

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pexpect 3.3 documentation

Pexpect version 3.3

[image: Build status]
 [https://travis-ci.org/pexpect/pexpect]Pexpect makes Python a better tool for controlling other
applications.

Pexpect is a pure Python module for spawning child applications;
controlling them; and responding to expected patterns in their output.
Pexpect works like Don Libes’ Expect. Pexpect allows your script to
spawn a child application and control it as if a human were typing
commands.

Pexpect can be used for automating interactive applications such as
ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different
servers. It can be used for automated software testing. Pexpect is in
the spirit of Don Libes’ Expect, but Pexpect is pure Python. Unlike
other Expect-like modules for Python, Pexpect does not require TCL or
Expect nor does it require C extensions to be compiled. It should work
on any platform that supports the standard Python pty module. The
Pexpect interface was designed to be easy to use.

Contents:

	Installation
	Requirements

	API Overview
	Special EOF and TIMEOUT patterns

	Find the end of line – CR/LF conventions

	Beware of + and * at the end of patterns

	Debugging

	Exceptions

	API documentation
	Core pexpect components

	fdpexpect - use pexpect with a file descriptor

	replwrap - Control read-eval-print-loops

	pxssh - control an SSH session

	screen - manage a virtual ‘screen’

	ANSI - ANSI (VT100) terminal emulator

	Examples

	FAQ

	Common problems
	Threads

	Timing issue with send() and sendline()

	Timing issue with isalive()

	Truncated output just before child exits

	Controlling SSH on Solaris

	History
	Releases

	Moves and forks

Pexpect is developed on Github [http://github.com/pexpect/pexpect]. Please
report issues [https://github.com/pexpect/pexpect/issues] there as well.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

Installation

Pexpect is on PyPI, and can be installed with standard tools:

pip install pexpect

Or:

easy_install pexpect

Requirements

This version of Pexpect requires Python 2.6 or 3.2 or above. For older
versions of Python, continue using Pexpect 2.4.

Pexpect only works on POSIX systems, where the pty [http://docs.python.org/3/library/pty.html#module-pty] module
is present in the standard library. It may be possible to run it on Windows
using Cygwin [http://www.cygwin.com/].

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

API Overview

Pexpect can be used for automating interactive applications such as ssh, ftp,
mencoder, passwd, etc. The Pexpect interface was designed to be easy to use.

Here is an example of Pexpect in action:

This connects to the openbsd ftp site and
downloads the recursive directory listing.
import pexpect
child = pexpect.spawn('ftp ftp.openbsd.org')
child.expect('Name .*: ')
child.sendline('anonymous')
child.expect('Password:')
child.sendline('noah@example.com')
child.expect('ftp> ')
child.sendline('lcd /tmp')
child.expect('ftp> ')
child.sendline('cd pub')
child.expect('ftp> ')
child.sendline('get README')
child.expect('ftp> ')
child.sendline('bye')

Obviously you could write an ftp client using Python’s own ftplib [http://docs.python.org/3/library/ftplib.html#module-ftplib] module,
but this is just a demonstration. You can use this technique with any application.
This is especially handy if you are writing automated test tools.

There are two important methods in Pexpect – expect() and
send() (or sendline() which is
like send() with a linefeed). The expect()
method waits for the child application to return a given string. The string you
specify is a regular expression, so you can match complicated patterns. The
send() method writes a string to the child application.
From the child’s point of view it looks just like someone typed the text from a
terminal. After each call to expect() the before and after
properties will be set to the text printed by child application. The before
property will contain all text up to the expected string pattern. The after
string will contain the text that was matched by the expected pattern.
The match property is set to the re match object [http://docs.python.org/3/library/re#match-objects].

An example of Pexpect in action may make things more clear. This example uses
ftp to login to the OpenBSD site; list files in a directory; and then pass
interactive control of the ftp session to the human user:

import pexpect
child = pexpect.spawn ('ftp ftp.openbsd.org')
child.expect ('Name .*: ')
child.sendline ('anonymous')
child.expect ('Password:')
child.sendline ('noah@example.com')
child.expect ('ftp> ')
child.sendline ('ls /pub/OpenBSD/')
child.expect ('ftp> ')
print child.before # Print the result of the ls command.
child.interact() # Give control of the child to the user.

Special EOF and TIMEOUT patterns

There are two special patterns to match the End Of File (EOF)
or a Timeout condition (TIMEOUT). You you can pass these
patterns to expect(). These patterns are not regular
expressions. Use them like predefined constants.

If the child has died and you have read all the child’s output then ordinarily
expect() will raise an EOF exception.
You can read everything up to the EOF without generating an exception by using
the EOF pattern expect. In this case everything the child has output will be
available in the before property.

The pattern given to expect() may be a regular expression
or it may also be a list of regular expressions. This allows you to match
multiple optional responses. The expect() method returns
the index of the pattern that was matched. For example, say you wanted to login
to a server. After entering a password you could get various responses from the
server – your password could be rejected; or you could be allowed in and asked
for your terminal type; or you could be let right in and given a command prompt.
The following code fragment gives an example of this:

child.expect('password:')
child.sendline(my_secret_password)
We expect any of these three patterns...
i = child.expect (['Permission denied', 'Terminal type', '[#\$] '])
if i==0:
 print('Permission denied on host. Can't login')
 child.kill(0)
elif i==2:
 print('Login OK... need to send terminal type.')
 child.sendline('vt100')
 child.expect('[#\$] ')
elif i==3:
 print('Login OK.')
 print('Shell command prompt', child.after)

If nothing matches an expected pattern then expect() will
eventually raise a TIMEOUT exception. The default time is 30
seconds, but you can change this by passing a timeout argument to
expect():

Wait no more than 2 minutes (120 seconds) for password prompt.
child.expect('password:', timeout=120)

Find the end of line – CR/LF conventions

Pexpect matches regular expressions a little differently than what you might be
used to.

The $ pattern for end of line match is useless. The $
matches the end of string, but Pexpect reads from the child one character at a
time, so each character looks like the end of a line. Pexpect can’t do a
look-ahead into the child’s output stream. In general you would have this
situation when using regular expressions with any stream.

Note

Pexpect does have an internal buffer, so reads are faster than one character
at a time, but from the user’s perspective the regex patterns test happens
one character at a time.

The best way to match the end of a line is to look for the newline: "\r\n"
(CR/LF). Yes, that does appear to be DOS-style. It may surprise some UNIX people
to learn that terminal TTY device drivers (dumb, vt100, ANSI, xterm, etc.) all
use the CR/LF combination to signify the end of line. Pexpect uses a Pseudo-TTY
device to talk to the child application, so when the child app prints "\n"
you actually see "\r\n".

UNIX uses just linefeeds to end lines of text, but not when it comes to TTY
devices! TTY devices are more like the Windows world. Each line of text ends
with a CR/LF combination. When you intercept data from a UNIX command from a
TTY device you will find that the TTY device outputs a CR/LF combination. A
UNIX command may only write a linefeed (\n), but the TTY device driver
converts it to CR/LF. This means that your terminal will see lines end with
CR/LF (hex 0D 0A). Since Pexpect emulates a terminal, to match ends of
lines you have to expect the CR/LF combination:

child.expect('\r\n')

If you just need to skip past a new line then expect('\n') by itself will
work, but if you are expecting a specific pattern before the end of line then
you need to explicitly look for the \r. For example the following expects a
word at the end of a line:

child.expect('\w+\r\n')

But the following would both fail:

child.expect('\w+\n')

And as explained before, trying to use $ to match the end of line
would not work either:

child.expect ('\w+$')

So if you need to explicitly look for the END OF LINE, you want to look for the
CR/LF combination – not just the LF and not the $ pattern.

This problem is not limited to Pexpect. This problem happens any time you try
to perform a regular expression match on a stream. Regular expressions need to
look ahead. With a stream it is hard to look ahead because the process
generating the stream may not be finished. There is no way to know if the
process has paused momentarily or is finished and waiting for you. Pexpect must
implicitly always do a NON greedy match (minimal) at the end of a input.

Pexpect compiles all regular expressions with the re.DOTALL [http://docs.python.org/3/library/re.html#re.DOTALL] flag.
With the DOTALL [http://docs.python.org/3/library/re.html#re.DOTALL] flag, a "." will match a newline.

Beware of + and * at the end of patterns

Remember that any time you try to match a pattern that needs look-ahead that
you will always get a minimal match (non greedy). For example, the following
will always return just one character:

child.expect ('.+')

This example will match successfully, but will always return no characters:

child.expect ('.*')

Generally any star * expression will match as little as possible.

One thing you can do is to try to force a non-ambiguous character at the end of
your \d+ pattern. Expect that character to delimit the string. For
example, you might try making the end of your pattern be \D+ instead
of \D*. Number digits alone would not satisfy the (\d+)\D+
pattern. You would need some numbers and at least one non-number at the end.

Debugging

If you get the string value of a pexpect.spawn object you will get lots
of useful debugging information. For debugging it’s very useful to use the
following pattern:

try:
 i = child.expect ([pattern1, pattern2, pattern3, etc])
except:
 print("Exception was thrown")
 print("debug information:")
 print(str(child))

It is also useful to log the child’s input and out to a file or the screen. The
following will turn on logging and send output to stdout (the screen):

child = pexpect.spawn(foo)
child.logfile = sys.stdout

Exceptions

EOF

Note that two flavors of EOF Exception may be thrown. They are virtually
identical except for the message string. For practical purposes you should have
no need to distinguish between them, but they do give a little extra information
about what type of platform you are running. The two messages are:

	“End Of File (EOF) in read(). Exception style platform.”

	“End Of File (EOF) in read(). Empty string style platform.”

Some UNIX platforms will throw an exception when you try to read from a file
descriptor in the EOF state. Other UNIX platforms instead quietly return an
empty string to indicate that the EOF state has been reached.

If you wish to read up to the end of the child’s output without generating an
EOF exception then use the expect(pexpect.EOF) method.

TIMEOUT

The expect() and read() methods will
also timeout if the child does not generate any output for a given amount of
time. If this happens they will raise a TIMEOUT exception.
You can have these method ignore a timeout and block indefinitely by passing
None for the timeout parameter:

child.expect(pexpect.EOF, timeout=None)

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

API documentation

	Core pexpect components
	spawn class

	run function

	Exceptions

	Utility functions

	fdpexpect - use pexpect with a file descriptor
	fdspawn class

	replwrap - Control read-eval-print-loops

	pxssh - control an SSH session
	pxssh class

	screen - manage a virtual ‘screen’

	ANSI - ANSI (VT100) terminal emulator

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

 	API documentation

Core pexpect components

Pexpect is a Python module for spawning child applications and controlling
them automatically. Pexpect can be used for automating interactive applications
such as ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different servers. It
can be used for automated software testing. Pexpect is in the spirit of Don
Libes’ Expect, but Pexpect is pure Python. Other Expect-like modules for Python
require TCL and Expect or require C extensions to be compiled. Pexpect does not
use C, Expect, or TCL extensions. It should work on any platform that supports
the standard Python pty module. The Pexpect interface focuses on ease of use so
that simple tasks are easy.

There are two main interfaces to the Pexpect system; these are the function,
run() and the class, spawn. The spawn class is more powerful. The run()
function is simpler than spawn, and is good for quickly calling program. When
you call the run() function it executes a given program and then returns the
output. This is a handy replacement for os.system().

For example:

pexpect.run('ls -la')

The spawn class is the more powerful interface to the Pexpect system. You can
use this to spawn a child program then interact with it by sending input and
expecting responses (waiting for patterns in the child’s output).

For example:

child = pexpect.spawn('scp foo user@example.com:.')
child.expect('Password:')
child.sendline(mypassword)

This works even for commands that ask for passwords or other input outside of
the normal stdio streams. For example, ssh reads input directly from the TTY
device which bypasses stdin.

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett,
Robert Stone, Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids
vander Molen, George Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin,
Jacques-Etienne Baudoux, Geoffrey Marshall, Francisco Lourenco, Glen Mabey,
Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen, Guillaume
Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn, John
Spiegel, Jan Grant, and Shane Kerr. Let me know if I forgot anyone.

Pexpect is free, open source, and all that good stuff.
http://pexpect.sourceforge.net/

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

spawn class

	
class pexpect.spawn(command, args=, []timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, ignore_sighup=True, echo=True)[source]

	This is the main class interface for Pexpect. Use this class to start
and control child applications.

	
__init__(command, args=, []timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, ignore_sighup=True, echo=True)[source]

	This is the constructor. The command parameter may be a string that
includes a command and any arguments to the command. For example:

child = pexpect.spawn('/usr/bin/ftp')
child = pexpect.spawn('/usr/bin/ssh user@example.com')
child = pexpect.spawn('ls -latr /tmp')

You may also construct it with a list of arguments like so:

child = pexpect.spawn('/usr/bin/ftp', [])
child = pexpect.spawn('/usr/bin/ssh', ['user@example.com'])
child = pexpect.spawn('ls', ['-latr', '/tmp'])

After this the child application will be created and will be ready to
talk to. For normal use, see expect() and send() and sendline().

Remember that Pexpect does NOT interpret shell meta characters such as
redirect, pipe, or wild cards (>, |, or *). This is a
common mistake. If you want to run a command and pipe it through
another command then you must also start a shell. For example:

child = pexpect.spawn('/bin/bash -c "ls -l | grep LOG > logs.txt"')
child.expect(pexpect.EOF)

The second form of spawn (where you pass a list of arguments) is useful
in situations where you wish to spawn a command and pass it its own
argument list. This can make syntax more clear. For example, the
following is equivalent to the previous example:

shell_cmd = 'ls -l | grep LOG > logs.txt'
child = pexpect.spawn('/bin/bash', ['-c', shell_cmd])
child.expect(pexpect.EOF)

The maxread attribute sets the read buffer size. This is maximum number
of bytes that Pexpect will try to read from a TTY at one time. Setting
the maxread size to 1 will turn off buffering. Setting the maxread
value higher may help performance in cases where large amounts of
output are read back from the child. This feature is useful in
conjunction with searchwindowsize.

The searchwindowsize attribute sets the how far back in the incoming
seach buffer Pexpect will search for pattern matches. Every time
Pexpect reads some data from the child it will append the data to the
incoming buffer. The default is to search from the beginning of the
incoming buffer each time new data is read from the child. But this is
very inefficient if you are running a command that generates a large
amount of data where you want to match. The searchwindowsize does not
affect the size of the incoming data buffer. You will still have
access to the full buffer after expect() returns.

The logfile member turns on or off logging. All input and output will
be copied to the given file object. Set logfile to None to stop
logging. This is the default. Set logfile to sys.stdout to echo
everything to standard output. The logfile is flushed after each write.

Example log input and output to a file:

child = pexpect.spawn('some_command')
fout = file('mylog.txt','w')
child.logfile = fout

Example log to stdout:

child = pexpect.spawn('some_command')
child.logfile = sys.stdout

The logfile_read and logfile_send members can be used to separately log
the input from the child and output sent to the child. Sometimes you
don’t want to see everything you write to the child. You only want to
log what the child sends back. For example:

child = pexpect.spawn('some_command')
child.logfile_read = sys.stdout

To separately log output sent to the child use logfile_send:

self.logfile_send = fout

If ignore_sighup is True, the child process will ignore SIGHUP
signals. For now, the default is True, to preserve the behaviour of
earlier versions of Pexpect, but you should pass this explicitly if you
want to rely on it.

The delaybeforesend helps overcome a weird behavior that many users
were experiencing. The typical problem was that a user would expect() a
“Password:” prompt and then immediately call sendline() to send the
password. The user would then see that their password was echoed back
to them. Passwords don’t normally echo. The problem is caused by the
fact that most applications print out the “Password” prompt and then
turn off stdin echo, but if you send your password before the
application turned off echo, then you get your password echoed.
Normally this wouldn’t be a problem when interacting with a human at a
real keyboard. If you introduce a slight delay just before writing then
this seems to clear up the problem. This was such a common problem for
many users that I decided that the default pexpect behavior should be
to sleep just before writing to the child application. 1/20th of a
second (50 ms) seems to be enough to clear up the problem. You can set
delaybeforesend to 0 to return to the old behavior. Most Linux machines
don’t like this to be below 0.03. I don’t know why.

Note that spawn is clever about finding commands on your path.
It uses the same logic that “which” uses to find executables.

If you wish to get the exit status of the child you must call the
close() method. The exit or signal status of the child will be stored
in self.exitstatus or self.signalstatus. If the child exited normally
then exitstatus will store the exit return code and signalstatus will
be None. If the child was terminated abnormally with a signal then
signalstatus will store the signal value and exitstatus will be None.
If you need more detail you can also read the self.status member which
stores the status returned by os.waitpid. You can interpret this using
os.WIFEXITED/os.WEXITSTATUS or os.WIFSIGNALED/os.TERMSIG.

The echo attribute may be set to False to disable echoing of input.
As a pseudo-terminal, all input echoed by the “keyboard” (send()
or sendline()) will be repeated to output. For many cases, it is
not desirable to have echo enabled, and it may be later disabled
using setecho(False) followed by waitnoecho(). However, for some
platforms such as Solaris, this is not possible, and should be
disabled immediately on spawn.

	
expect(pattern, timeout=-1, searchwindowsize=-1)[source]

	This seeks through the stream until a pattern is matched. The
pattern is overloaded and may take several types. The pattern can be a
StringType, EOF, a compiled re, or a list of any of those types.
Strings will be compiled to re types. This returns the index into the
pattern list. If the pattern was not a list this returns index 0 on a
successful match. This may raise exceptions for EOF or TIMEOUT. To
avoid the EOF or TIMEOUT exceptions add EOF or TIMEOUT to the pattern
list. That will cause expect to match an EOF or TIMEOUT condition
instead of raising an exception.

If you pass a list of patterns and more than one matches, the first
match in the stream is chosen. If more than one pattern matches at that
point, the leftmost in the pattern list is chosen. For example:

the input is 'foobar'
index = p.expect(['bar', 'foo', 'foobar'])
returns 1('foo') even though 'foobar' is a "better" match

Please note, however, that buffering can affect this behavior, since
input arrives in unpredictable chunks. For example:

the input is 'foobar'
index = p.expect(['foobar', 'foo'])
returns 0('foobar') if all input is available at once,
but returs 1('foo') if parts of the final 'bar' arrive late

After a match is found the instance attributes ‘before’, ‘after’ and
‘match’ will be set. You can see all the data read before the match in
‘before’. You can see the data that was matched in ‘after’. The
re.MatchObject used in the re match will be in ‘match’. If an error
occurred then ‘before’ will be set to all the data read so far and
‘after’ and ‘match’ will be None.

If timeout is -1 then timeout will be set to the self.timeout value.

A list entry may be EOF or TIMEOUT instead of a string. This will
catch these exceptions and return the index of the list entry instead
of raising the exception. The attribute ‘after’ will be set to the
exception type. The attribute ‘match’ will be None. This allows you to
write code like this:

index = p.expect(['good', 'bad', pexpect.EOF, pexpect.TIMEOUT])
if index == 0:
 do_something()
elif index == 1:
 do_something_else()
elif index == 2:
 do_some_other_thing()
elif index == 3:
 do_something_completely_different()

instead of code like this:

try:
 index = p.expect(['good', 'bad'])
 if index == 0:
 do_something()
 elif index == 1:
 do_something_else()
except EOF:
 do_some_other_thing()
except TIMEOUT:
 do_something_completely_different()

These two forms are equivalent. It all depends on what you want. You
can also just expect the EOF if you are waiting for all output of a
child to finish. For example:

p = pexpect.spawn('/bin/ls')
p.expect(pexpect.EOF)
print p.before

If you are trying to optimize for speed then see expect_list().

	
expect_exact(pattern_list, timeout=-1, searchwindowsize=-1)[source]

	This is similar to expect(), but uses plain string matching instead
of compiled regular expressions in ‘pattern_list’. The ‘pattern_list’
may be a string; a list or other sequence of strings; or TIMEOUT and
EOF.

This call might be faster than expect() for two reasons: string
searching is faster than RE matching and it is possible to limit the
search to just the end of the input buffer.

This method is also useful when you don’t want to have to worry about
escaping regular expression characters that you want to match.

	
expect_list(pattern_list, timeout=-1, searchwindowsize=-1)[source]

	This takes a list of compiled regular expressions and returns the
index into the pattern_list that matched the child output. The list may
also contain EOF or TIMEOUT(which are not compiled regular
expressions). This method is similar to the expect() method except that
expect_list() does not recompile the pattern list on every call. This
may help if you are trying to optimize for speed, otherwise just use
the expect() method. This is called by expect(). If timeout==-1 then
the self.timeout value is used. If searchwindowsize==-1 then the
self.searchwindowsize value is used.

	
compile_pattern_list(patterns)[source]

	This compiles a pattern-string or a list of pattern-strings.
Patterns must be a StringType, EOF, TIMEOUT, SRE_Pattern, or a list of
those. Patterns may also be None which results in an empty list (you
might do this if waiting for an EOF or TIMEOUT condition without
expecting any pattern).

This is used by expect() when calling expect_list(). Thus expect() is
nothing more than:

cpl = self.compile_pattern_list(pl)
return self.expect_list(cpl, timeout)

If you are using expect() within a loop it may be more
efficient to compile the patterns first and then call expect_list().
This avoid calls in a loop to compile_pattern_list():

cpl = self.compile_pattern_list(my_pattern)
while some_condition:
 ...
 i = self.expect_list(clp, timeout)
 ...

	
send(s)[source]

	Sends string s to the child process, returning the number of
bytes written. If a logfile is specified, a copy is written to that
log.

	
sendline(s='')[source]

	Wraps send(), sending string s to child process, with os.linesep
automatically appended. Returns number of bytes written.

	
write(s)[source]

	This is similar to send() except that there is no return value.

	
writelines(sequence)[source]

	This calls write() for each element in the sequence. The sequence
can be any iterable object producing strings, typically a list of
strings. This does not add line separators. There is no return value.

	
sendcontrol(char)[source]

	Helper method that wraps send() with mnemonic access for sending control
character to the child (such as Ctrl-C or Ctrl-D). For example, to send
Ctrl-G (ASCII 7, bell, ‘

 fdpexpect - use pexpect with a file descriptor

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

 	API documentation

fdpexpect - use pexpect with a file descriptor

This is like pexpect, but it will work with any file descriptor that you
pass it. You are reponsible for opening and close the file descriptor.
This allows you to use Pexpect with sockets and named pipes (FIFOs).

