization

Block Submission

 Operator RPC Methods

Operator RPC Methods

Description

Todo

Add description for Operator RPC methods.

Methods

pgop_sendTransaction

Description

Sends a transaction to be ingested by the operator.

Parameters

	transaction - Transaction: The Transaction to be ingested.

Returns

string: The transaction receipt for the given transaction.

 Introduction

Introduction

Components

Our client is broken up into several key components, each of which are specified separately. Here we’ll discuss a high-level overview of the different components and what they do.

RpcServer

RpcServer is the exposes a JSON RPC [https://www.jsonrpc.org/specification] server that users can interact with. It pipes calls to different RPC methods to the various other components that can fulfill these requests.

RpcClient

RpcClient handles interactions with other clients and with the operator.

StateDB

StateDB stores information about the current head state.

StateManager

StateManager executes transactions and applies them to the head state. StateManager also handles queries about the current state. StateManager is the only component with access to StateDB.

HistoryDB

HistoryDB stores historical information about the plasma chain. HistoryDB is primarily used to store history proof information necessary to assert the validity of a given transaction.

HistoryManager

HistoryManager handles queries about historical state and generates history proofs. HistoryManager is the only component with access to HistoryDB.

PluginManager

PluginManager handles access to the various predicate plugins loaded into the client. Other components are expected to go through PluginManager whenever they want to interact with a plugin.

EventWatcher

EventWatcher watches for various important events on Ethereum. Components can request that EventWatcher watch a specific event and will be notified whenever the event is fired. EventWatcher is designed to be robust as not to miss events or notify components of the same event multiple times.

ContractWrapper

ContractWrapper is a simple wrapper around the smart contracts the client needs to interact with. All components, except for EventWatcher, are expected to only interact with Ethereum through ContractWrapper.

Architecture Diagram

We’ve provided a diagram of the interactions between the various client components below.

Client Architecture Diagram

 MerkleIntervalTree

MerkleIntervalTree

Description

Our plasma implementation uses a special Merkle tree called a Merkle Interval Tree. This page describes the interface for an implementation of the tree.

API

Structs

MerkleIntervalTreeLeafNode

interface MerkleIntervalTreeLeafNode {
 start: number
 end: number
 data: string
}

Description

Represents a leaf node in the tree.

Fields

	start - number: Start of the range this leaf node covers.

	end - number: End of the range this leaf node covers.

	data - string: Arbitrary data held by the leaf node.

MerkleIntervalTreeInternalNode

interface MerkleIntervalTreeInternalNode {
 index: number
 hash: string
}

Description

Represents an internal node in the interval tree.

Fields

	index - number: Index value of the node’s left child.

	hash - string: Hash of the node’s children.

Methods

getInclusionProof

function getInclusionProof(
 leaf: MerkleIntervalTreeLeafNode
): Promise<MerkleIntervalTreeInternalNode[]>

Description

Generates an inclusion proof for a given leaf node.

Parameters

	leaf - MerkleIntervalTreeLeafNode: Leaf node to generate a proof for.

Returns

MerkleIntervalTreeInternalNode[]: List of internal nodes that form the inclusion proof.

checkInclusionProof

function checkInclusionProof(
 leaf: MerkleIntervalTreeLeafNode,
 leafIndex: number,
 root: MerkleIntervalTreeInternalNode,
 inclusionProof: MerkleIntervalTreeInternalNode[]
): boolean

Description

Checks an inclusion proof for a given leaf node.

Parameters

	leaf - MerkleIntervalTreeLeafNode: Leaf node to check inclusion for.

	leafIndex - number: Index of the leaf node in the list of leaf nodes.

	root - MerkleIntervalTreeInternalNode: Root of the Merkle Interval Tree.

	inclusionProof - MerkleIntervalTreeInternalNode[]: List of internal nodes that form the inclusion proof.

Returns

boolean: true if the proof is valid, false otherwise.

 RangeDB

RangeDB

Description

RangeDB is a database abstraction that makes it easy to map ranges, defined by a start and an end, to arbitrary values.

API

Structs

RangeEntry

interface RangeEntry {
 start: number
 end: number
 value: Buffer
}

Description

Represents a value in the database. All values are constructed with respect to some range, defined by start and end.

Fields

	start - number: Start of the range described by this entry.

	end - number: End of the range described by this entry.

	value - Buffer: Value at this specific range.

Methods

get

async function get(start: number, end: number): Promise<RangeEntry[]>

Description

Queries RangeEntry values that intersect with a given start and end. Ranges must be treated as start-inclusive and end-exclusive.

Parameters

	start - number: Start of the range to query.

	end - number: End of the range to query.

Returns

Promise<RangeEntry[]>: All RangeEntry objects in the database such that entry.start and entry.end intersect with the given start and end.

put

async function put(start: number, end: number, value: Buffer): Promise<void>

Description

Adds a value to the database at a given range. Overwrites all existing RangeEntry objects that overlap with the range. put MUST modify or break apart existing RangeEntry objects if the given range only partially overlaps with the object. For example, if we currently have a RangeEntry over the range (0, 100) and call put(25, 75, "some value"), this function must break the existing RangeEntry into new entries for (0, 25) and (75, 100).

Parameters

	start - number: Start of the range to insert into.

	end - number: End of the range to insert into.

	value - Buffer: Value to insert into the range as a Buffer [https://nodejs.org/api/buffer.html].

Returns

Promise<void>: Promise that resolves once the range has been inserted.

del

async function del(start: number, end: number): Promise<void>

Description

Deletes the values for the given range. Will insert new RangeEntry objects or modify existing ones when the given range only partially overlaps with those already in the database. This method MUST delete objects under the same scheme described above for put.

Parameters

	start - number: Start of the range to delete.

	end - number: End of the range to delete.

Returns

Promise<void>: Promise which resolves once the range has been deleted.

 ContractWrapper

ContractWrapper

Description

ContractWrapper provides an interface for interacting with the various plasma chain smart contracts. Other components are expected to go through ContractWrapper whenever they want to interact with smart contracts.

API

Methods

Todo

Add ContractWrapper methods.

 EventWatcher

EventWatcher

Description

Plasma chain contracts emit various important Ethereum contract events [https://media.consensys.net/technical-introduction-to-events-and-logs-in-ethereum-a074d65dd61e] that the client needs to be aware of. These events include things like notifications of deposits and exits. EventWatcher provides the necessary functionality to watch for these events.

Event Uniqueness

It’s often important that an event only be handled once. We might otherwise end up in a situation in which, for example, a client attempts to credit the same deposit twice. We also don’t want to increase client load by querying the same events multiple times.

EventWatcher is therefore slightly more complicated than a basic Ethereum event watcher. Each EventWatcher instance has access to a local database that it MUST use to store the hash of any event that’s already been seen. The hash of an event is computed as the keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the hash of the ABI encoded transaction that emitted event prepended to the index of the event.

EventWatcher will also store the current block up to which it has checked for a given event on a given contract. EventWatcher MUST store a different block for each tuple of (contract, event name, event filter).

