

 Navigation

 	
 index

 	
 next |

 	pflexible 0.9.0 documentation

pflexible documentation overview

Contents:

	Introduction
	Getting pflexible

	Mailing List

	Installation and setting the PYTHONPATH

	Building FortFlex

	Getting started
	A quick overview of FLEXPART data

	Testing pflexible

	Working with pf... in depth

	Adding Trajectories

	The pflexible module
	A brief description of the module

	The pflexible API

	The mapping module
	A brief description of the module

	The mapping API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pflexible 0.9.0 documentation

Introduction

pflexible is an open source Python package to work with Lagrangian Particle
Disperion Model output. Currently it is built for FLEXPART [http://transport.nilu.no/flexpart] but future versions will include greater
generality.

Contributions and collaboration are welcome. The code is hosted at bitbucket and
the documentation is hosted at readthedocs. pflexible is licensed under
Creative Commons.

Current development activities are focused on improved generality and handling of
FLEXPART output in all possible run configurations, with and without deposition,
forward, backward, or otherwise.

Getting pflexible

Please contact: John F. Burkhart

	First, make sure you also have the dependencies installed:

	
	numpy

	matplotlib

	basemap (matplotlib toolkit)

	f2py (to build FortFlex)

	netCDF4 (not python-netcdf)

	PIL

Note the easiest way I’ve found to deal with the dependencies is to use one of
‘complete distributions’ such as Enthought [http://www.enthought.com] or the
python(xy) [http://www.pythonxy.com] or ideally Anaconda [http://www.continuum.io].
For Ubuntu you can pretty easily just install the required packages. For the netcdf, we
found it easiest to use the science-meteorology-dev meta package and use pip to install netcdf4-python.

Once you’ve installed all the dependencies, you can get the code from either
sources below.

BitBucket

The code is available to the public at bitbucket [https://bitbucket.org/jfburkhart/pflexible].

PyPi

The pflexible [http://pypi.python.org/pypi/pflexible] code is also posted to
pypi, but this is more likely to fall out of date.

Mailing List

There is a mailing list for the project set up at with sourceforge. You can subscribe to
the pflexible [https://lists.sourceforge.net/lists/listinfo/pflexible-users] list for user
discussions.

Installation and setting the PYTHONPATH

If all is working correctly, and you have all the required dependencies, the it
should simply be a matter of running setup.py:

python setup.py install

Depending on where you checked out the pflexible module to, you need to make
sure it is accessbile in your PYTHONPATH environment variable. The dependencies
also need to be available in the paths defined here.

Note

	This can be accomplished after you’ve checked out the software::

	%export PYTHONPATH=/path/to/pflexible

Python at NILU

Setting paths for most dependencies can be accomplished with:

%export PYTHONPATH=$PYTHONPATH:/xnilu_wrk/jfb/hg

And hopefully everything works!.

Building FortFlex

FortFlex is a Fortran module that allows highly efficient reading of the raw FLEXPART output.
Building FortFlex is simple, and required only running a script within the f2py_build directory of
the pflexible distribution:

cd f2py_build
chmod +x build_FortFlex.sh
./build_FortFlex.sh

Assuming you have all dependencies for f2py (gfortran, etc.) this will build and copy a new module into
pflexible package called FortFlex.so that will automatically be used by the pf.read_grid routines.

If you have built the FortFlex.so module independently, be sure to copy it into the same directory as
pflexible.py or somewhere on your PYTHONPATH. NOTE I am trying to replace this dependency
(or at least make more builds available, if you have suggestions, please contact me).

 Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pflexible 0.9.0 documentation

Getting started

A quick overview of FLEXPART data

pflexible was originally developed for working with FLEXPART V8.x which has
some fairly new features to how the output data is created. The latest version of FLEXPART
also has functionality for saving directly to Netcdf. The ability to read this data directly
is forthcoming, but for now pflexible still only works with the raw unformatted binary Fortran
data FLEXPART has traditionally used for output.
See the documents for information regarding FLEXPART [http://transport.nilu.no/flexpart] .