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

fdspawn class

	
class pexpect.fdpexpect.fdspawn(fd, args=, []timeout=30, maxread=2000, searchwindowsize=None, logfile=None)[source]

	Bases: pexpect.spawn

This is like pexpect.spawn but allows you to supply your own open file
descriptor. For example, you could use it to read through a file looking
for patterns, or to control a modem or serial device.

	
__init__(fd, args=, []timeout=30, maxread=2000, searchwindowsize=None, logfile=None)[source]

	This takes a file descriptor (an int) or an object that support the
fileno() method (returning an int). All Python file-like objects
support fileno().

	
isalive()[source]

	This checks if the file descriptor is still valid. If os.fstat() [http://docs.python.org/3/library/os.html#os.fstat]
does not raise an exception then we assume it is alive.

	
close()[source]

	Close the file descriptor.

Calling this method a second time does nothing, but if the file
descriptor was closed elsewhere, OSError [http://docs.python.org/3/library/exceptions.html#OSError] will be raised.

Note

fdspawn inherits all of the methods of spawn,
but not all of them can be used, especially if the file descriptor is not
a terminal. Some methods may do nothing (e.g. kill()), while
others will raise an exception (e.g. terminate()).
This behaviour might be made more consistent in the future, so try to
avoid relying on it.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 replwrap - Control read-eval-print-loops

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

 	API documentation

replwrap - Control read-eval-print-loops

Generic wrapper for read-eval-print-loops, a.k.a. interactive shells

New in version 3.3.

	
class pexpect.replwrap.REPLWrapper(cmd_or_spawn, orig_prompt, prompt_change, new_prompt=u'[PEXPECT_PROMPT>', continuation_prompt=u'[PEXPECT_PROMPT+')[source]

	Wrapper for a REPL.

	Parameters:	
	cmd_or_spawn – This can either be an instance of pexpect.spawn
in which a REPL has already been started, or a str command to start a new
REPL process.

	orig_prompt (str [http://docs.python.org/3/library/stdtypes.html#str]) – The prompt to expect at first.

	prompt_change (str [http://docs.python.org/3/library/stdtypes.html#str]) – A command to change the prompt to something more
unique. If this is None, the prompt will not be changed. This will
be formatted with the new and continuation prompts as positional
parameters, so you can use {} style formatting to insert them into
the command.

	new_prompt (str [http://docs.python.org/3/library/stdtypes.html#str]) – The more unique prompt to expect after the change.

	
run_command(command, timeout=-1)[source]

	Send a command to the REPL, wait for and return output.

	Parameters:	
	command (str [http://docs.python.org/3/library/stdtypes.html#str]) – The command to send. Trailing newlines are not needed.
This should be a complete block of input that will trigger execution;
if a continuation prompt is found after sending input, ValueError [http://docs.python.org/3/library/exceptions.html#ValueError]
will be raised.

	timeout (int [http://docs.python.org/3/library/functions.html#int]) – How long to wait for the next prompt. -1 means the
default from the pexpect.spawn object (default 30 seconds).
None means to wait indefinitely.

	
pexpect.replwrap.PEXPECT_PROMPT

	A string that can be used as a prompt, and is unlikely to be found in output.

Using the objects above, it is easy to wrap a REPL. For instance, to use a
Python shell:

py = REPLWrapper("python", ">>> ", "import sys; sys.ps1={!r}; sys.ps2={!r}")
py.run_command("4+7")

Convenience functions are provided for Python and bash shells:

	
pexpect.replwrap.python(command='python')[source]

	Start a Python shell and return a REPLWrapper object.

	
pexpect.replwrap.bash(command='bash', orig_prompt=<_sre.SRE_Pattern object at 0x7f14a44bb328>)[source]

	Start a bash shell and return a REPLWrapper object.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 pxssh - control an SSH session

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

 	API documentation

pxssh - control an SSH session

This class extends pexpect.spawn to specialize setting up SSH connections.
This adds methods for login, logout, and expecting the shell prompt.

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

	
class pexpect.pxssh.ExceptionPxssh(value)[source]

	Raised for pxssh exceptions.

pxssh class

	
class pexpect.pxssh.pxssh(timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None)[source]

	This class extends pexpect.spawn to specialize setting up SSH
connections. This adds methods for login, logout, and expecting the shell
prompt. It does various tricky things to handle many situations in the SSH
login process. For example, if the session is your first login, then pxssh
automatically accepts the remote certificate; or if you have public key
authentication setup then pxssh won’t wait for the password prompt.

pxssh uses the shell prompt to synchronize output from the remote host. In
order to make this more robust it sets the shell prompt to something more
unique than just $ or #. This should work on most Borne/Bash or Csh style
shells.

Example that runs a few commands on a remote server and prints the result:

import pxssh
import getpass
try:
 s = pxssh.pxssh()
 hostname = raw_input('hostname: ')
 username = raw_input('username: ')
 password = getpass.getpass('password: ')
 s.login(hostname, username, password)
 s.sendline('uptime') # run a command
 s.prompt() # match the prompt
 print(s.before) # print everything before the prompt.
 s.sendline('ls -l')
 s.prompt()
 print(s.before)
 s.sendline('df')
 s.prompt()
 print(s.before)
 s.logout()
except pxssh.ExceptionPxssh as e:
 print("pxssh failed on login.")
 print(e)

Note that if you have ssh-agent running while doing development with pxssh
then this can lead to a lot of confusion. Many X display managers (xdm,
gdm, kdm, etc.) will automatically start a GUI agent. You may see a GUI
dialog box popup asking for a password during development. You should turn
off any key agents during testing. The ‘force_password’ attribute will turn
off public key authentication. This will only work if the remote SSH server
is configured to allow password logins. Example of using ‘force_password’
attribute:

s = pxssh.pxssh()
s.force_password = True
hostname = raw_input('hostname: ')
username = raw_input('username: ')
password = getpass.getpass('password: ')
s.login (hostname, username, password)

	
__init__(timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None)[source]

	

	
PROMPT

	The regex pattern to search for to find the prompt. If you call login()
with auto_prompt_reset=False, you must set this attribute manually.

	
force_password

	If this is set to True, public key authentication is disabled, forcing the
server to ask for a password. Note that the sysadmin can disable password
logins, in which case this won’t work.

	
login(server, username, password='', terminal_type='ansi', original_prompt='[#$]', login_timeout=10, port=None, auto_prompt_reset=True, ssh_key=None, quiet=True, sync_multiplier=1, check_local_ip=True)[source]

	This logs the user into the given server.

It uses
‘original_prompt’ to try to find the prompt right after login. When it
finds the prompt it immediately tries to reset the prompt to something
more easily matched. The default ‘original_prompt’ is very optimistic
and is easily fooled. It’s more reliable to try to match the original
prompt as exactly as possible to prevent false matches by server
strings such as the “Message Of The Day”. On many systems you can
disable the MOTD on the remote server by creating a zero-length file
called ~/.hushlogin on the remote server. If a prompt cannot be found
then this will not necessarily cause the login to fail. In the case of
a timeout when looking for the prompt we assume that the original
prompt was so weird that we could not match it, so we use a few tricks
to guess when we have reached the prompt. Then we hope for the best and
blindly try to reset the prompt to something more unique. If that fails
then login() raises an ExceptionPxssh exception.

In some situations it is not possible or desirable to reset the
original prompt. In this case, pass auto_prompt_reset=False to
inhibit setting the prompt to the UNIQUE_PROMPT. Remember that pxssh
uses a unique prompt in the prompt() method. If the original prompt is
not reset then this will disable the prompt() method unless you
manually set the PROMPT attribute.

	
logout()[source]

	Sends exit to the remote shell.

If there are stopped jobs then this automatically sends exit twice.

	
prompt(timeout=-1)[source]

	Match the next shell prompt.

This is little more than a short-cut to the expect()
method. Note that if you called login() with
auto_prompt_reset=False, then before calling prompt() you must
set the PROMPT attribute to a regex that it will use for
matching the prompt.

Calling prompt() will erase the contents of the before
attribute even if no prompt is ever matched. If timeout is not given or
it is set to -1 then self.timeout is used.

	Returns:	True if the shell prompt was matched, False if the timeout was
reached.

	
sync_original_prompt(sync_multiplier=1.0)[source]

	This attempts to find the prompt. Basically, press enter and record
the response; press enter again and record the response; if the two
responses are similar then assume we are at the original prompt.
This can be a slow function. Worst case with the default sync_multiplier
can take 12 seconds. Low latency connections are more likely to fail
with a low sync_multiplier. Best case sync time gets worse with a
high sync multiplier (500 ms with default).

	
set_unique_prompt()[source]

	This sets the remote prompt to something more unique than # or $.
This makes it easier for the prompt() method to match the shell prompt
unambiguously. This method is called automatically by the login()
method, but you may want to call it manually if you somehow reset the
shell prompt. For example, if you ‘su’ to a different user then you
will need to manually reset the prompt. This sends shell commands to
the remote host to set the prompt, so this assumes the remote host is
ready to receive commands.

Alternatively, you may use your own prompt pattern. In this case you
should call login() with auto_prompt_reset=False; then set the
PROMPT attribute to a regular expression. After that, the
prompt() method will try to match your prompt pattern.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 screen - manage a virtual ‘screen’

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

 	API documentation

screen - manage a virtual ‘screen’

This implements a virtual screen. This is used to support ANSI terminal
emulation. The screen representation and state is implemented in this class.
Most of the methods are inspired by ANSI screen control codes. The
ANSI class extends this class to add parsing of ANSI
escape codes.

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

	
class pexpect.screen.screen(r=24, c=80)[source]

	This object maintains the state of a virtual text screen as a
rectangluar array. This maintains a virtual cursor position and handles
scrolling as characters are added. This supports most of the methods needed
by an ANSI text screen. Row and column indexes are 1-based (not zero-based,
like arrays).

	
__init__(r=24, c=80)[source]

	This initializes a blank screen of the given dimensions.

	
__str__()[source]

	This returns a printable representation of the screen. The end of
each screen line is terminated by a newline.

	
clear_all_tabs()[source]

	Clears all tabs.

	
clear_tab()[source]

	Clears tab at the current position.

	
cr()[source]

	This moves the cursor to the beginning (col 1) of the current row.

	
crlf()[source]

	This advances the cursor with CRLF properties.
The cursor will line wrap and the screen may scroll.

	
cursor_constrain()[source]

	This keeps the cursor within the screen area.

	
cursor_force_position(r, c)[source]

	Identical to Cursor Home.

	
cursor_restore_attrs()[source]

	Restores cursor position after a Save Cursor.

	
cursor_save()[source]

	Save current cursor position.

	
cursor_save_attrs()[source]

	Save current cursor position.

	
cursor_unsave()[source]

	Restores cursor position after a Save Cursor.

	
dump()[source]

	This returns a copy of the screen as a string. This is similar to
__str__ except that lines are not terminated with line feeds.

	
erase_down()[source]

	Erases the screen from the current line down to the bottom of the
screen.

	
erase_end_of_line()[source]

	Erases from the current cursor position to the end of the current
line.

	
erase_line()[source]

	Erases the entire current line.

	
erase_screen()[source]

	Erases the screen with the background color.

	
erase_start_of_line()[source]

	Erases from the current cursor position to the start of the current
line.

	
erase_up()[source]

	Erases the screen from the current line up to the top of the
screen.

	
get_region(rs, cs, re, ce)[source]

	This returns a list of lines representing the region.

	
insert_abs(r, c, ch)[source]

	This inserts a character at (r,c). Everything under
and to the right is shifted right one character.
The last character of the line is lost.

	
lf()[source]

	This moves the cursor down with scrolling.

	
newline()[source]

	This is an alias for crlf().

	
pretty()[source]

	This returns a copy of the screen as a string with an ASCII text box
around the screen border. This is similar to __str__ except that it
adds a box.

	
put(ch)[source]

	This puts a characters at the current cursor position.

	
put_abs(r, c, ch)[source]

	Screen array starts at 1 index.

	
scroll_constrain()[source]

	This keeps the scroll region within the screen region.

	
scroll_down()[source]

	Scroll display down one line.

	
scroll_screen()[source]

	Enable scrolling for entire display.

	
scroll_screen_rows(rs, re)[source]

	Enable scrolling from row {start} to row {end}.

	
scroll_up()[source]

	Scroll display up one line.

	
set_tab()[source]

	Sets a tab at the current position.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 ANSI - ANSI (VT100) terminal emulator

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

 	API documentation

ANSI - ANSI (VT100) terminal emulator

This implements an ANSI (VT100) terminal emulator as a subclass of screen.

PEXPECT LICENSE

	This license is approved by the OSI and FSF as GPL-compatible.

	http://opensource.org/licenses/isc-license.txt

Copyright (c) 2012, Noah Spurrier <noah@noah.org>
PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

	
class pexpect.ANSI.term(r=24, c=80)[source]

	Bases: pexpect.screen.screen

This class is an abstract, generic terminal.
This does nothing. This is a placeholder that
provides a common base class for other terminals
such as an ANSI terminal.

	
class pexpect.ANSI.ANSI(r=24, c=80)[source]

	Bases: pexpect.ANSI.term

This class implements an ANSI (VT100) terminal.
It is a stream filter that recognizes ANSI terminal
escape sequences and maintains the state of a screen object.

	
write_ch(ch)[source]

	This puts a character at the current cursor position. The cursor
position is moved forward with wrap-around, but no scrolling is done if
the cursor hits the lower-right corner of the screen.

	
write(s)[source]

	Process text, writing it to the virtual screen while handling
ANSI escape codes.

	
process(c)[source]

	Process a single byte. Called by write().

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Examples

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

Examples

Under the distribution tarball directory you should find an “examples” directory.
This is the best way to learn to use Pexpect. See the descriptions of Pexpect
Examples.

	topip.py [https://github.com/pexpect/pexpect/blob/master/examples/topip.py]

	This runs netstat on a local or remote server. It calculates some simple
statistical information on the number of external inet connections. This can
be used to detect if one IP address is taking up an excessive number of
connections. It can also send an email alert if a given IP address exceeds a
threshold between runs of the script. This script can be used as a drop-in
Munin plugin or it can be used stand-alone from cron. I used this on a busy
web server that would sometimes get hit with denial of service attacks. This
made it easy to see if a script was opening many multiple connections. A
typical browser would open fewer than 10 connections at once. A script might
open over 100 simultaneous connections.

	hive.py [https://github.com/pexpect/pexpect/blob/master/examples/hive.py]

	This script creates SSH connections to a list of hosts that you provide.
Then you are given a command line prompt. Each shell command that you
enter is sent to all the hosts. The response from each host is collected
and printed. For example, you could connect to a dozen different
machines and reboot them all at once.

	script.py [https://github.com/pexpect/pexpect/blob/master/examples/script.py]

	This implements a command similar to the classic BSD “script” command.
This will start a subshell and log all input and output to a file.
This demonstrates the interact() method of Pexpect.

	ftp.py [https://github.com/pexpect/pexpect/blob/master/examples/ftp.py]

	This demonstrates an FTP “bookmark”. This connects to an ftp site;
does a few ftp tasks; and then gives the user interactive control over
the session. In this case the “bookmark” is to a directory on the
OpenBSD ftp server. It puts you in the i386 packages directory. You
can easily modify this for other sites. This demonstrates the
interact() method of Pexpect.

	monitor.py [https://github.com/pexpect/pexpect/blob/master/examples/monitor.py]

	This runs a sequence of commands on a remote host using SSH. It runs a
simple system checks such as uptime and free to monitor the state of
the remote host.

	passmass.py [https://github.com/pexpect/pexpect/blob/master/examples/passmass.py]

	This will login to each given server and change the password of the
given user. This demonstrates scripting logins and passwords.

	python.py [https://github.com/pexpect/pexpect/blob/master/examples/python.py]

	This starts the python interpreter and prints the greeting message
backwards. It then gives the user iteractive control of Python. It’s
pretty useless!

	ssh_tunnel.py [https://github.com/pexpect/pexpect/blob/master/examples/ssh_tunnel.py]

	This starts an SSH tunnel to a remote machine. It monitors the
connection and restarts the tunnel if it goes down.

	uptime.py [https://github.com/pexpect/pexpect/blob/master/examples/uptime.py]

	This will run the uptime command and parse the output into variables.
This demonstrates using a single regular expression to match the
output of a command and capturing different variable in match groups.
The grouping regular expression handles a wide variety of different
uptime formats.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 FAQ

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

FAQ

Q: Why don’t shell pipe and redirect (| and >) work when I spawn a command?

A: Remember that Pexpect does NOT interpret shell meta characters such as
redirect, pipe, or wild cards (>, |, or *). That’s done by a shell not
the command you are spawning. This is a common mistake. If you want to run a
command and pipe it through another command then you must also start a shell.
For example:

child = pexpect.spawn('/bin/bash -c "ls -l | grep LOG > log_list.txt"')
child.expect(pexpect.EOF)

The second form of spawn (where you pass a list of arguments) is useful in
situations where you wish to spawn a command and pass it its own argument list.
This can make syntax more clear. For example, the following is equivalent to the
previous example:

shell_cmd = 'ls -l | grep LOG > log_list.txt'
child = pexpect.spawn('/bin/bash', ['-c', shell_cmd])
child.expect(pexpect.EOF)

Q: Isn’t there already a Python Expect?

A: Yes, there are several of them. They usually require you to compile C.
I wanted something that was pure Python and preferably a single module
that was simple to install. I also wanted something that was easy to use.
This pure Python expect only became possible with the introduction of
the pty module in the standard Python library. Previously, C extensions
were required.

Q: The `before` and `after` properties sound weird.

A: This is how the -B and -A options in grep works, so that made it
easier for me to remember. Whatever makes my life easier is what’s best.
Originally I was going to model Pexpect after Expect, but then I found
that I didn’t actually like the way Expect did some things. It was more
confusing. The after property can be a little confusing at first,
because it will actually include the matched string. The after means
after the point of match, not after the matched string.

Q: Why not just use Expect?

A: I love it. It’s great. I has bailed me out of some real jams, but I
wanted something that would do 90% of what I need from Expect; be 10% of
the size; and allow me to write my code in Python instead of TCL.
Pexpect is not nearly as big as Expect, but Pexpect does everything I
have ever used Expect for.

Q: Why not just use a pipe (popen())?

A: A pipe works fine for getting the output to non-interactive programs.
If you just want to get the output from ls, uname, or ping then this
works. Pipes do not work very well for interactive programs and pipes
will almost certainly fail for most applications that ask for passwords
such as telnet, ftp, or ssh.

There are two reasons for this.

	First an application may bypass stdout and print directly to its
controlling TTY. Something like SSH will do this when it asks you for
a password. This is why you cannot redirect the password prompt because
it does not go through stdout or stderr.

	The second reason is because most applications are built using the C
Standard IO Library (anything that uses #include <stdio.h>). One
of the features of the stdio library is that it buffers all input and
output. Normally output is line buffered when a program is printing to
a TTY (your terminal screen). Everytime the program prints a line-feed
the currently buffered data will get printed to your screen. The
problem comes when you connect a pipe. The stdio library is smart and
can tell that it is printing to a pipe instead of a TTY. In that case
it switches from line buffer mode to block buffered. In this mode the
currently buffered data is flushed when the buffer is full. This
causes most interactive programs to deadlock. Block buffering is more
efficient when writing to disks and pipes. Take the situation where a
program prints a message "Enter your user name:\n" and then waits
for you type type something. In block buffered mode, the stdio library
will not put the message into the pipe even though a linefeed is
printed. The result is that you never receive the message, yet the
child application will sit and wait for you to type a response. Don’t
confuse the stdio lib’s buffer with the pipe’s buffer. The pipe buffer
is another area that can cause problems. You could flush the input
side of a pipe, whereas you have no control over the stdio library buffer.

More information: the Standard IO library has three states for a
FILE *. These are: _IOFBF for block buffered; _IOLBF for line buffered;
and _IONBF for unbuffered. The STDIO lib will use block buffering when
talking to a block file descriptor such as a pipe. This is usually not
helpful for interactive programs. Short of recompiling your program to
include fflush() everywhere or recompiling a custom stdio library there
is not much a controlling application can do about this if talking over
a pipe.

The program may have put data in its output that remains unflushed
because the output buffer is not full; then the program will go and
deadlock while waiting for input – because you never send it any
because you are still waiting for its output (still stuck in the STDIO’s
output buffer).

The answer is to use a pseudo-tty. A TTY device will force line
buffering (as opposed to block buffering). Line buffering means that you
will get each line when the child program sends a line feed. This
corresponds to the way most interactive programs operate – send a line
of output then wait for a line of input.

I put “answer” in quotes because it’s ugly solution and because there is
no POSIX standard for pseudo-TTY devices (even though they have a TTY
standard...). What would make more sense to me would be to have some way
to set a mode on a file descriptor so that it will tell the STDIO to be
line-buffered. I have investigated, and I don’t think there is a way to
set the buffered state of a child process. The STDIO Library does not
maintain any external state in the kernel or whatnot, so I don’t think
there is any way for you to alter it. I’m not quite sure how this
line-buffered/block-buffered state change happens internally in the
STDIO library. I think the STDIO lib looks at the file descriptor and
decides to change behavior based on whether it’s a TTY or a block file
(see isatty()).