API

Methods

on

function on(
 contractAddress: string,
 contractAbi: any,
 eventName: string,
 eventFilter: any,
 callback: (eventName: string, eventData: any) => void
): void

Description

Starts watching an event for a given contract.

Parameters

	contractAddress - string: Address of the contract to watch.

	contractAbi - any: JSON ABI [https://solidity.readthedocs.io/en/v0.5.9/abi-spec.html] of the contract to watch.

	eventName - string: Name of the event to watch.

	eventFilter - any: An event filter for the event.

	callback - (eventName: string, eventData: any) => void: Callback to be triggered whenever a matching event is detected in the smart contract.

off

function off(
 contractAddress: string,
 contractAbi: any,
 eventName: string,
 eventFilter: any,
 callback: (eventName: string, eventData: any) => void
): void

Description

Stops watching an event for a given contract. Will only remove the listener that corresponds to the specific event name, filter, and callback provided.

Parameters

	contractAddress - string: Address of the contract to watch.

	contractAbi - any: JSON ABI [https://solidity.readthedocs.io/en/v0.5.9/abi-spec.html] of the contract to watch.

	eventName - string: Name of the event to watch.

	eventFilter - any: An event filter for the event.

	callback - (eventName: string, eventData: any) => void: Callback to be triggered whenever a matching event is detected in the smart contract.

 WalletDB

WalletDB

Description

WalletDB stores and manages access to standard keystore [https://theethereum.wiki/w/index.php/Accounts,_Addresses,_Public_And_Private_Keys,_And_Tokens#UTC_JSON_Keystore_File] files. We require that keystore files MUST be encrypted for the safety of user funds.

API

Structs

Keystore

interface Keystore {
 address: string
 crypto: {
 cipher: string
 ciphertext: string
 cipherparams: {
 iv: string
 }
 kdf: string
 kdfparams: {
 dklen: number
 n: number
 p: number
 r: number
 salt: string
 }
 mac: string
 }
 id: string
 version: number
}

Description

Standard format for storing keystore objects [https://theethereum.wiki/w/index.php/Accounts,_Addresses,_Public_And_Private_Keys,_And_Tokens#UTC_JSON_Keystore_File] in Ethereum.

Methods

putKeystore

async function setKeystore(address: string): Promise<void>

Description

Sets the keystore file for a given address.

Parameters

	address - string: Address to set a keystore for.

Returns

Promise<void>: Promise that resolves once the keystore has been inserted.

getKeystore

async function getKeystore(address: string): Promise<Keystore>

Description

Pulls the keystore file for a given address.

Parameters

	address - string: Address to query a keystore for.

Returns

Promise<Keystore>: The Keystore object associated with that address.

listAddresses

async function listAddresses(): Promise<string[]>

Description

Queries the list of all available account addresses with keystore files.

Returns

Promise<string[]>: List of account addresses where the DB has a keystore file.

 Wallet

Wallet

Description

Clients often need to create signatures in order to authenticate transactions. The Wallet component provides a standard interface for creating new accounts, querying existing accounts, and signing arbitrary data.

API

Methods

listAccounts

async function listAccounts(): Promise<string[]>

Description

Queries the addresses of all accounts stored in the wallet.

Returns

Promise<string[]>: List of all account addresses in the wallet.

createAccount

async function createAccount(password: string): Promise<string>

Description

Creates an account and returns the new account’s address. Encrypts the account with a given password.

Parameters

	password - string: Password used to encrypt the account.

Returns

Promise<string>: Address of the newly created account.

 PredicatePlugin

PredicatePlugin

Description

Clients need a way to execute state transitions for a given predicate. However, it’s too slow and complex to execute these state transitions in a virtual version of the EVM. As a result, Predicates MUST supply client-side code, called a predicate plugin, that can compute state transitions. Predicate plugins MUST conform a standard interface as described below.

Information Sources

Predicate plugins have access to various external sources of information. Plugins can use this information for various reasons, including the execution of state transitions. All information available to a plugin MUST also be available to the corresponding predicate contract on Ethereum.

Ethereum Contract Queries

Predicate plugins have access to any information available on Ethereum. As plugins are effectively native implementations of their contract counter-parts, plugins should be careful not to rely on information not available to the contract (like event logs).

Plasma State Queries

Predicate contracts on Ethereum can be fed information about the state of the plasma chain. Predicate plugins are therefore given a reference to StateManager and HistoryManager that permit the plugin to make queries about the existence (or non-existence) of a given StateUpdate in the plasma chain.

Plasma State Updates

Predicates MUST be able to insert state updates into the local plasma chain. Most predicates SHOULD NOT use this behavior, but certain predicates may require to function correctly.

API

Methods

executeStateTransition

async function executeStateTransition(
 input: StateUpdate,
 transaction: Transaction
): Promise<StateUpdate>

Description

Executes a transaction and returns the resulting state upate.

Parameters

	input - StateUpdate: Previous StateUpdate that the transaction acts upon.

	transaction - Transaction: Transaction to execute.

Returns

Promise<StateUpdate>: Resulting StateUpdate created by the application of the transaction.

queryState

async function queryState(stateUpdate: StateUpdate, method: string, parameters: string[]): Promise<string[]>

Description

Performs a query on a given state update.

Parameters

	stateUpdate - StateUpdate: The StateUpdate object to perform a query on.

	method - string: Name of the query method to call.

	parameters - string[]: Additional parameters to the query.

Returns

string[]: List of return values based on the predicate’s API.

getAdditionalHistoryProof

async function getAdditionalHistoryProof
 transaction: Transaction
): Promise<HistoryProof>

Description

Predicates may specify rely on the existence (or non-existence) of a given StateUpdate in the plasma chain. Whenever this is the case, the client must verify the history proof for that StateUpdate. This method allows a predicate to specify any additional history proof information that may be necessary to verify these extra StateUpdate objects.

Parameters

	transaction - Transaction: The Transaction that may require additional proof data.

Returns

Promise<HistoryProof>: The HistoryProof object that contains the extra proof data. May be an empty array if the transaction requires no additional history proof data.

canReplaceTransaction

async function canReplaceTransaction(
 oldTransaction: Transaction,
 newTransaction: Transaction
): Promise<boolean>

Description

Plasma blocks are composed of commitments to StateUpdate objects. Each StateUpdate is computed from a previous StateUpdate and a Transaction. It’s possible for one transaction to generate the same StateUpdate as another transaction, and therefore still be a valid component of a history proof, but have significantly less overhead than the other. Clients may wish to “replace” one transaction with another to reduce proof overhead.

Predicates can define an arbitrary heuristic within this method to determine if one transaction is preferable to another.

Parameters

	oldTransaction - Transaction: Original Transaction to be replaced.

	newTransaction - Transaction: New Transaction to replace the original.

