
persistent Documentation
Release 4.2.2

ZODB Developers <zope-dev@zope.org>

Nov 21, 2018

Contents

1 Using persistent in your application 3
1.1 Inheriting from persistent.Persistent . 3
1.2 Relationship to a Data Manager and its Cache . 3
1.3 Persistent objects without a Data Manager . 4
1.4 Associating an Object with a Data Manager . 5
1.5 Explicitly controlling _p_state . 6
1.6 The pickling protocol . 8
1.7 Estimated Object Size . 8
1.8 Overriding the attribute protocol . 9
1.9 Implementing _p_repr . 9

2 persistent API documentation 11
2.1 persistent.interfaces . 11
2.2 Implementations . 17
2.3 Persistent Collections . 17
2.4 Customizing Attribute Access . 18
2.5 Pickling Persistent Objects . 22
2.6 Caching Persistent Objects . 25

3 Glossary 27

4 Indices and tables 29

Python Module Index 31

i

ii

persistent Documentation, Release 4.2.2

This package contains a generic persistence implementation for Python. It forms the core protocol for making objects
interact “transparently” with a database such as the ZODB.

Contents:

Contents 1

persistent Documentation, Release 4.2.2

2 Contents

CHAPTER 1

Using persistent in your application

1.1 Inheriting from persistent.Persistent

The basic mechanism for making your application’s objects persistent is mix-in inheritance. Instances whose classes
derive from persistent.Persistent are automatically capable of being created as ghost instances, being asso-
ciated with a database connection (called the jar), and notifying the connection when they have been changed.

1.2 Relationship to a Data Manager and its Cache

Except immediately after their creation, persistent objects are normally associated with a data manager (also referred
to as a jar). An object’s data manager is stored in its _p_jar attribute. The data manager is responsible for loading
and saving the state of the persistent object to some sort of backing store, including managing any interactions with
transaction machinery.

Each data manager maintains an object cache, which keeps track of the currently loaded objects, as well as any objects
they reference which have not yet been loaded: such an object is called a ghost. The cache is stored on the data
manager in its _cache attribute.

A persistent object remains in the ghost state until the application attempts to access or mutate one of its attributes:
at that point, the object requests that its data manager load its state. The persistent object also notifies the cache that
it has been loaded, as well as on each subsequent attribute access. The cache keeps a “most-recently-used” list of its
objects, and removes objects in least-recently-used order when it is asked to reduce its working set.

The examples below use a stub data manager class, and its stub cache class:

>>> class Cache(object):
... def __init__(self):
... self._mru = []
... def mru(self, oid):
... self._mru.append(oid)
>>> from zope.interface import implements
>>> from persistent.interfaces import IPersistentDataManager

(continues on next page)

3

persistent Documentation, Release 4.2.2

(continued from previous page)

>>> class DM(object):
... implements(IPersistentDataManager)
... def __init__(self):
... self._cache = Cache()
... self.registered = 0
... def register(self, ob):
... self.registered += 1
... def setstate(self, ob):
... ob.__setstate__({'x': 42})

Note: Notice that the DM class always sets the x attribute to the value 42 when activating an object.

1.3 Persistent objects without a Data Manager

Before persistent instance has been associated with a a data manager (i.e., its _p_jar is still None).

The examples below use a class, P, defined as:

>>> from persistent import Persistent
>>> from persistent.interfaces import GHOST, UPTODATE, CHANGED
>>> class P(Persistent):
... def __init__(self):
... self.x = 0
... def inc(self):
... self.x += 1

Instances of the derived P class which are not (yet) assigned to a data manager behave as other Python instances,
except that they have some extra attributes:

>>> p = P()
>>> p.x
0

The _p_changed attribute is a three-state flag: it can be one of None (the object is not loaded), False (the object
has not been changed since it was loaded) or True (the object has been changed). Until the object is assigned a jar,
this attribute will always be False.

>>> p._p_changed
False

The _p_state attribute is an integer, representing which of the “persistent lifecycle” states the object is in. Until the
object is assigned a jar, this attribute will always be 0 (the UPTODATE constant):

>>> p._p_state == UPTODATE
True

The _p_jar attribute is the object’s data manager. Since it has not yet been assigned, its value is None:

>>> print p._p_jar
None

The _p_oid attribute is the object id, a unique value normally assigned by the object’s data manager. Since the
object has not yet been associated with its jar, its value is None:

4 Chapter 1. Using persistent in your application

persistent Documentation, Release 4.2.2

>>> print p._p_oid
None

Without a data manager, modifying a persistent object has no effect on its _p_state or _p_changed.

>>> p.inc()
>>> p.inc()
>>> p.x
2
>>> p._p_changed
False
>>> p._p_state
0

Try all sorts of different ways to change the object’s state:

>>> p._p_deactivate()
>>> p._p_state
0
>>> p._p_changed
False
>>> p._p_changed = True
>>> p._p_changed
False
>>> p._p_state
0
>>> del p._p_changed
>>> p._p_changed
False
>>> p._p_state
0
>>> p.x
2

1.4 Associating an Object with a Data Manager

Once associated with a data manager, a persistent object’s behavior changes:

>>> p = P()
>>> dm = DM()
>>> p._p_oid = "00000012"
>>> p._p_jar = dm
>>> p._p_changed
False
>>> p._p_state
0
>>> p.__dict__
{'x': 0}
>>> dm.registered
0

Modifying the object marks it as changed and registers it with the data manager. Subsequent modifications don’t have
additional side-effects.