I hope that this qualifies as helpful. Don’t use a pipe to control
another application.

Q: Can I do screen scraping with this thing?

A: That depends. If your application just does line-oriented output then
this is easy. If it does screen-oriented output then it may work, but it
could be hard. For example, trying to scrape data from the ‘top’ command
would be hard. The top command repaints the text window.

I am working on an ANSI / VT100 terminal emulator that will have methods
to get characters from an arbitrary X,Y coordinate of the virtual screen.
It works and you can play with it (see pexpect.ANSI), but I have
no working examples at this time.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Common problems

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pexpect 3.3 documentation

Common problems

Threads

On Linux (RH 8) you cannot spawn a child from a different thread and pass the
handle back to a worker thread. The child is successfully spawned but you can’t
interact with it. The only way to make it work is to spawn and interact with the
child all in the same thread. [Adam Kerrison]

Timing issue with send() and sendline()

This problem has been addressed and should not affect most users.

It is sometimes possible to read an echo of the string sent with
send() and sendline(). If you call
send() and then immediately call readline(),
you may get part of your output echoed back. You may read back what you just
wrote even if the child application does not explicitly echo it. Timing is
critical. This could be a security issue when talking to an application that
asks for a password; otherwise, this does not seem like a big deal. But why do
TTYs do this?

People usually report this when they are trying to control SSH or some other
login. For example, if your code looks something like this:

child.expect ('[pP]assword:')
child.sendline (my_password)

	SSH prints “password:” prompt to the user.

	SSH turns off echo on the TTY device.

	SSH waits for user to enter a password.

When scripting with Pexpect what can happen is that Pexpect will respond to the
“password:” prompt before SSH has had time to turn off TTY echo. In other words,
Pexpect sends the password between steps 1. and 2., so the password gets echoed
back to the TTY. I would call this an SSH bug.

Pexpect now automatically adds a short delay before sending data to a child
process. This more closely mimics what happens in the usual human-to-app
interaction. The delay can be tuned with the delaybeforesend attribute of the
spawn class. In general, this fixes the problem for everyone and so this should
not be an issue for most users. For some applications you might with to turn it
off:

child = pexpect.spawn ("ssh user@example.com")
child.delaybeforesend = 0

Timing issue with isalive()

Reading the state of isalive() immediately after a child
exits may sometimes return 1. This is a race condition. The child has closed its
file descriptor, but has not yet fully exited before Pexpect’s
isalive() executes. Addings a slight delay before the
isalive() call will help. For example:

child = pexpect.spawn('ls')
child.expect(pexpect.EOF)
time.sleep(0.1)
print child.isalive()

Truncated output just before child exits

So far I have seen this only on older versions of Apple’s MacOS X. If the child
application quits it may not flush its output buffer. This means that your
Pexpect application will receive an EOF even though it should have received a
little more data before the child died. This is not generally a problem when
talking to interactive child applications. One example where it is a problem is
when trying to read output from a program like ls. You may receive most of the
directory listing, but the last few lines will get lost before you receive an EOF.
The reason for this is that ls runs; completes its task; and then exits. The
buffer is not flushed before exit so the last few lines are lost. The following
example demonstrates the problem:

child = pexpect.spawn('ls -l')
child.expect(pexpect.EOF)
print child.before

Controlling SSH on Solaris

Pexpect does not yet work perfectly on Solaris. One common problem is that SSH
sometimes will not allow TTY password authentication. For example, you may
expect SSH to ask you for a password using code like this:

child = pexpect.spawn('ssh user@example.com')
child.expect('assword')
child.sendline('mypassword')

You may see the following error come back from a spawned child SSH:

Permission denied (publickey,keyboard-interactive).

This means that SSH thinks it can’t access the TTY to ask you for your password.
The only solution I have found is to use public key authentication with SSH.
This bypasses the need for a password. I’m not happy with this solution. The
problem is due to poor support for Solaris Pseudo TTYs in the Python Standard
Library.

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 History

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pexpect 3.3 documentation

History

Releases

Version 3.3

	Added a mechanism to wrap REPLs, or shells, in an object which can conveniently
be used to send commands and wait for the output (pexpect.replwrap).

	Fixed issue where pexpect would attempt to execute a directory because
it has the ‘execute’ bit set (#37 [https://github.com/pexpect/pexpect/issues/37/]).

	Removed the pexpect.psh module. This was never documented, and we found
no evidence that people use it. The new pexpect.replwrap module
provides a more flexible alternative.

	Fixed TypeError: got <type 'str'> ('\r\n') as pattern in spawnu.readline()
method (#67 [https://github.com/pexpect/pexpect/issues/67/]).

	Fixed issue where EOF was not correctly detected in interact(), causing
a repeating loop of output on Linux, and blocking before EOF on BSD and
Solaris (#49 [https://github.com/pexpect/pexpect/issues/49/]).

	Several Solaris (SmartOS) bugfixes, preventing IOError [http://docs.python.org/3/library/exceptions.html#IOError] exceptions, especially
when used with cron(1) (#44 [https://github.com/pexpect/pexpect/issues/44/]).

	Added new keyword argument echo=True for spawn. On SVR4-like
systems, the method isatty() will always return False: the child pty
does not appear as a terminal. Therefore, setecho(), getwinsize(),
setwinsize(), and waitnoecho() are not supported on those platforms.

After this, we intend to start working on a bigger refactoring of the code, to
be released as Pexpect 4. There may be more bugfix 3.x releases, however.

Version 3.2

	Fix exception handling from select.select() [http://docs.python.org/3/library/select.html#select.select] on Python 2 (PR #38 [https://github.com/pexpect/pexpect/pull/38/]).
This was accidentally broken in the previous release when it was fixed for
Python 3.

	Removed a workaround for TIOCSWINSZ on very old systems, which was causing
issues on some BSD systems (PR #40 [https://github.com/pexpect/pexpect/pull/40/]).

	Fixed an issue with exception handling in pxssh (PR #43 [https://github.com/pexpect/pexpect/pull/43/])

The documentation for pxssh was improved.

Version 3.1

	Fix an issue that prevented importing pexpect on Python 3 when sys.stdout
was reassigned (#30 [https://github.com/pexpect/pexpect/issues/30/]).

	Improve prompt synchronisation in pxssh (PR #28 [https://github.com/pexpect/pexpect/pull/28/]).

	Fix pickling exception instances (PR #34 [https://github.com/pexpect/pexpect/pull/34/]).

	Fix handling exceptions from select.select() [http://docs.python.org/3/library/select.html#select.select] on Python 3 (PR #33 [https://github.com/pexpect/pexpect/pull/33/]).

The examples have also been cleaned up somewhat - this will continue in future
releases.

Version 3.0

The new major version number doesn’t indicate any deliberate API incompatibility.
We have endeavoured to avoid breaking existing APIs. However, pexpect is under
new maintenance after a long dormancy, so some caution is warranted.

	A new unicode API was introduced.

	Python 3 is now supported, using a single codebase.

	Pexpect now requires at least Python 2.6 or 3.2.

	The modules other than pexpect, such as pexpect.fdpexpect and
pexpect.pxssh, were moved into the pexpect package. For now, wrapper
modules are installed to the old locations for backwards compatibility (e.g.
import pxssh will still work), but these will be removed at some point in
the future.

	Ignoring SIGHUP is now optional - thanks to Kimmo Parviainen-Jalanko for
the patch.

We also now have docs on ReadTheDocs [http://pexpect.readthedocs.org/],
and continuous integration on Travis CI [https://travis-ci.org/pexpect/pexpect].

Version 2.4

	Fix a bug regarding making the pty the controlling terminal when the process
spawning it is not, actually, a terminal (such as from cron)

Version 2.3

	Fixed OSError exception when a pexpect object is cleaned up. Previously, you
might have seen this exception:

Exception exceptions.OSError: (10, 'No child processes')
in <bound method spawn.__del__ of <pexpect.spawn instance at 0xd248c>> ignored

You should not see that anymore. Thanks to Michael Surette.

	Added support for buffering reads. This greatly improves speed when trying to
match long output from a child process. When you create an instance of the spawn
object you can then set a buffer size. For now you MUST do the following to turn
on buffering – it may be on by default in future version:

child = pexpect.spawn ('my_command')
child.maxread=1000 # Sets buffer to 1000 characters.

	I made a subtle change to the way TIMEOUT and EOF exceptions behave.
Previously you could either expect these states in which case pexpect
will not raise an exception, or you could just let pexpect raise an
exception when these states were encountered. If you expected the
states then the before property was set to everything before the
state was encountered, but if you let pexpect raise the exception then
before was not set. Now, the before property will get set either
way you choose to handle these states.

	The spawn object now provides iterators for a file-like interface.
This makes Pexpect a more complete file-like object. You can now write
code like this:

child = pexpect.spawn ('ls -l')
for line in child:
 print line

	write and writelines() no longer return a value. Use send() if you need that
functionality. I did this to make the Spawn object more closely match a
file-like object.

	Added the attribute exitstatus. This will give the exit code returned
by the child process. This will be set to None while the child is still
alive. When isalive() returns 0 then exitstatus will be set.

	Made a few more tweaks to isalive() so that it will operate more
consistently on different platforms. Solaris is the most difficult to support.

	You can now put TIMEOUT in a list of expected patterns. This is just like
putting EOF in the pattern list. Expecting for a TIMEOUT may not be
used as often as EOF, but this makes Pexpect more consistent.

	Thanks to a suggestion and sample code from Chad J. Schroeder I added the ability
for Pexpect to operate on a file descriptor that is already open. This means that
Pexpect can be used to control streams such as those from serial port devices. Now,
you just pass the integer file descriptor as the “command” when constructing a
spawn open. For example on a Linux box with a modem on ttyS1:

fd = os.open("/dev/ttyS1", os.O_RDWR|os.O_NONBLOCK|os.O_NOCTTY)
m = pexpect.spawn(fd) # Note integer fd is used instead of usual string.
m.send("+++") # Escape sequence
m.send("ATZ0\r") # Reset modem to profile 0
rval = m.expect(["OK", "ERROR"])

	read() was renamed to read_nonblocking(). Added new read() method
that matches file-like object interface. In general, you should not notice
the difference except that read() no longer allows you to directly set the
timeout value. I hope this will not effect any existing code. Switching to
read_nonblocking() should fix existing code.

	Changed the name of set_echo() to setecho().

	Changed the name of send_eof() to sendeof().

	Modified kill() so that it checks to make sure the pid isalive().

	modified spawn() (really called from __spawn()) so that it does not
raise an expection if setwinsize() fails. Some platforms such as Cygwin
do not like setwinsize. This was a constant problem and since it is not a
critical feature I decided to just silence the error. Normally I don’t like
to do that, but in this case I’m making an exception.

	Added a method close() that does what you think. It closes the file
descriptor of the child application. It makes no attempt to actually kill the
child or wait for its status.

	Add variables __version__ and __revision__ (from cvs) to the pexpect
modules. This is mainly helpful to me so that I can make sure that I’m testing
with the right version instead of one already installed.

	log_open() and log_close(have been removed. Now use setlog().
The setlog() method takes a file object. This is far more flexible than
the previous log method. Each time data is written to the file object it will
be flushed. To turn logging off simply call setlog() with None.

	renamed the isAlive() method to isalive() to match the more typical
naming style in Python. Also the technique used to detect child process
status has been drastically modified. Previously I did some funky stuff
with signals which caused indigestion in other Python modules on some
platforms. It was a big headache. It still is, but I think it works
better now.

	attribute matched renamed to after

	new attribute match

	The expect_eof() method is gone. You can now simply use the
expect() method to look for EOF.

	Pexpect works on OS X, but the nature of the quirks cause many of the
tests to fail. See bugs. (Incomplete Child Output). The problem is more
than minor, but Pexpect is still more than useful for most tasks.

	Solaris: For some reason, the second time a pty file descriptor is created and
deleted it never gets returned for use. It does not effect the first time
or the third time or any time after that. It’s only the second time. This
is weird... This could be a file descriptor leak, or it could be some
peculiarity of how Solaris recycles them. I thought it was a UNIX requirement
for the OS to give you the lowest available filedescriptor number. In any case,
this should not be a problem unless you create hundreds of pexpect instances...
It may also be a pty module bug.

Moves and forks

	Pexpect development used to be hosted on Sourceforge.

	In 2011, Thomas Kluyver forked pexpect as ‘pexpect-u’, to support
Python 3. He later decided he had taken the wrong approach with this.

	In 2012, Noah Spurrier, the original author of Pexpect, moved the
project to Github, but was still too busy to develop it much.

	In 2013, Thomas Kluyver and Jeff Quast forked Pexpect again, intending
to call the new fork Pexpected. Noah Spurrier agreed to let them use
the name Pexpect, so Pexpect versions 3 and above are based on this
fork, which now lives here on Github [https://github.com/pexpect/pexpect].

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Pexpect 3.3 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pexpect	

 	
 	
 pexpect.ANSI	

 	
 	
 pexpect.fdpexpect	

 	
 	
 pexpect.pxssh	

 	
 	
 pexpect.replwrap	

 	
 	
 pexpect.screen	

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

 Index

 Navigation

 	
 index

 	
 modules |

 	Pexpect 3.3 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | N
 | P
 | R
 | S
 | T
 | W

_

 	

 	__init__() (pexpect.fdpexpect.fdspawn method)

 	

 	(pexpect.pxssh.pxssh method)

 	(pexpect.screen.screen method)

 	(pexpect.spawn method)

 	

 	__str__() (pexpect.screen.screen method)

A

 	

 	ANSI (class in pexpect.ANSI)

B

 	

 	bash() (in module pexpect.replwrap)

C

 	

 	child_fd (pexpect.spawn attribute)

 	clear_all_tabs() (pexpect.screen.screen method)

 	clear_tab() (pexpect.screen.screen method)

 	close() (pexpect.fdpexpect.fdspawn method)

 	

 	(pexpect.spawn method)

 	compile_pattern_list() (pexpect.spawn method)

 	cr() (pexpect.screen.screen method)

 	crlf() (pexpect.screen.screen method)

 	

 	cursor_constrain() (pexpect.screen.screen method)

 	cursor_force_position() (pexpect.screen.screen method)

 	cursor_restore_attrs() (pexpect.screen.screen method)

 	cursor_save() (pexpect.screen.screen method)

 	cursor_save_attrs() (pexpect.screen.screen method)

 	cursor_unsave() (pexpect.screen.screen method)

D

 	

 	dump() (pexpect.screen.screen method)

E

 	

 	EOF (class in pexpect)

 	eof() (pexpect.spawn method)

 	erase_down() (pexpect.screen.screen method)

 	erase_end_of_line() (pexpect.screen.screen method)

 	erase_line() (pexpect.screen.screen method)

 	erase_screen() (pexpect.screen.screen method)

 	erase_start_of_line() (pexpect.screen.screen method)

 	

 	erase_up() (pexpect.screen.screen method)

 	ExceptionPexpect (class in pexpect)

 	ExceptionPxssh (class in pexpect.pxssh)

 	expect() (pexpect.spawn method)

 	expect_exact() (pexpect.spawn method)

 	expect_list() (pexpect.spawn method)

F

 	

 	fdspawn (class in pexpect.fdpexpect)

 	

 	force_password (pexpect.pxssh.pxssh attribute)

G

 	

 	get_region() (pexpect.screen.screen method)

 	getecho() (pexpect.spawn method)

 	

 	getwinsize() (pexpect.spawn method)

I

 	

 	insert_abs() (pexpect.screen.screen method)

 	interact() (pexpect.spawn method)

 	

 	isalive() (pexpect.fdpexpect.fdspawn method)

 	

 	(pexpect.spawn method)

K

 	

 	kill() (pexpect.spawn method)

L

 	

 	lf() (pexpect.screen.screen method)

 	logfile (pexpect.spawn attribute)

 	logfile_read (pexpect.spawn attribute)

 	

 	logfile_send (pexpect.spawn attribute)

 	login() (pexpect.pxssh.pxssh method)

 	logout() (pexpect.pxssh.pxssh method)

N

 	

 	newline() (pexpect.screen.screen method)

P

 	

 	pexpect (module)

 	pexpect.ANSI (module)

 	pexpect.fdpexpect (module)

 	pexpect.pxssh (module)

 	pexpect.replwrap (module)

 	pexpect.screen (module)

 	PEXPECT_PROMPT (in module pexpect.replwrap)

 	pid (pexpect.spawn attribute)

 	

 	pretty() (pexpect.screen.screen method)

 	process() (pexpect.ANSI.ANSI method)

 	PROMPT (pexpect.pxssh.pxssh attribute)

 	prompt() (pexpect.pxssh.pxssh method)

 	put() (pexpect.screen.screen method)

 	put_abs() (pexpect.screen.screen method)

 	pxssh (class in pexpect.pxssh)

 	python() (in module pexpect.replwrap)

R

 	

 	read() (pexpect.spawn method)

 	read_nonblocking() (pexpect.spawn method)

 	readline() (pexpect.spawn method)

 	REPLWrapper (class in pexpect.replwrap)

 	

 	run() (in module pexpect)

 	run_command() (pexpect.replwrap.REPLWrapper method)

 	runu() (in module pexpect)

S

 	

 	screen (class in pexpect.screen)

 	scroll_constrain() (pexpect.screen.screen method)

 	scroll_down() (pexpect.screen.screen method)

 	scroll_screen() (pexpect.screen.screen method)

 	scroll_screen_rows() (pexpect.screen.screen method)

 	scroll_up() (pexpect.screen.screen method)

 	send() (pexpect.spawn method)

 	sendcontrol() (pexpect.spawn method)

 	sendeof() (pexpect.spawn method)

 	sendintr() (pexpect.spawn method)

 	

 	sendline() (pexpect.spawn method)

 	set_tab() (pexpect.screen.screen method)

 	set_unique_prompt() (pexpect.pxssh.pxssh method)

 	setecho() (pexpect.spawn method)

 	setwinsize() (pexpect.spawn method)

 	spawn (class in pexpect), [1]

 	spawnu (class in pexpect)

 	split_command_line() (in module pexpect)

 	sync_original_prompt() (pexpect.pxssh.pxssh method)

T

 	

 	term (class in pexpect.ANSI)

 	terminate() (pexpect.spawn method)

 	

 	TIMEOUT (class in pexpect)

W

 	

 	wait() (pexpect.spawn method)

 	waitnoecho() (pexpect.spawn method)

 	which() (in module pexpect)

 	

 	write() (pexpect.ANSI.ANSI method)

 	

 	(pexpect.spawn method)

 	write_ch() (pexpect.ANSI.ANSI method)

 	writelines() (pexpect.spawn method)

 Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 All modules for which code is available

		pexpect

		pexpect.ANSI

		pexpect.fdpexpect

		pexpect.pxssh

		pexpect.replwrap

		pexpect.screen

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/down.png

_modules/pexpect.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 		Module code »

 Source code for pexpect

'''Pexpect is a Python module for spawning child applications and controlling
them automatically. Pexpect can be used for automating interactive applications
such as ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different servers. It
can be used for automated software testing. Pexpect is in the spirit of Don
Libes' Expect, but Pexpect is pure Python. Other Expect-like modules for Python
require TCL and Expect or require C extensions to be compiled. Pexpect does not
use C, Expect, or TCL extensions. It should work on any platform that supports
the standard Python pty module. The Pexpect interface focuses on ease of use so
that simple tasks are easy.

There are two main interfaces to the Pexpect system; these are the function,
run() and the class, spawn. The spawn class is more powerful. The run()
function is simpler than spawn, and is good for quickly calling program. When
you call the run() function it executes a given program and then returns the
output. This is a handy replacement for os.system().

For example::

 pexpect.run('ls -la')

The spawn class is the more powerful interface to the Pexpect system. You can
use this to spawn a child program then interact with it by sending input and
expecting responses (waiting for patterns in the child's output).

For example::

 child = pexpect.spawn('scp foo user@example.com:.')
 child.expect('Password:')
 child.sendline(mypassword)

This works even for commands that ask for passwords or other input outside of
the normal stdio streams. For example, ssh reads input directly from the TTY
device which bypasses stdin.

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett,
Robert Stone, Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids
vander Molen, George Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin,
Jacques-Etienne Baudoux, Geoffrey Marshall, Francisco Lourenco, Glen Mabey,
Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen, Guillaume
Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn, John
Spiegel, Jan Grant, and Shane Kerr. Let me know if I forgot anyone.

Pexpect is free, open source, and all that good stuff.
http://pexpect.sourceforge.net/

PEXPECT LICENSE

 This license is approved by the OSI and FSF as GPL-compatible.
 http://opensource.org/licenses/isc-license.txt

 Copyright (c) 2012, Noah Spurrier <noah@noah.org>
 PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
 PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
 COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''

try:
 import os
 import sys
 import time
 import select
 import re
 import struct
 import resource
 import types
 import pty
 import tty
 import termios
 import fcntl
 import errno
 import traceback
 import signal
 import codecs
 import stat
except ImportError: # pragma: no cover
 err = sys.exc_info()[1]
 raise ImportError(str(err) + '''

A critical module was not found. Probably this operating system does not
support it. Pexpect is intended for UNIX-like operating systems.''')

__version__ = '3.3'
__revision__ = ''
__all__ = ['ExceptionPexpect', 'EOF', 'TIMEOUT', 'spawn', 'spawnu', 'run', 'runu',
 'which', 'split_command_line', '__version__', '__revision__']

PY3 = (sys.version_info[0] >= 3)

Exception classes used by this module.
[docs]class ExceptionPexpect(Exception):
 '''Base class for all exceptions raised by this module.
 '''

 def __init__(self, value):
 super(ExceptionPexpect, self).__init__(value)
 self.value = value

 def __str__(self):
 return str(self.value)

 def get_trace(self):
 '''This returns an abbreviated stack trace with lines that only concern
 the caller. In other words, the stack trace inside the Pexpect module
 is not included. '''

 tblist = traceback.extract_tb(sys.exc_info()[2])
 tblist = [item for item in tblist if 'pexpect/__init__' not in item[0]]
 tblist = traceback.format_list(tblist)
 return ''.join(tblist)

[docs]class EOF(ExceptionPexpect):
 '''Raised when EOF is read from a child.
 This usually means the child has exited.'''

