

 Navigation

 	
 next

 	Pelican 4.2.0 documentation »

Pelican 4.2.0

Pelican is a static site generator, written in Python [https://www.python.org/]. Highlights include:

	Write your content directly with your editor of choice in reStructuredText [http://docutils.sourceforge.net/rst.html]
or Markdown [https://daringfireball.net/projects/markdown/] formats

	Includes a simple CLI tool to (re)generate your site

	Easy to interface with distributed version control systems and web hooks

	Completely static output is easy to host anywhere

Ready to get started? Check out the Quickstart guide.

Features

Pelican 4 currently supports:

	Articles (e.g., blog posts) and pages (e.g., “About”, “Projects”, “Contact”)

	Comments, via an external service (Disqus). If you prefer to have more
control over your comment data, self-hosted comments are another option.
Check out the Pelican Plugins [https://github.com/getpelican/pelican-plugins] repository for more details.

	Theming support (themes are created using Jinja2 [http://jinja.pocoo.org/] templates)

	Publication of articles in multiple languages

	Atom/RSS feeds

	Code syntax highlighting

	Import from WordPress, Dotclear, or RSS feeds

	Integration with external tools: Twitter, Google Analytics, etc. (optional)

	Fast rebuild times thanks to content caching and selective output writing

Why the name “Pelican”?

“Pelican” is an anagram for calepin, which means “notebook” in French. ;)

Source code

You can access the source code at: https://github.com/getpelican/pelican

How to get help, contribute, or provide feedback

See our feedback and contribution submission guidelines.

Documentation

	Quickstart
	Installation

	Create a project

	Create an article

	Generate your site

	Preview your site

	Footnotes

	Installing Pelican
	Optional packages

	Dependencies

	Upgrading

	Kickstart your site

	Writing content
	Articles and pages

	File metadata

	Pages

	Static content

	Linking to internal content

	Importing an existing site

	Translations

	Syntax highlighting

	Publishing drafts

	Publish your site
	Site generation

	Deployment

	Automation

	Settings
	Basic settings

	URL settings

	Time and Date

	Template pages

	Metadata

	Feed settings

	Pagination

	Translations

	Ordering content

	Themes

	Logging

	Reading only modified content

	Writing only selected content

	Example settings

	Creating themes
	Structure

	Templates and variables

	Objects

	Feeds

	Inheritance

	Plugins
	How to use plugins

	Where to find plugins

	How to create plugins

	List of signals

	Recipes

	pelican-themes
	Description

	Examples

	Importing an existing site
	Description

	Dependencies

	Usage

	Examples

	Tests

	Frequently Asked Questions (FAQ)
	What’s the best way to communicate a problem, question, or suggestion?

	How can I help?

	Is the Pelican settings file mandatory?

	Changes to the settings file take no effect

	I’m creating my own theme. How do I use Pygments for syntax highlighting?

	How do I create my own theme?

	I want to use Markdown, but I got an error.

	Can I use arbitrary metadata in my templates?

	How do I assign custom templates on a per-page basis?

	How can I override the generated URL of a specific page or article?

	How can I use a static page as my home page?

	What if I want to disable feed generation?

	I’m getting a warning about feeds generated without SITEURL being set properly

	My feeds are broken since I upgraded to Pelican 3.x

	Is Pelican only suitable for blogs?

	Why does Pelican always write all HTML files even with content caching enabled?

	How to process only a subset of all articles?

	My tag-cloud is missing/broken since I upgraded Pelican

	Since I upgraded Pelican my pages are no longer rendered

	How can I stop Pelican from trying to parse my static files as content?

	Tips
	Custom 404 Pages

	Publishing to GitHub

	How to add YouTube or Vimeo Videos

	Develop Locally Using SSL

	Contributing and feedback guidelines
	Filing issues

	How to get help

	Contributing code

	Setting up the development environment

	Development

	Logging tips

	Pelican internals
	Overall structure

	How to implement a new reader?

	How to implement a new generator?

	Some history about Pelican
	Use case

	Design process

	In more detail

	Release history
	4.2.0 - 2019-10-17

	4.1.3 - 2019-10-09

	4.1.2 - 2019-09-23

	4.1.1 - 2019-08-23

	4.1.0 - 2019-07-14

	4.0.1 (2018-11-30)

	4.0.0 (2018-11-13)

	3.7.1 (2017-01-10)

	3.7.0 (2016-12-12)

	3.6.3 (2015-08-14)

	3.6.2 (2015-08-01)

	3.6.0 (2015-06-15)

	3.5.0 (2014-11-04)

	3.4.0 (2014-07-01)

	3.3.0 (2013-09-24)

	3.2.1 and 3.2.2

	3.2 (2013-04-24)

	3.1 (2012-12-04)

	3.0 (2012-08-08)

	2.8 (2012-02-28)

	2.7 (2011-06-11)

	2.6 (2011-03-08)

	2.5 (2010-11-20)

	2.4 (2010-11-06)

	2.3 (2010-10-31)

	2.2 (2010-10-30)

	2.1 (2010-10-30)

	2.0 (2010-10-30)

	1.2 (2010-09-28)

	1.1 (2010-08-19)

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Quickstart

Reading through all the documentation is highly recommended, but for the truly
impatient, following are some quick steps to get started.

Installation

Install Pelican (and optionally Markdown if you intend to use it) on Python
2.7.x or Python 3.5+ by running the following command in your preferred
terminal, prefixing with sudo if permissions warrant:

pip install pelican[Markdown]

Create a project

First, choose a name for your project, create an appropriately-named directory
for your site, and switch to that directory:

mkdir -p ~/projects/yoursite
cd ~/projects/yoursite

Create a skeleton project via the pelican-quickstart command, which begins
by asking some questions about your site:

pelican-quickstart

For questions that have default values denoted in brackets, feel free to use
the Return key to accept those default values [1]. When asked for
your URL prefix, enter your domain name as indicated (e.g.,
http://example.com).

Create an article

You cannot run Pelican until you have created some content. Use your preferred
text editor to create your first article with the following content:

Title: My First Review
Date: 2010-12-03 10:20
Category: Review

Following is a review of my favorite mechanical keyboard.

Given that this example article is in Markdown format, save it as
~/projects/yoursite/content/keyboard-review.md.

Generate your site

From your project root directory, run the pelican command to generate your site:

pelican content

Your site has now been generated inside the output/ directory. (You may see
a warning related to feeds, but that is normal when developing locally and can
be ignored for now.)

Preview your site

Open a new terminal session, navigate to your project root directory, and
run the following command to launch Pelican’s web server:

pelican --listen

Preview your site by navigating to http://localhost:8000/ in your browser.

Continue reading the other documentation sections for more detail, and check
out the Pelican wiki’s Tutorials [https://github.com/getpelican/pelican/wiki/Tutorials] page for links to community-published
tutorials.

Footnotes

	[1]	You can help localize default fields by installing the
optional tzlocal [https://pypi.python.org/pypi/tzlocal]
module.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Installing Pelican

Pelican currently runs best on Python 2.7.x and 3.5+; earlier versions of
Python are not supported.

You can install Pelican via several different methods. The simplest is via
pip [http://www.pip-installer.org/]:

pip install pelican

Or, if you plan on using Markdown:

pip install pelican[Markdown]

(Keep in mind that operating systems will often require you to prefix the above
command with sudo in order to install Pelican system-wide.)

While the above is the simplest method, the recommended approach is to create a
virtual environment for Pelican via virtualenv [http://www.virtualenv.org/] before installing Pelican.
Assuming you have virtualenv [http://www.virtualenv.org/] installed, you can then open a new terminal
session and create a new virtual environment for Pelican:

virtualenv ~/virtualenvs/pelican
cd ~/virtualenvs/pelican
source bin/activate

Once the virtual environment has been created and activated, Pelican can be
installed via pip install pelican as noted above. Alternatively, if you
have the project source, you can install Pelican using the distutils method:

cd path-to-Pelican-source
python setup.py install

If you have Git installed and prefer to install the latest bleeding-edge
version of Pelican rather than a stable release, use the following command:

pip install -e "git+https://github.com/getpelican/pelican.git#egg=pelican"

Once Pelican is installed, you can run pelican --help to see basic usage
options. For more detail, refer to the Publish section.

Optional packages

If you plan on using Markdown [http://pypi.python.org/pypi/Markdown] as a
markup format, you can install Pelican with Markdown support:

pip install pelican[Markdown]

Or you might need to install it a posteriori:

pip install Markdown

Typographical enhancements can be enabled in your settings file, but first the
requisite Typogrify [http://pypi.python.org/pypi/typogrify] library must be
installed:

pip install typogrify

Dependencies

When Pelican is installed, the following dependent Python packages should be
automatically installed without any action on your part:

	feedgenerator [http://pypi.python.org/pypi/feedgenerator], to generate the
Atom feeds

	jinja2 [http://pypi.python.org/pypi/Jinja2], for templating support

	pygments [http://pypi.python.org/pypi/Pygments], for syntax highlighting

	docutils [http://pypi.python.org/pypi/docutils], for supporting
reStructuredText as an input format

	pytz [http://pypi.python.org/pypi/pytz], for timezone definitions

	blinker [http://pypi.python.org/pypi/blinker], an object-to-object and
broadcast signaling system

	unidecode [http://pypi.python.org/pypi/Unidecode], for ASCII
transliterations of Unicode text

	six [http://pypi.python.org/pypi/six], for Python 2 and 3 compatibility
utilities

	MarkupSafe [http://pypi.python.org/pypi/MarkupSafe], for a markup safe
string implementation

	python-dateutil [https://pypi.python.org/pypi/python-dateutil], to read
the date metadata

Upgrading

If you installed a stable Pelican release via pip and wish to upgrade to
the latest stable release, you can do so by adding --upgrade:

pip install --upgrade pelican

If you installed Pelican via distutils or the bleeding-edge method, simply
perform the same step to install the most recent version.

Kickstart your site

Once Pelican has been installed, you can create a skeleton project via the
pelican-quickstart command, which begins by asking some questions about
your site:

pelican-quickstart

Once you finish answering all the questions, your project will consist of the
following hierarchy (except for pages — shown in parentheses below — which
you can optionally add yourself if you plan to create non-chronological
content):

yourproject/
├── content
│ └── (pages)
├── output
├── tasks.py
├── Makefile
├── pelicanconf.py # Main settings file
└── publishconf.py # Settings to use when ready to publish

The next step is to begin to adding content to the content folder that has
been created for you.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Writing content

Articles and pages

Pelican considers “articles” to be chronological content, such as posts on a
blog, and thus associated with a date.

The idea behind “pages” is that they are usually not temporal in nature and are
used for content that does not change very often (e.g., “About” or “Contact”
pages).

You can find sample content in the repository at samples/content/.

File metadata

Pelican tries to be smart enough to get the information it needs from the
file system (for instance, about the category of your articles), but some
information you need to provide in the form of metadata inside your files.

If you are writing your content in reStructuredText format, you can provide
this metadata in text files via the following syntax (give your file the
.rst extension):

My super title
##############

:date: 2010-10-03 10:20
:modified: 2010-10-04 18:40
:tags: thats, awesome
:category: yeah
:slug: my-super-post
:authors: Alexis Metaireau, Conan Doyle
:summary: Short version for index and feeds

Author and tag lists may be semicolon-separated instead, which allows
you to write authors and tags containing commas:

:tags: pelican, publishing tool; pelican, bird
:authors: Metaireau, Alexis; Doyle, Conan

Pelican implements an extension to reStructuredText to enable support for the
abbr HTML tag. To use it, write something like this in your post:

This will be turned into :abbr:`HTML (HyperText Markup Language)`.

You can also use Markdown syntax (with a file ending in .md,
.markdown, .mkd, or .mdown). Markdown generation requires that you
first explicitly install the Markdown package, which can be done via pip
install Markdown.

Pelican also supports Markdown Extensions [https://python-markdown.github.io/extensions/], which might have to be installed
separately if they are not included in the default Markdown package and can
be configured and loaded via the MARKDOWN setting.

Metadata syntax for Markdown posts should follow this pattern:

Title: My super title
Date: 2010-12-03 10:20
Modified: 2010-12-05 19:30
Category: Python
Tags: pelican, publishing
Slug: my-super-post
Authors: Alexis Metaireau, Conan Doyle
Summary: Short version for index and feeds

This is the content of my super blog post.

You can also have your own metadata keys (so long as they don’t conflict with
reserved metadata keywords) for use in your templates. The following table
contains a list of reserved metadata keywords:

	Metadata
	Description

	title
	Title of the article or page

	date
	Publication date (e.g., YYYY-MM-DD HH:SS)

	modified
	Modification date (e.g., YYYY-MM-DD HH:SS)

	tags
	Content tags, separated by commas

	keywords
	Content keywords, separated by commas (HTML content only)

	category
	Content category (one only — not multiple)

	slug
	Identifier used in URLs and translations

	author
	Content author, when there is only one

	authors
	Content authors, when there are multiple

	summary
	Brief description of content for index pages

	lang
	Content language ID (en, fr, etc.)

	translation
	Is content is a translation of another (true or false)

	status
	Content status: draft, hidden, or published

	template
	Name of template to use to generate content (without extension)

	save_as
	Save content to this relative file path

	url
	URL to use for this article/page

Readers for additional formats (such as AsciiDoc [http://www.methods.co.nz/asciidoc/]) are available via plugins.
Refer to pelican-plugins [https://github.com/getpelican/pelican-plugins] repository for those.

Pelican can also process HTML files ending in .html and .htm. Pelican
interprets the HTML in a very straightforward manner, reading metadata from
meta tags, the title from the title tag, and the body out from the
body tag:

<html>
 <head>
 <title>My super title</title>
 <meta name="tags" content="thats, awesome" />
 <meta name="date" content="2012-07-09 22:28" />
 <meta name="modified" content="2012-07-10 20:14" />
 <meta name="category" content="yeah" />
 <meta name="authors" content="Alexis Métaireau, Conan Doyle" />
 <meta name="summary" content="Short version for index and feeds" />
 </head>
 <body>
 This is the content of my super blog post.
 </body>
</html>

With HTML, there is one simple exception to the standard metadata: tags can be
specified either via the tags metadata, as is standard in Pelican, or via
the keywords metadata, as is standard in HTML. The two can be used
interchangeably.

Note that, aside from the title, none of this content metadata is mandatory:
if the date is not specified and DEFAULT_DATE is set to 'fs', Pelican
will rely on the file’s “mtime” timestamp, and the category can be determined
by the directory in which the file resides. For example, a file located at
python/foobar/myfoobar.rst will have a category of foobar. If you would
like to organize your files in other ways where the name of the subfolder would
not be a good category name, you can set the setting USE_FOLDER_AS_CATEGORY
to False. When parsing dates given in the page metadata, Pelican supports
the W3C’s suggested subset ISO 8601 [https://www.w3.org/TR/NOTE-datetime].

So the title is the only required metadata. If that bothers you, worry not.
Instead of manually specifying a title in your metadata each time, you can use
the source content file name as the title. For example, a Markdown source file
named Publishing via Pelican.md would automatically be assigned a title of
Publishing via Pelican. If you would prefer this behavior, add the following
line to your settings file:

FILENAME_METADATA = '(?P<title>.*)'

Note

When experimenting with different settings (especially the metadata
ones) caching may interfere and the changes may not be visible. In
such cases disable caching with LOAD_CONTENT_CACHE = False or
use the --ignore-cache command-line switch.

modified should be last time you updated the article, and defaults to
date if not specified. Besides you can show modified in the templates,
feed entries in feed readers will be updated automatically when you set
modified to the current date after you modified your article.

authors is a comma-separated list of article authors. If there’s only one
author you can use author field.

If you do not explicitly specify summary metadata for a given post, the
SUMMARY_MAX_LENGTH setting can be used to specify how many words from the
beginning of an article are used as the summary.

You can also extract any metadata from the filename through a regular
expression to be set in the FILENAME_METADATA setting. All named groups
that are matched will be set in the metadata object. The default value for the
FILENAME_METADATA setting will only extract the date from the filename. For
example, if you would like to extract both the date and the slug, you could set
something like: '(?P<date>\d{4}-\d{2}-\d{2})_(?P<slug>.*)'

Please note that the metadata available inside your files takes precedence over
the metadata extracted from the filename.

Pages

If you create a folder named pages inside the content folder, all the
files in it will be used to generate static pages, such as About or
Contact pages. (See example filesystem layout below.)

You can use the DISPLAY_PAGES_ON_MENU setting to control whether all those
pages are displayed in the primary navigation menu. (Default is True.)

If you want to exclude any pages from being linked to or listed in the menu
then add a status: hidden attribute to its metadata. This is useful for
things like making error pages that fit the generated theme of your site.

Static content

Static files are files other than articles and pages that are copied to the
output folder as-is, without processing. You can control which static files
are copied over with the STATIC_PATHS setting of the project’s
pelicanconf.py file. Pelican’s default configuration includes the
images directory for this, but others must be added manually. In addition,
static files that are explicitly linked to are included (see below).

Mixed content in the same directory

Starting with Pelican 3.5, static files can safely share a source directory
with page source files, without exposing the page sources in the generated
site. Any such directory must be added to both STATIC_PATHS and
PAGE_PATHS (or STATIC_PATHS and ARTICLE_PATHS). Pelican will
identify and process the page source files normally, and copy the remaining
files as if they lived in a separate directory reserved for static files.

Note: Placing static and content source files together in the same source
directory does not guarantee that they will end up in the same place in the
generated site. The easiest way to do this is by using the {attach} link
syntax (described below). Alternatively, the STATIC_SAVE_AS,
PAGE_SAVE_AS, and ARTICLE_SAVE_AS settings (and the corresponding
*_URL settings) can be configured to place files of different types
together, just as they could in earlier versions of Pelican.

Linking to internal content

From Pelican 3.1 onwards, it is now possible to specify intra-site links to
files in the source content hierarchy instead of files in the generated
hierarchy. This makes it easier to link from the current post to other content
that may be sitting alongside that post (instead of having to determine where
the other content will be placed after site generation).

To link to internal content (files in the content directory), use the
following syntax for the link target: {filename}path/to/file
Note: forward slashes, /,
are the required path separator in the {filename} directive
on all operating systems, including Windows.

For example, a Pelican project might be structured like this:

website/
├── content
│ ├── category/
│ │ └── article1.rst
│ ├── article2.md
│ └── pages
│ └── about.md
└── pelican.conf.py

In this example, article1.rst could look like this:

The first article
#################

:date: 2012-12-01 10:02

See below intra-site link examples in reStructuredText format.

`a link relative to the current file <{filename}../article2.md>`_
`a link relative to the content root <{filename}/article2.md>`_

and article2.md:

Title: The second article
Date: 2012-12-01 10:02

See below intra-site link examples in Markdown format.

[a link relative to the current file]({filename}category/article1.rst)
[a link relative to the content root]({filename}/category/article1.rst)

Linking to static files

You can link to static content using {static}path/to/file. Files linked to
with this syntax will automatically be copied to the output directory, even if
the source directories containing them are not included in the STATIC_PATHS
setting of the project’s pelicanconf.py file.