1.4. Associating an Object with a Data Manager 5

persistent Documentation, Release 4.2.2

>>> p.inc()
>>> p.x
1
>>> p.__dict__
{'x': 1}
>>> p._p_changed
True
>>> p._p_state
1
>>> dm.registered
1
>>> p.inc()
>>> p._p_changed
True
>>> p._p_state
1
>>> dm.registered
1

Object which register themselves with the data manager are candidates for storage to the backing store at a later point
in time.

Note that mutating a non-persistent attribute of a persistent object such as a dict or list will not cause the
containing object to be changed. Instead you can either explicitly control the state as described below, or use a
PersistentList or PersistentMapping.

1.5 Explicitly controlling _p_state

Persistent objects expose three methods for moving an object into and out of the “ghost” state:: persistent.
Persistent._p_activate(), persistent.Persistent._p_activate_p_deactivate(), and
persistent.Persistent._p_invalidate():

>>> p = P()
>>> p._p_oid = '00000012'
>>> p._p_jar = DM()

After being assigned a jar, the object is initially in the UPTODATE state:

>>> p._p_state
0

From that state, _p_deactivate rests the object to the GHOST state:

>>> p._p_deactivate()
>>> p._p_state
-1

From the GHOST state, _p_activate reloads the object’s data and moves it to the UPTODATE state:

>>> p._p_activate()
>>> p._p_state
0
>>> p.x
42

Changing the object puts it in the CHANGED state:

6 Chapter 1. Using persistent in your application

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

persistent Documentation, Release 4.2.2

>>> p.inc()
>>> p.x
43
>>> p._p_state
1

Attempting to deactivate in the CHANGED state is a no-op:

>>> p._p_deactivate()
>>> p.__dict__
{'x': 43}
>>> p._p_changed
True
>>> p._p_state
1

_p_invalidate forces objects into the GHOST state; it works even on objects in the CHANGED state, which is the
key difference between deactivation and invalidation:

>>> p._p_invalidate()
>>> p.__dict__
{}
>>> p._p_state
-1

You can manually reset the _p_changed field to False: in this case, the object changes to the UPTODATE state
but retains its modifications:

>>> p.inc()
>>> p.x
43
>>> p._p_changed = False
>>> p._p_state
0
>>> p._p_changed
False
>>> p.x
43

For an object in the “ghost” state, assigning True (or any value which is coercible to True) to its _p_changed
attributes activates the object, which is exactly the same as calling _p_activate:

>>> p._p_invalidate()
>>> p._p_state
-1
>>> p._p_changed = True
>>> p._p_changed
True
>>> p._p_state
1
>>> p.x
42

1.5. Explicitly controlling _p_state 7

persistent Documentation, Release 4.2.2

1.6 The pickling protocol

Because persistent objects need to control how they are pickled and unpickled, the persistent.Persistent
base class overrides the implementations of __getstate__() and __setstate__():

>>> p = P()
>>> dm = DM()
>>> p._p_oid = "00000012"
>>> p._p_jar = dm
>>> p.__getstate__()
{'x': 0}
>>> p._p_state
0

Calling __setstate__ always leaves the object in the uptodate state.

>>> p.__setstate__({'x': 5})
>>> p._p_state
0

A volatile attribute is an attribute those whose name begins with a special prefix (_v__). Unlike normal attributes,
volatile attributes do not get stored in the object’s pickled data.

>>> p._v_foo = 2
>>> p.__getstate__()
{'x': 5}

Assigning to volatile attributes doesn’t cause the object to be marked as changed:

>>> p._p_state
0

The _p_serial attribute is not affected by calling setstate.

>>> p._p_serial = "00000012"
>>> p.__setstate__(p.__getstate__())
>>> p._p_serial
'00000012'

1.7 Estimated Object Size

We can store a size estimation in _p_estimated_size. Its default is 0. The size estimation can be used by a cache
associated with the data manager to help in the implementation of its replacement strategy or its size bounds.

>>> p._p_estimated_size
0
>>> p._p_estimated_size = 1000
>>> p._p_estimated_size
1024

Huh? Why is the estimated size coming out different than what we put in? The reason is that the size isn’t stored
exactly. For backward compatibility reasons, the size needs to fit in 24 bits, so, internally, it is adjusted somewhat.

Of course, the estimated size must not be negative.

8 Chapter 1. Using persistent in your application

persistent Documentation, Release 4.2.2

>>> p._p_estimated_size = -1
Traceback (most recent call last):
....
ValueError: _p_estimated_size must not be negative

1.8 Overriding the attribute protocol

Subclasses which override the attribute-management methods provided by persistent.Persistent, but must
obey some constraints:

__getattribute__() When overriding __getattribute__, the derived class implementation must first call
persistent.IPersistent._p_getattr(), passing the name being accessed. This method ensures
that the object is activated, if needed, and handles the “special” attributes which do not require activation (e.g.,
_p_oid, __class__, __dict__, etc.) If _p_getattr returns True, the derived class implementation
must delegate to the base class implementation for the attribute.

__setattr__() When overriding __setattr__, the derived class implementation must first call
persistent.IPersistent._p_setattr(), passing the name being accessed and the value. This
method ensures that the object is activated, if needed, and handles the “special” attributes which do not re-
quire activation (_p_*). If _p_setattr returns True, the derived implementation must assume that the
attribute value has been set by the base class.

