NetworkX Reference Release 2.0.dev20161129121305 Aric Hagberg, Dan Schult, Pieter Swart ## Contents | 1 | Over | view 1 | 1 | |---|-------|---------------------------------|---| | | 1.1 | Who uses NetworkX? | 1 | | | 1.2 | Goals | 1 | | | 1.3 | The Python programming language | 1 | | | 1.4 | | 2 | | | 1.5 | History | 2 | | 2 | Intro | duction | 3 | | | 2.1 | NetworkX Basics | 3 | | | 2.2 | | 4 | | 3 | Gran | h types | 9 | | | 3.1 | J F | 9 | | | 3.2 | Basic graph types | - | | | | | | | 4 | _ | rithms 119 | | | | 4.1 | Approximation | | | | 4.2 | Assortativity | | | | 4.3 | Bipartite | | | | 4.4 | Boundary | _ | | | 4.5 | Centrality | _ | | | 4.6 | Chains | _ | | | 4.7 | Chordal | | | | 4.8 | Clique | | | | 4.9 | Clustering | | | | 4.10 | Coloring | | | | 4.11 | Communicability | | | | 4.12 | Communities | | | | 4.13 | Components | | | | 4.14 | Connectivity | | | | 4.15 | Cores | | | | 4.16 | Covering | | | | 4.17 | Cycles | | | | 4.18 | Cuts | | | | 4.19 | Directed Acyclic Graphs | | | | 4.20 | Dispersion | | | | 4.21 | Distance Measures | | | | 4.22 | Distance-Regular Graphs | 3 | | | 4.23 | Dominance | | |---|------|---------------------------------------|-------| | | 4.24 | Dominating Sets | 272 | | | 4.25 | Efficiency | 273 | | | 4.26 | Eulerian | 275 | | | 4.27 | Flows | | | | 4.28 | Graphical degree sequence | | | | 4.29 | Hierarchy | | | | 4.30 | Hybrid | | | | 4.31 | · | | | | | Isolates | | | | 4.32 | · · · · · · · · · · · · · · · · · · · | | | | | Link Analysis | | | | | Link Prediction | | | | 4.35 | Matching | | | | 4.36 | Minors | 336 | | | 4.37 | Maximal independent set | 342 | | | 4.38 | Operators | 342 | | | 4.39 | Reciprocity | | | | 4.40 | Rich Club | | | | 4.41 | Shortest Paths | | | | 4.42 | Simple Paths | | | | 4.43 | Swap | | | | 4.44 | Tournament | | | | 4.45 | Traversal | | | | 4.46 | Tree | | | | | | | | | 4.47 | Triads | | | | 4.48 | Vitality | | | | 4.49 | Voronoi cells | | | | 4.50 | Wiener index | 409 | | 5 | Func | tions | 411 | | 3 | | | | | | 5.1 | Graph | | | | 5.2 | Nodes | | | | 5.3 | Edges | | | | 5.4 | Attributes | | | | 5.5 | Freezing graph structure | 418 | | | Cwam | Ja company April | 421 | | O | _ | 8 | | | | 6.1 | | | | | 6.2 | Classic | | | | 6.3 | 1 | 430 | | | 6.4 | | 432 | | | 6.5 | 1 | 436 | | | 6.6 | ·r | 445 | | | 6.7 | e i | 446 | | | 6.8 | Random Clustered | 452 | | | 6.9 | Directed | 453 | | | 6.10 | Geometric | 456 | | | 6.11 | Line Graph | 461 | | | 6.12 | | 462 | | | 6.13 | | 463 | | | 6.14 | | 463 | | | 6.15 | | 465 | | | 6.16 | | 466 | | | 6.17 | | 471 | | | 0.1/ | 1.011 10011101pine 11000 | . , 1 | | | | Triads | | |----|---------|---------------------------------------|-----| | 7 | Linea | ar algebra | 475 | | | | | 475 | | | | Laplacian Matrix | 477 | | | | Spectrum | | | | | Algebraic Connectivity | | | | | Attribute Matrices | | | 8 | Conve | erting to and from other data formats | 487 | | | | | 487 | | | | Dictionaries | | | | | Lists | | | | | Numpy | | | | | Scipy | | | | | Pandas | | | 0 | | | | | 9 | | ing and writing graphs | 501 | | | | Adjacency List | | | | | Multiline Adjacency List | | | | | Edge List | | | | | GEXF | | | | | GML | | | | | Pickle | | | | | GraphML | | | | | JSON | | | | | LEDA | | | | | YAML | | | | 9.11 | SparseGraph6 | 532 | | | 9.12 | Pajek | 537 | | | 9.13 | GIS Shapefile | 538 | | 10 | Draw | ing | 543 | | | | Matplotlib | 543 | | | | Graphviz AGraph (dot) | | | | | Graphviz with pydot | | | | | Graph Layout | | | | | | | | 11 | Excep | | 561 | | | 11.1 | Exceptions | 561 | | 12 | Utiliti | ies | 563 | | | 12.1 | Helper Functions | 563 | | | | Data Structures and Algorithms | 564 | | | | Random Sequence Generators | 565 | | | | Decorators | 567 | | | | | 568 | | | | Context Managers | | | 12 | Licen | | 571 | | | | | | | | Citing | | 573 | | 15 | Credi | its | 575 | | | | 1 Contributions | | | |----|---------|-----------------|--|-----| | 16 | Gloss | ossary | | 579 | | Bi | bliogra | graphy | | 581 | | Рy | thon N | n Module Index | | 583 | ## **Overview** NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and function of complex networks. With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more. ## 1.1 Who uses NetworkX? The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabási [BA02], Newman [Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic texts [Bollobas01], [Diestel97] and [West01] for graph theoretic results and terminology. For basic graph algorithms, we recommend the texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BE05]. ## 1.2 Goals NetworkX is intended to provide - tools for the study of the structure and dynamics of social, biological, and infrastructure networks, - a standard programming interface and graph implementation that is suitable for many applications, - a rapid development environment for collaborative, multidisciplinary projects, - an interface to existing numerical algorithms and code written in C, C++, and FORTRAN, - the ability to painlessly slurp in large nonstandard data sets. ## 1.3 The Python programming language Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition Python is also an excellent "glue" language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04]. Equally important, Python is free, well-supported, and a joy to use. In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli [Martelli03]. ## 1.4 Free software NetworkX is free software; you can redistribute it and/or modify it under the terms of the *BSD License*. We welcome contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone at Github https://github.com/networkx/networkx ## 1.5 History NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003. The first public release was in April 2005. Many people have contributed to the success of NetworkX. Some of the contributors are listed in the *credits*. ## 1.5.1 What Next - · A Brief Tour - Installing - Reference - Examples ## Introduction The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the resulting networks and some basic drawing tools. Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please contact us by joining the NetworkX Google group. Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names are lower_case_underscore (lowercase with an underscore representing a space between words). ## 2.1 NetworkX Basics After starting Python, import the networkx module with (the recommended way) ``` >>> import networkx as nx ``` To save repetition, in the documentation we assume that NetworkX has been imported this way. If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your PYTHONPATH. The following basic graph types are provided as Python classes: **Graph** This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow self-loop edges between a node and itself. **DiGraph** Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of Graph). **MultiGraph** A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional flexibility leads to some degradation in performance, though usually not significant. MultiDiGraph A directed version of a MultiGraph. Empty graph-like objects are created with ``` >>> G=nx.Graph() >>> G=nx.DiGraph() ``` ``` >>> G=nx.MultiGraph() >>> G=nx.MultiDiGraph() ``` All graph classes allow any *hashable* object as a node. Hashable objects include strings, tuples, integers, and more. Arbitrary edge attributes such as weights and labels can be associated with an edge. The graph internal data structures are based on an adjacency list representation and implemented using Python *dictionary* datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge attributes associated with that edge. This "dict-of-dicts" structure allows fast addition, deletion, and lookup of nodes and neighbors in large
graphs. The underlying datastructure is accessed directly by methods (the programming interface "API") in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the 'dicts-of-dicts'-based datastructure with an alternative datastructure that implements the same methods. ## **2.1.1 Graphs** The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or edges. NetworkX graph objects come in different flavors depending on two main properties of the network: - Directed: Are the edges **directed**? Does the order of the edge pairs (u,v) matter? A directed graph is specified by the "Di" prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph properties are defined differently for directed graphs. - Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges requires a different data structure, though tricky users could design edge data objects to support this functionality. We provide a standard data structure and interface for this type of graph using the prefix "Multi", e.g. MultiGraph(). The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph ## 2.2 Nodes and Edges The next choice you have to make when specifying a graph is what kinds of nodes and edges to use. If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use that structure as your nodes provided it is *hashable*. If it is not hashable you can use a unique identifier to represent the node and assign the data as a *node attribute*. Edges often have data associated with them. Arbitrary data can associated with edges as an *edge attribute*. If the data is numeric and the intent is to represent a *weighted* graph then use the 'weight' keyword for the attribute. Some of the graph algorithms, such as Dijkstra's shortest path algorithm, use this attribute name to get the weight for each edge. Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword except 'weight' to name your attribute and can then easily query the edge data by that attribute keyword. Once you've decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or without multiedges you are ready to build your network. ## 2.2.1 Graph Creation NetworkX graph objects can be created in one of three ways: - Graph generators standard algorithms to create network topologies. - Importing data from pre-existing (usually file) sources. - Adding edges and nodes explicitly. Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manipulate the graph. For example, ``` >>> import networkx as nx >>> G=nx.Graph() >>> G.add_edge(1,2) # default edge data=1 >>> G.add_edge(2,3,weight=0.9) # specify edge data ``` Edge attributes can be anything: ``` >>> import math >>> G.add_edge('y','x',function=math.cos) >>> G.add_node(math.cos) # any hashable can be a node ``` You can add many edges at one time: ``` >>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)] >>> G.add_weighted_edges_from(elist) ``` See the /tutorial/index for more examples. Some basic graph operations such as union and intersection are described in the Operators module documentation. Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage. For importing network data from formats such as GML, GraphML, edge list text files see the *Reading and writing graphs* subpackage. ## 2.2.2 Graph Reporting Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges() and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save memory and often time as well. The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it doesn't really matter which way you examine the graph. G.edges() removes duplicate representations of each edge while G.neighbors(n) or G[n] is slightly faster but doesn't remove duplicates. Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the code and documentation under the term *algorithms*. ## 2.2.3 Algorithms A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see *traversal*), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google group or the Github Developer Zone. As an example here is code to use Dijkstra's algorithm to find the shortest weighted path: ``` >>> G=nx.Graph() >>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)] >>> G.add_weighted_edges_from(e) >>> print(nx.dijkstra_path(G,'a','d')) ['a', 'c', 'd'] ``` ## 2.2.4 Drawing While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested) pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module *drawing*. The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed with a layout function. The edges are then lines between those dots. ``` >>> G=nx.cubical_graph() >>> nx.draw(G) # default spring_layout >>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b') ``` See the examples for more ideas. #### 2.2.5 Data Structure NetworkX uses a "dictionary of dictionaries of dictionaries" as the basic network data structure. This allows fast lookup with reasonable storage for large sparse networks. The keys are nodes so G[u] returns an adjacency dictionary keyed by neighbor to the edge attribute dictionary. The expression G[u][v] returns the edge attribute dictionary itself. A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge data. Advantages of dict-of-dicts-of-dicts data structure: - Find edges and remove edges with two dictionary look-ups. - Prefer to "lists" because of fast lookup with sparse storage. - Prefer to "sets" since data can be attached to edge. - G[u][v] returns the edge attribute dictionary. - n in G tests if node n is in graph G. - for n in G: iterates through the graph. - for nbr in G[n]: iterates through neighbors. As an example, here is a representation of an undirected graph with the edges ('A','B'), ('B','C') ``` >>> G=nx.Graph() >>> G.add_edge('A','B') >>> G.add_edge('B','C') >>> print(G.adj) {'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}}, 'C': {}}} ``` The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts-of-dicts structures are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-dicts-of-dicts of-dicts Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner dictionary storing "name-value" relationships for that edge. ``` >>> G=nx.Graph() >>> G.add_edge(1,2,color='red',weight=0.84,size=300) >>> print(G[1][2]['size']) 300 ``` ¹ "It's dictionaries all the way down." ## **Graph types** NetworkX provides data structures and methods for storing graphs. All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an edge attribute. The choice of graph class depends on the structure of the graph you want to represent. ## 3.1 Which graph class should I use? | Graph Type | NetworkX Class | |---------------------|--------------------------| | Undirected Simple | Graph | | Directed Simple | DiGraph | | With Self-loops | Graph, DiGraph | | With Parallel edges | MultiGraph, MultiDiGraph | ## 3.2 Basic graph types ## 3.2.1 Graph – Undirected graphs with self loops ### Overview Graph (data=None, **attr) Base class for undirected graphs. A Graph stores nodes and edges with optional data, or attributes. Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. ## **Parameters** • data (*input graph*) – Data to initialize graph. If data=None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function,
currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs. #### See also: ``` DiGraph(), MultiGraph(), MultiDiGraph() ``` #### **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.Graph() ``` G can be grown in several ways. #### **Nodes:** Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H = nx.path_graph(10) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` #### **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> G.add_edge(1, 2) ``` a list of edges, ``` >>> G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. #### **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.Graph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2]['weight'] = 4.7 >>> G.edge[1][2]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 ``` The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more convenient. #### **Reporting:** Simple graph information is obtained using methods. Reporting methods usually return iterators instead of containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. **Subclasses (Advanced):** The Graph class uses a dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node dict factory, adjlist inner dict factory, adjlist outer dict factory, and edge attr dict factory. - **node_dict_factory** [function, (default: dict)] Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object - adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. - adjlist_inner_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object - edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like object. ## **Examples** Create a graph subclass that tracks the order nodes are added. Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added. ``` >>> class OrderedGraph(nx.Graph): ... node_dict_factory = OrderedDict ... adjlist_outer_dict_factory = OrderedDict ... adjlist_inner_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from((2,1)) >>> list(G.nodes()) [2, 1] >>> G.add_edges_from(((2,2), (2,1), (1,1))) >>> list(G.edges()) [(2, 2), (2, 1), (1, 1)] ``` Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. ``` >>> class ThinGraph(nx.Graph): ... all_edge_dict = {'weight': 1} ... def single_edge_dict(self): ... return self.all_edge_dict ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2,1) >>> list(G.edges(data= True)) [(1, 2, {'weight': 1})] >>> G.add_edge(2,2) >>> G[2][1] is G[2][2] True ``` ## 3.2.2 Methods ## Adding and removing nodes and edges | Graphinit([data]) | Initialize a graph with edges, name, graph attributes. | |---|---| | Graph.add_node(n, **attr) | Add a single node n and update node attributes. | | Graph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | Graph.remove_node(n) | Remove node n. | | Graph.remove_nodes_from(nodes) | Remove multiple nodes. | | Graph.add_edge(u, v, **attr) | Add an edge between u and v. | | <pre>Graph.add_edges_from(ebunch, **attr)</pre> | Add all the edges in ebunch. | | Graph.add_weighted_edges_from(ebunch[, | Add all the edges in ebunch as weighted edges with speci- | | weight]) | fied weights. | | Graph.remove_edge(u,v) | Remove the edge between u and v. | | Graph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | | Graph.clear() | Remove all nodes and edges from the graph. | ## __init__ Graph.___init___(data=None, **attr) Initialize a graph with edges, name, graph attributes. #### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - name (string, optional (default='')) An optional name for the graph. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Attributes to add to graph as key=value pairs. #### See also: convert() ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name='my graph') >>> e = [(1,2),(2,3),(3,4)] # list of edges >>> G = nx.Graph(e) ``` Arbitrary graph attribute pairs (key=value) may be assigned ``` >>> G=nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} ``` ## add_node ``` Graph.add_node (n, **attr) ``` Add a single node n and update node attributes. #### **Parameters** - **n** (node) A node can be any hashable Python object except None. - attr (keyword arguments, optional) Set or change node attributes using key=value. #### See also: ``` add nodes from() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` #### **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. #### add nodes from ``` Graph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. #### See also: ``` add node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ## remove node ``` Graph.remove_node(n) ``` Remove node n.
Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. **Parameters n** (*node*) – A node in the graph **Raises** *NetworkXError* – If n is not in the graph. ## See also: ``` remove_nodes_from() ``` #### **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges()) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges()) [] ``` #### remove nodes from ``` Graph.remove_nodes_from (nodes) ``` Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. #### See also: ``` remove_node() ``` ## **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes()) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes()) [] ``` ## add_edge ``` Graph.add_edge (u, v, **attr) ``` Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. #### **Parameters** - **u**, **v** (*nodes*) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. #### See also: ``` add_edges_from() add a collection of edges ``` #### **Notes** Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'. #### **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` For non-string associations, directly access the edge's attribute dictionary. ``` >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) ``` ## add_edges_from ``` Graph.add_edges_from (ebunch, **attr) Add all the edges in ebunch. ``` #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data. - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. #### See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` #### **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` #### Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` ## add_weighted_edges_from ``` Graph.add_weighted_edges_from (ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. ``` #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (string, optional (default= 'weight')) The attribute name for the edge weights to be added. - attr (*keyword arguments, optional (default= no attributes*)) Edge attributes to add/update for all edges. #### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` #### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` ## remove_edge ``` Graph.remove_edge (u, v) ``` Remove the edge between u and v. **Parameters u, v** (*nodes*) – Remove the edge between nodes u and v. **Raises** NetworkXError – If there is not an edge between u and v. #### See also: **remove_edges_from()** remove a collection of edges ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, etc >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2,3,{'weight':7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple ``` ## remove_edges_from ``` Graph.remove_edges_from(ebunch) ``` Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) edge between u and v. - 3-tuples (u,v,k) where k is ignored. #### See also: remove_edge () remove a single edge ## **Notes** Will fail silently if an edge in ebunch is not in the graph. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` #### clear ``` Graph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes()) [] >>> list(G.edges()) ``` ## Iterating over nodes and edges | Graph.nodes([data, default]) | Returns an iterator over the nodes. | |---|---| | Graphiter() | Iterate over the nodes. | | Graph.edges([nbunch, data, default]) | Return an iterator over the edges. | | <pre>Graph.get_edge_data(u, v[, default])</pre> | Return the attribute dictionary associated with edge (u,v). | | Graph.neighbors(n) | Return an iterator over all neighbors of node n. | | Graphgetitem(n) | Return a dict of neighbors of node n. | | Graph.adjacency() | Return an iterator over (node, adjacency dict) tuples for all | | | nodes. | | Graph.nbunch_iter([nbunch]) | Return an iterator over nodes contained in nbunch that are | | | also in the graph. | #### nodes Graph.nodes (data=False, default=None) Returns an iterator over the nodes. #### **Parameters** - data (*string or bool, optional (default=False)*) The node attribute returned in 2-tuple (n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just the nodes n. - **default** (*value*, *optional* (*default=None*)) Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False. **Returns** An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary. Return type iterator #### **Notes** If the node data is not required, it is simpler and equivalent to use the expression for n in G, or list (G). ## **Examples** There are two simple ways of getting a list of all nodes in the graph: ``` >>> G = nx.path_graph(3) >>> list(G.nodes()) [0, 1, 2] ``` ``` >>> list(G) [0, 1, 2] ``` To get the node data along with the nodes: ``` >>> G.add_node(1, time='5pm') >>> G.node[0]['foo'] = 'bar' >>> list(G.nodes(data=True)) [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] >>> list(G.nodes(data='foo')) [(0, 'bar'), (1, None), (2, None)] >>> list(G.nodes(data='time')) [(0, None), (1, '5pm'), (2, None)] >>> list(G.nodes(data='time', default='Not Available')) [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] ``` If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None: ``` >>> G = nx.Graph() >>> G.add_node(0) >>> G.add_node(1, weight=2) >>> G.add_node(2, weight=3) >>> dict(G.nodes(data='weight', default=1)) {0: 1, 1: 2, 2: 3} ``` ### __iter__ ``` Graph.___iter___() ``` Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. **Return type** iterator #### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G] [0, 1, 2, 3] ``` #### edges Graph.edges (nbunch=None, data=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). ## **Parameters** • **nbunch** (*iterable container, optional (default= all nodes*)) – A container of nodes. The container will be iterated through once. - data (*string or bool, optional* (*default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edges – An iterator over (u,v) or (u,v,d) tuples of edges. **Return type** iterator #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.path_graph(3) # or MultiGraph, etc >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges(data=True)) # default
data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges([0,3])) [(0, 1), (3, 2)] >>> list(G.edges(0)) [(0, 1)] ``` #### get edge data Graph.get_edge_data(u, v, default=None) Return the attribute dictionary associated with edge (u,v). #### **Parameters** - **u**, **v** (nodes) - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. **Returns** edge_dict – The edge attribute dictionary. Return type dictionary #### **Notes** It is faster to use G[u][v]. ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0][1] {} ``` Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['weight'] = 7 >>> G[0][1]['weight'] 7 >>> G[1][0]['weight'] 7 ``` #### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.get_edge_data(0, 1) # default edge data is {} {} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` #### neighbors ``` Graph.neighbors(n) ``` Return an iterator over all neighbors of node n. **Parameters n** (*node*) – A node in the graph **Returns** neighbors – An iterator over all neighbors of node n Return type iterator **Raises** *NetworkXError* – If the node n is not in the graph. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G.neighbors(0)] [1] ``` #### **Notes** It is usually more convenient (and faster) to access the adjacency dictionary as G[n]: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a', 'b', weight=7) >>> G['a'] {'b': {'weight': 7}} >>> G = nx.path_graph(4) >>> [n for n in G[0]] [1] ``` #### getitem ``` Graph.__getitem__(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. **Return type** dictionary #### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0] {1: {}} ``` ## adjacency ``` Graph.adjacency() ``` Return an iterator over (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. **Returns** adj_iter – An iterator over (node, adjacency dictionary) for all nodes in the graph. Return type iterator ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n,nbrdict) for n,nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] ``` ## nbunch_iter ``` Graph.nbunch_iter(nbunch=None) ``` Return an iterator over nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional* (*default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. ## Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. #### See also: ``` Graph.__iter__() ``` ## **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a <code>NetworkXError</code> is raised. Also, if any object in nbunch is not hashable, a <code>NetworkXError</code> is raised. ## Information about graph structure | Graph.has_node(n) | Return True if the graph contains the node n. | |---------------------------------------|--| | Graphcontains(n) | Return True if n is a node, False otherwise. | | Graph.has_edge(u, v) | Return True if the edge (u,v) is in the graph. | | Graph.order() | Return the number of nodes in the graph. | | Graph.number_of_nodes() | Return the number of nodes in the graph. | | Graphlen() | Return the number of nodes. | | Graph.degree([nbunch, weight]) | Return an iterator for (node, degree) or degree for single | | | node. | | Graph.size([weight]) | Return the number of edges or total of all edge weights. | | Graph.number_of_edges([u, v]) | Return the number of edges between two nodes. | | Graph.nodes_with_selfloops() | Returns an iterator over nodes with self loops. | | Graph.selfloop_edges([data, default]) | Returns an iterator over selfloop edges. | | Graph.number_of_selfloops() | Return the number of selfloop edges. | ## has_node ``` Graph.has_node(n) ``` Return True if the graph contains the node n. Parameters n (node) ## **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ### contains ``` Graph.___contains___(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> 1 in G True ``` ## has_edge ``` Graph.has_edge (u, v) ``` Return True if the edge (u,v) is in the graph. **Parameters u, v** (*nodes*) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. **Returns** edge_ind – True if edge is in the graph, False otherwise. Return type bool ## **Examples** Can be called either using two nodes u,v or edge tuple (u,v) ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> e = (0,1,{'weight':7}) >>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary) True ``` The following syntax are all equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True ``` #### order ``` Graph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int #### See also: ``` number_of_nodes(),__len__() ``` #### number of nodes ``` Graph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int #### See also: ``` order(),__len__() ``` ## **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 3 ``` ## len ``` Graph.___len___() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns nnodes** – The number of nodes in the graph. Return type int ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 4 ``` #### degree ``` Graph.degree (nbunch=None, weight=None) ``` Return an iterator for (node, degree) or degree for single node. The node degree is the number of edges adjacent to the node. This function returns the degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. #### **Parameters** - **nbunch** (*iterable container, optional* (*default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. #### Returns - If a single node is requested - deg (int) Degree of the node - OR if multiple nodes are requested - **nd iter** (*iterator*) The iterator returns two-tuples of (node, degree). #### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0,1])) [(0, 1), (1, 2)] ``` #### size Graph.size(weight=None) Return the number of edges or total of all edge weights. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. #### Returns size – The number of edges or (if weight keyword is provided) the total weight sum. If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general). #### Return type numeric #### See also: ``` number_of_edges() ``` ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b', weight=2) >>> G.add_edge('b','c', weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` #### number of edges ``` Graph.number_of_edges(u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional (default=all edges)*) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Return type int #### See also: size() ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` #### nodes with selfloops ``` Graph.nodes_with_selfloops() ``` Returns an iterator over nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist – A iterator over nodes with self loops. **Return type** iterator #### See also: ``` selfloop_edges(), number_of_selfloops() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> list(G.nodes_with_selfloops()) [1] ``` #### selfloop edges ``` Graph.selfloop_edges (data=False, default=None) ``` Returns an iterator over selfloop edges. A selfloop edge has the same node at both ends. #### **Parameters** - data (*string or bool*, *optional* (*default=False*)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns edgeiter** – An iterator over all selfloop edges. Return type iterator over edge tuples #### See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> list(G.selfloop_edges()) [(1, 1)] >>> list(G.selfloop_edges(data=True)) [(1, 1, {})] ``` #### number of selfloops ``` Graph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int #### See also: ``` nodes_with_selfloops(), selfloop_edges() ``` ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` ## Making copies and subgraphs | Graph.copy([with_data]) | Return a copy of the graph. | |----------------------------|--| | Graph.to_undirected() | Return an undirected copy of the graph. | | Graph.to_directed() | Return a directed representation of the graph. | | Graph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | | Graph.edge_subgraph(edges) | Returns the subgraph induced by the specified edges. | ## copy ``` Graph.copy (with_data=True) ``` Return a copy of the graph. All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want. Deepcopy – The default behavior is a "deepcopy" where the graph structure as well as all data attributes and any objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect the original object. Data Reference (Shallow) – For a shallow copy (with_data=False) the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. Independent Shallow – This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This type of copy is not enabled. Instead use: ``` >>> G = nx.path_graph(5) >>> H = G.__class__(G) ``` Fresh Data—For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use: ``` >>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges()) ``` See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. **Parameters with_data** (*bool, optional (default=True)*) – If True, the returned graph will have a deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph will be a shallow copy. **Returns** G - A copy of the graph. Return type Graph See also: to_directed() return a directed copy of the graph. ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy() ``` ## to_undirected ``` Graph.to_undirected() ``` Return an undirected copy of the graph. **Returns** G - A deepcopy of the graph. Return type Graph/MultiGraph #### See also: ``` copy(), add_edge(), add_edges_from() ``` #### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ## **Examples** ``` >>> G = nx.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges()) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges()) [(0, 1)] ``` ## to_directed ``` Graph.to_directed() ``` Return a directed representation of the graph. **Returns** G – A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data). Return type DiGraph ### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not transfer to the DiGraph created by this method. ## **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1)] ``` ## subgraph Graph.subgraph (nbunch) Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) - A container of nodes which will be iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. **Return type** *Graph* ### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.subgraph([0,1,2]) >>> list(H.edges()) [(0, 1), (1, 2)] ``` ### edge subgraph ``` Graph.edge_subgraph(edges) ``` Returns the subgraph induced by the specified edges. The induced subgraph contains each edge in edges and each node incident to any one of those edges. Parameters edges (iterable) – An iterable of edges in this graph. **Returns** G – An edge-induced subgraph of this graph with the same edge attributes. Return type *Graph* ### **Notes** The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the original graph, but changes to the attributes will. To create a subgraph with its own copy of the edge or node attributes, use: ``` >>> nx.Graph(G.edge_subgraph(edges)) ``` If edge attributes are containers, a deep copy of the attributes can be obtained using: ``` >>> G.edge_subgraph(edges).copy() ``` # **Examples** ``` >>> G = nx.path_graph(5) >>> H = G.edge_subgraph([(0, 1), (3, 4)]) >>> list(H.nodes()) [0, 1, 3, 4] >>> list(H.edges()) [(0, 1), (3, 4)] ``` # 3.2.3 DiGraph - Directed graphs with self loops ### **Overview** DiGraph (data=None, **attr) Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. #### **Parameters** • **data** (*input graph*) – Data to initialize graph. If data=None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. • attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs. ## See also: ``` Graph(), MultiGraph(), MultiDiGraph() ``` ### **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.DiGraph() ``` G can be grown in several ways. #### **Nodes:** Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.path_graph(10) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` ## **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> G.add_edge(1, 2) ``` a list of edges, ``` >>> G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the