For example, a project’s content directory might be structured like this:

content
├── images
│ └── han.jpg
├── pdfs
│ └── menu.pdf
└── pages
 └── test.md

test.md would include:

![Alt Text]({static}/images/han.jpg)
[Our Menu]({static}/pdfs/menu.pdf)

Site generation would then copy han.jpg to output/images/han.jpg,
menu.pdf to output/pdfs/menu.pdf, and write the appropriate links
in test.md.

If you use {static} to link to an article or a page, this will be turned
into a link to its source code.

Attaching static files

Starting with Pelican 3.5, static files can be “attached” to a page or article
using this syntax for the link target: {attach}path/to/file This works
like the {static} syntax, but also relocates the static file into the
linking document’s output directory. If the static file originates from a
subdirectory beneath the linking document’s source, that relationship will be
preserved on output. Otherwise, it will become a sibling of the linking
document.

This only works for linking to static files.

For example, a project’s content directory might be structured like this:

content
├── blog
│ ├── icons
│ │ └── icon.png
│ ├── photo.jpg
│ └── testpost.md
└── downloads
 └── archive.zip

pelicanconf.py would include:

PATH = 'content'
ARTICLE_PATHS = ['blog']
ARTICLE_SAVE_AS = '{date:%Y}/{slug}.html'
ARTICLE_URL = '{date:%Y}/{slug}.html'

testpost.md would include:

Title: Test Post
Category: test
Date: 2014-10-31

![Icon]({attach}icons/icon.png)
![Photo]({attach}photo.jpg)
[Downloadable File]({attach}/downloads/archive.zip)

Site generation would then produce an output directory structured like this:

output
└── 2014
 ├── archive.zip
 ├── icons
 │ └── icon.png
 ├── photo.jpg
 └── test-post.html

Notice that all the files linked using {attach} ended up in or beneath
the article’s output directory.

If a static file is linked multiple times, the relocating feature of
{attach} will only work in the first of those links to be processed.
After the first link, Pelican will treat {attach} like {static}.
This avoids breaking the already-processed links.

Be careful when linking to a file from multiple documents:
Since the first link to a file finalizes its location and Pelican does
not define the order in which documents are processed, using {attach} on a
file linked by multiple documents can cause its location to change from one
site build to the next. (Whether this happens in practice will depend on the
operating system, file system, version of Pelican, and documents being added,
modified, or removed from the project.) Any external sites linking to the
file’s old location might then find their links broken. It is therefore
advisable to use {attach} only if you use it in all links to a file, and only
if the linking documents share a single directory. Under these conditions,
the file’s output location will not change in future builds. In cases where
these precautions are not possible, consider using {static} links instead
of {attach}, and letting the file’s location be determined by the project’s
STATIC_SAVE_AS and STATIC_URL settings. (Per-file save_as and
url overrides can still be set in EXTRA_PATH_METADATA.)

Linking to authors, categories, index and tags

You can link to authors, categories, index and tags using the {author}name,
{category}foobar, {index} and {tag}tagname syntax.

Deprecated internal link syntax

To remain compatible with earlier versions, Pelican still supports vertical
bars (||) in addition to curly braces ({}) for internal links. For
example: |filename|an_article.rst, |tag|tagname, |category|foobar.
The syntax was changed from || to {} to avoid collision with Markdown
extensions or reST directives. Similarly, Pelican also still supports linking
to static content with {filename}. The syntax was changed to {static}
to allow linking to both generated articles and pages and their static sources.

Support for the old syntax may eventually be removed.

Including other files

Both Markdown and reStructuredText syntaxes provide mechanisms for this.

Following below are some examples for reStructuredText using the include directive [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include]:

.. include:: file.rst

Include a fragment of a file delimited by two identifiers, highlighted as C++ (slicing based on line numbers is also possible):

.. include:: main.cpp
 :code: c++
 :start-after: // begin
 :end-before: // end

Include a raw HTML file (or an inline SVG) and put it directly into the output without any processing:

.. raw:: html
 :file: table.html

For Markdown, one must rely on an extension. For example, using the mdx_include plugin [https://github.com/neurobin/mdx_include]:


```html
{! template.html !}
```


Importing an existing site

It is possible to import your site from WordPress, Tumblr, Dotclear, and RSS
feeds using a simple script. See Importing an existing site.

Translations

It is possible to translate articles. To do so, you need to add a lang meta
attribute to your articles/pages and set a DEFAULT_LANG setting (which is
English [en] by default). With those settings in place, only articles with the
default language will be listed, and each article will be accompanied by a list
of available translations for that article.

Note

This core Pelican functionality does not create sub-sites
(e.g. example.com/de) with translated templates for each
language. For such advanced functionality the i18n_subsites
plugin [https://github.com/getpelican/pelican-plugins/tree/master/i18n_subsites] can be used.

By default, Pelican uses the article’s URL “slug” to determine if two or more
articles are translations of one another. (This can be changed with the
ARTICLE_TRANSLATION_ID setting.) The slug can be set manually in the file’s
metadata; if not set explicitly, Pelican will auto-generate the slug from the
title of the article.

Here is an example of two articles, one in English and the other in French.

The English article:

Foobar is not dead
##################

:slug: foobar-is-not-dead
:lang: en

That's true, foobar is still alive!

And the French version:

Foobar n'est pas mort !
#######################

:slug: foobar-is-not-dead
:lang: fr

Oui oui, foobar est toujours vivant !

Post content quality notwithstanding, you can see that only item in common
between the two articles is the slug, which is functioning here as an
identifier. If you’d rather not explicitly define the slug this way, you must
then instead ensure that the translated article titles are identical, since the
slug will be auto-generated from the article title.

If you do not want the original version of one specific article to be detected
by the DEFAULT_LANG setting, use the translation metadata to specify
which posts are translations:

Foobar is not dead
##################

:slug: foobar-is-not-dead
:lang: en
:translation: true

That's true, foobar is still alive!

Syntax highlighting

Pelican can provide colorized syntax highlighting for your code blocks.
To do so, you must use the following conventions inside your content files.

For reStructuredText, use the code-block directive to specify the type
of code to be highlighted (in these examples, we’ll use python):

.. code-block:: python

 print("Pelican is a static site generator.")

For Markdown, which utilizes the CodeHilite extension [https://python-markdown.github.io/extensions/code_hilite/#syntax] to provide syntax
highlighting, include the language identifier just above the code block,
indenting both the identifier and the code:

There are two ways to specify the identifier:

 :::python
 print("The triple-colon syntax will *not* show line numbers.")

To display line numbers, use a path-less shebang instead of colons:

 #!python
 print("The path-less shebang syntax *will* show line numbers.")

The specified identifier (e.g. python, ruby) should be one that
appears on the list of available lexers [http://pygments.org/docs/lexers/].

When using reStructuredText the following options are available in the
code-block directive:

	Option
	Valid values
	Description

	anchorlinenos
	N/A
	If present wrap line numbers in <a> tags.

	classprefix
	string
	String to prepend to token class names

	hl_lines
	numbers
	List of lines to be highlighted, where
line numbers to highlight are separated
by a space. This is similar to
emphasize-lines in Sphinx, but it
does not support a range of line numbers
separated by a hyphen, or comma-separated
line numbers.

	lineanchors
	string
	Wrap each line in an anchor using this
string and -linenumber.

	linenos
	string
	If present or set to “table” output line
numbers in a table, if set to
“inline” output them inline. “none” means
do not output the line numbers for this
table.

	linenospecial
	number
	If set every nth line will be given the
‘special’ css class.

	linenostart
	number
	Line number for the first line.

	linenostep
	number
	Print every nth line number.

	lineseparator
	string
	String to print between lines of code,
‘n’ by default.

	linespans
	string
	Wrap each line in a span using this and
-linenumber.

	nobackground
	N/A
	If set do not output background color for
the wrapping element

	nowrap
	N/A
	If set do not wrap the tokens at all.

	tagsfile
	string
	ctags file to use for name definitions.

	tagurlformat
	string
	format for the ctag links.

Note that, depending on the version, your Pygments module might not have
all of these options available. Refer to the HtmlFormatter section of the
Pygments documentation [http://pygments.org/docs/formatters/] for more
details on each of the options.

For example, the following code block enables line numbers, starting at 153,
and prefixes the Pygments CSS classes with pgcss to make the names
more unique and avoid possible CSS conflicts:

.. code-block:: identifier
 :classprefix: pgcss
 :linenos: table
 :linenostart: 153

 <indented code block goes here>

It is also possible to specify the PYGMENTS_RST_OPTIONS variable in your
Pelican settings file to include options that will be automatically applied to
every code block.

For example, if you want to have line numbers displayed for every code block
and a CSS prefix you would set this variable to:

PYGMENTS_RST_OPTIONS = {'classprefix': 'pgcss', 'linenos': 'table'}

If specified, settings for individual code blocks will override the defaults in
your settings file.

Publishing drafts

If you want to publish an article or a page as a draft (for friends to review
before publishing, for example), you can add a Status: draft attribute to
its metadata. That article will then be output to the drafts folder and not
listed on the index page nor on any category or tag page.

If your articles should be automatically published as a draft (to not
accidentally publish an article before it is finished) include the status in
the DEFAULT_METADATA:

DEFAULT_METADATA = {
 'status': 'draft',
}

To publish a post when the default status is draft, update the post’s
metadata to include Status: published.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Publish your site

Site generation

Once Pelican is installed and you have some content (e.g., in Markdown or reST
format), you can convert your content into HTML via the pelican command,
specifying the path to your content and (optionally) the path to your
settings file:

pelican /path/to/your/content/ [-s path/to/your/settings.py]

The above command will generate your site and save it in the output/
folder, using the default theme to produce a simple site. The default theme
consists of very simple HTML without styling and is provided so folks may use
it as a basis for creating their own themes.

When working on a single article or page, it is possible to generate only the
file that corresponds to that content. To do this, use the --write-selected
argument, like so:

pelican --write-selected output/posts/my-post-title.html

Note that you must specify the path to the generated output file — not the
source content. To determine the output file name and location, use the
--debug flag. If desired, --write-selected can take a comma-separated
list of paths or can be configured as a setting. (See:
Writing only selected content)

You can also tell Pelican to watch for your modifications, instead of manually
re-running it every time you want to see your changes. To enable this, run the
pelican command with the -r or --autoreload option. On non-Windows
environments, this option can also be combined with the -l or --listen
option to simultaneously both auto-regenerate and serve the output at
http://localhost:8000:

pelican --autoreload --listen

Pelican has other command-line switches available. Have a look at the help to
see all the options you can use:

pelican --help

Viewing the generated files

The files generated by Pelican are static files, so you don’t actually need
anything special to view them. You can use your browser to open the generated
HTML files directly:

firefox output/index.html

Because the above method may have trouble locating your CSS and other linked
assets, running Pelican’s simple built-in web server will often provide a more
reliable previewing experience:

pelican --listen

Once the web server has been started, you can preview your site at:
http://localhost:8000/

Deployment

After you have generated your site, previewed it in your local development
environment, and are ready to deploy it to production, you might first
re-generate your site with any production-specific settings (e.g., analytics
feeds, etc.) that you may have defined:

pelican content -s publishconf.py

To base your publish configuration on top of your pelicanconf.py, you can
import your pelicanconf settings by including the following line in your
publishconf.py:

from pelicanconf import *

If you have generated a publishconf.py using pelican-quickstart, this
line is included by default.

The steps for deploying your site will depend on where it will be hosted. If
you have SSH access to a server running Nginx or Apache, you might use the
rsync tool to transmit your site files:

rsync -avc --delete output/ host.example.com:/var/www/your-site/

There are many other deployment options, some of which can be configured when
first setting up your site via the pelican-quickstart command. See the
Tips page for detail on publishing via GitHub Pages.

Automation

While the pelican command is the canonical way to generate your site,
automation tools can be used to streamline the generation and publication flow.
One of the questions asked during the pelican-quickstart process pertains
to whether you want to automate site generation and publication. If you
answered “yes” to that question, a tasks.py and Makefile will be
generated in the root of your project. These files, pre-populated with certain
information gleaned from other answers provided during the
pelican-quickstart process, are meant as a starting point and should be
customized to fit your particular needs and usage patterns. If you find one or
both of these automation tools to be of limited utility, these files can
deleted at any time and will not affect usage of the canonical pelican
command.

Following are automation tools that “wrap” the pelican command and can
simplify the process of generating, previewing, and uploading your site.

Invoke

The advantage of Invoke [http://www.pyinvoke.org] is that it is written in Python and thus can be used
in a wide range of environments. The downside is that it must be installed
separately. Use the following command to install Invoke, prefixing with
sudo if your environment requires it:

pip install invoke

Take a moment to open the tasks.py file that was generated in your project
root. You will see a number of commands, any one of which can be renamed,
removed, and/or customized to your liking. Using the out-of-the-box
configuration, you can generate your site via:

invoke build

If you’d prefer to have Pelican automatically regenerate your site every time a
change is detected (which is handy when testing locally), use the following
command instead:

invoke regenerate

To serve the generated site so it can be previewed in your browser at
http://localhost:8000/:

invoke serve

To serve the generated site with automatic browser reloading every time a
change is detected, first pip install livereload, then use the
following command:

invoke livereload

If during the pelican-quickstart process you answered “yes” when asked
whether you want to upload your site via SSH, you can use the following command
to publish your site via rsync over SSH:

invoke publish

These are just a few of the commands available by default, so feel free to
explore tasks.py and see what other commands are available. More
importantly, don’t hesitate to customize tasks.py to suit your specific
needs and preferences.

Make

A Makefile is also automatically created for you when you say “yes” to the
relevant question during the pelican-quickstart process. The advantage of
this method is that the make command is built into most POSIX systems and
thus doesn’t require installing anything else in order to use it. The downside
is that non-POSIX systems (e.g., Windows) do not include make, and
installing it on those systems can be a non-trivial task.

If you want to use make to generate your site using the settings in
pelicanconf.py, run:

make html

To generate the site for production, using the settings in publishconf.py,
run:

make publish

If you’d prefer to have Pelican automatically regenerate your site every time a
change is detected (which is handy when testing locally), use the following
command instead:

make regenerate

To serve the generated site so it can be previewed in your browser at
http://localhost:8000/:

make serve

Normally you would need to run make regenerate and make serve in two
separate terminal sessions, but you can run both at once via:

make devserver

The above command will simultaneously run Pelican in regeneration mode as well
as serve the output at http://localhost:8000.

When you’re ready to publish your site, you can upload it via the method(s) you
chose during the pelican-quickstart questionnaire. For this example, we’ll
use rsync over ssh:

make rsync_upload

That’s it! Your site should now be live.

(The default Makefile and devserver.sh scripts use the python and
pelican executables to complete its tasks. If you want to use different
executables, such as python3, you can set the PY and PELICAN
environment variables, respectively, to override the default executable names.)

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Settings

Pelican is configurable thanks to a settings file you can pass to the command
line:

pelican content -s path/to/your/pelicanconf.py

If you used the pelican-quickstart command, your primary settings file will
be named pelicanconf.py by default.

Note

When experimenting with different settings (especially the metadata ones)
caching may interfere and the changes may not be visible. In such cases
disable caching with LOAD_CONTENT_CACHE = False or use the
--ignore-cache command-line switch.

Settings are configured in the form of a Python module (a file). There is an
example settings file [https://github.com/getpelican/pelican/raw/master/samples/pelican.conf.py]
available for reference.

To see a list of current settings in your environment, including both default
and any customized values, run the following command (append one or more
specific setting names as arguments to see values for those settings only):

pelican --print-settings

All the setting identifiers must be set in all-caps, otherwise they will not be
processed. Setting values that are numbers (5, 20, etc.), booleans (True,
False, None, etc.), dictionaries, or tuples should not be enclosed in
quotation marks. All other values (i.e., strings) must be enclosed in
quotation marks.

Unless otherwise specified, settings that refer to paths can be either absolute
or relative to the configuration file. The settings you define in the
configuration file will be passed to the templates, which allows you to use
your settings to add site-wide content.

Here is a list of settings for Pelican:

Basic settings

	
USE_FOLDER_AS_CATEGORY = True

	When you don’t specify a category in your post metadata, set this setting to
True, and organize your articles in subfolders, the subfolder will
become the category of your post. If set to False, DEFAULT_CATEGORY
will be used as a fallback.

	
DEFAULT_CATEGORY = 'misc'

	The default category to fall back on.

	
DISPLAY_PAGES_ON_MENU = True

	Whether to display pages on the menu of the template. Templates may or may
not honor this setting.

	
DISPLAY_CATEGORIES_ON_MENU = True

	Whether to display categories on the menu of the template. Templates may or
not honor this setting.

	
DOCUTILS_SETTINGS = {}

	Extra configuration settings for the docutils publisher (applicable only to
reStructuredText). See Docutils Configuration [http://docutils.sourceforge.net/docs/user/config.html] settings for more details.

	
DELETE_OUTPUT_DIRECTORY = False

	Delete the output directory, and all of its contents, before generating
new files. This can be useful in preventing older, unnecessary files from
persisting in your output. However, this is a destructive setting and
should be handled with extreme care.

	
OUTPUT_RETENTION = []

	A list of filenames that should be retained and not deleted from the output
directory. One use case would be the preservation of version control data.

Example:

OUTPUT_RETENTION = [".hg", ".git", ".bzr"]

	
JINJA_ENVIRONMENT = {'trim_blocks': True, 'lstrip_blocks': True}

	A dictionary of custom Jinja2 environment variables you want to use. This
also includes a list of extensions you may want to include. See Jinja
Environment documentation [http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment].

	
JINJA_FILTERS = {}

	A dictionary of custom Jinja2 filters you want to use. The dictionary
should map the filtername to the filter function.

Example:

JINJA_FILTERS = {'urlencode': urlencode_filter}

See Jinja custom filters documentation [http://jinja.pocoo.org/docs/api/#custom-filters].

	
LOG_FILTER = []

	A list of tuples containing the logging level (up to warning) and the
message to be ignored.

Example:

LOG_FILTER = [(logging.WARN, 'TAG_SAVE_AS is set to False')]

	
READERS = {}

	A dictionary of file extensions / Reader classes for Pelican to process or
ignore.

For example, to avoid processing .html files, set:

READERS = {'html': None}

To add a custom reader for the foo extension, set:

READERS = {'foo': FooReader}

	
IGNORE_FILES = ['.#*']

	A list of glob patterns. Files and directories matching any of these
patterns will be ignored by the processor. For example, the default
['.#*'] will ignore emacs lock files, and ['__pycache__'] would
ignore Python 3’s bytecode caches.

	
MARKDOWN = {...}

	Extra configuration settings for the Markdown processor. Refer to the Python
Markdown documentation’s Options section [https://python-markdown.github.io/reference/#markdown] for a complete
list of supported options. The extensions option will be automatically
computed from the extension_configs option.

Defaults to:

MARKDOWN = {
 'extension_configs': {
 'markdown.extensions.codehilite': {'css_class': 'highlight'},
 'markdown.extensions.extra': {},
 'markdown.extensions.meta': {},
 },
 'output_format': 'html5',
}

Note

The dictionary defined in your settings file will replace this default
one.

	
OUTPUT_PATH = 'output/'

	Where to output the generated files.

	
PATH

	Path to content directory to be processed by Pelican. If undefined, and
content path is not specified via an argument to the pelican command,
Pelican will use the current working directory.

	
PAGE_PATHS = ['pages']

	A list of directories and files to look at for pages, relative to PATH.