__delattr__() When overriding __delattr__, the derived class implementation must first call
persistent.IPersistent._p_delattr(), passing the name being accessed. This method ensures
that the object is activated, if needed, and handles the “special” attributes which do not require activation (_p_*).
If _p_delattr returns True, the derived implementation must assume that the attribute has been deleted base
class.

__getattr__() For the __getattr__method, the behavior is like that for regular Python classes and for earlier
versions of ZODB 3.

1.9 Implementing _p_repr

Subclasses can implement _p_repr to provide a custom representation. If this method raises an exception, the
default representation will be used. The benefit of implementing _p_repr instead of overriding __repr__ is that it
provides safer handling for objects that can’t be activated because their persistent data is missing or their jar is closed.

>>> class P(Persistent):
... def _p_repr(self):
... return "Custom repr"

>>> p = P()
>>> print(repr(p))
Custom repr

1.8. Overriding the attribute protocol 9

persistent Documentation, Release 4.2.2

10 Chapter 1. Using persistent in your application

CHAPTER 2

persistent API documentation

2.1 persistent.interfaces

Persistence Interfaces

interface persistent.interfaces.IPersistent
Python persistent interface

A persistent object can be in one of several states:

• Unsaved

The object has been created but not saved in a data manager.

In this state, the _p_changed attribute is non-None and false and the _p_jar attribute is None.

• Saved

The object has been saved and has not been changed since it was saved.

In this state, the _p_changed attribute is non-None and false and the _p_jar attribute is set to a data manager.

• Sticky

This state is identical to the saved state except that the object cannot transition to the ghost state. This is a
special state used by C methods of persistent objects to make sure that state is not unloaded in the middle
of computation.

In this state, the _p_changed attribute is non-None and false and the _p_jar attribute is set to a data manager.

There is no Python API for detecting whether an object is in the sticky state.

• Changed

The object has been changed.

In this state, the _p_changed attribute is true and the _p_jar attribute is set to a data manager.

• Ghost

11

persistent Documentation, Release 4.2.2

the object is in memory but its state has not been loaded from the database (or its state has been unloaded).
In this state, the object doesn’t contain any application data.

In this state, the _p_changed attribute is None, and the _p_jar attribute is set to the data manager from
which the object was obtained.

In all the above, _p_oid (the persistent object id) is set when _p_jar first gets set.

The following state transitions are possible:

• Unsaved -> Saved

This transition occurs when an object is saved in the database. This usually happens when an unsaved
object is added to (e.g. as an attribute or item of) a saved (or changed) object and the transaction is
committed.

• Saved -> Changed Sticky -> Changed Ghost -> Changed

This transition occurs when someone sets an attribute or sets _p_changed to a true value on a saved, sticky
or ghost object. When the transition occurs, the persistent object is required to call the register() method
on its data manager, passing itself as the only argument.

Prior to ZODB 3.6, setting _p_changed to a true value on a ghost object was ignored (the object remained
a ghost, and getting its _p_changed attribute continued to return None).

• Saved -> Sticky

This transition occurs when C code marks the object as sticky to prevent its deactivation.

• Saved -> Ghost

This transition occurs when a saved object is deactivated or invalidated. See discussion below.

• Sticky -> Saved

This transition occurs when C code unmarks the object as sticky to allow its deactivation.

• Changed -> Saved

This transition occurs when a transaction is committed. After saving the state of a changed object during
transaction commit, the data manager sets the object’s _p_changed to a non-None false value.

• Changed -> Ghost

This transition occurs when a transaction is aborted. All changed objects are invalidated by the data
manager by an abort.

• Ghost -> Saved

This transition occurs when an attribute or operation of a ghost is accessed and the object’s state is loaded
from the database.

Note that there is a separate C API that is not included here. The C API requires a specific data layout and
defines the sticky state.

About Invalidation, Deactivation and the Sticky & Ghost States

The sticky state is intended to be a short-lived state, to prevent an object’s state from being discarded while
we’re in C routines. It is an error to invalidate an object in the sticky state.

Deactivation is a request that an object discard its state (become a ghost). Deactivation is an optimization, and
a request to deactivate may be ignored. There are two equivalent ways to request deactivation:

• call _p_deactivate()

• set _p_changed to None

12 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

There are two ways to invalidate an object: call the _p_invalidate() method (preferred) or delete its _p_changed
attribute. This cannot be ignored, and is used when semantics require invalidation. Normally, an invalidated
object transitions to the ghost state. However, some objects cannot be ghosts. When these objects are invalidated,
they immediately reload their state from their data manager, and are then in the saved state.

reprs

By default, persistent objects include the reprs of their _p_oid and _p_jar, if any, in their repr. If a subclass
implements the optional method _p_repr, it will be called and its results returned instead of the default repr;
if this method raises an exception, that exception will be caught and its repr included in the default repr.

_p_jar
The data manager for the object.

The data manager should implement IPersistentDataManager (note that this constraint is not enforced).

If there is no data manager, then this is None.

Once assigned to a data manager, an object cannot be re-assigned to another.

_p_oid
The object id.

It is up to the data manager to assign this.

