
Peng3dnet Documentation
Release 0.2.0

notna

May 12, 2022

Contents

1 peng3dnet - Peng3dnet Main Package 3
1.1 peng3dnet.net - Core Networking Classes . 3
1.2 peng3dnet.constants - Constants . 11
1.3 peng3dnet.conntypes - Connection Types . 13
1.4 peng3dnet.packet - Packet Classes . 14
1.5 peng3dnet.packet.internal - Internal Packet Classes . 16
1.6 peng3dnet.ext - Extensions . 17
1.7 peng3dnet.ext.ping - One-off data retrieval protocol extension 17
1.8 peng3dnet.registry - Smart Registry Class . 19
1.9 peng3dnet.util - Utility functions . 20
1.10 peng3dnet.errors - Exception Classes . 20
1.11 peng3dnet.version - Version Information . 21

2 Configuration Options for peng3dnet 23
2.1 net.server.* - Generic Server-side config options . 23
2.2 net.client.* - Generic Client-side config options . 23
2.3 net.compress.* - Compression settings . 24
2.4 net.encrypt.* - Encryption settings . 24
2.5 net.ssl.* - SSL settings . 24
2.6 net.events.* - Event settings . 25
2.7 net.debug.* - Internal Debug Flags . 25
2.8 net.registry.* - Registry Configuration . 25

3 Events used by peng3dnet 27
3.1 Server-Side Events . 27
3.2 Client-Side Events . 29

4 Indices and tables 31

Python Module Index 33

Index 35

i

ii

Peng3dnet Documentation, Release 0.2.0

Contents:

Contents 1

http://peng3dnet.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/peng3dnet

Peng3dnet Documentation, Release 0.2.0

2 Contents

CHAPTER 1

peng3dnet - Peng3dnet Main Package

This package represents the root package of the peng3dnet networking library.

Most classes defined in submodules are also available at the package level, e.g. peng3dnet.net.Server() will
also be available as peng3dnet.Server().

*-importing submodules and packages should generally be safe, as all modules use the __all__ variable to explicitly
define their exported classes.

1.1 peng3dnet.net - Core Networking Classes

peng3dnet.net.STRUCT_HEADER = <Struct object>
struct.Struct instance used for rapid encoding and decoding of header data.

See also:

See peng3dnet.constants.STRUCT_FORMAT_HEADER for more information.

peng3dnet.net.STRUCT_LENGTH32 = <Struct object>
struct.Struct instance used for rapid encoding and decoding of the length prefix.

See also:

See peng3dnet.constants.STRUCT_FORMAT_LENGTH32 for more information.

class peng3dnet.net.Server(peng=None, addr=None, clientcls=None, cfg=None)
Server class representing the server side of the client-server relationship.

Usually, a server will be able to serve many clients simultaneously without problems. This is achieved using the
selectors standard library module, which internally uses select or similiar techniques.

If given, peng should be an instance of peng3d.peng.Peng and will be used for sending events and the
configuration system. Note that without a valid peng parameter, the event system will not work and a custom
config stack will be created. If a peng parameter is given, its config stack will be adapted and the event system
enabled.

See also:

3

https://docs.python.org/3/library/struct.html#struct.Struct
https://docs.python.org/3/library/struct.html#struct.Struct
https://docs.python.org/3/library/selectors.html#module-selectors
https://docs.python.org/3/library/select.html#module-select
https://peng3d.readthedocs.io/en/latest/api/peng3d.peng.html#peng3d.peng.Peng

Peng3dnet Documentation, Release 0.2.0

See net.events.enable and Events used by peng3dnet for more information on the event system.

addr, if given, should be a value parseable by peng3dnet.util.normalize_addr_socketstyle().
If addr is not given, first net.server.addr is tried, then net.server.addr.host and net.
server.addr.port. If any given address is missing an explicitly specified port, net.server.addr.
port is supplemented.

clientcls may be used to override the class used for creating new client-on-server objects. Defaults to
ClientOnServer.

cfg may be used to override initial configuration values and should be a dictionary.

addConnType(t, obj)
Adds a connection type to the internal registry.

t should be the string name of the connection type.

obj should be an instance of a subclass of peng3dnet.conntypes.ConnectionType().

Trying to register a name multiple times will cause an AlreadyRegisteredError.

bind()
Creates and binds the socket used for listening for new connections.

Repeated calls of this method will be ignored.

If SSL is enabled, an SSL context will be created and the socket wrapped according to the SSL settings.

See also:

See net.ssl.enabled for more information about the SSL configuration.

Currently, the socket will be configured to listen for up to 100 connection requests in parallel.

After binding of the socket, the event peng3dnet:server.bind will be sent.

close_connection(cid, reason=None)
Closes the connection to the given peer due to the optional reason.

cid should be the Client ID number.

reason may be a string describing the reason.

genCID()
Generates a client ID number.

These IDs are guaranteed to be unique to the instance that generated them.

Usually, these will be integers that simply count up and are not meant to be cryptographically secure.

initialize()
Initializes internal registries used during runtime.

Calling this method repeatedly will be ignored.

Currently, this registers packets and connection types. Additionally, the peng3dnet:server.
initialize event is sent.

Subclasses and Mix-ins may hook into this method via definition of methods named _reg_packets_*
or _reg_conntypes_*with the star being an arbitrary string. The method may not take any arguments.

interrupt()
Wakes up the main loop by sending a special message to an internal socket.

This forces the main loop to iterate once and check that the system is still running.

Also sends the peng3dnet:server.interrupt event.

4 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

join(timeout=None)
Waits for all spawned threads to finish.

If timeout is given, it indicates the total amount of time spent waiting.

If a thread has not been started yet, it will be skipped and not waited for.

process(wait=False, timeout=None)
Processes all packets awaiting processing.

If wait is true, this function will wait up to timeout seconds for new data to arrive.

It will then process all packets in the queue, decoding them and then calling the appropriate event handlers.
This method assumes all messages are packed with msgpack.

If the connection type allows it, event handlers will be called and the peng3dnet:server.
connection.recv event is sent.

This method returns the number of packets processed.

process_async()
Processes packets asynchronously.

Internally calls process_forever() in a separate daemon thread named peng3dnet process
Thread.

process_forever()
Processes packets in a blocking manner.

Note that this method is currently not interruptable and thus uses short timeouts of about 10ms, causing a
slight delay in stopping this loop.

process_single_packet(client)
Called when there should be enough data to process a single packet.

client is an instance of ClientOnServer representing the client.

Currently parses a single packet including length prefix and calls receive_packet() with the packet
data.

receive_data(data, cid)
Called when new raw data has been read from a socket.

Note that the given data may contain only parts of a packet or even multiple packets.

cid is the integer ID number of the client the data was received from.

By default, the received data is stored in a buffer until enough data is available to process a packet, then
process_single_packet() is called.

receive_packet(data, cid)
Called when a full packet has been received.

data is the raw packet data without length prefix.

cid is the integer ID number of the client.

Currently, this puts the data in a queue to be processed further by process().

register_packet(name, obj, n=None)
Registers a new packet with the internal registry.

name should be a string of format namespace:category.subcategory.name where category
may be repeated.

obj should be an instance of a subclass of peng3dnet.packet.Packet().

1.1. peng3dnet.net - Core Networking Classes 5

Peng3dnet Documentation, Release 0.2.0

n may be optionally used to force a packet to use a specific packet ID, otherwise one will be generated.

runAsync(selector=<class ’selectors.EpollSelector’>)
Runs the server main loop in a seperate thread.

selector may be changed to override the selector used for smart waiting.

This method does not block and should return immediately.

The newly created thread will be named peng3dnet Server Thread and is a daemon thread, i.e. it
will not keep the program alive.

runBlocking(selector=<class ’selectors.EpollSelector’>)
Runs the server main loop in a blocking manner.

selector may be changed to override the selector used for smart waiting.

This method blocks until stop() is called.

sendEvent(event, data=None)
Helper method used to send events.