	
PAGE_EXCLUDES = []

	A list of directories to exclude when looking for pages in addition to
ARTICLE_PATHS.

	
ARTICLE_PATHS = ['']

	A list of directories and files to look at for articles, relative to
PATH.

	
ARTICLE_EXCLUDES = []

	A list of directories to exclude when looking for articles in addition to
PAGE_PATHS.

	
OUTPUT_SOURCES = False

	Set to True if you want to copy the articles and pages in their original
format (e.g. Markdown or reStructuredText) to the specified OUTPUT_PATH.

	
OUTPUT_SOURCES_EXTENSION = '.text'

	Controls the extension that will be used by the SourcesGenerator. Defaults
to .text. If not a valid string the default value will be used.

	
PLUGINS = []

	The list of plugins to load. See Plugins.

	
PLUGIN_PATHS = []

	A list of directories where to look for plugins. See Plugins.

	
SITENAME = 'A Pelican Blog'

	Your site name

	
SITEURL

	Base URL of your web site. Not defined by default, so it is best to specify
your SITEURL; if you do not, feeds will not be generated with
properly-formed URLs. If your site is available via HTTPS, this setting
should begin with https:// — otherwise use http://. Then append your
domain, with no trailing slash at the end. Example: SITEURL =
'https://example.com'

	
STATIC_PATHS = ['images']

	A list of directories (relative to PATH) in which to look for static
files. Such files will be copied to the output directory without
modification. Articles, pages, and other content source files will normally
be skipped, so it is safe for a directory to appear both here and in
PAGE_PATHS or ARTICLE_PATHS. Pelican’s default settings include the
“images” directory here.

	
STATIC_EXCLUDES = []

	A list of directories to exclude when looking for static files.

	
STATIC_EXCLUDE_SOURCES = True

	If set to False, content source files will not be skipped when copying files
found in STATIC_PATHS. This setting is for backward compatibility with
Pelican releases before version 3.5. It has no effect unless
STATIC_PATHS contains a directory that is also in ARTICLE_PATHS or
PAGE_PATHS. If you are trying to publish your site’s source files,
consider using the OUTPUT_SOURCES setting instead.

	
STATIC_CREATE_LINKS = False

	Create links instead of copying files. If the content and output directories
are on the same device, then create hard links. Falls back to symbolic
links if the output directory is on a different filesystem. If symlinks are
created, don’t forget to add the -L or --copy-links option to rsync
when uploading your site.

	
STATIC_CHECK_IF_MODIFIED = False

	If set to True, and STATIC_CREATE_LINKS is False, compare mtimes
of content and output files, and only copy content files that are newer than
existing output files.

	
TYPOGRIFY = False

	If set to True, several typographical improvements will be incorporated into
the generated HTML via the Typogrify [https://pypi.python.org/pypi/typogrify] library, which can be installed
via: pip install typogrify

	
TYPOGRIFY_IGNORE_TAGS = []

	A list of tags for Typogrify to ignore. By default Typogrify will ignore
pre and code tags. This requires that Typogrify version 2.0.4 or
later is installed

	
SUMMARY_MAX_LENGTH = 50

	When creating a short summary of an article, this will be the default length
(measured in words) of the text created. This only applies if your content
does not otherwise specify a summary. Setting to None will cause the
summary to be a copy of the original content.

	
WITH_FUTURE_DATES = True

	If disabled, content with dates in the future will get a default status of
draft. See Reading only modified content for caveats.

	
INTRASITE_LINK_REGEX = '[{|](?P<what>.*?)[|}]'

	Regular expression that is used to parse internal links. Default syntax when
linking to internal files, tags, etc., is to enclose the identifier, say
filename, in {} or ||. Identifier between { and } goes
into the what capturing group. For details see
Linking to internal content.

	
PYGMENTS_RST_OPTIONS = []

	A list of default Pygments settings for your reStructuredText code blocks.
See Syntax highlighting for a list of supported options.

	
SLUGIFY_SOURCE = 'title'

	Specifies where you want the slug to be automatically generated from. Can be
set to title to use the ‘Title:’ metadata tag or basename to use the
article’s file name when creating the slug.

	
CACHE_CONTENT = False

	If True, saves content in caches. See
Reading only modified content for details about caching.

	
CONTENT_CACHING_LAYER = 'reader'

	If set to 'reader', save only the raw content and metadata returned by
readers. If set to 'generator', save processed content objects.

	
CACHE_PATH = 'cache'

	Directory in which to store cache files.

	
GZIP_CACHE = True

	If True, use gzip to (de)compress the cache files.

	
CHECK_MODIFIED_METHOD = 'mtime'

	Controls how files are checked for modifications.

	
LOAD_CONTENT_CACHE = False

	If True, load unmodified content from caches.

	
WRITE_SELECTED = []

	If this list is not empty, only output files with their paths in this
list are written. Paths should be either absolute or relative to the current
Pelican working directory. For possible use cases see
Writing only selected content.

	
FORMATTED_FIELDS = ['summary']

	A list of metadata fields containing reST/Markdown content to be parsed and
translated to HTML.

	
PORT = 8000

	The TCP port to serve content from the output folder via HTTP when pelican
is run with –listen

	
BIND = ''

	The IP to which to bind the HTTP server.

URL settings

The first thing to understand is that there are currently two supported methods
for URL formation: relative and absolute. Relative URLs are useful when
testing locally, and absolute URLs are reliable and most useful when
publishing. One method of supporting both is to have one Pelican configuration
file for local development and another for publishing. To see an example of
this type of setup, use the pelican-quickstart script as described in the
Installation section, which will produce two separate
configuration files for local development and publishing, respectively.

You can customize the URLs and locations where files will be saved. The
*_URL and *_SAVE_AS variables use Python’s format strings. These
variables allow you to place your articles in a location such as
{slug}/index.html and link to them as {slug} for clean URLs (see
example below). These settings give you the flexibility to place your articles
and pages anywhere you want.

Note

If you specify a datetime directive, it will be substituted using the
input files’ date metadata attribute. If the date is not specified for a
particular file, Pelican will rely on the file’s mtime timestamp. Check
the Python datetime documentation [https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior] for more information.

Also, you can use other file metadata attributes as well:

	slug

	date

	lang

	author

	category

Example usage:

ARTICLE_URL = 'posts/{date:%Y}/{date:%b}/{date:%d}/{slug}/'
ARTICLE_SAVE_AS = 'posts/{date:%Y}/{date:%b}/{date:%d}/{slug}/index.html'
PAGE_URL = 'pages/{slug}/'
PAGE_SAVE_AS = 'pages/{slug}/index.html'

This would save your articles into something like
/posts/2011/Aug/07/sample-post/index.html, save your pages into
/pages/about/index.html, and render them available at URLs of
/posts/2011/Aug/07/sample-post/ and /pages/about/, respectively.

	
RELATIVE_URLS = False

	Defines whether Pelican should use document-relative URLs or not. Only set
this to True when developing/testing and only if you fully understand
the effect it can have on links/feeds.

	
ARTICLE_URL = '{slug}.html'

	The URL to refer to an article.

	
ARTICLE_SAVE_AS = '{slug}.html'

	The place where we will save an article.

	
ARTICLE_LANG_URL = '{slug}-{lang}.html'

	The URL to refer to an article which doesn’t use the default language.

	
ARTICLE_LANG_SAVE_AS = '{slug}-{lang}.html'

	The place where we will save an article which doesn’t use the default
language.

	
DRAFT_URL = 'drafts/{slug}.html'

	The URL to refer to an article draft.

	
DRAFT_SAVE_AS = 'drafts/{slug}.html'

	The place where we will save an article draft.

	
DRAFT_LANG_URL = 'drafts/{slug}-{lang}.html'

	The URL to refer to an article draft which doesn’t use the default language.

	
DRAFT_LANG_SAVE_AS = 'drafts/{slug}-{lang}.html'

	The place where we will save an article draft which doesn’t use the default
language.

	
PAGE_URL = 'pages/{slug}.html'

	The URL we will use to link to a page.

	
PAGE_SAVE_AS = 'pages/{slug}.html'

	The location we will save the page. This value has to be the same as
PAGE_URL or you need to use a rewrite in your server config.

	
PAGE_LANG_URL = 'pages/{slug}-{lang}.html'

	The URL we will use to link to a page which doesn’t use the default
language.

	
PAGE_LANG_SAVE_AS = 'pages/{slug}-{lang}.html'

	The location we will save the page which doesn’t use the default language.

	
DRAFT_PAGE_URL = 'drafts/pages/{slug}.html'

	The URL used to link to a page draft.

	
DRAFT_PAGE_SAVE_AS = 'drafts/pages/{slug}.html'

	The actual location a page draft is saved at.

	
DRAFT_PAGE_LANG_URL = 'drafts/pages/{slug}-{lang}.html'

	The URL used to link to a page draft which doesn’t use the default
language.

	
DRAFT_PAGE_LANG_SAVE_AS = 'drafts/pages/{slug}-{lang}.html'

	The actual location a page draft which doesn’t use the default language is
saved at.

	
AUTHOR_URL = 'author/{slug}.html'

	The URL to use for an author.

	
AUTHOR_SAVE_AS = 'author/{slug}.html'

	The location to save an author.

	
CATEGORY_URL = 'category/{slug}.html'

	The URL to use for a category.

	
CATEGORY_SAVE_AS = 'category/{slug}.html'

	The location to save a category.

	
TAG_URL = 'tag/{slug}.html'

	The URL to use for a tag.

	
TAG_SAVE_AS = 'tag/{slug}.html'

	The location to save the tag page.

Note

If you do not want one or more of the default pages to be created (e.g.,
you are the only author on your site and thus do not need an Authors page),
set the corresponding *_SAVE_AS setting to '' to prevent the
relevant page from being generated.

Pelican can optionally create per-year, per-month, and per-day archives of your
posts. These secondary archives are disabled by default but are automatically
enabled if you supply format strings for their respective _SAVE_AS
settings. Period archives fit intuitively with the hierarchical model of web
URLs and can make it easier for readers to navigate through the posts you’ve
written over time.

Example usage:

YEAR_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/index.html'
MONTH_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/{date:%b}/index.html'

With these settings, Pelican will create an archive of all your posts for the
year at (for instance) posts/2011/index.html and an archive of all your
posts for the month at posts/2011/Aug/index.html.

Note

Period archives work best when the final path segment is index.html.
This way a reader can remove a portion of your URL and automatically arrive
at an appropriate archive of posts, without having to specify a page name.

	
YEAR_ARCHIVE_URL = ''

	The URL to use for per-year archives of your posts. Used only if you have
the {url} placeholder in PAGINATION_PATTERNS.

	
YEAR_ARCHIVE_SAVE_AS = ''

	The location to save per-year archives of your posts.

	
MONTH_ARCHIVE_URL = ''

	The URL to use for per-month archives of your posts. Used only if you have
the {url} placeholder in PAGINATION_PATTERNS.

	
MONTH_ARCHIVE_SAVE_AS = ''

	The location to save per-month archives of your posts.

	
DAY_ARCHIVE_URL = ''

	The URL to use for per-day archives of your posts. Used only if you have the
{url} placeholder in PAGINATION_PATTERNS.

	
DAY_ARCHIVE_SAVE_AS = ''

	The location to save per-day archives of your posts.

DIRECT_TEMPLATES work a bit differently than noted above. Only the
_SAVE_AS settings are available, but it is available for any direct
template.

	
ARCHIVES_SAVE_AS = 'archives.html'

	The location to save the article archives page.

	
AUTHORS_SAVE_AS = 'authors.html'

	The location to save the author list.

	
CATEGORIES_SAVE_AS = 'categories.html'

	The location to save the category list.

	
TAGS_SAVE_AS = 'tags.html'

	The location to save the tag list.

	
INDEX_SAVE_AS = 'index.html'

	The location to save the list of all articles.

URLs for direct template pages are theme-dependent. Some themes use
corresponding *_URL setting as string, while others hard-code them:
'archives.html', 'authors.html', 'categories.html',
'tags.html'.

	
SLUG_REGEX_SUBSTITUTIONS = [

	
(r'[^\w\s-]', ''), # remove non-alphabetical/whitespace/'-' chars

	
(r'(?u)\A\s*', ''), # strip leading whitespace

	
(r'(?u)\s*\Z', ''), # strip trailing whitespace

	
(r'[-\s]+', '-'), # reduce multiple whitespace or '-' to single '-'

	
]

	Regex substitutions to make when generating slugs of articles and pages.
Specified as a list of pairs of (from, to) which are applied in order,
ignoring case. The default substitutions have the effect of removing
non-alphanumeric characters and converting internal whitespace to dashes.
Apart from these substitutions, slugs are always converted to lowercase
ascii characters and leading and trailing whitespace is stripped. Useful for
backward compatibility with existing URLs.

	
AUTHOR_REGEX_SUBSTITUTIONS = SLUG_REGEX_SUBSTITUTIONS

	Regex substitutions for author slugs. Defaults to
SLUG_REGEX_SUBSTITUTIONS.

	
CATEGORY_REGEX_SUBSTITUTIONS = SLUG_REGEX_SUBSTITUTIONS

	Regex substitutions for category slugs. Defaults to
SLUG_REGEX_SUBSTITUTIONS.

	
TAG_REGEX_SUBSTITUTIONS = SLUG_REGEX_SUBSTITUTIONS

	Regex substitutions for tag slugs. Defaults to SLUG_REGEX_SUBSTITUTIONS.

Time and Date

	
TIMEZONE

	The timezone used in the date information, to generate Atom and RSS feeds.

If no timezone is defined, UTC is assumed. This means that the generated
Atom and RSS feeds will contain incorrect date information if your locale is
not UTC.

Pelican issues a warning in case this setting is not defined, as it was not
mandatory in previous versions.

Have a look at the wikipedia page [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones] to get a list of valid timezone values.

	
DEFAULT_DATE = None

	The default date you want to use. If 'fs', Pelican will use the file
system timestamp information (mtime) if it can’t get date information from
the metadata. If given any other string, it will be parsed by the same
method as article metadata. If set to a tuple object, the default datetime
object will instead be generated by passing the tuple to the
datetime.datetime constructor.

	
DEFAULT_DATE_FORMAT = '%a %d %B %Y'

	The default date format you want to use.

	
DATE_FORMATS = {}

	If you manage multiple languages, you can set the date formatting here.

If no DATE_FORMATS are set, Pelican will fall back to
DEFAULT_DATE_FORMAT. If you need to maintain multiple languages with
different date formats, you can set the DATE_FORMATS dictionary using
the language name (lang metadata in your post content) as the key.

In addition to the standard C89 strftime format codes that are listed in
Python strftime documentation [https://docs.python.org/library/datetime.html#strftime-strptime-behavior], you can use the - character between
% and the format character to remove any leading zeros. For example,
%d/%m/%Y will output 01/01/2014 whereas %-d/%-m/%Y will result
in 1/1/2014.

DATE_FORMATS = {
 'en': '%a, %d %b %Y',
 'jp': '%Y-%m-%d(%a)',
}

It is also possible to set different locale settings for each language by
using a (locale, format) tuple as a dictionary value which will override
the LOCALE setting:

On Unix/Linux
DATE_FORMATS = {
 'en': ('en_US','%a, %d %b %Y'),
 'jp': ('ja_JP','%Y-%m-%d(%a)'),
}

On Windows
DATE_FORMATS = {
 'en': ('usa','%a, %d %b %Y'),
 'jp': ('jpn','%Y-%m-%d(%a)'),
}

	
LOCALE

	Change the locale [1]. A list of locales can be provided here or a single
string representing one locale. When providing a list, all the locales will
be tried until one works.

You can set locale to further control date format:

 LOCALE = ('usa', 'jpn', # On Windows
 'en_US', 'ja_JP' # On Unix/Linux
)

For a list of available locales refer to locales on Windows [http://msdn.microsoft.com/en-us/library/cdax410z%28VS.71%29.aspx] or on
Unix/Linux, use the locale -a command; see manpage
locale(1) [https://linux.die.net/man/1/locale] for more information.

	[1]	Default is the system locale.

Template pages

	
TEMPLATE_PAGES = None

	A mapping containing template pages that will be rendered with the blog
entries. See Template pages.

If you want to generate custom pages besides your blog entries, you can
point any Jinja2 template file with a path pointing to the file and the
destination path for the generated file.

For instance, if you have a blog with three static pages — a list of books,
your resume, and a contact page — you could have:

TEMPLATE_PAGES = {'src/books.html': 'dest/books.html',
 'src/resume.html': 'dest/resume.html',
 'src/contact.html': 'dest/contact.html'}

	
TEMPLATE_EXTENSIONS = ['.html']

	The extensions to use when looking up template files from template names.

	
DIRECT_TEMPLATES = ['index', 'authors', 'categories', 'tags', 'archives']

	List of templates that are used directly to render content. Typically direct
templates are used to generate index pages for collections of content (e.g.,
category and tag index pages). If the author, category and tag collections are not
needed, set DIRECT_TEMPLATES = ['index', 'archives']

DIRECT_TEMPLATES are searched for over paths maintained in
THEME_TEMPLATES_OVERRIDES.

Metadata

	
AUTHOR

	Default author (usually your name).

	
DEFAULT_METADATA = {}

	The default metadata you want to use for all articles and pages.

	
FILENAME_METADATA = r'(?P<date>d{4}-d{2}-d{2}).*'

	The regexp that will be used to extract any metadata from the filename. All
named groups that are matched will be set in the metadata object. The
default value will only extract the date from the filename.

For example, to extract both the date and the slug:

FILENAME_METADATA = r'(?P<date>\d{4}-\d{2}-\d{2})_(?P<slug>.*)'

See also SLUGIFY_SOURCE.

	
PATH_METADATA = ''

	Like FILENAME_METADATA, but parsed from a page’s full path relative to
the content source directory.

	
EXTRA_PATH_METADATA = {}

	Extra metadata dictionaries keyed by relative path. Relative paths require
correct OS-specific directory separators (i.e. / in UNIX and \ in Windows)
unlike some other Pelican file settings. Paths to a directory apply to all
files under it. The most-specific path wins conflicts.

Not all metadata needs to be embedded in source file itself. For example, blog posts are often named following a
YYYY-MM-DD-SLUG.rst pattern, or nested into YYYY/MM/DD-SLUG
directories. To extract metadata from the filename or path, set
FILENAME_METADATA or PATH_METADATA to regular expressions that use
Python’s group name notation [https://docs.python.org/3/library/re.html#regular-expression-syntax] (?P<name>…). If you want to attach
additional metadata but don’t want to encode it in the path, you can set
EXTRA_PATH_METADATA:

EXTRA_PATH_METADATA = {
 'relative/path/to/file-1': {
 'key-1a': 'value-1a',
 'key-1b': 'value-1b',
 },
 'relative/path/to/file-2': {
 'key-2': 'value-2',
 },
 }

This can be a convenient way to shift the installed location of a particular
file:

Take advantage of the following defaults
STATIC_SAVE_AS = '{path}'
STATIC_URL = '{path}'
STATIC_PATHS = [
 'static/robots.txt',
]
EXTRA_PATH_METADATA = {
 'static/robots.txt': {'path': 'robots.txt'},
 }

Feed settings

By default, Pelican uses Atom feeds. However, it is also possible to use RSS
feeds if you prefer.