The special value None is reserved to indicate that an object id has not been assigned. Non-None object
ids must be non-empty strings. The 8-byte string consisting of 8 NUL bytes (‘’) is reserved to identify the
database root object.

Once assigned an OID, an object cannot be re-assigned another.

_p_changed
The persistent state of the object.

This is one of:

None – The object is a ghost.

false but not None – The object is saved (or has never been saved).

true – The object has been modified since it was last saved.

The object state may be changed by assigning or deleting this attribute; however, assigning None is ignored
if the object is not in the saved state, and may be ignored even if the object is in the saved state.

At and after ZODB 3.6, setting _p_changed to a true value for a ghost object activates the object; prior to
3.6, setting _p_changed to a true value on a ghost object was ignored.

Note that an object can transition to the changed state only if it has a data manager. When such a state
change occurs, the ‘register’ method of the data manager must be called, passing the persistent object.

Deleting this attribute forces invalidation independent of existing state, although it is an error if the sticky
state is current.

_p_serial
The object serial number.

This member is used by the data manager to distiguish distinct revisions of a given persistent object.

This is an 8-byte string (not Unicode).

_p_mtime
The object’s modification time (read-only).

This is a float, representing seconds since the epoch (as returned by time.time).

2.1. persistent.interfaces 13

persistent Documentation, Release 4.2.2

_p_state
The object’s persistence state token.

Must be one of GHOST, UPTODATE, CHANGED, or STICKY.

_p_estimated_size
An estimate of the object’s size in bytes.

May be set by the data manager.

__getattribute__(name)
Handle activating ghosts before returning an attribute value.

“Special” attributes and ‘_p_*’ attributes don’t require activation.

__setattr__(name, value)
Handle activating ghosts before setting an attribute value.

“Special” attributes and ‘_p_*’ attributes don’t require activation.

__delattr__(name)
Handle activating ghosts before deleting an attribute value.

“Special” attributes and ‘_p_*’ attributes don’t require activation.

__getstate__()
Get the object data.

The state should not include persistent attributes (“_p_name”). The result must be picklable.

__setstate__(state)
Set the object data.

__reduce__()
Reduce an object to contituent parts for serialization.

_p_activate()
Activate the object.

Change the object to the saved state if it is a ghost.

_p_deactivate()
Deactivate the object.

Possibly change an object in the saved state to the ghost state. It may not be possible to make some
persistent objects ghosts, and, for optimization reasons, the implementation may choose to keep an object
in the saved state.

_p_invalidate()
Invalidate the object.

Invalidate the object. This causes any data to be thrown away, even if the object is in the changed state.
The object is moved to the ghost state; further accesses will cause object data to be reloaded.

_p_getattr(name)
Test whether the base class must handle the name

The method unghostifies the object, if necessary. The method records the object access, if necessary.

This method should be called by subclass __getattribute__ implementations before doing anything else. If
the method returns True, then __getattribute__ implementations must delegate to the base class, Persistent.

_p_setattr(name, value)
Save persistent meta data

14 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

This method should be called by subclass __setattr__ implementations before doing anything else. If it
returns true, then the attribute was handled by the base class.

The method unghostifies the object, if necessary. The method records the object access, if necessary.

_p_delattr(name)
Delete persistent meta data

This method should be called by subclass __delattr__ implementations before doing anything else. If it
returns true, then the attribute was handled by the base class.

The method unghostifies the object, if necessary. The method records the object access, if necessary.

interface persistent.interfaces.IPersistentDataManager
Provide services for managing persistent state.

This interface is used by a persistent object to interact with its data manager in the context of a transaction.

_cache
The pickle cache associated with this connection.

setstate(object)
Load the state for the given object.

The object should be in the ghost state. The object’s state will be set and the object will end up in the saved
state.

The object must provide the IPersistent interface.

oldstate(obj, tid)
Return copy of ‘obj’ that was written by transaction ‘tid’.

The returned object does not have the typical metadata (_p_jar, _p_oid, _p_serial) set. I’m not sure how
references to other peristent objects are handled.

Parameters obj: a persistent object from this Connection. tid: id of a transaction that wrote an earlier
revision.

Raises KeyError if tid does not exist or if tid deleted a revision of obj.

register(object)
Register an IPersistent with the current transaction.

This method must be called when the object transitions to the changed state.

A subclass could override this method to customize the default policy of one transaction manager for each
thread.

interface persistent.interfaces.IPickleCache
API of the cache for a ZODB connection.

__getitem__(oid)
-> the persistent object for OID.

o Raise KeyError if not found.

__setitem__(oid, value)
Save the persistent object under OID.

o ‘oid’ must be a string, else raise ValueError.

o Raise KeyError on duplicate

__delitem__(oid)
Remove the persistent object for OID.

2.1. persistent.interfaces 15

persistent Documentation, Release 4.2.2

o ‘oid’ must be a string, else raise ValueError.

o Raise KeyError if not found.

get(oid, default=None)
-> the persistent object for OID.

o Return ‘default’ if not found.