Checks if the event system is enabled, adds the peng and server data attributes and then sends it.

send_message(ptype, data, cid)
Sends a message to the specified peer.

ptype should be a valid packet type, e.g. either an ID, name or object.

data should be the data to send to the peer.

cid should be the Client ID number to send the message to.

Note that all data encoding will be done synchronously and may cause this method to not return immedi-
ately. The packet may also be encrypted and compressed, if applicable.

Additionally, the peng3dnet:server.connection.send event is sent if the connection type al-
lows it.

shutdown(join=True, timeout=0, reason=’servershutdown’)
Shuts down the server, disconnecting all clients.

If join is true, this method will block until all clients are disconnected or timeout seconds have passed.
If timeout is 0, it will be ignored.

reason will be used as the closing reason and transmitted to all clients.

After these messages have been sent, stop() is called and the peng3dnet:server.shutdown
event is sent.

stop()
Stops the running server main loop.

Will set an internal flag, then sends the event peng3dnet:server.stop and calls interrupt() to
force the close.

Note that this will not close open connections properly, use shutdown() instead.

class peng3dnet.net.ClientOnServer(server, conn, addr, cid)
Class representing a client on the server.

This serves mainly as a data structure for storing the state of a specific connection.

This class is not intended to be created manually.

server is the instance of Server that created this object.

6 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

conn is the socket that should be used for communication with this client.

addr is the address of this client.

cid is the unique Client ID assigned to this client.

close(reason=None)
Called to close the connection to this client.

This method is not an event handler, use on_close() instead.

on_close(reason=None)
Called when the connection has been closed.

reason is the reason sent either by the peer or passed by the caller of Server.
close_connection().

on_connect()
Sent once a connection has been established.

Note that at the time this method is called the handshake may not be finished, see
on_handshake_complete() instead.

on_handshake_complete()
Called when the handshake has been completed.

The default implementation sends the peng3dnet:server.connection.handshakecomplete
event and changes the connection state to STATE_ACTIVE.

May be overridden by subclasses.

on_receive(ptype, msg)
Called when a packet has been received.

ptype will be an integer or string representing the packet type.

msg will be a Python object decoded from the raw message via messagepack.

on_send(ptype, msg)
Called when a packet has been sent.

ptype will be the packet type in either string, integer or object form.

msg will be the Python object that has been encoded and sent via messagepack.

class peng3dnet.net.Client(peng=None, addr=None, cfg=None, conntype=’classic’)
Client class representing the client side of the client-server relationship.

A client can only be connected to a single server during its lifetime, recycling of client instances is not supported.

If given, peng should be an instance of peng3d.peng.Peng and will be used for sending events and the
configuration system. Note that without a valid peng parameter, the event system will not work and a custom
config stack will be created. If a peng parameter is given, its config stack will be adapted and the event system
enabled.

See also:

See net.events.enable and Events used by peng3dnet for more information on the event system.

addr, if given, should be a value parseable by peng3dnet.util.normalize_addr_socketstyle().
If addr is not given, first net.client.addr is tried, then net.client.addr.host and net.
client.addr.port. If any given address is missing an explicitly specified port, net.client.addr.
port is supplemented.

cfg may be used to override initial configuration values and should be a dictionary.

1.1. peng3dnet.net - Core Networking Classes 7

https://peng3d.readthedocs.io/en/latest/api/peng3d.peng.html#peng3d.peng.Peng

Peng3dnet Documentation, Release 0.2.0

Optionally, the connection type may be specified via conntype, which may be set to a string identifying
the type of the connection. This should usually be CONNTYPE_CLASSIC or one of the other CONNTYPE_*
constants. Note that the connection type specified must also be registered via addConnType(), except for the
built-in connection types.

addConnType(t, obj)
Adds a connection type to the internal registry.

t should be the string name of the connection type.

obj should be an instance of a subclass of peng3dnet.conntypes.ConnectionType().

Trying to register a name multiple times will cause an AlreadyRegisteredError.

close(reason=None)
Called to close the connection to the server.

This method is not an event handler, use on_close() instead.

Also sends the event peng3dnet:client.close.

close_connection(cid=None, reason=None)
Closes the connection to the server due to the optional reason.

cid is a dummy value used for compatibility with server applications.

reason may be a string describing the reason.

connect()
Connects the client with a server.

Note that the server must have been specified before calling this method via either the addr argument to
the initializer or any of the net.client.addr config values.

Repeated calls of this method will be ignored.

If SSL is enabled, this method will also initialize the SSL Context and load the certificates.

After the connection has been made, the peng3dnet.client.connect event is sent.

initialize()
Initializes internal registries used during runtime.

Calling this method repeatedly will be ignored.

Currently, this registers packets and connection types. Additionally, the peng3dnet:client.
initialize event is sent.

Subclasses and Mix-ins may hook into this method via definition of methods named _reg_packets_*
or _reg_conntypes_* with the star being an arbitrary string. The methods may not take any argu-
ments.

interrupt()
Wakes up the main loop by sending a special message to an internal socket.

This forces the main loop to iterate once and check that the system is still running.

Also sends the peng3dnet:client.interrupt event.

join(timeout=None)
Waits for all spawned threads to finish.

If timeout is given, it indicates the total amount of time spent waiting.

If a thread has not been started yet, it will be skipped and not waited for.

8 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

on_close(reason=None)
Event handler called during connection shutdown.

It may or may not be possible to send data over the connection within this method, depending on various
factors.

on_connect()
Event handler called once a connection has been established.

Note that usually the handshake will still be in progress while this method is called.

See also:

See the on_handshake_complete() event handler for a better indicator when data can be sent.

on_handshake_complete()
Callback called once the handshake has been completed.

The default implementation sends the peng3dnet:client.handshakecomplete event and sets
the connection state to STATE_ACTIVE.

on_receive(ptype, msg)
Event handler called if data is received from the peer.

on_send(ptype, msg)
Event handler called if data is sent to the peer.

process(wait=False, timeout=None)
Processes all packets awaiting processing.

If wait is true, this function will wait up to timeout seconds for new data to arrive.

It will then process all packets in the queue, decoding them and then calling the appropriate event handlers.
This method assumes all messages are packed with msgpack.

If the connection type allows it, event handlers will be called and the peng3dnet:client.recv event
is sent.

This method returns the number of packets processed.

process_async()
Processes packets asynchronously.

Internally calls process_forever() in a separate daemon thread named peng3dnet process
Thread.

process_forever()
Processes packets in a blocking manner.

Note that this method is currently not interruptable and thus uses short timeouts of about 10ms, causing a
slight delay in stopping this loop.

process_single_packet(client=None)
Called when there should be enough data to process a single packet.

client is a dummy value used for compatibilizy with server applications.

Currently parses a single packet including length prefix and calls receive_packet() with the packet
data.

pump_write_buffer()
Tries to send as much of the data in the internal buffer as possible.

Note that depending on various factors, not all data may be sent at once. It is possible that sent data will
be fragmented at arbitrary points.

1.1. peng3dnet.net - Core Networking Classes 9

Peng3dnet Documentation, Release 0.2.0

If an exception occurs while sending the data, it will be ignored and the error printed to the console.

receive_data(data, cid=None)
Called when new raw data has been read from the socket.

Note that the given data may contain only parts of a packet or even multiple packets.

cid is a dummy value used for compatibility with server applications.

By default, the received data is stored in a buffer until enough data is available to process a packet, then
process_single_packet() is called.

receive_packet(data, cid=None)
Called when a full packet has been received.

data is the raw packet data without length prefix.

cid is a dummy value used for compatibility with server applications.

Currently, this puts the data in a queue to be processed further by process().

register_packet(name, obj, n=None)
Registers a new packet with the internal registry.

name should be a string of format namespace:category.subcategory.name where category
may be repeated.

obj should be an instance of a subclass of peng3dnet.packet.Packet().

n may be optionally used to force a packet to use a specific packet ID, otherwise one will be generated.

runAsync(selector=<class ’selectors.EpollSelector’>)
Runs the client main loop in a seperate thread.

selector may be changed to override the selector used for smart waiting.

This method does not block and should return immediately.