nodes are added automatically. There are no errors when adding nodes or edges that already exist. ## **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2]['weight'] = 4.7 >>> G.edge[1][2]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 ``` The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more convenient. ### **Reporting:** Simple graph information is obtained using methods. Reporting methods usually return iterators instead of containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. ### **Subclasses (Advanced):** The Graph class uses a dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and edge_attr_dict_factory. - **node_dict_factory** [function, (default: dict)] Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object - adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. - adjlist_inner_dict_factory [function, optional (default: dict)] Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object - **edge_attr_dict_factory** [function, optional (default: dict)] Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. ### **Examples** Create a graph subclass that tracks the order nodes are added. Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added. Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. ``` >>> class ThinGraph(nx.Graph): ... all_edge_dict = {'weight': 1} ... def single_edge_dict(self): ... return self.all_edge_dict ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2,1) >>> list(G.edges(data= True)) [(1, 2, {'weight': 1})] >>> G.add_edge(2,2) >>> G[2][1] is G[2][2] True ``` ## 3.2.4 Methods # Adding and removing nodes and edges | DiGraphinit([data]) | Initialize a graph with edges, name, graph attributes. | |--|---| | DiGraph.add_node(n, **attr) | Add a single node n and update node attributes. | | DiGraph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | DiGraph.remove_node(n) | Remove node n. | | DiGraph.remove_nodes_from(nbunch) | Remove multiple nodes. | | DiGraph.add_edge(u, v, **attr) | Add an edge between u and v. | | DiGraph.add_edges_from(ebunch, **attr) | Add all the edges in ebunch. | | DiGraph.add_weighted_edges_from(ebunch[, | Add all the edges in ebunch as weighted edges with speci- | | weight]) | fied weights. | | DiGraph.remove_edge(u, v) | Remove the edge between u and v. | | DiGraph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | | DiGraph.clear() | Remove all nodes and edges from the graph. | ## __init__ ``` DiGraph.___init___(data=None, **attr) ``` Initialize a graph with edges, name, graph attributes. ### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - name (string, optional (default='')) An optional name for the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. ### See also: ``` convert() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name='my graph') >>> e = [(1,2),(2,3),(3,4)] # list of edges >>> G = nx.Graph(e) ``` Arbitrary graph attribute pairs (key=value) may be assigned ``` >>> G=nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} ``` ## add_node ``` DiGraph.add_node(n, **attr) ``` Add a single node n and update node attributes. #### **Parameters** - **n** (node) A node can be any hashable Python object except None. - attr (keyword arguments, optional) Set or change node attributes using key=value. ### See also: ``` add nodes from() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` ### **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. # add_nodes_from ``` DiGraph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. ### See also: ``` add node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ## remove node ``` DiGraph.remove_node(n) ``` Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. **Parameters n** (*node*) – A node in the graph **Raises** *NetworkXError* – If n is not in the graph. ## See also: ``` remove_nodes_from() ``` ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges()) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges()) [] ``` ### remove nodes from ``` DiGraph.remove_nodes_from(nbunch) ``` Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. #### See also: ``` remove_node() ``` ## **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes()) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes()) [] ``` ## add_edge ``` DiGraph.add_edge (u, v, **attr) ``` Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. #### **Parameters** - **u**, **v** (*nodes*) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - attr (*keyword arguments*, *optional*) Edge data (or labels or objects) can be assigned using keyword arguments. ### See also: ``` add_edges_from() add a collection of edges ``` #### **Notes** Adding an edge that already exists
updates the edge data. Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'. ### **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1,2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` For non-string associations, directly access the edge's attribute dictionary. ``` >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) ``` ## add_edges_from ``` DiGraph.add_edges_from(ebunch, **attr) ``` Add all the edges in ebunch. #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data. - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. ### See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` ### **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` #### Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` ## add_weighted_edges_from ``` DiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. ``` #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (string, optional (default= 'weight')) The attribute name for the edge weights to be added. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Edge attributes to add/update for all edges. ### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` ### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` ## remove_edge ``` DiGraph.remove_edge (u, v) ``` Remove the edge between u and v. **Parameters u, v** (*nodes*) – Remove the edge between nodes u and v. **Raises** NetworkXError – If there is not an edge between u and v. #### See also: remove_edges_from() remove a collection of edges ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2,3,{'weight':7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple ``` # remove_edges_from ``` DiGraph.remove_edges_from(ebunch) ``` Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) edge between u and v. - 3-tuples (u,v,k) where k is ignored. #### See also: ``` remove_edge() remove a single edge ``` # **Notes** Will fail silently if an edge in ebunch is not in the graph. ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` #### clear ``` DiGraph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes()) [] >>> list(G.edges()) ``` ## Iterating over nodes and edges | DiGraph.nodes([data, default]) | Returns an iterator over the nodes. | |--|---| | DiGraphiter() | Iterate over the nodes. | | DiGraph.edges([nbunch, data, default]) | Return an iterator over the edges. | | DiGraph.out_edges([nbunch, data, default]) | Return an iterator over the edges. | | DiGraph.in_edges([nbunch, data, default]) | Return an iterator over the incoming edges. | | DiGraph.get_edge_data(u, v[, default]) | Return the attribute dictionary associated with edge (u,v). | | DiGraph.neighbors(n) | Return an iterator over successor nodes of n. | | DiGraphgetitem(n) | Return a dict of neighbors of node n. | | DiGraph.successors(n) | Return an iterator over successor nodes of n. | | DiGraph.predecessors(n) | Return an iterator over predecessor nodes of n. | | DiGraph.adjacency() | Return an iterator over (node, adjacency dict) tuples for all | | | nodes. | | DiGraph.nbunch_iter([nbunch]) | Return an iterator over nodes contained in nbunch that are | | | also in the graph. | ## nodes DiGraph.nodes (data=False, default=None) Returns an iterator over the nodes. ### **Parameters** - **data** (*string or bool, optional* (*default=False*)) The node attribute returned in 2-tuple (n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just the nodes n. - **default** (*value*, *optional* (*default=None*)) Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False. **Returns** An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary. Return type iterator #### **Notes** If the node data is not required, it is simpler and equivalent to use the expression for $\, n \,$ in $\, G$, or list (G). There are two simple ways of getting a list of all nodes in the graph: ``` >>> G = nx.path_graph(3) >>> list(G.nodes()) [0, 1, 2] >>> list(G) [0, 1, 2] ``` To get the node data along with the nodes: ``` >>> G.add_node(1, time='5pm') >>> G.node[0]['foo'] = 'bar' >>> list(G.nodes(data=True)) [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] >>> list(G.nodes(data='foo')) [(0, 'bar'), (1, None), (2, None)] >>> list(G.nodes(data='time')) [(0, None), (1, '5pm'), (2, None)] >>> list(G.nodes(data='time', default='Not Available')) [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] ``` If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None: ``` >>> G = nx.Graph() >>> G.add_node(0) >>> G.add_node(1, weight=2) >>> G.add_node(2, weight=3) >>> dict(G.nodes(data='weight', default=1)) {0: 1, 1: 2, 2: 3} ``` __iter__ DiGraph.__iter__() Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. Return type iterator ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G] [0, 1, 2, 3] ``` ## edges DiGraph.edges (nbunch=None, data=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). #### **Parameters** - **nbunch** (*iterable container, optional* (*default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False)*) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edge – An iterator over (u,v) or (u,v,d) tuples of edges. Return type iterator #### See also: ``` in_edges(), out_edges() ``` ### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges([0,2])) [(0, 1), (2, 3)] >>> list(G.edges(0)) [(0, 1)] ``` ## out_edges DiGraph.out_edges (nbunch=None, data=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). ### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - **data** (*string or bool, optional* (*default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). • **default** (*value*, *optional* (*default=None*)) – Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edge – An iterator over (u,v) or (u,v,d) tuples of edges. Return type iterator #### See also: ``` in_edges(), out_edges() ``` #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed
graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges([0,2])) [(0, 1), (2, 3)] >>> list(G.edges(0)) [(0, 1)] ``` ### in_edges DiGraph.in_edges (nbunch=None, data=False, default=None) Return an iterator over the incoming edges. #### **Parameters** - **nbunch** (*iterable container, optional* (*default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional* (*default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns in_edge** – An iterator over (u,v) or (u,v,d) tuples of incoming edges. Return type iterator ### See also: edges () return an iterator over edges ## get_edge_data ``` DiGraph.get_edge_data(u, v, default=None) ``` Return the attribute dictionary associated with edge (u,v). #### **Parameters** - **u**, **v** (nodes) - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. **Returns** edge_dict – The edge attribute dictionary. **Return type** dictionary ### **Notes** It is faster to use G[u][v]. ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0][1] {} ``` Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['weight'] = 7 >>> G[0][1]['weight'] 7 >>> G[1][0]['weight'] 7 ``` ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.get_edge_data(0, 1) # default edge data is {} {} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` ## neighbors ``` DiGraph.neighbors(n) ``` Return an iterator over successor nodes of n. neighbors() and successors() are the same. ### __getitem__ ``` DiGraph.__getitem__(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. Return type dictionary #### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0] {1: {}} ``` #### successors ``` DiGraph.successors(n) ``` Return an iterator over successor nodes of n. neighbors() and successors() are the same. ## predecessors ``` DiGraph.predecessors(n) ``` Return an iterator over predecessor nodes of n. ### adjacency ``` DiGraph.adjacency() ``` Return an iterator over (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. **Returns adj_iter** – An iterator over (node, adjacency dictionary) for all nodes in the graph. Return type iterator ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n,nbrdict) for n,nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] ``` ### nbunch iter DiGraph.nbunch_iter(nbunch=None) Return an iterator over nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional (default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. ## Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. #### See also: Graph.__iter__() #### **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. # Information about graph structure | DiGraph.has_node(n) | Return True if the graph contains the node n. | |---|--| | DiGraphcontains(n) | Return True if n is a node, False otherwise. | | DiGraph.has_edge(u, v) | Return True if the edge (u,v) is in the graph. | | DiGraph.order() | Return the number of nodes in the graph. | | DiGraph.number_of_nodes() | Return the number of nodes in the graph. | | DiGraphlen() | Return the number of nodes. | | DiGraph.degree([nbunch, weight]) | Return an iterator for (node, degree) or degree for single | | | node. | | DiGraph.in_degree([nbunch, weight]) | Return an iterator for (node, in-degree) or in-degree for sin- | | | gle node. | | DiGraph.out_degree([nbunch, weight]) | Return an iterator for (node, out-degree) or out-degree for | | | single node. | | DiGraph.size([weight]) | Return the number of edges or total of all edge weights. | | DiGraph.number_of_edges([u, v]) | Return the number of edges between two nodes. | | DiGraph.nodes_with_selfloops() | Returns an iterator over nodes with self loops. | | DiGraph.selfloop_edges([data, default]) | Returns an iterator over selfloop edges. | | DiGraph.number_of_selfloops() | Return the number of selfloop edges. | | | | ### has node ``` DiGraph.has_node(n) ``` Return True if the graph contains the node n. Parameters n (node) ### **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` # contains ``` DiGraph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> 1 in G True ``` ### has_edge ``` DiGraph.has_edge(u, v) ``` Return True if the edge (u,v) is in the graph. **Parameters u, v** (*nodes*) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. **Returns edge_ind** – True if edge is in the graph, False otherwise. Return type bool ## **Examples** Can be called either using two nodes u,v or edge tuple (u,v) ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) ``` ``` True >>> e = (0,1,{'weight':7}) >>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary) True ``` The following syntax are all equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True ``` #### order ``` DiGraph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int See also: ``` number_of_nodes(),__len__() ``` ## number_of_nodes ``` DiGraph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns** nnodes – The number of nodes in the graph. Return type int See also: ``` order(),__len__() ``` ## **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 3 ``` ``` __len__ ``` ``` DiGraph.__len__() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns nnodes** – The number of nodes in the graph. Return type int ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 4 ``` ### degree DiGraph.degree (nbunch=None, weight=None) Return an iterator for (node, degree) or degree for single node. The node degree is the number of edges adjacent to the node. This function returns the degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes)*) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. #### Returns - If a single node is requested - **deg** (*int*) Degree of the node - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, degree). ### See also: ``` in_degree(), out_degree() ``` ### **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0,1])) [(0, 1), (1, 2)] ``` ### in degree ``` DiGraph.in_degree (nbunch=None, weight=None) ``` Return an iterator for (node, in-degree) or in-degree for single node. The node in-degree is the number of edges pointing in to the node. This function returns the in-degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the
edge weights adjacent to the node. #### Returns - If a single node is requested - **deg** (*int*) In-degree of the node - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, in-degree). #### See also: ``` degree(), out_degree() ``` ### **Examples** ``` >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.in_degree(0) # node 0 with degree 0 0 >>> list(G.in_degree([0,1])) [(0, 0), (1, 1)] ``` ## out degree ``` DiGraph.out_degree (nbunch=None, weight=None) ``` Return an iterator for (node, out-degree) or out-degree for single node. The node out-degree is the number of edges pointing out of the node. This function returns the out-degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. # **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. #### Returns - If a single node is requested - **deg** (*int*) Out-degree of the node - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, out-degree). ### See also: ``` degree(), in_degree() ``` ``` >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.out_degree(0) # node 0 with degree 1 1 >>> list(G.out_degree([0,1])) [(0, 1), (1, 1)] ``` #### size DiGraph.size(weight=None) Return the number of edges or total of all edge weights. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. #### Returns size – The number of edges or (if weight keyword is provided) the total weight sum. If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general). Return type numeric #### See also: ``` number_of_edges() ``` # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` ## number_of_edges ``` DiGraph.number_of_edges(u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. ### Return type int #### See also: ``` size() ``` ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` # nodes_with_selfloops ``` DiGraph.nodes_with_selfloops() ``` Returns an iterator over nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns** nodelist – A iterator over nodes with self loops. Return type iterator #### See also: ``` selfloop_edges(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> list(G.nodes_with_selfloops()) [1] ``` ## selfloop_edges ``` DiGraph.selfloop_edges(data=False, default=None) ``` Returns an iterator over selfloop edges. A selfloop edge has the same node at both ends. #### **Parameters** - data (string or bool, optional (default=False)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edgeiter – An iterator over all selfloop edges. **Return type** iterator over edge tuples ### See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> list(G.selfloop_edges()) [(1, 1)] >>> list(G.selfloop_edges(data=True)) [(1, 1, {})] ``` ## number_of_selfloops ``` DiGraph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int ### See also: ``` nodes_with_selfloops(), selfloop_edges() ``` ## **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` ## Making copies and subgraphs | DiGraph.copy([with_data]) | Return a copy of the graph. | |-------------------------------------|--| | DiGraph.to_undirected([reciprocal]) | Return an undirected representation of the digraph. | | DiGraph.to_directed() | Return a directed copy of the graph. | | DiGraph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | | DiGraph.edge_subgraph(edges) | Returns the subgraph induced by the specified edges. | | DiGraph.reverse([copy]) | Return the reverse of the graph. | #### copy DiGraph.copy(with_data=True) Return a copy of the graph. All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want. Deepcopy – The default behavior is a "deepcopy" where the graph structure as well as all data attributes and any objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect the original object. Data Reference (Shallow) – For a shallow copy (with_data=False) the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. Independent Shallow – This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This type of copy is not enabled. Instead use: ``` >>> G = nx.path_graph(5) >>> H = G.__class__(G) ``` Fresh Data—For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use: ``` >>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges()) ``` See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. **Parameters with_data** (*bool, optional (default=True)*) – If True, the returned graph will have a deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph will be a shallow copy. **Returns** G - A copy of the graph. Return type Graph See also: to_directed() return a directed copy of the graph. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy() ``` #### to undirected DiGraph.to_undirected(reciprocal=False) Return an undirected representation of the digraph. **Parameters reciprocal** (*bool* (*optional*)) – If True only keep edges that appear in both directions in the original digraph. **Returns** G – An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. Return type Graph #### **Notes** If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method. # to directed ``` DiGraph.to_directed() ``` Return a directed copy of the graph. **Returns** G - A deepcopy of the graph. Return type DiGraph #### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ### **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1)] ``` ### subgraph ``` DiGraph.subgraph(nbunch) ``` Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) - A container of nodes which will be
iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. Return type Graph #### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.subgraph([0,1,2]) >>> list(H.edges()) [(0, 1), (1, 2)] ``` ### edge subgraph ``` \texttt{DiGraph.edge_subgraph}(edges) ``` Returns the subgraph induced by the specified edges. The induced subgraph contains each edge in edges and each node incident to any one of those edges. **Parameters edges** (*iterable*) – An iterable of edges in this graph. **Returns** G – An edge-induced subgraph of this graph with the same edge attributes. Return type Graph #### **Notes** The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the original graph, but changes to the attributes will. To create a subgraph with its own copy of the edge or node attributes, use: ``` >>> nx.DiGraph(G.edge_subgraph(edges)) ``` If edge attributes are containers, a deep copy of the attributes can be obtained using: ``` >>> G.edge_subgraph(edges).copy() ``` ## **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(5)) >>> H = G.edge_subgraph([(0, 1), (3, 4)]) >>> list(H.nodes()) [0, 1, 3, 4] >>> list(H.edges()) [(0, 1), (3, 4)] ``` #### reverse DiGraph.reverse(copy=True) Return the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. **Parameters copy** (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph). # 3.2.5 MultiGraph - Undirected graphs with self loops and parallel edges ### **Overview** MultiGraph (data=None, **attr) An undirected graph class that can store multiedges. Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes. A MultiGraph holds undirected edges. Self loops are allowed. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. #### **Parameters** • data (*input graph*) – Data to initialize graph. If data=None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. • attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs. ### See also: ``` Graph(), DiGraph(), MultiDiGraph() ``` ## **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.MultiGraph() ``` G can be grown in several ways. #### **Nodes:** Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.path_graph(10) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` #### **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> key = G.add_edge(1, 2) ``` a list of edges, ``` >>> keys = G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> keys = G.add_edges_from(list(H.edges())) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer. ``` >>> keys = G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))]) >>> G[4] {3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}} ``` #### **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.MultiGraph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> key = G.add_edge(1, 2, weight=4.7) >>> keys = G.add_edges_from([(3,4),(4,5)], color='red') >>> keys = G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2][0]['weight'] = 4.7 >>> G.edge[1][2][0]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 >>> G[1] # adjacency dict keyed by neighbor to edge attributes ... # Note: you should not change this dict manually! {2: {0: {'weight': 4}, 1: {'color': 'blue'}}} ``` The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more convenient. ### Reporting: Simple graph information is obtained using methods. Reporting methods usually return iterators instead of containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. ### **Subclasses (Advanced):** The MultiGraph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these four dicts in the dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and edge_attr_dict_factory. - **node_dict_factory** [function, (default: dict)] Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object - adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. - adjlist_inner_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object. - edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object. - edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like object. ### **Examples** Create a multigraph subclass that tracks the order nodes are added. ``` >>> from collections import OrderedDict >>> class OrderedGraph(nx.MultiGraph): ... node_dict_factory = OrderedDict ... adjlist_outer_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from((2,1)) >>> list(G.nodes()) [2, 1] >>> keys = G.add_edges_from(((2,2), (2,1), (2,1), (1,1))) >>> list(G.edges()) [(2, 1), (2, 1), (2, 2), (1, 1)] ``` Create a multgraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added. ``` >>> class OrderedGraph(nx.MultiGraph): ... node_dict_factory = OrderedDict ... adjlist_outer_dict_factory = OrderedDict ... adjlist_inner_dict_factory = OrderedDict ... edge_key_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from((2,1)) >>> list(G.nodes()) [2, 1] >>> elist = ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) >>> keys = G.add_edges_from(elist) >>> list(G.edges(keys=True)) [(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)] ``` ## 3.2.6 Methods ## Adding and removing nodes and edges | MultiGraphinit([data]) | | |--|---| | MultiGraph.add_node(n, **attr) | Add a single node n and update node attributes. | |
MultiGraph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | MultiGraph.remove_node(n) | Remove node n. | | MultiGraph.remove_nodes_from(nodes) | Remove multiple nodes. | | MultiGraph.add_edge(u, v[, key]) | Add an edge between u and v. | | <pre>MultiGraph.add_edges_from(ebunch, **attr)</pre> | Add all the edges in ebunch. | | MultiGraph.add_weighted_edges_from(ebunch[, | Add all the edges in ebunch as weighted edges with speci- | |]) | fied weights. | | MultiGraph.new_edge_key(u,v) | Return an unused key for edges between nodes u and v. | | MultiGraph.remove_edge(u,v[,key]) | Remove an edge between u and v. | | MultiGraph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | | MultiGraph.clear() | Remove all nodes and edges from the graph. | # __init__ ``` MultiGraph.__init__(data=None, **attr) ``` #### add node ``` MultiGraph.add_node(n, **attr) ``` Add a single node n and update node attributes. ## **Parameters** - **n** (*node*) A node can be any hashable Python object except None. - attr (keyword arguments, optional) Set or change node attributes using key=value. ### See also: ``` add_nodes_from() ``` # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` ### **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. ## add nodes from ``` MultiGraph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` ### **Parameters** - **nodes** (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (*keyword arguments*, *optional (default= no attributes)*) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. ### See also: ``` add node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ## remove_node ``` MultiGraph.remove_node(n) ``` Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. **Parameters n** (*node*) – A node in the graph **Raises** NetworkXError – If n is not in the graph. #### See also: ``` remove_nodes_from() ``` ## **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges()) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges()) [] ``` # remove nodes from ``` MultiGraph.remove_nodes_from(nodes) ``` Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. ## See also: ``` remove_node() ``` ### **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes()) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) ``` ``` >>> list(G.nodes()) [] ``` # add_edge ``` MultiGraph.add_edge (u, v, key=None, **attr) Add an edge between u and v. ``` The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. #### **Parameters** - **u**, **v** (*nodes*) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - **key** (hashable identifier, optional (default=lowest unused integer)) Used to distinguish multiedges between a pair of nodes. - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. ### Returns **Return type** The edge key assigned to the edge. #### See also: ``` add_edges_from() add a collection of edges ``` ### **Notes** To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms. Default keys are generated using the method $new_edge_key()$. This method can be overridden by subclassing the base class and providing a custom $new_edge_key()$ method. ### **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1,2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0 >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` ## add_edges_from ``` MultiGraph.add_edges_from(ebunch, **attr) ``` Add all the edges in ebunch. #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges can be: - 2-tuples (u,v) or - 3-tuples (u,v,d) for an edge attribute dict d, or - 4-tuples (u,v,k,d) for an edge identified by key k - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. #### Returns Return type A list of edge keys assigned to the edges in ebunch. ### See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` ### **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. Default keys are generated using the method <code>new_edge_key()</code>. This method can be overridden by subclassing the base class and providing a custom <code>new_edge_key()</code> method. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` ## Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` # add_weighted_edges_from MultiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. ### **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (string, optional (default= 'weight')) The attribute name for the edge weights to be added. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Edge attributes to add/update for all edges. ### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` ### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` # new edge key ``` MultiGraph.new_edge_key(u, v) ``` Return an unused key for edges between nodes u and v. The nodes u and v do not need to be already in the graph. #### **Notes** In the standard MultiGraph class the new key is the number of existing edges between u and v (increased if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further new_edge_keys may not be in this order. ``` Parameters u, v (nodes) Returns key Return type int ``` # remove_edge ``` MultiGraph.remove_edge (u, v, key=None) Remove an edge between u and v. ``` ### **Parameters** - **u**, **v** (*nodes*) Remove an edge between nodes u and v. - **key** (*hashable identifier, optional (default=None)*) Used to distinguish multiple edges between a pair of nodes. If None remove a single (arbitrary) edge between u and v. **Raises** NetworkXError – If there is not an edge between u and v, or if there is no edge with the specified key. #### See also: remove_edges_from() remove a collection of edges ## **Examples** ``` >>> G = nx.MultiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple ``` ## For multiple edges ``` >>> G = nx.MultiGraph() # or MultiDiGraph, etc >>> G.add_edges_from([(1,2),(1,2)]) # key_list returned [0, 1, 2] >>> G.remove_edge(1,2) # remove a single (arbitrary) edge ``` #### For edges with keys ``` >>> G = nx.MultiGraph() # or MultiDiGraph, etc >>> G.add_edge(1,2,key='first') 'first' >>> G.add_edge(1,2,key='second') 'second' >>> G.remove_edge(1,2,key='second') ``` # remove_edges_from ``` MultiGraph.remove_edges_from(ebunch) ``` Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or
container will be removed from the graph. The edges can be: - 2-tuples (u,v) All edges between u and v are removed. - 3-tuples (u,v,key) The edge identified by key is removed. - 4-tuples (u,v,key,data) where data is ignored. ## See also: ``` remove_edge () remove a single edge ``` ### **Notes** Will fail silently if an edge in ebunch is not in the graph. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` ### Removing multiple copies of edges ``` >>> G = nx.MultiGraph() >>> keys = G.add_edges_from([(1,2),(1,2),(1,2)]) >>> G.remove_edges_from([(1,2),(1,2)]) >>> list(G.edges()) [(1, 2)] >>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy >>> list(G.edges()) # now empty graph [] ``` ### clear ``` MultiGraph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes()) [] >>> list(G.edges()) ``` # Iterating over nodes and edges | MultiGraph.nodes([data, default]) | Returns an iterator over the nodes. | |---|---| | MultiGraphiter() | Iterate over the nodes. | | MultiGraph.edges([nbunch, data, keys, default]) | Return an iterator over the edges. | | MultiGraph.get_edge_data(u, v[, key, default]) | Return the attribute dictionary associated with edge (u,v). | | MultiGraph.neighbors(n) | Return an iterator over all neighbors of node n. | | | Continued on next page | Table 3.10 – continued from previous page | MultiGraphgetitem(n) | Return a dict of neighbors of node n. | |----------------------------------|---| | MultiGraph.adjacency() | Return an iterator over (node, adjacency dict) tuples for all | | | nodes. | | MultiGraph.nbunch_iter([nbunch]) | Return an iterator over nodes contained in nbunch that are | | | also in the graph. | ### nodes MultiGraph.nodes (data=False, default=None) Returns an iterator over the nodes. #### **Parameters** - data (*string or bool, optional (default=False)*) The node attribute returned in 2-tuple (n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just the nodes n. - **default** (*value*, *optional* (*default=None*)) Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False. **Returns** An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary. Return type iterator #### **Notes** If the node data is not required, it is simpler and equivalent to use the expression for n in G, or list (G). ## **Examples** There are two simple ways of getting a list of all nodes in the graph: ``` >>> G = nx.path_graph(3) >>> list(G.nodes()) [0, 1, 2] >>> list(G) [0, 1, 2] ``` To get the node data along with the nodes: ``` >>> G.add_node(1, time='5pm') >>> G.node[0]['foo'] = 'bar' >>> list(G.nodes(data=True)) [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] >>> list(G.nodes(data='foo')) [(0, 'bar'), (1, None), (2, None)] >>> list(G.nodes(data='time')) [(0, None), (1, '5pm'), (2, None)] >>> list(G.nodes(data='time', default='Not Available')) [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] ``` If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None: ``` >>> G = nx.Graph() >>> G.add_node(0) >>> G.add_node(1, weight=2) >>> G.add_node(2, weight=3) >>> dict(G.nodes(data='weight', default=1)) {0: 1, 1: 2, 2: 3} ``` # iter ``` MultiGraph.__iter__() ``` Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. Return type iterator # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G] [0, 1, 2, 3] ``` ### edges ``` MultiGraph.edges (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges. ``` Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). ### **Parameters** - **nbunch** (*iterable container*, *optional* (*default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False)*) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns** edge – An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator # **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2]) >>> key = G.add_edge(2,3,weight=5) >>> [e for e in G.edges()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True, keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> list(G.edges([0,3])) [(0, 1), (3, 2)] >>> list(G.edges(0)) [(0, 1)] ``` ## get edge data MultiGraph.get_edge_data(u, v, key=None, default=None) Return the attribute dictionary associated with edge (u,v). ## **Parameters** - **u**, **v** (nodes) - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. - **key** (hashable identifier, optional (default=None)) Return data only for the edge with specified key. **Returns** edge_dict – The edge attribute dictionary. **Return type** dictionary ### **Notes** It is faster to use G[u][v][key]. ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> key = G.add_edge(0,1,key='a',weight=7) >>> G[0][1]['a'] # key='a' {'weight': 7} ``` Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['a']['weight'] = 10 >>> G[0][1]['a']['weight'] 10 ``` ``` >>> G[1][0]['a']['weight'] 10 ``` # **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.get_edge_data(0,1) {0: {}} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {0: {}} >>> G.get_edge_data('a', 'b', default=0) # edge not in graph, return 0 0 ``` ## neighbors MultiGraph.neighbors(n) Return an iterator over all neighbors of node n. **Parameters n** (*node*) – A node in the graph Returns neighbors – An iterator over all neighbors of node n Return type iterator **Raises** *NetworkXError* – If the node n is not in the graph. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G.neighbors(0)] [1] ``` ## **Notes** It is usually more convenient (and faster) to access the adjacency dictionary as G[n]: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a', 'b', weight=7) >>> G['a'] {'b': {'weight': 7}} >>> G = nx.path_graph(4) >>> [n for n in G[0]] [1] ``` ## __getitem__ ``` MultiGraph.__getitem__(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. Return type dictionary #### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0] {1: {}} ``` ## adjacency ``` MultiGraph.adjacency() ``` Return an iterator over (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. Returns adj_iter - An iterator over (node, adjacency dictionary) for all nodes in the graph. **Return type** iterator # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n,nbrdict) for n,nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] ``` ### nbunch iter ``` MultiGraph.nbunch_iter(nbunch=None) ``` Return an iterator over nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional (default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. ## See also: ``` Graph.___iter__() ``` ## **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in