Returns

boolean: true if the newer transaction should replace the older one, false otherwise.

onTransitionFrom

async function onTransitionFrom(
 transaction: Transaction,
 from: StateUpdate,
 to: StateUpdate,
 verifiedRanges: Range[]
): Promise<void>

Description

Hook called whenever a StateUpdate locked by the predicate has been transitioned away from. Predicates may wish to use this hook to carry out some internal logic.

Parameters

	transaction - Transaction: The Transaction which executed a state transition.

	from - StateUpdate: The old StateUpdate transitioned away from by the transaction.

	to - StateUpdate: The new StateUpdate created by the transaction.

	verifiedRanges - Range[]: Parts of the range described by to with a fully verified history. It’s possible that a transaction creates a StateUpdate with only a partially verified history. For example, we may have a transaction that sends state objects (0, 100) but have only verified (0, 50). This is considered valid behavior as we simply ignore (50, 100) until we have its full history.

Returns

Promise<void>: Promise that resolves once the predicate has executed some logic for the hook.

onTransitionTo

async function onTransitionTo(
 transaction: Transaction,
 from: StateUpdate,
 to: StateUpdate,
 verifiedRanges: Range[]
): Promise<void>

Description

Hook called whenever a Transaction creates a new StateUpdate locked by the predicate. Predicates may wish to use this hook to carry out some internal logic.

Parameters

	transaction - Transaction: The Transaction which executed a state transition.

	from - StateUpdate: The old StateUpdate transitioned away from by the transaction.

	to - StateUpdate: The new StateUpdate created by the transaction.

	verifiedRanges - Range[]: Parts of the range described by to with a fully verified history. It’s possible that a transaction creates a StateUpdate with only a partially verified history. For example, we may have a transaction that sends state objects (0, 100) but have only verified (0, 50). This is considered valid behavior as we simply ignore (50, 100) until we have its full history.

Returns

Promise<void>: Promise that resolves once the predicate has executed some logic for the hook.

 PluginManager

PluginManager

Description

The PluginManager handles loading and accessing PredicatePlugin objects. Other components are expected to go through the PluginManager whenever they intend to access a specific PredicatePlugin.

API

Methods

loadPlugin

async function loadPlugin(
 address: string,
 path: string
): Promise<PredicatePlugin>

Description

Loads a plugin at a given file path and assigns it to a specific address.

Parameters

	address - string: Address of the predicate to load a plugin for.

	path - string: Path to the predicate plugin to load.

Returns

Promise<PredicatePlugin>: The loaded PredicatePlugin.

getPlugin

async function getPlugin(address: string): Promise<PredicatePlugin>

Description

Returns the plugin for the predicate with the given address.

Parameters

	address - string: Address of the predicate to get a plugin for.

Returns

Promise<PredicatePlugin>: The PredicatePlugin that corresponds to the given address.

 History Proof Structure

History Proof Structure

Description

In every plasma block, a range of state objects can either be deposited, transacted, or not transacted. Whenever clients want to verify a `transaction`_ on a specific range, they need to verify the entire “history” of what happened to the range between the block in which it was first deposited and the block in which the transaction occurred.

For example, let’s imagine that a range (0, 100) was deposited in block 1, not transacted in block 2, and then transacted in block 3. The history proof for a transaction in block 4 would contain the deposit, a proof that the range wasn’t transacted in block 2, and a proof that the range was transacted in block 3.

This page will describe the data structure that make up a history proof. We describe the history proof process in more detail separately.

Data Structures

DepositElement

interface DepositElement {
 block: number
 depositId: string
}

Description

Proof element for importing deposits.

Fields

	block - number: Block in which the deposit was included.

	depositId - string: ID of the deposit.

StateUpdateElement

interface StateUpdateElement {
 block: number
 transactions: Transaction[]
 inclusionProof: InclusionProof
}

Description

Proof element that transitions an existing state update with some given transactions.

Fields

	block - number: Block in which the new state update was included.

	transactions - Transaction[]: List of `Transaction`_ objects that generated the new state update.

	inclusionProof - InclusionProof: An InclusionProof for the generated state update.

NonInclusionElement

interface NonInclusionElement {
 block: number
 stateUpdate: StateUpdate
 inclusionProof: InclusionProof
}

Description

Proof element that shows a given range was not spent in a specific block.

Fields

	block - number: Block in which the state update was included.

	stateUpdate - StateUpdate: State update whose implicit range proves that a specific range of state objects were not spent in a specific block.

	inclusionProof - InclusionProof: An InclusionProof that shows the state update was included in the specified block.

HistoryProof

type HistoryProof = Array<DepositElement | StateUpdateElement | NonInclusionElement>

Description

A list of DepositElement, StateUpdateElement, and NonInclusionElement objects.

 HistoryDB

HistoryDB

Description

HistoryDB provides a simple interface to the set of historical StateUpdate objects. HistoryDB also stores all values necessary to prove the history of a given state object, including the Merkle Interval Tree inclusion proofs for each state update and the transactions that created those state updates.

API

Methods

getStateUpdate

async function getStateUpdate(
 stateUpdateHash: string
): Promise<StateUpdate>

Description

Queries a full state update from the hash of the state update.

Parameters

	stateUpdateHash - string: keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the state update.

Returns

Promise<StateUpdate>: Full state update that corresponds to the given hash.

putStateUpdate

async function putStateUpdate(stateUpdate: StateUpdate): Promise<void>

Description

Adds a state update to the database.

Parameters

	stateUpdate - StateUpdate: StateUpdate to add to the database.

Returns

Promise<void>: Promise that resolves once the state update has been added to the database.

getStateUpdateTransactions

getStateUpdateTransactions(
 stateUpdateHash: string
): Promise<Transaction[]>

Description

Queries the list of Transaction objects that created the given state update.

Parameters

	stateUpdateHash - string: keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the state update to query.

Returns

Promise<Transaction[]>: List of Transaction objects that created the given state update.

putStateUpdateTransactions

async function putStateUpdateTransactions(
 stateUpdateHash: string,
 transactions: Transaction[]
): Promise<void>

Description

Stores the set of transactions that created a given state update.

Parameters

	stateUpdateHash - string: keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the state update to set transactions for.

	transactions - Transaction[]: List of transactions that created the given state update.

Returns

Promise<void>: Promise that resolves once the transactions have been stored.

getStateUpdateLeafPosition

async function getStateUpdateLeafPosition(
 stateUpdateHash: string
): Promise<number>

Description

Gets the `leaf position`_ of a given state update within the Merkle Interval Tree of the block in which the state update was included.

Parameters

	stateUpdateHash - string: keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the state update to query.

Returns

Promise<number>: Leaf position of the given state update.

putStateUpdateLeafPosition

async function putStateUpdateLeafPosition(
 stateUpdateHash: string,
 leafPosition: number
): Promise<void>

Description

Sets the leaf position for a given state update within the Merkle Interval Tree of the block in which the state update was included.

Parameters

	stateUpdateHash - string: keccak256 [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use] hash of the state update.

	leafPosition - number: Leaf position for the state update.