The newly created thread will be named peng3dnet Client Thread and is a daemon thread, i.e. it
will not keep the program alive.

runBlocking(selector=<class ’selectors.EpollSelector’>)
Runs the client main loop in a blocking manner.

selector may be changed to override the selector used for smart waiting.

This method blocks until stop() is called.

sendEvent(event, data)
Helper method used to send events.

Checks if the event system is enabled, adds the peng and client data attributes and then sends it.

send_message(ptype, data, cid=None)
Sends a message to the server.

ptype should be a valid packet type, e.g. either an ID, name or object.

data should be the data to send to the server.

cid will be ignored, available for compatibility with server applications.

Note that all data encoding will be done synchronously and may cause this method to not return immedi-
ately. The packet may also be encrypted and compressed, if applicable.

Additionally, the peng3dnet:client.send event is sent if the connection type allows it.

10 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

stop()
Stops the running client main loop.

Will set an internal flag, then sends the event peng3dnet:client.stop and calls interrupt() to
force the close.

Note that this will not close open connections properly, call close_connection() before calling this
method.

wait_for_close(timeout=None)
Waits up to timeout seconds for the connection to close.

Returns immediately if the connection is already closed.

wait_for_connection(timeout=None)
Waits up to timeout seconds for the connection to be established.

Returns immediately if there is an active connection.

1.2 peng3dnet.constants - Constants

This module is designed to be imported via from peng3dnet.constants import *without any side-effects.

peng3dnet.constants.MAX_PACKETLENGTH = 4294967295
Constant equal to the maximum packet length representable by the length prefix in bytes.

Currently equals roughly 4.3GB or 2**32-1 Bytes.

peng3dnet.constants.STRUCT_FORMAT_LENGTH32 = '!I'
Format of the struct used for the length prefix.

This struct should be able to store a single integer value.

Note that changing this format string will break compatibility with non-modified peers.

For performance reasons, peng3dnet.net.STRUCT_LENGTH32 should be used during runtime instead.

peng3dnet.constants.STRUCT_FORMAT_HEADER = '!IH'
Format of the struct used for the packet header.

This struct should be able to store a packet id encoded as an integer and a bitfield containing flags.

Note that changing this format string will break compatibility with non-modified peers.

For performance reasons, peng3dnet.net.STRUCT_HEADER should be used during runtime instead.

peng3dnet.constants.STATE_INIT = 0
Default connection state of every new connection.

peng3dnet.constants.STATE_HANDSHAKE_WAIT1 = 1
Connection state symbolizing the peer has to wait until its peer sends the required packet.

This connection state is part of the internal handshake and should not be used manually.

peng3dnet.constants.STATE_HANDSHAKE_WAIT2 = 2
Currently unused connection state.

peng3dnet.constants.STATE_WAITTYPE = 3
Active connection state if the server is waiting for the client to send the connection type.

This connection state is part of the internal handshake and should not be used manually.

1.2. peng3dnet.constants - Constants 11

Peng3dnet Documentation, Release 0.2.0

peng3dnet.constants.STATE_HELLOWAIT = 4
Connection state used by the client to wait for the server to send a HelloPacket.

This connection state is part of the internal handshake and should not be used manually.

peng3dnet.constants.STATE_LOGGEDIN = 65
Generic state indicating an active connection and successful authentication.

peng3dnet.constants.STATE_ACTIVE = 64
Generic state indicating an active connection and successful handshake.

peng3dnet.constants.STATE_CLOSED = 128
Internal state indicating a closed connection that may be removed completely.

peng3dnet.constants.MODE_NOTSET = 0
Placeholder mode used to indicate that the mode has not yet been set.

peng3dnet.constants.MODE_CLOSED = 1
Internal mode used to indicate that the connection is not active.

peng3dnet.constants.MODE_PING = 2
Old internal mode used to indicate that a ping request is being made.

peng3dnet.constants.MODE_PLAY = 3
Generic mode used to indicate that the connection is in play mode.

The exact definition of this mode is up to the application.

peng3dnet.constants.MODE_CHAT = 4
Generic mode used to indicate that the connection is in chat mode.

peng3dnet.constants.CONNTYPE_NOTSET
Placeholder connection type.

Note that this connection type will cause errors if used, use CONNTYPE_CLASSIC instead.

peng3dnet.constants.CONNTYPE_CLASSIC
Classic connection type.

See also:

See peng3dnet.conntypes.ClassicConnectionType for more information.

peng3dnet.constants.CONNTYPE_PING = 'ping'
Ping request connection type.

peng3dnet.constants.FLAG_COMPRESSED = 1
Flag bit set if the packet is compressed.

peng3dnet.constants.FLAG_ENCRYPTED_AES = 2
Flag bit set if the packet is AES-Encrypted.

Note that this flag is currently not implemented.

peng3dnet.constants.SIDE_CLIENT = 0
Constant used to indicate the client side of the server-client relationship.

peng3dnet.constants.SIDE_SERVER = 1
Constant used to indicate the server side of the server-client relationship.

peng3dnet.constants.SSLSEC_NONE = 0
SSL Security level indicating that there is no SSL tunneling active.

Default SSL Security level.

12 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

peng3dnet.constants.SSLSEC_WRAPPED = 1
SSL Security level indicating that the socket has been wrapped in a SSLSocket.

Note that this usually isn’t more secure compared to SSLSEC_NONE.

peng3dnet.constants.SSLSEC_ENCRYPTED = 2
SSL Security level indicating that the SSL Tunnel uses encryption.

Only encryption enabled by the default in the standard library module ssl is regarded as secure.

peng3dnet.constants.SSLSEC_SERVERAUTH = 3
SSL Security level indicating that the server certificate is authentic and valid.

This includes hostname verification.

peng3dnet.constants.SSLSEC_BOTHAUTH = 4
SSL Security level indicating that both server and client certificate are authentic and valid.

This includes hostname verification.

peng3dnet.constants.DEFAULT_CONFIG
Default configuration values.

This dictionary is used to look up default config values.

See also:

See Configuration Options for peng3dnet for a list of all config options.

1.3 peng3dnet.conntypes - Connection Types

class peng3dnet.conntypes.ConnectionType(peer)
Class representing a Connection Type implementation.

Connection Types are identified by their name, usually a lowercase string.

See Client() for how to specify the connection type used.

To use a custom connection type, it must be registered on both server and client via Server.
addConnType() or Client.addConnType(), respectively.

peer is an instance of either Client() or Server().

Note that a single instance of this class will be shared between all connections of the type implemented by this
class. Distinguishing single connections is possible via the cid parameter given to most methods. On the client
side, this parameter will always be None.

init(cid)
Called when the SetTypePacket() is received on the server side, or sent on the client side.

Detecting which side of the connection is managed can be done by checking the cid parameter, if it is
None, the client side is represented, else it represents the ID of the connected client.

receive(msg, pid, flags, cid)
Called whenever a packet is received via connection of the type represented by this class.

msg is the already decoded message or payload.

pid is the ID of the packet type.

flags is the flags portion of the header, containing a bitfield with various internal flags.

cid is the ID of the connected peer, if it is None, the peer is a server.

1.3. peng3dnet.conntypes - Connection Types 13

https://docs.python.org/3/library/ssl.html#module-ssl

Peng3dnet Documentation, Release 0.2.0

If the return value of this method equals to True, further processing of the packet will be prevented.

send(data, pid, cid)
Called whenever a packet has been sent via a connection of the type represented by this class.

data is the fully encoded data that has been sent.

pid is the packet type, as received by either Server.send_message() or Client.
send_message().

cid is the ID of the connected peer, it if is None, the peer is a server.

If the return value of this method equals to True, no further event handlers will be called.

class peng3dnet.conntypes.ClassicConnectionType(peer)
Classic Connection Type representing a typical connection.

Currently adds no further processing to packets and starts a handshake by sending a HandshakePacket()
from the server to the client.

The handshake allows the client to copy the registry of the server, preventing bugs with mismatching packet
IDs.

1.4 peng3dnet.packet - Packet Classes

class peng3dnet.packet.Packet(reg, peer, obj=None)
Class representing a packet type.

reg is an instance of PacketRegistry shared between all packet types registered with it.

peer is the peer this packet type belongs to.