self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. # Information about graph structure | MultiGraph.has_node(n) | Return True if the graph contains the node n. | |--|--| | MultiGraphcontains(n) | Return True if n is a node, False otherwise. | | MultiGraph.has_edge(u, v[, key]) | Return True if the graph has an edge between nodes u and | | | V. | | MultiGraph.order() | Return the number of nodes in the graph. | | MultiGraph.number_of_nodes() | Return the number of nodes in the graph. | | MultiGraphlen() | Return the number of nodes. | | MultiGraph.degree([nbunch, weight]) | Return an iterator for (node, degree) or degree for single | | | node. | | MultiGraph.size([weight]) | Return the number of edges or total of all edge weights. | | $ ext{MultiGraph.number_of_edges}([u,v])$ | Return the number of edges between two nodes. | | MultiGraph.nodes_with_selfloops() | Returns an iterator over nodes with self loops. | | MultiGraph.selfloop_edges([data, keys, default]) | Return a list of selfloop edges. | | MultiGraph.number_of_selfloops() | Return the number of selfloop edges. | # has_node MultiGraph.has_node(n) Return True if the graph contains the node n. Parameters n (node) # **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ### contains ``` MultiGraph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> 1 in G True ``` # has_edge ``` MultiGraph.has_edge (u, v, key=None) ``` Return True if the graph has an edge between nodes u and v. ### **Parameters** - **u**, **v** (*nodes*) Nodes can be, for example, strings or numbers. - **key** (*hashable identifier, optional (default=None)*) If specified return True only if the edge with key is found. **Returns** edge_ind – True if edge is in the graph, False otherwise. Return type bool ## **Examples** Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key). ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> G.add_edge(0,1,key='a') 'a' >>> G.has_edge(0,1,key='a') # specify key True >>> e=(0,1,'a') >>> G.has_edge(*e) # e is a 3-tuple (u,v,'a') True ``` The following syntax are equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G True ``` ## order ``` MultiGraph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int ### See also: ``` number_of_nodes(),__len__() ``` # number_of_nodes ``` MultiGraph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int ### See also: ``` order(),__len__() ``` # **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 3 ``` # _len__ ``` MultiGraph.__len__() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns** nnodes – The number of nodes in the graph. Return type int # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 4 ``` # degree ``` MultiGraph.degree (nbunch=None, weight=None) ``` Return an iterator for (node, degree) or degree for single node. The node degree is the number of edges adjacent to the node. This function returns the degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. #### **Parameters** - **nbunch** (*iterable container, optional* (*default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. ### Returns - If a single node is requested - deg (int) Degree of the node, if a single node is passed as argument. - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, degree). # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0,1])) [(0, 1), (1, 2)] ``` ### size MultiGraph.size(weight=None) Return the number of edges or total of all edge weights. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. ## Returns size – The number of edges or (if weight keyword is provided) the total weight sum. If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general). ## Return type numeric ## See also: ``` number_of_edges() ``` ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` # number_of_edges ``` MultiGraph.number_of_edges(u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional* (*default=all edges*)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Return type int ## See also: size() # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) ``` ## nodes with selfloops ``` MultiGraph.nodes_with_selfloops() ``` Returns an iterator over nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns** nodelist – A iterator over nodes with self loops. Return type iterator #### See also: ``` selfloop_edges(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> list(G.nodes_with_selfloops()) [1] ``` # selfloop_edges MultiGraph.**selfloop_edges** (*data=False*, *keys=False*, *default=None*) Return a list of selfloop edges. A selfloop edge has the same node at both ends. ### **Parameters** - data (bool, optional (default=False)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns** edgelist – A list of all selfloop edges. **Return type** list of edge tuples #### See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_edge(1,1) 0 >>> G.add_edge(1,2) 0 >>> list(G.selfloop_edges()) [(1, 1)] >>> list(G.selfloop_edges(data=True)) [(1, 1, {})] >>> list(G.selfloop_edges(keys=True)) [(1, 1, 0)] >>> list(G.selfloop_edges(keys=True, data=True)) [(1, 1, 0, {})] ``` # number_of_selfloops ``` MultiGraph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int ### See also: ``` nodes_with_selfloops(), selfloop_edges() ``` # **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` ## Making copies and subgraphs | MultiGraph.copy([with_data]) | Return a copy of the graph. | |---------------------------------|--| | MultiGraph.to_undirected() | Return an undirected copy of the graph. | | MultiGraph.to_directed() | Return a directed representation of the graph. | | MultiGraph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | | MultiGraph.edge_subgraph(edges) | Returns the subgraph induced by the specified edges. | ### copy ``` MultiGraph.copy (with_data=True) Return a copy of the graph. ``` All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want. Deepcopy – The default behavior is a "deepcopy" where the graph structure as well as all data attributes and any objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect the original object. Data Reference (Shallow) – For a shallow copy (with_data=False) the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. Independent Shallow – This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This type of copy is not enabled. Instead use: ``` >>> G = nx.path_graph(5) >>> H = G.__class__(G) ``` Fresh Data– For fresh data, the graph structure
is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use: ``` >>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges()) ``` See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. **Parameters with_data** (bool, optional (default=True)) – If True, the returned graph will have a deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph will be a shallow copy. **Returns** G - A copy of the graph. **Return type** *Graph* See also: to_directed() return a directed copy of the graph. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy() ``` # to_undirected ``` MultiGraph.to_undirected() ``` Return an undirected copy of the graph. **Returns** G - A deepcopy of the graph. Return type Graph/MultiGraph See also: ``` copy(), add_edge(), add_edges_from() ``` #### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ## **Examples** ``` >>> G = nx.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges()) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges()) [(0, 1)] ``` ## to directed ``` MultiGraph.to_directed() ``` Return a directed representation of the graph. **Returns G** – A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data). Return type MultiDiGraph ## **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method. # **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1)] ``` ### subgraph ``` MultiGraph.subgraph(nbunch) ``` Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) – A container of nodes which will be iterated through once. **Returns** G – A subgraph of the graph with the same edge attributes. Return type Graph ### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> H = G.subgraph([0,1,2]) >>> list(H.edges()) [(0, 1), (1, 2)] ``` ## edge subgraph ``` MultiGraph.edge_subgraph(edges) ``` Returns the subgraph induced by the specified edges. The induced subgraph contains each edge in edges and each node incident to any one of those edges. **Parameters edges** (*iterable*) – An iterable of edges in this graph. **Returns** G – An edge-induced subgraph of this graph with the same edge attributes. Return type Graph ## **Notes** The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the original graph, but changes to the attributes will. To create a subgraph with its own copy of the edge or node attributes, use: ``` >>> nx.MultiGraph(G.edge_subgraph(edges)) ``` If edge attributes are containers, a deep copy of the attributes can be obtained using: ``` >>> G.edge_subgraph(edges).copy() ``` # **Examples** Get a subgraph induced by only those edges that have a certain attribute: ``` >>> # Create a graph in which some edges are "good" and some "bad". >>> G = nx.MultiGraph() >>> key = G.add_edge(0, 1, key=0, good=True) >>> key = G.add_edge(0, 1, key=1, good=False) >>> key = G.add_edge(1, 2, key=0, good=False) >>> key = G.add_edge(1, 2, key=1, good=True) >>> # Keep only those edges that are marked as "good". >>> edges = G.edges(keys=True, data='good') >>> edges = ((u, v, k) for (u, v, k, good) in edges if good) >>> H = G.edge_subgraph(edges) >>> list(H.edges(keys=True, data=True)) [(0, 1, 0, {'good': True}), (1, 2, 1, {'good': True})] ``` # 3.2.7 MultiDiGraph - Directed graphs with self loops and parallel edges ## Overview MultiDiGraph (data=None, **attr) A directed graph class that can store multiedges. Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes. A MultiDiGraph holds directed edges. Self loops are allowed. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. #### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. #### See also: ``` Graph(), DiGraph(), MultiGraph() ``` ## **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.MultiDiGraph() ``` G can be grown in several ways. ### **Nodes:** Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.path_graph(10) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` ### **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> key = G.add_edge(1, 2) ``` a list of edges, ``` >>> keys = G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> keys = G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer. ``` >>> keys = G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))]) >>> G[4] {5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}} ``` ### **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.MultiDiGraph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> key = G.add_edge(1, 2, weight=4.7) >>> keys = G.add_edges_from([(3,4),(4,5)], color='red') >>> keys = G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2][0]['weight'] = 4.7 >>> G.edge[1][2][0]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 >>> G[1] # adjacency dict keyed by neighbor to edge attributes ... # Note: you should not change this dict manually! {2: {0: {'weight': 4}, 1: {'color': 'blue'}}} ``` The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more convenient. ## Reporting: Simple graph information is obtained using methods. Reporting methods usually return iterators instead of containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. ### **Subclasses (Advanced):** The MultiDiGraph class uses a dict-of-dict-of-dict structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr_dict)
represents the edge data and holds edge attribute values keyed by attribute names. Each of these four dicts in the dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and edge attr dict factory. **node_dict_factory** [function, (default: dict)] Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. - adjlist_inner_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object. - edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object. - edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like object. ## **Examples** Create a multigraph subclass that tracks the order nodes are added. ``` >>> from collections import OrderedDict >>> class OrderedGraph(nx.MultiDiGraph): ... node_dict_factory = OrderedDict ... adjlist_outer_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from((2,1)) >>> list(G.nodes()) [2, 1] >>> keys = G.add_edges_from(((2,2), (2,1), (2,1), (1,1))) >>> list(G.edges()) [(2, 1), (2, 1), (2, 2), (1, 1)] ``` Create a multdigraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added. ``` >>> class OrderedGraph(nx.MultiDiGraph): ... node_dict_factory = OrderedDict ... adjlist_outer_dict_factory = OrderedDict ... adjlist_inner_dict_factory = OrderedDict ... edge_key_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from((2,1)) >>> list(G.nodes()) [2, 1] >>> elist = ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) >>> keys = G.add_edges_from(elist) >>> list(G.edges(keys=True)) [(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)] ``` ### 3.2.8 Methods ## Adding and Removing Nodes and Edges | MultiDiGraphinit([data]) | | |--|---| | MultiDiGraph.add_node(n, **attr) | Add a single node n and update node attributes. | | MultiDiGraph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | MultiDiGraph.remove_node(n) | Remove node n. | | MultiDiGraph.remove_nodes_from(nbunch) | Remove multiple nodes. | | | Continued on next page | Table 3.13 – continued from previous page | MultiDiGraph.add_edge(u, v[, key]) | Add an edge between u and v. | |---|---| | MultiDiGraph.add_edges_from(ebunch, **attr) | Add all the edges in ebunch. | | MultiDiGraph.add_weighted_edges_from(ebun | chAdd all the edges in ebunch as weighted edges with speci- | | | fied weights. | | MultiDiGraph.new_edge_key(u, v) | Return an unused key for edges between nodes u and v. | | MultiDiGraph.remove_edge(u, v[, key]) | Remove an edge between u and v. | | MultiDiGraph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | | MultiDiGraph.clear() | Remove all nodes and edges from the graph. | # __init__ ``` MultiDiGraph.___init___(data=None, **attr) ``` # add_node ``` MultiDiGraph.add_node(n, **attr) ``` Add a single node n and update node attributes. ### **Parameters** - **n** (*node*) A node can be any hashable Python object except None. - attr (keyword arguments, optional) Set or change node attributes using key=value. ### See also: ``` add_nodes_from() ``` # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` ## **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. ### add nodes from ``` MultiDiGraph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` ### **Parameters** - **nodes** (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (keyword arguments, optional (default= no attributes)) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. ## See also: ``` add node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ## remove_node ``` MultiDiGraph.remove_node(n) ``` Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. **Parameters n** (*node*) – A node in the graph **Raises** *NetworkXError* – If n is not in the graph. # See also: ``` remove_nodes_from() ``` # **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges()) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges()) [] ``` ### remove nodes from MultiDiGraph.remove_nodes_from(nbunch) Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. #### See also: ``` remove_node() ``` # **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes()) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes()) [] ``` ## add edge ``` MultiDiGraph.add edge (u, v, key=None, **attr) ``` Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. ### **Parameters** - **u**, **v** (*nodes*) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - **key** (hashable identifier, optional (default=lowest unused integer)) Used to distinguish multiedges between a pair of nodes. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. ## Returns **Return type** The edge key assigned to the edge. ### See also: ``` add_edges_from() add a collection of edges ``` #### **Notes** To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created. NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms. Default keys are generated using the method $new_edge_key()$. This method can be overridden by subclassing the base class and providing a custom $new_edge_key()$ method. ## **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.MultiDiGraph() >>> e = (1,2) >>> key = G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes 1 >>> G.add_edges_from([(1,2)]) # add edges from iterable container [2] ``` Associate data to edges using keywords: ``` >>> key = G.add_edge(1, 2, weight=3) >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` For non-string associations, directly access the edge's attribute dictionary. ## add edges from ``` MultiDiGraph.add_edges_from(ebunch, **attr) ``` Add all the edges in ebunch. # **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges can be: - 2-tuples (u,v) or - 3-tuples (u,v,d) for an edge attribute dict d, or - 4-tuples (u,v,k,d) for an edge identified by key k - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. ### Returns Return type A list of edge keys assigned to the edges in ebunch. ## See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` ### **Notes** Adding the same edge twice has no effect
but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. Default keys are generated using the method new_edge_key (). This method can be overridden by subclassing the base class and providing a custom new_edge_key () method. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` ### Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` ## add weighted edges from MultiDiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. ## **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (string, optional (default= 'weight')) The attribute name for the edge weights to be added. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Edge attributes to add/update for all edges. # See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` ### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` # new_edge_key ``` MultiDiGraph.new_edge_key(u, v) ``` Return an unused key for edges between nodes u and v. The nodes u and v do not need to be already in the graph. ## **Notes** In the standard MultiGraph class the new key is the number of existing edges between u and v (increased if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further new_edge_keys may not be in this order. ``` Parameters u, v (nodes) ``` Returns key Return type int # remove_edge ``` MultiDiGraph.remove_edge(u, v, key=None) ``` Remove an edge between u and v. # **Parameters** - **u**, **v** (nodes) Remove an edge between nodes u and v. - **key** (*hashable identifier, optional (default=None*)) Used to distinguish multiple edges between a pair of nodes. If None remove a single (arbitrary) edge between u and v. **Raises** NetworkXError – If there is not an edge between u and v, or if there is no edge with the specified key. ### See also: ``` remove_edges_from() remove a collection of edges ``` # **Examples** ``` >>> G = nx.MultiDiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple ``` ### For multiple edges ``` >>> G = nx.MultiDiGraph() >>> G.add_edges_from([(1,2),(1,2)]) # key_list returned [0, 1, 2] >>> G.remove_edge(1,2) # remove a single (arbitrary) edge ``` # For edges with keys ``` >>> G = nx.MultiDiGraph() >>> G.add_edge(1,2,key='first') 'first' >>> G.add_edge(1,2,key='second') 'second' >>> G.remove_edge(1,2,key='second') ``` ## remove_edges_from MultiDiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) All edges between u and v are removed. - 3-tuples (u,v,key) The edge identified by key is removed. - 4-tuples (u,v,key,data) where data is ignored. # See also: ``` remove_edge () remove a single edge ``` ## **Notes** Will fail silently if an edge in ebunch is not in the graph. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` Removing multiple copies of edges ``` >>> G = nx.MultiGraph() >>> keys = G.add_edges_from([(1,2),(1,2),(1,2)]) >>> G.remove_edges_from([(1,2),(1,2)]) >>> list(G.edges()) [(1, 2)] >>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy >>> list(G.edges()) # now empty graph [] ``` ## clear ``` MultiDiGraph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes()) [] >>> list(G.edges()) ``` # Iterating over nodes and edges | MultiDiGraph.nodes([data, default]) | Returns an iterator over the nodes. | |---|---| | MultiDiGraphiter() | Iterate over the nodes. | | MultiDiGraph.edges([nbunch, data, keys, default]) | Return an iterator over the edges. | | MultiDiGraph.out_edges([nbunch, data, keys,]) | Return an iterator over the edges. | | MultiDiGraph.in_edges([nbunch, data, keys,]) | Return an iterator over the incoming edges. | | MultiDiGraph.get_edge_data(u, v[, key, default]) | Return the attribute dictionary associated with edge (u,v). | | MultiDiGraph.neighbors(n) | Return an iterator over successor nodes of n. | | MultiDiGraphgetitem(n) | Return a dict of neighbors of node n. | | MultiDiGraph.successors(n) | Return an iterator over successor nodes of n. | | MultiDiGraph.predecessors(n) | Return an iterator over predecessor nodes of n. | | MultiDiGraph.adjacency() | Return an iterator over (node, adjacency dict) tuples for all | | | nodes. | | MultiDiGraph.nbunch_iter([nbunch]) | Return an iterator over nodes contained in nbunch that are | | | also in the graph. | ## nodes MultiDiGraph.nodes (data=False, default=None) Returns an iterator over the nodes. ## **Parameters** • data (string or bool, optional (default=False)) – The node attribute returned in 2-tuple (n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just the nodes n. • **default** (*value*, *optional* (*default=None*)) – Value used for nodes that dont have the requested attribute. Only relevant if data is not True or False. **Returns** An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary. Return type iterator #### **Notes** If the node data is not required, it is simpler and equivalent to use the expression for n in G, or list (G). # **Examples** There are two simple ways of getting a list of all nodes in the graph: ``` >>> G = nx.path_graph(3) >>> list(G.nodes()) [0, 1, 2] >>> list(G) [0, 1, 2] ``` To get the node data along with the nodes: ``` >>> G.add_node(1, time='5pm') >>> G.node[0]['foo'] = 'bar' >>> list(G.nodes(data=True)) [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] >>> list(G.nodes(data='foo')) [(0, 'bar'), (1, None), (2, None)] >>> list(G.nodes(data='time')) [(0, None), (1, '5pm'), (2, None)] >>> list(G.nodes(data='time', default='Not Available')) [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] ``` If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None: ``` >>> G = nx.Graph() >>> G.add_node(0) >>> G.add_node(1, weight=2) >>> G.add_node(2, weight=3) >>> dict(G.nodes(data='weight', default=1)) {0: 1, 1: 2, 2: 3} ``` ## __iter__ ``` MultiDiGraph.__iter__() ``` Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. Return type iterator # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G] [0, 1, 2, 3] ``` ## edges MultiDiGraph.edges (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). ### **Parameters** - **nbunch** (*iterable container*, *optional* (*default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False)*) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **keys** (bool, optional (default=False)) If True, return edge keys with each edge. - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edge – An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator # **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.MultiDiGraph() >>> nx.add_path(G, [0, 1, 2]) >>> key = G.add_edge(2,3,weight=5) >>> [e for e in G.edges()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True, keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight', default=1, keys=True)) ``` ``` [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> list(G.edges([0,2])) [(0, 1), (2, 3)] >>> list(G.edges(0)) [(0, 1)] ``` #### See also: ``` in_edges(), out_edges() ``` ### out_edges MultiDiGraph.out_edges (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). #### **Parameters** -
nbunch (*iterable container, optional* (*default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional* (*default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edge – An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ### **Examples** ``` >>> G = nx.MultiDiGraph() >>> nx.add_path(G, [0, 1, 2]) >>> key = G.add_edge(2,3,weight=5) >>> [e for e in G.edges()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True,keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] ``` ``` >>> list(G.edges([0,2])) [(0, 1), (2, 3)] >>> list(G.edges(0)) [(0, 1)] ``` #### See also: ``` in_edges(), out_edges() ``` ### in_edges MultiDiGraph.in_edges (nbunch=None, data=False, keys=False, default=None) Return an iterator over the incoming edges. #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False)*) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns in_edge** – An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator ### See also: edges () return an iterator over edges # get_edge_data ``` {\tt MultiDiGraph.get_edge_data}~(\textit{u},\textit{v},\textit{key=None},\textit{default=None}) ``` Return the attribute dictionary associated with edge (u,v). #### **Parameters** - **u**, **v** (nodes) - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. - **key** (hashable identifier, optional (default=None)) Return data only for the edge with specified key. **Returns** edge_dict – The edge attribute dictionary. Return type dictionary #### **Notes** It is faster to use G[u][v][key]. ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> key = G.add_edge(0,1,key='a',weight=7) >>> G[0][1]['a'] # key='a' {'weight': 7} ``` Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['a']['weight'] = 10 >>> G[0][1]['a']['weight'] 10 >>> G[1][0]['a']['weight'] 10 ``` ### **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.get_edge_data(0,1) {0: {}} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {0: {}} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` ### neighbors ``` MultiDiGraph.neighbors(n) ``` Return an iterator over successor nodes of n. neighbors() and successors() are the same. #### getitem ``` MultiDiGraph.__getitem__(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. Return type dictionary ### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0] {1: {}} ``` #### successors ``` MultiDiGraph.successors(n) ``` Return an iterator over successor nodes of n. neighbors() and successors() are the same. ### predecessors ``` MultiDiGraph.predecessors(n) ``` Return an iterator over predecessor nodes of n. # adjacency ``` MultiDiGraph.adjacency() ``` Return an iterator over (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. **Returns** adj_iter – An iterator over (node, adjacency dictionary) for all nodes in the graph. Return type iterator ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n,nbrdict) for n,nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] ``` ### nbunch iter ``` MultiDiGraph.nbunch_iter(nbunch=None) ``` Return an iterator over nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional (default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. ### See also: ``` Graph.___iter__() ``` ### **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a <code>NetworkXError</code> is raised. Also, if any object in nbunch is not hashable, a <code>NetworkXError</code> is raised. ### Information about graph structure | MultiDiGraph.has_node(n) | Return True if the graph contains the node n. | |--|--| | MultiDiGraphcontains(n) | Return True if n is a node, False otherwise. | | MultiDiGraph.has_edge(u, v[, key]) | Return True if the graph has an edge between nodes u and | | | V. | | MultiDiGraph.order() | Return the number of nodes in the graph. | | MultiDiGraph.number_of_nodes() | Return the number of nodes in the graph. | | MultiDiGraphlen() | Return the number of nodes. | | MultiDiGraph.degree([nbunch, weight]) | Return an iterator for (node, degree) or degree for single | | | node. | | <pre>MultiDiGraph.in_degree([nbunch, weight])</pre> | Return an iterator for (node, in-degree) or in-degree for sin- | | | gle node. | | <pre>MultiDiGraph.out_degree([nbunch, weight])</pre> | Return an iterator for (node, out-degree) or out-degree for | | | single node. | | MultiDiGraph.size([weight]) | Return the number of edges or total of all edge weights. | | $ exttt{MultiDiGraph.number_of_edges}([u,v])$ | Return the number of edges between two nodes. | | MultiDiGraph.nodes_with_selfloops() | Returns an iterator over nodes with self loops. | | MultiDiGraph.selfloop_edges([data, keys,]) | Return a list of selfloop edges. | | MultiDiGraph.number_of_selfloops() | Return the number of selfloop edges. | # has_node MultiDiGraph.has_node(n) Return True if the graph contains the node n. Parameters n (node) # **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ### __contains__ ``` MultiDiGraph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> 1 in G True ``` # has edge ``` MultiDiGraph.has_edge(u, v, key=None) ``` Return True if the graph has an edge between nodes u and v. #### **Parameters** - **u**, **v** (*nodes*) Nodes can be, for example, strings or numbers. - **key** (*hashable identifier, optional (default=None)*) If specified return True only if the edge with key is found. **Returns** edge_ind – True if edge is in the graph, False otherwise. Return type bool ### **Examples** Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key). ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> G.add_edge(0,1,key='a') 'a' >>> G.has_edge(0,1,key='a') # specify key True >>> e=(0,1,'a') >>> G.has_edge(*e) # e is a 3-tuple (u,v,'a') True ``` The following syntax are equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G True ``` #### order ``` MultiDiGraph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int ### See also: ``` number_of_nodes(), __len__() ``` ### number_of_nodes ``` MultiDiGraph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int #### See also: ``` order(),__len__() ``` ### **Examples** ``` >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 3 ``` ### len ``` MultiDiGraph.__len__() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns nnodes** – The number of nodes in the graph. Return
type int ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> len(G) 4 ``` ### degree ``` MultiDiGraph.degree (nbunch=None, weight=None) ``` Return an iterator for (node, degree) or degree for single node. The node degree is the number of edges adjacent to the node. This function returns the degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights. #### Returns - If a single nodes is requested - **deg** (*int*) Degree of the node - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, degree). #### See also: ``` out_degree(), in_degree() ``` # **Examples** ``` >>> G = nx.MultiDiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0,1])) [(0, 1), (1, 2)] ``` ### in degree ``` MultiDiGraph.in_degree (nbunch=None, weight=None) ``` Return an iterator for (node, in-degree) or in-degree for single node. The node in-degree is the number of edges pointing in to the node. This function returns the in-degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. #### **Parameters** - **nbunch** (*iterable container, optional* (*default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. #### Returns • If a single node is requested - deg (int) Degree of the node - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, in-degree). #### See also: ``` degree(), out_degree() ``` ### **Examples** ``` >>> G = nx.MultiDiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.in_degree(0) # node 0 with degree 0 0 >>> list(G.in_degree([0,1])) [(0, 0), (1, 1)] ``` ### out degree MultiDiGraph.out_degree (nbunch=None, weight=None) Return an iterator for (node, out-degree) or out-degree for single node. The node out-degree is the number of edges pointing out of the node. This function returns the out-degree for a single node or an iterator for a bunch of nodes or if nothing is passed as argument. ### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes)*) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights. #### Returns - If a single node is requested - **deg** (*int*) Degree of the node - OR if multiple nodes are requested - **nd_iter** (*iterator*) The iterator returns two-tuples of (node, out-degree). #### See also: ``` degree(), in_degree() ``` ### **Examples** ``` >>> G = nx.MultiDiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.out_degree(0) # node 0 with degree 1 1 >>> list(G.out_degree([0,1])) [(0, 1), (1, 1)] ``` #### size ``` MultiDiGraph.size(weight=None) ``` Return the number of edges or total of all edge weights. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. #### Returns size – The number of edges or (if weight keyword is provided) the total weight sum. If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general). ### Return type numeric #### See also: ``` number_of_edges() ``` ## **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` ### number_of_edges ``` MultiDiGraph.number_of_edges(u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional* (*default=all edges*)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Return type int ### See also: ``` size() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` ### nodes with selfloops ``` MultiDiGraph.nodes_with_selfloops() ``` Returns an iterator over nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns** nodelist – A iterator over nodes with self loops. **Return type** iterator #### See also: ``` selfloop_edges(), number_of_selfloops() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> list(G.nodes_with_selfloops()) [1] ``` ### selfloop_edges MultiDiGraph.selfloop_edges (data=False, keys=False, default=None) Return a list of selfloop edges. A selfloop edge has the same node at both ends. ### **Parameters** - data (bool, optional (default=False)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns** edgelist – A list of all selfloop edges. Return type list of edge tuples ### See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` # **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_edge(1,1) 0 >>> G.add_edge(1,2) 0 >>> list(G.selfloop_edges()) [(1, 1)] >>> list(G.selfloop_edges(data=True)) [(1, 1, {})] >>> list(G.selfloop_edges(keys=True)) [(1, 1, 0)] >>> list(G.selfloop_edges(keys=True, data=True)) [(1, 1, 0, {})] ``` ### number_of_selfloops ``` MultiDiGraph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int ### See also: ``` nodes_with_selfloops(), selfloop_edges() ``` # **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` # Making copies and subgraphs | MultiDiGraph.copy([with_data]) | Return a copy of the graph. | |--|--| | MultiDiGraph.to_undirected([reciprocal]) | Return an undirected representation of the digraph. | | MultiDiGraph.to_directed() | Return a directed copy of the graph. | | MultiDiGraph.edge_subgraph(edges) | Returns the subgraph induced by the specified edges. | | MultiDiGraph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | | MultiDiGraph.reverse([copy]) | Return the reverse of the graph. | ### copy ``` MultiDiGraph.copy(with_data=True) Return a copy of the graph. ``` All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want. Deepcopy – The default behavior is a "deepcopy" where the graph structure as well as all data attributes and any objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect the original object. Data Reference (Shallow) – For a shallow copy (with_data=False) the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. Independent Shallow – This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This type of copy is not enabled. Instead use: ``` >>> G = nx.path_graph(5) >>> H = G.__class__(G) ``` Fresh Data—For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use: ``` >>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges()) ``` See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. **Parameters with_data** (*bool, optional (default=True)*) – If True, the returned graph will have a deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph will be a shallow copy. **Returns** G - A copy of the graph. Return type Graph See also: to_directed() return a directed copy of the graph. # **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy() ``` #### to undirected ``` MultiDiGraph.to_undirected(reciprocal=False) ``` Return an undirected representation of the digraph. **Parameters reciprocal** (*bool* (*optional*)) – If True only keep edges that appear in both directions in the original digraph. **Returns G** – An undirected graph with the same name and nodes and with edge (u,v,data) if