Returns

Promise<void>: Promise that resolves once the leaf position has been set.

getBlockStateUpdateCount

async funtion getBlockStateUpdateCount(
 block: number
): Promise<number>

Description

Gets the number of state updates that occurred within a given block.

Parameters

	block - number: Block to query.

Returns

Promise<number>: Number of state updates that occurred within the given block.

putBlockStateUpdateCount

async function putBlockStateUpdateCount(
 block: number,
 stateUpdateCount: number
): Promise<void>

Description

Sets the number of state updates that were included within a given block.

Parameters

	block - number: Block to set a count for.

	stateUpdateCount - number: Number of state updates included within the specified block.

Returns

Promise<void>: Promise that resolves once the state update count has been stored.

getStateTreeNode

async function getStateTreeNode(
 block: number,
 nodeIndex: number
): Promise<MerkleIntervalStateTreeNode>

Description

Queries a node in the state tree.

Parameters

	block - number: Block for which to query a node.

	nodeIndex - number: Index of the node to query.

Returns

Promise<MerkleIntervalStateTreeNode>: The MerkleIntervalStateTreeNode at the given block and node index.

putStateTreeNode

async function putStateTreeNode(
 block: number,
 nodeIndex: number,
 node: MerkleIntervalStateTreeNode
): Promise<void>

Description

Adds a node to the state tree for a given block.

Parameters

	block - number: Block to add a state tree node for.

	nodeIndex - number: Index of the node to insert.

	node - MerkleIntervalStateTreeNode: State tree node to add to the tree.

Returns

Promise<void>: Promise that resolves once the node has been inserted into the tree.

getAddressTreeNode

async function getAddressTreeNode(
 block: number,
 nodeIndex: number
): Promise<MerkleIntervalAddressTreeNode>

Description

Gets a node in the address tree of a given block.

Parameters

	block - number: Block for which to query an address tree node.

	nodeIndex - number: Index of the node to query.

Returns

Promise<MerkleIntervalAddressTreeNode>: The MerkleIntervalAddressTreeNode at the given index for the specified block.

putAddressTreeNode

async function putAddressTreeNode(
 block: number,
 nodeIndex: number,
 node: MerkleIntervalAddressTreeNode
): Promise<void>

Description

Sets a node in the address tree of a given block.

Parameters

	block - number: Block for which to set an address tree node.

	nodeIndex - number: Index of the node in the address tree.

	node - MerkleIntervalAddressTreeNode: Node to insert into the tree.

Returns

Promise<void>: Promise that resolves once the node has been added to the tree.

 HistoryManager

HistoryManager

Description

HistoryManager is a wrapper around HistoryDB that provides easy access to specific historical data. HistoryManager handles things like generating history proofs, creating inclusion proofs, and inserting historical state updates.

We’ve separated HistoryManager from HistoryDB to avoid coupling the underlying data storage with more complex queries.

API

Methods

getHistoryProof

async function getHistoryProof(
 start: number,
 end: number,
 startBlock: number,
 endBlock: number,
 plasmaContract: string
): Promise<HistoryProof>

Description

Generates a proof for the history of a given range of state objects. Only returns the history for a specified block range so that a user with a known state doesn’t need to receive a significant amount of duplicate information.

Parameters

	start - number: Start of the range of state objects to query.

	end - number: End of the range of state objects to query.

	startBlock - number: Block number to start querying history from.

	endBlock - number: Block number to query history to.

	plasmaContract - string: Address of the specific plasma contract to query.

Returns

HistoryProof: A HistoryProof composed of proof elements that, when applied sequentially, build a valid history for the given range.

getInclusionProof

function getInclusionProof(
 stateUpdate: StateUpdate
): Promise<InclusionProof>

Description

Generates an inclusion proof for a given state update. Creates a proof for both the upper-level address tree and the lower-level state tree. Will throw an error if the client does not have enough information to generate the proof.

Parameters

	stateUpdate - StateUpdate: The StateUpdate object to generate an inclusion proof for.

Returns

InclusionProof: An InclusionProof that contains Merkle Interval Tree inclusion proofs for both the address tree and the state tree.

 StateDB

StateDB

Description

StateDB handles storage and modification of the local verified state. StateDB is frequently used by StateManager to keep track of the known state and to verify incoming transactions.

API

Structs

VerifiedStateUpdate

interface VerifiedStateUpdate {
 start: number
 end: number
 verifiedBlockNumber: number
 stateUpdate: StateUpdate
}

Description

Represents a StateUpdate that has been correctly verified up to a specific block. verifiedBlockNumber is updated whenever a exclusion proof implicitly demonstrates that the given state update is valid for verifiedBlockNumber + 1.

Fields

	start - number: Start of the range for which this state update is still valid.

	end - number: End of the range for which this state update is still valid.

	verifiedBlockNumber - number: Plasma block number up to which this state update has been verified.

	stateUpdate - StateUpdate: Full original state update.

Methods

getVerifiedStateUpdates

async function getVerifiedStateUpdates(start: number, end: number): Promise<VerifiedStateUpdate[]>

Description

Pulls all VerifiedStateUpdate objects such that the range described by start and end intersects with the VerifiedStateUpdate. Intersection MUST be computed as start-inclusive and end-exclusive, i.e. (start, end].

Parameters

	start - number: Start of the range to query.

	end - number: End of the range to query.

Returns

Promise<VerifiedStateUpdate[]>: List of VerifiedStateUpdate objects that intersect with the given range.

putVerifiedStateUpdate

async function putVerifiedStateUpdate(
 verifiedStateUpdate: VerifiedStateUpdate
): Promise<void>

Description

Adds a new VerifiedStateUpdate object to the database. Overwrites, modifies, or breaks apart any existing objects in the database that intersect with the given one.

Parameters

	verifiedStateUpdate - VerifiedStateUpdate: The VerifiedStateUpdate object to insert into the database.

Returns

Promise<void>: Promise that resolves once the object has been added to the database.

 StateManager

StateManager

Description

StateManager primarily handles incoming transactions that modify the current and historical state. StateManager effectively acts as a wrapper around StateDB but also makes some calls to HistoryManager.

API

Data Structures

StateQuery

interface StateQuery {
 plasmaContract: string
 predicateAddress: string
 start?: number
 end?: number
 method: string
 params: string[]
 filter?: Expression
}

Description

Represents a query for some information about the current state.

Fields

	plasmaContract - string: Address of the plasma contract to query. Clients may track multiple plasma contracts, so this parameter is necessary to resolve the correct data.

	predicateAddress - string: Address of the predicate to query.

	start? - number: Start of the range to query. If not provided, will default to the 0.

	end? - number: End of the range to query. If not provided, will default to the max range value.

	method - string: Name of the method to call.

	params - string[]: List of parameters to the call.

	filter? - Expression: An Expression to use to filter results. May be omitted to return all results.

StateQueryResult

interface StateQueryResult {
 stateUpdate: StateUpdate
 result: string[]
}

Description

Element of the list of results returned when a client makes a state query.