Todo: Find out what obj does. . . Seems to be an unused artifact from a test.

_receive(msg, cid=None)
Internal handler called whenever a packet of this type is received.

By default, this method passes its arguments through to receive().

May be overridden by subclasses to prevent further processing.

_send(msg, cid=None)
Internal handler called whenever a packet of this type has been sent.

By default, this method passes its arguments through to send().

May be overridden by subclasses to prevent further processing.

receive(msg, cid=None)
Event handler called when a packet of this type is received.

Note that this method is usually called by _receive(), which may also decide to silently ignore a
packet.

msg is the fully decoded message or payload, usually a dictionary.

cid is the ID of the peer that sent the message. If this is None, the packet was received on the client side,
else it equals the client ID of the client.

14 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

send(msg, cid=None)
Event handler called when a packet of this type has been sent.

Note that this method is usually called by _send(), which may also decide to silently ignore a packet.

msg is the already encoded message.

cid is the ID of the peer that should receive the message. If this is None, the packet was sent on the client
side, else it equals the client ID of the recipient.

class peng3dnet.packet.SmartPacket(reg, peer, obj=None)
Smart packet type allowing for various assertions.

This class is not intended to be used directly, use subclasses and override the class attributes for customization.

This class overrides the _receive() and _send() methods to check that the connection is in a valid state
for this packet.

conntype = None
Declares the required connection type for this packet to be sent or retrieved.

If this is None, this check will be skipped.

Else, if the specified value does not match the actual value, the action specified in invalid_action is
executed.

invalid_action = 'ignore'
Specifies what to do if one of the conditions specified is not fulfilled.

Can be either ignore or close. A value of ignore causes this packet to be ignored. Note that due to
technical reasons, the packet may still be processed by other mechanisms. In contrast, a value of close
will cause the connection to be closed with the reason smartpacketinvalid.

If an invalid value is used, an InvalidSmartPacketActionError will be raised and the packet
ignored.

min_sslsec_level = 0
Declares the minimum level of SSL encryption required for this packet to be sent.

This is not checked on receival of a message, only during sending of the message.

Possible values are any of the SSLSEC_* constants.

If the actual SSL security level is lower than the required level, the action specified in invalid_action
is executed.

mode = None
Specifies the connection mode required for this packet to be sent or received.

If this is None, this check will be skipped.

Else, if the specified connection mode does not exactly match the actual connection mode, the action
specified in invalid_action is executed.

side = None
Specifies the side of the connection this packet can be received.

If this is None, it can be received on both ends of a connection. If this is SIDE_SERVER or
SIDE_CLIENT, it can be received on the server or client side, respectively.

Note that packets that can only be received on the client side can only be sent from the server side, and
vice versa.

In the case that this condition does not match, the action specified in invalid_action is executed.

1.4. peng3dnet.packet - Packet Classes 15

Peng3dnet Documentation, Release 0.2.0

state = 64
Specifies the connection state required for the packet, both on send and receive.

If the state does not match exactly, the action specified in invalid_action is executed.

class peng3dnet.packet.PrintPacket(reg, peer, obj=None)
Simple dummy packet class that prints any message it receives.

If a packet is received on the server, the client ID of the client is also printed.

1.5 peng3dnet.packet.internal - Internal Packet Classes

This module contains various internal packets not intended for direct use.

These packets will be registered by the default implementations of client and server classes with names starting with
peng3dnet:. Any other packets whose name starts with peng3dnet: may be processed incorrectly.

Additionally, packets within this module usually use reserved and static packet IDs below 16.

1.5.1 Handshake

Note that if a custom connection type is used, any steps after step 3. may be left out.

1. Server sends a HelloPacket with version information

2. Client responds with SetTypePacket containing connection type

3. Server stores connection type and sends HandshakePacket containing version and registry

4. Client updates own registry based on packet and sends HandshakeAcceptPacket

5. Server receives packet and calls event handler to signal a successful handshake

1.5.2 Connection shutdown

Note that this only applies to clean shutdowns caused by close_connection() or its client-side equivalent.

1. close_connection() is called

2. CloseConnectionPacket is sent to peer and internal flag is set

3. After packet has been fully sent, event handlers are called

4. Peer receives packet and calls event handlers

5. Server cleans up internal data structures

class peng3dnet.packet.internal.HelloPacket(reg, peer, obj=None)
Internal packet sent by the server to initialize a handshake.

This is usually the first packet transmitted by every connection. It contains version information for the client to
check.

If the client does not support the given protocol version, the connection must be aborted with the reason
protoversionmismatch.

class peng3dnet.packet.internal.SetTypePacket(reg, peer, obj=None)
Internal packet sent by the client to indicate the connection type.

If the server does not recognize the connection type, the connection must be aborted with the reason
unknownconntype.

16 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

If no connection type is supplied, classic is substituted.

class peng3dnet.packet.internal.HandshakePacket(reg, peer, obj=None)
Internal packet sent by the server to synchronize the registry.

Additionally, the version information is sent and checked.

If the net.registry.autosync config value is true, the registry sent by the server will be adapted to the
client.

Note that only IDs are synced to names, objects will not be affected.

class peng3dnet.packet.internal.HandshakeAcceptPacket(reg, peer, obj=None)
Internal packet sent by the client to indicate a successful handshake.

Once this packet has been sent or received, the connection is established and can be used.

class peng3dnet.packet.internal.CloseConnectionPacket(reg, peer, obj=None)
Internal packet to be sent to indicate that a connection is about to be closed.

Usually includes a reason in the reason field.

This packet can be sent at any time, regardless of connection state or type.

1.6 peng3dnet.ext - Extensions

1.7 peng3dnet.ext.ping - One-off data retrieval protocol extension

The ping extension was designed to allow a client to check on various values the server provides without much effort.
It allows the client to check on metrics such as latency and additional values able to be customized by the server.

This extension is named after the UNIX ping utility, though it can do much more than just check on availability and
latency.

class peng3dnet.ext.ping.PingConnectionType(peer)
Connection type to be used by ping connections.

This connection type prevents any synchronization of the registry to allow clients only supporting a subset of
the peng3dnet protocol to still ping a server.

Additonally, conventional processing of packets will be disabled by this connection type, making it uneccessary
to register packets with the client or server.

getPingData(msg, cid=None)
Overridable method to create a ping response.

msg is the ping query, as received from the client.

cid is the ID of the client.

Called only on the server side.

init(cid)
Called whenever a new ping connection is established.

On the client, this calls PingableClientMixin._ping() and updates the connection state, while
on the server only the connection state is updated.

receive(msg, pid, flags, cid)
Called whenever a packet is received via this connection type.

Handles any ping requests and pong answers and always returns True to skip any further processing.

1.6. peng3dnet.ext - Extensions 17

Peng3dnet Documentation, Release 0.2.0

send(msg, pid, cid)
Called whenever a packet is sent via this connection type.

class peng3dnet.ext.ping.PingableClientMixin
Mixin for Client classes enabling support for pinging the server.

Currently automatically adds the ping connection type.

setPingData(d)
Sets the data to add to any ping responses.

Repeated calls of this method will overwrite previous data.

wait_for_pong(timeout=None)
Waits up to timeout seconds for a ping response to arrive.

If a response has already been received, this method returns immediately.

If the ping was successful, the received message is returned.

class peng3dnet.ext.ping.PingableServerMixin
Mixin for Server classes enabling support for pinging the server.

Currently automatically adds the ping connection type.

getPingData(msg, cid)
Overrideable method called to extend the default dictionary returned upon a ping request.

May be overriden to add dynamic data like user count or similiar information.

msg is the original message as received from the client.

cid is the client ID that made this request.

pingdata = {}
Overrideable dictionary used to extend the default dictionary returned upon a ping request.

May be overriden to add static data like server name or similiar information.

peng3dnet.ext.ping.WRITEBACK = True
Constant allowing to configure if the received ping message should be transmitted back to the client.