either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. Return type MultiGraph #### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method. ### to directed ``` MultiDiGraph.to_directed() ``` Return a directed copy of the graph. **Returns** G - A deepcopy of the graph. Return type MultiDiGraph ### **Notes** If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ### **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.MultiDiGraph() >>> key = G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges()) [(0, 1)] ``` ### edge subgraph ``` MultiDiGraph.edge_subgraph (edges) ``` Returns the subgraph induced by the specified edges. The induced subgraph contains each edge in edges and each node incident to any one of those edges. **Parameters edges** (*iterable*) – An iterable of edges in this graph. **Returns** G – An edge-induced subgraph of this graph with the same edge attributes. **Return type** *Graph* #### **Notes** The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the original graph, but changes to the attributes will. To create a subgraph with its own copy of the edge or node attributes, use: ``` >>> nx.MultiDiGraph(G.edge_subgraph(edges)) ``` If edge attributes are containers, a deep copy of the attributes can be obtained using: ``` >>> G.edge_subgraph(edges).copy() ``` ### **Examples** Get a subgraph induced by only those edges that have a certain attribute: ``` >>> # Create a graph in which some edges are "good" and some "bad". >>> G = nx.MultiDiGraph() >>> key = G.add_edge(0, 1, key=0, good=True) >>> key = G.add_edge(0, 1, key=1, good=False) >>> key = G.add_edge(1, 2, key=0, good=False) >>> key = G.add_edge(1, 2, key=1, good=True) >>> # Keep only those edges that are marked as "good". >>> edges = G.edges(keys=True, data='good') >>> edges = ((u, v, k) for (u, v, k, good) in edges if good) >>> H = G.edge_subgraph(edges) >>> list(H.edges(keys=True, data=True)) [(0, 1, 0, {'good': True}), (1, 2, 1, {'good': True})] ``` ### subgraph ``` MultiDiGraph.subgraph (nbunch) ``` Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) – A container of nodes which will be iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. Return type Graph #### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) ### **Examples** ``` >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.subgraph([0,1,2]) >>> list(H.edges()) [(0, 1), (1, 2)] ``` #### reverse ``` MultiDiGraph.reverse(copy=True) ``` Return the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. **Parameters copy** (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph). # **Algorithms** # 4.1 Approximation **Warning:** The approximation submodule is not imported automatically with networkx. Approximate algorithms can be imported with from networkx.algorithms import approximation. # 4.1.1 Connectivity Fast approximation for node connectivity | all_pairs_node_connectivity(G[, nbunch, cut- | Compute node connectivity between all pairs of nodes. | |---|--| | off]) | | | local_node_connectivity(G, source, target[,]) | Compute node connectivity between source and target. | | $node_connectivity(G[,s,t])$ | Returns an approximation for node connectivity for a graph | | | or digraph G. | ### all pairs node connectivity ### all_pairs_node_connectivity(G, nbunch=None, cutoff=None) Compute node connectivity between all pairs of nodes. Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function. This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes ¹. It works for both directed and undirected graphs. ### **Parameters** - **G** (NetworkX graph) - **nbunch** (*container*) Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch. ¹ White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf • **cutoff** (*integer*) – Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff in each pair of nodes. Default value None. **Returns** K – Dictionary, keyed by source and target, of pairwise node connectivity Return type dictionary #### See also: ``` local_node_connectivity(), all_pairs_node_connectivity() ``` #### References #### local node connectivity ``` local_node_connectivity(G, source, target, cutoff=None) ``` Compute node connectivity between source and target. Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function. This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes ¹. It works for both directed and undirected graphs. #### **Parameters** - **G** (NetworkX graph) - source (node) Starting node for node connectivity - target (node) Ending node for node connectivity - **cutoff** (*integer*) Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff. Default value None. **Returns k** – pairwise node connectivity Return type integer ### **Examples** ``` >>> # Platonic icosahedral graph has node connectivity 5 >>> # for each non adjacent node pair >>> from networkx.algorithms import approximation as approx >>> G = nx.icosahedral_graph() >>> approx.local_node_connectivity(G, 0, 6) ``` #### **Notes** This algorithm ¹ finds node independents paths between two nodes by computing their shortest path using BFS, marking the nodes of the path found as 'used' and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path ¹ White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity. Note that the authors propose a further refinement, losing accuracy and gaining speed, which is not implemented yet. ### See also: ``` all_pairs_node_connectivity(), node_connectivity() ``` #### References # node_connectivity ``` node connectivity(G, s=None, t=None) ``` Returns an approximation for node connectivity for a graph or digraph G. Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G. This algorithm is based on a fast approximation that gives an strict lower bound on the actual
number of node independent paths between two nodes ¹. It works for both directed and undirected graphs. #### **Parameters** - **G** (NetworkX graph) Undirected graph - **s** (*node*) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. **Returns** K – Node connectivity of G, or local node connectivity if source and target are provided. Return type integer # **Examples** ``` >>> # Platonic icosahedral graph is 5-node-connected >>> from networkx.algorithms import approximation as approx >>> G = nx.icosahedral_graph() >>> approx.node_connectivity(G) 5 ``` ### Notes This algorithm ¹ finds node independents paths between two nodes by computing their shortest path using BFS, marking the nodes of the path found as 'used' and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity. ¹ White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf #### See also: ``` all_pairs_node_connectivity(), local_node_connectivity() ``` #### References # 4.1.2 K-components Fast approximation for k-component structure | k_components(G[, min_density]) | Returns the approximate k-component structure of a graph | |--------------------------------|--| | | G. | ### k_components ### **k_components** (*G*, *min_density*=0.95) Returns the approximate k-component structure of a graph G. A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth. This implementation is based on the fast heuristics to approximate the k-component sturcture of a graph ¹. Which, in turn, it is based on a fast approximation algorithm for finding good lower bounds of the number of node independent paths between two nodes ². #### **Parameters** - **G** (NetworkX graph) Undirected graph - min_density (Float) Density relaxation treshold. Default value 0.95 **Returns** k_components – Dictionary with connectivity level k as key and a list of sets of nodes that form a k-component of level k as values. Return type dict # **Examples** ``` >>> # Petersen graph has 10 nodes and it is triconnected, thus all >>> # nodes are in a single component on all three connectivity levels >>> from networkx.algorithms import approximation as apxa >>> G = nx.petersen_graph() >>> k_components = apxa.k_components(G) ``` #### **Notes** The logic of the approximation algorithm for computing the k-component structure ¹ is based on repeatedly applying simple and fast algorithms for k-cores and biconnected components in order to narrow down the ¹ Torrents, J. and F. Ferraro (2015) Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1 ² White, Douglas R., and Mark Newman (2001) A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf number of pairs of nodes over which we have to compute White and Newman's approximation algorithm for finding node independent paths ². More formally, this algorithm is based on Whitney's theorem, which states an inclusion relation among node connectivity, edge connectivity, and minimum degree for any graph G. This theorem implies that every k-component is nested inside a k-edge-component, which in turn, is contained in a k-core. Thus, this algorithm computes node independent paths among pairs of nodes in each biconnected part of each k-core, and repeats this procedure for each k from 3 to the maximal core number of a node in the input graph. Because, in practice, many nodes of the core of level k inside a bicomponent actually are part of a component of level k, the auxiliary graph needed for the algorithm is likely to be very dense. Thus, we use a complement graph data structure (see AntiGraph) to save memory. AntiGraph only stores information of the edges that are *not* present in the actual auxiliary graph. When applying algorithms to this complement graph data structure, it behaves as if it were the dense version. #### See also: k_components() #### References # 4.1.3 Clique ### Cliques. | max_clique(G) | Find the Maximum Clique | |-------------------|---| | clique_removal(G) | Repeatedly remove cliques from the graph. | #### max clique #### $\max_{clique(G)}$ Find the Maximum Clique Finds the $O(|V|/(\log |V|)^2)$ apx of maximum clique/independent set in the worst case. Parameters G (NetworkX graph) – Undirected graph Returns clique - The apx-maximum clique of the graph Return type set ### **Notes** A clique in an undirected graph G = (V, E) is a subset of the vertex set C subseteq V, such that for every two vertices in C, there exists an edge connecting the two. This is equivalent to saying that the subgraph induced by C is complete (in some cases, the term clique may also refer to the subgraph). A maximum clique is a clique of the largest possible size in a given graph. The clique number omega (G) of a graph G is the number of vertices in a maximum clique in G. The intersection number of G is the smallest number of cliques that together cover all edges of G. http://en.wikipedia.org/wiki/Maximum_clique 4.1. Approximation 123 #### References ### clique_removal ### ${\tt clique_removal}\,(G)$ Repeatedly remove cliques from the graph. Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique & independent set. Returns the largest independent set found, along with found maximal cliques. **Parameters G** (*NetworkX graph*) – Undirected graph **Returns max_ind_cliques** – Maximal independent set and list of maximal cliques (sets) in the graph. Return type (set, list) tuple #### References # 4.1.4 Clustering average_clustering(G[, trials]) Estimates the average clustering coefficient of G. ### average clustering ### average_clustering(G, trials=1000) Estimates the average clustering coefficient of G. The local clustering of each node in G is the fraction of triangles that actually exist over all possible triangles in its neighborhood. The average clustering coefficient of a graph G is the mean of local clusterings. This function finds an approximate average clustering coefficient for G by repeating n times (defined in trials) the following experiment: choose a node at random, choose two of its neighbors at random, and check if they are connected. The approximate coefficient is the fraction of triangles found over the number of trials 1 . ### **Parameters** - **G** (NetworkX graph) - trials (integer) Number of trials to perform (default 1000). **Returns** c – Approximated average clustering coefficient. Return type float #### References # 4.1.5 Dominating Set Functions for finding node and edge dominating sets. ¹ Schank, Thomas, and Dorothea Wagner. Approximating clustering coefficient and transitivity. Universität Karlsruhe, Fakultät für Informatik, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf A 'dominating set'_[1] for an undirected graph *G with vertex set V and edge set E is a subset D of V such that every vertex not in D is adjacent to at least one member of D. An 'edge dominating set'_[2] is a subset *F of E such that every edge not in F is incident to an endpoint of at least one edge in F. | <pre>min_weighted_dominating_set(G[, weight])</pre> | Returns a dominating set that approximates the minimum weight node dominating set. | |---|--| | $min_edge_dominating_set(G)$ | Return minimum cardinality edge dominating set. | ### min_weighted_dominating_set ### min_weighted_dominating_set (G, weight=None) Returns a dominating set that approximates the minimum weight node dominating set. #### **Parameters** - **G** (*NetworkX graph*) Undirected graph. - weight (*string*) The node attribute storing the weight of an edge. If provided, the node attribute with this key must be a number for each node. If not provided, each node is assumed to have weight one. **Returns min_weight_dominating_set** – A set of nodes, the sum of whose weights is no more than $(\log w(V)) w(V^*)$, where w(V) denotes the sum of the weights of each node in the graph and $w(V^*)$ denotes the sum of the weights of each node in the minimum weight dominating set. Return type set #### **Notes** This algorithm computes an approximate minimum weighted dominating set for the graph G. The returned solution has weight (log w(V)) w(V^*), where w(V) denotes the sum of the weights of each node in the graph and w(V^*) denotes the sum of the weights of each node in the minimum weight dominating set for the graph. This implementation of the algorithm runs in O (m) time, where m is the number of edges in the graph. ### References ### min_edge_dominating_set #### min_edge_dominating_set(G) Return minimum cardinality edge dominating set. **Parameters G** (*NetworkX graph*) – Undirected graph **Returns min_edge_dominating_set** – Returns a set of dominating edges whose size is no more than 2 * OPT. Return type set 4.1. Approximation 125 #### **Notes** The algorithm computes an approximate solution to the edge dominating set problem. The result is no more than 2 * OPT in terms of size of the set. Runtime of the algorithm is 0 (|E|). # 4.1.6 Independent Set Independent Set Independent set or stable set is
a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in I. The size of an independent set is the number of vertices it contains. A maximum independent set is a largest independent set for a given graph G and its size is denoted $\alpha(G)$. The problem of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph. http://en.wikipedia.org/wiki/Independent_set_(graph_theory) Independent set algorithm is based on the following paper: $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set. Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196. Springer. doi:10.1007/BF01994876 maximum_independent_set(G) Return an approximate maximum independent set. ### maximum independent set #### maximum independent set(G) Return an approximate maximum independent set. Parameters G (NetworkX graph) – Undirected graph **Returns** iset – The apx-maximum independent set Return type Set ### **Notes** Finds the $O(|V|/(\log |V|)^2)$ apx of independent set in the worst case. ### References # 4.1.7 Matching ### **Graph Matching** Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex. http://en.wikipedia.org/wiki/Matching_(graph_theory) min_maximal_matching(G) Returns the minimum maximal matching of G. # min_maximal_matching #### $min_maximal_matching(G)$ Returns the minimum maximal matching of G. That is, out of all maximal matchings of the graph G, the smallest is returned. **Parameters G** (*NetworkX graph*) – Undirected graph **Returns** min_maximal_matching – Returns a set of edges such that no two edges share a common endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will be 2*OPT in the worst case. Return type set #### **Notes** The algorithm computes an approximate solution fo the minimum maximal cardinality matching problem. The solution is no more than 2 * OPT in size. Runtime is 0 (|E|). ### References # 4.1.8 Ramsey ### Ramsey numbers. | ramsey_R2(G) | Approximately computes the Ramsey number $R(2; s, t)$ for graph. | |--------------|--| | | | ### ramsey_R2 #### $ramsey_R2(G)$ Approximately computes the Ramsey number R(2; s, t) for graph. Parameters G (NetworkX graph) – Undirected graph Returns max_pair - Maximum clique, Maximum independent set. Return type (set, set) tuple ### 4.1.9 Vertex Cover Functions for computing an approximate minimum weight vertex cover. A vertex cover is a subset of nodes such that each edge in the graph is incident to at least one node in the subset. min_weighted_vertex_cover(G[, weight]) Returns an approximate minimum weighted vertex cover. 4.1. Approximation 127 ### min_weighted_vertex_cover ### min_weighted_vertex_cover(G, weight=None) Returns an approximate minimum weighted vertex cover. The set of nodes returned by this function is guaranteed to be a vertex cover, and the total weight of the set is guaranteed to be at most twice the total weight of the minimum weight vertex cover. In other words, $$w(S) \le 2 * w(S^*),$$ where S is the vertex cover returned by this function, S^* is the vertex cover of minimum weight out of all vertex covers of the graph, and w is the function that computes the sum of the weights of each node in that given set. #### **Parameters** - **G** (NetworkX graph) - weight (*string*, *optional* (*default* = *None*)) If None, every edge has weight 1. If a string, use this node attribute as the node weight. A node without this attribute is assumed to have weight 1. **Returns min_weighted_cover** – Returns a set of nodes whose weight sum is no more than twice the weight sum of the minimum weight vertex cover. Return type set ### **Notes** For a directed graph, a vertex cover has the same definition: a set of nodes such that each edge in the graph is incident to at least one node in the set. Whether the node is the head or tail of the directed edge is ignored. This is the local-ratio algorithm for computing an approximate vertex cover. The algorithm greedily reduces the costs over edges, iteratively building a cover. The worst-case runtime of this implementation is $O(m \log n)$, where n is the number of nodes and m the number of edges in the graph. #### References # 4.2 Assortativity # 4.2.1 Assortativity | | Compute degree assortativity of graph. | |--|--| |]) | | | attribute_assortativity_coefficient(G , | Compute assortativity for node attributes. | | attribute) | | | numeric_assortativity_coefficient(G, | Compute assortativity for numerical node attributes. | | attribute) | | | degree_pearson_correlation_coefficient(G | , Compute degree assortativity of graph. | |]) | | ### degree_assortativity_coefficient ``` degree_assortativity_coefficient (G, x='out', y='in', weight=None, nodes=None) Compute degree assortativity of graph. ``` Assortativity measures the similarity of connections in the graph with respect to the node degree. #### **Parameters** - **G** (NetworkX graph) - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - y (string ('in','out')) The degree type for target node (directed graphs only). - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - **nodes** (*list or iterable (optional)*) Compute degree assortativity only for nodes in container. The default is all nodes. **Returns** \mathbf{r} – Assortativity of graph by degree. Return type float ### **Examples** ``` >>> G=nx.path_graph(4) >>> r=nx.degree_assortativity_coefficient(G) >>> print("%3.1f"%r) -0.5 ``` #### See also: ``` attribute_assortativity_coefficient(), numeric_assortativity_coefficient(), neighbor_connectivity(), degree_mixing_dict(), degree_mixing_matrix() ``` #### **Notes** This computes Eq. (21) in Ref. ¹, where e is the joint probability distribution (mixing matrix) of the degrees. If G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target. ### References # attribute_assortativity_coefficient ``` attribute_assortativity_coefficient (G, attribute, nodes=None) ``` Compute assortativity for node attributes. Assortativity measures the similarity of connections in the graph with respect to the given attribute. ### **Parameters** • **G** (NetworkX graph) 4.2. Assortativity 129 ¹ M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003 - attribute (string) Node attribute key - **nodes** (*list or iterable (optional)*) Compute attribute assortativity for nodes in container. The default is all nodes. **Returns** \mathbf{r} – Assortativity of graph for given attribute Return type float ### **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([0,1],color='red') >>> G.add_nodes_from([2,3],color='blue') >>> G.add_edges_from([(0,1),(2,3)]) >>> print(nx.attribute_assortativity_coefficient(G,'color')) 1.0 ``` #### **Notes** This computes Eq. (2) in Ref. 1 , trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution (mixing matrix) of the specified attribute. #### References ### numeric assortativity coefficient ``` numeric_assortativity_coefficient (G, attribute, nodes=None) ``` Compute assortativity for numerical node attributes. Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute. The numeric attribute must be an integer. #### **Parameters** - **G** (NetworkX graph) - attribute (string) Node attribute key. The corresponding attribute value must be an integer. - **nodes** (*list or iterable (optional)*) Compute numeric assortativity only for attributes of nodes in container. The default is all nodes. **Returns** \mathbf{r} – Assortativity of graph for given attribute Return type float ### **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([0,1],size=2) >>> G.add_nodes_from([2,3],size=3) >>> G.add_edges_from([(0,1),(2,3)]) ``` ¹ M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003 ``` >>> print(nx.numeric_assortativity_coefficient(G,'size')) 1.0 ``` ### **Notes** This computes Eq. (21) in Ref. ¹, for the mixing matrix of of the specified attribute. #### References ### degree_pearson_correlation_coefficient ``` degree_pearson_correlation_coefficient (G, x='out', y='in', weight=None, nodes=None) Compute degree assortativity of graph. ``` Assortativity measures the similarity of connections in the graph with respect to the node degree. This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function. #### **Parameters** - **G** (NetworkX graph) - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - y (string ('in','out')) The degree type for target node (directed graphs only). - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - nodes (list or iterable (optional)) Compute pearson correlation of degrees only for specified nodes. The default is all nodes. **Returns** \mathbf{r} – Assortativity of graph by degree. Return type float #### **Examples** ``` >>> G=nx.path_graph(4) >>> r=nx.degree_pearson_correlation_coefficient(G) >>> print("%3.1f"%r)
-0.5 ``` ### **Notes** This calls scipy.stats.pearsonr. 4.2. Assortativity 131 ¹ M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003 #### References # 4.2.2 Average neighbor degree average_neighbor_degree(G[, source, target, ...]) Returns the average degree of the neighborhood of each node. # average_neighbor_degree **average_neighbor_degree** (*G*, *source='out'*, *target='out'*, *nodes=None*, *weight=None*) Returns the average degree of the neighborhood of each node. The average degree of a node i is $$k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j$$ where N (i) are the neighbors of node i and k_{j} is the degree of node j which belongs to N (i). For weighted graphs, an analogous measure can be defined 1 , $$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$ where s_i is the weighted degree of node i, $w_{\{ij\}}$ is the weight of the edge that links i and j and N(i) are the neighbors of node i. #### **Parameters** - **G** (NetworkX graph) - **source** (*string* ("*in*"|"*out*")) Directed graphs only. Use "in"- or "out"-degree for source node. - target (string ("in"|"out")) Directed graphs only. Use "in"- or "out"-degree for target node. - **nodes** (*list or iterable, optional*) Compute neighbor degree for specified nodes. The default is all nodes in the graph. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns d** – A dictionary keyed by node with average neighbors degree value. Return type dict ## **Examples** ``` >>> G=nx.path_graph(4) >>> G.edge[0][1]['weight'] = 5 >>> G.edge[2][3]['weight'] = 3 ``` ¹ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004). ``` >>> nx.average_neighbor_degree(G) {0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0} >>> nx.average_neighbor_degree(G, weight='weight') {0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0} ``` ``` >>> G=nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> nx.average_neighbor_degree(G, source='in', target='in') {0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0} ``` ``` >>> nx.average_neighbor_degree(G, source='out', target='out') {0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0} ``` #### **Notes** For directed graphs you can also specify in-degree or out-degree by passing keyword arguments. #### See also: ``` average_degree_connectivity() ``` #### References # 4.2.3 Average degree connectivity | average_degree_connectivity(G[, source,]) | Compute the average degree connectivity of graph. | |---|---| | k_nearest_neighbors(G[, source, target,]) | Compute the average degree connectivity of graph. | ### average degree connectivity **average_degree_connectivity** (*G*, source='in+out', target='in+out', nodes=None, weight=None) Compute the average degree connectivity of graph. The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in ¹, for a node i, as $$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$ where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and N(i) are the neighbors of node i. ### **Parameters** - **G** (NetworkX graph) - **source** ("in"|"out"|"in+out" (default:"in+out")) Directed graphs only. Use "in"- or "out"-degree for source node. 4.2. Assortativity 133 ¹ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004). - **target** ("in"|"out"|"in+out" (default:"in+out") Directed graphs only. Use "in"- or "out"-degree for target node. - **nodes** (*list or iterable (optional)*) Compute neighbor connectivity for these nodes. The default is all nodes. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns d** – A dictionary keyed by degree k with the value of average connectivity. Return type dict Raises ValueError - If either source or target are not one of 'in', 'out', or 'in+out'. # **Examples** ``` >>> G=nx.path_graph(4) >>> G.edge[1][2]['weight'] = 3 >>> nx.k_nearest_neighbors(G) {1: 2.0, 2: 1.5} >>> nx.k_nearest_neighbors(G, weight='weight') {1: 2.0, 2: 1.75} ``` ### See also: neighbors_average_degree() ### **Notes** This algorithm is sometimes called "k nearest neighbors" and is also available as k_nearest_neighbors. ### References ### k nearest neighbors **k_nearest_neighbors** (*G*, source='in+out', target='in+out', nodes=None, weight=None) Compute the average degree connectivity of graph. The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in ¹, for a node i, as $$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$ where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and N(i) are the neighbors of node i. # **Parameters** • **G** (NetworkX graph) ¹ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004). - **source** ("in"|"out"|"in+out" (default:"in+out")) Directed graphs only. Use "in"- or "out"-degree for source node. - **target** ("in"|"out"|"in+out" (default:"in+out") Directed graphs only. Use "in"- or "out"-degree for target node. - **nodes** (*list or iterable (optional)*) Compute neighbor connectivity for these nodes. The default is all nodes. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns** \mathbf{d} – A dictionary keyed by degree k with the value of average connectivity. # Return type dict Raises ValueError - If either source or target are not one of 'in', 'out', or 'in+out'. ### **Examples** ``` >>> G=nx.path_graph(4) >>> G.edge[1][2]['weight'] = 3 >>> nx.k_nearest_neighbors(G) {1: 2.0, 2: 1.5} >>> nx.k_nearest_neighbors(G, weight='weight') {1: 2.0, 2: 1.75} ``` ### See also: ``` neighbors_average_degree() ``` #### **Notes** This algorithm is sometimes called "k nearest neighbors" and is also available as $k_nearest_neighbors$. ### References # 4.2.4 Mixing | | tribute. | |--|---| | <pre>attribute_mixing_dict(G, attribute[, nodes,])</pre> | Return dictionary representation of mixing matrix for at- | | | gree. | | $degree_mixing_dict(G[, x, y, weight, nodes,])$ | Return dictionary representation of mixing matrix for de- | | <pre>degree_mixing_matrix(G[, x, y, weight,])</pre> | Return mixing matrix for attribute. | | _attribute_mixing_matrix(G, attribute[,]) | Return mixing matrix for attribute. | #### attribute mixing matrix **attribute_mixing_matrix** (*G*, attribute, nodes=None, mapping=None, normalized=True) Return mixing matrix for attribute. ### **Parameters** • **G** (*graph*) – NetworkX graph object. 4.2. Assortativity 135 - attribute (*string*) Node attribute key. - **nodes** (*list or iterable (optional)*) Use only nodes in container to build the matrix. The default is all nodes. - mapping (*dictionary*, *optional*) Mapping from node attribute to integer index in matrix. If not specified, an arbitrary ordering will be used. - **normalized** (*bool* (*default=False*)) Return counts if False or probabilities if True. **Returns m** – Counts or joint probability of occurrence of attribute pairs. Return type numpy array ### degree mixing matrix $degree_mixing_matrix$ (G, x='out', y='in', weight=None, nodes=None, normalized=True) Return mixing matrix for attribute. #### **Parameters** - **G** (*graph*) NetworkX graph object. - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - **y** (*string* ('*in*','*out*')) The degree type for target node (directed graphs only). - nodes (list or iterable (optional)) Build the matrix using only nodes in container. The default is all nodes. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - **normalized** (bool (default=False)) Return counts if False or probabilities if True. **Returns m** – Counts, or joint probability, of occurrence of node degree. Return type numpy array ### degree_mixing_dict **degree_mixing_dict** (G, x='out', y='in', weight=None, nodes=None, normalized=False) Return dictionary representation of mixing matrix for degree. ### **Parameters** - **G** (*graph*) NetworkX graph object. - **x** (*string* ('in','out')) The degree type for source node (directed graphs only). - \mathbf{y} (string ('in','out')) The degree type for target node (directed graphs only). - weight (*string or None*, *optional* (*default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - **normalized** (bool (default=False)) Return counts if False or probabilities if True. **Returns d** – Counts or joint probability of occurrence of degree pairs. **Return type** dictionary ### attribute_mixing_dict attribute_mixing_dict(G, attribute, nodes=None, normalized=False) Return dictionary representation of mixing matrix for attribute. #### **Parameters** - **G** (graph) NetworkX graph object. - attribute (string) Node attribute key. - **nodes** (*list or iterable (optional)*) Unse nodes in container to build the dict. The default is all nodes. - **normalized**
(*bool* (*default=False*)) Return counts if False or probabilities if True. ### **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([0,1],color='red') >>> G.add_nodes_from([2,3],color='blue') >>> G.add_edge(1,3) >>> d=nx.attribute_mixing_dict(G,'color') >>> print(d['red']['blue']) 1 >>> print(d['blue']['red']) # d symmetric for undirected graphs 1 ``` **Returns d** – Counts or joint probability of occurrence of attribute pairs. Return type dictionary # 4.3 Bipartite This module provides functions and operations for bipartite graphs. Bipartite graphs B = (U, V, E) have two node sets U, V and edges in E that only connect nodes from opposite sets. It is common in the literature to use an spatial analogy referring to the two node sets as top and bottom nodes. The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them is with: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite ``` NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named "bipartite" with values 0 or 1 to identify the sets each node belongs to. For example: ``` >>> B = nx.Graph() >>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite" >>> B.add_nodes_from(['a','b','c'], bipartite=1) >>> B.add_edges_from([(1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')]) ``` 4.3. Bipartite Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that belong to one set, in addition to the bipartite graph B. If B is connected, you can find the node sets using a two-coloring algorithm: ``` >>> nx.is_connected(B) True >>> bottom_nodes, top_nodes = bipartite.sets(B) ``` ``` list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b'] ``` However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result is correct: ``` >>> B.remove_edge(2,'c') >>> nx.is_connected(B) False >>> bottom_nodes, top_nodes = bipartite.sets(B) ``` list(top_nodes) [1, 2, 4, 'c'] list(bottom_nodes) ['a', 3, 'b'] Using the "bipartite" node attribute, you can easily get the two node sets: ``` >>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0) >>> bottom_nodes = set(B) - top_nodes ``` ``` list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b'] ``` So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to one node set: ``` >>> print(round(bipartite.density(B, bottom_nodes),2)) 0.42 >>> G = bipartite.projected_graph(B, top_nodes) >>> list(G.edges()) [(1, 2), (1, 4)] ``` All bipartite graph generators in NetworkX build bipartite graphs with the "bipartite" node attribute. Thus, you can use the same approach: ``` >>> RB = bipartite.random_graph(5, 7, 0.2) >>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0) >>> RB_bottom = set(RB) - RB_top >>> list(RB_top) [0, 1, 2, 3, 4] >>> list(RB_bottom) [5, 6, 7, 8, 9, 10, 11] ``` For other bipartite graph generators see the bipartite section of *Graph generators*. ### 4.3.1 Basic functions ### **Bipartite Graph Algorithms** | is_bipartite(G) | Returns True if graph G is bipartite, False if not. | |---------------------------------|---| | is_bipartite_node_set(G, nodes) | Returns True if nodes and G/nodes are a bipartition of G. | | | Continued on next page | Table 4.15 – continued from previous page | sets(G) | Returns bipartite node sets of graph G. | |-----------------------------|--| | color(G) | Returns a two-coloring of the graph. | | density(B, nodes) | Return density of bipartite graph B. | | degrees(B, nodes[, weight]) | Return the degrees of the two node sets in the bipartite | | | graph B. | # is_bipartite # $is_bipartite(G)$ Returns True if graph G is bipartite, False if not. **Parameters G** (NetworkX graph) # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> print(bipartite.is_bipartite(G)) True ``` #### See also: ``` color(), is_bipartite_node_set() ``` # is_bipartite_node_set # is_bipartite_node_set(G, nodes) Returns True if nodes and G/nodes are a bipartition of G. ## **Parameters** - **G** (NetworkX graph) - nodes (list or container) Check if nodes are a one of a bipartite set. # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> X = set([1,3]) >>> bipartite.is_bipartite_node_set(G,X) True ``` # **Notes** For connected graphs the bipartite sets are unique. This function handles disconnected graphs. #### sets #### sets(G) Returns bipartite node sets of graph G. Raises an exception if the graph is not bipartite. **Parameters G** (NetworkX graph) Returns (X,Y) – One set of nodes for each part of the bipartite graph. Return type two-tuple of sets # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> X, Y = bipartite.sets(G) >>> list(X) [0, 2] >>> list(Y) [1, 3] ``` #### See also: ``` color() ``` #### color ## $\mathtt{color}\,(G)$ Returns a two-coloring of the graph. Raises an exception if the graph is not bipartite. **Parameters G** (*NetworkX graph*) **Returns** color – A dictionary keyed by node with a 1 or 0 as data for each node color. **Return type** dictionary Raises exc:NetworkXError if the graph is not two-colorable. ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> c = bipartite.color(G) >>> print(c) {0: 1, 1: 0, 2: 1, 3: 0} ``` You can use this to set a node attribute indicating the biparite set: ``` >>> nx.set_node_attributes(G, 'bipartite', c) >>> print(G.node[0]['bipartite']) 1 >>> print(G.node[1]['bipartite']) 0 ``` # density ## density(B, nodes) Return density of bipartite graph B. #### **Parameters** - **G** (NetworkX graph) - **nodes** (*list or container*) Nodes in one set of the bipartite graph. **Returns d** – The bipartite density Return type float # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.complete_bipartite_graph(3,2) >>> X=set([0,1,2]) >>> bipartite.density(G,X) 1.0 >>> Y=set([3,4]) >>> bipartite.density(G,Y) 1.0 ``` #### See also: color() # degrees degrees (B, nodes, weight=None) Return the degrees of the two node sets in the bipartite graph B. ## **Parameters** - **G** (NetworkX graph) - **nodes** (*list or container*) Nodes in one set of the bipartite graph. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns** (degX,degY) – The degrees of the two bipartite sets as dictionaries keyed by node. **Return type** tuple of dictionaries ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.complete_bipartite_graph(3,2) >>> Y=set([3,4]) >>> degX,degY=bipartite.degrees(G,Y) >>> dict(degX) {0: 2, 1: 2, 2: 2} ``` #### See also: ``` color(), density() ``` # 4.3.2 Matching Provides functions for computing a maximum cardinality matching in a bipartite graph. If you don't care about the particular implementation of the maximum matching algorithm, simply use the maximum_matching(). If you do care, you can import one of the named maximum matching algorithms directly. For example, to find a maximum matching in the complete bipartite graph with two vertices on the left and three vertices on the right: ``` >>> import networkx as nx >>> G = nx.complete_bipartite_graph(2, 3) >>> left, right = nx.bipartite.sets(G) >>> list(left) [0, 1] >>> list(right) [2, 3, 4] >>> nx.bipartite.maximum_matching(G) {0: 2, 1: 3, 2: 0, 3: 1} ``` The dictionary returned by maximum_matching() includes a mapping for vertices in both the left and right vertex sets. | eppstein_matching(G) | Returns the maximum cardinality matching of the bipartite | |------------------------------|---| | | graph G. | | hopcroft_karp_matching(G) | Returns the maximum cardinality matching of the bipartite | | | graph G. | | to_vertex_cover(G, matching) | Returns the minimum vertex cover corresponding to the | | | given maximum matching of the bipartite graph G. | ## eppstein_matching ## $eppstein_{matching}(G)$ Returns the maximum cardinality matching of the bipartite graph G. **Parameters G** (NetworkX graph) – Undirected bipartite graph **Returns** matches – The matching is returned as a dictionary, matching, such that matching [v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. Return type dictionary #### **Notes** This function is implemented with David Eppstein's version of the algorithm Hopcroft–Karp algorithm (see hopcroft_karp_matching()), which originally appeared in the Python Algorithms and Data Structures library (PADS). ## See also: hopcroft_karp_matching() # hopcroft_karp_matching ## $hopcroft_karp_matching(G)$ Returns the maximum cardinality matching of the bipartite graph G. Parameters G (NetworkX graph) – Undirected bipartite graph **Returns** matches – The matching is returned as a dictionary, matches, such that matches [v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. Return type dictionary #### **Notes** This function is implemented with the Hopcroft–Karp matching algorithm for bipartite graphs. #### See also: ``` eppstein_matching() ``` ## References ## to vertex cover #### to_vertex_cover(G, matching) Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph G. #### **Parameters** - **G**