Fields

	stateUpdate - StateUpdate: StateUpdate object to which the result pertains.

	result - string[]: Result values of the query corresponding to the output values described in the Predicate API.

Methods

executeTransaction

async function executeTransaction(
 transaction: Transaction
): Promise<{ stateUpdate: StateUpdate, validRanges: Range[] }>

Description

Executes a `transaction`_ against the current verified state and returns the resulting state update.

Transactions reference a range of state objects that they’re attempting to modify. It’s possible that we only have the full valid history for some of the referenced state objects but not others. This behavior is allowed by construction. As a result, this method also returns the list of ranges over which the transaction can be considered “valid”.

For example, we may have a valid history for the ranges (0, 50) and a transaction that sends (0, 100). We can assert that the transaction is valid for (0, 50) but cannot make the same assertion for (50, 100).

Parameters

	transaction - Transaction: `Transaction`_ to execute against the verified state.

Returns

Promise<{ stateUpdate: StateUpdate, validRanges: Range[] }>: The StateUpdate created as a result of the transaction and the list of ranges over which the state update has been validated.

ingestHistoryProof

async function ingestHistoryProof(
 historyProof: HistoryProof
): Promise<void>

Description

Validates a given HistoryProof, which consists of elements that are either deposits (“Deposit Proof Elements”), transactions (“State Update Proof Elements”), or state updates that prove a given range was not included in a specific block (“Exclusion Proof Elements”).

Parameters

	historyProof - HistoryProof: A HistoryProof to validate.

Returns

Promise<void>: Promise that resolves once the proof has been applied or rejected.

queryState

async function queryState(query: StateQuery): Promise<StateQueryResult[]>

Description

Performs a query on the local state.

Parameters

	query - StateQuery: A StateQuery object with information about what state to query.

Returns

Promise<StateQueryResult[]>: A StateQueryResult object for each state update that passed the filter provided in the query.

 SyncDB

SyncDB

Description

SyncDB is used by the SyncManager to store information about current synchronization statuses.

API

Methods

getCommitmentContracts

async function getCommitmentContracts(): Promise<string[]>

Description

Gets the list of commitment contracts the client is currently watching.

Returns

Promise<string[]>: List of commitment contract addresses to synchronize with.

getDepositContracts

async function getDepositContracts(
 commitmentContract: string
): Promise<string[]>

Description

Gets the list of deposit contracts that are connected to a given commitment contract.

Parameters

	commitmentContract - string: Address of the commitment contract to get deposit contracts for.

Returns

Promise<string[]>: List of deposit contract addresses connected to a given commitment contract.

addDepositContract

async function addDepositContract(
 commitmentContract: string,
 depositContract: string
): Promise<void>

Description

Connects a deposit contract to a commitment contract.

Parameters

	commitmentContract - string: Address of the commitment contract to connect to.

	depositContract - string: Address of the deposit contract to connect.

Returns

Promise<void>: Promise that resolves once the contracts have been connected.

removeDepositContract

async function removeDepositContract(
 commitmentContract: string,
 depositContract: string
): Promise<void>

Description

Removes a connection between a deposit contract and a commitment contract.

Parameters

	commitmentContract - string: Commitment contract to remove the connection from.

	depositContract - string: Deposit contract to remove.

Returns

Promise<void>: Promise that resolves once the contracts have been disconnected.

putLastSyncedBlock

async function putLastSyncedBlock(
 plasmaContract: string,
 block: number
): Promise<void>

Description

Sets the last block up to which the client has synchronized with a given plasma contract.

Parameters

	plasmaContract - string: ID of the plasma chain to set last block for.

	block - number: Last block up to which the client has synchronized.

Returns

Promise<void>: Promise that resolves once the block has been set.

getLastSyncedBlock

async function getLastSyncedBlock(plasmaContract: string): Promise<number>

Description

Gets the last block up to which the client has synchronized with a given plasma contract.

Parameters

	plasmaContract - string: Contract to query the last synced block for.

Returns

Promise<number>: Block up to which the client has synchronized.

addSyncQuery

async function addSyncQuery(
 plasmaContract: string,
 stateQuery: StateQuery
): Promise<void>

Description

Adds a StateQuery to the list of queries to execute for a given plasma contract.

Parameters

	plasmaContract - string: Contract to add a query for.

	stateQuery - StateQuery: Query to add for the contract.

Returns

Promise<void>: Promise that resolves once the query has been added.

removeSyncQuery

async function removeSyncQuery(
 plasmaContract: string,
 stateQuery: StateQuery
): Promise<void>

Description

Removes a StateQuery from the list of queries to execute for a given plasma contract.

Parameters

	plasmaContract - string: Contract to remove a query for.

	stateQuery - StateQuery: Query to remove for the contract.

Returns

Promise<void>: Promise that resolves once the query has been removed.

getSyncQueries

async function getSyncQueries(
 plasmaContract: string
): Promise<StateQuery[]>

Description

Returns the StateQuery objects to execute for a given plasma contract.

Parameters

	plasmaContract - string: Contract to get sync queries for.

Returns

Promise<StateQuery[]>: List of queries to execute for a given contract.

 SyncManager

SyncManager

Description

SyncManager runs in the background and automatically synchronizes the client’s state with the operator’s state. It watches for new block submissions and queries the operator for any relevant state updates.

API

Methods

addDepositContract

async function addDepositContract(
 commitmentContract: string,
 depositContract: string
): Promise<void>

Description

Connects a deposit contract to a commitment contract.

Parameters

	commitmentContract - string: Address of the commitment contract to connect to.

	depositContract - string: Address of the deposit contract to connect.

Returns

Promise<void>: Promise that resolves once the contracts have been connected.

removeDepositContract

async function removeDepositContract(
 commitmentContract: string,
 depositContract: string
): Promise<void>

Description

Removes a connection between a deposit contract and a commitment contract.

Parameters

	commitmentContract - string: Commitment contract to remove the connection from.

	depositContract - string: Deposit contract to remove.

Returns

Promise<void>: Promise that resolves once the contracts have been disconnected.

getLastSyncedBlock

async function getLastSyncedBlock(plasmaContract: string): Promise<number>

Description

Gets the last block up to which the manager has synchronized for a given plasma chain.

Parameters

	plasmaContract - string: ID of the plasma chain to get the last synced block for.

Returns

Promise<number>: Block up to which the manager has synchronized.

addSyncQuery

async function addSyncQuery(
 plasmaContract: string,
 stateQuery: StateQuery
): Promise<void>

Description

Adds a `StateQuery`_ to the list of queries to call on a specific plasma chain when the synchronization loop triggers. Necessary because different predicates can be parsed in different ways and the manager needs to know what to look for.

Parameters

	plasmaContract - string: ID of the plasma contract to add a query for.

	stateQuery - StateQuery: `StateQuery`_ to add for that contract.