If there should ever be any security concerns regarding that feature, this flag can simply be flipped.

peng3dnet.ext.ping.pingServer(peng=None, addr=None, cfg=None, data=None, clientcls=<class
’peng3dnet.ext.ping._PingClient’>, timeout=10.0)

Pings the specified server.

Internally, this creates a client that supports pinging and listens for any data received back.

peng may be optionally used to replace the argument of the same name to Client().

addr specifies the address of the server to ping.

cfg may be used to override the configuration for the client, e.g. SSL settings.

data is the data sent to the server. Note that the time key will be overridden for measuring the latency.

clientcls may be used to override the client class used.

timeout is maximum amount of time to wait for a response.

The data returned will be the data received from the server, except for additional information that has been
added. Currently, the recvtime key contains the timestamp that the response was received and the delay
key contains the total roundtrip time in seconds.

18 Chapter 1. peng3dnet - Peng3dnet Main Package

Peng3dnet Documentation, Release 0.2.0

1.8 peng3dnet.registry - Smart Registry Class

class peng3dnet.registry.BaseRegistry(objtype=None)
Basic registry class.

Supports smart conversions between the integer, string and generic object representation of a registered entity.

Optionally allows for automatic and threadsafe integer ID generation.

Requires bidict to be installed and available.

objtype may be used to override the class attribute of the same name per instance.

Instances of this class also support dictionary-style access to their data, e.g. reg[val] will always return the
object representation of the value, see getObj() for details.

deleteObj(obj)
Removes an object from the internal registry.

obj may be any of the three representations of an object.

getAll(obj)
Returns a three-tuple of form (getObj(obj),getID(obj),getName(obj)).

getID(obj)
Converts the given value to its integer representation.

This method accepts either strings, integers or objects of type objtype.

getInt() may be used as an alias to this method.

getName(obj)
Converts the given value to its string representation.

This method accepts either strings, integers or objects of type objtype.

getStr() may be used as an alias to this method.

getNewID()
Generates a new ID.

Currently, all IDs are increasing from a fixed starting point, by default 64.

getObj(obj)
Converts the given value to its object representation.

This method accepts either strings, integers or objects of type objtype.

objtype
alias of builtins.object

register(obj, name, n=None)
Registers a relation between an object, its string representation and its integer representation.

If n is not given, getNewID() will be used to generate it.

Trying to register an already registered object may cause various kinds of corruptions on internal storages.

Trying to register an object that is not of the type specified in objtype will result in an TypeError.

registerObject(obj, n=None)
Same as register(), but extracts the string representation from the object’s name attribute.

class peng3dnet.registry.PacketRegistry(objtype=None)
Subclass of BaseRegistry customized for storing Packet instances and instances of subclasses.

1.8. peng3dnet.registry - Smart Registry Class 19

https://docs.python.org/3/library/exceptions.html#TypeError

Peng3dnet Documentation, Release 0.2.0

objtype
alias of peng3dnet.packet.Packet

1.9 peng3dnet.util - Utility functions

peng3dnet.util.normalize_addr_formatted(addr)
Normalizes the given address to a string like 127.0.0.1.

This method is currently not implemented.

peng3dnet.util.normalize_addr_socketstyle(addr, default_port=8080)
Normalizes the given address to a 2-tuple as accepted by the socket module.

Currently accepts a 2-tuple and IPv4 addresses in string format.

If the address does not contain a port, the default_port will be used.

Note that this function will pass through any exceptions raised by parsing functions it calls.

peng3dnet.util.parse_address(addr, default_port=8080)
Parses an IP Address into a tuple of (addr,port).

If the address does not contain an explicitly specified port, the value given with default_port is used.

Note that currently only IPv4 addresses are supported, but IPv6 support may be added in the future. If an IPv6
Address is detected, a UnsupportedAddressError will be raised.

Additionally, the port returned is checked for plausibility, e.g. an integer in range 0-65535. If the port is invalid
in any way, a InvalidPortError will be raised.

1.10 peng3dnet.errors - Exception Classes

This module contains the various exception classes used by peng3dnet.

Most methods and functions that use these exceptions will have a link to the appropriate exception in their documen-
tation.

exception peng3dnet.errors.InvalidAddressError
Indicates that a given address is not valid and thus cannot be used.

exception peng3dnet.errors.InvalidPortError
Indicates that the port supplied or parsed is not valid.

exception peng3dnet.errors.InvalidHostError
Indicates that the host supplied or parsed is not valid or applicable.

exception peng3dnet.errors.UnsupportedAddressError
Indicates that the address supplied is not supported, but may still be valid.

exception peng3dnet.errors.InvalidSmartPacketActionError
Raised if the invalid_action of a SmartPacket is not valid.

exception peng3dnet.errors.TimedOutError
Indicates that some action has timed out, this includes connections, requests and any other applicable action.

exception peng3dnet.errors.FailedPingError
Indicates that a ping request has failed, usually due to a timeout.

exception peng3dnet.errors.RegistryError
Indicates that a registry has encountered an error.

20 Chapter 1. peng3dnet - Peng3dnet Main Package

https://docs.python.org/3/library/socket.html#module-socket

Peng3dnet Documentation, Release 0.2.0

exception peng3dnet.errors.AlreadyRegisteredError
Indicates that the object given has already been registered.

1.11 peng3dnet.version - Version Information

peng3dnet.version.VERSION = '0.2.0'
Full version number of this package.

Used to display the version in the title of the documentation and in setup.py.

See also:

See Semantic Versioning for more information on the scheme used by this application.

peng3dnet.version.RELEASE = '0.2.0'
Full version number of this package without trailing meta-data.

See VERSION for more information.

peng3dnet.version.PROTOVERSION = 2
Version of the protocol used internally.

This value is shared during the handshake of a connection.

Two versions of this library that do not share the same protocol versions are probably not compatible.

1.11. peng3dnet.version - Version Information 21

http://semver.org

Peng3dnet Documentation, Release 0.2.0

22 Chapter 1. peng3dnet - Peng3dnet Main Package

CHAPTER 2

Configuration Options for peng3dnet

These configuration options can be used to manipulate various features of peng3dnet. The default values for these
config options have been set to allow to not need any config changes for most basic applications.

Config values can be changed by either passing a dictionary with overiddes as the cfg argument to Client() or
Server(), or by accessing the cfg attribute of an instance of the classes mentioned above.

Note that all config values added by peng3dnet have the net. prefix to prevent confusion.

Default config values are mostly documented within the docs themselves or can be found in peng3dnet.
constants.DEFAULT_CONFIG.

2.1 net.server.* - Generic Server-side config options

All non feature-specific server-side config options will use the ‘‘net.server.*‘ prefix.

net.server.addr
net.server.addr.host
net.server.addr.port

These config options specify the host and port the server will listen on.

See also:

See peng3dnet.net.Server for more information on how these config options work.

net.server.addr defaults to None, while net.server.addr.host and :confval:net.server.addr.port‘
default to 0.0.0.0 and 8080, respectively.

2.2 net.client.* - Generic Client-side config options

All non feature-specific client-side config options will use the ‘‘net.client.*‘ prefix.

net.client.addr
net.client.addr.host

23

Peng3dnet Documentation, Release 0.2.0

net.client.addr.port
These config options specify the host and port the client will connect to.

See also:

See peng3dnet.net.Client for more information on how these config options work.

net.client.addr defaults to None, while net.client.addr.host and net.client.addr.
port default to localhost and 8080, respectively.

2.3 net.compress.* - Compression settings

These config options apply to the per-packet compression. It is recommended that client and server use the same
config options for better compatibility, but it is not strictly necessary.

net.compress.enabled
Determines whether or not the compression module is activated.

If this config options is False, all outgoing packets will be uncompressed, but incoming compressed packets
should still be processed appropriately assuming the required modules are available.

This config option defaults to True.

net.compress.threshold
Determines the compression threshold in bytes.

All packets with a size greater than this config option will be compressed.

Defaults to 8192, or 8 Kib.

net.compress.level
The zlib compression level to use when compressing packets.

See also:

Please see zlib.compress() for more information about compression levels.