(*NetworkX graph*) Undirected bipartite graph - matching (dictionary) A dictionary whose keys are vertices in G and whose values are the distinct neighbors comprising the maximum matching for G, as returned by, for example, maximum_matching(). The dictionary must represent the maximum matching. **Returns vertex_cover** – The minimum vertex cover in G. Return type set #### **Notes** This function is implemented using the procedure guaranteed by Konig's theorem, which proves an equivalence between a maximum matching and a minimum vertex cover in bipartite graphs. Since a minimum vertex cover is the complement of a maximum independent set for any graph, one can compute the maximum independent set of a bipartite graph this way: ``` >>> import networkx as nx >>> G = nx.complete_bipartite_graph(2, 3) >>> matching = nx.bipartite.maximum_matching(G) >>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching) >>> independent_set = set(G) - vertex_cover >>> print(list(independent_set)) [2, 3, 4] ``` # 4.3.3 Matrix # **Biadjacency matrices** | biadjacency_matrix(G, row_order[,]) | Return the biadjacency matrix of the bipartite graph G. | |--|---| | <pre>from_biadjacency_matrix(A[, create_using,])</pre> | Creates a new bipartite graph from a biadjacency matrix | | | given as a SciPy sparse matrix. | # biadjacency_matrix **biadjacency_matrix** (*G*, row_order, column_order=None, dtype=None, weight='weight', format='csr') Return the biadjacency matrix of the bipartite graph G. Let G = (U, V, E) be a bipartite graph with node sets $U = u_{1}, ..., u_{r}$ and $V = v_{1}, ..., v_{s}$. The biadjacency matrix is the rxs matrix B in which $b_{i,j} = 1$ if, and only if, (u_i, v_j) in E. If the parameter weight is not None and matches the name of an edge attribute, its value is used instead of 1. #### **Parameters** - **G** (graph) A NetworkX graph - row_order (list of nodes) The rows of the matrix are ordered according to the list of nodes. - **column_order** (*list, optional*) The columns of the matrix are ordered according to the list of nodes. If column_order is None, then the ordering of columns is arbitrary. - **dtype** (*NumPy data-type, optional*) A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. - weight (string or None, optional (default='weight')) The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. - format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}) The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See ² for details. **Returns** M – Biadjacency matrix representation of the bipartite graph G. Return type SciPy sparse matrix #### **Notes** No attempt is made to check that the input graph is bipartite. For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices where the rows of one of them are the columns of the other, and then add one to the transpose of the other. ## See also: ``` adjacency_matrix(), from_biadjacency_matrix() ``` ¹ http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph ² Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html ## References # from_biadjacency_matrix from_biadjacency_matrix (A, create_using=None, edge_attribute='weight') Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix. #### **Parameters** - A (scipy sparse matrix) A biadjacency matrix representation of a graph - **create_using** (*NetworkX graph*) Use specified graph for result. The default is Graph() - edge_attribute (*string*) Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). ## **Notes** The nodes are labeled with the attribute bipartite set to an integer 0 or 1 representing membership in part 0 or part 1 of the bipartite graph. If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges. In this case, edge attribute will be ignored. #### See also: biadjacency_matrix(), from_numpy_matrix() # References [1] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph # 4.3.4 Projections One-mode (unipartite) projections of bipartite graphs. | <pre>projected_graph(B, nodes[, multigraph])</pre> | Returns the projection of B onto one of its node sets. | |--|---| | <pre>weighted_projected_graph(B, nodes[, ratio])</pre> | Returns a weighted projection of B onto one of its node | | | sets. | | collaboration_weighted_projected_graph(B, | Newman's weighted projection of B onto one of its node | | nodes) | sets. | | overlap_weighted_projected_graph(B, | Overlap weighted projection of B onto one of its node sets. | | nodes[,]) | | | generic_weighted_projected_graph(B, | Weighted projection of B with a user-specified weight func- | | nodes[,]) | tion. | ## projected graph projected_graph (B, nodes, multigraph=False) Returns the projection of B onto one of its node sets. Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their attributes and are connected in G if they have a common neighbor in B. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - nodes (list or iterable) Nodes to project onto (the "bottom" nodes). - **multigraph** (*bool* (*default=False*)) If True return a multigraph where the multiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned to the label of the neighbor. **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph or multigraph # **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(4) >>> G = bipartite.projected_graph(B, [1,3]) >>> list(G) [1, 3] >>> list(G.edges()) [(1, 3)] ``` If nodes a, and b are connected through both nodes 1 and 2 then building a multigraph results in two edges in the projection onto [a, 'b']: ``` >>> B = nx.Graph() >>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)]) >>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True) >>> print([sorted((u,v)) for u,v in G.edges()]) [['a', 'b'], ['a', 'b']] ``` ## **Notes** No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned with an edge for every shared neighbor. Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a directed path between the nodes. The graph and node properties are (shallow) copied to the projected graph. ## See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph() ``` ## weighted projected graph ``` weighted_projected_graph(B, nodes, ratio=False) ``` Returns a weighted projection of B onto one of its node sets. The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared neighbors if ratio=True ¹. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - **nodes** (*list or iterable*) Nodes to project onto (the "bottom" nodes). - ratio (Bool (default=False)) If True, edge weight is the ratio between actual shared neighbors and possible shared neighbors. If False, edges weight is the number of shared neighbors. **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(4) >>> G = bipartite.weighted_projected_graph(B, [1,3]) >>> list(G) [1, 3] >>> list(G.edges(data=True)) [(1, 3, {'weight': 1})] >>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True) >>> list(G.edges(data=True)) [(1, 3, {'weight': 0.5})] ``` # **Notes** No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. ### See also: #### References ## collaboration weighted projected graph # collaboration_weighted_projected_graph(B, nodes) Newman's weighted projection of B onto one of its node sets. ¹ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. The collaboration weighted projection is the projection of the bipartite network B onto the specified nodes with weights assigned using Newman's collaboration model ¹: $$w_{v,u} = \sum_{k} \frac{\delta_v^w \delta_w^k}{k_w - 1}$$ where v and u are nodes from the same bipartite node set, and w is a node of the opposite node set. The value k_w is the degree of node w in the bipartite network and $delta_{v}^{v}$ is 1 if node v is linked to node w in the original bipartite graph or 0 otherwise. The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph. #### **Parameters** - **B** (*NetworkX
graph*) The input graph should be bipartite. - **nodes** (*list or iterable*) Nodes to project onto (the "bottom" nodes). Returns Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(5) >>> B.add_edge(1,5) >>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5]) >>> list(G) [0, 2, 4, 5] >>> for edge in G.edges(data=True): print(edge) ... (0, 2, {'weight': 0.5}) (0, 5, {'weight': 0.5}) (2, 4, {'weight': 1.0}) (2, 5, {'weight': 0.5}) ``` #### **Notes** No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. ### See also: ## References # overlap weighted projected graph ``` overlap_weighted_projected_graph (B, nodes, jaccard=True) ``` Overlap weighted projection of B onto one of its node sets. ¹ Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001). The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite network 1: $$w_{v,u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$ or if the parameter 'jaccard' is False, the fraction of common neighbors by minimum of both nodes degree in the original bipartite graph ¹: $$w_{v,u} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$ The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - **nodes** (*list or iterable*) Nodes to project onto (the "bottom" nodes). - **jaccard** (Bool (default=True)) **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph # **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(5) >>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4]) >>> list(G) [0, 2, 4] >>> list(G.edges(data=True)) [(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})] >>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False) >>> list(G.edges(data=True)) [(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})] ``` #### **Notes** No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. ## See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph() ``` ¹ Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. #### References ## generic_weighted_projected_graph ``` generic_weighted_projected_graph (B, nodes, weight_function=None) ``` Weighted projection of B with a user-specified weight function. The bipartite network B is projected on to the specified nodes with weights computed by a user-specified function. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a float. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - nodes (list or iterable) Nodes to project onto (the "bottom" nodes). - weight_function (function) This function must accept as parameters the same input graph that this function, and two nodes; and return an integer or a float. The default function computes the number of shared neighbors. **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> # Define some custom weight functions >>> def jaccard(G, u, v): unbrs = set(G[u]) vnbrs = set(G[v]) return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs) >>> def my_weight(G, u, v, weight='weight'): w = 0 . . . for nbr in set(G[u]) & set(G[v]): . . . w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1) . . . return w . . . >>> # A complete bipartite graph with 4 nodes and 4 edges >>> B = nx.complete_bipartite_graph(2,2) >>> # Add some arbitrary weight to the edges >>> for i, (u, v) in enumerate (B.edges()): B.edge[u][v]['weight'] = i + 1 >>> for edge in B.edges(data=True): print (edge) (0, 2, {'weight': 1}) (0, 3, {'weight': 2}) (1, 2, {'weight': 3}) (1, 3, {'weight': 4}) >>> # Without specifying a function, the weight is equal to # shared partners >>> G = bipartite.generic_weighted_projected_graph(B, [0, 1]) ``` #### **Notes** No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. #### See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), projected_graph() ``` # 4.3.5 Spectral Spectral bipartivity measure. spectral_bipartivity(G[, nodes, weight]) Returns the spectral bipartivity. #### spectral bipartivity ``` spectral_bipartivity (G, nodes=None, weight='weight') Returns the spectral bipartivity. ``` #### **Parameters** - **G** (NetworkX graph) - **nodes** (*list or container optional(default is all nodes)*) Nodes to return value of spectral bipartivity contribution. - weight (string or None optional (default = 'weight')) Edge data key to use for edge weights. If None, weights set to 1. **Returns** sb – A single number if the keyword nodes is not specified, or a dictionary keyed by node with the spectral bipartivity contribution of that node as the value. Return type float or dict # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) ``` ``` >>> bipartite.spectral_bipartivity(G) 1.0 ``` # **Notes** This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs. #### See also: color() #### References # 4.3.6 Clustering | <pre>clustering(G[, nodes, mode])</pre> | Compute a bipartite clustering coefficient for nodes. | |--|---| | $average_clustering(G[, nodes, mode])$ | Compute the average bipartite clustering coefficient. | | <pre>latapy_clustering(G[, nodes, mode])</pre> | Compute a bipartite clustering coefficient for nodes. | | $robins_alexander_clustering(G)$ | Compute the bipartite clustering of G. | ## clustering clustering(G, nodes=None, mode='dot') Compute a bipartite clustering coefficient for nodes. The bipartie clustering coefficient is a measure of local density of connections defined as ¹: $$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$ where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v. The mode selects the function for c_{uv} which can be: dot: $$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$ min: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$ max: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\max(|N(u)|,|N(v)|)}$$ ## **Parameters** • **G** (graph) – A bipartite graph ¹ Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. - **nodes** (*list or iterable (optional)*) Compute bipartite clustering for these nodes. The default is all nodes in G. - **mode** (*string*) The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min". **Returns** clustering – A dictionary keyed by node with the clustering coefficient value. Return type dictionary # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) # path graphs are bipartite >>> c = bipartite.clustering(G) >>> c[0] 0.5 >>> c = bipartite.clustering(G, mode='min') >>> c[0] 1.0 ``` #### See also: robins_alexander_clustering(), square_clustering(), average_clustering() ## References ## average clustering ``` average_clustering(G, nodes=None, mode='dot') ``` Compute the average bipartite clustering coefficient. A clustering coefficient for the whole graph is the average, $$C = \frac{1}{n} \sum_{v \in G} c_v,$$ where n is the number of nodes in G. Similar measures for the two bipartite sets can be defined ¹ $$C_X = \frac{1}{|X|} \sum_{v \in X} c_v,$$ where X is a bipartite set of G. ## **Parameters** - **G** (graph) a bipartite graph - **nodes** (*list or iterable, optional*) A container of nodes to use in computing the average. The nodes should be either the entire graph (the default) or one of the bipartite sets. - mode (string) The pariwise bipartite clustering method. It must be "dot", "max", or "min" ¹ Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. **Returns** clustering – The average bipartite clustering for the given set of nodes or the entire graph if no nodes are specified. Return type float ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G=nx.star_graph(3) # star graphs are bipartite >>> bipartite.average_clustering(G) 0.75 >>> X,Y=bipartite.sets(G) >>> bipartite.average_clustering(G,X) 0.0 >>> bipartite.average_clustering(G,Y) 1.0 ``` #### See also: clustering() #### **Notes** The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets ("top" or "bottom") in order to compute the correct average bipartite clustering coefficients. ### References ## latapy_clustering latapy_clustering(G, nodes=None, mode='dot') Compute a bipartite
clustering coefficient for nodes. The bipartie clustering coefficient is a measure of local density of connections defined as ¹: $$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$ where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v. The mode selects the function for c_{uv} which can be: dot: $$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$ min: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$ ¹ Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. max: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\max(|N(u)|, |N(v)|)}$$ #### **Parameters** - **G** (*graph*) A bipartite graph - **nodes** (*list or iterable (optional)*) Compute bipartite clustering for these nodes. The default is all nodes in G. - **mode** (*string*) The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min". **Returns clustering** – A dictionary keyed by node with the clustering coefficient value. Return type dictionary # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) # path graphs are bipartite >>> c = bipartite.clustering(G) >>> c[0] 0.5 >>> c = bipartite.clustering(G, mode='min') >>> c[0] 1.0 ``` ## See also: robins_alexander_clustering(), square_clustering(), average_clustering() ## References #### robins alexander clustering # ${\tt robins_alexander_clustering}\,(G)$ Compute the bipartite clustering of G. Robins and Alexander 1 defined bipartite clustering coefficient as four times the number of four cycles C_4 divided by the number of three paths L_3 in a bipartite graph: $$CC_4 = \frac{4 * C_4}{L_3}$$ **Parameters G** (*graph*) – a bipartite graph **Returns clustering** – The Robins and Alexander bipartite clustering for the input graph. **Return type** float ¹ Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Computational & Mathematical Organization Theory 10(1), 69–94. # **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.davis_southern_women_graph() >>> print(round(bipartite.robins_alexander_clustering(G), 3)) 0.468 ``` #### See also: latapy_clustering(), square_clustering() #### References # 4.3.7 Redundancy Node redundancy for bipartite graphs. node_redundancy(G[, nodes]) Computes the node redundancy coefficients for the nodes in the bipartite graph G. # node_redundancy ## node_redundancy (G, nodes=None) Computes the node redundancy coefficients for the nodes in the bipartite graph G. The redundancy coefficient of a node v is the fraction of pairs of neighbors of v that are both linked to other nodes. In a one-mode projection these nodes would be linked together even if v were not there. More formally, for any vertex v, the redundancy coefficient of 'v' is defined by $$rc(v) = \frac{|\{\{u, w\} \subseteq N(v), \ \exists v' \neq v, \ (v', u) \in E \text{ and } (v', w) \in E\}|}{\frac{|N(v)|(|N(v)| - 1)}{2}},$$ where N (v) is the set of neighbors of v in G. # **Parameters** - **G** (graph) A bipartite graph - **nodes** (*list or iterable (optional)*) Compute redundancy for these nodes. The default is all nodes in G. **Returns** redundancy – A dictionary keyed by node with the node redundancy value. Return type dictionary # **Examples** Compute the redundancy coefficient of each node in a graph: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite >>> G = nx.cycle_graph(4) >>> rc = bipartite.node_redundancy(G) >>> rc[0] 1.0 ``` Compute the average redundancy for the graph: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite >>> G = nx.cycle_graph(4) >>> rc = bipartite.node_redundancy(G) >>> sum(rc.values()) / len(G) 1.0 ``` Compute the average redundancy for a set of nodes: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite >>> G = nx.cycle_graph(4) >>> rc = bipartite.node_redundancy(G) >>> nodes = [0, 2] >>> sum(rc[n] for n in nodes) / len(nodes) 1.0 ``` Raises NetworkXError – If any of the nodes in the graph (or in nodes, if specified) has (out)degree less than two (which would result in division by zero, according to the definition of the redundancy coefficient). #### References # 4.3.8 Centrality | <pre>closeness_centrality(G, nodes[, normalized])</pre> | Compute the closeness centrality for nodes in a bipartite network. | |---|--| | degree_centrality(G, nodes) | Compute the degree centrality for nodes in a bipartite network. | | betweenness_centrality(G, nodes) | Compute betweenness centrality for nodes in a bipartite network. | # closeness_centrality #### closeness centrality (G, nodes, normalized=True) Compute the closeness centrality for nodes in a bipartite network. The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node. #### **Parameters** - **G** (*graph*) A bipartite network - **nodes** (*list or container*) Container with all nodes in one bipartite node set. - normalized (bool, optional) If True (default) normalize by connected component size. **Returns** closeness – Dictionary keyed by node with bipartite closeness centrality as the value. **Return type** dictionary #### See also: ``` betweenness_centrality(), degree_centrality(), sets(), is_bipartite() ``` #### **Notes** The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets. Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own set 1 . Thus the closeness centrality for node v in the two bipartite sets v with v nodes and v with v nodes is $$c_v = \frac{m+2(n-1)}{d}$$, for $v \in U$, $c_v = \frac{n+2(m-1)}{d}$, for $v \in V$, where d is the sum of the distances from v to all other nodes. Higher values of closeness indicate higher centrality. As in the unipartite case, setting normalized=True causes the values to normalized further to n-1 / size(G)-1 where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately. # References # degree_centrality ## degree_centrality(G, nodes) Compute the degree centrality for nodes in a bipartite network. The degree centrality for a node v is the fraction of nodes connected to it. # **Parameters** - **G** (graph) A bipartite network - **nodes** (*list or container*) Container with all nodes in one bipartite node set. **Returns centrality** – Dictionary keyed by node with bipartite degree centrality as the value. Return type dictionary ## See also: ``` betweenness_centrality(), closeness_centrality(), sets(), is_bipartite() ``` ## **Notes** The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both bipartite node sets. For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree (which is n-1 where n is the number of nodes in G). ¹ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the opposite node set 1. The degree centrality for a node v in the bipartite sets U with n nodes and V with m nodes is $$d_v = \frac{deg(v)}{m}$$, for $v \in U$, $d_v = \frac{deg(v)}{n}$, for $v \in V$, where deg (v) is the degree of node v. #### References # betweenness_centrality ## betweenness_centrality(G, nodes) Compute betweenness centrality for nodes in a bipartite network. Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v. Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by the relative size of the two node sets ¹. Let n be the number of nodes in the node set \mathbb{U} and m be the number of nodes in the node set \mathbb{V} , then nodes in \mathbb{U} are normalized by dividing by $$\frac{1}{2}[m^2(s+1)^2 + m(s+1)(2t-s-1) - t(2s-t+3)],$$ where $$s = (n-1) \div m, t = (n-1) \mod m,$$ and nodes in V are normalized by dividing by $$\frac{1}{2}[n^2(p+1)^2 + n(p+1)(2r-p-1) - r(2p-r+3)],$$ where, $$p = (m-1) \div n, r = (m-1) \mod n.$$ #### **Parameters** - **G** (*graph*) A bipartite graph - nodes (list or container) Container with all nodes in one bipartite node set. Returns betweenness – Dictionary keyed by node with bipartite betweenness centrality as the value. Return type dictionary See also: degree_centrality(), closeness_centrality(), sets(), is_bipartite() ¹ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf ¹ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf ## **Notes** The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets. #### References # 4.3.9 Generators
Generators and functions for bipartite graphs. | complete_bipartite_graph(n1, n2[, cre- | Return the complete bipartite graph K_{n_1, n_2}. | |--|---| | ate_using]) | | | <pre>configuration_model(aseq, bseq[,])</pre> | Return a random bipartite graph from two given degree se- | | | quences. | | havel_hakimi_graph(aseq, bseq[, create_using]) | Return a bipartite graph from two given degree sequences | | | using a Havel-Hakimi style construction. | | reverse_havel_hakimi_graph(aseq, bseq[,]) | Return a bipartite graph from two given degree sequences | | | using a Havel-Hakimi style construction. | | alternating_havel_hakimi_graph(aseq, bseq[, | Return a bipartite graph from two given degree sequences | |]) | using an alternating Havel-Hakimi style construction. | | <pre>preferential_attachment_graph(aseq, p[,])</pre> | Create a bipartite graph with a preferential attachment | | | model from a given single degree sequence. | | random_graph(n, m, p[, seed, directed]) | Return a bipartite random graph. | | gnmk_random_graph(n, m, k[, seed, directed]) | Return a random bipartite graph G_{n,m,k}. | # complete_bipartite_graph ## complete_bipartite_graph (n1, n2, create_using=None) Return the complete bipartite graph K_{n_1, n_2} . Composed of two partitions with n_1 nodes in the first and n_2 nodes in the second. Each node in the first is connected to each node in the second. ## **Parameters** - **n1** (*integer*) Number of nodes for node set A. - **n2** (*integer*) Number of nodes for node set B. - **create_using** (*NetworkX graph instance, optional*) Return graph of this type. ## **Notes** Node labels are the integers 0 to n_1 + n_2 -1. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## configuration model configuration_model (aseq, bseq, create_using=None, seed=None) Return a random bipartite graph from two given degree sequences. ### **Parameters** - aseq (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - **create_using** (*NetworkX graph instance, optional*) Return graph of this type. - seed (integer, optional) Seed for random number generator. - Nodes from the set A are connected to nodes in the set B by - · choosing randomly from the possible free stubs, one in A and - · one in B. ### **Notes** The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. ## havel hakimi graph havel_hakimi_graph (aseq, bseq, create_using=None) Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction. Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the highest degree nodes in set B until all stubs are connected. #### **Parameters** - aseq (list) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - **create_using** (*NetworkX graph instance, optional*) Return graph of this type. ## **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## reverse havel hakimi graph ## reverse_havel_hakimi_graph (aseq, bseq, create_using=None) Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction. Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the lowest degree nodes in set B until all stubs are connected. ## **Parameters** - **aseq** (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - **create_using** (*NetworkX graph instance, optional*) Return graph of this type. ## **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## alternating havel hakimi graph ## alternating_havel_hakimi_graph (aseq, bseq, create_using=None) Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction. Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to alternatively the highest and the lowest degree nodes in set B until all stubs are connected. ## Parameters - **aseq** (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - **create using** (*NetworkX graph instance, optional*) Return graph of this type. ## **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. # preferential_attachment_graph preferential_attachment_graph (aseq, p, create_using=None, seed=None) Create a bipartite graph with a preferential attachment model from a given single degree sequence. #### **Parameters** - aseq (list) Degree sequence for node set A. - **p** (*float*) Probability that a new bottom node is added. - **create_using** (*NetworkX graph instance, optional*) Return graph of this type. - seed (integer, optional) Seed for random number generator. ## References #### **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. ## random graph random_graph (n, m, p, seed=None, directed=False) Return a bipartite random graph. This is a bipartite version of the binomial (Erdős-Rényi) graph. #### **Parameters** - **n** (*int*) The number of nodes in the first bipartite set. - **m** (*int*) The number of nodes in the second bipartite set. - **p** (*float*) Probability for edge creation. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - **directed** (bool, optional (default=False)) If True return a directed graph #### **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The bipartite random graph algorithm chooses each of the n*m (undirected) or 2*nm (directed) possible edges with probability p. This algorithm is O(n+m) where m is the expected number of edges. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## See also: ``` qnp_random_graph(), configuration_model() ``` #### References ## gnmk_random_graph $gnmk_random_graph(n, m, k, seed=None, directed=False)$ Return a random bipartite graph $G_{n,m,k}$. Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and k edges. #### **Parameters** - **n** (*int*) The number of nodes in the first bipartite set. - m (int) The number of nodes in the second bipartite set. - \mathbf{k} (*int*) The number of edges - seed (int, optional) Seed for random number generator (default=None). - directed (bool, optional (default=False)) If True return a directed graph # **Examples** from networkx.algorithms import bipartite $G = bipartite.gnmk_random_graph(10,20,50)$ #### See also: ``` gnm_random_graph() ``` ## **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. If k > m * n then a complete bipartite graph is returned. This graph is a bipartite version of the G_{nm} random graph model. # 4.3.10 Covering Functions related to graph covers. | <pre>min_edge_cover(G[, matching_algorithm])</pre> | Returns a set of edges which constitutes the minimum edge | |--|---| | | cover of the graph. | ### min edge cover # min_edge_cover(G, matching_algorithm=None) Returns a set of edges which constitutes the minimum edge cover of the graph. The smallest edge cover can be found in polynomial time by finding a maximum matching and extending it greedily so that all nodes are covered. #### **Parameters** • **G** (*NetworkX graph*) – An undirected bipartite graph. • matching_algorithm (function) – A function that returns a maximum cardinality matching in a given bipartite graph. The function must take one input, the graph G, and return a dictionary mapping each node to its mate. If not specified, hopcroft_karp_matching() will be used. Other possibilities include eppstein_matching(), **Returns** A set of the edges in a minimum edge cover of the graph, given as pairs of nodes. It contains both the edges (u, v) and
(v, u) for given nodes u and v among the edges of minimum edge cover. Return type set #### **Notes** An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of the set. A minimum edge cover is an edge covering of smallest cardinality. Due to its implementation, the worst-case running time of this algorithm is bounded by the worst-case running time of the function matching_algorithm. # 4.4 Boundary Routines to find the boundary of a set of nodes. An edge boundary is a set of edges, each of which has exactly one endpoint in a given set of nodes (or, in the case of directed graphs, the set of edges whose source node is in the set). A node boundary of a set S of nodes is the set of (out-)neighbors of nodes in S that are outside S. | edge_boundary(G, nbunch1[, nbunch2, data,]) | Returns the edge boundary of nbunch1. | |---|---------------------------------------| | <pre>node_boundary(G, nbunch1[, nbunch2])</pre> | Returns the node boundary of nbunch1. | # 4.4.1 edge_boundary **edge_boundary** (*G*, *nbunch1*, *nbunch2=None*, *data=False*, *keys=False*, *default=None*) Returns the edge boundary of nbunch1. The *edge boundary* of a set S with respect to a set T is the set of edges (u, v) such that u is in S and v is in T. If T is not specified, it is assumed to be the set of all nodes not in S. #### **Parameters** - **G** (NetworkX graph) - **nbunch1** (*iterable*) Iterable of nodes in the graph representing the set of nodes whose edge boundary will be returned. (This is the set S from the definition above.) - **nbunch2** (*iterable*) Iterable of nodes representing the target (or "exterior") set of nodes. (This is the set *T* from the definition above.) If not specified, this is assumed to be the set of all nodes in G not in nbunch1. - **keys** (bool) This parameter has the same meaning as in MultiGraph.edges (). - data (bool or object) This parameter has the same meaning as in MultiGraph.edges(). - **default** (*object*) This parameter has the same meaning as in MultiGraph.edges(). 4.4. Boundary 165 **Returns** An iterator over the edges in the boundary of nbunch1 with respect to nbunch2. If keys, data, or default are specified and G is a multigraph, then edges are returned with keys and/or data, as in MultiGraph.edges(). Return type iterator #### **Notes** Any element of nbunch that is not in the graph G will be ignored. nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here. # 4.4.2 node_boundary node_boundary (G, nbunch1, nbunch2=None) Returns the node boundary of nbunch1. The *node boundary* of a set S with respect to a set T is the set of nodes v in T such that for some u in S, there is an edge joining u to v. If T is not specified, it is assumed to be the set of all nodes not in S. #### **Parameters** - **G** (NetworkX graph) - **nbunch1** (*iterable*) Iterable of nodes in the graph representing the set of nodes whose node boundary will be returned. (This is the set *S* from the definition above.) - **nbunch2** (*iterable*) Iterable of nodes representing the target (or "exterior") set of nodes. (This is the set *T* from the definition above.) If not specified, this is assumed to be the set of all nodes in G not in nbunch1. **Returns** The node boundary of nbunch1 with respect to nbunch2. Return type set ## **Notes** Any element of nbunch that is not in the graph G will be ignored. nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here. # 4.5 Centrality # 4.5.1 Degree | degree_centrality(G) | Compute the degree centrality for nodes. | |--------------------------|--| | in_degree_centrality(G) | Compute the in-degree centrality for nodes. | | out_degree_centrality(G) | Compute the out-degree centrality for nodes. | # degree_centrality ## $degree_centrality(G)$ Compute the degree centrality for nodes. The degree centrality for a node v is the fraction of nodes it is connected to. **Parameters G** (*graph*) – A networkx graph **Returns** nodes – Dictionary of nodes with degree centrality as the value. Return type dictionary ## See also: ``` betweenness_centrality(), load_centrality(), eigenvector_centrality() ``` ## **Notes** The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible. ## in_degree_centrality #### in_degree_centrality(G) Compute the in-degree centrality for nodes. The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to. Parameters G (graph) – A NetworkX graph Returns nodes – Dictionary of nodes with in-degree centrality as values. **Return type** dictionary Raises NetworkXNotImplemented: – If G is undirected. ## See also: ``` degree_centrality(), out_degree_centrality() ``` ## **Notes** The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible. ## out degree centrality # $\mathtt{out_degree_centrality}\left(G\right)$ Compute the out-degree centrality for nodes. The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to. 4.5. Centrality 167 **Parameters G** (*graph*) – A NetworkX graph **Returns nodes** – Dictionary of nodes with out-degree centrality as values. Return type dictionary Raises NetworkXNotImplemented: – If G is undirected. #### See also: ``` degree centrality(), in degree centrality() ``` #### **Notes** The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible. # 4.5.2 Eigenvector | eigenvector_centrality(G[, max_iter, tol,]) | Compute the eigenvector centrality for the graph G. | |---|---| | eigenvector_centrality_numpy(G[, weight,]) | Compute the eigenvector centrality for the graph G. | | <pre>katz_centrality(G[, alpha, beta, max_iter,])</pre> | Compute the Katz centrality for the nodes of the graph G. | | katz_centrality_numpy(G[, alpha, beta,]) | Compute the Katz centrality for the graph G. | ## eigenvector centrality eigenvector_centrality(G, max_iter=100, tol=1e-06, nstart=None, weight='weight') Compute the eigenvector centrality for the graph $\ensuremath{\mbox{\sc G}}.$ Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node $\dot{\text{\sc l}}$ is $$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$ where A is the adjacency matrix of the graph G with eigenvalue λ . By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if λ is the largest eigenvalue associated with the eigenvector of the adjacency matrix A (2). ## **Parameters** - $\mathbf{G}(graph)$ A networkx graph - max_iter (integer, optional) Maximum number of iterations in power method. - tol (float, optional) Error tolerance used to check convergence in power method iteration. - **nstart** (*dictionary*, *optional*) Starting value of eigenvector iteration for each node. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns nodes** – Dictionary of nodes with eigenvector centrality as the value. Return type dictionary ² Mark E. J. Newman. *Networks: An Introduction*. Oxford University Press, USA, 2010, pp. 169. # **Examples** ``` >>> G = nx.path_graph(4) >>> centrality = nx.eigenvector_centrality(G) >>> sorted((v, '{:0.2f}'.format(c)) for v, c in centrality.items()) [(0, '0.37'), (1, '0.60'), (2, '0.60'), (3, '0.37')] ``` #### Raises - NetworkXPointlessConcept If the graph G is the null graph. - NetworkXError If each value in nstart is zero. - PowerIterationFailedConvergence If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. #### See also: ``` eigenvector_centrality_numpy(), pagerank(), hits() ``` #### **Notes** The measure was introduced by 1 and is discussed in 2 . The power iteration method is used to compute the eigenvector and convergence is **not** guaranteed. Our method stops after max_iter iterations or when the change in the computed vector between two iterations is smaller than an error tolerance of $G.number_of_nodes() * tol.$ This implementation uses (A + I) rather than the adjacency matrix A because it shifts the spectrum to enable discerning the correct eigenvector even for networks with multiple dominant eigenvalues. For directed graphs this is "left" eigenvector centrality which corresponds to the in-edges in the graph. For out-edges eigenvector centrality first reverse the graph with G.reverse(). ## References # eigenvector_centrality_numpy ``` eigenvector_centrality_numpy (G, weight='weight', max_iter=50, tol=0) ``` Compute the eigenvector centrality for the graph G. Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node i is $$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$ where A is the adjacency matrix of the graph G with eigenvalue lambda. By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if lambda is the largest eigenvalue