Returns

Promise<void>: Promise that resolves once the query has been added.

removeSyncQuery

async function removeSyncQuery(
 plasmaContract: string,
 stateQuery: StateQuery,
): Promise<void>

Description

Removes a `StateQuery`_ to the list of queries to call on a specific plasma chain when the synchronization loop triggers.

Parameters

	plasmaContract - string: ID of the plasma contract to remove a query for.

	stateQuery - StateQuery: `StateQuery`_ to remove for that contract.

Returns

Promise<void>: Promise that resolves once the query has been added.

getSyncQueries

async function getSyncQueries(plasmaContract: string): Promise<StateQuery[]>

Description

Returns the list of active `StateQuery`_ objects the manager is using when the synchronization loop triggers.

Parameters

	plasmaContract - string: Contract to get active queries for.

Returns

Promise<StateQuery[]>: A list of `StateQuery`_ objects the manager is using.

 RpcClient

RpcClient

Description

RpcClient is simple client wrapper for any JSON RPC server. RpcClient can be used to make requests to the operator or to any other client. A list of available RPC methods are specified separately.

API

Methods

send

async function send(request: JsonRpcRequest): Promise<JsonRpcResponse>

Description

Sends a JSON RPC request to the client’s specified server and returns the corresponding JSON RPC response.

Parameters

	request - JsonRpcRequest: A JSON RPC request object to send to the server.

Returns

JsonRpcResponse: A JSON RPC response object sent back by the server.

 RpcServer

RpcServer

Description

Each client MUST provide a JSON RPC server so that other clients can interact with it. RpcServer is a standard module that exposes a JSON RPC server over HTTP. A list of required RPC methods are specified separately.

API

Methods

serve

async function serve(): Promise<void>

Description

Starts the server.

Returns

Promise<void>: Promise that resolves once the server has started.

close

async function close(): Promise<void>

Description

Shuts down the server.

Returns

Promise<void>: Promise that resolves once the server has been shut down.

 Introduction

Introduction

 BlockDB

BlockDB

Description

Todo

Add description for BlockDB.

API

Methods

putStateUpdate

Description

Parameters

Returns

 BlockManager

BlockManager

Description

Todo

Add description for block manager.

API

Methods

getNextBlockNumber

async function getNextBlockNumber(): Promise<number>

Description

Gets the number of the next block to be published.

Returns

Promise<number>: Number of the next block to be published.

enqueueStateUpdate

async function enqueueStateUpdate(
 stateUpdate: StateUpdate
): Promise<void>

Description

Adds a state update to the queue of updates to be added to the next block.

Parameters

	stateUpdate - StateUpdate: State update to add to the queue.

Returns

Promise<void>: Promise that resolves once the state update has been added to the queue.

getPendingStateUpdates

async function getPendingStateUpdates(): Promise<StateUpdate[]>

Description

Gets the list of state updates that are pending for inclusion in the next block.

Returns

Promise<StateUpdate[]>: List of state updates queued for inclusion in the next block.

submitNextBlock

async function submitNextBlock(): Promise<void>

Description

Merklizes the next block and sends the header to Ethereum.

Returns

Promise<void>: Promise that resolves once the block has been submitted.

 OperatorStateManager

OperatorStateManager

Description

Todo

Add description for OperatorStateManager.

API

Methods

ingestTransaction

async function ingestTransaction(
 transaction: Transaction
): Promise<string>

Description

Ingests an incoming transaction and enqueues it for inclusion in the next block.

Parameters

	transaction - Transaction: The Transaction to ingest.

Returns

Promise<string>: Receipt for the given transaction.

 SimpleOwnership Predicate

SimpleOwnership Predicate

Overview

The ownership predicate is the one of the simplest useful predicates. It gives an address, specified as the state.data.owner , the ability to execute a state transition which changes any part of the owned subrange to a new StateObject by signing an approval transaction.

Predicate API

getOwner

{
 name: "getOwner",
 constant: true,
 inputs: [],
 outputs: [
 {
 name: "stateOwner",
 type: "address"
 }
]
}

Description

The getOwner API method allows the client or operator to query the current owner of the state.

Inputs

N/A

Outputs

	stateOwner - address: the current owner based on the state object. Will equal data.owner .

Justification

This function allows developers to get the owner without directly dissecting the state object.

send

{
 name: "send",
 constant: false,
 inputs: [
 {
 name: "newStateObject",
 type: "StateObject"
 },
 {
 name: "originBlock",
 type: "uint"
 }
],
 outputs: []
}

Description

The send method is used to set the state to a new arbitrary state object, given a signature.

Inputs

	newStateObject - StateObject : the state object that the owner desires to mutate to.

	originBlock - uint : the maximum plasma blocknumber of the ownership StateUpdate s from which you are spending.

Outputs

N/A

Justification

Being able to spend to any new state is the base property of ownership. The targetBlock may be used to produce replay protection while allowing some level of asynchronicity between the client and operator.

State Object Specification

struct ownershipStateData:
 owner: address

Fields

	owner - address: The Ethereum public address of the person who may mutate the state.

Additional Exit Game Logic

N/A

Predicate Contract Logic

Transition Execution

def verifyTransaction(preState: StateUpdate, transaction: Transaction, witness: bytes postState: StateUpdate)

Requirements

	MUST ensure that the witness is a signature by the preState.stateObject.owner on the transaction.

	MUST ensure that the preState.plasmaBlockNumber is less than the input.parameters.originBlock .

	MUST ensure that the postState.range is the same as transaction.start and transaction.end .

	MUST ensure that the transaction.parameters.newState is the same as the postState.state .

Rationale

These conditions allow a signature by the sender to approve only a single output state.

Exit Finalization Logic

def onFinalizeExit(owner: address, ERC20Contract: address, amount: uint256)

Parameters

	owner - address: the owner of the exit.

	ERC20Contract - address: The ERC20 contract the ownership is of.

	amount - uint256: the amount of the ERC20 token being redeemed.

Description

This function is called internally by the predicate when it needs to handle an exit, whether as a limbo target or as a regular exit.

Requirements

	MUST only allow this method to be called internally.

	MUST Send the total amount to the owner .

Rationale

The owner of a range gets all of the assets it corresponds to.

Limbo Exit Logic

As with all predicates in this spec, the ownership predicate supports limbo exit functionality. As such, it MUST fulfill all the methods and requirements outlined in the limbo standard outlined in the contracts section of this spec. Additional requirements for some of the methods in this predicate are shown below. They are quite simple as the ownership predicate is mostly pure functions.

function onTargetedForLimboExit(
 Checkpoint _sourceExit,
 StateUpdate _limboTarget
) public

N/A–just return!

There’s no custom exit logic for the ownership predicate if it’s a limbo exit, so no additional functionality needed.

function canReturnLimboExit(
 Checkpoint _limboSource,
 StateUpdate _limboTarget
 bytes _witness
) public returns (bool)

The _witness is be unused for this predicate.

	MUST ensure that the tx.origin is the state.data.owner of the limboTarget

We require the target owner’s permission to return a limbo exit.

function finalizeExit(
 Checkpoint _exit
) public

	MUST fulfill the generic requirements for finalizeExit.