__len__()
-> the number of OIDs in the cache.

items()
-> a sequence of tuples (oid, value) for cached objects.

o Only includes items in ‘data’ (no p-classes).

ringlen()
-> the number of persistent objects in the ring.

o Only includes items in the ring (no ghosts or p-classes).

lru_items()
-> a sequence of tuples (oid, value) for cached objects.

o Tuples will be in LRU order.

o Only includes items in the ring (no ghosts or p-classes).

klass_items()
-> a sequence of tuples (oid, value) for cached p-classes.

o Only includes persistent classes.

incrgc()
Perform an incremental garbage collection sweep.

o Reduce number of non-ghosts to ‘cache_size’, if possible.

o Ghostify in LRU order.

o Skip dirty or sticky objects.

o Quit once we get down to ‘cache_size’.

full_sweep()
Perform a full garbage collection sweep.

o Reduce number of non-ghosts to 0, if possible.

o Ghostify all non-sticky / non-changed objecs.

minimize()
Alias for ‘full_sweep’.

o XXX?

new_ghost(oid, obj)
Add the given (ghost) object to the cache.

Also, set its _p_jar and _p_oid, and ensure it is in the GHOST state.

If the object doesn’t define ‘_p_oid’ / ‘_p_jar’, raise.

If the object’s ‘_p_oid’ is not None, raise.

If the object’s ‘_p_jar’ is not None, raise.

16 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

If ‘oid’ is already in the cache, raise.

invalidate(to_invalidate)
Invalidate the indicated objects.

o If ‘to_invalidate’ is a string, treat it as an OID.

o Otherwise, iterate over it as a sequence of OIDs.

o Any OID corresponding to a p-class will cause the corresponding p-class to be removed from the
cache.

o For all other OIDs, ghostify the corrsponding object and remove it from the ring.

debug_info()
Return debugging data about objects in the cache.

o Return a sequence of tuples, (oid, refcount, typename, state).

update_object_size_estimation(oid, new_size)
Update the cache’s size estimation for ‘oid’, if known to the cache.

cache_size
Target size of the cache

cache_drain_resistance
Factor for draining cache below target size

cache_non_ghost_count
Number of non-ghosts in the cache (XXX how is it different from ringlen?

cache_data
Property: copy of our ‘data’ dict

cache_klass_count
Property: len of ‘persistent_classes’

2.2 Implementations

This package provides one implementation of IPersistent that should be extended.

class persistent.Persistent
Bases: object

2.3 Persistent Collections

The persistent package provides two simple collections that are persistent and keep track of when they are mu-
tated in place.

class persistent.mapping.PersistentMapping(**kwargs)
Bases: UserDict.IterableUserDict, persistent.Persistent

A persistent wrapper for mapping objects.

This class allows wrapping of mapping objects so that object changes are registered. As a side effect, mapping
objects may be subclassed.

A subclass of PersistentMapping or any code that adds new attributes should not create an attribute named
_container. This is reserved for backwards compatibility reasons.

2.2. Implementations 17

https://docs.python.org/3/library/functions.html#object

persistent Documentation, Release 4.2.2

class persistent.list.PersistentList(initlist=None)
Bases: UserList.UserList, persistent.Persistent

A persistent wrapper for list objects.

Mutating instances of this class will cause them to be marked as changed and automatically persisted.

append(item)
S.append(object) – append object to the end of the sequence

extend(other)
S.extend(iterable) – extend sequence by appending elements from the iterable

insert(i, item)
S.insert(index, object) – insert object before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

2.4 Customizing Attribute Access

2.4.1 Hooking __getattr__()

The __getattr__ method works pretty much the same for persistent classes as it does for other classes. No special
handling is needed. If an object is a ghost, then it will be activated before __getattr__ is called.

In this example, our objects returns a tuple with the attribute name, converted to upper case and the value of
_p_changed, for any attribute that isn’t handled by the default machinery.

>>> from persistent.tests.attrhooks import OverridesGetattr
>>> o = OverridesGetattr()
>>> o._p_changed
False
>>> o._p_oid
>>> o._p_jar
>>> o.spam
('SPAM', False)
>>> o.spam = 1
>>> o.spam
1

We’ll save the object, so it can be deactivated:

>>> from persistent.tests.attrhooks import _resettingJar
>>> jar = _resettingJar()
>>> jar.add(o)
>>> o._p_deactivate()
>>> o._p_changed

And now, if we ask for an attribute it doesn’t have,

18 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

>>> o.eggs
('EGGS', False)

And we see that the object was activated before calling the __getattr__() method.

2.4.2 Hooking All Access

In this example, we’ll provide an example that shows how to override the __getattribute__(),
__setattr__(), and __delattr__() methods. We’ll create a class that stores it’s attributes in a secret dic-
tionary within the instance dictionary.

The class will have the policy that variables with names starting with tmp_ will be volatile.

Our sample class takes initial values as keyword arguments to the constructor:

>>> from persistent.tests.attrhooks import VeryPrivate
>>> o = VeryPrivate(x=1)

Hooking __getattribute__`()

The __getattribute__() method is called for all attribute accesses. It overrides the attribute access support
inherited from Persistent.

>>> o._p_changed
False
>>> o._p_oid
>>> o._p_jar
>>> o.x
1
>>> o.y
Traceback (most recent call last):
...
AttributeError: y

Next, we’ll save the object in a database so that we can deactivate it:

>>> from persistent.tests.attrhooks import _rememberingJar
>>> jar = _rememberingJar()
>>> jar.add(o)
>>> o._p_deactivate()
>>> o._p_changed

And we’ll get some data:

>>> o.x
1

which activates the object:

>>> o._p_changed
False

It works for missing attributes too:

2.4. Customizing Attribute Access 19

persistent Documentation, Release 4.2.2

>>> o._p_deactivate()
>>> o._p_changed

>>> o.y
Traceback (most recent call last):
...
AttributeError: y

>>> o._p_changed
False

Hooking __setattr__`()

The __setattr__() method is called for all attribute assignments. It overrides the attribute assignment support
inherited from Persistent.