associated with the eigenvector of the adjacency matrix A (2). ## **Parameters** • **G** (graph) – A networkx graph 4.5. Centrality 169 ¹ Phillip Bonacich. "Power and Centrality: A Family of Measures." *American Journal of Sociology* 92(5):1170–1182, 1986 http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf ² Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169. - weight (*None or string, optional*) The name of the edge attribute used as weight. If None, all edge weights are considered equal. - max_iter (integer, optional) Maximum number of iterations in power method. - tol (*float*, *optional*) Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision. **Returns nodes** – Dictionary of nodes with eigenvector centrality as the value. Return type dictionary # **Examples** ``` >>> G = nx.path_graph(4) >>> centrality = nx.eigenvector_centrality_numpy(G) >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality]) ['0 0.37', '1 0.60', '2 0.60', '3 0.37'] ``` #### See also: ``` eigenvector_centrality(), pagerank(), hits() ``` #### **Notes** The measure was introduced by 1 . This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to find the largest eigenvalue/eigenvector pair. For directed graphs this is "left" eigenvector centrality which corresponds to the in-edges in the graph. For out-edges eigenvector centrality first reverse the graph with G.reverse(). Raises NetworkXPointlessConcept - If the graph G is the null graph. #### References ## katz centrality Compute the Katz centrality for the nodes of the graph G. Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is $$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$ where A is the adjacency matrix of the graph G with eigenvalues lambda. The parameter beta controls the initial centrality and $$\alpha < \frac{1}{\lambda_{max}}.$$ ¹ Phillip Bonacich: Power and Centrality: A Family of Measures. American Journal of Sociology 92(5):1170–1182, 1986 http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors. Extra weight can be provided to immediate neighbors through the parameter β . Connections made with distant neighbors are, however, penalized by an attenuation factor alpha which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in 1 . #### **Parameters** - **G** (graph) A NetworkX graph - alpha (float) Attenuation factor - **beta** (*scalar or dictionary, optional* (*default=1.0*)) Weight attributed to the immediate neighborhood. If not a scalar, the dictionary must have an value for every node. - max_iter (integer, optional (default=1000)) Maximum number of iterations in power method. - tol (float, optional (default=1.0e-6)) Error tolerance used to check convergence in power method iteration. - **nstart** (*dictionary*, *optional*) Starting value of Katz iteration for each node. - **normalized** (bool, optional (default=True)) If True normalize the resulting values. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. Returns nodes – Dictionary of nodes with Katz centrality as the value. # Return type dictionary ## Raises - NetworkXError If the parameter beta is not a scalar but lacks a value for at least one node - PowerIterationFailedConvergence If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. # **Examples** ``` >>> import math >>> G = nx.path_graph(4) >>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix >>> centrality = nx.katz_centrality(G,1/phi-0.01) >>> for n,c in sorted(centrality.items()): ... print("%d %0.2f"%(n,c)) 0 0.37 1 0.60 2 0.60 3 0.37 ``` # See also: ``` katz_centrality_numpy(), eigenvector_centrality(), eigenvector_centrality_numpy(), pagerank(), hits() ``` 4.5. Centrality 171 ¹ Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720. #### **Notes** Katz centrality was introduced by ². This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. When alpha = 1/lambda_{max} and beta=0, Katz centrality is the same as eigenvector centrality. For directed graphs this finds "left" eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse(). ### References ## katz_centrality_numpy $\mathtt{katz_centrality_numpy}$ (G, alpha=0.1, beta=1.0, normalized=True, weight='weight') Compute the Katz centrality for the graph G. Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is $$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$ where A is the adjacency matrix of the graph G with eigenvalues lambda. The parameter beta controls the initial centrality and $$\alpha < \frac{1}{\lambda_{max}}.$$ Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors. Extra weight can be provided to immediate neighbors through the parameter β . Connections made with distant neighbors are, however, penalized by an attenuation factor alpha which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in 1 . #### **Parameters** - **G** (graph) A NetworkX graph - alpha (float) Attenuation factor - **beta** (*scalar or dictionary, optional* (*default=1.0*)) Weight attributed to the immediate neighborhood. If not a scalar the dictionary must have an value for every node. - **normalized** (*bool*) If True normalize the resulting values. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. ² Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953 http://phya.snu.ac.kr/~dkim/PRL87278701.pdf ¹ Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720. **Returns nodes** – Dictionary of nodes with Katz centrality as the value. Return type dictionary Raises NetworkXError – If the parameter beta is not a scalar but lacks a value for at least one node ## **Examples** ``` >>> import math >>> G = nx.path_graph(4) >>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix >>> centrality = nx.katz_centrality_numpy(G,1/phi) >>> for n,c in sorted(centrality.items()): ... print("%d %0.2f"%(n,c)) 0 0.37 1 0.60 2 0.60 3 0.37 ``` #### See also: ``` katz_centrality(), eigenvector_centrality_numpy(), eigenvector_centrality(), pagerank(), hits() ``` #### **Notes** Katz centrality was introduced by ². This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When alpha = 1/lambda {max} and beta=0, Katz centrality is the same as eigenvector centrality. For directed graphs this finds "left" eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse(). #### References # 4.5.3 Closeness closeness_centrality(G[, u, distance, ...]) Compute closeness centrality for nodes. ## closeness centrality $closeness_centrality(G, u=None, distance=None, normalized=True)$ Compute closeness centrality for nodes. Closeness centrality ¹ of a node u is the reciprocal of the sum of the shortest path distances from u to all n-1 other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized 4.5. Centrality 173 ² Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953 http://phya.snu.ac.kr/~dkim/PRI 87778701 pdf ¹ Linton C. Freeman: Centrality in networks: I. Conceptual clarification. Social Networks 1:215-239, 1979. http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf by the sum of minimum possible distances n-1. $$C(u) = \frac{n-1}{\sum_{v=1}^{n-1} d(v, u)},$$ where d (v, u) is the shortest-path distance between v and u, and n is the number of nodes in the graph. Notice that higher values of closeness indicate higher centrality. #### **Parameters** - **G** (graph) A NetworkX graph - \mathbf{u} (node, optional) Return only the value for node \mathbf{u} - **distance** (*edge attribute key, optional (default=None*)) Use the specified edge attribute as the edge distance in shortest path calculations - **normalized** (*bool*, *optional*) If True (default) normalize by the number of nodes in the connected part of the graph. **Returns** nodes – Dictionary of nodes with closeness centrality as the value. Return type dictionary #### See
also: ``` betweenness_centrality(), load_centrality(), eigenvector_centrality(), degree_centrality() ``` #### **Notes** The closeness centrality is normalized to (n-1)/(|G|-1) where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately. If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight. ## References # 4.5.4 Current Flow Closeness $current_flow_closeness_centrality(G[,...])$ Compute current-flow closeness centrality for nodes. # current_flow_closeness_centrality **current_flow_closeness_centrality** (*G*, weight='weight', dtype=<type 'float'>, solver='lu') Compute current-flow closeness centrality for nodes. Current-flow closeness centrality is variant of closeness centrality based on effective resistance between nodes in a network. This metric is also known as information centrality. ## **Parameters** - **G** (graph) A NetworkX graph - dtype (data type (float)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. • **solver** (*string* (*default='lu'*)) – Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). Returns nodes – Dictionary of nodes with current flow closeness centrality as the value. Return type dictionary #### See also: closeness_centrality() #### **Notes** The algorithm is from Brandes ¹. See also ² for the original definition of information centrality. #### References # 4.5.5 (Shortest Path) Betweenness | betweenness_centrality(G[, k, normalized,]) | Compute the shortest-path betweenness centrality for | |---|--| | | nodes. | | $edge_betweenness_centrality(G[,k,])$ | Compute betweenness centrality for edges. | | betweenness_centrality_subset(G, sources,) | Compute betweenness centrality for a subset of nodes. | | edge_betweenness_centrality_subset(G,[, | Compute betweenness centrality for edges for a subset of | |]) | nodes. | #### betweenness centrality **betweenness_centrality** (G, k=None, normalized=True, weight=None, endpoints=False, seed=None) Compute the shortest-path betweenness centrality for nodes. Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v $$c_B(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$ where V is the set of nodes, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|v)$ is the number of those paths passing through some node v other than s,t. If s=t, $\sigma(s,t)=1$, and if $v \in s,t$, $\sigma(s,t|v)=0$ ². ## **Parameters** - **G** (*graph*) A NetworkX graph - **k** (*int*, *optional* (*default=None*)) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. ¹ Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf ² Karen Stephenson and Marvin Zelen: Rethinking centrality: Methods and examples. Social Networks 11(1):1-37, 1989. http://dx.doi.org/10.1016/0378-8733(89)90016-6 ² Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf - **normalized** (*bool*, *optional*) If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and 1/((n-1)(n-2)) for directed graphs where n is the number of nodes in G. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. - endpoints (bool, optional) If True include the endpoints in the shortest path counts. **Returns** nodes – Dictionary of nodes with betweenness centrality as the value. **Return type** dictionary #### See also: edge_betweenness_centrality(), load_centrality() #### **Notes** The algorithm is from Ulrik Brandes ¹. See ⁴ for the original first published version and ² for details on algorithms for variations and related metrics. For approximate betweenness calculations set k=#samples to use k nodes ("pivots") to estimate the betweenness values. For an estimate of the number of pivots needed see ³. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. ## References # edge_betweenness_centrality edge_betweenness_centrality (G, k=None, normalized=True, weight=None, seed=None) Compute betweenness centrality for edges. Betweenness centrality of an edge e is the sum of the fraction of all-pairs shortest paths that pass through e $$c_B(e) = \sum_{s,t \in V} \frac{\sigma(s,t|e)}{\sigma(s,t)}$$ where V is the set of nodes, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|e)$ is the number of those paths passing through edge e^2 . #### **Parameters** - **G** (graph) A NetworkX graph - **k** (*int*, *optional* (*default=None*)) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. ¹ Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf ⁴ Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 http://moreno.ss.uci.edu/23.pdf ³ Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf ² Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf - **normalized** (*bool*, *optional*) If True the betweenness values are normalized by 2/(n(n-1)) for graphs, and 1/(n(n-1)) for directed graphs where n is the number of nodes in G. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns** edges – Dictionary of edges with betweenness centrality as the value. **Return type** dictionary #### See also: betweenness_centrality(), edge_load() #### **Notes** The algorithm is from Ulrik Brandes ¹. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. #### References # betweenness centrality subset **betweenness_centrality_subset** (*G*, *sources*, *targets*, *normalized=False*, *weight=None*) Compute betweenness centrality for a subset of nodes. $$c_B(v) = \sum_{s \in S, t \in T} \frac{\sigma(s, t|v)}{\sigma(s, t)}$$ where S is the set of sources, T is the set of targets, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|v)$ is the number of those paths passing through some node v other than s,t. If s = t, $\sigma(s,t)$ = 1, and if $v \in s,t$, $\sigma(s,t|v)$ = 0^2 . ### **Parameters** - **G** (*graph*) - sources (list of nodes) Nodes to use as sources for shortest paths in betweenness - targets (list of nodes) Nodes to use as targets for shortest paths in betweenness - normalized (bool, optional) If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and 1/((n-1)(n-2)) for directed graphs where n is the number of nodes in G. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns nodes** – Dictionary of nodes with betweenness centrality as the value. Return type dictionary ¹ A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf ² Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf #### See also: edge_betweenness_centrality(), load_centrality() #### **Notes** The basic algorithm is from ¹. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. The normalization might seem a little strange but it is the same as in betweenness_centrality() and is designed to make betweenness_centrality(G) be the same as betweenness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()). #### References ## edge betweenness centrality subset edge_betweenness_centrality_subset (*G*, sources, targets, normalized=False, weight=None) Compute betweenness centrality for edges for a subset of nodes. $$c_B(v) = \sum_{s \in S, t \in T} \frac{\sigma(s, t|e)}{\sigma(s, t)}$$ where S is the set of sources, T is the set of targets, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|e)$ is the number of those paths passing through edge e^2 . #### **Parameters** - **G** (*graph*) A networkx graph - sources (list of nodes) Nodes to use as sources for shortest paths in betweenness - targets (list of nodes) Nodes to use as targets for shortest paths in betweenness - normalized (bool, optional) If True the betweenness values are normalized by 2/(n(n-1)) for graphs, and 1/(n(n-1)) for directed graphs where n is the number of
nodes in G. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns** edges – Dictionary of edges with Betweenness centrality as the value. **Return type** dictionary # See also: betweenness_centrality(), edge_load() ¹ Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf ² Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf ## **Notes** The basic algorithm is from ¹. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. The normalization might little strange it the seem a but is same in as edge betweenness centrality() and is designed to make edge betweenness centrality(G) be the same as edge betweenness centrality subset(G,sources=G.nodes(),targets=G.nodes()). #### References ## 4.5.6 Current Flow Betweenness | $current_flow_betweenness_centrality(G[,$ | Compute current-flow betweenness centrality for nodes. | |--|--| |]) | | | edge_current_flow_betweenness_centrality | (©)ompute current-flow betweenness centrality for edges. | | approximate_current_flow_betweenness_cen | t Compute (the approximate current-flow betweenness cen- | | | trality for nodes. | | current_flow_betweenness_centrality_subs | e Compute current-flow betweenness centrality for subsets of | |) | nodes. | | edge_current_flow_betweenness_centrality | Compute Current-flow betweenness centrality for edges us- | |) | ing subsets of nodes. | ## current flow betweenness centrality Compute current-flow betweenness centrality for nodes. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths. Current-flow betweenness centrality is also known as random-walk betweenness centrality ². #### **Parameters** - **G** (graph) A NetworkX graph - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G. - weight (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). **Returns nodes** – Dictionary of nodes with betweenness centrality as the value. ¹ Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf ² A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005). #### **Return type** dictionary #### See also: approximate_current_flow_betweenness_centrality(), betweenness_centrality(), edge_betweenness_centrality(), edge_current_flow_betweenness_centrality() #### **Notes** Current-flow betweenness can be computed in $O(I(n-1) + mn \log n)$ time ¹, where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm{sqrt k})$ where k is the Laplacian matrix condition number. The space required is O(nw) where w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$. If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References ## edge_current_flow_betweenness_centrality ``` \begin{tabular}{ll} \textbf{edge_current_flow_betweenness_centrality} (G, & normalized=True, & weight='weight', \\ & dtype=< type 'float'>, solver='full') \end{tabular} ``` Compute current-flow betweenness centrality for edges. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths. Current-flow betweenness centrality is also known as random-walk betweenness centrality ². ## **Parameters** - **G** (graph) A NetworkX graph - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G. - weight (string or None, optional (default='weight')) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). **Returns** nodes – Dictionary of edge tuples with betweenness centrality as the value. Return type dictionary **Raises** NetworkXError – The algorithm does not support DiGraphs. If the input graph is an instance of DiGraph class, NetworkXError is raised. ¹ Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf ² A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005). #### See also: #### **Notes** Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$ time ¹, where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm{sqrt k})$ where k is the Laplacian matrix condition number. The space required is O(nw) where `w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$. If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References # approximate_current_flow_betweenness_centrality Compute the approximate current-flow betweenness centrality for nodes. Approximates the current-flow betweenness centrality within absolute error of epsilon with high probability ¹. #### **Parameters** - **G** (*graph*) A NetworkX graph - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G. - **weight** (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). - **epsilon** (*float*) Absolute error tolerance. - kmax (int) Maximum number of sample node pairs to use for approximation. **Returns** nodes – Dictionary of nodes with betweenness centrality as the value. Return type dictionary ## See also: ``` current flow betweenness centrality() ``` ¹ Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf ¹ Ulrik Brandes and Daniel Fleischer: Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf #### **Notes** The running time is $O((1/epsilon^2)m{sqrt k} log n)$ and the space required is O(m) for n nodes and m edges. If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References # current_flow_betweenness_centrality_subset Compute current-flow betweenness centrality for subsets of nodes. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths. Current-flow betweenness centrality is also known as random-walk betweenness centrality ². #### **Parameters** - **G** (*graph*) A NetworkX graph - sources (list of nodes) Nodes to use as sources for current - targets (list of nodes) Nodes to use as sinks for current - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number of nodes in G. - weight (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). **Returns nodes** – Dictionary of nodes with betweenness centrality as the value. Return type dictionary #### See also: ``` approximate_current_flow_betweenness_centrality(), betweenness_centrality(), edge_betweenness_centrality(), edge_current_flow_betweenness_centrality() ``` #### **Notes** Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$ time ¹, where I(n-1) is the time needed to compute the inverse Laplacian.
For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm{sqrt k})$ where k is the Laplacian matrix condition number. ² A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005). ¹ Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf The space required is O(nw) where `w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$. If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References # edge current flow betweenness centrality subset Compute current-flow betweenness centrality for edges using subsets of nodes. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths. Current-flow betweenness centrality is also known as random-walk betweenness centrality ². #### **Parameters** - **G** (*graph*) A NetworkX graph - sources (list of nodes) Nodes to use as sources for current - targets (list of nodes) Nodes to use as sinks for current - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number of nodes in G. - weight (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). **Returns nodes** – Dictionary of edge tuples with betweenness centrality as the value. **Return type** dictionary # See also: ## **Notes** Current-flow betweenness can be computed in $O(I(n-1) + mn \log n)$ time ¹, where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm{sqrt k})$ where k is the Laplacian matrix condition number. The space required is O(nw) where `w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$. ² A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005). ¹ Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References # 4.5.7 Communicability Betweenness communicability_betweenness_centrality(G[, Return subgraph communicability for all pairs of nodes in ...]) G. # communicability_betweenness_centrality # $\verb|communicability_betweenness_centrality| (G, normalized = True)$ Return subgraph communicability for all pairs of nodes in G. Communicability betweenness measure makes use of the number of walks connecting every pair of nodes as the basis of a betweenness centrality measure. **Parameters** G (graph) **Returns** nodes – Dictionary of nodes with communicability betweenness as the value. Return type dictionary Raises NetworkXError – If the graph is not undirected and simple. ## **Notes** Let G= (V, E) be a simple undirected graph with n nodes and m edges, and A denote the adjacency matrix of G. Let G(r) = (V, E(r)) be the graph resulting from removing all edges connected to node r but not the node itself. The adjacency matrix for G(r) is A+E(r), where E(r) has nonzeros only in row and column r. The subraph betweenness of a node r is ¹ $$\omega_r = \frac{1}{C} \sum_{p} \sum_{q} \frac{G_{prq}}{G_{pq}}, p \neq q, q \neq r,$$ where $G_{pq}=(e^{A}_{pq} - (e^{A+E(r)})_{pq}$ is the number of walks involving node r, $G_{pq}=(e^{A})_{pq}$ is the number of closed walks starting at node p and ending at node q, and $G_{pq}=(e^{A})_{pq}$ is a normalization factor equal to the number of terms in the sum. The resulting omega_{r} takes values between zero and one. The lower bound cannot be attained for a connected graph, and the upper bound is attained in the star graph. ¹ Ernesto Estrada, Desmond J. Higham, Naomichi Hatano, "Communicability Betweenness in Complex Networks" Physica A 388 (2009) 764-774. http://arxiv.org/abs/0905.4102 #### References # **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> cbc = nx.communicability_betweenness_centrality(G) ``` # 4.5.8 Load | load_centrality(G[, v, cutoff, normalized,]) | Compute load centrality for nodes. | |--|------------------------------------| | edge_load_centrality(G[, cutoff]) | Compute edge load. | # load centrality $load_centrality(G, v=None, cutoff=None, normalized=True, weight=None)$ Compute load centrality for nodes. The load centrality of a node is the fraction of all shortest paths that pass through that node. #### **Parameters** - **G** (graph) A networkx graph - **normalized** (*bool*, *optional*) If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number of nodes in G. - weight (*None or string, optional*) If None, edge weights are ignored. Otherwise holds the name of the edge attribute used as weight. - **cutoff** (*bool*, *optional*) If specified, only consider paths of length <= cutoff. **Returns** nodes – Dictionary of nodes with centrality as the value. Return type dictionary #### See also: ``` betweenness_centrality() ``` # Notes Load centrality is slightly different than betweenness. It was originally introduced by 2 . For this load algorithm see 1 . # References ## edge load centrality ## edge_load_centrality(G, cutoff=False) Compute edge load. ² Kwang-Il Goh, Byungnam Kahng and Doochul Kim Universal behavior of Load Distribution in Scale-Free Networks. Physical Review Letters 87(27):1–4, 2001. http://phya.snu.ac.kr/~dkim/PRL87278701.pdf ¹ Mark E. J. Newman: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64, 016132, 2001. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132 WARNING: This concept of edge load has not been analysed or discussed outside of NetworkX that we know of. It is based loosely on load_centrality in the sense that it counts the number of shortest paths which cross each edge. This function is for demonstration and testing purposes. ## **Parameters** - **G** (graph) A networkx graph - **cutoff** (*bool*, *optional*) If specified, only consider paths of length <= cutoff. #### Returns - A dict keyed by edge 2-tuple to the number of shortest paths - which use that edge. Where more than one path is shortest - the count is divided equally among paths. # 4.5.9 Subgraph | subgraph_centrality(G) | Return subgraph centrality for each node in G. | |--------------------------------|--| | $subgraph_centrality_exp(G)$ | Return the subgraph centrality for each node of G. | | estrada_index(G) | Return the Estrada index of a the graph G. | # subgraph_centrality # $subgraph_centrality(G)$ Return subgraph centrality for each node in G. Subgraph centrality of a node n is the sum of weighted closed walks of all lengths starting and ending at node n. The weights decrease with path length. Each closed walk is associated with a connected subgraph $(^1)$. **Parameters G** (graph) **Returns** nodes – Dictionary of nodes with subgraph centrality as the value. Return type dictionary Raises NetworkXError – If the graph is not undirected and simple. #### See also: subgraph_centrality_exp() Alternative algorithm of the subgraph centrality for each node of G. #### **Notes** This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix. Subgraph centrality of a node u in G can be found using a spectral decomposition of the adjacency matrix ¹, $$SC(u) = \sum_{j=1}^{N} (v_j^u)^2 e^{\lambda_j},$$ where v_j is an eigenvector of the adjacency matrix A of G corresponding corresponding to the eigenvalue lambda j. ¹ Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730 # **Examples** #### References # subgraph_centrality_exp ## $subgraph_centrality_exp(G)$ Return the subgraph centrality for each node of G. Subgraph centrality of a node n is the sum of weighted closed walks of all lengths starting and ending at node n. The weights decrease with path length. Each closed walk is associated with a connected subgraph (1). Parameters G (graph) **Returns nodes** – Dictionary of nodes with subgraph centrality as the value. Return type dictionary Raises NetworkXError – If the graph is not undirected and simple. #### See also: subgraph_centrality() Alternative algorithm of the subgraph centrality for each node of G. ## **Notes** This version of the algorithm exponentiates the adjacency matrix. The subgraph centrality of a node u in G can be found using the matrix exponential of the adjacency matrix of G^1 , $$SC(u) = (e^A)_{uu}.$$ ## References # **Examples** (from 1) >>> G = nx.Graph([(1,2),(1,5),(1,8),(2,3),(2,8),(3,4),(3,6),(4,5),(4,7),(5,6),(6,7),(7,8)]) >>> sc = nx.subgraph_centrality_exp(G) >>> print(['%s %0.2f'%(node,sc[node]) for node in sc]) ['1 3.90', '2 3.90', '3 3.64', '4 3.71', '5 3.64', '6 3.71', '7 3.64', '8 3.90'] ¹ Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730 #
estrada index #### estrada index(G) Return the Estrada index of a the graph G. The Estrada Index is a topological index of folding or 3D "compactness" (1). **Parameters G** (graph) Returns estrada index Return type float **Raises** NetworkXError – If the graph is not undirected and simple. ## **Notes** Let G=(V,E) be a simple undirected graph with n nodes and let lambda_{1}leqlambda_{2}leqcdotslambda_{n} be a non-increasing ordering of the eigenvalues of its adjacency matrix A. The Estrada index is $\binom{1}{2}$ $$EE(G) = \sum_{j=1}^{n} e^{\lambda_j}.$$ ## References # **Examples** ``` >>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> ei=nx.estrada_index(G) ``` # 4.5.10 Harmonic Centrality $\textit{harmonic_centrality}(G[, nbunch, distance])$ Compute harmonic centrality for nodes. #### harmonic centrality harmonic_centrality(G, nbunch=None, distance=None) Compute harmonic centrality for nodes. Harmonic centrality 1 of a node u is the sum of the reciprocal of the shortest path distances from all other nodes to u $$C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}$$ where d (v, u) is the shortest-path distance between v and u. $^{^1}$ E. Estrada, "Characterization of 3D molecular structure", Chem. Phys. Lett. 319, 713 (2000). $http://dx.doi.org/10.1016/S0009-2614(00)\\00158-5$ ² José Antonio de la Peñaa, Ivan Gutman, Juan Rada, "Estimating the Estrada index", Linear Algebra and its Applications. 427, 1 (2007). http://dx.doi.org/10.1016/j.laa.2007.06.020 ¹ Boldi, Paolo, and Sebastiano Vigna. "Axioms for centrality." Internet Mathematics 10.3-4 (2014): 222-262. Notice that higher values indicate higher centrality. #### **Parameters** - **G** (graph) A NetworkX graph - **nbunch** (*container*) Container of nodes. If provided harmonic centrality will be computed only over the nodes in nbunch. - **distance** (*edge attribute key, optional (default=None*)) Use the specified edge attribute as the edge distance in shortest path calculations. If None, then each edge will have distance equal to 1. **Returns** nodes – Dictionary of nodes with harmonic centrality as the value. Return type dictionary #### See also: ``` betweenness_centrality(), load_centrality(), eigenvector_centrality(), degree_centrality(), closeness_centrality() ``` #### **Notes** If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight. #### References # 4.5.11 Reaching | local_reaching_centrality(G, v[, paths,]) | Returns the local reaching centrality of a node in a directed graph. | |---|--| | global_reaching_centrality(G[, weight,]) | Returns the global reaching centrality of a directed graph. | ## local reaching centrality **local_reaching_centrality** (*G*, *v*, *paths=None*, *weight=None*, *normalized=True*) Returns the local reaching centrality of a node in a directed graph. The *local reaching centrality* of a node in a directed graph is the proportion of other nodes reachable from that node ¹. #### **Parameters** - **G** (*DiGraph*) A NetworkX graph. - v (node) A node in the directed graph G. - paths (dictionary) If this is not None it must be a dictionary representation of single-source shortest paths, as computed by, for example, networkx.shortest_path() with source node v. Use this keyword argument if you intend to invoke this function many times but don't want the paths to be recomputed each time. ¹ Mones, Enys, Lilla Vicsek, and Tamás Vicsek. "Hierarchy Measure for Complex Networks." *PLoS ONE* 7.3 (2012): e33799. https://dx.doi.org/10.1371/journal.pone.0033799 - weight (*object*) Attribute to use for edge weights. If None, each edge weight is assumed to be one. A higher weight implies a stronger connection between nodes and a *shorter* path length. - **normalized** (*bool*) Whether to normalize the edge weights by the total sum of edge weights. **Returns** h – The local reaching centrality of the node v in the graph G. Return type float ## **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge(1, 2) >>> G.add_edge(1, 3) >>> nx.local_reaching_centrality(G, 3) 0.0 >>> G.add_edge(3, 2) >>> nx.local_reaching_centrality(G, 3) ``` ## See also: global_reaching_centrality() #### References # global_reaching_centrality global_reaching_centrality(G, weight=None, normalized=True) Returns the global reaching centrality of a directed graph. The *global reaching centrality* of a weighted directed graph is the average over all nodes of the difference between the local reaching centrality of the node and the greatest local reaching centrality of any node in the graph ¹. For more information on the local reaching centrality, see <code>local_reaching_centrality()</code>. Informally, the local reaching centrality is the proportion of the graph that is reachable from the neighbors of the node. ## **Parameters** - **G** (*DiGraph*) - weight (*object*) Attribute to use for edge weights. If None, each edge weight is assumed to be one. A higher weight implies a stronger connection between nodes and a *shorter* path length. - **normalized** (*bool*) Whether to normalize the edge weights by the total sum of edge weights. **Returns** h – The global reaching centrality of the graph. Return type float ¹ Mones, Enys, Lilla Vicsek, and Tamás Vicsek. "Hierarchy Measure for Complex Networks." *PLoS ONE* 7.3 (2012): e33799. https://dx.doi.org/10.1371/journal.pone.0033799 # **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge(1, 2) >>> G.add_edge(1, 3) >>> nx.global_reaching_centrality(G) 1.0 >>> G.add_edge(3, 2) >>> nx.global_reaching_centrality(G) ``` ## See also: local_reaching_centrality() #### References # 4.6 Chains Functions for finding chains in a graph. chain_decomposition(G[, root]) Return the chain decomposition of a graph. # 4.6.1 chain decomposition chain_decomposition(G, root=None) Return the chain decomposition of a graph. The *chain decomposition* of a graph with respect a depth-first search tree is a set of cycles or paths derived from the set of fundamental cycles of the tree in the following manner. Consider each fundamental cycle with respect to the given tree, represented as a list of edges beginning with the nontree edge oriented away from the root of the tree. For each fundamental cycle, if it overlaps with any previous fundamental cycle, just take the initial non-overlapping segment, which is a path instead of a cycle. Each cycle or path is called a *chain*. For more information, see ¹. #### **Parameters** - **G** (undirected graph) - **root** (node (optional)) A node in the graph G. If specified, only the chain decomposition for the connected component containing this node will be returned. This node indicates the root of the depth-first search tree. **Yields chain** (*list*) – A list of edges representing a chain. There is no guarantee on the orientation of the edges in each chain (for example, if a chain includes the edge joining nodes 1 and 2, the chain may include either (1, 2) or (2, 1)). Raises NodeNotFound – If root is not in the graph G. 4.6. Chains 191 ¹ Jens M. Schmidt (2013). "A simple test on 2-vertex- and 2-edge-connectivity." *Information Processing Letters*, 113, 241–244. Elsevier. http://dx.doi.org/10.1016/j.ipl.2013.01.016 #### **Notes** The worst-case running time of this implementation is linear in the number of nodes and number of edges ¹. ## References # 4.7 Chordal Algorithms for chordal graphs. A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle). http://en.wikipedia.org/wiki/Chordal_graph | is_chordal(G) | Checks whether G is a chordal graph. | |---|---| | chordal_graph_cliques(G) | Returns the set of maximal cliques of a chordal graph. | | $chordal_graph_treewidth$ (G) | Returns the treewidth of the chordal graph G. | | <pre>find_induced_nodes(G, s, t[, treewidth_bound])</pre> | Returns the set of induced nodes in the path from s to t. | # 4.7.1 is chordal #### is chordal(G) Checks whether G is a chordal graph. A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle). **Parameters G** (*graph*) – A NetworkX graph. **Returns** chordal – True if G is a chordal graph and False otherwise. Return type bool **Raises** NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. # **Examples** ``` >>> import networkx as nx >>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)] >>> G=nx.Graph(e) >>> nx.is_chordal(G) True ``` ### **Notes** The routine tries to go through every node following maximum cardinality search. It returns False when it finds that the separator for any node is not a clique. Based on the algorithms in ¹. ¹ R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566–579. ## References # 4.7.2 chordal graph cliques ### chordal_graph_cliques(G) Returns the set of maximal cliques of a chordal graph. The algorithm breaks the graph in connected components and performs a maximum cardinality search in each component to get the cliques. **Parameters G** (*graph*) – A NetworkX graph Returns cliques **Return type** A set containing the maximal cliques in G. Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to
chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised. # **Examples** ``` >>> import networkx as nx >>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)] >>> G = nx.Graph(e) >>> G.add_node(9) >>> setlist = nx.chordal_graph_cliques(G) ``` # 4.7.3 chordal graph treewidth ``` chordal_graph_treewidth(G) ``` Returns the treewidth of the chordal graph G. **Parameters G** (*graph*) – A NetworkX graph **Returns** treewidth – The size of the largest clique in the graph minus one. Return type int Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised. ## **Examples** ``` >>> import networkx as nx >>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)] >>> G = nx.Graph(e) >>> G.add_node(9) >>> nx.chordal_graph_treewidth(G) ``` 4.7. Chordal 193 #### References # 4.7.4 find induced nodes **find_induced_nodes** (*G*, *s*, *t*, *treewidth_bound=9223372036854775807*) Returns the set of induced nodes in the path from s to t. ## **Parameters** - **G** (graph) A chordal NetworkX graph - s (node) Source node to look for induced nodes - t (node) Destination node to look for induced nodes - **treewith_bound** (*float*) Maximum treewidth acceptable for the graph H. The search for induced nodes will end as soon as the treewidth_bound is exceeded. Returns I – The set of induced nodes in the path from s to t in G Return type Set of nodes Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised. # **Examples** ``` >>> import networkx as nx >>> G=nx.Graph() >>> G = nx.generators.classic.path_graph(10) >>> I = nx.find_induced_nodes(G,1,9,2) >>> list(I) [1, 2, 3, 4, 5, 6, 7, 8, 9] ``` # **Notes** G must be a chordal graph and (s,t) an edge that is not in G. If a treewidth_bound is provided, the search for induced nodes will end as soon as the treewidth_bound is exceeded. The algorithm is inspired by Algorithm 4 in ¹. A formal definition of induced node can also be found on that reference. #### References # 4.8 Clique Functions for finding and manipulating cliques. ¹ Learning Bounded Treewidth Bayesian Networks. Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699–2731, 2008. http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf Finding the largest clique in a graph is NP-complete problem, so most of these algorithms have an exponential running time; for more information, see the Wikipedia article on the clique problem ¹. | enumerate_all_cliques(G) | Returns all cliques in an undirected graph. | |---|---| | find_cliques(G) | Returns all maximal cliques in an undirected graph. | | <pre>make_max_clique_graph(G[, create_using])</pre> | Returns the maximal clique graph of the given graph. | | <pre>make_clique_bipartite(G[, fpos,])</pre> | Returns the bipartite clique graph corresponding to G. | | <pre>graph_clique_number(G[, cliques])</pre> | Returns the clique number of the graph. | | <pre>graph_number_of_cliques(G[, cliques])</pre> | Returns the number of maximal cliques in the graph. | | node_clique_number(G[, nodes, cliques]) | Returns the size of the largest maximal clique containing | | | each given node. | | <pre>number_of_cliques(G[, nodes, cliques])</pre> | Returns the number of maximal cliques for each node. | | <pre>cliques_containing_node(G[, nodes, cliques])</pre> | Returns a list of cliques containing the given node. | # 4.8.1 enumerate_all_cliques ## $enumerate_all_cliques(G)$ Returns all cliques in an undirected graph. This function returns an iterator over cliques, each of which is a list of nodes. The iteration is ordered by cardinality of the cliques: first all cliques of size one, then all cliques of size two, etc. **Parameters G** (*NetworkX graph*) – An undirected graph. **Returns** An iterator over cliques, each of which is a list of nodes in G. The cliques are ordered according to size. Return type iterator #### **Notes** To obtain a list of all cliques, use <code>list(enumerate_all_cliques(G))</code>. However, be aware that in the worst-case, the length of this list can be exponential in the number of nodes in the graph (for example, when the graph is the complete graph). This function avoids storing all cliques in memory by only keeping current candidate node lists in memory during its search. The implementation is adapted from the algorithm by Zhang, et al. (2005) ¹ to output all cliques discovered. This algorithm ignores self-loops and parallel edges, since cliques are not conventionally defined with such edges. ## References # 4.8.2 find_cliques ## $find_cliques(G)$ Returns all maximal cliques in an undirected graph. 4.8. Clique 195 ¹ clique problem:: https://en.wikipedia.org/wiki/Clique_problem ¹ Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Samatova, N.F., "Genome-Scale Computational Approaches to Memory-Intensive Applications in Systems Biology". *Supercomputing*, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 12, 12–18 Nov. 2005. http://dx.doi.org/10.1109/SC.2005.29>. For each node v, a maximal clique for v is a largest complete subgraph containing v. The largest maximal clique is sometimes called the maximum clique. This function returns an iterator over cliques, each of which is a list of nodes. It is an iterative implementation, so should not suffer from recursion depth issues. **Parameters G** (*NetworkX graph*) – An undirected graph. **Returns** An iterator over maximal cliques, each of which is a list of nodes in G. The order of cliques is arbitrary. Return type iterator See also: find_cliques_recursive() A recursive version of the same algorithm. #### **Notes** To obtain a list of all maximal cliques, use list (find_cliques (G)). However, be aware that in the worst-case, the length of this list can be exponential in the number of nodes in the graph (for example, when the graph is the complete graph). This function avoids storing all cliques in memory by only keeping current candidate node lists in memory during its search. This implementation is based on the algorithm published by Bron and Kerbosch (1973) ¹, as adapted by Tomita, Tanaka and Takahashi (2006) ² and discussed in Cazals and Karande (2008) ³. It essentially unrolls the recursion used in the references to avoid issues of recursion stack depth (for a recursive implementation, see find cliques recursive()). This algorithm ignores self-loops and parallel edges, since cliques are not conventionally defined with such edges. ## References # 4.8.3 make max clique graph make_max_clique_graph (G, create_using=None) Returns the maximal clique graph of the given graph. The nodes of the maximal clique graph of G are the cliques of G and an edge joins two cliques if the cliques are not disjoint. ## **Parameters** - **G** (NetworkX graph) - **create_using** (*NetworkX graph*) If provided, this graph will be cleared and the nodes and edges of the maximal clique graph will be added to this graph. **Returns** A graph whose nodes are the cliques of G and whose edges join two cliques if they are not disjoint. ¹ Bron, C. and Kerbosch, J. "Algorithm 457: finding all cliques of an undirected graph". *Communications of the ACM* 16, 9 (Sep. 1973), 575–577. http://portal.acm.org/citation.cfm?doid=362342.362367 ² Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, "The worst-case time complexity for generating all maximal cliques and computational experiments", *Theoretical Computer Science*, Volume 363, Issue 1, Computing and Combinatorics, 10th Annual International Conference on Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28–42 http://dx.doi.org/10.1016/j.tcs.2006.06.015 ³ F. Cazals, C. Karande, "A note on the problem of reporting maximal cliques", *Theoretical Computer Science*, Volume 407, Issues 1–3, 6 November 2008, Pages 564–568, https://dx.doi.org/10.1016/j.tcs.2008.05.010> ## Return type NetworkX graph #### **Notes** This function behaves like the following code: ``` import networkx as nx G = nx.make_clique_bipartite(G) cliques = [v for v in G.nodes() if G.node[v]['bipartite'] == 0] G = nx.bipartite.project(G, cliques) G = nx.relabel_nodes(G, {-v: v - 1 for v in G}) ``` It should be faster, though, since it skips all the intermediate steps. # 4.8.4 make clique bipartite ``` make_clique_bipartite (G, fpos=None, create_using=None, name=None) Returns the bipartite clique graph corresponding to G. ``` In the returned bipartite graph, the "bottom" nodes are the nodes of G and the "top" nodes represent the maximal cliques of G. There is an edge from node V to clique C in the returned graph if and only if V is an element of C. #### **Parameters** - **G** (*NetworkX graph*) An undirected graph. - **fpos** (*bool*) If True or not None, the returned graph will have an additional attribute, pos, a dictionary mapping node to position in the Euclidean plane. - **create_using** (*NetworkX graph*) If provided, this graph will be cleared and the nodes and edges of the bipartite graph will be added to this graph. #### Returns A bipartite graph whose "bottom" set is the nodes of the graph G, whose "top" set is the cliques of G, and whose edges join nodes of G to the cliques that contain them. The nodes of the graph
G have the node attribute 'bipartite' set to 1 and the nodes representing cliques have the node attribute 'bipartite' set to 0, as is the convention for bipartite graphs in NetworkX. Return type NetworkX graph # 4.8.5 graph_clique_number ``` {\tt graph_clique_number}\,(G,\mathit{cliques} {=} \mathit{None}) ``` Returns the clique number of the graph. The *clique number* of a graph is the size of the largest clique in the graph. ## **Parameters** - **G** (*NetworkX graph*) An undirected graph. - **cliques** (*list*) A list of cliques, each of which is itself a list of nodes. If not specified, the list of all cliques will be computed, as by find_cliques(). **Returns** The size of the largest clique in G. 4.8. Clique 197 #### Return type int #### **Notes** You should provide cliques if you have already computed the list of maximal cliques, in order to avoid an exponential time search for maximal cliques. # 4.8.6 graph_number_of_cliques # graph_number_of_cliques(G, cliques=None) Returns the number of maximal cliques in the graph. #### **Parameters** - **G** (*NetworkX graph*) An undirected graph. - **cliques** (*list*) A list of cliques, each of which is itself a list of nodes. If not specified, the list of all cliques will be computed, as by find_cliques(). Returns The number of maximal cliques in G. Return type int #### **Notes** You should provide cliques if you have already computed the list of maximal cliques, in order to avoid an exponential time search for maximal cliques. # 4.8.7 node clique number ``` node_clique_number(G, nodes=None, cliques=None) ``` Returns the size of the largest maximal clique containing each given node. Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed. # 4.8.8 number_of_cliques ``` number_of_cliques (G, nodes=None, cliques=None) ``` Returns the number of maximal cliques for each node. Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed. # 4.8.9 cliques containing node #### cliques containing node (G, nodes=None, cliques=None) Returns a list of cliques containing the given node. Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already computed. # 4.9 Clustering Algorithms to characterize the number of triangles in a graph. | triangles(G[, nodes]) | Compute the number of triangles. | |---|---| | transitivity(G) | Compute graph transitivity, the fraction of all possible tri- | | | angles present in G. | | clustering(G[, nodes, weight]) | Compute the clustering coefficient for nodes. | | average_clustering(G[, nodes, weight,]) | Compute the average clustering coefficient for the graph G. | | $square_clustering(G[, nodes])$ | Compute the squares clustering coefficient for nodes. | | $generalized_degree(G[, nodes])$ | Compute the generalized degree for nodes. | # 4.9.1 triangles # triangles (G, nodes=None) Compute the number of triangles. Finds the number of triangles that include a node as one vertex. #### **Parameters** - **G** (*graph*) A networkx graph - **nodes** (*container of nodes*, *optional* (*default= all nodes in G*)) Compute triangles for nodes in this container. **Returns out** – Number of triangles keyed by node label. Return type dictionary # **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.triangles(G,0)) 6 >>> print(nx.triangles(G)) {0: 6, 1: 6, 2: 6, 3: 6, 4: 6} >>> print(list(nx.triangles(G,(0,1)).values())) [6, 6] ``` # **Notes** When computing triangles for the entire graph each triangle is counted three times, once at each node. Self loops are ignored. # 4.9.2 transitivity ### transitivity(G) Compute graph transitivity, the fraction of all possible triangles present in G. Possible triangles are identified by the number of "triads" (two edges with a shared vertex). 4.9. Clustering 199 The transitivity is $$T=3\frac{\#triangles}{\#triads}.$$ Parameters G (graph) **Returns out** – Transitivity Return type float # **Examples** ``` >>> G = nx.complete_graph(5) >>> print(nx.transitivity(G)) 1.0 ``` # 4.9.3 clustering clustering(G, nodes=None, weight=None) Compute the clustering coefficient for nodes. For unweighted graphs, the clustering of a node u is the fraction of possible triangles through that node that exist, $$c_u = \frac{2T(u)}{deg(u)(deg(u) - 1)},$$ where T (u) is the number of triangles through node u and deg (u) is the degree of u. For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights ¹, $$c_u = \frac{1}{deg(u)(deg(u) - 1)} \sum_{uv} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.$$ The edge weights hat $\{w\}_{uv}$ are normalized by the maximum weight in the network hat $\{w\}_{uv} = w_{uv}/\max(w)$. The value of c_u is assigned to 0 if deg(u) < 2. ## **Parameters** - **G** (graph) - **nodes** (*container of nodes, optional (default=all nodes in G)*) Compute clustering for nodes in this container. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns out** – Clustering coefficient at specified nodes Return type float, or dictionary ¹ Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007). http://jponnela.com/web_documents/a9.pdf # **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.clustering(G,0)) 1.0 >>> print(nx.clustering(G)) {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0} ``` #### **Notes** Self loops are ignored. ## References # 4.9.4 average clustering **average_clustering** (*G*, nodes=None, weight=None, count_zeros=True) Compute the average clustering coefficient for the graph G. The clustering coefficient for the graph is the average, $$C = \frac{1}{n} \sum_{v \in G} c_v,$$ where n is the number of nodes in G. #### **Parameters** - **G** (*graph*) - **nodes** (*container of nodes, optional* (*default=all nodes in G*)) Compute average clustering for nodes in this container. - **weight** (*string or None, optional (default=None)*) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. - count_zeros (bool) If False include only the nodes with nonzero clustering in the average. **Returns** avg – Average clustering Return type float # **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.average_clustering(G)) 1.0 ``` ## **Notes** This is a space saving routine; it might be faster to use the clustering function to get a list and then take the average. Self loops are ignored. 4.9. Clustering 201 #### References # 4.9.5 square clustering square_clustering(G, nodes=None) Compute the squares clustering coefficient for nodes. For each node return the fraction of possible squares that exist at the node ¹ $$C_4(v) = \frac{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} q_v(u, w)}{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} [a_v(u, w) + q_v(u, w)]},$$ where $q_v(u, w)$ are the number of common neighbors of u and w other than v (ie squares), and $a_v(u, w) = (k_u - (1+q_v(u, w) + theta_{uv})) (k_w - (1+q_v(u, w) + theta_{uw}))$, where theta_{uw} = 1 if u and w are connected and 0 otherwise. #### **Parameters** - **G** (*graph*) - **nodes** (*container of nodes, optional (default=all nodes in G)*) Compute clustering for nodes in this container. **Returns c4** – A dictionary keyed by node with the square clustering coefficient value. **Return type** dictionary ## **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.square_clustering(G,0)) 1.0 >>> print(nx.square_clustering(G)) {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0} ``` ## **Notes** While $C_3 (v)$ (triangle clustering) gives the probability that two neighbors of node v are connected with each other, $C_4 (v)$ is the probability that two neighbors of node v share a common neighbor different from v. This algorithm can be applied to both bipartite and unipartite networks. #### References # 4.9.6 generalized degree generalized_degree (G, nodes=None) Compute the generalized degree for nodes. For each node, the generalized degree shows how many edges of given triangle multiplicity the node is connected to. The triangle multiplicity of an edge is the number of triangles an edge participates in. The generalized degree of node i can be written as a vector mathbf $\{k\}$ _i= $(k_i^{(0)}, dotsc, k_i^{(N-2)})$ where $k_i^{(j)}$ is the number of edges attached to node i that participate in j triangles. ¹ Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127. ### **Parameters** - **G** (*graph*) - **nodes** (*container of nodes*, *optional* (*default=all nodes in G*)) Compute the generalized degree for nodes in this container. **Returns out** – Generalized degree of specified nodes. The Counter is keyed by edge triangle multiplicity. Return type Counter, or dictionary of Counters ## **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.generalized_degree(G,0)) Counter({3: 4}) >>> print(nx.generalized_degree(G)) {0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter({3: 4}), --4: Counter({3: 4})} ``` To recover the number of triangles attached to a node: ``` >>> k1 = nx.generalized_degree(G,0) >>> sum([k*v for k,v in k1.items()])/2 == nx.triangles(G,0) True ``` ## **Notes** In a network of N nodes, the highest triangle multiplicty an edge can have is N-2. The return value does not include a zero entry if no edges of a particular triangle multiplicity are present. The number of triangles node i is attached to can be recovered from the generalized degree mathbf{k}_i=(k_i^{(0)}, dotsc, k_i^{(N-2)}) by $(k_i^{(1)}+2k_i^{(2)}+dotsc+(N-2)k_i^{(N-2)})/2$. # References # 4.10 Coloring ``` greedy_color(G[, strategy, interchange]) Color a
graph using various strategies of greedy graph coloring. ``` # 4.10.1 greedy color ``` greedy_color (G, strategy='largest_first', interchange=False) Color a graph using various strategies of greedy graph coloring. ``` Attempts to color a graph using as few colors as possible, where no neighbours of a node can have same color as the node itself. The given strategy determines the order in which nodes are colored. 4.10. Coloring 203 The strategies are described in ¹, and smallest-last is based on ². #### **Parameters** - **G** (NetworkX graph) - **strategy** (*string or function*(*G, colors*)) A function (or a string representing a function) that provides the coloring strategy, by returning nodes in the ordering they should be colored. G is the graph, and colors is a dictionary of the currently assigned colors, keyed by nodes. The function must return an iterable over all the nodes in G. If the strategy function is an iterator generator (that is, a function with yield statements), keep in mind that the colors dictionary will be updated after each yield, since this function chooses colors greedily. If strategy is a string, it must be one of the following, each of which represents one of the built-in strategy functions. ``` - 'largest_first' - 'random_sequential' - 'smallest_last' - 'independent_set' - 'connected_sequential_bfs' - 'connected_sequential_dfs' - 'connected_sequential' (alias for the previous strategy) - 'strategy_saturation_largest_first' - 'DSATUR' (alias for the previous strategy) ``` • interchange (bool) – Will use the color interchange algorithm described by ³ if set to True. Note that strategy_saturation_largest_first and strategy_independent_set do not work with interchange. Furthermore, if you use interchange with your own strategy function, you cannot rely on the values in the colors argument. # Returns - A dictionary with keys representing nodes and values representing - corresponding coloring. # **Examples** ``` >>> G = nx.cycle_graph(4) >>> d = nx.coloring.greedy_color(G, strategy='largest_first') >>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}] True ``` Adrian Kosowski, and Krzysztof Manuszewski, Classical Coloring of Graphs, Graph Colorings, 2-19, 2004. ISBN 0-8218-3458-4. ² David W. Matula, and Leland L. Beck, "Smallest-last ordering and clustering and graph coloring algorithms." *J. ACM* 30, 3 (July 1983), 417–427. http://dx.doi.org/10.1145/2402.322385 ³ Maciej M. Sysło, Marsingh Deo, Janusz S. Kowalik, Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983. ISBN 0-486-45353-7. ``` Raises NetworkXPointlessConcept - If strategy is strategy_saturation_largest_first or strategy_independent_set and interchange is True. ``` #### References Some node ordering strategies are provided for use with <code>greedy_color()</code>. | strategy_connected_sequential(G, colors[, | Returns an iterable over nodes in G in the order given by a | |--|--| |]) | breadth-first or depth-first traversal. | | strategy_connected_sequential_dfs(G, col- | Returns an iterable over nodes in G in the order given by a | | ors) | depth-first traversal. | | strategy_connected_sequential_bfs(G, col- | Returns an iterable over nodes in G in the order given by a | | ors) | breadth-first traversal. | | strategy_independent_set(G, colors) | Uses a greedy independent set removal strategy to deter- | | | mine the colors. | | <pre>strategy_largest_first(G, colors)</pre> | Returns a list of the nodes of G in decreasing order by de- | | | gree. | | $strategy_random_sequential(G, colors)$ | Returns a random permutation of the nodes of G as a list. | | strategy_saturation_largest_first(G, col- | Iterates over all the nodes of G in "saturation order" (also | | ors) | known as "DSATUR"). | | $strategy_smallest_last(G, colors)$ | Returns a deque of the nodes of G, "smallest" last. | # 4.10.2 strategy_connected_sequential # strategy_connected_sequential(G, colors, traversal='bfs') Returns an iterable over nodes in G in the order given by a breadth-first or depth-first traversal. traversal must be one of the strings 'dfs' or 'bfs', representing depth-first traversal or breadth-first traversal, respectively. The generated sequence has the property that for each node except the first, at least one neighbor appeared earlier in the sequence. G is a NetworkX graph. colors is ignored. # 4.10.3 strategy connected sequential dfs #### strategy connected sequential dfs(G, colors) Returns an iterable over nodes in G in the order given by a depth-first traversal. The generated sequence has the property that for each node except the first, at least one neighbor appeared earlier in the sequence. G is a NetworkX graph. colors is ignored. # 4.10.4 strategy connected sequential bfs # $strategy_connected_sequential_bfs(G, colors)$ Returns an iterable over nodes in G in the order given by a breadth-first traversal. The generated sequence has the property that for each node except the first, at least one neighbor appeared earlier in the sequence. 4.10. Coloring 205 G is a NetworkX graph. colors is ignored. # 4.10.5 strategy_independent_set ## strategy_independent_set (G, colors) Uses a greedy independent set removal strategy to determine the colors. This function updates colors in-place and return None, unlike the other strategy functions in this module. This algorithm repeatedly finds and removes a maximal independent set, assigning each node in the set an unused color. G is a NetworkX graph. This strategy is related to $strategy_smallest_last$ (): in that strategy, an independent set of size one is chosen at each step instead of a maximal independent set. # 4.10.6 strategy largest first # strategy_largest_first(G, colors) Returns a list of the nodes of G in decreasing order by degree. G is a NetworkX graph. colors is ignored. # 4.10.7 strategy random sequential # strategy_random_sequential(G, colors) Returns a random permutation of the nodes of G as a list. G is a NetworkX graph. colors is ignored. # 4.10.8 strategy_saturation_largest_first ## strategy_saturation_largest_first(G, colors) Iterates over all the nodes of G in "saturation order" (also known as "DSATUR"). G is a NetworkX graph. colors is a dictionary mapping nodes of G to colors, for those nodes that have already been colored. # 4.10.9 strategy smallest last #### strategy_smallest_last(G, colors) Returns a deque of the nodes of G, "smallest" last. Specifically, the degrees of each node are tracked in a bucket queue. From this, the node of minimum degree is repeatedly popped from the graph, updating its neighbors' degrees. G is a NetworkX graph. colors is ignored. This implementation of the strategy runs in O(n+m) time (ignoring polylogarithmic factors), where n is the number of nodes and m is the number of edges. This strategy is related to <code>strategy_independent_set()</code>: if we interpret each node removed as an independent set of size one, then this strategy chooses an independent set of size one instead of a maximal independent set. # 4.11 Communicability # Communicability. | communicability(G) | Return communicability between all pairs of nodes in G. | |------------------------|---| | communicability_exp(G) | Return communicability between all pairs of nodes in G. | # 4.11.1 communicability # communicability(G) Return communicability between all pairs of nodes in G. The communicability between pairs of nodes in G is the sum of closed walks of different lengths starting at node u and ending at node v. **Parameters G** (*graph*) Returns comm – Dictionary of dictionaries keyed by nodes with communicability as the value. **Return type** dictionary of dictionaries **Raises** NetworkXError – If the graph is not undirected and simple. #### See also: communicability_exp() Communicability between all pairs of nodes in G using spectral decomposition. **communicability_betweenness_centrality()** Communicability betweeness centrality for each node in G. #### **Notes** This algorithm uses a spectral decomposition of the adjacency matrix. Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v based on the graph spectrum is 1 $$C(u,v) = \sum_{j=1}^{n} \phi_j(u)\phi_j(v)e^{\lambda_j},$$ where phi_{j}(u) is the urm{th} element of the jrm{th} orthonormal eigenvector of the adjacency matrix associated with the eigenvalue lambda_{j}. #### References ## **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> c = nx.communicability(G) ``` ¹ Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756 # 4.11.2 communicability exp ## $communicability_exp(G)$ Return communicability between all pairs of nodes in G. Communicability between pair of node (u,v) of node in G is the sum of closed walks of different lengths starting at node u and ending at node v. **Parameters** G (graph) Returns comm – Dictionary of dictionaries keyed by nodes with communicability as the value. Return type dictionary of dictionaries **Raises** NetworkXError – If the graph is not undirected and simple. #### See also: communicability () Communicability between pairs of nodes in G. **communicability_betweenness_centrality()** Communicability betweeness centrality for each node in G. #### **Notes** This algorithm uses matrix exponentiation of the adjacency matrix. Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v is ¹, $$C(u,v) = (e^A)_{uv},$$ where A is the adjacency matrix of G. ## References # **Examples** ``` >>> G =
nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> c = nx.communicability_exp(G) ``` # 4.12 Communities # 4.12.1 Bipartitions Functions for computing the Kernighan–Lin bipartition algorithm. kernighan_lin_bisection(G[, partition, ...]) Partition a graph into two blocks using the Kernighan–Lin algorithm. ¹ Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756 # kernighan lin bisection **kernighan_lin_bisection**(*G*, partition=None, max_iter=10, weight='weight') Partition a graph into two blocks using the Kernighan-Lin algorithm. This algorithm paritions a network into two sets by iteratively swapping pairs of nodes to reduce the edge cut between the two sets. #### **Parameters** - **G** (*graph*) - partition (*tuple*) Pair of iterables containing an intial partition. If not specified, a random balanced partition is used. - max_iter (int) Maximum number of times to attempt swaps to find an improvemement before giving up. - weight (key) Edge data key to use as weight. If None, the weights are all set to one. **Returns** partition – A pair of sets of nodes representing the bipartition. Return type tuple **Raises** NetworkXError – If partition is not a valid partition of the nodes of the graph. #### References # 4.12.2 Generators LFR_benchmark_graph # 4.12.3 K-Clique | | _ | |---|--| | $k_clique_communities(G, k[, cliques])$ | Find k-clique communities in graph using the percolation | | | method. | # k clique communities # $k_clique_communities(G, k, cliques=None)$ Find k-clique communities in graph using the percolation method. A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques. ## **Parameters** - G (NetworkX graph) - **k** (*int*) Size of smallest clique - **cliques** (*list or generator*) Precomputed cliques (use networkx.find_cliques(G)) #### Returns Return type Yields sets of nodes, one for each k-clique community. 4.12. Communities 209 # **Examples** ``` >>> G = nx.complete_graph(5) >>> K5 = nx.convert_node_labels_to_integers(G, first_label=2) >>> G.add_edges_from(K5.edges()) >>> c = list(nx.k_clique_communities(G, 4)) >>> list(c[0]) [0, 1, 2, 3, 4, 5, 6] >>> list(nx.k_clique_communities(G, 6)) [] ``` #### References # 4.12.4 Label propagation Asynchronous label propagation algorithms for community detection. # asyn_lpa_communities # asyn_lpa_communities(G, weight=None) Returns communities in G as detected by asynchronous label propagation. The asynchronous label propagation algorithm is described in ¹. The algorithm is probabilistic and the found communities may vary on different executions. The algorithm proceeds as follows. After initializing each node with a unique label, the algorithm repeatedly sets the label of a node to be the label that appears most frequently among that nodes neighbors. The algorithm halts when each node has the label that appears most frequently among its neighbors. The algorithm is asynchronous because each node is updated without waiting for updates on the remaining nodes. This generalized version of the algorithm in ¹ accepts edge weights. #### **Parameters** - **G** (*Graph*) - weight (*string*) The edge attribute representing the weight of an edge. If None, each edge is assumed to have weight one. In this algorithm, the weight of an edge is used in determining the frequency with which a label appears among the neighbors of a node: a higher weight means the label appears more often. **Returns communities** – Iterable of communities given as sets of nodes. Return type iterable #### **Notes** Edge weight attributes must be numerical. ¹ Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. "Near linear time algorithm to detect community structures in large-scale networks." Physical Review E 76.3 (2007): 036106. # 4.12.5 Measuring partitions Functions for measuring the quality of a partition (into communities). | coverage(*args, **kw) | Returns the coverage of a partition. | |-----------------------------|---| | performance(*args, **kw) | Returns the performance of a partition. | ### coverage ### coverage (*args, **kw) Returns the coverage of a partition. The *coverage* of a partition is the ratio of the number of intra-community edges to the total number of edges in the graph. ### **Parameters** - **G** (NetworkX graph) - **partition** (*sequence*) Partition of the nodes of G, represented as a sequence of sets of nodes. Each block of the partition represents a community. **Returns** The coverage of the partition, as defined above. Return type float Raises NetworkXError - If partition is not a valid partition of the nodes of G. ### **Notes** If G is a multigraph, the multiplicity of edges is counted. ### References # performance ``` performance(*args, **kw) ``` Returns the performance of a partition. The *performance* of a partition is the ratio of the number of intra-community edges plus inter-community non-edges with the total number of potential edges. ### **Parameters** - **G** (*NetworkX graph*) A simple graph (directed or undirected). - **partition** (*sequence*) Partition of the nodes of G, represented as a sequence of sets of nodes. Each block of the partition represents a community. Returns The performance of the partition, as defined above. Return type float Raises NetworkXError – If partition is not a valid partition of the nodes of G. 4.12. Communities 211 # 4.12.6 Partitions via centrality measures Functions for computing communities based on centrality notions. ``` girvan_newman(G[, most_valuable_edge]) Finds communities in a graph using the Girvan-Newman method. ``` # girvan_newman ``` girvan_newman (G, most_valuable_edge=None) ``` Finds communities in a graph using the Girvan–Newman method. #### **Parameters** - **G** (NetworkX graph) - most_valuable_edge (function) Function that takes a graph as input and outputs an edge. The edge returned by this function will be recomputed and removed at each iteration of the algorithm. If not specified, the edge with the highest $networkx.edge_betweenness_centrality()$ will be used. **Returns** Iterator over tuples of sets of nodes in G. Each set of node is a community, each tuple is a sequence of communities at a particular level of the algorithm. **Return type** iterator ### **Examples** To get the first pair of communities: ``` >>> G = nx.path_graph(10) >>> comp = girvan_newman(G) >>> tuple(sorted(c) for c in next(comp)) ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9]) ``` To get only the first k tuples of communities, use itertools.islice(): ``` >>> import itertools >>> G = nx.path_graph(8) >>> k = 2 >>> comp = girvan_newman(G) >>> for communities in itertools.islice(comp, k): ... print(tuple(sorted(c) for c in communities)) ... ([0, 1, 2, 3], [4, 5, 6, 7]) ([0, 1], [2, 3], [4, 5, 6, 7]) ``` To stop getting tuples of communities once the number of communities is greater than k, use itertools.takewhile(): ``` >>> import itertools >>> G = nx.path_graph(8) >>> k = 4 >>> comp = girvan_newman(G) >>> limited = itertools.takewhile(lambda c: len(c) <= k, comp) >>> for communities in limited: ... print(tuple(sorted(c) for c in communities)) ... ([0, 1, 2, 3], [4, 5, 6, 7]) ([0, 1], [2, 3], [4, 5, 6, 7]) ([0, 1], [2, 3], [4, 5], [6, 7]) ``` To just choose an edge to remove based on the weight: ``` >>> from operator import itemgetter >>> G = nx.path_graph(10) >>> edges = G.edges() >>> nx.set_edge_attributes(G, 'weight', {(u, v): v for u, v in edges}) >>> def heaviest(G): ... u, v, w = max(G.edges(data='weight'), key=itemgetter(2)) ... return (u, v) ... >>> comp = girvan_newman(G, most_valuable_edge=heaviest) >>> tuple(sorted(c) for c in next(comp)) ([0, 1, 2, 3, 4, 5, 6, 7, 8], [9]) ``` To utilize edge weights when choosing an edge with, for example, the highest betweenness centrality: To specify a different ranking algorithm for edges, use the most_valuable_edge keyword argument: ``` >>> from networkx import edge_betweenness_centrality >>> from random import random >>> def most_central_edge(G): centrality = edge_betweenness_centrality(G) max_cent = max(centrality.values()) # Scale the centrality values so they are between 0 and 1, . . . # and add some random noise. . . . centrality = {e: c / max_cent for e, c in centrality.items()} . . . # Add some random noise. centrality = {e: c + random() for e, c in centrality.items()} . . . return max(centrality, key=centrality.get) . . . >>> G = nx.path_graph(10) >>> comp = girvan_newman(G, most_valuable_edge=most_central_edge) ``` 4.12. Communities 213 ### **Notes** The Girvan–Newman algorithm detects communities by progressively removing edges from the original graph. The algorithm removes the "most valuable" edge, traditionally the edge with the highest betweenness centrality, at each step. As the graph breaks down into pieces, the tightly knit community structure is exposed and the result can be depicted as a dendrogram. # 4.13 Components # 4.13.1 Connectivity | is_connected(G) | Return True if the graph is connected, false otherwise. | |---|---| | number_connected_components(G) | Return the number of connected components. | | $connected_components(G)$ | Generate connected components. | | $connected_component_subgraphs(G[,copy])$ | Generate connected components as subgraphs. | | $node_connected_component(G, n)$ | Return the nodes in the component of graph containing | | | node n. | # is_connected ### is connected (G) Return True if the graph is connected, false otherwise. **Parameters G** (*NetworkX Graph*) – An undirected graph. **Returns connected** – True if the graph is connected, false otherwise. Return type bool Raises NetworkXNotImplemented: – If G is undirected. ### **Examples** ``` >>> G =