Pelican generates category feeds as well as feeds for all your articles. It
does not generate feeds for tags by default, but it is possible to do so using
the TAG_FEED_ATOM and TAG_FEED_RSS settings:

	
FEED_DOMAIN = None, i.e. base URL is "/"

	The domain prepended to feed URLs. Since feed URLs should always be
absolute, it is highly recommended to define this (e.g.,
“https://feeds.example.com”). If you have already explicitly defined SITEURL
(see above) and want to use the same domain for your feeds, you can just
set: FEED_DOMAIN = SITEURL.

	
FEED_ATOM = None, i.e. no Atom feed

	The location to save the Atom feed.

	
FEED_ATOM_URL = None

	Relative URL of the Atom feed. If not set, FEED_ATOM is used both for
save location and URL.

	
FEED_RSS = None, i.e. no RSS

	The location to save the RSS feed.

	
FEED_RSS_URL = None

	Relative URL of the RSS feed. If not set, FEED_RSS is used both for save
location and URL.

	
FEED_ALL_ATOM = 'feeds/all.atom.xml'

	The location to save the all-posts Atom feed: this feed will contain all
posts regardless of their language.

	
FEED_ALL_ATOM_URL = None

	Relative URL of the all-posts Atom feed. If not set, FEED_ALL_ATOM is
used both for save location and URL.

	
FEED_ALL_RSS = None, i.e. no all-posts RSS

	The location to save the the all-posts RSS feed: this feed will contain all
posts regardless of their language.

	
FEED_ALL_RSS_URL = None

	Relative URL of the all-posts RSS feed. If not set, FEED_ALL_RSS is used
both for save location and URL.

	
CATEGORY_FEED_ATOM = 'feeds/{slug}.atom.xml'

	The location to save the category Atom feeds. [2]

	
CATEGORY_FEED_ATOM_URL = None

	Relative URL of the category Atom feeds, including the {slug}
placeholder. [2] If not set, CATEGORY_FEED_ATOM is used both for save
location and URL.

	
CATEGORY_FEED_RSS = None, i.e. no RSS

	The location to save the category RSS feeds, including the {slug}
placeholder. [2]

	
CATEGORY_FEED_RSS_URL = None

	Relative URL of the category RSS feeds, including the {slug}
placeholder. [2] If not set, CATEGORY_FEED_RSS is used both for save
location and URL.

	
AUTHOR_FEED_ATOM = 'feeds/{slug}.atom.xml'

	The location to save the author Atom feeds. [2]

	
AUTHOR_FEED_ATOM_URL = None

	Relative URL of the author Atom feeds, including the {slug} placeholder.
[2] If not set, AUTHOR_FEED_ATOM is used both for save location and
URL.

	
AUTHOR_FEED_RSS = 'feeds/{slug}.rss.xml'

	The location to save the author RSS feeds. [2]

	
AUTHOR_FEED_RSS_URL = None

	Relative URL of the author RSS feeds, including the {slug} placeholder.
[2] If not set, AUTHOR_FEED_RSS is used both for save location and URL.

	
TAG_FEED_ATOM = None, i.e. no tag feed

	The location to save the tag Atom feed, including the {slug}
placeholder. [2]

	
TAG_FEED_ATOM_URL = None

	Relative URL of the tag Atom feed, including the {slug} placeholder.
[2]

	
TAG_FEED_RSS = None, i.e. no RSS tag feed

	Relative URL to output the tag RSS feed, including the {slug}
placeholder. If not set, TAG_FEED_RSS is used both for save location and
URL.

	
FEED_MAX_ITEMS

	Maximum number of items allowed in a feed. Feed item quantity is
unrestricted by default.

	
RSS_FEED_SUMMARY_ONLY = True

	Only include item summaries in the description tag of RSS feeds. If set
to False, the full content will be included instead. This setting
doesn’t affect Atom feeds, only RSS ones.

If you don’t want to generate some or any of these feeds, set the above
variables to None.

	[2]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) {slug} is replaced by name of the category / author / tag.

Pagination

The default behaviour of Pelican is to list all the article titles along with a
short description on the index page. While this works well for small-to-medium
sites, sites with a large quantity of articles will probably benefit from
paginating this list.

You can use the following settings to configure the pagination.

	
DEFAULT_ORPHANS = 0

	The minimum number of articles allowed on the last page. Use this when you
don’t want the last page to only contain a handful of articles.

	
DEFAULT_PAGINATION = False

	The maximum number of articles to include on a page, not including orphans.
False to disable pagination.

	
PAGINATED_TEMPLATES = {'index': None, 'tag': None, 'category': None, 'author': None}

	The templates to use pagination with, and the number of articles to include
on a page. If this value is None, it defaults to DEFAULT_PAGINATION.

	
PAGINATION_PATTERNS = (

	
(1, '{name}{extension}', '{name}{extension}'),

	
(2, '{name}{number}{extension}', '{name}{number}{extension}'),

	
)

	
A set of patterns that are used to determine advanced pagination output.

Using Pagination Patterns

By default, pages subsequent to .../foo.html are created as
.../foo2.html, etc. The PAGINATION_PATTERNS setting can be used to
change this. It takes a sequence of triples, where each triple consists of:

(minimum_page, page_url, page_save_as,)

For page_url and page_save_as, you may use a number of variables.
{url} and {save_as} correspond respectively to the *_URL and
*_SAVE_AS values of the corresponding page type (e.g. ARTICLE_SAVE_AS).
If {save_as} == foo/bar.html, then {name} == foo/bar and {extension}
== .html. {base_name} equals {name} except that it strips trailing
/index if present. {number} equals the page number.

For example, if you want to leave the first page unchanged, but place
subsequent pages at .../page/2/ etc, you could set PAGINATION_PATTERNS
as follows:

PAGINATION_PATTERNS = (
 (1, '{url}', '{save_as}',
 (2, '{base_name}/page/{number}/', '{base_name}/page/{number}/index.html'),
)

Translations

Pelican offers a way to translate articles. See the Content
section for more information.

	
DEFAULT_LANG = 'en'

	The default language to use.

	
ARTICLE_TRANSLATION_ID = 'slug'

	The metadata attribute(s) used to identify which articles are translations
of one another. May be a string or a collection of strings. Set to None
or False to disable the identification of translations.

	
PAGE_TRANSLATION_ID = 'slug'

	The metadata attribute(s) used to identify which pages are translations of
one another. May be a string or a collection of strings. Set to None or
False to disable the identification of translations.

	
TRANSLATION_FEED_ATOM = 'feeds/all-{lang}.atom.xml'

	The location to save the Atom feed for translations. [3]

	
TRANSLATION_FEED_ATOM_URL = None

	Relative URL of the Atom feed for translations, including the {lang}
placeholder. [3] If not set, TRANSLATION_FEED_ATOM is used both for
save location and URL.

	
TRANSLATION_FEED_RSS = None, i.e. no RSS

	Where to put the RSS feed for translations.

	
TRANSLATION_FEED_RSS_URL = None

	Relative URL of the RSS feed for translations, including the {lang}
placeholder. [3] If not set, TRANSLATION_FEED_RSS is used both for save
location and URL.

	[3]	(1, 2, 3) {lang} is the language code

Ordering content

	
NEWEST_FIRST_ARCHIVES = True

	Order archives by newest first by date. (False: orders by date with older
articles first.)

	
REVERSE_CATEGORY_ORDER = False

	Reverse the category order. (True: lists by reverse alphabetical order;
default lists alphabetically.)

	
ARTICLE_ORDER_BY = 'reversed-date'

	Defines how the articles (articles_page.object_list in the template) are
sorted. Valid options are: metadata as a string (use reversed- prefix
the reverse the sort order), special option 'basename' which will use
the basename of the file (without path) or a custom function to extract the
sorting key from articles. The default value, 'reversed-date', will sort
articles by date in reverse order (i.e. newest article comes first).

	
PAGE_ORDER_BY = 'basename'

	Defines how the pages (pages variable in the template) are sorted.
Options are same as ARTICLE_ORDER_BY. The default value, 'basename'
will sort pages by their basename.

Themes

Creating Pelican themes is addressed in a dedicated section (see
Creating themes). However, here are the settings that are related to
themes.

	
THEME

	Theme to use to produce the output. Can be a relative or absolute path to a
theme folder, or the name of a default theme or a theme installed via
pelican-themes (see below).

	
THEME_STATIC_DIR = 'theme'

	Destination directory in the output path where Pelican will place the files
collected from THEME_STATIC_PATHS. Default is theme.

	
THEME_STATIC_PATHS = ['static']

	Static theme paths you want to copy. Default value is static, but if your
theme has other static paths, you can put them here. If files or directories
with the same names are included in the paths defined in this settings, they
will be progressively overwritten.

	
THEME_TEMPLATES_OVERRIDES = []

	A list of paths you want Jinja2 to search for templates before searching the
theme’s templates/ directory. Allows for overriding individual theme
template files without having to fork an existing theme. Jinja2 searches in
the following order: files in THEME_TEMPLATES_OVERRIDES first, then the
theme’s templates/.

You can also extend templates from the theme using the {% extends %}
directive utilizing the !theme prefix as shown in the following example:

{% extends '!theme/article.html' %}

	
CSS_FILE = 'main.css'

	Specify the CSS file you want to load.

By default, two themes are available. You can specify them using the THEME
setting or by passing the -t option to the pelican command:

	notmyidea

	simple (a synonym for “plain text” :)

There are a number of other themes available at
https://github.com/getpelican/pelican-themes. Pelican comes with
pelican-themes, a small script for managing themes.

You can define your own theme, either by starting from scratch or by
duplicating and modifying a pre-existing theme. Here is a guide on how to
create your theme.

Following are example ways to specify your preferred theme:

Specify name of a built-in theme
THEME = "notmyidea"
Specify name of a theme installed via the pelican-themes tool
THEME = "chunk"
Specify a customized theme, via path relative to the settings file
THEME = "themes/mycustomtheme"
Specify a customized theme, via absolute path
THEME = "/home/myuser/projects/mysite/themes/mycustomtheme"

The built-in notmyidea theme can make good use of the following settings.
Feel free to use them in your themes as well.

	
SITESUBTITLE

	A subtitle to appear in the header.

	
DISQUS_SITENAME

	Pelican can handle Disqus comments. Specify the Disqus sitename identifier
here.

	
GITHUB_URL

	Your GitHub URL (if you have one). It will then use this information to
create a GitHub ribbon.

	
GOOGLE_ANALYTICS

	Set to UA-XXXXX-Y Property’s tracking ID to activate Google Analytics.

	
GA_COOKIE_DOMAIN

	Set cookie domain field of Google Analytics tracking code. Defaults to
auto.

	
GOSQUARED_SITENAME

	Set to ‘XXX-YYYYYY-X’ to activate GoSquared.

	
MENUITEMS

	A list of tuples (Title, URL) for additional menu items to appear at the
beginning of the main menu.

	
PIWIK_URL

	URL to your Piwik server - without ‘http://‘ at the beginning.

	
PIWIK_SSL_URL

	If the SSL-URL differs from the normal Piwik-URL you have to include this
setting too. (optional)

	
PIWIK_SITE_ID

	ID for the monitored website. You can find the ID in the Piwik admin
interface > Settings > Websites.

	
LINKS

	A list of tuples (Title, URL) for links to appear on the header.

	
SOCIAL

	A list of tuples (Title, URL) to appear in the “social” section.

	
TWITTER_USERNAME

	Allows for adding a button to articles to encourage others to tweet about
them. Add your Twitter username if you want this button to appear.

	
LINKS_WIDGET_NAME

	Allows override of the name of the links widget. If not specified, defaults
to “links”.

	
SOCIAL_WIDGET_NAME

	Allows override of the name of the “social” widget. If not specified,
defaults to “social”.

In addition, you can use the “wide” version of the notmyidea theme by
adding the following to your configuration:

CSS_FILE = "wide.css"

Logging

Sometimes, a long list of warnings may appear during site generation. Finding
the meaningful error message in the middle of tons of annoying log output
can be quite tricky. In order to filter out redundant log messages, Pelican
comes with the LOG_FILTER setting.

LOG_FILTER should be a list of tuples (level, msg), each of them being
composed of the logging level (up to warning) and the message to be
ignored. Simply populate the list with the log messages you want to hide, and
they will be filtered out.

For example:

import logging
LOG_FILTER = [(logging.WARN, 'TAG_SAVE_AS is set to False')]

It is possible to filter out messages by a template. Check out source code to
obtain a template.

For example:

import logging
LOG_FILTER = [(logging.WARN, 'Empty alt attribute for image %s in %s')]

Warning

Silencing messages by templates is a dangerous feature. It is possible to
unintentionally filter out multiple message types with the same template
(including messages from future Pelican versions). Proceed with caution.

Note

This option does nothing if --debug is passed.

Reading only modified content

To speed up the build process, Pelican can optionally read only articles and
pages with modified content.

When Pelican is about to read some content source file:

	The hash or modification time information for the file from a
previous build are loaded from a cache file if LOAD_CONTENT_CACHE is
True. These files are stored in the CACHE_PATH directory. If the
file has no record in the cache file, it is read as usual.

	The file is checked according to CHECK_MODIFIED_METHOD:

	If set to 'mtime', the modification time of the file is
checked.

	If set to a name of a function provided by the hashlib
module, e.g. 'md5', the file hash is checked.

	If set to anything else or the necessary information about the
file cannot be found in the cache file, the content is read as usual.

	If the file is considered unchanged, the content data saved in a
previous build corresponding to the file is loaded from the cache, and the
file is not read.

	If the file is considered changed, the file is read and the new
modification information and the content data are saved to the cache if
CACHE_CONTENT is True.

If CONTENT_CACHING_LAYER is set to 'reader' (the default), the raw
content and metadata returned by a reader are cached. If this setting is
instead set to 'generator', the processed content object is cached. Caching
the processed content object may conflict with plugins (as some reading related
signals may be skipped) and the WITH_FUTURE_DATES functionality (as the
draft status of the cached content objects would not change automatically
over time).

Checking modification times is faster than comparing file hashes, but it is not
as reliable because mtime information can be lost, e.g., when copying
content source files using the cp or rsync commands without the
mtime preservation mode (which for rsync can be invoked by passing the
--archive flag).

The cache files are Python pickles, so they may not be readable by different
versions of Python as the pickle format often changes. If such an error is
encountered, it is caught and the cache file is rebuilt automatically in the
new format. The cache files will also be rebuilt after the GZIP_CACHE
setting has been changed.

The --ignore-cache command-line option is useful when the whole cache needs
to be regenerated, such as when making modifications to the settings file that
will affect the cached content, or just for debugging purposes. When Pelican
runs in autoreload mode, modification of the settings file will make it ignore
the cache automatically if AUTORELOAD_IGNORE_CACHE is True.

Note that even when using cached content, all output is always written, so the
modification times of the generated *.html files will always change.
Therefore, rsync-based uploading may benefit from the --checksum
option.

Writing only selected content

When only working on a single article or page, or making tweaks to your theme,
it is often desirable to generate and review your work as quickly as possible.
In such cases, generating and writing the entire site output is often
unnecessary. By specifying only the desired files as output paths in the
WRITE_SELECTED list, only those files will be written. This list can be
also specified on the command line using the --write-selected option, which
accepts a comma-separated list of output file paths. By default this list is
empty, so all output is written. See Site generation for more details.

Example settings

-*- coding: utf-8 -*-
from __future__ import unicode_literals

AUTHOR = 'Alexis Métaireau'
SITENAME = "Alexis' log"
SITESUBTITLE = 'A personal blog.'
SITEURL = 'http://blog.notmyidea.org'
TIMEZONE = "Europe/Paris"

can be useful in development, but set to False when you're ready to publish
RELATIVE_URLS = True

GITHUB_URL = 'http://github.com/ametaireau/'
DISQUS_SITENAME = "blog-notmyidea"
REVERSE_CATEGORY_ORDER = True
LOCALE = "C"
DEFAULT_PAGINATION = 4
DEFAULT_DATE = (2012, 3, 2, 14, 1, 1)

FEED_ALL_RSS = 'feeds/all.rss.xml'
CATEGORY_FEED_RSS = 'feeds/{slug}.rss.xml'

LINKS = (('Biologeek', 'http://biologeek.org'),
 ('Filyb', "http://filyb.info/"),
 ('Libert-fr', "http://www.libert-fr.com"),
 ('N1k0', "http://prendreuncafe.com/blog/"),
 ('Tarek Ziadé', "http://ziade.org/blog"),
 ('Zubin Mithra', "http://zubin71.wordpress.com/"),)

SOCIAL = (('twitter', 'http://twitter.com/ametaireau'),
 ('lastfm', 'http://lastfm.com/user/akounet'),
 ('github', 'http://github.com/ametaireau'),)

global metadata to all the contents
DEFAULT_METADATA = {'yeah': 'it is'}

path-specific metadata
EXTRA_PATH_METADATA = {
 'extra/robots.txt': {'path': 'robots.txt'},
 }

static paths will be copied without parsing their contents
STATIC_PATHS = [
 'pictures',
 'extra/robots.txt',
]

custom page generated with a jinja2 template
TEMPLATE_PAGES = {'pages/jinja2_template.html': 'jinja2_template.html'}

code blocks with line numbers
PYGMENTS_RST_OPTIONS = {'linenos': 'table'}

foobar will not be used, because it's not in caps. All configuration keys
have to be in caps
foobar = "barbaz"

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Creating themes

To generate its HTML output, Pelican uses the Jinja [http://jinja.pocoo.org/] templating engine due to its flexibility and
straightforward syntax. If you want to create your own theme, feel free to take
inspiration from the “simple” theme [https://github.com/getpelican/pelican/tree/master/pelican/themes/simple/templates].

To generate your site using a theme you have created (or downloaded manually
and then modified), you can specify that theme via the -t flag:

pelican content -s pelicanconf.py -t /projects/your-site/themes/your-theme

If you’d rather not specify the theme on every invocation, you can define
THEME in your settings to point to the location of your preferred theme.

Structure

To make your own theme, you must follow the following structure:

├── static
│ ├── css
│ └── images
└── templates
 ├── archives.html // to display archives
 ├── period_archives.html // to display time-period archives
 ├── article.html // processed for each article
 ├── author.html // processed for each author
 ├── authors.html // must list all the authors
 ├── categories.html // must list all the categories
 ├── category.html // processed for each category
 ├── index.html // the index (list all the articles)
 ├── page.html // processed for each page
 ├── tag.html // processed for each tag
 └── tags.html // must list all the tags. Can be a tag cloud.

	static contains all the static assets, which will be copied to the output
theme folder. The above filesystem layout includes CSS and image folders,
but those are just examples. Put what you need here.

	templates contains all the templates that will be used to generate the
content. The template files listed above are mandatory; you can add your own
templates if it helps you keep things organized while creating your theme.

Templates and variables

The idea is to use a simple syntax that you can embed into your HTML pages.
This document describes which templates should exist in a theme, and which
variables will be passed to each template at generation time.

All templates will receive the variables defined in your settings file, as long
as they are in all-caps. You can access them directly.

Common variables

All of these settings will be available to all templates.