This config option defaults to 6

2.4 net.encrypt.* - Encryption settings

This module is currently not implemented.

net.encrypt.enabled
Determines whether or not the encryption module is activated.

This module is currently not implemented, changing this option should still not be done.

Defaults to False.

2.5 net.ssl.* - SSL settings

These config options affect the SSL configuration used by both server and client.

Note that currently the SSL module is very buggy and thus disabled by default. It should not be used for any serious
applications.

24 Chapter 2. Configuration Options for peng3dnet

https://docs.python.org/3/library/zlib.html#module-zlib
https://docs.python.org/3/library/zlib.html#zlib.compress

Peng3dnet Documentation, Release 0.2.0

The default config values are configured for maximum security, this means that servers must always have certificates
that will be verified.

net.ssl.enabled
Determines whether or not the SSL module is activated.

It is necessary that both sides have SSL enabled, or the connection will fail with an undefined error.

This config option defaults to False.

net.ssl.force
Used to configure if loading the ssl module is required.

If True, an error will be raised if the ssl module is not available. If False and the ssl module is not available,
it will simply not be loaded.

This config option defaults to True.

net.ssl.cafile
net.ssl.server.force_verify
net.ssl.server.certfile
net.ssl.server.keyfile
net.ssl.client.check_hostname
net.ssl.client.force_verify

These options mostly do what they are named after, further documentation is currently not provided due to
frequent design changes regarding them.

For default values see peng3dnet.constants.DEFAULT_CONFIG.

2.6 net.events.* - Event settings

net.events.enable
Determines whether or not events will be sent.

If auto is used, events will be sent only if a peng instance has been passed to the client or server.

Defaults to auto.

2.7 net.debug.* - Internal Debug Flags

net.debug.print.recv
net.debug.print.send
net.debug.print.connect
net.debug.print.close

Flags that determine whether or not the specific status messsages will be printed out.

These flags are temporary until a proper logging system has been established.

All of these options default to False.

2.8 net.registry.* - Registry Configuration

net.registry.autosync
Determines whether or not the registry will be automatically synced between server and client.

See HandshakePacket() for more information about the auto-sync.

2.6. net.events.* - Event settings 25

https://docs.python.org/3/library/ssl.html#module-ssl

Peng3dnet Documentation, Release 0.2.0

This config option defaults to True.

net.registry.missingpacketaction
Configures what action is taken if during registry synchronization the client and server do not have the same
packets.

Currently possible values are closeconnection which closes the connection and ignore which simply
ignores the mismatch but may cause issues later.

This config option defaults to closeconnection.

26 Chapter 2. Configuration Options for peng3dnet

CHAPTER 3

Events used by peng3dnet

The event system of peng3d is used by peng3dnet to allow peng3d apps to easily integrate with peng3dnet.

See also:

See the peng3d docs about the Peng3d Event System for more information about the peng3d event system.

3.1 Server-Side Events

These events are sent exclusively by the Server() class.

Unless otherwise noted, they always contain the peng and server keys in their data dictionary.

peng will be an instance of peng3d.peng.Peng() or None, as supplied to the constructor.

server will be the instance of Server() that sent the event.

peng3dnet:server.initialize
Sent once the server has been initialized via peng3dnet.net.Server.initialize().

This event has no additional data attached to it.

peng3dnet:server.bind
Sent once the server-side socket has been bound to a specific address via peng3dnet.net.Server.
bind().

This event has the additional data key addr set to a 2-tuple of format (host,port).

peng3dnet:server.start
Sent when the server main loop is about to start.

This event has no additional data attached to it.

peng3dnet:server.stop
Sent whenever the peng3dnet.net.Server.stop() method is called.

The data key reason will be set to method to indicate that the stop has been caused by calling the stop
method. In the future, other reasons may be introduced.

27

https://peng3d.readthedocs.io/en/latest/api/peng3d.html#module-peng3d
https://peng3d.readthedocs.io/en/latest/api/peng3d.html#module-peng3d
http://peng3d.readthedocs.io/en/latest/events.html#peng3d-events-using-sendevent

Peng3dnet Documentation, Release 0.2.0

peng3dnet:server.interrupt
Sent whenever an interrupt has been sent via peng3dnet.net.Server.interrupt().

Note that the processing of the interrupt may be delayed due to various factors.

This event has no additional data attached to it.

peng3dnet:server.shutdown
Sent once the server has been shutdown by calling the peng3dnet.net.Server.shutdown() method.

All arguments passed to peng3dnet.net.Server.shutdown() will be present in the data attached to
this event.

3.1.1 Connection-specific Events

These events are specific to a connection and will often be triggered very frequently. This makes it important that
event handlers subscribing to events in this subsection are high-performant, as they may significantly impact overall
performance.

peng3dnet:server.connection.accept
Sent whenever a new connection is established.

Note that the connection may not be able to transmit data, see peng3dnet:server.connection.
handshakecomplete for more information.

This event has the following data attached to it:

sock is the actual TCP socket of the connection.

addr is the remote address that has connected to the server.

client is an instance of ClientOnServer() used to represent the client.

cid is the numerical ID of the client.

peng3dnet:server.connection.handshakecomplete
Sent whenever a handshake with a client has been completed.

Usually, this means that the client in question is now able to both send and receive packets.

The data key client will be set to the instance of ClientOnServer() that represents the client.

peng3dnet:server.connection.send
Sent whenever a packet has been sent over a connection.

Note that this event is only triggered if the connection type allows it.

Additional data:

client is the instance of ClientOnServer() representing the target client.

pid is the packet type, as given to peng3dnet.net.Server.send_message().

data is the encoded packet, including header and length-prefix.

peng3dnet:server.connection.recv
Sent whenever a packet has been received from a connection.

Note that this event is only triggered if the connection type allows it.

Additional data:

client is the instance of ClientOnServer() representing the sender of the packet.

pid is the packet type, as an integer.

28 Chapter 3. Events used by peng3dnet

Peng3dnet Documentation, Release 0.2.0

msg is the fully decoded message. Usually, this will be a dictionary, but other types are possible.

peng3dnet:server.connection.close
Sent whenever a connection has been closed.

This event should only be sent once per connection, though this is not guaranteed.

After this event has been sent, the connection will be cleant up, meaning it is no longer available to send or
receive.

Additional data:

client is the instance of ClientOnServer() representing the connection to be closed.

reason is a string or None representing the reason this connection has been closed. Note that these reasons
are not standardized and may change at any point in time.

3.2 Client-Side Events

These events are sent exclusively by the Client() class.

Unless otherwise noted, they always contain the peng and client keys in their data dictionary.

peng will be an instance of peng3d.peng.Peng() or None, as supplied to the constructor.

client will be the instance of Client() that sent the event.

peng3dnet:client.initialize
Sent once the client has been initialized by calling peng3dnet.net.Client.initialize().

Will be sent exactly once per client.

This event has no additional data attached to it.

peng3dnet:client.connect
Sent once the client has been connected to a server via peng3dnet.net.Client.connect().

Note that this event only signals that the underlying connection has been established, the SSL tunnel and Hand-
shake may not yet be working.

Will be sent exactly once per client.

Additional data:

addr will be the address of the server in the format (host,port)

sock will be the socket itself used to communicate with the server.

peng3dnet:client.start
Sent once the client has been started via peng3dnet.net.Client.runBlocking().

Note that this event will be sent once per instance of Client().

This event has no additional data attached to it.

peng3dnet:client.stop
Sent whenever the peng3dnet.net.Client.stop() method is called.

The data key reason will be set to method to indicate that the stop has been caused by calling the stop
method. In the future, other reasons may be introduced.

peng3dnet:client.interrupt
Sent whenever an interrupt has been issued by peng3dnet.net.Client.interrupt().

Note that the actual processing of the interrupt may be delayed by an arbitrary time.

3.2. Client-Side Events 29

Peng3dnet Documentation, Release 0.2.0

peng3dnet:client.handshakecomplete
Sent once the handshake has been completed.

Note that some connection types may not trigger this event.

This event has no additional data attached to it.

peng3dnet:client.recv
Sent whenever a packet has been received from the server.