	MUST make an internal call to onFinalizeExit to send the total amount to the _exit.stateUpdate.owner.

The finalization logic for limbo and non-limbo exits remains the same.

function onFinalizeTargetedExit(
 Checkpoint _exit,
 StateUpdte _target
) public

Logic for the target of a limbo exit to handle the exit’s finalization.

	MUST make an internal call to onFinalizeExit to send the total amount to the _target.stateUpdate.owner.

The finalization logic for limbo and non-limbo exits remains the same.

Verification Plugin

State Transitions

def executeStateTransition(preState: StateUpdate, transaction: StandardTransaction)

Requirements

	MUST ensure that the transaction.witness is a signature by the preState.stateObject.owner .

	MUST ensure that the preState.plasmaBlockNumber is less thana the input.parameters.originBlock .

	MUST return a StateUpdate with a range the same as transaction.start and transaction.end .

	MUST return a StateUpdate with state is the same as the transaction.parameters.newState .

Rationale

These steps always produce a StateUpdate which passes the predicate contract’s verifyStateTransition step.

Guarding Plugin

TODO

 Index

Index

 <no title>

 ComponentName

ComponentName

Description

Detailed description of the core purpose of this component.

API

Structs

StructName

interface StructName {
 field1: Field1Type
 field2: Field2Type
}

Description

Detailed description of this struct and its purpose.

Fields

	field1 - Field1Type: Description of this field.

	field2 - Field2Type: Description of this field.

Public Variables

variableName

variableName: VariableType

Description

Detailed description of this variable and its purpose.

Methods

methodName

function methodName(param1: Param1Type, param2: Param2Type): ReturnType

Description

Detailed description of this method and its purpose.

Parameters

	param1 - Param1Type: Description of this parameter.

	param2 - Param2Type: Description of this parameter.

Returns

ReturnType: Description of the return value.

 ContractName

ContractName

Description

Detailed description of the contract and its purpose.

API

Structs

StructName

struct StructName {
 Field1Type field1;
 Field2Type field2;
}

Description

Description of this struct and its purpose.

Fields

	field1 - Field1Type: Description of this field.

	field2 - Field2Type: Description of this field.

Events

EventName

event EventName(
 Field1Type field1,
 Field2Type field2
);

Description

Detailed description of this event and its purpose.

Fields

	field1 - Field1Type: Description of this field.

	field2 - Field2Type: Description of this field.

Public Variables

variableName

VariableType public variableName;

Description

Detailed description of this variable and its purpose.

Methods

methodName

function methodName(
 Param1Type param1,
 Param2Type param2
) public returns (ReturnType)

Description

Detailed description of this function and its purpose.

Parameters

	param1 - Param1Type: Description of this parameter.

	param2 - Param2Type: Description of this parameter.

Returns

ReturnType: Description of the return value.

 PredicateName

PredicateName

Description

Detailed description of this predicate and what it does.

Predicate API

State Changing Methods

methodName

{
 name: "methodName",
 constant: false,
 inputs: [
 {
 name: "input1",
 type: "Input1Type",
 },
 {
 name: "input2",
 type: "Input2Type"
 }
],
 outputs: [
 {
 name: "output1",
 type: "Output1Type"
 }
]
}

Description

Description of this method and its purpose.

Inputs

	input1 - Input1Type: Description of this input.

	input2 - Input2Type: Description of this input.

Outputs

	output1 - Output1Type: Description of this output.

State Querying Methods

queryMethodName

{
 name: "queryMethodName",
 constant: true,
 inputs: [],
 outputs: [
 {
 name: "output1",
 type: "Output1Type"
 }
]
}

Description

Description of this query and its purpose.

Outputs

	output1 - Output1Type: Description of this output.

State Object Structure

variableName

VariableType variableName;

Description

Description of this variable and its purpose.

Predicate Contract Specification

Methods

executeStateTransition

function executeStateTransition(
 StateUpdate memory _stateUpdate,
 Transaction memory _transaction
) public

Description

Description of this method.

Parameters

	_stateUpdate - StateUpdate: Description of this parameter.

	_transaction - Transaction: Description of this parameter

Requirements

Requirements for this method.

Rationale

Rationale for this method.

getAdditionalExitPeriod

function getAdditionalExitPeriod(
 Checkpoint _exit,
 bytes _witness
) public returns (uint256)

Description

Description of this method.

Parameters

	_exit - Checkpoint: Description of this parameter.

	_witness - bytes: Description of this parameter

Returns

uint256: Description of the return value.

Requirements

Requirements for this method.

Rationale

Rationale for this method.

canStartExitGame

function canStartExitGame(
 Checkpoint _exit,
 bytes _witness
) public returns (boolean)

Description

Description of this method.

Parameters

	_exit - Checkpoint: Description of this parameter.

	_witness - bytes: Description of this parameter

Returns

boolean: Description of the return value.

Requirements

Requirements for this method.

Rationale

Rationale for this method.

onExitGameFinalized

function onExitGameFinalized(
 Checkpoint _exit,
 bytes _witness
) public

Description

Description of this method.

Parameters

	_exit - Checkpoint: Description of this parameter.

	_witness - bytes: Description of this parameter

Requirements

Requirements for this method.

Rationale

Rationale for this method.

Verification Plugin

Methods

executeStateTransition

async function executeStateTransition(
 stateUpdate: StateUpdate,
 transaction: Transaction
): Promise<StateUpdate>

Description

Description of this method.

Parameters

	stateUpdate - StateUpdate: Description of this parameter.

	transaction - Transaction: Description of this parameter.

Returns

Promise<StateUpdate>: Description of the return value.

Requirements

Requirements for this method.

Rationale

Rationale for this method.

Guarding Plugin

Todo

Add this section.

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Plasma Group Generalized Plasma Specification