A users guide [http://zardoz.nilu.no/~andreas/flexpart/flexpart8.pdf] for
FLEXPART is available which explains the model output.

Note If you are interested in contributing functionality for other FLEXPART
versions, please contact me.

pflexible was originally released as ‘pflexpart’, but as the goal is to be more
generic, the package was renamed. The current release is still focused on
FLEXPART, but some generalizations are starting to make their way into the code
base.

pflexible is undergoing constant modifications and is not particularly stable
or backward compatible code. I am trying to move in the right direction, and
have moved the code now to bitbucket.org. If you are interested in contributing,
feel free to contact me: John F. Burkhart

Fetching example data

An example data set is available for testing. The data contains a simple backward
run case, and thus is suitable for testing some of the unique functions of pflexible
for analysis and creation of the retroplumes.

I suggest using wget to grab the data:

wget http://folk.uio.no/johnbur/sharing/flexpart_V8data.tgz

Testing pflexible

Once you have checked out the code and have a sufficient FLEXPART dataset to
work with you can begin to use the module. The first step is to load the
module. Depending on how you checked out the code, you can accomplish this in a
few different way, but the preferred is as follows:

import pflexible as pf

header file

Don’t include the actual header file name, but use only the directory name
within which the header resides. If the header is not named header, you can
use the optional headerfile argument.

The next step is to read the FLEXPART header file from a dataset:

H = pf.Header('/path/to/flexpart/output')

Now you have a variable ‘H’ which has all the information about the run that is
available from the header file. This ‘Header’ is essentially a dictionary, so
the first step may be to explore some of the keys:

H.keys()

This should produce some output that looks familiar to your from your FLEXPART
run setup.

Reasonably, you should now want to read in some of the data from your run. This
is accomplished easily using the read_grid. This function
may be called directly, or there
are several alternative ways we can read the data. A special method exists for backward runs
that collects all the data from the 20-days back in time (by default) and creates accumulated
totals of the sensitivity:

H.fill_backwards()

Alternatively, we may only want to read specific grids, in which case we can call the function
directly:

FD = pf.read_grid(H,time_ret=0,nspec_ret=0)

For optimal performance, this function will use the FortFlex module. However, as a fall
back there is a pure python method, but it is significantly slower. If you receive a message
about using the Pure Python approach it is highly recommended to build the FortFlex module.
If you are having problems compiling FortFlex, see
the section in the Installation instructions.

Note

See the read_grid function
for information on the keyword arguments.

At this point you should now have a variable ‘FD’ which is again a dictionary of
the FLEXPART grids. This ‘FD’ object is either available directly in your
workspace, or alternatively, if you called H.fill_backward() it is an
attribute of the header: H.FD. This is the preferred method.

Look at the keys of the dictionary to see what information
is stored. The actual data is keyed by tuples: (nspec, datestr) where nspec is
the species number and datestr is a YYYYMMDDHHMMSS string for the grid
timestep.

Working with pf... in depth

Assuming the above steps worked out, then we can proceed to play with the tools
in a bit more detail.

Okay, let’s take a look at the example code above line by line. The first line imports the module,
giving it a namespace “pf” – this is the preferred approach. The next few lines simply define the paths for “SOURCE_DIR” and
“OUTPUT_DIR” (you probably already changed these).:

import pflexible as pf

The next line creates a Header class “H”, by passing the path
of the directory (not header path) containing the FLEXPART run.:

H = pf.Header(SOURCE_DIR)

The Header is central to pflexible. This contains much information about the
FLEXPART run, and enable plotting, labeling of plots, looking up dates of runs,
coordinates for mapping, etc. All this information is contained in the Header.
See for example:

dir(H)

This will show you all the attributes associated with the Header.

Note

This example uses the methods of the Header class, plexpart.Header.
You can also call most the methods directly, passing “H” as the first
argument as in: D = pf.fill_backward(H). In some cases, for some of the
functions, H can be substituted. See the docstrings for more
information.