[docs]class TIMEOUT(ExceptionPexpect):
 '''Raised when a read time exceeds the timeout. '''

##class TIMEOUT_PATTERN(TIMEOUT):
'''Raised when the pattern match time exceeds the timeout.
This is different than a read TIMEOUT because the child process may
give output, thus never give a TIMEOUT, but the output
may never match a pattern.
'''
##class MAXBUFFER(ExceptionPexpect):
'''Raised when a buffer fills before matching an expected pattern.'''

[docs]def run(command, timeout=-1, withexitstatus=False, events=None,
 extra_args=None, logfile=None, cwd=None, env=None):

 '''
 This function runs the given command; waits for it to finish; then
 returns all output as a string. STDERR is included in output. If the full
 path to the command is not given then the path is searched.

 Note that lines are terminated by CR/LF (\\r\\n) combination even on
 UNIX-like systems because this is the standard for pseudottys. If you set
 'withexitstatus' to true, then run will return a tuple of (command_output,
 exitstatus). If 'withexitstatus' is false then this returns just
 command_output.

 The run() function can often be used instead of creating a spawn instance.
 For example, the following code uses spawn::

 from pexpect import *
 child = spawn('scp foo user@example.com:.')
 child.expect('(?i)password')
 child.sendline(mypassword)

 The previous code can be replace with the following::

 from pexpect import *
 run('scp foo user@example.com:.', events={'(?i)password': mypassword})

 Examples

 Start the apache daemon on the local machine::

 from pexpect import *
 run("/usr/local/apache/bin/apachectl start")

 Check in a file using SVN::

 from pexpect import *
 run("svn ci -m 'automatic commit' my_file.py")

 Run a command and capture exit status::

 from pexpect import *
 (command_output, exitstatus) = run('ls -l /bin', withexitstatus=1)

 The following will run SSH and execute 'ls -l' on the remote machine. The
 password 'secret' will be sent if the '(?i)password' pattern is ever seen::

 run("ssh username@machine.example.com 'ls -l'",
 events={'(?i)password':'secret\\n'})

 This will start mencoder to rip a video from DVD. This will also display
 progress ticks every 5 seconds as it runs. For example::

 from pexpect import *
 def print_ticks(d):
 print d['event_count'],
 run("mencoder dvd://1 -o video.avi -oac copy -ovc copy",
 events={TIMEOUT:print_ticks}, timeout=5)

 The 'events' argument should be a dictionary of patterns and responses.
 Whenever one of the patterns is seen in the command out run() will send the
 associated response string. Note that you should put newlines in your
 string if Enter is necessary. The responses may also contain callback
 functions. Any callback is function that takes a dictionary as an argument.
 The dictionary contains all the locals from the run() function, so you can
 access the child spawn object or any other variable defined in run()
 (event_count, child, and extra_args are the most useful). A callback may
 return True to stop the current run process otherwise run() continues until
 the next event. A callback may also return a string which will be sent to
 the child. 'extra_args' is not used by directly run(). It provides a way to
 pass data to a callback function through run() through the locals
 dictionary passed to a callback.
 '''
 return _run(command, timeout=timeout, withexitstatus=withexitstatus,
 events=events, extra_args=extra_args, logfile=logfile, cwd=cwd,
 env=env, _spawn=spawn)

[docs]def runu(command, timeout=-1, withexitstatus=False, events=None,
 extra_args=None, logfile=None, cwd=None, env=None, **kwargs):
 """This offers the same interface as :func:`run`, but using unicode.

 Like :class:`spawnu`, you can pass ``encoding`` and ``errors`` parameters,
 which will be used for both input and output.
 """
 return _run(command, timeout=timeout, withexitstatus=withexitstatus,
 events=events, extra_args=extra_args, logfile=logfile, cwd=cwd,
 env=env, _spawn=spawnu, **kwargs)

def _run(command, timeout, withexitstatus, events, extra_args, logfile, cwd,
 env, _spawn, **kwargs):
 if timeout == -1:
 child = _spawn(command, maxread=2000, logfile=logfile, cwd=cwd, env=env,
 **kwargs)
 else:
 child = _spawn(command, timeout=timeout, maxread=2000, logfile=logfile,
 cwd=cwd, env=env, **kwargs)
 if events is not None:
 patterns = list(events.keys())
 responses = list(events.values())
 else:
 # This assumes EOF or TIMEOUT will eventually cause run to terminate.
 patterns = None
 responses = None
 child_result_list = []
 event_count = 0
 while True:
 try:
 index = child.expect(patterns)
 if isinstance(child.after, child.allowed_string_types):
 child_result_list.append(child.before + child.after)
 else:
 # child.after may have been a TIMEOUT or EOF,
 # which we don't want appended to the list.
 child_result_list.append(child.before)
 if isinstance(responses[index], child.allowed_string_types):
 child.send(responses[index])
 elif isinstance(responses[index], types.FunctionType):
 callback_result = responses[index](locals())
 sys.stdout.flush()
 if isinstance(callback_result, child.allowed_string_types):
 child.send(callback_result)
 elif callback_result:
 break
 else:
 raise TypeError('The callback must be a string or function.')
 event_count = event_count + 1
 except TIMEOUT:
 child_result_list.append(child.before)
 break
 except EOF:
 child_result_list.append(child.before)
 break
 child_result = child.string_type().join(child_result_list)
 if withexitstatus:
 child.close()
 return (child_result, child.exitstatus)
 else:
 return child_result

[docs]class spawn(object):
 '''This is the main class interface for Pexpect. Use this class to start
 and control child applications. '''
 string_type = bytes
 if PY3:
 allowed_string_types = (bytes, str)
 @staticmethod
 def _chr(c):
 return bytes([c])
 linesep = os.linesep.encode('ascii')
 crlf = '\r\n'.encode('ascii')

 @staticmethod
 def write_to_stdout(b):
 try:
 return sys.stdout.buffer.write(b)
 except AttributeError:
 # If stdout has been replaced, it may not have .buffer
 return sys.stdout.write(b.decode('ascii', 'replace'))
 else:
 allowed_string_types = (basestring,) # analysis:ignore
 _chr = staticmethod(chr)
 linesep = os.linesep
 crlf = '\r\n'
 write_to_stdout = sys.stdout.write

 encoding = None

[docs] def __init__(self, command, args=[], timeout=30, maxread=2000,
 searchwindowsize=None, logfile=None, cwd=None, env=None,
 ignore_sighup=True, echo=True):

 '''This is the constructor. The command parameter may be a string that
 includes a command and any arguments to the command. For example::

 child = pexpect.spawn('/usr/bin/ftp')
 child = pexpect.spawn('/usr/bin/ssh user@example.com')
 child = pexpect.spawn('ls -latr /tmp')

 You may also construct it with a list of arguments like so::

 child = pexpect.spawn('/usr/bin/ftp', [])
 child = pexpect.spawn('/usr/bin/ssh', ['user@example.com'])
 child = pexpect.spawn('ls', ['-latr', '/tmp'])

 After this the child application will be created and will be ready to
 talk to. For normal use, see expect() and send() and sendline().

 Remember that Pexpect does NOT interpret shell meta characters such as
 redirect, pipe, or wild cards (``>``, ``|``, or ``*``). This is a
 common mistake. If you want to run a command and pipe it through
 another command then you must also start a shell. For example::

 child = pexpect.spawn('/bin/bash -c "ls -l | grep LOG > logs.txt"')
 child.expect(pexpect.EOF)

 The second form of spawn (where you pass a list of arguments) is useful
 in situations where you wish to spawn a command and pass it its own
 argument list. This can make syntax more clear. For example, the
 following is equivalent to the previous example::

 shell_cmd = 'ls -l | grep LOG > logs.txt'
 child = pexpect.spawn('/bin/bash', ['-c', shell_cmd])
 child.expect(pexpect.EOF)

 The maxread attribute sets the read buffer size. This is maximum number
 of bytes that Pexpect will try to read from a TTY at one time. Setting
 the maxread size to 1 will turn off buffering. Setting the maxread
 value higher may help performance in cases where large amounts of
 output are read back from the child. This feature is useful in
 conjunction with searchwindowsize.

 The searchwindowsize attribute sets the how far back in the incoming
 seach buffer Pexpect will search for pattern matches. Every time
 Pexpect reads some data from the child it will append the data to the
 incoming buffer. The default is to search from the beginning of the
 incoming buffer each time new data is read from the child. But this is
 very inefficient if you are running a command that generates a large
 amount of data where you want to match. The searchwindowsize does not
 affect the size of the incoming data buffer. You will still have
 access to the full buffer after expect() returns.

 The logfile member turns on or off logging. All input and output will
 be copied to the given file object. Set logfile to None to stop
 logging. This is the default. Set logfile to sys.stdout to echo
 everything to standard output. The logfile is flushed after each write.

 Example log input and output to a file::

 child = pexpect.spawn('some_command')
 fout = file('mylog.txt','w')
 child.logfile = fout

 Example log to stdout::

 child = pexpect.spawn('some_command')
 child.logfile = sys.stdout

 The logfile_read and logfile_send members can be used to separately log
 the input from the child and output sent to the child. Sometimes you
 don't want to see everything you write to the child. You only want to
 log what the child sends back. For example::

 child = pexpect.spawn('some_command')
 child.logfile_read = sys.stdout

 To separately log output sent to the child use logfile_send::

 self.logfile_send = fout

 If ``ignore_sighup`` is True, the child process will ignore SIGHUP
 signals. For now, the default is True, to preserve the behaviour of
 earlier versions of Pexpect, but you should pass this explicitly if you
 want to rely on it.

 The delaybeforesend helps overcome a weird behavior that many users
 were experiencing. The typical problem was that a user would expect() a
 "Password:" prompt and then immediately call sendline() to send the
 password. The user would then see that their password was echoed back
 to them. Passwords don't normally echo. The problem is caused by the
 fact that most applications print out the "Password" prompt and then
 turn off stdin echo, but if you send your password before the
 application turned off echo, then you get your password echoed.
 Normally this wouldn't be a problem when interacting with a human at a
 real keyboard. If you introduce a slight delay just before writing then
 this seems to clear up the problem. This was such a common problem for
 many users that I decided that the default pexpect behavior should be
 to sleep just before writing to the child application. 1/20th of a
 second (50 ms) seems to be enough to clear up the problem. You can set
 delaybeforesend to 0 to return to the old behavior. Most Linux machines
 don't like this to be below 0.03. I don't know why.

 Note that spawn is clever about finding commands on your path.
 It uses the same logic that "which" uses to find executables.

 If you wish to get the exit status of the child you must call the
 close() method. The exit or signal status of the child will be stored
 in self.exitstatus or self.signalstatus. If the child exited normally
 then exitstatus will store the exit return code and signalstatus will
 be None. If the child was terminated abnormally with a signal then
 signalstatus will store the signal value and exitstatus will be None.
 If you need more detail you can also read the self.status member which
 stores the status returned by os.waitpid. You can interpret this using
 os.WIFEXITED/os.WEXITSTATUS or os.WIFSIGNALED/os.TERMSIG.

 The echo attribute may be set to False to disable echoing of input.
 As a pseudo-terminal, all input echoed by the "keyboard" (send()
 or sendline()) will be repeated to output. For many cases, it is
 not desirable to have echo enabled, and it may be later disabled
 using setecho(False) followed by waitnoecho(). However, for some
 platforms such as Solaris, this is not possible, and should be
 disabled immediately on spawn.
 '''

 self.STDIN_FILENO = pty.STDIN_FILENO
 self.STDOUT_FILENO = pty.STDOUT_FILENO
 self.STDERR_FILENO = pty.STDERR_FILENO
 self.stdin = sys.stdin
 self.stdout = sys.stdout
 self.stderr = sys.stderr

 self.searcher = None
 self.ignorecase = False
 self.before = None
 self.after = None
 self.match = None
 self.match_index = None
 self.terminated = True
 self.exitstatus = None
 self.signalstatus = None
 # status returned by os.waitpid
 self.status = None
 self.flag_eof = False
 self.pid = None
 # the child file descriptor is initially closed
 self.child_fd = -1
 self.timeout = timeout
 self.delimiter = EOF
 self.logfile = logfile
 # input from child (read_nonblocking)
 self.logfile_read = None
 # output to send (send, sendline)
 self.logfile_send = None
 # max bytes to read at one time into buffer
 self.maxread = maxread
 # This is the read buffer. See maxread.
 self.buffer = self.string_type()
 # Data before searchwindowsize point is preserved, but not searched.
 self.searchwindowsize = searchwindowsize
 # Delay used before sending data to child. Time in seconds.
 # Most Linux machines don't like this to be below 0.03 (30 ms).
 self.delaybeforesend = 0.05
 # Used by close() to give kernel time to update process status.
 # Time in seconds.
 self.delayafterclose = 0.1
 # Used by terminate() to give kernel time to update process status.
 # Time in seconds.
 self.delayafterterminate = 0.1
 self.softspace = False
 self.name = '<' + repr(self) + '>'
 self.closed = True
 self.cwd = cwd
 self.env = env
 self.echo = echo
 self.ignore_sighup = ignore_sighup
 _platform = sys.platform.lower()
 # This flags if we are running on irix
 self.__irix_hack = _platform.startswith('irix')
 # Solaris uses internal __fork_pty(). All others use pty.fork().
 self.use_native_pty_fork = not (
 _platform.startswith('solaris') or
 _platform.startswith('sunos'))
 # inherit EOF and INTR definitions from controlling process.
 try:
 from termios import VEOF, VINTR
 try:
 fd = sys.__stdin__.fileno()
 except ValueError:
 fd = sys.__stdout__.fileno()
 self._INTR = ord(termios.tcgetattr(fd)[6][VINTR])
 self._EOF = ord(termios.tcgetattr(fd)[6][VEOF])
 except (ImportError, OSError, IOError, termios.error):
 # unless the controlling process is also not a terminal,
 # such as cron(1). Fall-back to using CEOF and CINTR.
 try:
 from termios import CEOF, CINTR
 (self._INTR, self._EOF) = (CINTR, CEOF)
 except ImportError:
 # ^C, ^D
 (self._INTR, self._EOF) = (3, 4)
 # Support subclasses that do not use command or args.
 if command is None:
 self.command = None
 self.args = None
 self.name = '<pexpect factory incomplete>'
 else:
 self._spawn(command, args)

 @staticmethod
 def _coerce_expect_string(s):
 if not isinstance(s, bytes):
 return s.encode('ascii')
 return s

 @staticmethod
 def _coerce_send_string(s):
 if not isinstance(s, bytes):
 return s.encode('utf-8')
 return s

 @staticmethod
 def _coerce_read_string(s):
 return s

 def __del__(self):
 '''This makes sure that no system resources are left open. Python only
 garbage collects Python objects. OS file descriptors are not Python
 objects, so they must be handled explicitly. If the child file
 descriptor was opened outside of this class (passed to the constructor)
 then this does not close it. '''

 if not self.closed:
 # It is possible for __del__ methods to execute during the
 # teardown of the Python VM itself. Thus self.close() may
 # trigger an exception because os.close may be None.
 try:
 self.close()
 # which exception, shouldnt' we catch explicitly .. ?
 except:
 pass

 def __str__(self):
 '''This returns a human-readable string that represents the state of
 the object. '''

 s = []
 s.append(repr(self))
 s.append('version: ' + __version__)
 s.append('command: ' + str(self.command))
 s.append('args: %r' % (self.args,))
 s.append('searcher: %r' % (self.searcher,))
 s.append('buffer (last 100 chars): %r' % (self.buffer)[-100:],)
 s.append('before (last 100 chars): %r' % (self.before)[-100:],)
 s.append('after: %r' % (self.after,))
 s.append('match: %r' % (self.match,))
 s.append('match_index: ' + str(self.match_index))
 s.append('exitstatus: ' + str(self.exitstatus))
 s.append('flag_eof: ' + str(self.flag_eof))
 s.append('pid: ' + str(self.pid))
 s.append('child_fd: ' + str(self.child_fd))
 s.append('closed: ' + str(self.closed))
 s.append('timeout: ' + str(self.timeout))
 s.append('delimiter: ' + str(self.delimiter))
 s.append('logfile: ' + str(self.logfile))
 s.append('logfile_read: ' + str(self.logfile_read))
 s.append('logfile_send: ' + str(self.logfile_send))
 s.append('maxread: ' + str(self.maxread))
 s.append('ignorecase: ' + str(self.ignorecase))
 s.append('searchwindowsize: ' + str(self.searchwindowsize))
 s.append('delaybeforesend: ' + str(self.delaybeforesend))
 s.append('delayafterclose: ' + str(self.delayafterclose))
 s.append('delayafterterminate: ' + str(self.delayafterterminate))
 return '\n'.join(s)

 def _spawn(self, command, args=[]):
 '''This starts the given command in a child process. This does all the
 fork/exec type of stuff for a pty. This is called by __init__. If args
 is empty then command will be parsed (split on spaces) and args will be
 set to parsed arguments. '''

 # The pid and child_fd of this object get set by this method.
 # Note that it is difficult for this method to fail.
 # You cannot detect if the child process cannot start.
 # So the only way you can tell if the child process started
 # or not is to try to read from the file descriptor. If you get
 # EOF immediately then it means that the child is already dead.
 # That may not necessarily be bad because you may have spawned a child
 # that performs some task; creates no stdout output; and then dies.

 # If command is an int type then it may represent a file descriptor.
 if isinstance(command, type(0)):
 raise ExceptionPexpect('Command is an int type. ' +
 'If this is a file descriptor then maybe you want to ' +
 'use fdpexpect.fdspawn which takes an existing ' +
 'file descriptor instead of a command string.')

 if not isinstance(args, type([])):
 raise TypeError('The argument, args, must be a list.')

 if args == []:
 self.args = split_command_line(command)
 self.command = self.args[0]
 else:
 # Make a shallow copy of the args list.
 self.args = args[:]
 self.args.insert(0, command)
 self.command = command

 command_with_path = which(self.command)
 if command_with_path is None:
 raise ExceptionPexpect('The command was not found or was not ' +
 'executable: %s.' % self.command)
 self.command = command_with_path
 self.args[0] = self.command

 self.name = '<' + ' '.join(self.args) + '>'

 assert self.pid is None, 'The pid member must be None.'
 assert self.command is not None, 'The command member must not be None.'

 if self.use_native_pty_fork:
 try:
 self.pid, self.child_fd = pty.fork()
 except OSError: # pragma: no cover
 err = sys.exc_info()[1]
 raise ExceptionPexpect('pty.fork() failed: ' + str(err))
 else:
 # Use internal __fork_pty
 self.pid, self.child_fd = self.__fork_pty()

 # Some platforms must call setwinsize() and setecho() from the
 # child process, and others from the master process. We do both,
 # allowing IOError for either.

 if self.pid == pty.CHILD:
 # Child
 self.child_fd = self.STDIN_FILENO

 # set default window size of 24 rows by 80 columns
 try:
 self.setwinsize(24, 80)
 except IOError as err:
 if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
 raise

 # disable echo if spawn argument echo was unset
 if not self.echo:
 try:
 self.setecho(self.echo)
 except (IOError, termios.error) as err:
 if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
 raise

 # Do not allow child to inherit open file descriptors from parent.
 max_fd = resource.getrlimit(resource.RLIMIT_NOFILE)[0]
 os.closerange(3, max_fd)

 if self.ignore_sighup:
 signal.signal(signal.SIGHUP, signal.SIG_IGN)

 if self.cwd is not None:
 os.chdir(self.cwd)
 if self.env is None:
 os.execv(self.command, self.args)
 else:
 os.execvpe(self.command, self.args, self.env)

 # Parent
 try:
 self.setwinsize(24, 80)
 except IOError as err:
 if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
 raise

 self.terminated = False
 self.closed = False

 def __fork_pty(self):
 '''This implements a substitute for the forkpty system call. This
 should be more portable than the pty.fork() function. Specifically,
 this should work on Solaris.

 Modified 10.06.05 by Geoff Marshall: Implemented __fork_pty() method to
 resolve the issue with Python's pty.fork() not supporting Solaris,
 particularly ssh. Based on patch to posixmodule.c authored by Noah
 Spurrier::

 http://mail.python.org/pipermail/python-dev/2003-May/035281.html

 '''

 parent_fd, child_fd = os.openpty()
 if parent_fd < 0 or child_fd < 0:
 raise ExceptionPexpect("Could not open with os.openpty().")

 pid = os.fork()
 if pid == pty.CHILD:
 # Child.
 os.close(parent_fd)
 self.__pty_make_controlling_tty(child_fd)

 os.dup2(child_fd, self.STDIN_FILENO)
 os.dup2(child_fd, self.STDOUT_FILENO)
 os.dup2(child_fd, self.STDERR_FILENO)

 else:
 # Parent.
 os.close(child_fd)

 return pid, parent_fd

 def __pty_make_controlling_tty(self, tty_fd):
 '''This makes the pseudo-terminal the controlling tty. This should be
 more portable than the pty.fork() function. Specifically, this should
 work on Solaris. '''

 child_name = os.ttyname(tty_fd)

 # Disconnect from controlling tty, if any. Raises OSError of ENXIO
 # if there was no controlling tty to begin with, such as when
 # executed by a cron(1) job.
 try:
 fd = os.open("/dev/tty", os.O_RDWR | os.O_NOCTTY)
 os.close(fd)
 except OSError as err:
 if err.errno != errno.ENXIO:
 raise

 os.setsid()

 # Verify we are disconnected from controlling tty by attempting to open
 # it again. We expect that OSError of ENXIO should always be raised.
 try:
 fd = os.open("/dev/tty", os.O_RDWR | os.O_NOCTTY)
 os.close(fd)
 raise ExceptionPexpect("OSError of errno.ENXIO should be raised.")
 except OSError as err:
 if err.errno != errno.ENXIO:
 raise

 # Verify we can open child pty.
 fd = os.open(child_name, os.O_RDWR)
 os.close(fd)

 # Verify we now have a controlling tty.
 fd = os.open("/dev/tty", os.O_WRONLY)
 os.close(fd)

 def fileno(self):
 '''This returns the file descriptor of the pty for the child.
 '''
 return self.child_fd

[docs] def close(self, force=True):
 '''This closes the connection with the child application. Note that
 calling close() more than once is valid. This emulates standard Python
 behavior with files. Set force to True if you want to make sure that
 the child is terminated (SIGKILL is sent if the child ignores SIGHUP
 and SIGINT). '''

 if not self.closed:
 self.flush()
 os.close(self.child_fd)
 # Give kernel time to update process status.
 time.sleep(self.delayafterclose)
 if self.isalive():
 if not self.terminate(force):
 raise ExceptionPexpect('Could not terminate the child.')
 self.child_fd = -1
 self.closed = True
 #self.pid = None

 def flush(self):
 '''This does nothing. It is here to support the interface for a
 File-like object. '''

 pass

 def isatty(self):
 '''This returns True if the file descriptor is open and connected to a
 tty(-like) device, else False.