 		
 Introduction

 		
 TL;DR

 		
 Required Background Knowledge

 		
 Specification Goals

 		
 Specification Structure

 		
 Housekeeping

 		
 Source

 		
 Versioning

 		
 Glossary

 		
 Miscellaneous

 		
 Merkle Interval Tree

 		
 Explicit and Implicit Bounds

 		
 Commitment

 		
 JSON RPC

 		
 Plasma

 		
 Plasma

 		
 Plasma MVP

 		
 Plasma Cash

 		
 Client

 		
 Operator

 		
 Deposit

 		
 Exit

 		
 Checkpoint

 		
 Challenges

 		
 State System

 		
 State Object

 		
 Predicate

 		
 Predicate Plugin

 		
 Transaction

 		
 State Update

 		
 Range

 		
 History Proof

 		
 Asset Tree

 		
 State Tree

 		
 Contributors

 		
 Generalized State System

 		
 State Objects

 		
 State Object Model

 		
 Encoding and Decoding

 		
 Predicates

 		
 Predicate Methods

 		
 Method Identifiers

 		
 Predicate API

 		
 Transactions

 		
 Transaction Model

 		
 Encoding and Decoding

 		
 Transaction Hash

 		
 State Updates

 		
 State Update Model

 		
 Encoding and Decoding

 		
 State Update Hash

 		
 State Object Ranges

 		
 Background

 		
 Transactions

 		
 Rationale

 		
 Requirements

 		
 Merkle Interval Tree

 		
 Background

 		
 Tree Structure

 		
 Leaf Node

 		
 Internal Node

 		
 Tree Generation

 		
 Pseudocode

 		
 Merkle Proofs

 		
 Proof Generation

 		
 Proof Verification

 		
 Tree Diagram

 		
 Double Layer Merkle Tree

 		
 Background

 		
 State Tree

 		
 Address Tree

 		
 Tree Diagram

 		
 JSON RPC

 		
 Description

 		
 Data Structures

 		
 JsonRpcRequest

 		
 JsonRpcSuccessResponse

 		
 JsonRpcError

 		
 JsonRpcErrorResponse

 		
 JsonRpcResponse

 		
 Contracts Overview

 		
 Introduction

 		
 Commitment Contract

 		
 Deposit Contract

 		
 Predicate Contracts

 		
 Deposit Contract

 		
 Coin Fork Choice Rule

 		
 Exits

 		
 Checkpoints

 		
 Challenges

 		
 Deposit Contract

 		
 Description

 		
 API

 		
 Structs

 		
 Public Variables

 		
 Events

 		
 Methods

 		
 Commitment Contract

 		
 Description

 		
 API

 		
 Events

 		
 Public Variables

 		
 Methods

 		
 Predicate Contracts

 		
 Description

 		
 Deprecation

 		
 Exit Initiation

 		
 Exit Finalization

 		
 Transaction-based Predicate Standard

 		
 Description

 		
 Transaction Execution

 		
 verifyTransaction

 		
 Deprecation

 		
 proveDeprecation

 		
 Limbo Exit Predicate Standard

 		
 Explanation

 		
 API

 		
 Structs

 		
 Public Variables

 		
 Events

 		
 Methods

 		
 Introduction

 		
 Deposit Generation

 		
 Event Handling

 		
 Checkpoint Events

 		
 Exit Game Events

 		
 Transaction Generation

 		
 Transaction Format

 		
 Transaction Encoding and Decoding

 		
 Sending Transactions

 		
 Example: SimpleOwnership Predicate

 		
 History Proofs

 		
 Introduction

 		
 Proof Elements

 		
 Deposit Proof Elements

 		
 Exclusion Proof Elements

 		
 State Update Proof Elements

 		
 History Generation

 		
 History Query

 		
 History Calculation

 		
 Range Intersection

 		
 Proof Generation

 		
 History Verification

 		
 Proof Structure

 		
 Applying Proof Elements

 		
 Deposit Proof Elements

 		
 Exclusion Proof Elements

 		
 State Update Proof Elements

 		
 Exit Guarding

 		
 Event Handling

 		
 Predicate Event Watching

 		
 Predicate Guarding

 		
 Exit Validity Determination

 		
 Challenge Generation

 		
 Challenge Submission

 		
 State Queries

 		
 Query Generation

 		
 Parsing Predicate API

 		
 Parsing Query Results

 		
 Example: SimpleOwnership

 		
 Query Handling

 		
 Range Intersection

 		
 Passing Queries to Predicate Plugins

 		
 Filtering Queries

 		
 Synchronization

 		
 Introduction

 		
 Deposit and Commitment Contracts

 		
 Receiving Transactions

 		
 Query Expressions

 		
 Description

 		
 Data Structures

 		
 Expression

 		
 Operators

 		
 Boolean Operators

 		
 Comparison Operators

 		
 RPC Methods

 		
 Description

 		
 Methods

 		
 pg_accounts

 		
 pg_blockNumber

 		
 pg_sign

 		
 pg_sendRawTransaction

 		
 pg_sendQuery

 		
 pg_getTransactionByHash

 		
 pg_getProof

 		
 pg_getInstalledPredicatePlugins

 		
 pg_clientVersion

 		
 RPC Error Messages

 		
 Wallet

 		
 Account Not Found

 		
 Invalid Password

 		
 Account Locked

 		
 Transactions

 		
 Invalid Transaction Encoding

 		
 Invalid Transaction

 		
 State Queries

 		
 Invalid State Query

 		
 Introduction

 		
 Transaction Ingestion

 		
 Incoming Transaction Endpoint

 		
 Transaction Decoding

 		
 Transaction Execution

 		
 State Update Resolution

 		
 State Transition Execution

 		
 Transaction Queueing

 		
 Transaction Receipt

 		
 Block Generation

 		
 Transaction Ingestion

 		
 Block Merklization

 		
 Block Submission

 		
 Operator RPC Methods

 		
 Description

 		
 Methods

 		
 pgop_sendTransaction

 		
 Introduction

 		
 Components

 		
 RpcServer

 		
 RpcClient

 		
 StateDB

 		
 StateManager

 		
 HistoryDB

 		
 HistoryManager

 		
 PluginManager

 		
 EventWatcher

 		
 ContractWrapper

 		
 Architecture Diagram

 		
 MerkleIntervalTree

 		
 Description

 		
 API

 		
 Structs

 		
 Methods

 		
 RangeDB

 		
 Description

 		
 API

 		
 Structs

 		
 Methods

 		
 ContractWrapper

 		
 Description

 		
 API

 		
 Methods

 		
 EventWatcher

 		
 Description

 		
 Event Uniqueness

 		
 API

 		
 Methods

 		
 WalletDB

 		
 Description

 		
 API

 		
 Structs

 		
 Methods

 		
 Wallet

 		
 Description

 		
 API

 		
 Methods

 		
 PredicatePlugin

 		
 Description

 		
 Information Sources

 		
 Ethereum Contract Queries

 		
 Plasma State Queries

 		
 Plasma State Updates

 		
 API

 		
 Methods

 		
 PluginManager

 		
 Description

 		
 API

 		
 Methods

 		
 History Proof Structure

 		
 Description

 		
 Data Structures

 		
 DepositElement

 		
 StateUpdateElement

 		
 NonInclusionElement

 		
 HistoryProof

 		
 HistoryDB

 		
 Description

 		
 API

 		
 Methods

 		
 HistoryManager

 		
 Description

 		
 API

 		
 Methods

 		
 StateDB

 		
 Description

 		
 API

 		
 Structs

 		
 Methods

 		
 StateManager

 		
 Description

 		
 API

 		
 Data Structures

 		
 Methods

 		
 SyncDB

 		
 Description

 		
 API

 		
 Methods

 		
 SyncManager

 		
 Description

 		
 API

 		
 Methods

 		
 RpcClient

 		
 Description

 		
 API

 		
 Methods

 		
 RpcServer

 		
 Description

 		
 API

 		
 Methods

 		
 Introduction

 		
 BlockDB

 		
 Description

 		
 API

 		
 Methods

 		
 BlockManager

 		
 Description

 		
 API

 	