Implementors of __setattr__() methods:

1. Must call Persistent._p_setattr first to allow it to handle some attributes and to make sure that the object is
activated if necessary, and

2. Must set _p_changed to mark objects as changed.

>>> o = VeryPrivate()
>>> o._p_changed
False
>>> o._p_oid
>>> o._p_jar
>>> o.x
Traceback (most recent call last):
...
AttributeError: x

>>> o.x = 1
>>> o.x
1

Because the implementation doesn’t store attributes directly in the instance dictionary, we don’t have a key for the
attribute:

>>> 'x' in o.__dict__
False

Next, we’ll give the object a “remembering” jar so we can deactivate it:

>>> jar = _rememberingJar()
>>> jar.add(o)
>>> o._p_deactivate()
>>> o._p_changed

We’ll modify an attribute

>>> o.y = 2
>>> o.y
2

which reactivates it, and marks it as modified, because our implementation marked it as modified:

20 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

>>> o._p_changed
True

Now, if fake a commit:

>>> jar.fake_commit()
>>> o._p_changed
False

And deactivate the object:

>>> o._p_deactivate()
>>> o._p_changed

and then set a variable with a name starting with tmp_, The object will be activated, but not marked as modified,
because our __setattr__() implementation doesn’t mark the object as changed if the name starts with tmp_:

>>> o.tmp_foo = 3
>>> o._p_changed
False
>>> o.tmp_foo
3

Hooking __delattr__`()

The __delattr__ method is called for all attribute deletions. It overrides the attribute deletion support inherited from
Persistent.

Implementors of __delattr__() methods:

1. Must call Persistent._p_delattr first to allow it to handle some attributes and to make sure that the object is
activated if necessary, and

2. Must set _p_changed to mark objects as changed.

>>> o = VeryPrivate(x=1, y=2, tmp_z=3)
>>> o._p_changed
False
>>> o._p_oid
>>> o._p_jar
>>> o.x
1
>>> del o.x
>>> o.x
Traceback (most recent call last):
...
AttributeError: x

Next, we’ll save the object in a jar so that we can deactivate it:

>>> jar = _rememberingJar()
>>> jar.add(o)
>>> o._p_deactivate()
>>> o._p_changed

If we delete an attribute:

2.4. Customizing Attribute Access 21

persistent Documentation, Release 4.2.2

>>> del o.y

The object is activated. It is also marked as changed because our implementation marked it as changed.

>>> o._p_changed
True
>>> o.y
Traceback (most recent call last):
...
AttributeError: y

>>> o.tmp_z
3

Now, if fake a commit:

>>> jar.fake_commit()
>>> o._p_changed
False

And deactivate the object:

>>> o._p_deactivate()
>>> o._p_changed

and then delete a variable with a name starting with tmp_, The object will be activated, but not marked as modified,
because our __delattr__() implementation doesn’t mark the object as changed if the name starts with tmp_:

>>> del o.tmp_z
>>> o._p_changed
False
>>> o.tmp_z
Traceback (most recent call last):
...
AttributeError: tmp_z

If we attempt to delete _p_oid, we find that we can’t, and the object is also not activated or changed:

>>> del o._p_oid
Traceback (most recent call last):
...
ValueError: can't delete _p_oid of cached object
>>> o._p_changed
False

We are allowed to delete _p_changed, which sets it to None:

>>> del o._p_changed
>>> o._p_changed is None
True

2.5 Pickling Persistent Objects

Persistent objects are designed to make the standard Python pickling machinery happy:

22 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

>>> import pickle
>>> from persistent.tests.cucumbers import Simple
>>> from persistent.tests.cucumbers import print_dict

>>> x = Simple('x', aaa=1, bbb='foo')

>>> print_dict(x.__getstate__())
{'__name__': 'x', 'aaa': 1, 'bbb': 'foo'}

>>> f, (c,), state = x.__reduce__()
>>> f.__name__
'__newobj__'
>>> f.__module__.replace('_', '') # Normalize Python2/3
'copyreg'
>>> c.__name__
'Simple'

>>> print_dict(state)
{'__name__': 'x', 'aaa': 1, 'bbb': 'foo'}

>>> import pickle
>>> pickle.loads(pickle.dumps(x)) == x
True
>>> pickle.loads(pickle.dumps(x, 0)) == x
True
>>> pickle.loads(pickle.dumps(x, 1)) == x
True

>>> pickle.loads(pickle.dumps(x, 2)) == x
True

>>> x.__setstate__({'z': 1})
>>> x.__dict__
{'z': 1}

This support even works well for derived classes which customize pickling by overriding __getnewargs__(),
__getstate__() and __setstate__().