 On SVR4-style platforms implementing streams, such as SunOS and HP-UX,
 the child pty may not appear as a terminal device. This means
 methods such as setecho(), setwinsize(), getwinsize() may raise an
 IOError. '''

 return os.isatty(self.child_fd)

[docs] def waitnoecho(self, timeout=-1):
 '''This waits until the terminal ECHO flag is set False. This returns
 True if the echo mode is off. This returns False if the ECHO flag was
 not set False before the timeout. This can be used to detect when the
 child is waiting for a password. Usually a child application will turn
 off echo mode when it is waiting for the user to enter a password. For
 example, instead of expecting the "password:" prompt you can wait for
 the child to set ECHO off::

 p = pexpect.spawn('ssh user@example.com')
 p.waitnoecho()
 p.sendline(mypassword)

 If timeout==-1 then this method will use the value in self.timeout.
 If timeout==None then this method to block until ECHO flag is False.
 '''

 if timeout == -1:
 timeout = self.timeout
 if timeout is not None:
 end_time = time.time() + timeout
 while True:
 if not self.getecho():
 return True
 if timeout < 0 and timeout is not None:
 return False
 if timeout is not None:
 timeout = end_time - time.time()
 time.sleep(0.1)

[docs] def getecho(self):
 '''This returns the terminal echo mode. This returns True if echo is
 on or False if echo is off. Child applications that are expecting you
 to enter a password often set ECHO False. See waitnoecho().

 Not supported on platforms where ``isatty()`` returns False. '''

 try:
 attr = termios.tcgetattr(self.child_fd)
 except termios.error as err:
 errmsg = 'getecho() may not be called on this platform'
 if err.args[0] == errno.EINVAL:
 raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
 raise

 self.echo = bool(attr[3] & termios.ECHO)
 return self.echo

[docs] def setecho(self, state):
 '''This sets the terminal echo mode on or off. Note that anything the
 child sent before the echo will be lost, so you should be sure that
 your input buffer is empty before you call setecho(). For example, the
 following will work as expected::

 p = pexpect.spawn('cat') # Echo is on by default.
 p.sendline('1234') # We expect see this twice from the child...
 p.expect(['1234']) # ... once from the tty echo...
 p.expect(['1234']) # ... and again from cat itself.
 p.setecho(False) # Turn off tty echo
 p.sendline('abcd') # We will set this only once (echoed by cat).
 p.sendline('wxyz') # We will set this only once (echoed by cat)
 p.expect(['abcd'])
 p.expect(['wxyz'])

 The following WILL NOT WORK because the lines sent before the setecho
 will be lost::

 p = pexpect.spawn('cat')
 p.sendline('1234')
 p.setecho(False) # Turn off tty echo
 p.sendline('abcd') # We will set this only once (echoed by cat).
 p.sendline('wxyz') # We will set this only once (echoed by cat)
 p.expect(['1234'])
 p.expect(['1234'])
 p.expect(['abcd'])
 p.expect(['wxyz'])

 Not supported on platforms where ``isatty()`` returns False.
 '''

 errmsg = 'setecho() may not be called on this platform'

 try:
 attr = termios.tcgetattr(self.child_fd)
 except termios.error as err:
 if err.args[0] == errno.EINVAL:
 raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
 raise

 if state:
 attr[3] = attr[3] | termios.ECHO
 else:
 attr[3] = attr[3] & ~termios.ECHO

 try:
 # I tried TCSADRAIN and TCSAFLUSH, but these were inconsistent and
 # blocked on some platforms. TCSADRAIN would probably be ideal.
 termios.tcsetattr(self.child_fd, termios.TCSANOW, attr)
 except IOError as err:
 if err.args[0] == errno.EINVAL:
 raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
 raise

 self.echo = state

 def _log(self, s, direction):
 if self.logfile is not None:
 self.logfile.write(s)
 self.logfile.flush()
 second_log = self.logfile_send if (direction=='send') else self.logfile_read
 if second_log is not None:
 second_log.write(s)
 second_log.flush()

[docs] def read_nonblocking(self, size=1, timeout=-1):
 '''This reads at most size characters from the child application. It
 includes a timeout. If the read does not complete within the timeout
 period then a TIMEOUT exception is raised. If the end of file is read
 then an EOF exception will be raised. If a log file was set using
 setlog() then all data will also be written to the log file.

 If timeout is None then the read may block indefinitely.
 If timeout is -1 then the self.timeout value is used. If timeout is 0
 then the child is polled and if there is no data immediately ready
 then this will raise a TIMEOUT exception.

 The timeout refers only to the amount of time to read at least one
 character. This is not effected by the 'size' parameter, so if you call
 read_nonblocking(size=100, timeout=30) and only one character is
 available right away then one character will be returned immediately.
 It will not wait for 30 seconds for another 99 characters to come in.

 This is a wrapper around os.read(). It uses select.select() to
 implement the timeout. '''

 if self.closed:
 raise ValueError('I/O operation on closed file.')

 if timeout == -1:
 timeout = self.timeout

 # Note that some systems such as Solaris do not give an EOF when
 # the child dies. In fact, you can still try to read
 # from the child_fd -- it will block forever or until TIMEOUT.
 # For this case, I test isalive() before doing any reading.
 # If isalive() is false, then I pretend that this is the same as EOF.
 if not self.isalive():
 # timeout of 0 means "poll"
 r, w, e = self.__select([self.child_fd], [], [], 0)
 if not r:
 self.flag_eof = True
 raise EOF('End Of File (EOF). Braindead platform.')
 elif self.__irix_hack:
 # Irix takes a long time before it realizes a child was terminated.
 # FIXME So does this mean Irix systems are forced to always have
 # FIXME a 2 second delay when calling read_nonblocking? That sucks.
 r, w, e = self.__select([self.child_fd], [], [], 2)
 if not r and not self.isalive():
 self.flag_eof = True
 raise EOF('End Of File (EOF). Slow platform.')

 r, w, e = self.__select([self.child_fd], [], [], timeout)

 if not r:
 if not self.isalive():
 # Some platforms, such as Irix, will claim that their
 # processes are alive; timeout on the select; and
 # then finally admit that they are not alive.
 self.flag_eof = True
 raise EOF('End of File (EOF). Very slow platform.')
 else:
 raise TIMEOUT('Timeout exceeded.')

 if self.child_fd in r:
 try:
 s = os.read(self.child_fd, size)
 except OSError as err:
 if err.args[0] == errno.EIO:
 # Linux-style EOF
 self.flag_eof = True
 raise EOF('End Of File (EOF). Exception style platform.')
 raise
 if s == b'':
 # BSD-style EOF
 self.flag_eof = True
 raise EOF('End Of File (EOF). Empty string style platform.')

 s = self._coerce_read_string(s)
 self._log(s, 'read')
 return s

 raise ExceptionPexpect('Reached an unexpected state.') # pragma: no cover

[docs] def read(self, size=-1):
 '''This reads at most "size" bytes from the file (less if the read hits
 EOF before obtaining size bytes). If the size argument is negative or
 omitted, read all data until EOF is reached. The bytes are returned as
 a string object. An empty string is returned when EOF is encountered
 immediately. '''

 if size == 0:
 return self.string_type()
 if size < 0:
 # delimiter default is EOF
 self.expect(self.delimiter)
 return self.before

 # I could have done this more directly by not using expect(), but
 # I deliberately decided to couple read() to expect() so that
 # I would catch any bugs early and ensure consistant behavior.
 # It's a little less efficient, but there is less for me to
 # worry about if I have to later modify read() or expect().
 # Note, it's OK if size==-1 in the regex. That just means it
 # will never match anything in which case we stop only on EOF.
 cre = re.compile(self._coerce_expect_string('.{%d}' % size), re.DOTALL)
 # delimiter default is EOF
 index = self.expect([cre, self.delimiter])
 if index == 0:
 ### FIXME self.before should be ''. Should I assert this?
 return self.after
 return self.before

[docs] def readline(self, size=-1):
 '''This reads and returns one entire line. The newline at the end of
 line is returned as part of the string, unless the file ends without a
 newline. An empty string is returned if EOF is encountered immediately.
 This looks for a newline as a CR/LF pair (\\r\\n) even on UNIX because
 this is what the pseudotty device returns. So contrary to what you may
 expect you will receive newlines as \\r\\n.

 If the size argument is 0 then an empty string is returned. In all
 other cases the size argument is ignored, which is not standard
 behavior for a file-like object. '''

 if size == 0:
 return self.string_type()
 # delimiter default is EOF
 index = self.expect([self.crlf, self.delimiter])
 if index == 0:
 return self.before + self.crlf
 else:
 return self.before

 def __iter__(self):
 '''This is to support iterators over a file-like object.
 '''
 return iter(self.readline, self.string_type())

 def readlines(self, sizehint=-1):
 '''This reads until EOF using readline() and returns a list containing
 the lines thus read. The optional 'sizehint' argument is ignored.
 Remember, because this reads until EOF that means the child
 process should have closed its stdout. If you run this method on
 a child that is still running with its stdout open then this
 method will block until it timesout.'''

 lines = []
 while True:
 line = self.readline()
 if not line:
 break
 lines.append(line)
 return lines

[docs] def write(self, s):
 '''This is similar to send() except that there is no return value.
 '''

 self.send(s)

[docs] def writelines(self, sequence):
 '''This calls write() for each element in the sequence. The sequence
 can be any iterable object producing strings, typically a list of
 strings. This does not add line separators. There is no return value.
 '''

 for s in sequence:
 self.write(s)

[docs] def send(self, s):
 '''Sends string ``s`` to the child process, returning the number of
 bytes written. If a logfile is specified, a copy is written to that
 log. '''

 time.sleep(self.delaybeforesend)

 s = self._coerce_send_string(s)
 self._log(s, 'send')

 return self._send(s)

 def _send(self, s):
 return os.write(self.child_fd, s)

[docs] def sendline(self, s=''):
 '''Wraps send(), sending string ``s`` to child process, with os.linesep
 automatically appended. Returns number of bytes written. '''

 n = self.send(s)
 n = n + self.send(self.linesep)
 return n

[docs] def sendcontrol(self, char):

 '''Helper method that wraps send() with mnemonic access for sending control
 character to the child (such as Ctrl-C or Ctrl-D). For example, to send
 Ctrl-G (ASCII 7, bell, '\a')::

 child.sendcontrol('g')

 See also, sendintr() and sendeof().
 '''

 char = char.lower()
 a = ord(char)
 if a >= 97 and a <= 122:
 a = a - ord('a') + 1
 return self.send(self._chr(a))
 d = {'@': 0, '`': 0,
 '[': 27, '{': 27,
 '\\': 28, '|': 28,
 ']': 29, '}': 29,
 '^': 30, '~': 30,
 '_': 31,
 '?': 127}
 if char not in d:
 return 0
 return self.send(self._chr(d[char]))

[docs] def sendeof(self):

 '''This sends an EOF to the child. This sends a character which causes
 the pending parent output buffer to be sent to the waiting child
 program without waiting for end-of-line. If it is the first character
 of the line, the read() in the user program returns 0, which signifies
 end-of-file. This means to work as expected a sendeof() has to be
 called at the beginning of a line. This method does not send a newline.
 It is the responsibility of the caller to ensure the eof is sent at the
 beginning of a line. '''

 self.send(self._chr(self._EOF))

[docs] def sendintr(self):

 '''This sends a SIGINT to the child. It does not require
 the SIGINT to be the first character on a line. '''

 self.send(self._chr(self._INTR))

[docs] def eof(self):

 '''This returns True if the EOF exception was ever raised.
 '''

 return self.flag_eof

[docs] def terminate(self, force=False):

 '''This forces a child process to terminate. It starts nicely with
 SIGHUP and SIGINT. If "force" is True then moves onto SIGKILL. This
 returns True if the child was terminated. This returns False if the
 child could not be terminated. '''

 if not self.isalive():
 return True
 try:
 self.kill(signal.SIGHUP)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 self.kill(signal.SIGCONT)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 self.kill(signal.SIGINT)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 if force:
 self.kill(signal.SIGKILL)
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 else:
 return False
 return False
 except OSError:
 # I think there are kernel timing issues that sometimes cause
 # this to happen. I think isalive() reports True, but the
 # process is dead to the kernel.
 # Make one last attempt to see if the kernel is up to date.
 time.sleep(self.delayafterterminate)
 if not self.isalive():
 return True
 else:
 return False

[docs] def wait(self):

 '''This waits until the child exits. This is a blocking call. This will
 not read any data from the child, so this will block forever if the
 child has unread output and has terminated. In other words, the child
 may have printed output then called exit(), but, the child is
 technically still alive until its output is read by the parent. '''

 if self.isalive():
 pid, status = os.waitpid(self.pid, 0)
 else:
 raise ExceptionPexpect('Cannot wait for dead child process.')
 self.exitstatus = os.WEXITSTATUS(status)
 if os.WIFEXITED(status):
 self.status = status
 self.exitstatus = os.WEXITSTATUS(status)
 self.signalstatus = None
 self.terminated = True
 elif os.WIFSIGNALED(status):
 self.status = status
 self.exitstatus = None
 self.signalstatus = os.WTERMSIG(status)
 self.terminated = True
 elif os.WIFSTOPPED(status): # pragma: no cover
 # You can't call wait() on a child process in the stopped state.
 raise ExceptionPexpect('Called wait() on a stopped child ' +
 'process. This is not supported. Is some other ' +
 'process attempting job control with our child pid?')
 return self.exitstatus

[docs] def isalive(self):

 '''This tests if the child process is running or not. This is
 non-blocking. If the child was terminated then this will read the
 exitstatus or signalstatus of the child. This returns True if the child
 process appears to be running or False if not. It can take literally
 SECONDS for Solaris to return the right status. '''

 if self.terminated:
 return False

 if self.flag_eof:
 # This is for Linux, which requires the blocking form
 # of waitpid to get the status of a defunct process.
 # This is super-lame. The flag_eof would have been set
 # in read_nonblocking(), so this should be safe.
 waitpid_options = 0
 else:
 waitpid_options = os.WNOHANG

 try:
 pid, status = os.waitpid(self.pid, waitpid_options)
 except OSError:
 err = sys.exc_info()[1]
 # No child processes
 if err.errno == errno.ECHILD:
 raise ExceptionPexpect('isalive() encountered condition ' +
 'where "terminated" is 0, but there was no child ' +
 'process. Did someone else call waitpid() ' +
 'on our process?')
 else:
 raise err

 # I have to do this twice for Solaris.
 # I can't even believe that I figured this out...
 # If waitpid() returns 0 it means that no child process
 # wishes to report, and the value of status is undefined.
 if pid == 0:
 try:
 ### os.WNOHANG) # Solaris!
 pid, status = os.waitpid(self.pid, waitpid_options)
 except OSError as e: # pragma: no cover
 # This should never happen...
 if e.errno == errno.ECHILD:
 raise ExceptionPexpect('isalive() encountered condition ' +
 'that should never happen. There was no child ' +
 'process. Did someone else call waitpid() ' +
 'on our process?')
 else:
 raise

 # If pid is still 0 after two calls to waitpid() then the process
 # really is alive. This seems to work on all platforms, except for
 # Irix which seems to require a blocking call on waitpid or select,
 # so I let read_nonblocking take care of this situation
 # (unfortunately, this requires waiting through the timeout).
 if pid == 0:
 return True

 if pid == 0:
 return True

 if os.WIFEXITED(status):
 self.status = status
 self.exitstatus = os.WEXITSTATUS(status)
 self.signalstatus = None
 self.terminated = True
 elif os.WIFSIGNALED(status):
 self.status = status
 self.exitstatus = None
 self.signalstatus = os.WTERMSIG(status)
 self.terminated = True
 elif os.WIFSTOPPED(status):
 raise ExceptionPexpect('isalive() encountered condition ' +
 'where child process is stopped. This is not ' +
 'supported. Is some other process attempting ' +
 'job control with our child pid?')
 return False

[docs] def kill(self, sig):

 '''This sends the given signal to the child application. In keeping
 with UNIX tradition it has a misleading name. It does not necessarily
 kill the child unless you send the right signal. '''

 # Same as os.kill, but the pid is given for you.
 if self.isalive():
 os.kill(self.pid, sig)

 def _pattern_type_err(self, pattern):
 raise TypeError('got {badtype} ({badobj!r}) as pattern, must be one'
 ' of: {goodtypes}, pexpect.EOF, pexpect.TIMEOUT'\
 .format(badtype=type(pattern),
 badobj=pattern,
 goodtypes=', '.join([str(ast)\
 for ast in self.allowed_string_types])
)
)

[docs] def compile_pattern_list(self, patterns):

 '''This compiles a pattern-string or a list of pattern-strings.
 Patterns must be a StringType, EOF, TIMEOUT, SRE_Pattern, or a list of
 those. Patterns may also be None which results in an empty list (you
 might do this if waiting for an EOF or TIMEOUT condition without
 expecting any pattern).

 This is used by expect() when calling expect_list(). Thus expect() is
 nothing more than::

 cpl = self.compile_pattern_list(pl)
 return self.expect_list(cpl, timeout)

 If you are using expect() within a loop it may be more
 efficient to compile the patterns first and then call expect_list().
 This avoid calls in a loop to compile_pattern_list()::

 cpl = self.compile_pattern_list(my_pattern)
 while some_condition:
 ...
 i = self.expect_list(clp, timeout)
 ...
 '''

 if patterns is None:
 return []
 if not isinstance(patterns, list):
 patterns = [patterns]

 # Allow dot to match \n
 compile_flags = re.DOTALL
 if self.ignorecase:
 compile_flags = compile_flags | re.IGNORECASE
 compiled_pattern_list = []
 for idx, p in enumerate(patterns):
 if isinstance(p, self.allowed_string_types):
 p = self._coerce_expect_string(p)
 compiled_pattern_list.append(re.compile(p, compile_flags))
 elif p is EOF:
 compiled_pattern_list.append(EOF)
 elif p is TIMEOUT:
 compiled_pattern_list.append(TIMEOUT)
 elif isinstance(p, type(re.compile(''))):
 compiled_pattern_list.append(p)
 else:
 self._pattern_type_err(p)
 return compiled_pattern_list

[docs] def expect(self, pattern, timeout=-1, searchwindowsize=-1):

 '''This seeks through the stream until a pattern is matched. The
 pattern is overloaded and may take several types. The pattern can be a
 StringType, EOF, a compiled re, or a list of any of those types.
 Strings will be compiled to re types. This returns the index into the
 pattern list. If the pattern was not a list this returns index 0 on a
 successful match. This may raise exceptions for EOF or TIMEOUT. To
 avoid the EOF or TIMEOUT exceptions add EOF or TIMEOUT to the pattern
 list. That will cause expect to match an EOF or TIMEOUT condition
 instead of raising an exception.

 If you pass a list of patterns and more than one matches, the first
 match in the stream is chosen. If more than one pattern matches at that
 point, the leftmost in the pattern list is chosen. For example::

 # the input is 'foobar'
 index = p.expect(['bar', 'foo', 'foobar'])
 # returns 1('foo') even though 'foobar' is a "better" match

 Please note, however, that buffering can affect this behavior, since
 input arrives in unpredictable chunks. For example::

 # the input is 'foobar'
 index = p.expect(['foobar', 'foo'])
 # returns 0('foobar') if all input is available at once,
 # but returs 1('foo') if parts of the final 'bar' arrive late

 After a match is found the instance attributes 'before', 'after' and
 'match' will be set. You can see all the data read before the match in
 'before'. You can see the data that was matched in 'after'. The
 re.MatchObject used in the re match will be in 'match'. If an error
 occurred then 'before' will be set to all the data read so far and
 'after' and 'match' will be None.

 If timeout is -1 then timeout will be set to the self.timeout value.