Note that this event is only triggered if the connection type allows it.

Additional data:

pid is the packet type, as an integer.

msg is the fully decoded message. Usually, this will be a dictionary, but other types are possible.

peng3dnet:client.send
Sent whenever a packet is about to be sent to the server.

Note that this event is only triggered if the connection type allows it.

Additional data:

pid is the packet type, as given to peng3dnet.net.Client.send_message().

data is the raw packet data before encoding.

peng3dnet:client.close
Sent once the connection to the server has been closed.

This event will usually be sent only once per client.

The reason data key will be set to the reason as either a string or None.

30 Chapter 3. Events used by peng3dnet

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

31

Peng3dnet Documentation, Release 0.2.0

32 Chapter 4. Indices and tables

Python Module Index

p
peng3dnet, 3
peng3dnet.conntypes, 13
peng3dnet.constants, 11
peng3dnet.errors, 20
peng3dnet.ext, 17
peng3dnet.ext.ping, 17
peng3dnet.net, 3
peng3dnet.packet, 14
peng3dnet.packet.internal, 16
peng3dnet.registry, 19
peng3dnet.util, 20
peng3dnet.version, 21

33

Peng3dnet Documentation, Release 0.2.0

34 Python Module Index

Index

Symbols
_receive() (peng3dnet.packet.Packet method), 14
_send() (peng3dnet.packet.Packet method), 14

A
addConnType() (peng3dnet.net.Client method), 8
addConnType() (peng3dnet.net.Server method), 4
AlreadyRegisteredError, 21

B
BaseRegistry (class in peng3dnet.registry), 19
bind() (peng3dnet.net.Server method), 4

C
ClassicConnectionType (class in

peng3dnet.conntypes), 14
Client (class in peng3dnet.net), 7
ClientOnServer (class in peng3dnet.net), 6
close() (peng3dnet.net.Client method), 8
close() (peng3dnet.net.ClientOnServer method), 7
close_connection() (peng3dnet.net.Client

method), 8
close_connection() (peng3dnet.net.Server

method), 4
CloseConnectionPacket (class in

peng3dnet.packet.internal), 17
configuration value

net.client.addr, 23
net.client.addr.host, 23
net.client.addr.port, 23
net.compress.enabled, 24
net.compress.level, 24
net.compress.threshold, 24
net.debug.print.close, 25
net.debug.print.connect, 25
net.debug.print.recv, 25
net.debug.print.send, 25
net.encrypt.enabled, 24
net.events.enable, 25

net.registry.autosync, 25
net.registry.missingpacketaction, 26
net.server.addr, 23
net.server.addr.host, 23
net.server.addr.port, 23
net.ssl.cafile, 25
net.ssl.client.check_hostname, 25
net.ssl.client.force_verify, 25
net.ssl.enabled, 25
net.ssl.force, 25
net.ssl.server.certfile, 25
net.ssl.server.force_verify, 25
net.ssl.server.keyfile, 25

connect() (peng3dnet.net.Client method), 8
ConnectionType (class in peng3dnet.conntypes), 13
conntype (peng3dnet.packet.SmartPacket attribute), 15
CONNTYPE_CLASSIC (in module

peng3dnet.constants), 12
CONNTYPE_NOTSET (in module peng3dnet.constants),

12
CONNTYPE_PING (in module peng3dnet.constants), 12

D
DEFAULT_CONFIG (in module peng3dnet.constants),

13
deleteObj() (peng3dnet.registry.BaseRegistry

method), 19

F
FailedPingError, 20
FLAG_COMPRESSED (in module peng3dnet.constants),

12
FLAG_ENCRYPTED_AES (in module

peng3dnet.constants), 12

G
genCID() (peng3dnet.net.Server method), 4
getAll() (peng3dnet.registry.BaseRegistry method),

19

35

Peng3dnet Documentation, Release 0.2.0

getID() (peng3dnet.registry.BaseRegistry method), 19
getName() (peng3dnet.registry.BaseRegistry method),

19
getNewID() (peng3dnet.registry.BaseRegistry

method), 19
getObj() (peng3dnet.registry.BaseRegistry method),

19
getPingData() (peng3dnet.ext.ping.PingableServerMixin

method), 18
getPingData() (peng3dnet.ext.ping.PingConnectionType

method), 17

H
HandshakeAcceptPacket (class in

peng3dnet.packet.internal), 17
HandshakePacket (class in

peng3dnet.packet.internal), 17
HelloPacket (class in peng3dnet.packet.internal), 16

I
init() (peng3dnet.conntypes.ConnectionType

method), 13
init() (peng3dnet.ext.ping.PingConnectionType

method), 17
initialize() (peng3dnet.net.Client method), 8
initialize() (peng3dnet.net.Server method), 4
interrupt() (peng3dnet.net.Client method), 8
interrupt() (peng3dnet.net.Server method), 4
invalid_action (peng3dnet.packet.SmartPacket at-

tribute), 15
InvalidAddressError, 20
InvalidHostError, 20
InvalidPortError, 20
InvalidSmartPacketActionError, 20

J
join() (peng3dnet.net.Client method), 8
join() (peng3dnet.net.Server method), 4

M
MAX_PACKETLENGTH (in module

peng3dnet.constants), 11
min_sslsec_level (peng3dnet.packet.SmartPacket

attribute), 15
mode (peng3dnet.packet.SmartPacket attribute), 15
MODE_CHAT (in module peng3dnet.constants), 12
MODE_CLOSED (in module peng3dnet.constants), 12
MODE_NOTSET (in module peng3dnet.constants), 12
MODE_PING (in module peng3dnet.constants), 12
MODE_PLAY (in module peng3dnet.constants), 12

N
net.client.addr

configuration value, 23
net.client.addr.host

configuration value, 23
net.client.addr.port

configuration value, 23
net.compress.enabled

configuration value, 24
net.compress.level

configuration value, 24
net.compress.threshold

configuration value, 24
net.debug.print.close

configuration value, 25
net.debug.print.connect

configuration value, 25
net.debug.print.recv

configuration value, 25
net.debug.print.send

configuration value, 25
net.encrypt.enabled

configuration value, 24
net.events.enable

configuration value, 25
net.registry.autosync

configuration value, 25
net.registry.missingpacketaction

configuration value, 26
net.server.addr

configuration value, 23
net.server.addr.host

configuration value, 23
net.server.addr.port

configuration value, 23
net.ssl.cafile

configuration value, 25
net.ssl.client.check_hostname

configuration value, 25
net.ssl.client.force_verify

configuration value, 25
net.ssl.enabled

configuration value, 25
net.ssl.force

configuration value, 25
net.ssl.server.certfile

configuration value, 25
net.ssl.server.force_verify

configuration value, 25
net.ssl.server.keyfile

configuration value, 25
normalize_addr_formatted() (in module

peng3dnet.util), 20
normalize_addr_socketstyle() (in module

peng3dnet.util), 20

36 Index

Peng3dnet Documentation, Release 0.2.0

O
objtype (peng3dnet.registry.BaseRegistry attribute),

19
objtype (peng3dnet.registry.PacketRegistry attribute),

19
on_close() (peng3dnet.net.Client method), 8
on_close() (peng3dnet.net.ClientOnServer method),

7
on_connect() (peng3dnet.net.Client method), 9
on_connect() (peng3dnet.net.ClientOnServer

method), 7
on_handshake_complete() (peng3dnet.net.Client

method), 9
on_handshake_complete()

(peng3dnet.net.ClientOnServer method),
7

on_receive() (peng3dnet.net.Client method), 9
on_receive() (peng3dnet.net.ClientOnServer

method), 7
on_send() (peng3dnet.net.Client method), 9
on_send() (peng3dnet.net.ClientOnServer method), 7

P
Packet (class in peng3dnet.packet), 14
PacketRegistry (class in peng3dnet.registry), 19
parse_address() (in module peng3dnet.util), 20
peng3d Event

peng3dnet:client.close, 30
peng3dnet:client.connect, 29
peng3dnet:client.handshakecomplete,