	Variable
	Description

	output_file
	The name of the file currently being generated. For
instance, when Pelican is rendering the home page,
output_file will be “index.html”.

	articles
	The list of articles, ordered descending by date.
All the elements are Article objects, so you can
access their attributes (e.g. title, summary, author
etc.). Sometimes this is shadowed (for instance, in
the tags page). You will then find info about it
in the all_articles variable.

	dates
	The same list of articles, but ordered by date,
ascending.

	drafts
	The list of draft articles

	authors
	A list of (author, articles) tuples, containing all
the authors and corresponding articles (values)

	categories
	A list of (category, articles) tuples, containing
all the categories and corresponding articles (values)

	tags
	A list of (tag, articles) tuples, containing all
the tags and corresponding articles (values)

	pages
	The list of pages

	hidden_pages
	The list of hidden pages

	draft_pages
	The list of draft pages

Sorting

URL wrappers (currently categories, tags, and authors), have comparison methods
that allow them to be easily sorted by name:

{% for tag, articles in tags|sort %}

If you want to sort based on different criteria, Jinja’s sort command [http://jinja.pocoo.org/docs/templates/#sort] has a
number of options.

Date Formatting

Pelican formats the date according to your settings and locale
(DATE_FORMATS/DEFAULT_DATE_FORMAT) and provides a locale_date
attribute. On the other hand, the date attribute will be a datetime [https://docs.python.org/2/library/datetime.html#datetime-objects]
object. If you need custom formatting for a date different than your settings,
use the Jinja filter strftime that comes with Pelican. Usage is same as
Python strftime [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior] format, but the filter will do the right thing and format
your date according to the locale given in your settings:

{{ article.date|strftime('%d %B %Y') }}

index.html

This is the home page or index of your blog, generated at index.html.

If pagination is active, subsequent pages will reside in
index{number}.html.

	Variable
	Description

	articles_paginator
	A paginator object for the list of articles

	articles_page
	The current page of articles

	articles_previous_page
	The previous page of articles (None if page does
not exist)

	articles_next_page
	The next page of articles (None if page does
not exist)

	dates_paginator
	A paginator object for the article list, ordered by
date, ascending.

	dates_page
	The current page of articles, ordered by date,
ascending.

	dates_previous_page
	The previous page of articles, ordered by date,
ascending (None if page does not exist)

	dates_next_page
	The next page of articles, ordered by date,
ascending (None if page does not exist)

	page_name
	‘index’ – useful for pagination links

author.html

This template will be processed for each of the existing authors, with output
generated according to the AUTHOR_SAVE_AS setting (Default:
author/{slug}.html). If pagination is active, subsequent pages will by
default reside at author/{slug}{number}.html.

	Variable
	Description

	author
	The name of the author being processed

	articles
	Articles by this author

	dates
	Articles by this author, but ordered by date,
ascending

	articles_paginator
	A paginator object for the list of articles

	articles_page
	The current page of articles

	articles_previous_page
	The previous page of articles (None if page does
not exist)

	articles_next_page
	The next page of articles (None if page does
not exist)

	dates_paginator
	A paginator object for the article list, ordered by
date, ascending.

	dates_page
	The current page of articles, ordered by date,
ascending.

	dates_previous_page
	The previous page of articles, ordered by date,
ascending (None if page does not exist)

	dates_next_page
	The next page of articles, ordered by date,
ascending (None if page does not exist)

	page_name
	AUTHOR_URL where everything after {slug} is
removed – useful for pagination links

category.html

This template will be processed for each of the existing categories, with
output generated according to the CATEGORY_SAVE_AS setting (Default:
category/{slug}.html). If pagination is active, subsequent pages will by
default reside at category/{slug}{number}.html.

	Variable
	Description

	category
	The name of the category being processed

	articles
	Articles for this category

	dates
	Articles for this category, but ordered by date,
ascending

	articles_paginator
	A paginator object for the list of articles

	articles_page
	The current page of articles

	articles_previous_page
	The previous page of articles (None if page does
not exist)

	articles_next_page
	The next page of articles (None if page does
not exist)

	dates_paginator
	A paginator object for the list of articles,
ordered by date, ascending

	dates_page
	The current page of articles, ordered by date,
ascending

	dates_previous_page
	The previous page of articles, ordered by date,
ascending (None if page does not exist)

	dates_next_page
	The next page of articles, ordered by date,
ascending (None if page does not exist)

	page_name
	CATEGORY_URL where everything after {slug} is
removed – useful for pagination links

article.html

This template will be processed for each article, with output generated
according to the ARTICLE_SAVE_AS setting (Default: {slug}.html). The
following variables are available when rendering.

	Variable
	Description

	article
	The article object to be displayed

	category
	The name of the category for the current article

Any metadata that you put in the header of the article source file will be
available as fields on the article object. The field name will be the same
as the name of the metadata field, except in all-lowercase characters.

For example, you could add a field called FacebookImage to your article
metadata, as shown below:

Title: I love Python more than music
Date: 2013-11-06 10:06
Tags: personal, python
Category: Tech
Slug: python-je-l-aime-a-mourir
Author: Francis Cabrel
FacebookImage: http://franciscabrel.com/images/pythonlove.png

This new metadata will be made available as article.facebookimage in your
article.html template. This would allow you, for example, to specify an image
for the Facebook open graph tags that will change for each article:

<meta property="og:image" content="{{ article.facebookimage }}"/>

page.html

This template will be processed for each page, with output generated according
to the PAGE_SAVE_AS setting (Default: pages/{slug}.html). The
following variables are available when rendering.

	Variable
	Description

	page
	The page object to be displayed. You can access its
title, slug, and content.

tag.html

This template will be processed for each tag, with output generated according
to the TAG_SAVE_AS setting (Default: tag/{slug}.html). If pagination
is active, subsequent pages will by default reside at
tag/{slug}{number}.html.

	Variable
	Description

	tag
	The name of the tag being processed

	articles
	Articles related to this tag

	dates
	Articles related to this tag, but ordered by date,
ascending

	articles_paginator
	A paginator object for the list of articles

	articles_page
	The current page of articles

	articles_previous_page
	The previous page of articles (None if page does
not exist)

	articles_next_page
	The next page of articles (None if page does
not exist)

	dates_paginator
	A paginator object for the list of articles,
ordered by date, ascending

	dates_page
	The current page of articles, ordered by date,
ascending

	dates_previous_page
	The previous page of articles, ordered by date,
ascending (None if page does not exist)

	dates_next_page
	The next page of articles, ordered by date,
ascending (None if page does not exist)

	page_name
	TAG_URL where everything after {slug} is removed
– useful for pagination links

period_archives.html

This template will be processed for each year of your posts if a path for
YEAR_ARCHIVE_SAVE_AS is defined, each month if MONTH_ARCHIVE_SAVE_AS is
defined, and each day if DAY_ARCHIVE_SAVE_AS is defined.

	Variable
	Description

	period
	A tuple of the form (year, month, day) that
indicates the current time period. year and day
are numbers while month is a string. This tuple
only contains year if the time period is a
given year. It contains both year and month
if the time period is over years and months and
so on.

You can see an example of how to use period in the “simple” theme
period_archives.html template [https://github.com/getpelican/pelican/blob/master/pelican/themes/simple/templates/period_archives.html].

Objects

Detail objects attributes that are available and useful in templates. Not all
attributes are listed here, this is a selection of attributes considered useful
in a template.

Article

The string representation of an Article is the source_path attribute.

	Attribute
	Description

	author
	The Author of
this article.

	authors
	A list of Authors
of this article.

	category
	The Category
of this article.

	content
	The rendered content of the article.

	date
	Datetime object representing the article date.

	date_format
	Either default date format or locale date format.

	default_template
	Default template name.

	in_default_lang
	Boolean representing if the article is written
in the default language.

	lang
	Language of the article.

	locale_date
	Date formatted by the date_format.

	metadata
	Article header metadata dict.

	save_as
	Location to save the article page.

	slug
	Page slug.

	source_path
	Full system path of the article source file.

	relative_source_path
	Relative path from PATH to the article source file.

	status
	The article status, can be any of ‘published’ or
‘draft’.

	summary
	Rendered summary content.

	tags
	List of Tag
objects.

	template
	Template name to use for rendering.

	title
	Title of the article.

	translations
	List of translations
Article objects.

	url
	URL to the article page.

Author / Category / Tag

The string representation of those objects is the name attribute.

	Attribute
	Description

	name
	Name of this object [1].

	page_name
	Author page name.

	save_as
	Location to save the author page.

	slug
	Page slug.

	url
	URL to the author page.

	[1]	for Author object, coming from :authors: or AUTHOR.

Page

The string representation of a Page is the source_path attribute.

	Attribute
	Description

	author
	The Author of
this page.

	content
	The rendered content of the page.

	date
	Datetime object representing the page date.

	date_format
	Either default date format or locale date format.

	default_template
	Default template name.

	in_default_lang
	Boolean representing if the article is written
in the default language.

	lang
	Language of the article.

	locale_date
	Date formatted by the date_format.

	metadata
	Page header metadata dict.

	save_as
	Location to save the page.

	slug
	Page slug.

	source_path
	Full system path of the page source file.

	relative_source_path
	Relative path from PATH to the page source file.

	status
	The page status, can be any of ‘published’, ‘hidden’ or
‘draft’.

	summary
	Rendered summary content.

	tags
	List of Tag
objects.

	template
	Template name to use for rendering.

	title
	Title of the page.

	translations
	List of translations
Article objects.

	url
	URL to the page.

Feeds

The feed variables changed in 3.0. Each variable now explicitly lists ATOM or
RSS in the name. ATOM is still the default. Old themes will need to be updated.
Here is a complete list of the feed variables:

FEED_ATOM
FEED_RSS
FEED_ALL_ATOM
FEED_ALL_RSS
CATEGORY_FEED_ATOM
CATEGORY_FEED_RSS
AUTHOR_FEED_ATOM
AUTHOR_FEED_RSS
TAG_FEED_ATOM
TAG_FEED_RSS
TRANSLATION_FEED_ATOM
TRANSLATION_FEED_RSS

Inheritance

Since version 3.0, Pelican supports inheritance from the simple theme, so
you can re-use the simple theme templates in your own themes.

If one of the mandatory files in the templates/ directory of your theme is
missing, it will be replaced by the matching template from the simple
theme. So if the HTML structure of a template in the simple theme is right
for you, you don’t have to write a new template from scratch.

You can also extend templates from the simple theme in your own themes by
using the {% extends %} directive as in the following example:

{% extends "!simple/index.html" %} <!-- extends the ``index.html`` template from the ``simple`` theme -->

{% extends "index.html" %} <!-- "regular" extending -->

Example

With this system, it is possible to create a theme with just two files.

base.html

The first file is the templates/base.html template:

{% extends "!simple/base.html" %}

{% block head %}
{{ super() }}
 <link rel="stylesheet" type="text/css" href="{{ SITEURL }}/theme/css/style.css" />
{% endblock %}

	On the first line, we extend the base.html template from the simple
theme, so we don’t have to rewrite the entire file.

	On the third line, we open the head block which has already been defined
in the simple theme.

	On the fourth line, the function super() keeps the content previously
inserted in the head block.

	On the fifth line, we append a stylesheet to the page.

	On the last line, we close the head block.

This file will be extended by all the other templates, so the stylesheet will
be linked from all pages.

style.css

The second file is the static/css/style.css CSS stylesheet:

body {
 font-family : monospace ;
 font-size : 100% ;
 background-color : white ;
 color : #111 ;
 width : 80% ;
 min-width : 400px ;
 min-height : 200px ;
 padding : 1em ;
 margin : 5% 10% ;
 border : thin solid gray ;
 border-radius : 5px ;
 display : block ;
}

a:link { color : blue ; text-decoration : none ; }
a:hover { color : blue ; text-decoration : underline ; }
a:visited { color : blue ; }

h1 a { color : inherit !important }
h2 a { color : inherit !important }
h3 a { color : inherit !important }
h4 a { color : inherit !important }
h5 a { color : inherit !important }
h6 a { color : inherit !important }

pre {
 margin : 2em 1em 2em 4em ;
}

#menu li {
 display : inline ;
}

#post-list {
 margin-bottom : 1em ;
 margin-top : 1em ;
}

Download

You can download this example theme here.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Plugins

Beginning with version 3.0, Pelican supports plugins. Plugins are a way to add
features to Pelican without having to directly modify the Pelican core.

How to use plugins

To load plugins, you have to specify them in your settings file. There are two
ways to do so. The first method is to specify strings with the path to the
callables:

PLUGINS = ['package.myplugin',]

Alternatively, another method is to import them and add them to the list:

from package import myplugin
PLUGINS = [myplugin,]

Note

When experimenting with different plugins (especially the ones that deal
with metadata and content) caching may interfere and the changes may not be
visible. In such cases disable caching with LOAD_CONTENT_CACHE = False
or use the --ignore-cache command-line switch.

If your plugins are not in an importable path, you can specify a list of paths
via the PLUGIN_PATHS setting. As shown in the following example, paths in
the PLUGIN_PATHS list can be absolute or relative to the settings file:

PLUGIN_PATHS = ["plugins", "/srv/pelican/plugins"]
PLUGINS = ["assets", "liquid_tags", "sitemap"]

Where to find plugins

We maintain a separate repository of plugins for people to share and use.
Please visit the pelican-plugins [https://github.com/getpelican/pelican-plugins] repository for a list of available plugins.

Please note that while we do our best to review and maintain these plugins,
they are submitted by the Pelican community and thus may have varying levels of
support and interoperability.

How to create plugins

Plugins are based on the concept of signals. Pelican sends signals, and plugins
subscribe to those signals. The list of signals are defined in a subsequent
section.

The only rule to follow for plugins is to define a register callable, in
which you map the signals to your plugin logic. Let’s take a simple example:

from pelican import signals

def test(sender):
 print("{} initialized !!".format(sender))

def register():
 signals.initialized.connect(test)

Note

Signal receivers are weakly-referenced and thus must not be defined within
your register callable or they will be garbage-collected before the
signal is emitted.

List of signals

Here is the list of currently implemented signals:

	Signal
	Arguments
	Description

	initialized
	pelican object
	

	finalized
	pelican object
	invoked after all the generators are executed and just before pelican exits
useful for custom post processing actions, such as:
- minifying js/css assets.
- notify/ping search engines with an updated sitemap.

	generator_init
	generator
	invoked in the Generator.__init__

	all_generators_finalized
	generators
	invoked after all the generators are executed and before writing output

	readers_init
	readers
	invoked in the Readers.__init__

	article_generator_context
	article_generator, metadata
	

	article_generator_preread
	article_generator
	invoked before a article is read in ArticlesGenerator.generate_context;
use if code needs to do something before every article is parsed

	article_generator_init
	article_generator
	invoked in the ArticlesGenerator.__init__

	article_generator_pretaxonomy
	article_generator
	invoked before categories and tags lists are created
useful when e.g. modifying the list of articles to be generated
so that removed articles are not leaked in categories or tags

	article_generator_finalized
	article_generator
	invoked at the end of ArticlesGenerator.generate_context

	article_generator_write_article
	article_generator, content
	invoked before writing each article, the article is passed as content

	article_writer_finalized
	article_generator, writer
	invoked after all articles and related pages have been written, but before
the article generator is closed.

	get_generators
	pelican object
	invoked in Pelican.get_generator_classes,
can return a Generator, or several
generators in a tuple or in a list.

	get_writer
	pelican object
	invoked in Pelican.get_writer,
can return a custom Writer.

	page_generator_context
	page_generator, metadata
	

	page_generator_preread
	page_generator
	invoked before a page is read in PageGenerator.generate_context;
use if code needs to do something before every page is parsed.

	page_generator_init
	page_generator
	invoked in the PagesGenerator.__init__

	page_generator_finalized
	page_generator
	invoked at the end of PagesGenerator.generate_context

	page_generator_write_page
	page_generator, content
	invoked before writing each page, the page is passed as content

	page_writer_finalized
	page_generator, writer
	invoked after all pages have been written, but before the page generator
is closed.

	static_generator_context
	static_generator, metadata
	

	static_generator_preread
	static_generator
	invoked before a static file is read in StaticGenerator.generate_context;
use if code needs to do something before every static file is added to the
staticfiles list.

	static_generator_init
	static_generator
	invoked in the StaticGenerator.__init__

	static_generator_finalized
	static_generator
	invoked at the end of StaticGenerator.generate_context

	content_object_init
	content_object
	invoked at the end of Content.__init__

	content_written
	path, context
	invoked each time a content file is written.

	feed_generated
	context, feed
	invoked each time a feed gets generated. Can be used to modify a feed
object before it gets written.

	feed_written
	path, context, feed
	invoked each time a feed file is written.

Warning

Avoid content_object_init signal if you intend to read summary or
content properties of the content object. That combination can result in
unresolved links when Linking to internal content (see
pelican-plugins bug #314 [https://github.com/getpelican/pelican-plugins/issues/314]). Use _summary and _content properties
instead, or, alternatively, run your plugin at a later stage (e.g.
all_generators_finalized).

Note

After Pelican 3.2, signal names were standardized. Older plugins may need
to be updated to use the new names:

	Old name
	New name

	article_generate_context
	article_generator_context

	article_generate_finalized
	article_generator_finalized

	article_generate_preread
	article_generator_preread

	pages_generate_context
	page_generator_context

	pages_generate_preread
	page_generator_preread

	pages_generator_finalized
	page_generator_finalized

	pages_generator_init
	page_generator_init

	static_generate_context
	static_generator_context

	static_generate_preread
	static_generator_preread

Recipes

We eventually realised some of the recipes to create plugins would be best
shared in the documentation somewhere, so here they are!

How to create a new reader

One thing you might want is to add support for your very own input format.
While it might make sense to add this feature in Pelican core, we wisely chose
to avoid this situation and instead have the different readers defined via
plugins.

The rationale behind this choice is mainly that plugins are really easy to
write and don’t slow down Pelican itself when they’re not active.

No more talking — here is an example:

from pelican import signals
from pelican.readers import BaseReader

Create a new reader class, inheriting from the pelican.reader.BaseReader
class NewReader(BaseReader):
 enabled = True # Yeah, you probably want that :-)

 # The list of file extensions you want this reader to match with.
 # If multiple readers were to use the same extension, the latest will
 # win (so the one you're defining here, most probably).
 file_extensions = ['yeah']

 # You need to have a read method, which takes a filename and returns
 # some content and the associated metadata.
 def read(self, filename):
 metadata = {'title': 'Oh yeah',
 'category': 'Foo',
 'date': '2012-12-01'}

 parsed = {}
 for key, value in metadata.items():
 parsed[key] = self.process_metadata(key, value)

 return "Some content", parsed

def add_reader(readers):
 readers.reader_classes['yeah'] = NewReader

This is how pelican works.
def register():
 signals.readers_init.connect(add_reader)

Adding a new generator

Adding a new generator is also really easy. You might want to have a look at
Pelican internals for more information on how to create your own generator.

def get_generators(pelican_object):
 # define a new generator here if you need to
 return MyGenerator

def register():
 signals.get_generators.connect(get_generators)

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

pelican-themes

Description

pelican-themes is a command line tool for managing themes for Pelican.

Usage

pelican-themes [-h] [-l] [-i theme path [theme path ...]]

[-r theme name [theme name ...]]