 A list entry may be EOF or TIMEOUT instead of a string. This will
 catch these exceptions and return the index of the list entry instead
 of raising the exception. The attribute 'after' will be set to the
 exception type. The attribute 'match' will be None. This allows you to
 write code like this::

 index = p.expect(['good', 'bad', pexpect.EOF, pexpect.TIMEOUT])
 if index == 0:
 do_something()
 elif index == 1:
 do_something_else()
 elif index == 2:
 do_some_other_thing()
 elif index == 3:
 do_something_completely_different()

 instead of code like this::

 try:
 index = p.expect(['good', 'bad'])
 if index == 0:
 do_something()
 elif index == 1:
 do_something_else()
 except EOF:
 do_some_other_thing()
 except TIMEOUT:
 do_something_completely_different()

 These two forms are equivalent. It all depends on what you want. You
 can also just expect the EOF if you are waiting for all output of a
 child to finish. For example::

 p = pexpect.spawn('/bin/ls')
 p.expect(pexpect.EOF)
 print p.before

 If you are trying to optimize for speed then see expect_list().
 '''

 compiled_pattern_list = self.compile_pattern_list(pattern)
 return self.expect_list(compiled_pattern_list,
 timeout, searchwindowsize)

[docs] def expect_list(self, pattern_list, timeout=-1, searchwindowsize=-1):

 '''This takes a list of compiled regular expressions and returns the
 index into the pattern_list that matched the child output. The list may
 also contain EOF or TIMEOUT(which are not compiled regular
 expressions). This method is similar to the expect() method except that
 expect_list() does not recompile the pattern list on every call. This
 may help if you are trying to optimize for speed, otherwise just use
 the expect() method. This is called by expect(). If timeout==-1 then
 the self.timeout value is used. If searchwindowsize==-1 then the
 self.searchwindowsize value is used. '''

 return self.expect_loop(searcher_re(pattern_list),
 timeout, searchwindowsize)

[docs] def expect_exact(self, pattern_list, timeout=-1, searchwindowsize=-1):

 '''This is similar to expect(), but uses plain string matching instead
 of compiled regular expressions in 'pattern_list'. The 'pattern_list'
 may be a string; a list or other sequence of strings; or TIMEOUT and
 EOF.

 This call might be faster than expect() for two reasons: string
 searching is faster than RE matching and it is possible to limit the
 search to just the end of the input buffer.

 This method is also useful when you don't want to have to worry about
 escaping regular expression characters that you want to match.'''

 if (isinstance(pattern_list, self.allowed_string_types) or
 pattern_list in (TIMEOUT, EOF)):
 pattern_list = [pattern_list]

 def prepare_pattern(pattern):
 if pattern in (TIMEOUT, EOF):
 return pattern
 if isinstance(pattern, self.allowed_string_types):
 return self._coerce_expect_string(pattern)
 self._pattern_type_err(pattern)

 try:
 pattern_list = iter(pattern_list)
 except TypeError:
 self._pattern_type_err(pattern_list)
 pattern_list = [prepare_pattern(p) for p in pattern_list]
 return self.expect_loop(searcher_string(pattern_list),
 timeout, searchwindowsize)

 def expect_loop(self, searcher, timeout=-1, searchwindowsize=-1):

 '''This is the common loop used inside expect. The 'searcher' should be
 an instance of searcher_re or searcher_string, which describes how and
 what to search for in the input.

 See expect() for other arguments, return value and exceptions. '''

 self.searcher = searcher

 if timeout == -1:
 timeout = self.timeout
 if timeout is not None:
 end_time = time.time() + timeout
 if searchwindowsize == -1:
 searchwindowsize = self.searchwindowsize

 try:
 incoming = self.buffer
 freshlen = len(incoming)
 while True:
 # Keep reading until exception or return.
 index = searcher.search(incoming, freshlen, searchwindowsize)
 if index >= 0:
 self.buffer = incoming[searcher.end:]
 self.before = incoming[: searcher.start]
 self.after = incoming[searcher.start: searcher.end]
 self.match = searcher.match
 self.match_index = index
 return self.match_index
 # No match at this point
 if (timeout is not None) and (timeout < 0):
 raise TIMEOUT('Timeout exceeded in expect_any().')
 # Still have time left, so read more data
 c = self.read_nonblocking(self.maxread, timeout)
 freshlen = len(c)
 time.sleep(0.0001)
 incoming = incoming + c
 if timeout is not None:
 timeout = end_time - time.time()
 except EOF:
 err = sys.exc_info()[1]
 self.buffer = self.string_type()
 self.before = incoming
 self.after = EOF
 index = searcher.eof_index
 if index >= 0:
 self.match = EOF
 self.match_index = index
 return self.match_index
 else:
 self.match = None
 self.match_index = None
 raise EOF(str(err) + '\n' + str(self))
 except TIMEOUT:
 err = sys.exc_info()[1]
 self.buffer = incoming
 self.before = incoming
 self.after = TIMEOUT
 index = searcher.timeout_index
 if index >= 0:
 self.match = TIMEOUT
 self.match_index = index
 return self.match_index
 else:
 self.match = None
 self.match_index = None
 raise TIMEOUT(str(err) + '\n' + str(self))
 except:
 self.before = incoming
 self.after = None
 self.match = None
 self.match_index = None
 raise

[docs] def getwinsize(self):

 '''This returns the terminal window size of the child tty. The return
 value is a tuple of (rows, cols). '''

 TIOCGWINSZ = getattr(termios, 'TIOCGWINSZ', 1074295912)
 s = struct.pack('HHHH', 0, 0, 0, 0)
 x = fcntl.ioctl(self.child_fd, TIOCGWINSZ, s)
 return struct.unpack('HHHH', x)[0:2]

[docs] def setwinsize(self, rows, cols):

 '''This sets the terminal window size of the child tty. This will cause
 a SIGWINCH signal to be sent to the child. This does not change the
 physical window size. It changes the size reported to TTY-aware
 applications like vi or curses -- applications that respond to the
 SIGWINCH signal. '''

 # Some very old platforms have a bug that causes the value for
 # termios.TIOCSWINSZ to be truncated. There was a hack here to work
 # around this, but it caused problems with newer platforms so has been
 # removed. For details see https://github.com/pexpect/pexpect/issues/39
 TIOCSWINSZ = getattr(termios, 'TIOCSWINSZ', -2146929561)
 # Note, assume ws_xpixel and ws_ypixel are zero.
 s = struct.pack('HHHH', rows, cols, 0, 0)
 fcntl.ioctl(self.fileno(), TIOCSWINSZ, s)

[docs] def interact(self, escape_character=chr(29),
 input_filter=None, output_filter=None):

 '''This gives control of the child process to the interactive user (the
 human at the keyboard). Keystrokes are sent to the child process, and
 the stdout and stderr output of the child process is printed. This
 simply echos the child stdout and child stderr to the real stdout and
 it echos the real stdin to the child stdin. When the user types the
 escape_character this method will stop. The default for
 escape_character is ^]. This should not be confused with ASCII 27 --
 the ESC character. ASCII 29 was chosen for historical merit because
 this is the character used by 'telnet' as the escape character. The
 escape_character will not be sent to the child process.

 You may pass in optional input and output filter functions. These
 functions should take a string and return a string. The output_filter
 will be passed all the output from the child process. The input_filter
 will be passed all the keyboard input from the user. The input_filter
 is run BEFORE the check for the escape_character.

 Note that if you change the window size of the parent the SIGWINCH
 signal will not be passed through to the child. If you want the child
 window size to change when the parent's window size changes then do
 something like the following example::

 import pexpect, struct, fcntl, termios, signal, sys
 def sigwinch_passthrough (sig, data):
 s = struct.pack("HHHH", 0, 0, 0, 0)
 a = struct.unpack('hhhh', fcntl.ioctl(sys.stdout.fileno(),
 termios.TIOCGWINSZ , s))
 global p
 p.setwinsize(a[0],a[1])
 # Note this 'p' global and used in sigwinch_passthrough.
 p = pexpect.spawn('/bin/bash')
 signal.signal(signal.SIGWINCH, sigwinch_passthrough)
 p.interact()
 '''

 # Flush the buffer.
 self.write_to_stdout(self.buffer)
 self.stdout.flush()
 self.buffer = self.string_type()
 mode = tty.tcgetattr(self.STDIN_FILENO)
 tty.setraw(self.STDIN_FILENO)
 if PY3:
 escape_character = escape_character.encode('latin-1')
 try:
 self.__interact_copy(escape_character, input_filter, output_filter)
 finally:
 tty.tcsetattr(self.STDIN_FILENO, tty.TCSAFLUSH, mode)

 def __interact_writen(self, fd, data):
 '''This is used by the interact() method.
 '''

 while data != b'' and self.isalive():
 n = os.write(fd, data)
 data = data[n:]

 def __interact_read(self, fd):
 '''This is used by the interact() method.
 '''

 return os.read(fd, 1000)

 def __interact_copy(self, escape_character=None,
 input_filter=None, output_filter=None):

 '''This is used by the interact() method.
 '''

 while self.isalive():
 r, w, e = self.__select([self.child_fd, self.STDIN_FILENO], [], [])
 if self.child_fd in r:
 try:
 data = self.__interact_read(self.child_fd)
 except OSError as err:
 if err.args[0] == errno.EIO:
 # Linux-style EOF
 break
 raise
 if data == b'':
 # BSD-style EOF
 break
 if output_filter:
 data = output_filter(data)
 if self.logfile is not None:
 self.logfile.write(data)
 self.logfile.flush()
 os.write(self.STDOUT_FILENO, data)
 if self.STDIN_FILENO in r:
 data = self.__interact_read(self.STDIN_FILENO)
 if input_filter:
 data = input_filter(data)
 i = data.rfind(escape_character)
 if i != -1:
 data = data[:i]
 self.__interact_writen(self.child_fd, data)
 break
 self.__interact_writen(self.child_fd, data)

 def __select(self, iwtd, owtd, ewtd, timeout=None):

 '''This is a wrapper around select.select() that ignores signals. If
 select.select raises a select.error exception and errno is an EINTR
 error then it is ignored. Mainly this is used to ignore sigwinch
 (terminal resize). '''

 # if select() is interrupted by a signal (errno==EINTR) then
 # we loop back and enter the select() again.
 if timeout is not None:
 end_time = time.time() + timeout
 while True:
 try:
 return select.select(iwtd, owtd, ewtd, timeout)
 except select.error:
 err = sys.exc_info()[1]
 if err.args[0] == errno.EINTR:
 # if we loop back we have to subtract the
 # amount of time we already waited.
 if timeout is not None:
 timeout = end_time - time.time()
 if timeout < 0:
 return([], [], [])
 else:
 # something else caused the select.error, so
 # this actually is an exception.
 raise

##
The following methods are no longer supported or allowed.

 def setmaxread(self, maxread): # pragma: no cover

 '''This method is no longer supported or allowed. I don't like getters
 and setters without a good reason. '''

 raise ExceptionPexpect('This method is no longer supported ' +
 'or allowed. Just assign a value to the ' +
 'maxread member variable.')

 def setlog(self, fileobject): # pragma: no cover

 '''This method is no longer supported or allowed.
 '''

 raise ExceptionPexpect('This method is no longer supported ' +
 'or allowed. Just assign a value to the logfile ' +
 'member variable.')

##
End of spawn class
##

[docs]class spawnu(spawn):
 """Works like spawn, but accepts and returns unicode strings.

 Extra parameters:

 :param encoding: The encoding to use for communications (default: 'utf-8')
 :param errors: How to handle encoding/decoding errors; one of 'strict'
 (the default), 'ignore', or 'replace', as described
 for :meth:`~bytes.decode` and :meth:`~str.encode`.
 """
 if PY3:
 string_type = str
 allowed_string_types = (str,)
 _chr = staticmethod(chr)
 linesep = os.linesep
 crlf = '\r\n'
 else:
 string_type = unicode
 allowed_string_types = (unicode,)
 _chr = staticmethod(unichr)
 linesep = os.linesep.decode('ascii')
 crlf = '\r\n'.decode('ascii')
 # This can handle unicode in both Python 2 and 3
 write_to_stdout = sys.stdout.write

 def __init__(self, *args, **kwargs):
 self.encoding = kwargs.pop('encoding', 'utf-8')
 self.errors = kwargs.pop('errors', 'strict')
 self._decoder = codecs.getincrementaldecoder(self.encoding)(errors=self.errors)
 super(spawnu, self).__init__(*args, **kwargs)

 @staticmethod
 def _coerce_expect_string(s):
 return s

 @staticmethod
 def _coerce_send_string(s):
 return s

 def _coerce_read_string(self, s):
 return self._decoder.decode(s, final=False)

 def _send(self, s):
 return os.write(self.child_fd, s.encode(self.encoding, self.errors))

class searcher_string(object):

 '''This is a plain string search helper for the spawn.expect_any() method.
 This helper class is for speed. For more powerful regex patterns
 see the helper class, searcher_re.

 Attributes:

 eof_index - index of EOF, or -1
 timeout_index - index of TIMEOUT, or -1

 After a successful match by the search() method the following attributes
 are available:

 start - index into the buffer, first byte of match
 end - index into the buffer, first byte after match
 match - the matching string itself

 '''

 def __init__(self, strings):

 '''This creates an instance of searcher_string. This argument 'strings'
 may be a list; a sequence of strings; or the EOF or TIMEOUT types. '''

 self.eof_index = -1
 self.timeout_index = -1
 self._strings = []
 for n, s in enumerate(strings):
 if s is EOF:
 self.eof_index = n
 continue
 if s is TIMEOUT:
 self.timeout_index = n
 continue
 self._strings.append((n, s))

 def __str__(self):

 '''This returns a human-readable string that represents the state of
 the object.'''

 ss = [(ns[0], ' %d: "%s"' % ns) for ns in self._strings]
 ss.append((-1, 'searcher_string:'))
 if self.eof_index >= 0:
 ss.append((self.eof_index, ' %d: EOF' % self.eof_index))
 if self.timeout_index >= 0:
 ss.append((self.timeout_index,
 ' %d: TIMEOUT' % self.timeout_index))
 ss.sort()
 ss = list(zip(*ss))[1]
 return '\n'.join(ss)

 def search(self, buffer, freshlen, searchwindowsize=None):

 '''This searches 'buffer' for the first occurence of one of the search
 strings. 'freshlen' must indicate the number of bytes at the end of
 'buffer' which have not been searched before. It helps to avoid
 searching the same, possibly big, buffer over and over again.

 See class spawn for the 'searchwindowsize' argument.

 If there is a match this returns the index of that string, and sets
 'start', 'end' and 'match'. Otherwise, this returns -1. '''

 first_match = None

 # 'freshlen' helps a lot here. Further optimizations could
 # possibly include:
 #
 # using something like the Boyer-Moore Fast String Searching
 # Algorithm; pre-compiling the search through a list of
 # strings into something that can scan the input once to
 # search for all N strings; realize that if we search for
 # ['bar', 'baz'] and the input is '...foo' we need not bother
 # rescanning until we've read three more bytes.
 #
 # Sadly, I don't know enough about this interesting topic. /grahn

 for index, s in self._strings:
 if searchwindowsize is None:
 # the match, if any, can only be in the fresh data,
 # or at the very end of the old data
 offset = -(freshlen + len(s))
 else:
 # better obey searchwindowsize
 offset = -searchwindowsize
 n = buffer.find(s, offset)
 if n >= 0 and (first_match is None or n < first_match):
 first_match = n
 best_index, best_match = index, s
 if first_match is None:
 return -1
 self.match = best_match
 self.start = first_match
 self.end = self.start + len(self.match)
 return best_index

class searcher_re(object):

 '''This is regular expression string search helper for the
 spawn.expect_any() method. This helper class is for powerful
 pattern matching. For speed, see the helper class, searcher_string.

 Attributes:

 eof_index - index of EOF, or -1
 timeout_index - index of TIMEOUT, or -1

 After a successful match by the search() method the following attributes
 are available:

 start - index into the buffer, first byte of match
 end - index into the buffer, first byte after match
 match - the re.match object returned by a succesful re.search

 '''

 def __init__(self, patterns):

 '''This creates an instance that searches for 'patterns' Where
 'patterns' may be a list or other sequence of compiled regular
 expressions, or the EOF or TIMEOUT types.'''

 self.eof_index = -1
 self.timeout_index = -1
 self._searches = []
 for n, s in zip(list(range(len(patterns))), patterns):
 if s is EOF:
 self.eof_index = n
 continue
 if s is TIMEOUT:
 self.timeout_index = n
 continue
 self._searches.append((n, s))

 def __str__(self):

 '''This returns a human-readable string that represents the state of
 the object.'''

 #ss = [(n, ' %d: re.compile("%s")' %
 # (n, repr(s.pattern))) for n, s in self._searches]
 ss = list()
 for n, s in self._searches:
 try:
 ss.append((n, ' %d: re.compile("%s")' % (n, s.pattern)))
 except UnicodeEncodeError:
 # for test cases that display __str__ of searches, dont throw
 # another exception just because stdout is ascii-only, using
 # repr()
 ss.append((n, ' %d: re.compile(%r)' % (n, s.pattern)))
 ss.append((-1, 'searcher_re:'))
 if self.eof_index >= 0:
 ss.append((self.eof_index, ' %d: EOF' % self.eof_index))
 if self.timeout_index >= 0:
 ss.append((self.timeout_index, ' %d: TIMEOUT' %
 self.timeout_index))
 ss.sort()
 ss = list(zip(*ss))[1]
 return '\n'.join(ss)

 def search(self, buffer, freshlen, searchwindowsize=None):

 '''This searches 'buffer' for the first occurence of one of the regular
 expressions. 'freshlen' must indicate the number of bytes at the end of
 'buffer' which have not been searched before.

 See class spawn for the 'searchwindowsize' argument.

 If there is a match this returns the index of that string, and sets
 'start', 'end' and 'match'. Otherwise, returns -1.'''

 first_match = None
 # 'freshlen' doesn't help here -- we cannot predict the
 # length of a match, and the re module provides no help.
 if searchwindowsize is None:
 searchstart = 0
 else:
 searchstart = max(0, len(buffer) - searchwindowsize)
 for index, s in self._searches:
 match = s.search(buffer, searchstart)
 if match is None:
 continue
 n = match.start()
 if first_match is None or n < first_match:
 first_match = n
 the_match = match
 best_index = index
 if first_match is None:
 return -1
 self.start = first_match
 self.match = the_match
 self.end = self.match.end()
 return best_index

def is_executable_file(path):
 """Checks that path is an executable regular file (or a symlink to a file).

 This is roughly ``os.path isfile(path) and os.access(path, os.X_OK)``, but
 on some platforms :func:`os.access` gives us the wrong answer, so this
 checks permission bits directly.
 """
 # follow symlinks,
 fpath = os.path.realpath(path)

 # return False for non-files (directories, fifo, etc.)
 if not os.path.isfile(fpath):
 return False

 # On Solaris, etc., "If the process has appropriate privileges, an
 # implementation may indicate success for X_OK even if none of the
 # execute file permission bits are set."
 #
 # For this reason, it is necessary to explicitly check st_mode

 # get file mode using os.stat, and check if `other',
 # that is anybody, may read and execute.
 mode = os.stat(fpath).st_mode
 if mode & stat.S_IROTH and mode & stat.S_IXOTH:
 return True

 # get current user's group ids, and check if `group',
 # when matching ours, may read and execute.
 user_gids = os.getgroups() + [os.getgid()]
 if (os.stat(fpath).st_gid in user_gids and
 mode & stat.S_IRGRP and mode & stat.S_IXGRP):
 return True

 # finally, if file owner matches our effective userid,
 # check if `user', may read and execute.
 user_gids = os.getgroups() + [os.getgid()]
 if (os.stat(fpath).st_uid == os.geteuid() and
 mode & stat.S_IRUSR and mode & stat.S_IXUSR):
 return True

 return False

[docs]def which(filename):
 '''This takes a given filename; tries to find it in the environment path;
 then checks if it is executable. This returns the full path to the filename
 if found and executable. Otherwise this returns None.'''

 # Special case where filename contains an explicit path.
 if os.path.dirname(filename) != '' and is_executable_file(filename):
 return filename
 if 'PATH' not in os.environ or os.environ['PATH'] == '':
 p = os.defpath
 else:
 p = os.environ['PATH']
 pathlist = p.split(os.pathsep)
 for path in pathlist:
 ff = os.path.join(path, filename)
 if is_executable_file(ff):
 return ff
 return None

[docs]def split_command_line(command_line):

 '''This splits a command line into a list of arguments. It splits arguments
 on spaces, but handles embedded quotes, doublequotes, and escaped
 characters. It's impossible to do this with a regular expression, so I
 wrote a little state machine to parse the command line. '''

 arg_list = []
 arg = ''

 # Constants to name the states we can be in.
 state_basic = 0
 state_esc = 1
 state_singlequote = 2
 state_doublequote = 3
 # The state when consuming whitespace between commands.
 state_whitespace = 4
 state = state_basic

 for c in command_line:
 if state == state_basic or state == state_whitespace:
 if c == '\\':
 # Escape the next character
 state = state_esc
 elif c == r"'":
 # Handle single quote
 state = state_singlequote
 elif c == r'"':
 # Handle double quote
 state = state_doublequote
 elif c.isspace():
 # Add arg to arg_list if we aren't in the middle of whitespace.
 if state == state_whitespace:
 # Do nothing.
 None
 else:
 arg_list.append(arg)
 arg = ''
 state = state_whitespace
 else:
 arg = arg + c
 state = state_basic
 elif state == state_esc:
 arg = arg + c
 state = state_basic
 elif state == state_singlequote:
 if c == r"'":
 state = state_basic
 else:
 arg = arg + c
 elif state == state_doublequote:
 if c == r'"':
 state = state_basic
 else:
 arg = arg + c

 if arg != '':
 arg_list.append(arg)
 return arg_list

vim: set shiftround expandtab tabstop=4 shiftwidth=4 ft=python autoindent :

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_modules/pexpect/fdpexpect.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 		Module code »

 		pexpect »

 Source code for pexpect.fdpexpect

'''This is like pexpect, but it will work with any file descriptor that you
pass it. You are reponsible for opening and close the file descriptor.
This allows you to use Pexpect with sockets and named pipes (FIFOs).