29
peng3dnet:client.initialize, 29
peng3dnet:client.interrupt, 29
peng3dnet:client.recv, 30
peng3dnet:client.send, 30
peng3dnet:client.start, 29
peng3dnet:client.stop, 29
peng3dnet:server.bind, 27
peng3dnet:server.connection.accept,

28
peng3dnet:server.connection.close,

29
peng3dnet:server.connection.handshakecomplete,

28
peng3dnet:server.connection.recv, 28
peng3dnet:server.connection.send, 28
peng3dnet:server.initialize, 27
peng3dnet:server.interrupt, 27
peng3dnet:server.shutdown, 28
peng3dnet:server.start, 27
peng3dnet:server.stop, 27

peng3dnet (module), 3
peng3dnet.conntypes (module), 13
peng3dnet.constants (module), 11

peng3dnet.errors (module), 20
peng3dnet.ext (module), 17
peng3dnet.ext.ping (module), 17
peng3dnet.net (module), 3
peng3dnet.packet (module), 14
peng3dnet.packet.internal (module), 16
peng3dnet.registry (module), 19
peng3dnet.util (module), 20
peng3dnet.version (module), 21
peng3dnet:client.close

peng3d Event, 30
peng3dnet:client.connect

peng3d Event, 29
peng3dnet:client.handshakecomplete

peng3d Event, 29
peng3dnet:client.initialize

peng3d Event, 29
peng3dnet:client.interrupt

peng3d Event, 29
peng3dnet:client.recv

peng3d Event, 30
peng3dnet:client.send

peng3d Event, 30
peng3dnet:client.start

peng3d Event, 29
peng3dnet:client.stop

peng3d Event, 29
peng3dnet:server.bind

peng3d Event, 27
peng3dnet:server.connection.accept

peng3d Event, 28
peng3dnet:server.connection.close

peng3d Event, 29
peng3dnet:server.connection.handshakecomplete

peng3d Event, 28
peng3dnet:server.connection.recv

peng3d Event, 28
peng3dnet:server.connection.send

peng3d Event, 28
peng3dnet:server.initialize

peng3d Event, 27
peng3dnet:server.interrupt

peng3d Event, 27
peng3dnet:server.shutdown

peng3d Event, 28
peng3dnet:server.start

peng3d Event, 27
peng3dnet:server.stop

peng3d Event, 27
PingableClientMixin (class in

peng3dnet.ext.ping), 18
PingableServerMixin (class in

peng3dnet.ext.ping), 18

Index 37

Peng3dnet Documentation, Release 0.2.0

PingConnectionType (class in peng3dnet.ext.ping),
17

pingdata (peng3dnet.ext.ping.PingableServerMixin
attribute), 18

pingServer() (in module peng3dnet.ext.ping), 18
PrintPacket (class in peng3dnet.packet), 16
process() (peng3dnet.net.Client method), 9
process() (peng3dnet.net.Server method), 5
process_async() (peng3dnet.net.Client method), 9
process_async() (peng3dnet.net.Server method), 5
process_forever() (peng3dnet.net.Client method),

9
process_forever() (peng3dnet.net.Server method),

5
process_single_packet() (peng3dnet.net.Client

method), 9
process_single_packet() (peng3dnet.net.Server

method), 5
PROTOVERSION (in module peng3dnet.version), 21
pump_write_buffer() (peng3dnet.net.Client

method), 9

R
receive() (peng3dnet.conntypes.ConnectionType

method), 13
receive() (peng3dnet.ext.ping.PingConnectionType

method), 17
receive() (peng3dnet.packet.Packet method), 14
receive_data() (peng3dnet.net.Client method), 10
receive_data() (peng3dnet.net.Server method), 5
receive_packet() (peng3dnet.net.Client method),

10
receive_packet() (peng3dnet.net.Server method),

5
register() (peng3dnet.registry.BaseRegistry

method), 19
register_packet() (peng3dnet.net.Client method),

10
register_packet() (peng3dnet.net.Server method),

5
registerObject() (peng3dnet.registry.BaseRegistry

method), 19
RegistryError, 20
RELEASE (in module peng3dnet.version), 21
runAsync() (peng3dnet.net.Client method), 10
runAsync() (peng3dnet.net.Server method), 6
runBlocking() (peng3dnet.net.Client method), 10
runBlocking() (peng3dnet.net.Server method), 6

S
send() (peng3dnet.conntypes.ConnectionType

method), 14
send() (peng3dnet.ext.ping.PingConnectionType

method), 17

send() (peng3dnet.packet.Packet method), 14
send_message() (peng3dnet.net.Client method), 10
send_message() (peng3dnet.net.Server method), 6
sendEvent() (peng3dnet.net.Client method), 10
sendEvent() (peng3dnet.net.Server method), 6
Server (class in peng3dnet.net), 3
setPingData() (peng3dnet.ext.ping.PingableClientMixin

method), 18
SetTypePacket (class in peng3dnet.packet.internal),

16
shutdown() (peng3dnet.net.Server method), 6
side (peng3dnet.packet.SmartPacket attribute), 15
SIDE_CLIENT (in module peng3dnet.constants), 12
SIDE_SERVER (in module peng3dnet.constants), 12
SmartPacket (class in peng3dnet.packet), 15
SSLSEC_BOTHAUTH (in module peng3dnet.constants),

13
SSLSEC_ENCRYPTED (in module

peng3dnet.constants), 13
SSLSEC_NONE (in module peng3dnet.constants), 12
SSLSEC_SERVERAUTH (in module

peng3dnet.constants), 13
SSLSEC_WRAPPED (in module peng3dnet.constants),

12
state (peng3dnet.packet.SmartPacket attribute), 15
STATE_ACTIVE (in module peng3dnet.constants), 12
STATE_CLOSED (in module peng3dnet.constants), 12
STATE_HANDSHAKE_WAIT1 (in module

peng3dnet.constants), 11
STATE_HANDSHAKE_WAIT2 (in module

peng3dnet.constants), 11
STATE_HELLOWAIT (in module peng3dnet.constants),

11
STATE_INIT (in module peng3dnet.constants), 11
STATE_LOGGEDIN (in module peng3dnet.constants),

12
STATE_WAITTYPE (in module peng3dnet.constants),

11
stop() (peng3dnet.net.Client method), 10
stop() (peng3dnet.net.Server method), 6
STRUCT_FORMAT_HEADER (in module

peng3dnet.constants), 11
STRUCT_FORMAT_LENGTH32 (in module

peng3dnet.constants), 11
STRUCT_HEADER (in module peng3dnet.net), 3
STRUCT_LENGTH32 (in module peng3dnet.net), 3

T
TimedOutError, 20

U
UnsupportedAddressError, 20

38 Index

Peng3dnet Documentation, Release 0.2.0

V
VERSION (in module peng3dnet.version), 21

W
wait_for_close() (peng3dnet.net.Client method),

11
wait_for_connection() (peng3dnet.net.Client

method), 11
wait_for_pong() (peng3dnet.ext.ping.PingableClientMixin

method), 18
WRITEBACK (in module peng3dnet.ext.ping), 18

Index 39

	peng3dnet - Peng3dnet Main Package
	peng3dnet.net - Core Networking Classes
	peng3dnet.constants - Constants
	peng3dnet.conntypes - Connection Types
	peng3dnet.packet - Packet Classes
	peng3dnet.packet.internal - Internal Packet Classes
	peng3dnet.ext - Extensions
	peng3dnet.ext.ping - One-off data retrieval protocol extension
	peng3dnet.registry - Smart Registry Class
	peng3dnet.util - Utility functions
	peng3dnet.errors - Exception Classes
	peng3dnet.version - Version Information

	Configuration Options for peng3dnet
	net.server.* - Generic Server-side config options
	net.client.* - Generic Client-side config options
	net.compress.* - Compression settings
	net.encrypt.* - Encryption settings
	net.ssl.* - SSL settings
	net.events.* - Event settings
	net.debug.* - Internal Debug Flags
	net.registry.* - Registry Configuration

	Events used by peng3dnet
	Server-Side Events
	Client-Side Events

	Indices and tables
	Python Module Index
	Index