[-s theme path [theme path ...]] [-v] [–version]

Optional arguments:

	
-h, --help
	Show the help an exit

	
-l, --list
	Show the themes already installed

	
-i theme_path, --install theme_path

		One or more themes to install

	
-r theme_name, --remove theme_name

		One or more themes to remove

	
-s theme_path, --symlink theme_path

		Same as “–install”, but create a symbolic link instead of copying the theme.
Useful for theme development

	
-v, --verbose
	Verbose output

	
--version
	Print the version of this script

Examples

Listing the installed themes

With pelican-themes, you can see the available themes by using the -l
or --list option:

$ pelican-themes -l
notmyidea
two-column@
simple
$ pelican-themes --list
notmyidea
two-column@
simple

In this example, we can see there are three themes available: notmyidea,
simple, and two-column.

two-column is prefixed with an @ because this theme is not copied to
the Pelican theme path, but is instead just linked to it (see Creating
symbolic links for details about creating symbolic links).

Note that you can combine the --list option with the -v or
--verbose option to get more verbose output, like this:

$ pelican-themes -v -l
/usr/local/lib/python2.6/dist-packages/pelican-2.6.0-py2.6.egg/pelican/themes/notmyidea
/usr/local/lib/python2.6/dist-packages/pelican-2.6.0-py2.6.egg/pelican/themes/two-column (symbolic link to `/home/skami/Dev/Python/pelican-themes/two-column')
/usr/local/lib/python2.6/dist-packages/pelican-2.6.0-py2.6.egg/pelican/themes/simple

Installing themes

You can install one or more themes using the -i or --install option.
This option takes as argument the path(s) of the theme(s) you want to install,
and can be combined with the verbose option:

pelican-themes --install ~/Dev/Python/pelican-themes/notmyidea-cms --verbose

pelican-themes --install ~/Dev/Python/pelican-themes/notmyidea-cms\
 ~/Dev/Python/pelican-themes/martyalchin \
 --verbose

pelican-themes -vi ~/Dev/Python/pelican-themes/two-column

Removing themes

The pelican-themes command can also remove themes from the Pelican themes
path. The -r or --remove option takes as argument the name(s) of the
theme(s) you want to remove, and can be combined with the --verbose option.

pelican-themes --remove two-column

pelican-themes -r martyachin notmyidea-cmd -v

Creating symbolic links

pelican-themes can also install themes by creating symbolic links instead
of copying entire themes into the Pelican themes path.

To symbolically link a theme, you can use the -s or --symlink, which
works exactly as the --install option:

pelican-themes --symlink ~/Dev/Python/pelican-themes/two-column

In this example, the two-column theme is now symbolically linked to the
Pelican themes path, so we can use it, but we can also modify it without having
to reinstall it after each modification.

This is useful for theme development:

$ sudo pelican-themes -s ~/Dev/Python/pelican-themes/two-column
$ pelican ~/Blog/content -o /tmp/out -t two-column
$ firefox /tmp/out/index.html
$ vim ~/Dev/Pelican/pelican-themes/two-column/static/css/main.css
$ pelican ~/Blog/content -o /tmp/out -t two-column
$ cp /tmp/bg.png ~/Dev/Pelican/pelican-themes/two-column/static/img/bg.png
$ pelican ~/Blog/content -o /tmp/out -t two-column
$ vim ~/Dev/Pelican/pelican-themes/two-column/templates/index.html
$ pelican ~/Blog/content -o /tmp/out -t two-column

Doing several things at once

The --install, --remove and --symlink option are not mutually
exclusive, so you can combine them in the same command line to do more than one
operation at time, like this:

pelican-themes --remove notmyidea-cms two-column \
 --install ~/Dev/Python/pelican-themes/notmyidea-cms-fr \
 --symlink ~/Dev/Python/pelican-themes/two-column \
 --verbose

In this example, the theme notmyidea-cms is replaced by the theme
notmyidea-cms-fr

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Importing an existing site

Description

pelican-import is a command-line tool for converting articles from other
software to reStructuredText or Markdown. The supported import formats are:

	Blogger XML export

	Dotclear export

	Posterous API

	Tumblr API

	WordPress XML export

	RSS/Atom feed

The conversion from HTML to reStructuredText or Markdown relies on Pandoc [http://johnmacfarlane.net/pandoc/].
For Dotclear, if the source posts are written with Markdown syntax, they will
not be converted (as Pelican also supports Markdown).

Note

Unlike Pelican, Wordpress supports multiple categories per article. These
are imported as a comma-separated string. You have to resolve these
manually, or use a plugin that enables multiple categories per article
(like more_categories [http://github.com/getpelican/pelican-plugins/tree/master/more_categories]).

Dependencies

pelican-import has some dependencies not required by the rest of Pelican:

	BeautifulSoup4 and lxml, for WordPress and Dotclear import. Can be
installed like any other Python package (pip install BeautifulSoup4
lxml).

	Feedparser, for feed import (pip install feedparser).

	Pandoc, see the Pandoc site [http://johnmacfarlane.net/pandoc/installing.html] for installation instructions on your
operating system.

Usage

pelican-import [-h] [--blogger] [--dotclear] [--posterous] [--tumblr] [--wpfile] [--feed]
 [-o OUTPUT] [-m MARKUP] [--dir-cat] [--dir-page] [--strip-raw] [--wp-custpost]
 [--wp-attach] [--disable-slugs] [-e EMAIL] [-p PASSWORD] [-b BLOGNAME]
 input|api_token|api_key

Positional arguments

	input
	The input file to read

	api_token
	(Posterous only) api_token can be obtained from http://posterous.com/api/

	api_key
	(Tumblr only) api_key can be obtained from http://www.tumblr.com/oauth/apps

Optional arguments

	
-h, --help
	Show this help message and exit

	
--blogger
	Blogger XML export (default: False)

	
--dotclear
	Dotclear export (default: False)

	
--posterous
	Posterous API (default: False)

	
--tumblr
	Tumblr API (default: False)

	
--wpfile
	WordPress XML export (default: False)

	
--feed
	Feed to parse (default: False)

	
-o OUTPUT, --output OUTPUT

		Output path (default: content)

	
-m MARKUP, --markup MARKUP

		Output markup format (supports rst & markdown)
(default: rst)

	
--dir-cat
	Put files in directories with categories name
(default: False)

	
--dir-page
	Put files recognised as pages in “pages/” sub-
directory (blogger and wordpress import only)
(default: False)

	
--filter-author

		Import only post from the specified author

	
--strip-raw
	Strip raw HTML code that can’t be converted to markup
such as flash embeds or iframes (wordpress import
only) (default: False)

	
--wp-custpost
	Put wordpress custom post types in directories. If
used with –dir-cat option directories will be created
as “/post_type/category/” (wordpress import only)

	
--wp-attach
	Download files uploaded to wordpress as attachments.
Files will be added to posts as a list in the post
header and links to the files within the post will be
updated. All files will be downloaded, even if they
aren’t associated with a post. Files will be downloaded
with their original path inside the output directory,
e.g. “output/wp-uploads/date/postname/file.jpg”.
(wordpress import only) (requires an internet
connection)

	
--disable-slugs

		Disable storing slugs from imported posts within
output. With this disabled, your Pelican URLs may not
be consistent with your original posts. (default:
False)

	
-e EMAIL, --email=EMAIL

		Email used to authenticate Posterous API

	
-p PASSWORD, --password=PASSWORD

		Password used to authenticate Posterous API

	
-b BLOGNAME, --blogname=BLOGNAME

		Blog name used in Tumblr API

Examples

For Blogger:

$ pelican-import --blogger -o ~/output ~/posts.xml

For Dotclear:

$ pelican-import --dotclear -o ~/output ~/backup.txt

for Posterous:

$ pelican-import --posterous -o ~/output --email=<email_address> --password=<password> <api_token>

For Tumblr:

$ pelican-import --tumblr -o ~/output --blogname=<blogname> <api_token>

For WordPress:

$ pelican-import --wpfile -o ~/output ~/posts.xml

Tests

To test the module, one can use sample files:

	for WordPress: http://www.wpbeginner.com/wp-themes/how-to-add-dummy-content-for-theme-development-in-wordpress/

	for Dotclear: http://media.dotaddict.org/tda/downloads/lorem-backup.txt

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Frequently Asked Questions (FAQ)

Here are some frequently asked questions about Pelican.

What’s the best way to communicate a problem, question, or suggestion?

Please read our feedback guidelines.

How can I help?

There are several ways to help out. First, you can report any Pelican
suggestions or problems you might have via IRC (preferred) or the issue
tracker [https://github.com/getpelican/pelican/issues]. If submitting an
issue report, please first check the existing issue list (both open and closed)
in order to avoid submitting a duplicate issue.

If you want to contribute, please fork the git repository [https://github.com/getpelican/pelican/], create a new feature branch, make
your changes, and issue a pull request. Someone will review your changes as
soon as possible. Please refer to the How to Contribute
section for more details.

You can also contribute by creating themes and improving the documentation.

Is the Pelican settings file mandatory?

Configuration files are optional and are just an easy way to configure Pelican.
For basic operations, it’s possible to specify options while invoking Pelican
via the command line. See pelican --help for more information.

Changes to the settings file take no effect

When experimenting with different settings (especially the metadata ones)
caching may interfere and the changes may not be visible. In such cases, ensure
that caching is disabled via LOAD_CONTENT_CACHE = False or use the
--ignore-cache command-line switch.

I’m creating my own theme. How do I use Pygments for syntax highlighting?

Pygments adds some classes to the generated content. These classes are used by
themes to style code syntax highlighting via CSS. Specifically, you can
customize the appearance of your syntax highlighting via the .highlight pre
class in your theme’s CSS file. To see how various styles can be used to render
Django code, for example, use the style selector drop-down at top-right on the
Pygments project demo site [http://pygments.org/demo/].

You can use the following example commands to generate a starting CSS file from
a Pygments built-in style (in this case, “monokai”) and then copy the generated
CSS file to your new theme:

pygmentize -S monokai -f html -a .highlight > pygment.css
cp pygment.css path/to/theme/static/css/

Don’t forget to import your pygment.css file from your main CSS file.

How do I create my own theme?

Please refer to Creating themes.

I want to use Markdown, but I got an error.

If you try to generate Markdown content without first installing the Markdown
library, may see a message that says No valid files found in content.
Markdown is not a hard dependency for Pelican, so if you have content in
Markdown format, you will need to explicitly install the Markdown library. You
can do so by typing the following command, prepending sudo if permissions
require it:

pip install markdown

Can I use arbitrary metadata in my templates?

Yes. For example, to include a modified date in a Markdown post, one could
include the following at the top of the article:

Modified: 2012-08-08

For reStructuredText, this metadata should of course be prefixed with a colon:

:Modified: 2012-08-08

This metadata can then be accessed in templates such as article.html via:

{% if article.modified %}
Last modified: {{ article.modified }}
{% endif %}

If you want to include metadata in templates outside the article context (e.g.,
base.html), the if statement should instead be:

{% if article and article.modified %}

How do I assign custom templates on a per-page basis?

It’s as simple as adding an extra line of metadata to any page or article that
you want to have its own template. For example, this is how it would be handled
for content in reST format:

:template: template_name

For content in Markdown format:

Template: template_name

Then just make sure your theme contains the relevant template file (e.g.
template_name.html).

How can I override the generated URL of a specific page or article?

Include url and save_as metadata in any pages or articles that you want
to override the generated URL. Here is an example page in reST format:

Override url/save_as page
#########################

:url: override/url/
:save_as: override/url/index.html

With this metadata, the page will be written to override/url/index.html
and Pelican will use url override/url/ to link to this page.

How can I use a static page as my home page?

The override feature mentioned above can be used to specify a static page as
your home page. The following Markdown example could be stored in
content/pages/home.md:

Title: Welcome to My Site
URL:
save_as: index.html

Thank you for visiting. Welcome!

If the original blog index is still wanted, it can then be saved in a
different location by setting INDEX_SAVE_AS = 'blog_index.html' for
the 'index' direct template.

What if I want to disable feed generation?

To disable feed generation, all feed settings should be set to None. All
but three feed settings already default to None, so if you want to disable
all feed generation, you only need to specify the following settings:

FEED_ALL_ATOM = None
CATEGORY_FEED_ATOM = None
TRANSLATION_FEED_ATOM = None
AUTHOR_FEED_ATOM = None
AUTHOR_FEED_RSS = None

The word None should not be surrounded by quotes. Please note that None
and '' are not the same thing.

I’m getting a warning about feeds generated without SITEURL being set properly

RSS and Atom feeds require all URL links to be absolute [http://validator.w3.org/feed/docs/rss2.html#comments]. In order to properly
generate links in Pelican you will need to set SITEURL to the full path of
your site.

Feeds are still generated when this warning is displayed, but links within may
be malformed and thus the feed may not validate.

My feeds are broken since I upgraded to Pelican 3.x

Starting in 3.0, some of the FEED setting names were changed to more explicitly
refer to the Atom feeds they inherently represent (much like the FEED_RSS
setting names). Here is an exact list of the renamed settings:

FEED -> FEED_ATOM
TAG_FEED -> TAG_FEED_ATOM
CATEGORY_FEED -> CATEGORY_FEED_ATOM

Starting in 3.1, the new feed FEED_ALL_ATOM has been introduced: this feed
will aggregate all posts regardless of their language. This setting generates
'feeds/all.atom.xml' by default and FEED_ATOM now defaults to None.
The following feed setting has also been renamed:

TRANSLATION_FEED -> TRANSLATION_FEED_ATOM

Older themes that referenced the old setting names may not link properly. In
order to rectify this, please update your theme for compatibility by changing
the relevant values in your template files. For an example of complete feed
headers and usage please check out the simple theme.

Is Pelican only suitable for blogs?

No. Pelican can be easily configured to create and maintain any type of static
site. This may require a little customization of your theme and Pelican
configuration. For example, if you are building a launch site for your product
and do not need tags on your site, you could remove the relevant HTML code from
your theme. You can also disable generation of tag-related pages via:

TAGS_SAVE_AS = ''
TAG_SAVE_AS = ''

Why does Pelican always write all HTML files even with content caching enabled?

In order to reliably determine whether the HTML output is different before
writing it, a large part of the generation environment including the template
contexts, imported plugins, etc. would have to be saved and compared, at least
in the form of a hash (which would require special handling of unhashable
types), because of all the possible combinations of plugins, pagination, etc.
which may change in many different ways. This would require a lot more
processing time and memory and storage space. Simply writing the files each
time is a lot faster and a lot more reliable.

However, this means that the modification time of the files changes every time,
so a rsync based upload will transfer them even if their content hasn’t
changed. A simple solution is to make rsync use the --checksum option,
which will make it compare the file checksums in a much faster way than Pelican
would.

When only several specific output files are of interest (e.g. when working on
some specific page or the theme templates), the WRITE_SELECTED option may
help, see Writing only selected content.

How to process only a subset of all articles?

It is often useful to process only e.g. 10 articles for debugging purposes.
This can be achieved by explicitly specifying only the filenames of those
articles in ARTICLE_PATHS. A list of such filenames could be found using a
command similar to cd content; find -name '*.md' | head -n 10.

My tag-cloud is missing/broken since I upgraded Pelican

In an ongoing effort to steamline Pelican, tag_cloud generation has been
moved out of the pelican core and into a separate plugin [https://github.com/getpelican/pelican-plugins/tree/master/tag_cloud]. See
the Plugins documentation further information about the Pelican plugin
system.

Since I upgraded Pelican my pages are no longer rendered

Pages were available to themes as lowercase pages and uppercase PAGES.
To bring this inline with the Templates and variables section, PAGES has
been removed. This is quickly resolved by updating your theme to iterate over
pages instead of PAGES. Just replace:

{% for pg in PAGES %}

with something like:

{% for pg in pages %}

How can I stop Pelican from trying to parse my static files as content?

Pelican’s article and page generators run before it’s static generator. That
means if you use a setup similar to the default configuration, where a static
source directory is defined inside a *_PATHS setting, all files that have a
valid content file ending (.html, .rst, .md, ...) will be treated
as articles or pages before they get treated as static files.

To circumvent this issue either use the appropriate *_EXCLUDES setting or
disable the offending reader via READERS if you don’t need it.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Tips

Here are some tips about Pelican that you might find useful.

Custom 404 Pages

When a browser requests a resource that the web server cannot find, the web
server usually displays a generic “File not found” (404) error page that can be
stark and unsightly. One way to provide an error page that matches the theme of
your site is to create a custom 404 page (not an article), such as this
Markdown-formatted example stored in content/pages/404.md:

Title: Not Found
Status: hidden
Save_as: 404.html

The requested item could not be located. Perhaps you might want to check
the [Archives](/archives.html)?

The next step is to configure your web server to display this custom page
instead of its default 404 page. For Nginx, add the following to your
configuration file’s location block:

error_page 404 /404.html;

For Apache:

ErrorDocument 404 /404.html

For Amazon S3, first navigate to the Static Site Hosting menu in the bucket
settings on your AWS cosole. From there:

Error Document: 404.html

Publishing to GitHub

GitHub Pages [https://help.github.com/categories/20/articles] offer an easy
and convenient way to publish Pelican sites. There are two types of GitHub
Pages [https://help.github.com/articles/user-organization-and-project-pages]:
Project Pages and User Pages. Pelican sites can be published as both
Project Pages and User Pages.

Project Pages

To publish a Pelican site as a Project Page you need to push the content of
the output dir generated by Pelican to a repository’s gh-pages branch
on GitHub.

The excellent ghp-import [https://github.com/davisp/ghp-import], which can
be installed with pip, makes this process really easy.

For example, if the source of your Pelican site is contained in a GitHub
repository, and if you want to publish that Pelican site in the form of Project
Pages to this repository, you can then use the following:

$ pelican content -o output -s pelicanconf.py
$ ghp-import output -b gh-pages
$ git push origin gh-pages

The ghp-import output command updates the local gh-pages branch with
the content of the output directory (creating the branch if it doesn’t
already exist). The git push origin gh-pages command updates the remote
gh-pages branch, effectively publishing the Pelican site.

Note

The github target of the Makefile (and the gh_pages task of
tasks.py) created by the pelican-quickstart command publishes the
Pelican site as Project Pages, as described above.

User Pages

To publish a Pelican site in the form of User Pages, you need to push the
content of the output dir generated by Pelican to the master branch of
your <username>.github.io repository on GitHub.

Again, you can take advantage of ghp-import:

$ pelican content -o output -s pelicanconf.py
$ ghp-import output -b gh-pages
$ git push git@github.com:elemoine/elemoine.github.io.git gh-pages:master

The git push command pushes the local gh-pages branch (freshly updated
by the ghp-import command) to the elemoine.github.io repository’s
master branch on GitHub.

Note

To publish your Pelican site as User Pages, feel free to adjust the
github target of the Makefile.

Another option for publishing to User Pages is to generate the output files in
the root directory of the project.

For example, your main project folder is <username>.github.io and you can
create the Pelican project in a subdirectory called Pelican. Then from
inside the Pelican folder you can run:

$ pelican content -o .. -s pelicanconf.py

Now you can push the whole project <username>.github.io to the master
branch of your GitHub repository:

$ git push origin master

(assuming origin is set to your remote repository).