H is now an object in your workspace. Using Ipython you can explore the methods
and attributes of H. As mentioned above, in this test case we call the fill_backward
method to populate the “FD” attribute (a dictionary) with all the data from the run.:

H.fill_backward(nspec=(0,1))

However, note that fill_backward also creates a second dictionary attribute “C”.
This dictionary is similar to the “FD” dictionary, but contains the Cumulative
sensitivity at each time step, so you can use it for plotting retroplumes.

It is important to understand the differences between H.FD and H.C while
working with pflexible. If we look closely at the keys of H.FD:

In [13]: H.FD.keys()
Out[13]:
[(0, '20100527210000'),
(0, '20100513210000'),
(0, '20100528210000'),
(0, '20100526210000'),
(0, '20100521210000'),
'grid_dates',
(0, '20100512210000'),
(0, '20100514210000'),
(0, '20100519210000'),
(0, '20100520210000'),
'options',
(0, '20100523210000'),
(0, '20100525210000'),
(0, '20100530210000'),
(0, '20100515210000'),
(0, '20100531210000'),
(0, '20100517210000'),
(0, '20100529210000'),
(0, '20100524210000'),
(0, '20100516210000'),
(0, '20100522210000'),
(0, '20100518210000')]

You’ll see that along with the keys, grid_dates and options, the dictionary
is primary keyed by a set of tuples. These tuples represent (s, date), where s
is the specied ID and date is the date of a grid file from flexpart (e.g.
something like: grid_time_20100515210000_001). However, if we look at the keys
of the H.C dictionary:

In [14]: H.C.keys()
Out[14]: [(0, 1), (0, 0), (0, 6), (0, 5), (0, 4), (0, 3), (0, 2)]

We see only tuples, now keyed by (s,rel_id), where s is still the species
ID, but rel_id is the release ID. These release IDs correspond to the times in
H.releasetimes which is a list of the release times.

Each tuple is a key to another dictionary, that contains the data. Currently
there are differences between the way the data is stored in H.FD and in H.C,
but future versions are working to make these two data stores common.

So we know now H.C is keyed by (s,k) where s is an integer for the species #, and k is an
integer for the release id. Let’s look at the data stores returned in each of
these two dictionaries:

In [30]: H.FD[(0, '20100527210000')].keys()
Out[30]:
['dry',
'itime',
'min',
'max',
'gridfile',
'wet',
'rel_i',
'shape',
'spec_i',
'grid',
'timestamp',
'species']

If we look at H.FD[(0, ‘20100527210000’)].grid for example, we’ll see that
this returns a numpy array of shape:

In [31]: H.FD[(0, '20100527210000')].grid.shape
Out[31]: (720, 180, 3, 7)

which corresponds to (numx, numy, numz, numk) where numk is the number of
releases. We can see this grid is from the gridfile:

In [32]: H.FD[(0, '20100527210000')].gridfile
Out[32]:
'/home/johnbur/Dev_fp/test_data/grid_time_20100527210000_001'

The other information is mainly metadata for that grid.

In H.C the information is slightly different:

In [33]: H.C[(0,1)].keys()
Out[33]:
['itime',
'min',
'timestamp',
'gridfile',
'rel_i',
'shape',
'spec_i',
'grid',
'max',
'species',
'slabs']

In particular, note the shape of the grid is now:

In [35]: H.C[(0,1)].grid.shape
Out[35]: (720, 180, 3)

There is no longer a fourth dimension corresponding to the release time.
Furthermore, there is a new key slabs. This is a dictionary where each numz
level is packaged as a 2-d numpy array keyed by it’s level index. This is
redundant data to the grid, and will likely
change in future versions of pflexible. However, the important point to note is
that the 0th element is the Total Column.