PEXPECT LICENSE

 This license is approved by the OSI and FSF as GPL-compatible.
 http://opensource.org/licenses/isc-license.txt

 Copyright (c) 2012, Noah Spurrier <noah@noah.org>
 PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
 PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
 COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''

from pexpect import spawn, ExceptionPexpect
import os

__all__ = ['fdspawn']

[docs]class fdspawn (spawn):

 '''This is like pexpect.spawn but allows you to supply your own open file
 descriptor. For example, you could use it to read through a file looking
 for patterns, or to control a modem or serial device. '''

[docs] def __init__ (self, fd, args=[], timeout=30, maxread=2000, searchwindowsize=None, logfile=None):

 '''This takes a file descriptor (an int) or an object that support the
 fileno() method (returning an int). All Python file-like objects
 support fileno(). '''

 ### TODO: Add better handling of trying to use fdspawn in place of spawn
 ### TODO: (overload to allow fdspawn to also handle commands as spawn does.

 if type(fd) != type(0) and hasattr(fd, 'fileno'):
 fd = fd.fileno()

 if type(fd) != type(0):
 raise ExceptionPexpect('The fd argument is not an int. If this is a command string then maybe you want to use pexpect.spawn.')

 try: # make sure fd is a valid file descriptor
 os.fstat(fd)
 except OSError:
 raise ExceptionPexpect('The fd argument is not a valid file descriptor.')

 self.args = None
 self.command = None
 spawn.__init__(self, None, args, timeout, maxread, searchwindowsize, logfile)
 self.child_fd = fd
 self.own_fd = False
 self.closed = False
 self.name = '<file descriptor %d>' % fd

 def __del__ (self):
 return

[docs] def close (self):
 """Close the file descriptor.

 Calling this method a second time does nothing, but if the file
 descriptor was closed elsewhere, :class:`OSError` will be raised.
 """
 if self.child_fd == -1:
 return

 self.flush()
 os.close(self.child_fd)
 self.child_fd = -1
 self.closed = True

[docs] def isalive (self):
 '''This checks if the file descriptor is still valid. If :func:`os.fstat`
 does not raise an exception then we assume it is alive. '''

 if self.child_fd == -1:
 return False
 try:
 os.fstat(self.child_fd)
 return True
 except:
 return False

 def terminate (self, force=False): # pragma: no cover
 raise ExceptionPexpect('This method is not valid for file descriptors.')

 def kill (self, sig): # pragma: no cover
 """No-op - no process to kill."""
 return

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_modules/pexpect/ANSI.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 		Module code »

 		pexpect »

 Source code for pexpect.ANSI

'''This implements an ANSI (VT100) terminal emulator as a subclass of screen.

PEXPECT LICENSE

 This license is approved by the OSI and FSF as GPL-compatible.
 http://opensource.org/licenses/isc-license.txt

 Copyright (c) 2012, Noah Spurrier <noah@noah.org>
 PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
 PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
 COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''

references:
http://en.wikipedia.org/wiki/ANSI_escape_code
http://www.retards.org/terminals/vt102.html
http://vt100.net/docs/vt102-ug/contents.html
http://vt100.net/docs/vt220-rm/
http://www.termsys.demon.co.uk/vtansi.htm

from . import screen
from . import FSM
import string

#
The 'Do.*' functions are helper functions for the ANSI class.
#
def DoEmit (fsm):

 screen = fsm.memory[0]
 screen.write_ch(fsm.input_symbol)

def DoStartNumber (fsm):

 fsm.memory.append (fsm.input_symbol)

def DoBuildNumber (fsm):

 ns = fsm.memory.pop()
 ns = ns + fsm.input_symbol
 fsm.memory.append (ns)

def DoBackOne (fsm):

 screen = fsm.memory[0]
 screen.cursor_back ()

def DoBack (fsm):

 count = int(fsm.memory.pop())
 screen = fsm.memory[0]
 screen.cursor_back (count)

def DoDownOne (fsm):

 screen = fsm.memory[0]
 screen.cursor_down ()

def DoDown (fsm):

 count = int(fsm.memory.pop())
 screen = fsm.memory[0]
 screen.cursor_down (count)

def DoForwardOne (fsm):

 screen = fsm.memory[0]
 screen.cursor_forward ()

def DoForward (fsm):

 count = int(fsm.memory.pop())
 screen = fsm.memory[0]
 screen.cursor_forward (count)

def DoUpReverse (fsm):

 screen = fsm.memory[0]
 screen.cursor_up_reverse()

def DoUpOne (fsm):

 screen = fsm.memory[0]
 screen.cursor_up ()

def DoUp (fsm):

 count = int(fsm.memory.pop())
 screen = fsm.memory[0]
 screen.cursor_up (count)

def DoHome (fsm):

 c = int(fsm.memory.pop())
 r = int(fsm.memory.pop())
 screen = fsm.memory[0]
 screen.cursor_home (r,c)

def DoHomeOrigin (fsm):

 c = 1
 r = 1
 screen = fsm.memory[0]
 screen.cursor_home (r,c)

def DoEraseDown (fsm):

 screen = fsm.memory[0]
 screen.erase_down()

def DoErase (fsm):

 arg = int(fsm.memory.pop())
 screen = fsm.memory[0]
 if arg == 0:
 screen.erase_down()
 elif arg == 1:
 screen.erase_up()
 elif arg == 2:
 screen.erase_screen()

def DoEraseEndOfLine (fsm):

 screen = fsm.memory[0]
 screen.erase_end_of_line()

def DoEraseLine (fsm):

 arg = int(fsm.memory.pop())
 screen = fsm.memory[0]
 if arg == 0:
 screen.erase_end_of_line()
 elif arg == 1:
 screen.erase_start_of_line()
 elif arg == 2:
 screen.erase_line()

def DoEnableScroll (fsm):

 screen = fsm.memory[0]
 screen.scroll_screen()

def DoCursorSave (fsm):

 screen = fsm.memory[0]
 screen.cursor_save_attrs()

def DoCursorRestore (fsm):

 screen = fsm.memory[0]
 screen.cursor_restore_attrs()

def DoScrollRegion (fsm):

 screen = fsm.memory[0]
 r2 = int(fsm.memory.pop())
 r1 = int(fsm.memory.pop())
 screen.scroll_screen_rows (r1,r2)

def DoMode (fsm):

 screen = fsm.memory[0]
 mode = fsm.memory.pop() # Should be 4
 # screen.setReplaceMode ()

def DoLog (fsm):

 screen = fsm.memory[0]
 fsm.memory = [screen]
 fout = open ('log', 'a')
 fout.write (fsm.input_symbol + ',' + fsm.current_state + '\n')
 fout.close()

[docs]class term (screen.screen):

 '''This class is an abstract, generic terminal.
 This does nothing. This is a placeholder that
 provides a common base class for other terminals
 such as an ANSI terminal. '''

 def __init__ (self, r=24, c=80):

 screen.screen.__init__(self, r,c)

[docs]class ANSI (term):
 '''This class implements an ANSI (VT100) terminal.
 It is a stream filter that recognizes ANSI terminal
 escape sequences and maintains the state of a screen object. '''

 def __init__ (self, r=24,c=80):

 term.__init__(self,r,c)

 #self.screen = screen (24,80)
 self.state = FSM.FSM ('INIT',[self])
 self.state.set_default_transition (DoLog, 'INIT')
 self.state.add_transition_any ('INIT', DoEmit, 'INIT')
 self.state.add_transition ('\x1b', 'INIT', None, 'ESC')
 self.state.add_transition_any ('ESC', DoLog, 'INIT')
 self.state.add_transition ('(', 'ESC', None, 'G0SCS')
 self.state.add_transition (')', 'ESC', None, 'G1SCS')
 self.state.add_transition_list ('AB012', 'G0SCS', None, 'INIT')
 self.state.add_transition_list ('AB012', 'G1SCS', None, 'INIT')
 self.state.add_transition ('7', 'ESC', DoCursorSave, 'INIT')
 self.state.add_transition ('8', 'ESC', DoCursorRestore, 'INIT')
 self.state.add_transition ('M', 'ESC', DoUpReverse, 'INIT')
 self.state.add_transition ('>', 'ESC', DoUpReverse, 'INIT')
 self.state.add_transition ('<', 'ESC', DoUpReverse, 'INIT')
 self.state.add_transition ('=', 'ESC', None, 'INIT') # Selects application keypad.
 self.state.add_transition ('#', 'ESC', None, 'GRAPHICS_POUND')
 self.state.add_transition_any ('GRAPHICS_POUND', None, 'INIT')
 self.state.add_transition ('[', 'ESC', None, 'ELB')
 # ELB means Escape Left Bracket. That is ^[[
 self.state.add_transition ('H', 'ELB', DoHomeOrigin, 'INIT')
 self.state.add_transition ('D', 'ELB', DoBackOne, 'INIT')
 self.state.add_transition ('B', 'ELB', DoDownOne, 'INIT')
 self.state.add_transition ('C', 'ELB', DoForwardOne, 'INIT')
 self.state.add_transition ('A', 'ELB', DoUpOne, 'INIT')
 self.state.add_transition ('J', 'ELB', DoEraseDown, 'INIT')
 self.state.add_transition ('K', 'ELB', DoEraseEndOfLine, 'INIT')
 self.state.add_transition ('r', 'ELB', DoEnableScroll, 'INIT')
 self.state.add_transition ('m', 'ELB', None, 'INIT')
 self.state.add_transition ('?', 'ELB', None, 'MODECRAP')
 self.state.add_transition_list (string.digits, 'ELB', DoStartNumber, 'NUMBER_1')
 self.state.add_transition_list (string.digits, 'NUMBER_1', DoBuildNumber, 'NUMBER_1')
 self.state.add_transition ('D', 'NUMBER_1', DoBack, 'INIT')
 self.state.add_transition ('B', 'NUMBER_1', DoDown, 'INIT')
 self.state.add_transition ('C', 'NUMBER_1', DoForward, 'INIT')
 self.state.add_transition ('A', 'NUMBER_1', DoUp, 'INIT')
 self.state.add_transition ('J', 'NUMBER_1', DoErase, 'INIT')
 self.state.add_transition ('K', 'NUMBER_1', DoEraseLine, 'INIT')
 self.state.add_transition ('l', 'NUMBER_1', DoMode, 'INIT')
 ### It gets worse... the 'm' code can have infinite number of
 ### number;number;number before it. I've never seen more than two,
 ### but the specs say it's allowed. crap!
 self.state.add_transition ('m', 'NUMBER_1', None, 'INIT')
 ### LED control. Same implementation problem as 'm' code.
 self.state.add_transition ('q', 'NUMBER_1', None, 'INIT')

 # \E[?47h switch to alternate screen
 # \E[?47l restores to normal screen from alternate screen.
 self.state.add_transition_list (string.digits, 'MODECRAP', DoStartNumber, 'MODECRAP_NUM')
 self.state.add_transition_list (string.digits, 'MODECRAP_NUM', DoBuildNumber, 'MODECRAP_NUM')
 self.state.add_transition ('l', 'MODECRAP_NUM', None, 'INIT')
 self.state.add_transition ('h', 'MODECRAP_NUM', None, 'INIT')

#RM Reset Mode Esc [Ps l none
 self.state.add_transition (';', 'NUMBER_1', None, 'SEMICOLON')
 self.state.add_transition_any ('SEMICOLON', DoLog, 'INIT')
 self.state.add_transition_list (string.digits, 'SEMICOLON', DoStartNumber, 'NUMBER_2')
 self.state.add_transition_list (string.digits, 'NUMBER_2', DoBuildNumber, 'NUMBER_2')
 self.state.add_transition_any ('NUMBER_2', DoLog, 'INIT')
 self.state.add_transition ('H', 'NUMBER_2', DoHome, 'INIT')
 self.state.add_transition ('f', 'NUMBER_2', DoHome, 'INIT')
 self.state.add_transition ('r', 'NUMBER_2', DoScrollRegion, 'INIT')
 ### It gets worse... the 'm' code can have infinite number of
 ### number;number;number before it. I've never seen more than two,
 ### but the specs say it's allowed. crap!
 self.state.add_transition ('m', 'NUMBER_2', None, 'INIT')
 ### LED control. Same problem as 'm' code.
 self.state.add_transition ('q', 'NUMBER_2', None, 'INIT')
 self.state.add_transition (';', 'NUMBER_2', None, 'SEMICOLON_X')

 # Create a state for 'q' and 'm' which allows an infinite number of ignored numbers
 self.state.add_transition_any ('SEMICOLON_X', DoLog, 'INIT')
 self.state.add_transition_list (string.digits, 'SEMICOLON_X', None, 'NUMBER_X')
 self.state.add_transition_any ('NUMBER_X', DoLog, 'INIT')
 self.state.add_transition ('m', 'NUMBER_X', None, 'INIT')
 self.state.add_transition ('q', 'NUMBER_X', None, 'INIT')
 self.state.add_transition (';', 'NUMBER_2', None, 'SEMICOLON_X')

[docs] def process (self, c):
 """Process a single byte. Called by :meth:`write`."""
 self.state.process(c)

 def process_list (self, l):

 self.write(l)

[docs] def write (self, s):
 """Process text, writing it to the virtual screen while handling
 ANSI escape codes.
 """
 for c in s:
 self.process(c)

 def flush (self):
 pass

[docs] def write_ch (self, ch):
 '''This puts a character at the current cursor position. The cursor
 position is moved forward with wrap-around, but no scrolling is done if
 the cursor hits the lower-right corner of the screen. '''

 #\r and \n both produce a call to cr() and lf(), respectively.
 ch = ch[0]

 if ch == '\r':
 self.cr()
 return
 if ch == '\n':
 self.crlf()
 return
 if ch == chr(screen.BS):
 self.cursor_back()
 return
 if ch not in string.printable:
 fout = open ('log', 'a')
 fout.write ('Nonprint: ' + str(ord(ch)) + '\n')
 fout.close()
 return
 self.put_abs(self.cur_r, self.cur_c, ch)
 old_r = self.cur_r
 old_c = self.cur_c
 self.cursor_forward()
 if old_c == self.cur_c:
 self.cursor_down()
 if old_r != self.cur_r:
 self.cursor_home (self.cur_r, 1)
 else:
 self.scroll_up ()
 self.cursor_home (self.cur_r, 1)
 self.erase_line()

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_modules/pexpect/replwrap.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 		Module code »

 		pexpect »

 Source code for pexpect.replwrap

"""Generic wrapper for read-eval-print-loops, a.k.a. interactive shells
"""
import signal
import sys
import re

import pexpect

PY3 = (sys.version_info[0] >= 3)

if PY3:
 def u(s): return s
else:
 def u(s): return s.decode('utf-8')

PEXPECT_PROMPT = u('[PEXPECT_PROMPT>')
PEXPECT_CONTINUATION_PROMPT = u('[PEXPECT_PROMPT+')

[docs]class REPLWrapper(object):
 """Wrapper for a REPL.

 :param cmd_or_spawn: This can either be an instance of :class:`pexpect.spawn`
 in which a REPL has already been started, or a str command to start a new
 REPL process.
 :param str orig_prompt: The prompt to expect at first.
 :param str prompt_change: A command to change the prompt to something more
 unique. If this is ``None``, the prompt will not be changed. This will
 be formatted with the new and continuation prompts as positional
 parameters, so you can use ``{}`` style formatting to insert them into
 the command.
 :param str new_prompt: The more unique prompt to expect after the change.
 """
 def __init__(self, cmd_or_spawn, orig_prompt, prompt_change,
 new_prompt=PEXPECT_PROMPT,
 continuation_prompt=PEXPECT_CONTINUATION_PROMPT):
 if isinstance(cmd_or_spawn, str):
 self.child = pexpect.spawnu(cmd_or_spawn, echo=False)
 else:
 self.child = cmd_or_spawn
 if self.child.echo:
 # Existing spawn instance has echo enabled, disable it
 # to prevent our input from being repeated to output.
 self.child.setecho(False)
 self.child.waitnoecho()

 if prompt_change is None:
 self.prompt = orig_prompt
 else:
 self.set_prompt(orig_prompt,
 prompt_change.format(new_prompt, continuation_prompt))
 self.prompt = new_prompt
 self.continuation_prompt = continuation_prompt

 self._expect_prompt()

 def set_prompt(self, orig_prompt, prompt_change):
 self.child.expect(orig_prompt)
 self.child.sendline(prompt_change)

 def _expect_prompt(self, timeout=-1):
 return self.child.expect_exact([self.prompt, self.continuation_prompt],
 timeout=timeout)

[docs] def run_command(self, command, timeout=-1):
 """Send a command to the REPL, wait for and return output.

 :param str command: The command to send. Trailing newlines are not needed.
 This should be a complete block of input that will trigger execution;
 if a continuation prompt is found after sending input, :exc:`ValueError`
 will be raised.
 :param int timeout: How long to wait for the next prompt. -1 means the
 default from the :class:`pexpect.spawn` object (default 30 seconds).
 None means to wait indefinitely.
 """
 # Split up multiline commands and feed them in bit-by-bit
 cmdlines = command.splitlines()
 # splitlines ignores trailing newlines - add it back in manually
 if command.endswith('\n'):
 cmdlines.append('')
 if not cmdlines:
 raise ValueError("No command was given")

 self.child.sendline(cmdlines[0])
 for line in cmdlines[1:]:
 self._expect_prompt(timeout=1)
 self.child.sendline(line)

 # Command was fully submitted, now wait for the next prompt
 if self._expect_prompt(timeout=timeout) == 1:
 # We got the continuation prompt - command was incomplete
 self.child.kill(signal.SIGINT)
 self._expect_prompt(timeout=1)
 raise ValueError("Continuation prompt found - input was incomplete:\n"
 + command)
 return self.child.before

[docs]def python(command="python"):
 """Start a Python shell and return a :class:`REPLWrapper` object."""
 return REPLWrapper(command, u(">>> "), u("import sys; sys.ps1={0!r}; sys.ps2={1!r}"))

[docs]def bash(command="bash", orig_prompt=re.compile('[$#]')):
 """Start a bash shell and return a :class:`REPLWrapper` object."""
 return REPLWrapper(command, orig_prompt, u("PS1='{0}' PS2='{1}' PROMPT_COMMAND=''"))

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_modules/pexpect/pxssh.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 		Module code »

 		pexpect »

 Source code for pexpect.pxssh

'''This class extends pexpect.spawn to specialize setting up SSH connections.
This adds methods for login, logout, and expecting the shell prompt.

PEXPECT LICENSE

 This license is approved by the OSI and FSF as GPL-compatible.
 http://opensource.org/licenses/isc-license.txt

 Copyright (c) 2012, Noah Spurrier <noah@noah.org>
 PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
 PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
 COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''

from pexpect import ExceptionPexpect, TIMEOUT, EOF, spawn
import time
import os

__all__ = ['ExceptionPxssh', 'pxssh']

Exception classes used by this module.
[docs]class ExceptionPxssh(ExceptionPexpect):
 '''Raised for pxssh exceptions.
 '''

[docs]class pxssh (spawn):
 '''This class extends pexpect.spawn to specialize setting up SSH
 connections. This adds methods for login, logout, and expecting the shell
 prompt. It does various tricky things to handle many situations in the SSH
 login process. For example, if the session is your first login, then pxssh
 automatically accepts the remote certificate; or if you have public key
 authentication setup then pxssh won't wait for the password prompt.

 pxssh uses the shell prompt to synchronize output from the remote host. In
 order to make this more robust it sets the shell prompt to something more
 unique than just $ or #. This should work on most Borne/Bash or Csh style
 shells.

 Example that runs a few commands on a remote server and prints the result::

 import pxssh
 import getpass
 try:
 s = pxssh.pxssh()
 hostname = raw_input('hostname: ')
 username = raw_input('username: ')
 password = getpass.getpass('password: ')
 s.login(hostname, username, password)
 s.sendline('uptime') # run a command
 s.prompt() # match the prompt
 print(s.before) # print everything before the prompt.
 s.sendline('ls -l')
 s.prompt()
 print(s.before)
 s.sendline('df')
 s.prompt()
 print(s.before)
 s.logout()
 except pxssh.ExceptionPxssh as e:
 print("pxssh failed on login.")
 print(e)

 Note that if you have ssh-agent running while doing development with pxssh
 then this can lead to a lot of confusion. Many X display managers (xdm,
 gdm, kdm, etc.) will automatically start a GUI agent. You may see a GUI
 dialog box popup asking for a password during development. You should turn
 off any key agents during testing. The 'force_password' attribute will turn
 off public key authentication. This will only work if the remote SSH server
 is configured to allow password logins. Example of using 'force_password'
 attribute::

 s = pxssh.pxssh()
 s.force_password = True
 hostname = raw_input('hostname: ')
 username = raw_input('username: ')
 password = getpass.getpass('password: ')
 s.login (hostname, username, password)
 '''

[docs] def __init__ (self, timeout=30, maxread=2000, searchwindowsize=None,
 logfile=None, cwd=None, env=None):

 spawn.__init__(self, None, timeout=timeout, maxread=maxread, searchwindowsize=searchwindowsize, logfile=logfile, cwd=cwd, env=env)

 self.name = '<pxssh>'

 #SUBTLE HACK ALERT! Note that the command that SETS the prompt uses a
 #slightly different string than the regular expression to match it. This
 #is because when you set the prompt the command will echo back, but we
 #don't want to match the echoed command. So if we make the set command
 #slightly different than the regex we eliminate the problem. To make the
 #set command different we add a backslash in front of $. The $ doesn't
 #need to be escaped, but it doesn't hurt and serves to make the set
 #prompt command different than the regex.