Custom 404 Pages

GitHub Pages will display the custom 404 page described above, as noted in the
relevant GitHub docs [https://help.github.com/articles/custom-404-pages/].

Update your site on each commit

To automatically update your Pelican site on each commit, you can create a
post-commit hook. For example, you can add the following to
.git/hooks/post-commit:

pelican content -o output -s pelicanconf.py && ghp-import output && git push origin gh-pages

Copy static files to the root of your site

To use a custom domain [https://help.github.com/articles/setting-up-a-custom-domain-with-pages] with
GitHub Pages, you need to put the domain of your site (e.g.,
blog.example.com) inside a CNAME file at the root of your site. To do
this, create the content/extra/ directory and add a CNAME file to it.
Then use the STATIC_PATHS setting to tell Pelican to copy this file to your
output directory. For example:

STATIC_PATHS = ['images', 'extra/CNAME']
EXTRA_PATH_METADATA = {'extra/CNAME': {'path': 'CNAME'},}

Note: use forward slashes, /, even on Windows.

You can also use the EXTRA_PATH_METADATA mechanism to place a
favicon.ico or robots.txt at the root of any site.

How to add YouTube or Vimeo Videos

The easiest way is to paste the embed code of the video from these sites
directly into your source content.

Alternatively, you can also use Pelican plugins like liquid_tags,
pelican_youtube, or pelican_vimeo to embed videos in your content.

Moreover, markup languages like reST and Markdown have plugins that let you
embed videos in the markup. You can use reST video directive [https://gist.github.com/dbrgn/2922648] for reST or mdx_video plugin [https://github.com/italomaia/mdx-video] for Markdown.

Develop Locally Using SSL

Here’s how you can set up your local pelican server to support SSL.

First, create a self-signed certificate and key using openssl (this creates cert.pem and key.pem):

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

And use this command to launch the server (the server starts within your output directory):

python -m pelican.server 8443 --key=../key.pem --cert=../cert.pem

If you are using develop-server.sh, add this to the top:

CERT="$BASEDIR/cert.pem"
KEY="$BASEDIR/key.pem"

and modify the pelican.server line as follows:

$PY -m pelican.server $port --ssl --cert="$CERT" --key="$KEY" &

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Contributing and feedback guidelines

There are many ways to contribute to Pelican. You can improve the
documentation, add missing features, and fix bugs (or just report them). You
can also help out by reviewing and commenting on
existing issues [https://github.com/getpelican/pelican/issues].

Don’t hesitate to fork Pelican and submit an issue or pull request on GitHub.
When doing so, please consider the following guidelines.

Filing issues

	Before you file an issue, try asking for help first.

	If determined to file an issue, first check for existing issues [https://github.com/getpelican/pelican/issues], including
closed issues.

How to get help

Before you ask for help, please make sure you do the following:

	Read the documentation [https://docs.getpelican.com/] thoroughly. If in a hurry, at least use the search
field that is provided at top-left on the documentation [https://docs.getpelican.com/] pages. Make sure
you read the docs for the Pelican version you are using.

	Use a search engine (e.g., DuckDuckGo, Google) to search for a solution to
your problem. Someone may have already found a solution, perhaps in the
form of a plugin [https://docs.getpelican.com/en/latest/plugins.html] or a specific combination of settings.

	Try reproducing the issue in a clean environment, ensuring you are using:

	latest Pelican release (or an up-to-date Git clone of Pelican master)

	latest releases of libraries used by Pelican

	no plugins or only those related to the issue

NOTE: The most common sources of problems are anomalies in (1) themes,
(2) settings files, and (3) make/invoke automation wrappers. If you can’t
reproduce your problem when using the following steps to generate your site,
then the problem is almost certainly with your chosen theme and/or settings
file (and not Pelican itself):

cd ~/projects/your-site
git clone https://github.com/getpelican/pelican ~/projects/pelican
pelican content -s ~/projects/pelican/samples/pelican.conf.py -t ~/projects/pelican/pelican/themes/notmyidea

If despite the above efforts you still cannot resolve your problem, be sure to
include in your inquiry the following information, preferably in the form of
links to content uploaded to a paste service [https://dpaste.de/], GitHub repository, or other
publicly-accessible location:

	Describe what version of Pelican you are running (output of pelican --version
or the HEAD commit hash if you cloned the repo) and how exactly you installed
it (the full command you used, e.g. pip install pelican).

	If you are looking for a way to get some end result, prepare a detailed
description of what the end result should look like (preferably in the form of
an image or a mock-up page) and explain in detail what you have done so far to
achieve it.

	If you are trying to solve some issue, prepare a detailed description of how
to reproduce the problem. If the issue cannot be easily reproduced, it cannot
be debugged by developers or volunteers. Describe only the minimum steps
necessary to reproduce it (no extra plugins, etc.).

	Upload your settings file or any other custom code that would enable people to
reproduce the problem or to see what you have already tried to achieve the
desired end result.

	Upload detailed and complete output logs and backtraces (remember to add
the --debug flag: pelican --debug content [...])

Once the above preparation is ready, you can contact people willing to help via
(preferably) the #pelican IRC channel or send a message to authors at getpelican dot com.
Remember to include all the information you prepared.

The #pelican IRC channel

	Because of differing time zones, you may not get an immediate response to your
question, but please be patient and stay logged into IRC — someone will almost
always respond if you wait long enough (it may take a few hours).

	If you don’t have an IRC client handy, use the webchat [https://kiwiirc.com/client/irc.freenode.net/?#pelican].

	You can direct your IRC client to the channel using this IRC link or you
can manually join the #pelican IRC channel on the freenode IRC network [https://freenode.net/].

Contributing code

Before you submit a contribution, please ask whether it is desired so that you
don’t spend a lot of time working on something that would be rejected for a
known reason. Consider also whether your new feature might be better suited as
a plugin [https://docs.getpelican.com/en/latest/plugins.html] — you can ask for help to make that determination.

Using Git and GitHub

	Create a new git branch [https://github.com/getpelican/pelican/wiki/Git-Tips#making-your-changes] specific to your change (as opposed to making
your commits in the master branch).

	Don’t put multiple unrelated fixes/features in the same branch / pull request.
For example, if you’re working on a new feature and find a bugfix that
doesn’t require your new feature, make a new distinct branch and pull
request for the bugfix.

	Add a RELEASE.md file in the root of the project that contains the
release type (major, minor, patch) and a summary of the changes that will be
used as the release changelog entry. For example:

Release type: minor

Reload browser window upon changes to content, settings, or theme

	Check for unnecessary whitespace via git diff --check before committing.

	First line of your commit message should start with present-tense verb, be 50
characters or less, and include the relevant issue number(s) if applicable.
Example: Ensure proper PLUGIN_PATH behavior. Refs #428. If the commit
completely fixes an existing bug report, please use Fixes #585 or Fix
#585 syntax (so the relevant issue is automatically closed upon PR merge).

	After the first line of the commit message, add a blank line and then a more
detailed explanation (when relevant).

	Squash your commits [https://github.com/getpelican/pelican/wiki/Git-Tips#squashing-commits] to eliminate merge commits and ensure a clean and
readable commit history.

	If you have previously filed a GitHub issue and want to contribute code that
addresses that issue, please use hub pull-request instead of using
GitHub’s web UI to submit the pull request. This isn’t an absolute
requirement, but makes the maintainers’ lives much easier! Specifically:
install hub [https://github.com/github/hub/#installation] and then run
hub pull-request -i [ISSUE] [https://hub.github.com/hub-pull-request.1.html]
to turn your GitHub issue into a pull request containing your code.

	After you have issued a pull request, the continuous integration (CI) system
will run the test suite for all supported Python versions and check for PEP8
compliance. If any of these checks fail, you should fix them. (If tests fail
on the CI system but seem to pass locally, ensure that local test runs aren’t
skipping any tests.)

Contribution quality standards

	Adhere to PEP8 coding standards [https://www.python.org/dev/peps/pep-0008/]. This can be eased via the pycodestyle [https://pypi.org/project/pycodestyle] or flake8 [https://pypi.org/project/flake8/] tools, the latter of which in
particular will give you some useful hints about ways in which the
code/formatting can be improved. If you are relying on your editor for PEP8
compliance, note that the line length specified by PEP8 is 79 (excluding the
line break).

	Ensure your code is compatible with the officially-supported Python releases [https://devguide.python.org/#status-of-python-branches].

	Add docs and tests for your changes. Undocumented and untested features will
not be accepted.

	Run all the tests [https://docs.getpelican.com/en/latest/contribute.html#running-the-test-suite] on all versions of Python supported by Pelican to
ensure nothing was accidentally broken.

Check out our Git Tips [https://github.com/getpelican/pelican/wiki/Git-Tips] page or ask for help if you
need assistance or have any questions about these guidelines.

Setting up the development environment

While there are many ways to set up one’s development environment, the following
instructions will utilize Pip [https://pip.pypa.io/] and Poetry [https://poetry.eustace.io/docs/#installation]. These tools facilitate managing
virtual environments for separate Python projects that are isolated from one
another, so you can use different packages (and package versions) for each.

Please note that Python 3.6+ is required for Pelican development.

(Optional) If you prefer to install Poetry once for use with multiple projects,
you can install it via:

curl -sSL https://raw.githubusercontent.com/sdispater/poetry/master/get-poetry.py | python

Point your web browser to the Pelican repository [https://github.com/getpelican/pelican] and tap the Fork button
at top-right. Then clone the source for your fork and add the upstream project
as a Git remote:

mkdir ~/projects
git clone https://github.com/YOUR_USERNAME/pelican.git ~/projects/pelican
cd ~/projects/pelican
git remote add upstream https://github.com/getpelican/pelican.git

While Poetry can dynamically create and manage virtual environments, we’re going
to manually create and activate a virtual environment:

mkdir ~/virtualenvs
python3 -m venv ~/virtualenvs/pelican
source ~/virtualenvs/pelican/bin/activate

Install the needed dependencies and set up the project:

pip install -e ~/projects/pelican invoke
invoke setup

Your local environment should now be ready to go!

Development

Once Pelican has been set up for local development, create a topic branch for
your bug fix or feature:

git checkout -b name-of-your-bugfix-or-feature

Now you can make changes to Pelican, its documentation, and/or other aspects of
the project.

Running the test suite

Each time you make changes to Pelican, there are two things to do regarding
tests: check that the existing tests pass, and add tests for any new features
or bug fixes. The tests are located in pelican/tests, and you can run them
via:

invoke tests

In addition to running the test suite, the above invocation will also check code
style and let you know whether non-conforming patterns were found. In some cases
these linters will make the needed changes directly, while in other cases you
may need to make additional changes until invoke tests no longer reports any
code style violations.

After making your changes and running the tests, you may see a test failure
mentioning that “some generated files differ from the expected functional tests
output.” If you have made changes that affect the HTML output generated by
Pelican, and the changes to that output are expected and deemed correct given
the nature of your changes, then you should update the output used by the
functional tests. To do so, make sure you have both en_EN.utf8 and
fr_FR.utf8 locales installed, and then run the following command:

invoke update-functional-tests

You may also find that some tests are skipped because some dependency (e.g.,
Pandoc) is not installed. This does not automatically mean that these tests
have passed; you should at least verify that any skipped tests are not affected
by your changes.

You should run the test suite under each of the supported versions of Python.
This is best done by creating a separate Python environment for each version.
Tox [https://tox.readthedocs.io/en/latest/] is a useful tool to automate running tests inside virtualenv
environments.

Building the docs

If you make changes to the documentation, you should build and inspect your
changes before committing them:

invoke docserve

Open http://localhost:8000 in your browser to review the documentation. While
the above task is running, any changes you make and save to the documentation
should automatically appear in the browser, as it live-reloads when it detects
changes to the documentation source files.

Plugin development

To create a new Pelican plugin, please refer to the plugin template [https://github.com/getpelican/cookiecutter-pelican-plugin]
repository for detailed instructions.

If you want to contribute to an existing Pelican plugin, follow the steps
above to set up Pelican for local development, and then create a directory to
store cloned plugin repositories:

mkdir -p ~/projects/pelican-plugins

Assuming you wanted to contribute to the Simple Footnotes plugin, you would
first browse to the Simple Footnotes [https://github.com/pelican-plugins/simple-footnotes] repository on GitHub and tap the Fork
button at top-right. Then clone the source for your fork and add the upstream
project as a Git remote:

git clone https://github.com/YOUR_USERNAME/simple-footnotes.git ~/projects/pelican-plugins/simple-footnotes
cd ~/projects/pelican-plugins/simple-footnotes
git remote add upstream https://github.com/pelican-plugins/simple-footnotes.git

Install the needed dependencies and set up the project:

invoke setup

After writing new tests for your plugin changes, run the plugin test suite:

invoke tests

Submitting your changes

Assuming linting validation and tests pass, add a RELEASE.md file in the root
of the project that contains the release type (major, minor, patch) and a
summary of the changes that will be used as the release changelog entry.
For example:

Release type: patch

Fix browser reloading upon changes to content, settings, or theme

Commit your changes and push your topic branch:

git add .
git commit -m "Your detailed description of your changes"
git push origin name-of-your-bugfix-or-feature

Finally, browse to your repository fork on GitHub and submit a pull request.

Logging tips

Try to use logging with appropriate levels.

For logging messages that are not repeated, use the usual Python way:

at top of file
import logging
logger = logging.getLogger(__name__)

when needed
logger.warning("A warning with %s formatting", arg_to_be_formatted)

Do not format log messages yourself. Use %s formatting in messages and pass
arguments to logger. This is important, because the Pelican logger will
preprocess some arguments, such as exceptions.

Limiting extraneous log messages

If the log message can occur several times, you may want to limit the log to
prevent flooding. In order to do that, use the extra keyword argument for
the logging message in the following format:

logger.warning("A warning with %s formatting", arg_to_be_formatted,
 extra={'limit_msg': 'A generic message for too many warnings'})

Optionally, you can also set 'limit_args' as a tuple of arguments in
extra dict if your generic message needs formatting.

Limit is set to 5, i.e, first four logs with the same 'limit_msg' are
outputted normally but the fifth one will be logged using 'limit_msg' (and
'limit_args' if present). After the fifth, corresponding log messages will
be ignored.

For example, if you want to log missing resources, use the following code:

for resource in resources:
 if resource.is_missing:
 logger.warning(
 'The resource %s is missing', resource.name,
 extra={'limit_msg': 'Other resources were missing'})

The log messages will be displayed as follows:

WARNING: The resource prettiest_cat.jpg is missing
WARNING: The resource best_cat_ever.jpg is missing
WARNING: The resource cutest_cat.jpg is missing
WARNING: The resource lolcat.jpg is missing
WARNING: Other resources were missing

Outputting traceback in the logs

If you’re logging inside an except block, you may want to provide the
traceback information as well. You can do that by setting exc_info keyword
argument to True during logging. However, doing so by default can be
undesired because tracebacks are long and can be confusing to regular users.
Try to limit them to --debug mode like the following:

try:
 some_action()
except Exception as e:
 logger.error('Exception occurred: %s', e,
 exc_info=settings.get('DEBUG', False))

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Pelican internals

This section describe how Pelican works internally. As you’ll see, it’s quite
simple, but a bit of documentation doesn’t hurt. :)

You can also find in the Some history about Pelican section an excerpt of a report the
original author wrote with some software design information.

Overall structure

What Pelican does is take a list of files and process them into some sort of
output. Usually, the input files are reStructuredText and Markdown files, and
the output is a blog, but both input and output can be anything you want.

The logic is separated into different classes and concepts:

	Writers are responsible for writing files: .html files, RSS feeds, and so
on. Since those operations are commonly used, the object is created once and
then passed to the generators.

	Readers are used to read from various formats (HTML, Markdown and
reStructuredText for now, but the system is extensible). Given a file, they
return metadata (author, tags, category, etc.) and content (HTML-formatted).

	Generators generate the different outputs. For instance, Pelican comes
with ArticlesGenerator and PageGenerator. Given a configuration, they
can do whatever they want. Most of the time, it’s generating files from
inputs.

	Pelican also uses templates, so it’s easy to write your own theme. The
syntax is Jinja2 [http://jinja.pocoo.org/] and is very easy to learn, so
don’t hesitate to jump in and build your own theme.

How to implement a new reader?

Is there an awesome markup language you want to add to Pelican? Well, the only
thing you have to do is to create a class with a read method that returns
HTML content and some metadata.

Take a look at the Markdown reader:

class MarkdownReader(BaseReader):
 enabled = bool(Markdown)

 def read(self, source_path):
 """Parse content and metadata of markdown files"""
 text = pelican_open(source_path)
 md_extensions = {'markdown.extensions.meta': {},
 'markdown.extensions.codehilite': {}}
 md = Markdown(extensions=md_extensions.keys(),
 extension_configs=md_extensions)
 content = md.convert(text)

 metadata = {}
 for name, value in md.Meta.items():
 name = name.lower()
 meta = self.process_metadata(name, value[0])
 metadata[name] = meta
 return content, metadata

Simple, isn’t it?

If your new reader requires additional Python dependencies, then you should
wrap their import statements in a try...except block. Then inside the
reader’s class, set the enabled class attribute to mark import success or
failure. This makes it possible for users to continue using their favourite
markup method without needing to install modules for formats they don’t use.

How to implement a new generator?

Generators have two important methods. You’re not forced to create both; only
the existing ones will be called.

	generate_context, that is called first, for all the generators.
Do whatever you have to do, and update the global context if needed. This
context is shared between all generators, and will be passed to the
templates. For instance, the PageGenerator generate_context method
finds all the pages, transforms them into objects, and populates the context
with them. Be careful not to output anything using this context at this
stage, as it is likely to change by the effect of other generators.

	generate_output is then called. And guess what is it made for? Oh,
generating the output. :) It’s here that you may want to look at the context
and call the methods of the writer object that is passed as the first
argument of this function. In the PageGenerator example, this method will
look at all the pages recorded in the global context and output a file on the
disk (using the writer method write_file) for each page encountered.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 next

 	
 previous |

 	Pelican 4.2.0 documentation »

Some history about Pelican

Warning

This page comes from a report the original author (Alexis Métaireau) wrote
right after writing Pelican, in December 2010. The information may not be
up-to-date.

Pelican is a simple static blog generator. It parses markup files (Markdown or
reStructuredText for now) and generates an HTML folder with all the files in
it. I’ve chosen to use Python to implement Pelican because it seemed to be
simple and to fit to my needs. I did not wanted to define a class for each
thing, but still wanted to keep my things loosely coupled. It turns out that it
was exactly what I wanted. From time to time, thanks to the feedback of some
users, it took me a very few time to provide fixes on it. So far, I’ve
re-factored the Pelican code by two
times; each time took less than 30 minutes.

Use case

I was previously using WordPress, a solution you can host on a web server to
manage your blog. Most of the time, I prefer using markup languages such as
Markdown or reStructuredText to type my articles. To do so, I use vim. I think
it is important to let the people choose the tool they want to write the
articles. In my opinion, a blog manager should just allow you to take any kind
of input and transform it to a weblog. That’s what Pelican does. You can write
your articles using the tool you want, and the markup language you want, and
then generate a static HTML weblog.

[image: _images/overall.png]
To be flexible enough, Pelican has template support, so you can easily write
your own themes if you want to.