Using the plotting tools of pflexible we can plot the total column easily:

pf.plot_totalcolumn (H, H.C[(0,1)], map_region='Europe')

This should return an image similar to:

[image: _images/sample_totalcolumn2.png]

Adding Trajectories

I use the read_trajectories() function to read the trajectories.txt
file and get the trajectories from the run output directory.:

T = pf.read_trajectories(H)

Note, that the only required parameter is the Header “H”, this provides all the
metadata for the function to read the trajectories. This is a function that
accepts simply the “H” instance or a path to a trajectories file.

Now we can see how we might batch process a backward run and create total column plots
as well as add the trajectory information to the plots. The following lines plot the data sets using the plot_totalcolumn(), plot_trajectory(),
and plot_footprint().

Warning

There is a lot of reliance on the mapping module in the plot_routines. If you
have problems, see the mapping.py file. Or the mapping
docstrings. Documentation of this module is presently incomplete but I
am working on it.

In order to reuse figures which is much faster when working with the basemap
module, I create a “None” objects for passing the figure instances around:

TC = None

After that we loop over the keys (s=species, and
k=rel_i) of the H.C attribute we created by calling fill_backward. Note, I named
this attribute C for “Cumulative”. In each iteration, for a new combination of s,k we
pull the data object out of the dictionary. The “data” object is returned from
the function readgridV8() and has some attributes that we can use later
in conjunction with the plot_totalcolumn() function and for saving and naming the figures.
See for example the following lines:

for s,k in H.C:
 data = H.C[(s,k)]
 TC = pf.plot_totalcolumn(H,data,map_region='Europe',FIGURE=TC)
 TC = pf.plot_trajectory(H,T,k,FIGURE=TC)
 filename = '%s_tc_%s.png' % (data.species, data.timestamp)
 TC.fig.savefig(filename)

This will create filenames based on the data metadata and save the figure to the
path defined by filename. You should now have several images looking like
this:

[image: _images/sample_totalcolumn.png]

The next step is the use the source and learn more about the functionality
of the module. I highly recommend the Ipython [http::/ipython.scipy.org]
interpreter and use of the Tab key to explore the modules methods.

Enjoy!

 Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pflexible 0.9.0 documentation

The pflexible module

A brief description of the module

The pflexible module is developed to work with output from the Lagrangian
Particle Dispersion Model, FLEXPART [http://transport.nilu.no/flexpart] .

The module relies extensively on the users knowledge of FLEXPART data in
general, and thus one is strongly encouraged to read the users guide [http://zardoz.nilu.no/~andreas/flexpart/flexpart8.pdf] which explains some basics regarding the model.

Note If you are interested in contributing functionality for other FLEXPART
versions, please contact me at jfburkhart@gmail.com

Purpose

The purpose of the module is to make the creation of some standard plotting
products as easy as possible. However, due to the complex nature of FLEXPART
output, this isn’t so easy! Regardless, I hope you find some of the
functionality helpful. The most critical functions are readheader and readgrid
which will at least get the data into Python so you can play with it as you are
most comfortable.

Warning

You are entering the domain of a scientist trying to write code. Constructive
input is sought, but don’t complain if something breaks!

The pflexible API

	Release:	0.9

	Date:	January 11, 2016

	Author:	John F. Burkhart

 Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	pflexible 0.9.0 documentation

The mapping module

A brief description of the module

The mapping module is a helper function to the pflexible module.
Primarily it is designed to perform a few tasks relating to using the
matplotlib Basemap [http://matplotlib.sourceforge.net/basemap/doc/html/api/basemap_api.html#module-mpl_toolkits.basemap]
module. I haven’t confirmed whether how I pass the figures around or not is a
good idea, and would welcome suggestions.

Warning

This module is not fully prepared for public use. There are a lot of
custom functions, not written in a generic sense. Use with caution.