 # used to match the command-line prompt
 self.UNIQUE_PROMPT = "\[PEXPECT\][\$\#] "
 self.PROMPT = self.UNIQUE_PROMPT

 # used to set shell command-line prompt to UNIQUE_PROMPT.
 self.PROMPT_SET_SH = "PS1='[PEXPECT]\$ '"
 self.PROMPT_SET_CSH = "set prompt='[PEXPECT]\$ '"
 self.SSH_OPTS = ("-o'RSAAuthentication=no'"
 + " -o 'PubkeyAuthentication=no'")
Disabling host key checking, makes you vulnerable to MITM attacks.
+ " -o 'StrictHostKeyChecking=no'"
+ " -o 'UserKnownHostsFile /dev/null' ")
 # Disabling X11 forwarding gets rid of the annoying SSH_ASKPASS from
 # displaying a GUI password dialog. I have not figured out how to
 # disable only SSH_ASKPASS without also disabling X11 forwarding.
 # Unsetting SSH_ASKPASS on the remote side doesn't disable it! Annoying!
 #self.SSH_OPTS = "-x -o'RSAAuthentication=no' -o 'PubkeyAuthentication=no'"
 self.force_password = False

 def levenshtein_distance(self, a, b):
 '''This calculates the Levenshtein distance between a and b.
 '''

 n, m = len(a), len(b)
 if n > m:
 a,b = b,a
 n,m = m,n
 current = range(n+1)
 for i in range(1,m+1):
 previous, current = current, [i]+[0]*n
 for j in range(1,n+1):
 add, delete = previous[j]+1, current[j-1]+1
 change = previous[j-1]
 if a[j-1] != b[i-1]:
 change = change + 1
 current[j] = min(add, delete, change)
 return current[n]

 def try_read_prompt(self, timeout_multiplier):
 '''This facilitates using communication timeouts to perform
 synchronization as quickly as possible, while supporting high latency
 connections with a tunable worst case performance. Fast connections
 should be read almost immediately. Worst case performance for this
 method is timeout_multiplier * 3 seconds.
 '''

 # maximum time allowed to read the first response
 first_char_timeout = timeout_multiplier * 0.5

 # maximum time allowed between subsequent characters
 inter_char_timeout = timeout_multiplier * 0.1

 # maximum time for reading the entire prompt
 total_timeout = timeout_multiplier * 3.0

 prompt = b''
 begin = time.time()
 expired = 0.0
 timeout = first_char_timeout

 while expired < total_timeout:
 try:
 prompt += self.read_nonblocking(size=1, timeout=timeout)
 expired = time.time() - begin # updated total time expired
 timeout = inter_char_timeout
 except TIMEOUT:
 break

 return prompt

[docs] def sync_original_prompt (self, sync_multiplier=1.0):
 '''This attempts to find the prompt. Basically, press enter and record
 the response; press enter again and record the response; if the two
 responses are similar then assume we are at the original prompt.
 This can be a slow function. Worst case with the default sync_multiplier
 can take 12 seconds. Low latency connections are more likely to fail
 with a low sync_multiplier. Best case sync time gets worse with a
 high sync multiplier (500 ms with default). '''

 # All of these timing pace values are magic.
 # I came up with these based on what seemed reliable for
 # connecting to a heavily loaded machine I have.
 self.sendline()
 time.sleep(0.1)

 try:
 # Clear the buffer before getting the prompt.
 self.try_read_prompt(sync_multiplier)
 except TIMEOUT:
 pass

 self.sendline()
 x = self.try_read_prompt(sync_multiplier)

 self.sendline()
 a = self.try_read_prompt(sync_multiplier)

 self.sendline()
 b = self.try_read_prompt(sync_multiplier)

 ld = self.levenshtein_distance(a,b)
 len_a = len(a)
 if len_a == 0:
 return False
 if float(ld)/len_a < 0.4:
 return True
 return False

 ### TODO: This is getting messy and I'm pretty sure this isn't perfect.
 ### TODO: I need to draw a flow chart for this.

[docs] def login (self, server, username, password='', terminal_type='ansi',
 original_prompt=r"[#$]", login_timeout=10, port=None,
 auto_prompt_reset=True, ssh_key=None, quiet=True,
 sync_multiplier=1, check_local_ip=True):
 '''This logs the user into the given server.

 It uses
 'original_prompt' to try to find the prompt right after login. When it
 finds the prompt it immediately tries to reset the prompt to something
 more easily matched. The default 'original_prompt' is very optimistic
 and is easily fooled. It's more reliable to try to match the original
 prompt as exactly as possible to prevent false matches by server
 strings such as the "Message Of The Day". On many systems you can
 disable the MOTD on the remote server by creating a zero-length file
 called :file:`~/.hushlogin` on the remote server. If a prompt cannot be found
 then this will not necessarily cause the login to fail. In the case of
 a timeout when looking for the prompt we assume that the original
 prompt was so weird that we could not match it, so we use a few tricks
 to guess when we have reached the prompt. Then we hope for the best and
 blindly try to reset the prompt to something more unique. If that fails
 then login() raises an :class:`ExceptionPxssh` exception.

 In some situations it is not possible or desirable to reset the
 original prompt. In this case, pass ``auto_prompt_reset=False`` to
 inhibit setting the prompt to the UNIQUE_PROMPT. Remember that pxssh
 uses a unique prompt in the :meth:`prompt` method. If the original prompt is
 not reset then this will disable the :meth:`prompt` method unless you
 manually set the :attr:`PROMPT` attribute.
 '''

 ssh_options = ''
 if quiet:
 ssh_options = ssh_options + ' -q'
 if not check_local_ip:
 ssh_options = ssh_options + " -o'NoHostAuthenticationForLocalhost=yes'"
 if self.force_password:
 ssh_options = ssh_options + ' ' + self.SSH_OPTS
 if port is not None:
 ssh_options = ssh_options + ' -p %s'%(str(port))
 if ssh_key is not None:
 try:
 os.path.isfile(ssh_key)
 except:
 raise ExceptionPxssh('private ssh key does not exist')
 ssh_options = ssh_options + ' -i %s' % (ssh_key)
 cmd = "ssh %s -l %s %s" % (ssh_options, username, server)

 # This does not distinguish between a remote server 'password' prompt
 # and a local ssh 'passphrase' prompt (for unlocking a private key).
 spawn._spawn(self, cmd)
 i = self.expect(["(?i)are you sure you want to continue connecting", original_prompt, "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)terminal type", TIMEOUT, "(?i)connection closed by remote host"], timeout=login_timeout)

 # First phase
 if i==0:
 # New certificate -- always accept it.
 # This is what you get if SSH does not have the remote host's
 # public key stored in the 'known_hosts' cache.
 self.sendline("yes")
 i = self.expect(["(?i)are you sure you want to continue connecting", original_prompt, "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)terminal type", TIMEOUT])
 if i==2: # password or passphrase
 self.sendline(password)
 i = self.expect(["(?i)are you sure you want to continue connecting", original_prompt, "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)terminal type", TIMEOUT])
 if i==4:
 self.sendline(terminal_type)
 i = self.expect(["(?i)are you sure you want to continue connecting", original_prompt, "(?i)(?:password)|(?:passphrase for key)", "(?i)permission denied", "(?i)terminal type", TIMEOUT])

 # Second phase
 if i==0:
 # This is weird. This should not happen twice in a row.
 self.close()
 raise ExceptionPxssh('Weird error. Got "are you sure" prompt twice.')
 elif i==1: # can occur if you have a public key pair set to authenticate.
 ### TODO: May NOT be OK if expect() got tricked and matched a false prompt.
 pass
 elif i==2: # password prompt again
 # For incorrect passwords, some ssh servers will
 # ask for the password again, others return 'denied' right away.
 # If we get the password prompt again then this means
 # we didn't get the password right the first time.
 self.close()
 raise ExceptionPxssh('password refused')
 elif i==3: # permission denied -- password was bad.
 self.close()
 raise ExceptionPxssh('permission denied')
 elif i==4: # terminal type again? WTF?
 self.close()
 raise ExceptionPxssh('Weird error. Got "terminal type" prompt twice.')
 elif i==5: # Timeout
 #This is tricky... I presume that we are at the command-line prompt.
 #It may be that the shell prompt was so weird that we couldn't match
 #it. Or it may be that we couldn't log in for some other reason. I
 #can't be sure, but it's safe to guess that we did login because if
 #I presume wrong and we are not logged in then this should be caught
 #later when I try to set the shell prompt.
 pass
 elif i==6: # Connection closed by remote host
 self.close()
 raise ExceptionPxssh('connection closed')
 else: # Unexpected
 self.close()
 raise ExceptionPxssh('unexpected login response')
 if not self.sync_original_prompt(sync_multiplier):
 self.close()
 raise ExceptionPxssh('could not synchronize with original prompt')
 # We appear to be in.
 # set shell prompt to something unique.
 if auto_prompt_reset:
 if not self.set_unique_prompt():
 self.close()
 raise ExceptionPxssh('could not set shell prompt '
 '(recieved: %r, expected: %r).' % (
 self.before, self.PROMPT,))
 return True

[docs] def logout (self):
 '''Sends exit to the remote shell.

 If there are stopped jobs then this automatically sends exit twice.
 '''
 self.sendline("exit")
 index = self.expect([EOF, "(?i)there are stopped jobs"])
 if index==1:
 self.sendline("exit")
 self.expect(EOF)
 self.close()

[docs] def prompt(self, timeout=-1):
 '''Match the next shell prompt.

 This is little more than a short-cut to the :meth:`~pexpect.spawn.expect`
 method. Note that if you called :meth:`login` with
 ``auto_prompt_reset=False``, then before calling :meth:`prompt` you must
 set the :attr:`PROMPT` attribute to a regex that it will use for
 matching the prompt.

 Calling :meth:`prompt` will erase the contents of the :attr:`before`
 attribute even if no prompt is ever matched. If timeout is not given or
 it is set to -1 then self.timeout is used.

 :return: True if the shell prompt was matched, False if the timeout was
 reached.
 '''

 if timeout == -1:
 timeout = self.timeout
 i = self.expect([self.PROMPT, TIMEOUT], timeout=timeout)
 if i==1:
 return False
 return True

[docs] def set_unique_prompt(self):
 '''This sets the remote prompt to something more unique than ``#`` or ``$``.
 This makes it easier for the :meth:`prompt` method to match the shell prompt
 unambiguously. This method is called automatically by the :meth:`login`
 method, but you may want to call it manually if you somehow reset the
 shell prompt. For example, if you 'su' to a different user then you
 will need to manually reset the prompt. This sends shell commands to
 the remote host to set the prompt, so this assumes the remote host is
 ready to receive commands.

 Alternatively, you may use your own prompt pattern. In this case you
 should call :meth:`login` with ``auto_prompt_reset=False``; then set the
 :attr:`PROMPT` attribute to a regular expression. After that, the
 :meth:`prompt` method will try to match your prompt pattern.
 '''

 self.sendline("unset PROMPT_COMMAND")
 self.sendline(self.PROMPT_SET_SH) # sh-style
 i = self.expect ([TIMEOUT, self.PROMPT], timeout=10)
 if i == 0: # csh-style
 self.sendline(self.PROMPT_SET_CSH)
 i = self.expect([TIMEOUT, self.PROMPT], timeout=10)
 if i == 0:
 return False
 return True

vi:ts=4:sw=4:expandtab:ft=python:

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.

_modules/pexpect/screen.html

 Navigation

 		
 index

 		
 modules |

 		Pexpect 3.3 documentation »

 		Module code »

 		pexpect »

 Source code for pexpect.screen

'''This implements a virtual screen. This is used to support ANSI terminal
emulation. The screen representation and state is implemented in this class.
Most of the methods are inspired by ANSI screen control codes. The
:class:`~pexpect.ANSI.ANSI` class extends this class to add parsing of ANSI
escape codes.

PEXPECT LICENSE

 This license is approved by the OSI and FSF as GPL-compatible.
 http://opensource.org/licenses/isc-license.txt

 Copyright (c) 2012, Noah Spurrier <noah@noah.org>
 PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
 PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
 COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''

import copy

NUL = 0 # Fill character; ignored on input.
ENQ = 5 # Transmit answerback message.
BEL = 7 # Ring the bell.
BS = 8 # Move cursor left.
HT = 9 # Move cursor to next tab stop.
LF = 10 # Line feed.
VT = 11 # Same as LF.
FF = 12 # Same as LF.
CR = 13 # Move cursor to left margin or newline.
SO = 14 # Invoke G1 character set.
SI = 15 # Invoke G0 character set.
XON = 17 # Resume transmission.
XOFF = 19 # Halt transmission.
CAN = 24 # Cancel escape sequence.
SUB = 26 # Same as CAN.
ESC = 27 # Introduce a control sequence.
DEL = 127 # Fill character; ignored on input.
SPACE = chr(32) # Space or blank character.

def constrain (n, min, max):

 '''This returns a number, n constrained to the min and max bounds. '''

 if n < min:
 return min
 if n > max:
 return max
 return n

[docs]class screen:
 '''This object maintains the state of a virtual text screen as a
 rectangluar array. This maintains a virtual cursor position and handles
 scrolling as characters are added. This supports most of the methods needed
 by an ANSI text screen. Row and column indexes are 1-based (not zero-based,
 like arrays). '''

[docs] def __init__ (self, r=24,c=80):
 '''This initializes a blank screen of the given dimensions.'''

 self.rows = r
 self.cols = c
 self.cur_r = 1
 self.cur_c = 1
 self.cur_saved_r = 1
 self.cur_saved_c = 1
 self.scroll_row_start = 1
 self.scroll_row_end = self.rows
 self.w = [[SPACE] * self.cols for c in range(self.rows)]

[docs] def __str__ (self):
 '''This returns a printable representation of the screen. The end of
 each screen line is terminated by a newline. '''

 return '\n'.join ([''.join(c) for c in self.w])

[docs] def dump (self):
 '''This returns a copy of the screen as a string. This is similar to
 __str__ except that lines are not terminated with line feeds. '''

 return ''.join ([''.join(c) for c in self.w])

[docs] def pretty (self):
 '''This returns a copy of the screen as a string with an ASCII text box
 around the screen border. This is similar to __str__ except that it
 adds a box. '''

 top_bot = '+' + '-'*self.cols + '+\n'
 return top_bot + '\n'.join(['|'+line+'|' for line in str(self).split('\n')]) + '\n' + top_bot

 def fill (self, ch=SPACE):

 self.fill_region (1,1,self.rows,self.cols, ch)

 def fill_region (self, rs,cs, re,ce, ch=SPACE):

 rs = constrain (rs, 1, self.rows)
 re = constrain (re, 1, self.rows)
 cs = constrain (cs, 1, self.cols)
 ce = constrain (ce, 1, self.cols)
 if rs > re:
 rs, re = re, rs
 if cs > ce:
 cs, ce = ce, cs
 for r in range (rs, re+1):
 for c in range (cs, ce + 1):
 self.put_abs (r,c,ch)

[docs] def cr (self):
 '''This moves the cursor to the beginning (col 1) of the current row.
 '''

 self.cursor_home (self.cur_r, 1)

[docs] def lf (self):
 '''This moves the cursor down with scrolling.
 '''

 old_r = self.cur_r
 self.cursor_down()
 if old_r == self.cur_r:
 self.scroll_up ()
 self.erase_line()

[docs] def crlf (self):
 '''This advances the cursor with CRLF properties.
 The cursor will line wrap and the screen may scroll.
 '''

 self.cr ()
 self.lf ()

[docs] def newline (self):
 '''This is an alias for crlf().
 '''

 self.crlf()

[docs] def put_abs (self, r, c, ch):
 '''Screen array starts at 1 index.'''

 r = constrain (r, 1, self.rows)
 c = constrain (c, 1, self.cols)
 ch = str(ch)[0]
 self.w[r-1][c-1] = ch

[docs] def put (self, ch):
 '''This puts a characters at the current cursor position.
 '''

 self.put_abs (self.cur_r, self.cur_c, ch)

[docs] def insert_abs (self, r, c, ch):
 '''This inserts a character at (r,c). Everything under
 and to the right is shifted right one character.
 The last character of the line is lost.
 '''

 r = constrain (r, 1, self.rows)
 c = constrain (c, 1, self.cols)
 for ci in range (self.cols, c, -1):
 self.put_abs (r,ci, self.get_abs(r,ci-1))
 self.put_abs (r,c,ch)

 def insert (self, ch):

 self.insert_abs (self.cur_r, self.cur_c, ch)

 def get_abs (self, r, c):

 r = constrain (r, 1, self.rows)
 c = constrain (c, 1, self.cols)
 return self.w[r-1][c-1]

 def get (self):

 self.get_abs (self.cur_r, self.cur_c)

[docs] def get_region (self, rs,cs, re,ce):
 '''This returns a list of lines representing the region.
 '''

 rs = constrain (rs, 1, self.rows)
 re = constrain (re, 1, self.rows)
 cs = constrain (cs, 1, self.cols)
 ce = constrain (ce, 1, self.cols)
 if rs > re:
 rs, re = re, rs
 if cs > ce:
 cs, ce = ce, cs
 sc = []
 for r in range (rs, re+1):
 line = ''
 for c in range (cs, ce + 1):
 ch = self.get_abs (r,c)
 line = line + ch
 sc.append (line)
 return sc

[docs] def cursor_constrain (self):
 '''This keeps the cursor within the screen area.
 '''

 self.cur_r = constrain (self.cur_r, 1, self.rows)
 self.cur_c = constrain (self.cur_c, 1, self.cols)

 def cursor_home (self, r=1, c=1): # <ESC>[{ROW};{COLUMN}H

 self.cur_r = r
 self.cur_c = c
 self.cursor_constrain ()

 def cursor_back (self,count=1): # <ESC>[{COUNT}D (not confused with down)

 self.cur_c = self.cur_c - count
 self.cursor_constrain ()

 def cursor_down (self,count=1): # <ESC>[{COUNT}B (not confused with back)

 self.cur_r = self.cur_r + count
 self.cursor_constrain ()

 def cursor_forward (self,count=1): # <ESC>[{COUNT}C

 self.cur_c = self.cur_c + count
 self.cursor_constrain ()

 def cursor_up (self,count=1): # <ESC>[{COUNT}A

 self.cur_r = self.cur_r - count
 self.cursor_constrain ()

 def cursor_up_reverse (self): # <ESC> M (called RI -- Reverse Index)

 old_r = self.cur_r
 self.cursor_up()
 if old_r == self.cur_r:
 self.scroll_up()

[docs] def cursor_force_position (self, r, c): # <ESC>[{ROW};{COLUMN}f
 '''Identical to Cursor Home.'''

 self.cursor_home (r, c)

[docs] def cursor_save (self): # <ESC>[s
 '''Save current cursor position.'''

 self.cursor_save_attrs()

[docs] def cursor_unsave (self): # <ESC>[u
 '''Restores cursor position after a Save Cursor.'''

 self.cursor_restore_attrs()

[docs] def cursor_save_attrs (self): # <ESC>7
 '''Save current cursor position.'''

 self.cur_saved_r = self.cur_r
 self.cur_saved_c = self.cur_c

[docs] def cursor_restore_attrs (self): # <ESC>8
 '''Restores cursor position after a Save Cursor.'''

 self.cursor_home (self.cur_saved_r, self.cur_saved_c)

[docs] def scroll_constrain (self):
 '''This keeps the scroll region within the screen region.'''

 if self.scroll_row_start <= 0:
 self.scroll_row_start = 1
 if self.scroll_row_end > self.rows:
 self.scroll_row_end = self.rows

[docs] def scroll_screen (self): # <ESC>[r
 '''Enable scrolling for entire display.'''

 self.scroll_row_start = 1
 self.scroll_row_end = self.rows

[docs] def scroll_screen_rows (self, rs, re): # <ESC>[{start};{end}r
 '''Enable scrolling from row {start} to row {end}.'''

 self.scroll_row_start = rs
 self.scroll_row_end = re
 self.scroll_constrain()

[docs] def scroll_down (self): # <ESC>D
 '''Scroll display down one line.'''

 # Screen is indexed from 1, but arrays are indexed from 0.
 s = self.scroll_row_start - 1
 e = self.scroll_row_end - 1
 self.w[s+1:e+1] = copy.deepcopy(self.w[s:e])

[docs] def scroll_up (self): # <ESC>M
 '''Scroll display up one line.'''

 # Screen is indexed from 1, but arrays are indexed from 0.
 s = self.scroll_row_start - 1
 e = self.scroll_row_end - 1
 self.w[s:e] = copy.deepcopy(self.w[s+1:e+1])

[docs] def erase_end_of_line (self): # <ESC>[0K -or- <ESC>[K
 '''Erases from the current cursor position to the end of the current
 line.'''

 self.fill_region (self.cur_r, self.cur_c, self.cur_r, self.cols)

[docs] def erase_start_of_line (self): # <ESC>[1K
 '''Erases from the current cursor position to the start of the current
 line.'''

 self.fill_region (self.cur_r, 1, self.cur_r, self.cur_c)

[docs] def erase_line (self): # <ESC>[2K
 '''Erases the entire current line.'''

 self.fill_region (self.cur_r, 1, self.cur_r, self.cols)

[docs] def erase_down (self): # <ESC>[0J -or- <ESC>[J
 '''Erases the screen from the current line down to the bottom of the
 screen.'''

 self.erase_end_of_line ()
 self.fill_region (self.cur_r + 1, 1, self.rows, self.cols)

[docs] def erase_up (self): # <ESC>[1J
 '''Erases the screen from the current line up to the top of the
 screen.'''

 self.erase_start_of_line ()
 self.fill_region (self.cur_r-1, 1, 1, self.cols)

[docs] def erase_screen (self): # <ESC>[2J
 '''Erases the screen with the background color.'''

 self.fill ()

[docs] def set_tab (self): # <ESC>H
 '''Sets a tab at the current position.'''

 pass

[docs] def clear_tab (self): # <ESC>[g
 '''Clears tab at the current position.'''

 pass

[docs] def clear_all_tabs (self): # <ESC>[3g
 '''Clears all tabs.'''

 pass

Insert line Esc [Pn L
Delete line Esc [Pn M
Delete character Esc [Pn P
Scrolling region Esc [Pn(top);Pn(bot) r

 © Copyright 2013, Noah Spurrier and contributors.
 Created using Sphinx 1.2.2.