Design process

Pelican came from a need I have. I started by creating a single file
application, and I have make it grow to support what it does by now. To start,
I wrote a piece of documentation about what I wanted to do. Then, I created the
content I wanted to parse (the reStructuredText files) and started
experimenting with the code. Pelican was 200 lines long and contained almost
ten functions and one class when it was first usable.

I have been facing different problems all over the time and wanted to add
features to Pelican while using it. The first change I have done was to add the
support of a settings file. It is possible to pass the options to the command
line, but can be tedious if there is a lot of them. In the same way, I have
added the support of different things over time: Atom feeds, multiple themes,
multiple markup support, etc. At some point, it appears that the “only one
file” mantra was not good enough for Pelican, so I decided to rework a bit all
that, and split this in multiple different files.

I’ve separated the logic in different classes and concepts:

	writers are responsible of all the writing process of the files.
They are responsible of writing .html files, RSS feeds and so on. Since those
operations are commonly used, the object is created once, and then passed to
the generators.

	readers are used to read from various formats (Markdown and
reStructuredText for now, but the system is extensible). Given a file, they
return metadata (author, tags, category, etc) and content (HTML formatted).

	generators generate the different outputs. For instance, Pelican
comes with an ArticlesGenerator and PagesGenerator, into others. Given a
configuration, they can do whatever you want them to do. Most of the time
it’s generating files from inputs (user inputs and files).

I also deal with contents objects. They can be Articles, Pages,
Quotes, or whatever you want. They are defined in the contents.py
module and represent some content to be used by the program.

In more detail

Here is an overview of the classes involved in Pelican.

[image: _images/uml.jpg]
The interface does not really exist, and I have added it only to clarify the
whole picture. I do use duck typing and not interfaces.

Internally, the following process is followed:

	First of all, the command line is parsed, and some content from the user is
used to initialize the different generator objects.

	A context is created. It contains the settings from the command line and
a settings file if provided.

	The generate_context method of each generator is called, updating
the context.

	The writer is created and given to the generate_output method of each
generator.

I make two calls because it is important that when the output is generated by
the generators, the context will not change. In other words, the first method
generate_context should modify the context, whereas the second
generate_output method should not.

Then, it is up to the generators to do what the want, in the
generate_context and generate_content method. Taking the
ArticlesGenerator class will help to understand some others concepts. Here
is what happens when calling the generate_context method:

	Read the folder “path”, looking for restructured text files, load each of
them, and construct a content object (Article) with it. To do so, use
Reader objects.

	Update the context with all those articles.

Then, the generate_content method uses the context and the writer
to generate the wanted output.

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 Navigation

 	
 previous

 	Pelican 4.2.0 documentation »

Release history

4.2.0 - 2019-10-17

	Support inline SVGs; don’t treat titles in SVGs as HTML titles

	Add category to feeds (in addition to tags)

	Improve content metadata field docs

	Add docs for including other Markdown/reST files in content

4.1.3 - 2019-10-09

	Fix quick-start docs regarding pelican –listen

	Set default listen address to 127.0.0.1

	Add extra/optional Markdown dependency to setup.py

	Use correct SSH port syntax for rsync in tasks.py

	Place all deprecated settings handling together

	Add related project URLs for display on PyPI

	Skip some tests on Windows that can’t pass due to filesystem differences

4.1.2 - 2019-09-23

Fix pelican.settings.load_source to avoid caching issues - PR #2621

4.1.1 - 2019-08-23

	Add AutoPub to auto-publish releases on PR merge

	Add CSS classes for reStructuredText figures

	Pass argv to Pelican main entrypoint

	Set default content status to a blank string rather than None

4.1.0 - 2019-07-14

	Live browser reload upon changed files (provided via Invoke task)

	Add pyproject.toml, managed by Poetry

	Support for invoking python -m pelican

	Add relative source path attribute to content

	Allow directories in EXTRA_PATH_METADATA

	Add all_articles variable to period pages (for recent posts functionality)

	Improve debug mode output

	Remove blank or duplicate summaries from Atom feed

	Fix bugs in pagination, pelican-import, pelican-quickstart, and feed importer

4.0.1 (2018-11-30)

	Refactor pelican.server logging

	Fix bug in which all static files were processed as “draft”

	Bug fixes for Invoke/Makefile automation, Importer, and other miscellanea

If upgrading from 3.7.x or earlier, please note that slug-related settings in
4.0+ use {slug} and/or {lang} rather than %s. If %s-style
settings are encountered, Pelican will emit a warning and fall back to the
default setting. Some user-submitted themes might try to format setting values
but fail upon site build with a TypeError. In such cases, the theme needs
to be updated. For example, instead of TAG_FEED_ATOM|format(tag.slug), use
TAG_FEED_ATOM.format(slug=tag.slug)

4.0.0 (2018-11-13)

	Replace develop_server.sh script with pelican --listen

	Improved copy/link behavior for large static files (e.g., videos)

	New {static} syntax to link to static content; content linked to by
{static} and {attach} is automatically copied over even if not in
STATIC_PATHS

	Pages can now have draft status

	Show current settings via new --print-settings flag

	All settings for slugs now use {slug} and/or {lang} rather than
%s. If %s-style settings are encountered, Pelican will emit a warning
and fallback to the default setting.

	New signals: feed_generated and page_generated_write_page

	Replace Fabric with Invoke and fabfile.py template with tasks.py

	Replace PAGINATED_DIRECT_TEMPLATES by PAGINATED_TEMPLATES, extending
control over pagination to all templates and making page size variable

	Replace SLUG_SUBSTITUTIONS (and friends) by SLUG_REGEX_SUBSTITUTIONS
for more finegrained control

	'{base_name}' value in PAGINATION_PATTERNS setting no longer strips
'bar' from 'foo/bar.html' (unless 'bar' == 'index').

	ARTICLE_ORDER_BY and PAGE_ORDER_BY now also affect 1) category, tag
and author pages 2) feeds 3) draft and hidden articles and pages

	New ARTICLE_TRANSLATION_ID and PAGE_TRANSLATION_ID settings to
specify metadata attributes used to identify/disable translations

	Make the HTML reader parse multiple occurrences of metadata tags as a list

	New Blogger XML backup importer

	Wordpress importer now updates file links to point to local copies if the
files were downloaded with --wp-attach.

	Importer no longer inserts extra newlines, to prevent breaking of HTML
attributes.

	Pelican server now prioritises foo.html and foo/index.html over
foo/ when resolving foo.

3.7.1 (2017-01-10)

	Fix locale issues in Quickstart script

	Specify encoding for README and CHANGELOG in setup.py

3.7.0 (2016-12-12)

	Atom feeds output <content> in addition to <summary>

	Atom feeds use <published> for the original publication date and
<updated> for modifications

	Simplify Atom feed ID generation and support URL fragments

	Produce category feeds with category-specific titles

	RSS feeds now default to summary instead of full content;
set RSS_FEED_SUMMARY_ONLY = False to revert to previous behavior

	Replace MD_EXTENSIONS with MARKDOWN setting

	Replace JINJA_EXTENSIONS with more-robust JINJA_ENVIRONMENT setting

	Improve summary truncation logic to handle special characters and tags that
span multiple lines, using HTML parser instead of regular expressions

	Include summary when looking for intra-site link substitutions

	Link to authors and index via {author}name and {index} syntax

	Override widget names via LINKS_WIDGET_NAME and SOCIAL_WIDGET_NAME

	Add INDEX_SAVE_AS option to override default index.html value

	Remove PAGES context variable for themes in favor of pages

	SLUG_SUBSTITUTIONS now accepts 3-tuple elements, allowing URL slugs to
contain non-alphanumeric characters

	Tag and category slugs can be controlled with greater precision using the
TAG_SUBSTITUTIONS and CATEGORY_SUBSTITUTIONS settings

	Author slugs can be controlled with greater precision using the
AUTHOR_SUBSTITUTIONS setting

	DEFAULT_DATE can be defined as a string

	Use mtime instead of ctime when DEFAULT_DATE = 'fs'

	Add --fatal=errors|warnings option for use with continuous integration

	When using generator-level caching, ensure previously-cached files are
processed instead of just new files.

	Add Python and Pelican version information to debug output

	Improve compatibility with Python 3.5

	Comply with and enforce PEP8 guidelines

	Replace tables in settings documentation with data:: directives

3.6.3 (2015-08-14)

	Fix permissions issue in release tarball

3.6.2 (2015-08-01)

	Fix installation errors related to Unicode in tests

	Don’t show pagination in notmyidea theme if there’s only one page

	Make hidden pages available in context

	Improve URLWrapper comparison

3.6.0 (2015-06-15)

	Disable caching by default in order to prevent potential confusion

	Improve caching behavior, replacing pickle with cpickle

	Allow Markdown or reST content in metadata fields other than summary

	Support semicolon-separated author/tag lists

	Improve flexibility of article sorting

	Add --relative-urls argument

	Support devserver listening on addresses other than localhost

	Unify HTTP server handlers to pelican.server throughout

	Handle intra-site links to draft posts

	Move tag_cloud from core to plugin

	Load default theme’s external resources via HTTPS

	Import drafts from WordPress XML

	Improve support for Windows users

	Enhance logging and test suite

	Clean up and refactor codebase

	New signals: all_generators_finalized and page_writer_finalized

3.5.0 (2014-11-04)

	Introduce ARTICLE_ORDER_BY and PAGE_ORDER_BY settings to control the
order of articles and pages.

	Include time zone information in dates rendered in templates.

	Expose the reader name in the metadata for articles and pages.

	Add the ability to store static files along with content in the same
directory as articles and pages using {attach} in the path.

	Prevent Pelican from raising an exception when there are duplicate pieces of
metadata in a Markdown file.

	Introduce the TYPOGRIFY_IGNORE_TAGS setting to add HTML tags to be
ignored by Typogrify.

	Add the ability to use - in date formats to strip leading zeros. For
example, %-d/%-m/%y will now result in the date 9/8/12.

	Ensure feed generation is correctly disabled during quickstart configuration.

	Fix PAGE_EXCLUDES and ARTICLE_EXCLUDES from incorrectly matching
sub-directories.

	Introduce STATIC_EXCLUDE setting to add static file excludes.

	Fix an issue when using PAGINATION_PATTERNS while RELATIVE_URLS
is enabled.

	Fix feed generation causing links to use the wrong language for month
names when using other locales.

	Fix an issue where the authors list in the simple template wasn’t correctly
formatted.

	Fix an issue when parsing non-string URLs from settings.

	Improve consistency of debug and warning messages.

3.4.0 (2014-07-01)

	Speed up content generation via new caching mechanism

	Add selective post generation (instead of always building entire site)

	Many documentation improvements, including switching to prettier RtD theme

	Add support for multiple content and plugin paths

	Add :modified: metadata field to complement :date:.
Used to specify the last date and time an article was updated independently
from the date and time it was published.

	Add support for multiple authors via new :authors: metadata field

	Watch for changes in static directories when in auto-regeneration mode

	Add filters to limit log output when desired

	Add language support to drafts

	Add SLUGIFY_SOURCE setting to control how post slugs are generated

	Fix many issues relating to locale and encoding

	Apply Typogrify filter to post summary

	Preserve file metadata (e.g. time stamps) when copying static files to output

	Move AsciiDoc support from Pelican core into separate plugin

	Produce inline links instead of reference-style links when importing content

	Improve handling of IGNORE_FILES setting behavior

	Properly escape symbol characters in tag names (e.g., C++)

	Minor tweaks for Python 3.4 compatibility

	Add several new signals

3.3.0 (2013-09-24)

	Drop Python 3.2 support in favor of Python 3.3

	Add Fabfile so Fabric can be used for workflow automation instead of Make

	OUTPUT_RETENTION setting can be used to preserve metadata (e.g., VCS
data such as .hg and .git) from being removed from output directory

	Tumblr import

	Improve logic and consistency when cleaning output folder

	Improve documentation versioning and release automation

	Improve pagination flexibility

	Rename signals for better consistency (some plugins may need to be updated)

	Move metadata extraction from generators to readers; metadata extraction no
longer article-specific

	Deprecate FILES_TO_COPY in favor of STATIC_PATHS and
EXTRA_PATH_METADATA

	Summaries in Markdown posts no longer include footnotes

	Remove unnecessary whitespace in output via lstrip_blocks Jinja parameter

	Move PDF generation from core to plugin

	Replace MARKUP setting with READERS

	Add warning if img tag is missing alt attribute

	Add support for {} in relative links syntax, besides ||

	Add support for {tag} and {category} relative links

	Add a content_written signal

3.2.1 and 3.2.2

	Facilitate inclusion in FreeBSD Ports Collection

3.2 (2013-04-24)

	Support for Python 3!

	Override page save-to location from meta-data (enables using a static page as
the site’s home page, for example)

	Time period archives (per-year, per-month, and per-day archives of posts)

	Posterous blog import

	Improve WordPress blog import

	Migrate plugins to separate repository

	Improve HTML parser

	Provide ability to show or hide categories from menu using
DISPLAY_CATEGORIES_ON_MENU option

	Auto-regeneration can be told to ignore files via IGNORE_FILES setting

	Improve post-generation feedback to user

	For multilingual posts, use meta-data to designate which is the original
and which is the translation

	Add .mdown to list of supported Markdown file extensions

	Document-relative URL generation (RELATIVE_URLS) is now off by default

3.1 (2012-12-04)

	Importer now stores slugs within files by default. This can be disabled with
the --disable-slugs option.

	Improve handling of links to intra-site resources

	Ensure WordPress import adds paragraphs for all types of line endings
in post content

	Decode HTML entities within WordPress post titles on import

	Improve appearance of LinkedIn icon in default theme

	Add GitHub and Google+ social icons support in default theme

	Optimize social icons

	Add FEED_ALL_ATOM and FEED_ALL_RSS to generate feeds containing all
posts regardless of their language

	Split TRANSLATION_FEED into TRANSLATION_FEED_ATOM and
TRANSLATION_FEED_RSS

	Different feeds can now be enabled/disabled individually

	Allow for blank author: if AUTHOR setting is not set, author won’t
default to ${USER} anymore, and a post won’t contain any author
information if the post author is empty

	Move LESS and Webassets support from Pelican core to plugin

	The DEFAULT_DATE setting now defaults to None, which means that
articles won’t be generated unless date metadata is specified

	Add FILENAME_METADATA setting to support metadata extraction from
filename

	Add gzip_cache plugin to compress common text files into a .gz
file within the same directory as the original file, preventing the server
(e.g. Nginx) from having to compress files during an HTTP call

	Add support for AsciiDoc-formatted content

	Add USE_FOLDER_AS_CATEGORY setting so that feature can be toggled on/off

	Support arbitrary Jinja template files

	Restore basic functional tests

	New signals: generator_init, get_generators, and
article_generate_preread

3.0 (2012-08-08)

	Refactored the way URLs are handled

	Improved the English documentation

	Fixed packaging using setuptools entrypoints

	Added typogrify support

	Added a way to disable feed generation

	Added support for DIRECT_TEMPLATES

	Allow multiple extensions for content files

	Added LESS support

	Improved the import script

	Added functional tests

	Rsync support in the generated Makefile

	Improved feed support (easily pluggable with Feedburner for instance)

	Added support for abbr in reST

	Fixed a bunch of bugs :-)

2.8 (2012-02-28)

	Dotclear importer

	Allow the usage of Markdown extensions

	Themes are now easily extensible

	Don’t output pagination information if there is only one page

	Add a page per author, with all their articles

	Improved the test suite

	Made the themes easier to extend

	Removed Skribit support

	Added a pelican-quickstart script

	Fixed timezone-related issues

	Added some scripts for Windows support

	Date can be specified in seconds

	Never fail when generating posts (skip and continue)

	Allow the use of future dates

	Support having different timezones per language

	Enhanced the documentation

2.7 (2011-06-11)

	Use logging rather than echoing to stdout

	Support custom Jinja filters

	Compatibility with Python 2.5

	Added a theme manager

	Packaged for Debian

	Added draft support

2.6 (2011-03-08)

	Changes in the output directory structure

	Makes templates easier to work with / create

	Added RSS support (was Atom-only)

	Added tag support for the feeds

	Enhance the documentation

	Added another theme (brownstone)

	Added translations

	Added a way to use cleaner URLs with a rewrite url module (or equivalent)

	Added a tag cloud

	Added an autoreloading feature: the blog is automatically regenerated each
time a modification is detected

	Translate the documentation into French

	Import a blog from an RSS feed

	Pagination support

	Added Skribit support

2.5 (2010-11-20)

	Import from WordPress

	Added some new themes (martyalchin / wide-notmyidea)

	First bug report!

	Linkedin support

	Added a FAQ

	Google Analytics support

	Twitter support

	Use relative URLs, not static ones

2.4 (2010-11-06)

	Minor themes changes

	Add Disqus support (so we have comments)

	Another code refactoring

	Added config settings about pages

	Blog entries can also be generated in PDF

2.3 (2010-10-31)

	Markdown support

2.2 (2010-10-30)

	Prettify output

	Manages static pages as well

2.1 (2010-10-30)

	Make notmyidea the default theme

2.0 (2010-10-30)

	Refactoring to be more extensible

	Change into the setting variables

1.2 (2010-09-28)

	Added a debug option

	Added per-category feeds

	Use filesystem to get dates if no metadata is provided

	Add Pygments support

1.1 (2010-08-19)

	First working version

 © Copyright 2010 – present, Alexis Metaireau and contributors.
 Created using Sphinx 1.4.9.

 _static/overall.png
Restructured Text

Markdown

Pictures

Theme Settings

\ Y

Pelican

HTML
Weblog

RSS feeds
Tags
Categories

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_images/uml.jpg
get_reader(filename) |<<

]
i
| Page :;;.enezator_s_..
. urt PagesGenerator
. slug e
. ety i [Fpages
. ~check properties() ! !
: A i '
i .
: i '
. Article |<- - ! | v
.
,][=aterraces
------------------- i 1| 1Generator
1 [+generate_context ()]
1 |+generate output()
'
s
' Generator
readers.. —...._.._.. ! -
| = . 1 [ArticleGenerator o
RstReader HEE el tings
: i [[#patn
[+read() | #dates #theme
Lo Pt patn
MardownReader| | #categories #markup
= t +generate_feeds() Fget_templates()
Fread() | +generate_pages () get_files (path,exclude)|
§ # update_context()
| -

_images/overall.png
Restructured Text

Markdown

Pictures

Theme Settings

\ Y

Pelican

HTML
Weblog

RSS feeds
Tags
Categories

_static/up.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/comment-bright.png

_static/down.png

_static/comment.png

_static/up-pressed.png

_static/uml.jpg
get_reader(filename) |<<

]
i
| Page :;;.enezator_s_..
. urt PagesGenerator
. slug e
. ety i [Fpages
. ~check properties() ! !
: A i '
i .
: i '
. Article |<- - ! | v
.
,][=aterraces
------------------- i 1| 1Generator
1 [+generate_context ()]
1 |+generate output()
'
s
' Generator
readers.. —...._.._.. ! -
| = . 1 [ArticleGenerator o
RstReader HEE el tings
: i [[#patn
[+read() | #dates #theme
Lo Pt patn
MardownReader| | #categories #markup
= t +generate_feeds() Fget_templates()
Fread() | +generate_pages () get_files (path,exclude)|
§ # update_context()
| -