>>> from persistent.tests.cucumbers import Custom

>>> x = Custom('x', 'y')
>>> x.__getnewargs__()
('x', 'y')
>>> x.a = 99

>>> (f, (c, ax, ay), a) = x.__reduce__()
>>> f.__name__
'__newobj__'
>>> f.__module__.replace('_', '') # Normalize Python2/3
'copyreg'
>>> c.__name__
'Custom'
>>> ax, ay, a
('x', 'y', 99)

>>> pickle.loads(pickle.dumps(x)) == x
True

(continues on next page)

2.5. Pickling Persistent Objects 23

persistent Documentation, Release 4.2.2

(continued from previous page)

>>> pickle.loads(pickle.dumps(x, 0)) == x
True
>>> pickle.loads(pickle.dumps(x, 1)) == x
True
>>> pickle.loads(pickle.dumps(x, 2)) == x
True

The support works for derived classes which define __slots__. It ignores any slots which map onto the “persistent”
namespace (prefixed with _p_) or the “volatile” namespace (prefixed with _v_):

>>> from persistent.tests.cucumbers import SubSlotted
>>> x = SubSlotted('x', 'y', 'z')

Note that we haven’t yet assigned a value to the s4 attribute:

>>> d, s = x.__getstate__()
>>> d
>>> print_dict(s)
{'s1': 'x', 's2': 'y', 's3': 'z'}

>>> import pickle
>>> pickle.loads(pickle.dumps(x)) == x
True
>>> pickle.loads(pickle.dumps(x, 0)) == x
True
>>> pickle.loads(pickle.dumps(x, 1)) == x
True
>>> pickle.loads(pickle.dumps(x, 2)) == x
True

After assigning it:

>>> x.s4 = 'spam'

>>> d, s = x.__getstate__()
>>> d
>>> print_dict(s)
{'s1': 'x', 's2': 'y', 's3': 'z', 's4': 'spam'}

>>> pickle.loads(pickle.dumps(x)) == x
True
>>> pickle.loads(pickle.dumps(x, 0)) == x
True
>>> pickle.loads(pickle.dumps(x, 1)) == x
True
>>> pickle.loads(pickle.dumps(x, 2)) == x
True

persistent.Persistent supports derived classes which have base classes defining __slots, but which do
not define attr:__slots__ themselves:

>>> from persistent.tests.cucumbers import SubSubSlotted
>>> x = SubSubSlotted('x', 'y', 'z')

>>> d, s = x.__getstate__()
>>> print_dict(d)

(continues on next page)

24 Chapter 2. persistent API documentation

persistent Documentation, Release 4.2.2

(continued from previous page)

{}
>>> print_dict(s)
{'s1': 'x', 's2': 'y', 's3': 'z'}

>>> import pickle
>>> pickle.loads(pickle.dumps(x)) == x
True
>>> pickle.loads(pickle.dumps(x, 0)) == x
True
>>> pickle.loads(pickle.dumps(x, 1)) == x
True
>>> pickle.loads(pickle.dumps(x, 2)) == x
True

>>> x.s4 = 'spam'
>>> x.foo = 'bar'
>>> x.baz = 'bam'

>>> d, s = x.__getstate__()
>>> print_dict(d)
{'baz': 'bam', 'foo': 'bar'}
>>> print_dict(s)
{'s1': 'x', 's2': 'y', 's3': 'z', 's4': 'spam'}

>>> pickle.loads(pickle.dumps(x)) == x
True
>>> pickle.loads(pickle.dumps(x, 0)) == x
True
>>> pickle.loads(pickle.dumps(x, 1)) == x
True
>>> pickle.loads(pickle.dumps(x, 2)) == x
True

2.6 Caching Persistent Objects

2.6.1 Creating Objects de novo

Creating ghosts from scratch, as opposed to ghostifying a non-ghost is rather tricky. IPeristent doesn’t really
provide the right interface given that:

• _p_deactivate() and _p_invalidate() are overridable, and could assume that the object’s state is
properly initialized.

• Assigning _p_changed to None just calls _p_deactivate().

• Deleting _p_changed just calls _p_invalidate().

Note: The current cache implementation is intimately tied up with the persistence implementation and has internal
access to the persistence state. The cache implementation can update the persistence state for newly created and
uninitialized objects directly.

The future persistence and cache implementations will be far more decoupled. The persistence implementation will
only manage object state and generate object-usage events. The cache implementation(s) will be responsible for man-
aging persistence-related (meta-)state, such as _p_state, _p_changed, _p_oid, etc. So in that future implementation,

2.6. Caching Persistent Objects 25

persistent Documentation, Release 4.2.2

the cache will be more central to managing object persistence information.

Caches have a new_ghost() method that:

• adds an object to the cache, and

• initializes its persistence data.

>>> import persistent
>>> from persistent.tests.utils import ResettingJar

>>> class C(persistent.Persistent):
... pass

>>> jar = ResettingJar()
>>> cache = persistent.PickleCache(jar, 10, 100)
>>> ob = C.__new__(C)
>>> cache.new_ghost(b'1', ob)

>>> ob._p_changed
>>> ob._p_jar is jar
True
>>> ob._p_oid == b'1'
True

>>> cache.cache_non_ghost_count
0

26 Chapter 2. persistent API documentation

CHAPTER 3

Glossary

activation Moving an object from the GHOST state to the UPTODATE state, load its pickled data from its jar.

data manager The object responsible for storing and loading an object’s pickled data in a backing store. Also called
a jar.

deactivation Moving an object from the UPTODATE state to the GHOST state, discarding its pickled data.

ghost An object whose pickled data has not yet been loaded from its jar. Accessing or mutating any of its attributes
causes that data to be loaded, which is referred to as activation.

invalidation Moving an object from either the UPTODATE state or the CHANGED state to the GHOST state, discarding
its pickled data.

jar Alias for data manager: short for “pickle jar”, because it traditionally holds the pickled data of persistent objects.

object cache An MRU cache for objects associated with a given data manager.

pickled data The serialized data of a persistent object, stored in and retrieved from a backing store by a data manager.

volatile attribute Attributes of a persistent object which are not captured as part of its pickled data. These attributes
thus disappear during deactivation or invalidation.