Purpose

The purpose of this module is to ease create some basic mapping routines using
the basemap module. These are called directly from the pflexible for
example in the plot_sensitivity() routine. The core idea is that a
“FIGURE” object is created using the get_FIGURE() function which has some
key attributes. In general, this is transparent to the user, just intialize
a FIG object as NONE, then pass it to the functions with the FIGURE argument
set to your ‘FIG’ object.:

> FIG = None
> FIG = mp.plot_function(data,FIGURE=FIG)
>

The ‘FIG’ object can then be passed around and reused saving time and
resources. In general, the FIGURE object has the following attributes:

	attribute / key
	description

	fig
	A fig object, use
plt.figure(FIG.fig.number) to make
it active

	m
	A basemap instance for the plot

	ax
	The primary axis instance

	indices
	See the get_FIGURE() which
describes the indices.

Regions

Another commonly used paradigm is the passing of a ‘map_region’ keyword to the
functions. Regions are defined manually at present. You’ll have to edit the
mapping.py and specifically, the map_regions(). Following the
instructions for the Basemap [http://matplotlib.sourceforge.net/basemap/doc/html/api/basemap_api.html#module-mpl_toolkits.basemap]
toolkit you can define your own unique region. See other regions as examples.

Warning

This is a module in active development, and there are no guarantees for backward
compatability. Constructive input is sought, but don’t complain if something breaks!

The mapping API

	Release:	0.9

	Date:	January 11, 2016

 Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	pflexible 0.9.0 documentation

Index

 Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/minus.png

_static/basic_screenshot.png
ampledoc v1.0 documentation »

Table Of Contents Welcome to sampledoc’s

e documentation!

In nd tabl

This Page Contents:

Show Source

Quick seard Indices and tables

L Jocol « Index
ch terms or a module, « Module Index

« Search Page

sampledoc v1.0 documentation »

opyright 2009, JDH, Created usin

_static/file.png

_static/sample_totalcolumn2.png
Total Column Sensitivity: AIRTRACER

Release Start: 2010-06-01 03:!

:00, Release End: 2010-06-01 06:00:00

=

senstiiy
(nembgd)

s3es00

27es00

0°N

Laess

a6es03

330403

S

Loes03

810402

s0°N

2

pravss

asen

a0

Max Value: Le+04 ns m kg-1
Release Z1: 100.00, Z2: 100.00 (m.a.s.\)M'AZ

0w 15w 1w sw o SE 10°€ 15°€ 20 25 30°E 35°E

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		pflexible 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, John F. Burkhart.
 Created using Sphinx 1.3.1.

_static/up.png

_static/down-pressed.png

_images/sample_totalcolumn2.png
Total Column Sensitivity: AIRTRACER

Release Start: 2010-06-01 03:!

:00, Release End: 2010-06-01 06:00:00

=

senstiiy
(nembgd)

s3es00

27es00

0°N

Laess

a6es03

330403

S

Loes03

810402

s0°N

2

pravss

asen

a0

Max Value: Le+04 ns m kg-1
Release Z1: 100.00, Z2: 100.00 (m.a.s.\)M'AZ

0w 15w 1w sw o SE 10°€ 15°€ 20 25 30°E 35°E

_static/sample_totalcolumn.png
30N

100w |

2OW

100°W

a0N

soow

30N

Total Column Sensitivity: AIRTRACER

Release Start: 2008-04-11 08:04:02, Release End: 2008-04-11 08:34:02

B

—

N

8

. v

Max Value: 4.3e+03 ns m / kg
Release Z1: 25.0 m., Z2: 30.0 m..

30°N 60°W WN oW oW 0N 0 30N

sensity
(v kg
Tein

s3es02

27s02

L3es2

Y

%

a

stiude

250

20

130

1500

1850

1500

1330

20

130

_static/plus.png

_images/sample_totalcolumn.png
30N

100w |

2OW

100°W

a0N

soow

30N

Total Column Sensitivity: AIRTRACER

Release Start: 2008-04-11 08:04:02, Release End: 2008-04-11 08:34:02

B

—

N

8

. v

Max Value: 4.3e+03 ns m / kg
Release Z1: 25.0 m., Z2: 30.0 m..

30°N 60°W WN oW oW 0N 0 30N

sensity
(v kg
Tein

s3es02

27s02

L3es2

Y

%

a

stiude

250

20

130

1500

1850

1500

1330

20

130