27

persistent Documentation, Release 4.2.2

28 Chapter 3. Glossary

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

29

persistent Documentation, Release 4.2.2

30 Chapter 4. Indices and tables

Python Module Index

p
persistent.interfaces, 11

31

persistent Documentation, Release 4.2.2

32 Python Module Index

Index

Symbols
__delattr__() (persistent.interfaces.IPersistent method),

14
__delitem__() (persistent.interfaces.IPickleCache

method), 15
__getattribute__() (persistent.interfaces.IPersistent

method), 14
__getitem__() (persistent.interfaces.IPickleCache

method), 15
__getstate__() (persistent.interfaces.IPersistent method),

14
__len__() (persistent.interfaces.IPickleCache method), 16
__reduce__() (persistent.interfaces.IPersistent method),

14
__setattr__() (persistent.interfaces.IPersistent method),

14
__setitem__() (persistent.interfaces.IPickleCache

method), 15
__setstate__() (persistent.interfaces.IPersistent method),

14
_cache (persistent.interfaces.IPersistentDataManager at-

tribute), 15
_p_activate() (persistent.interfaces.IPersistent method),

14
_p_changed (persistent.interfaces.IPersistent attribute),

13
_p_deactivate() (persistent.interfaces.IPersistent method),

14
_p_delattr() (persistent.interfaces.IPersistent method), 15
_p_estimated_size (persistent.interfaces.IPersistent at-

tribute), 14
_p_getattr() (persistent.interfaces.IPersistent method), 14
_p_invalidate() (persistent.interfaces.IPersistent method),

14
_p_jar (persistent.interfaces.IPersistent attribute), 13
_p_mtime (persistent.interfaces.IPersistent attribute), 13
_p_oid (persistent.interfaces.IPersistent attribute), 13
_p_serial (persistent.interfaces.IPersistent attribute), 13
_p_setattr() (persistent.interfaces.IPersistent method), 14

_p_state (persistent.interfaces.IPersistent attribute), 13

A
activation, 27
append() (persistent.list.PersistentList method), 18

C
cache_data (persistent.interfaces.IPickleCache attribute),

17
cache_drain_resistance (persis-

tent.interfaces.IPickleCache attribute), 17
cache_klass_count (persistent.interfaces.IPickleCache at-

tribute), 17
cache_non_ghost_count (persis-

tent.interfaces.IPickleCache attribute), 17
cache_size (persistent.interfaces.IPickleCache attribute),

17

D
data manager, 27
deactivation, 27
debug_info() (persistent.interfaces.IPickleCache

method), 17

E
extend() (persistent.list.PersistentList method), 18

F
full_sweep() (persistent.interfaces.IPickleCache method),

16

G
get() (persistent.interfaces.IPickleCache method), 16
ghost, 27

I
incrgc() (persistent.interfaces.IPickleCache method), 16
insert() (persistent.list.PersistentList method), 18

33

persistent Documentation, Release 4.2.2

invalidate() (persistent.interfaces.IPickleCache method),
17

invalidation, 27
IPersistent (interface in persistent.interfaces), 11
IPersistentDataManager (interface in persis-

tent.interfaces), 15
IPickleCache (interface in persistent.interfaces), 15
items() (persistent.interfaces.IPickleCache method), 16

J
jar, 27

K
klass_items() (persistent.interfaces.IPickleCache

method), 16

L
lru_items() (persistent.interfaces.IPickleCache method),

16

M
minimize() (persistent.interfaces.IPickleCache method),

16

N
new_ghost() (persistent.interfaces.IPickleCache method),

16

O
object cache, 27
oldstate() (persistent.interfaces.IPersistentDataManager

method), 15

P
Persistent (class in persistent), 17
persistent.interfaces (module), 11
PersistentList (class in persistent.list), 17
PersistentMapping (class in persistent.mapping), 17
pickled data, 27
pop() (persistent.list.PersistentList method), 18

R
register() (persistent.interfaces.IPersistentDataManager

method), 15
remove() (persistent.list.PersistentList method), 18
reverse() (persistent.list.PersistentList method), 18
ringlen() (persistent.interfaces.IPickleCache method), 16

S
setstate() (persistent.interfaces.IPersistentDataManager

method), 15

U
update_object_size_estimation() (persis-

tent.interfaces.IPickleCache method), 17

V
volatile attribute, 27

34 Index

	Using persistent in your application
	Inheriting from persistent.Persistent
	Relationship to a Data Manager and its Cache
	Persistent objects without a Data Manager
	Associating an Object with a Data Manager
	Explicitly controlling _p_state
	The pickling protocol
	Estimated Object Size
	Overriding the attribute protocol
	Implementing _p_repr

	persistent API documentation
	persistent.interfaces
	Implementations
	Persistent Collections
	Customizing Attribute Access
	Pickling Persistent Objects
	Caching Persistent Objects

	Glossary
	Indices and tables
	Python Module Index