nx.path_graph(4) >>> print(nx.is_connected(G)) True ``` # See also: ### **Notes** For undirected graphs only. ### number connected components ### $number_connected_components(G)$ Return the number of connected components. **Parameters G** (*NetworkX graph*) – An undirected graph. **Returns n** – Number of connected components Return type integer ### See also: ### **Notes** For undirected graphs only. ## connected components # $connected_components(G)$ Generate connected components. Parameters G (NetworkX graph) – An undirected graph **Returns** comp – A generator of sets of nodes, one for each component of G. Return type generator of sets Raises NetworkXNotImplemented: – If G is undirected. # **Examples** Generate a sorted list of connected components, largest first. ``` >>> G = nx.path_graph(4) >>> nx.add_path(G, [10, 11, 12]) >>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)] [4, 3] ``` If you only want the largest connected component, it's more efficient to use max instead of sort. ``` >>> largest_cc = max(nx.connected_components(G), key=len) ``` # See also: ``` strongly_connected_components(), weakly_connected_components() ``` # **Notes** For undirected graphs only. ### connected component subgraphs ``` connected component subgraphs (G, copy=True) ``` Generate connected components as subgraphs. **Parameters** - **G** (*NetworkX graph*) An undirected graph. - copy (bool (default=True)) If True make a copy of the graph attributes **Returns** comp – A generator of graphs, one for each connected component of G. Return type generator **Raises** NetworkXNotImplemented: – If G is undirected. # **Examples** ``` >>> G = nx.path_graph(4) >>> G.add_edge(5,6) >>> graphs = list(nx.connected_component_subgraphs(G)) ``` If you only want the largest connected component, it's more efficient to use max instead of sort: ``` >>> Gc = max(nx.connected_component_subgraphs(G), key=len) ``` ### See also: ### **Notes** For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default. # node_connected_component ``` node_connected_component(G, n) ``` Return the nodes in the component of graph containing node n. #### **Parameters** - **G** (*NetworkX Graph*) An undirected graph. - **n** (node label) A node in G **Returns** comp – A set of nodes in the component of G containing node n. Return type set **Raises** NetworkXNotImplemented: – If G is directed. #### See also: ``` connected_components() ``` ## **Notes** For undirected graphs only. # 4.13.2 Strong connectivity | is_strongly_connected(G) | Test directed graph for strong connectivity. | |---|--| | number_strongly_connected_components(G) | Return number of strongly connected components in graph. | | strongly_connected_components(G) | Generate nodes in strongly connected components of | | | graph. | | strongly_connected_component_subgraphs(G | , Generate strongly connected components as subgraphs. | | copy]) | | | strongly_connected_components_recursive(Control of the control | G)Generate nodes in strongly connected components of | | | graph. | | $kosaraju_strongly_connected_components$ (G) | , Generate nodes in strongly connected components of | |]) | graph. | | condensation(G[, scc]) | Returns the condensation of G. | # is_strongly_connected ### $is_strongly_connected(G)$ Test directed graph for strong connectivity. **Parameters G** (*NetworkX Graph*) – A directed graph. **Returns connected** – True if the graph is strongly connected, False otherwise. Return type bool Raises NetworkXNotImplemented: – If G is undirected. ### See also: ``` is_weakly_connected(), is_semiconnected(), is_connected(), is_biconnected(), strongly_connected_components() ``` ### **Notes** For directed graphs only. # number_strongly_connected_components ### number_strongly_connected_components(G) Return number of strongly connected components in graph. **Parameters G** (*NetworkX graph*) – A directed graph. **Returns n** – Number of strongly connected components **Return type** integer Raises NetworkXNotImplemented: – If G is undirected. ### See also: ### **Notes** For directed graphs only. ## strongly connected components ``` strongly_connected_components(G) ``` Generate nodes in strongly connected components of graph. **Parameters G** (*NetworkX Graph*) – An directed graph. **Returns** comp – A generator of sets of nodes, one for each strongly connected component of G. Return type generator of sets Raises NetworkXNotImplemented: - If G is undirected. # **Examples** Generate a sorted list of strongly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest = max(nx.strongly_connected_components(G), key=len) ``` #### See also: ### **Notes** Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_. Nonrecursive version of algorithm. # References ### strongly connected component subgraphs ``` strongly_connected_component_subgraphs (G, copy=True) ``` Generate strongly connected components as subgraphs. ## **Parameters** - **G** (*NetworkX Graph*) A directed graph. - **copy** (*boolean*, *optional*) if copy is True, Graph, node, and edge attributes are copied to the subgraphs. **Returns** comp – A generator of graphs, one for each strongly connected component of G. **Return type** generator of graphs Raises NetworkXNotImplemented: – If G is undirected. # **Examples** Generate a sorted list of strongly connected components, largest first. ``` >>> G = nx.cycle_graph(4, create_using=nx.DiGraph()) >>> nx.add_cycle(G, [10, 11, 12]) >>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs(G), ... key=len, reverse=True)] [4, 3] ``` If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len) ``` #### See also: # strongly_connected_components_recursive ``` strongly_connected_components_recursive(G) ``` Generate nodes in strongly connected components of graph. Recursive version of algorithm. Parameters G (NetworkX Graph) – An directed graph. **Returns** comp – A generator of sets of nodes, one for each strongly connected component of G. Return type generator of sets Raises NetworkXNotImplemented: - If G is undirected. ## **Examples** Generate a sorted list of strongly connected components, largest first. ``` >>> G = nx.cycle_graph(4, create_using=nx.DiGraph()) >>> nx.add_cycle(G, [10, 11, 12]) >>> [len(c) for c in sorted(nx.strongly_connected_components_recursive(G), ... key=len, reverse=True)] [4, 3] ``` If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest = max(nx.strongly_connected_components_recursive(G), key=len) ``` ### See also: ``` connected_components() ``` ### **Notes** Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_. # kosaraju_strongly_connected_components ``` kosaraju_strongly_connected_components(G, source=None) ``` Generate nodes in strongly connected components of graph. **Parameters G** (*NetworkX Graph*) – An directed graph. **Returns** comp – A genrator of sets of nodes, one for each strongly connected component of G. Return type generator of sets Raises NetworkXNotImplemented: – If G is undirected. # **Examples** Generate a sorted list of strongly connected components, largest first. ``` >>> G = nx.cycle_graph(4, create_using=nx.DiGraph()) >>> nx.add_cycle(G, [10, 11, 12]) >>> [len(c) for c in sorted(nx.kosaraju_strongly_connected_components(G), ... key=len, reverse=True)] [4, 3] ``` If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len) ``` ## See also: ``` strongly_connected_components() ``` ## **Notes** Uses Kosaraju's algorithm. ### condensation ``` condensation(G, scc=None) ``` Returns the
condensation of G. The condensation of G is the graph with each of the strongly connected components contracted into a single node. #### **Parameters** - **G** (*NetworkX DiGraph*) A directed graph. - scc (list or generator (optional, default=None)) Strongly connected components. If provided, the elements in scc must partition the nodes in G. If not provided, it will be calculated as scc=nx.strongly_connected_components(G). **Returns** C – The condensation graph C of G. The node labels are integers corresponding to the index of the component in the list of strongly connected components of G. C has a graph attribute named 'mapping' with a dictionary mapping the original nodes to the nodes in C to which they belong. Each node in C also has a node attribute 'members' with the set of original nodes in G that form the SCC that the node in C represents. Return type NetworkX DiGraph **Raises** NetworkXNotImplemented: – If G is undirected. ### **Notes** After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic graph. # 4.13.3 Weak connectivity | is_weakly_connected(G) | Test directed graph for weak connectivity. | |---|--| | $number_weakly_connected_components(G)$ | Return the number of weakly connected components in G. | | weakly_connected_components(G) | Generate weakly connected components of G. | | $weakly_connected_component_subgraphs$ ($G[,$ | Generate weakly connected components as subgraphs. | | copy]) | | # is_weakly_connected ## $is_weakly_connected(G)$ Test directed graph for weak connectivity. A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge between nodes is ignored. **Parameters G** (*NetworkX Graph*) – A directed graph. **Returns connected** – True if the graph is weakly connected, False otherwise. Return type bool Raises NetworkXNotImplemented: – If G is undirected. #### See also: is_strongly_connected(), is_semiconnected(), is_connected(), is_biconnected(), weakly_connected_components() #### **Notes** For directed graphs only. # number_weakly_connected_components # $number_weakly_connected_components(G)$ Return the number of weakly connected components in G. **Parameters G** (*NetworkX graph*) – A directed graph. **Returns n** – Number of weakly connected components Return type integer Raises NetworkXNotImplemented: – If G is undirected. ### See also: ### **Notes** For directed graphs only. ## weakly_connected_components ``` {\tt weakly_connected_components}\,(G) ``` Generate weakly connected components of G. **Parameters G** (*NetworkX graph*) – A directed graph Returns comp - A generator of sets of nodes, one for each weakly connected component of G. Return type generator of sets Raises NetworkXNotImplemented: – If G is undirected. # **Examples** Generate a sorted list of weakly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort: ``` >>> largest_cc = max(nx.weakly_connected_components(G), key=len) ``` # See also: ``` connected_components(), strongly_connected_components() ``` ### Notes For directed graphs only. ### weakly connected component subgraphs ``` weakly_connected_component_subgraphs(G, copy=True) ``` Generate weakly connected components as subgraphs. ## **Parameters** • **G** (*NetworkX graph*) – A directed graph. • copy (bool (default=True)) – If True make a copy of the graph attributes **Returns** comp – A generator of graphs, one for each weakly connected component of G. Return type generator Raises NetworkXNotImplemented: – If G is undirected. # **Examples** Generate a sorted list of weakly connected components, largest first. ``` >>> G = nx.path_graph(4, create_using=nx.DiGraph()) >>> nx.add_path(G, [10, 11, 12]) >>> [len(c) for c in sorted(nx.weakly_connected_component_subgraphs(G), ... key=len, reverse=True)] [4, 3] ``` If you only want the largest component, it's more efficient to use max instead of sort: ``` >>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len) ``` ### See also: ### **Notes** For directed graphs only. Graph, node, and edge attributes are copied to the subgraphs by default. # 4.13.4 Attracting components | is_attracting_component(G) | Returns True if G consists of a single attracting component. | |--|--| | $number_attracting_components(G)$ | Returns the number of attracting components in G. | | attracting_components(G) | Generates a list of attracting components in G. | | $attracting_component_subgraphs(G[,copy])$ | Generates a list of attracting component subgraphs from G. | ### is attracting component ``` is_attracting_component(G) ``` Returns True if G consists of a single attracting component. **Parameters** G (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. **Returns** attracting – True if G has a single attracting component. Otherwise, False. Return type bool **Raises** *NetworkXNotImplemented* : – If the input graph is undirected. # See also: ``` attracting_components(), attracting_component subgraphs() ``` # number_attracting_components ### $number_attracting_components(G)$ Returns the number of attracting components in G. **Parameters G** (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. **Returns** n – The number of attracting components in G. Return type int **Raises** *NetworkXNotImplemented* : – If the input graph is undirected. #### See also: ``` attracting_components(), is_attracting_component(), attracting_component_subgraphs() ``` ### attracting components # $attracting_components(G)$ Generates a list of attracting components in G. An attracting component in a directed graph G is a strongly connected component with the property that a random walker on the graph will never leave the component, once it enters the component. The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the attractor containing the node, then the node will be visited infinitely often. **Parameters** G (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. **Returns** attractors – A generator of sets of nodes, one for each attracting component of G. **Return type** generator of sets **Raises** NetworkXNotImplemented: – If the input graph is undirected. ### See also: ``` number_attracting_components(), attracting_component_subgraphs() is_attracting_component(), ``` ### attracting component subgraphs ### attracting_component_subgraphs (G, copy=True) Generates a list of attracting component subgraphs from G. **Parameters G** (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. # Returns - subgraphs (list) A list of node-induced subgraphs of the attracting components of G. - copy (bool) If copy is True, graph, node, and edge attributes are copied to the subgraphs. **Raises** *NetworkXNotImplemented* : – If the input graph is undirected. # See also: # 4.13.5 Biconnected components | is_biconnected(G) | Return True if the graph is biconnected, False otherwise. | |--|--| | biconnected_components(G) | Return a generator of sets of nodes, one set for each bicon- | | | nected | | biconnected_component_edges(G) | Return a generator of lists of edges, one list for each bicon- | | | nected component of the input graph. | | biconnected_component_subgraphs(G[, copy]) | Return a generator of graphs, one graph for each bicon- | | | nected component of the input graph. | | articulation_points(G) | Return a generator of articulation points, or cut vertices, of | | | a graph. | # is_biconnected ### $is_biconnected(G)$ Return True if the graph is biconnected, False otherwise. A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges incident on that node). If removing a node increases the number of disconnected components in the graph, that node is called an articulation point, or cut vertex. A biconnected graph has no articulation points. **Parameters** G (*NetworkX Graph*) – An undirected graph. **Returns biconnected** – True if the graph is biconnected, False otherwise. Return type bool Raises NetworkXNotImplemented: - If the input graph is not undirected. # **Examples** ``` >>> G = nx.path_graph(4) >>> print(nx.is_biconnected(G)) False >>> G.add_edge(0, 3) >>> print(nx.is_biconnected(G)) True ``` ### See also: # **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. ## biconnected components ## $biconnected_components(G)$ Return a generator of sets of nodes, one set for each biconnected component of the graph Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph. Notice that by convention a dyad is considered a biconnected component. Parameters G (NetworkX Graph) – An undirected graph. Returns nodes – Generator of sets of nodes, one set for each biconnected component. Return type generator **Raises** *NetworkXNotImplemented* : – If
the input graph is not undirected. # **Examples** ``` >>> G = nx.lollipop_graph(5, 1) >>> print(nx.is_biconnected(G)) False >>> bicomponents = list(nx.biconnected_components(G)) >>> len(bicomponents) 2 >>> G.add_edge(0, 5) >>> print(nx.is_biconnected(G)) True >>> bicomponents = list(nx.biconnected_components(G)) >>> len(bicomponents) 1 ``` You can generate a sorted list of biconnected components, largest first, using sort. ``` >>> G.remove_edge(0, 5) >>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)] [5, 2] ``` If you only want the largest connected component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.biconnected_components(G), key=len) ``` ### See also: ``` is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs() ``` #### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. #### References ## biconnected component edges ## $biconnected_component_edges(G)$ Return a generator of lists of edges, one list for each biconnected component of the input graph. Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one, biconnected component. Notice that by convention a dyad is considered a biconnected component. **Parameters G** (*NetworkX Graph*) – An undirected graph. Returns edges – Generator of lists of edges, one list for each bicomponent. Return type generator of lists Raises NetworkXNotImplemented: - If the input graph is not undirected. # **Examples** ``` >>> G = nx.barbell_graph(4, 2) >>> print(nx.is_biconnected(G)) False >>> bicomponents_edges = list(nx.biconnected_component_edges(G)) >>> len(bicomponents_edges) 5 >>> G.add_edge(2, 8) >>> print(nx.is_biconnected(G)) True >>> bicomponents_edges = list(nx.biconnected_component_edges(G)) >>> len(bicomponents_edges) 1 ``` ### See also: ``` is_biconnected(), biconnected_components(), articulation_points(), biconnected_component_subgraphs() ``` #### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. ## biconnected component subgraphs ``` biconnected_component_subgraphs (G, copy=True) ``` Return a generator of graphs, one graph for each biconnected component of the input graph. Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph. Notice that by convention a dyad is considered a biconnected component. **Parameters** G (NetworkX Graph) – An undirected graph. **Returns** graphs – Generator of graphs, one graph for each biconnected component. Return type generator **Raises** *NetworkXNotImplemented* : – If the input graph is not undirected. # **Examples** ``` >>> G = nx.lollipop_graph(5, 1) >>> print(nx.is_biconnected(G)) False >>> bicomponents = list(nx.biconnected_component_subgraphs(G)) >>> len(bicomponents) 2 >>> G.add_edge(0, 5) >>> print(nx.is_biconnected(G)) True >>> bicomponents = list(nx.biconnected_component_subgraphs(G)) >>> len(bicomponents) 1 ``` You can generate a sorted list of biconnected components, largest first, using sort. ``` >>> G.remove_edge(0, 5) >>> [len(c) for c in sorted(nx.biconnected_component_subgraphs(G), ... key=len, reverse=True)] [5, 2] ``` If you only want the largest connected component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.biconnected_component_subgraphs(G), key=len) ``` # See also: ``` is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_components() ``` # **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. Graph, node, and edge attributes are copied to the subgraphs. #### References # articulation_points ### articulation_points(G) Return a generator of articulation points, or cut vertices, of a graph. An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the number of connected components of a graph. An undirected connected graph without articulation points is biconnected. Articulation points belong to more than one biconnected component of a graph. Notice that by convention a dyad is considered a biconnected component. **Parameters** G (*NetworkX Graph*) – An undirected graph. **Returns articulation points** – generator of nodes Return type generator Raises NetworkXNotImplemented: - If the input graph is not undirected. ### **Examples** ``` >>> G = nx.barbell_graph(4, 2) >>> print(nx.is_biconnected(G)) False >>> len(list(nx.articulation_points(G))) 4 >>> G.add_edge(2, 8) >>> print(nx.is_biconnected(G)) True >>> len(list(nx.articulation_points(G))) 0 ``` ### See also: is_biconnected(), biconnected_components(), biconnected_component_edges(), biconnected_component_subgraphs() # Notes The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. # 4.13.6 Semiconnectedness is_semiconnected(G) Return True if the graph is semiconnected, False otherwise. ## is_semiconnected # $is_semiconnected(G)$ Return True if the graph is semiconnected, False otherwise. A graph is semiconnected if, and only if, for any pair of nodes, either one is reachable from the other, or they are mutually reachable. **Parameters G** (*NetworkX graph*) – A directed graph. **Returns** semiconnected – True if the graph is semiconnected, False otherwise. Return type bool Raises - NetworkXNotImplemented: If the input graph is undirected. - *NetworkXPointlessConcept* : If the graph is empty. # **Examples** ``` >>> G=nx.path_graph(4,create_using=nx.DiGraph()) >>> print(nx.is_semiconnected(G)) True >>> G=nx.DiGraph([(1, 2), (3, 2)]) >>> print(nx.is_semiconnected(G)) False ``` ## See also: # 4.14 Connectivity Connectivity and cut algorithms # 4.14.1 K-node-components Moody and White algorithm for k-components k_components(G[, flow_func]) Returns the k-component structure of a graph G. ### k components ## **k_components** (*G*, *flow_func=None*) Returns the k-component structure of a graph G. A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth. #### **Parameters** - **G** (NetworkX graph) - flow_func (function) Function to perform the underlying flow computations. Default value edmonds_karp(). This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path() will perform better in denser graphs. **Returns** k_components – Dictionary with all connectivity levels k in the input Graph as keys and a list of sets of nodes that form a k-component of level k as values. ## Return type dict Raises NetworkXNotImplemented: – If the input graph is directed. # **Examples** ``` >>> # Petersen graph has 10 nodes and it is triconnected, thus all >>> # nodes are in a single component on all three connectivity levels >>> G = nx.petersen_graph() >>> k_components = nx.k_components(G) ``` ### **Notes** Moody and White ¹ (appendix A) provide an algorithm for identifying k-components in a graph, which is based on Kanevsky's algorithm ² for finding all minimum-size node cut-sets of a graph (implemented in all_node_cuts() function): - 1. Compute node connectivity, k, of the input graph G. - 2.Identify all
k-cutsets at the current level of connectivity using Kanevsky's algorithm. - 3.Generate new graph components based on the removal of these cutsets. Nodes in a cutset belong to both sides of the induced cut. - 4.If the graph is neither complete nor trivial, return to 1; else end. This implementation also uses some heuristics (see ³ for details) to speed up the computation. ### See also: ``` node_connectivity(), all_node_cuts() ``` ¹ Moody, J. and D. White (2003). Social cohesion and embeddedness: A hierarchical conception of social groups. American Sociological Review 68(1), 103–28. http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf ² Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541. http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract ³ Torrents, J. and F. Ferraro (2015). Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1 ### 4.14.2 K-node-cutsets Kanevsky all minimum node k cutsets algorithm. ``` all node cuts(G[, k, flow func]) ``` Returns all minimum k cutsets of an undirected graph G. # all_node_cuts ``` all_node_cuts (G, k=None, flow_func=None) ``` Returns all minimum k cutsets of an undirected graph G. This implementation is based on Kanevsky's algorithm ¹ for finding all minimum-size node cut-sets of an undirected graph G; ie the set (or sets) of nodes of cardinality equal to the node connectivity of G. Thus if removed, would break G into two or more connected components. #### **Parameters** - **G** (NetworkX graph) Undirected graph - **k** (*Integer*) Node connectivity of the input graph. If k is None, then it is computed. Default value: None. - flow_func (function) Function to perform the underlying flow computations. Default value edmonds_karp. This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path will perform better in denser graphs. **Returns** cuts – Each node cutset has cardinality equal to the node connectivity of the input graph. **Return type** a generator of node cutsets # **Examples** ``` >>> # A two-dimensional grid graph has 4 cutsets of cardinality 2 >>> G = nx.grid_2d_graph(5, 5) >>> cutsets = list(nx.all_node_cuts(G)) >>> len(cutsets) 4 >>> all(2 == len(cutset) for cutset in cutsets) True >>> nx.node_connectivity(G) 2 ``` ### **Notes** This implementation is based on the sequential algorithm for finding all minimum-size separating vertex sets in a graph ¹. The main idea is to compute minimum cuts using local maximum flow computations among a set of nodes of highest degree and all other non-adjacent nodes in the Graph. Once we find a minimum cut, we add an edge between the high degree node and the target node of the local maximum flow computation to make sure that we will not find that minimum cut again. ¹ Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541. http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract ### See also: node_connectivity(), edmonds_karp(), shortest_augmenting_path() #### References # 4.14.3 Flow-based Connectivity Flow based connectivity algorithms | <pre>average_node_connectivity(G[, flow_func])</pre> | Returns the average connectivity of a graph G. | |--|--| | all_pairs_node_connectivity(G[, nbunch,]) | Compute node connectivity between all pairs of nodes of | | | G. | | <pre>edge_connectivity(G[, s, t, flow_func])</pre> | Returns the edge connectivity of the graph or digraph G. | | $local_edge_connectivity(G, u, v[,])$ | Returns local edge connectivity for nodes s and t in G. | | $local_node_connectivity(G, s, t[,])$ | Computes local node connectivity for nodes s and t. | | <pre>node_connectivity(G[, s, t, flow_func])</pre> | Returns node connectivity for a graph or digraph G. | # average_node_connectivity average_node_connectivity(G, flow_func=None) Returns the average connectivity of a graph G. The average connectivity bar {kappa} of a graph G is the average of local node connectivity over all pairs of nodes of G^{\perp} . $$\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u,v)}{\binom{n}{2}}$$ #### **Parameters** - **G** (NetworkX graph) Undirected graph - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See local_node_connectivity() for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns** K – Average node connectivity **Return type** float ### See also: ¹ Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45. http://www.sciencedirect.com/science/article/pii/S0012365X01001807 ### all pairs node connectivity all_pairs_node_connectivity(G, nbunch=None, flow_func=None) Compute node connectivity between all pairs of nodes of G. ### **Parameters** - **G** (*NetworkX graph*) Undirected graph - **nbunch** (*container*) Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns all_pairs** – A dictionary with node connectivity between all pairs of nodes in G, or in nbunch if provided. Return type dict #### See also: ``` local_node_connectivity(), edge_connectivity(), local_edge_connectivity(), maximum_flow(),edmonds_karp(),preflow_push(),shortest_augmenting_path() ``` # edge_connectivity edge_connectivity(G, s=None, t=None, flow_func=None) Returns the edge connectivity of the graph or digraph G. The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G. ## **Parameters** - **G** (NetworkX graph) Undirected or directed graph - s (node) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns K** – Edge connectivity for G, or local edge connectivity if source and target were provided **Return type** integer # **Examples** ``` >>> # Platonic icosahedral graph is 5-edge-connected >>> G = nx.icosahedral_graph() >>> nx.edge_connectivity(G) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path) 5 ``` If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity. ``` >>> nx.edge_connectivity(G, 3, 7) 5 ``` If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>local_edge_connectivity()</code> for details. ### **Notes** This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in 1) and computing local maximum flow (see $local_edge_connectivity()$) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in 1 . For directed graphs, the algorithm does n calls to the maximum flow function. This is an implementation of algorithm 8 in 1 . ### See also: ``` local_edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### References ### local edge connectivity $local_edge_connectivity$ (G, u, v, $flow_func=None$, auxiliary=None, residual=None, cutoff=None) Returns local edge connectivity for nodes s and t in G. Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to disconnect them. This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary digraph build from the original network (see below for details). This is equal to the local edge connectivity ¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf because the value of a maximum s-t-flow is equal
to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) ¹. #### **Parameters** - **G** (*NetworkX graph*) Undirected or directed graph - s (node) Source node - t (node) Target node - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **auxiliary** (*NetworkX DiGraph*) Auxiliary digraph for computing flow based edge connectivity. If provided it will be reused instead of recreated. Default value: None. - **residual** (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. - **cutoff** (*integer*, *float*) If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: edmonds_karp() and shortest_augmenting_path(). Other algorithms will ignore this parameter. Default value: None. **Returns** K – local edge connectivity for nodes s and t. **Return type** integer ### **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import local_edge_connectivity ``` We use in this example the platonic icosahedral graph, which has edge connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> local_edge_connectivity(G, 0, 6) 5 ``` If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures. ``` >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import (... build_auxiliary_edge_connectivity) ``` ¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) 5 ``` #### **Notes** This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the edmonds_karp() algorithm on an auxiliary digraph build from the original input graph: If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. This is an implementation of algorithm 1 in 1 . The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem). ### See also: ``` edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(),edmonds_karp(),preflow_push(),shortest_augmenting_path() ``` ### References ### local node connectivity $local_node_connectivity$ (G, s, t, $flow_func=None$, auxiliary=None, residual=None, cutoff=None) Computes local node connectivity for nodes s and t. Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be removed (along with their incident edges) to disconnect them. This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary digraph build from the original input graph (see below for details). #### **Parameters** - **G** (*NetworkX graph*) Undirected graph - s (node) Source node - **t** (node) Target node - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - auxiliary (NetworkX DiGraph) Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. - **residual** (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. - **cutoff** (*integer*, *float*) If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: edmonds_karp() and shortest_augmenting_path(). Other algorithms will ignore this parameter. Default value: None. **Returns** K – local node connectivity for nodes s and t Return type integer ## **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import local_node_connectivity ``` We use in this example the platonic icosahedral graph, which has node connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> local_node_connectivity(G, 0, 6) 5 ``` If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures. ``` >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import (... build_auxiliary_node_connectivity) ... >>> H = build_auxiliary_node_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package ``` You can also use alternative flow algorithms for computing node connectivity. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) 5 ``` ### **Notes** This is a flow based implementation of node connectivity. We compute the maximum flow using, by default, the edmonds_karp() algorithm (see: maximum_flow()) on an auxiliary digraph build from the original input graph: For an undirected graph G having n nodes and m edges we derive a directed graph H with 2n nodes and 2m+n arcs by replacing each original node v with two nodes v_A , v_B linked by an (internal) arc in H. Then for each edge (u, v) in G we add two arcs (u_B, v_A) and (v_B, u_A) in H. Finally we set the attribute capacity = 1 for each arc in H 1 . For a directed graph G having n nodes and m arcs we derive a directed graph H with 2n nodes and m+n arcs by replacing each original node v with two nodes v_A , v_B linked by an (internal) arc (v_A , v_B) in H. Then for each arc (u, v) in G we add one arc (u, v) in H. Finally we set the attribute capacity = 1 for each arc in H. This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut. # See also: ### References ## node_connectivity ``` node_connectivity (G, s=None, t=None, flow_func=None) Returns node connectivity for a graph or digraph G. ``` ¹ Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G. ### **Parameters** - **G** (NetworkX graph) Undirected graph - s (node) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow
function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns** K – Node connectivity of G, or local node connectivity if source and target are provided. Return type integer # **Examples** ``` >>> # Platonic icosahedral graph is 5-node-connected >>> G = nx.icosahedral_graph() >>> nx.node_connectivity(G) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.node_connectivity(G, flow_func=shortest_augmenting_path) 5 ``` If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node connectivity. ``` >>> nx.node_connectivity(G, 3, 7) 5 ``` If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>local node connectivity()</code> for details. ## **Notes** This is a flow based implementation of node connectivity. The algorithm works by solving O((n-delta-1+delta(delta-1)/2)) maximum flow problems on an auxiliary digraph. Where delta is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see $local_node_connectivity()$. This implementation is based on algorithm 11 in 1. ¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ### See also: ``` local_node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(),preflow_push(),shortest_augmenting_path() ``` #### References ## 4.14.4 Flow-based Minimum Cuts ### Flow based cut algorithms | <pre>minimum_edge_cut(G[, s, t, flow_func])</pre> | Returns a set of edges of minimum cardinality that disconnects G. | |---|---| | <pre>minimum_node_cut(G[, s, t, flow_func])</pre> | Returns a set of nodes of minimum cardinality that discon- | | | nects G. | | minimum_st_edge_cut(G, s, t[, flow_func,]) | Returns the edges of the cut-set of a minimum (s, t)-cut. | | minimum_st_node_cut(G, s, t[, flow_func,]) | Returns a set of nodes of minimum cardinality that discon- | | | nect source from target in G. | # minimum_edge_cut ``` minimum_edge_cut (G, s=None, t=None, flow_func=None) ``` Returns a set of edges of minimum cardinality that disconnects G. If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum cardinality that disconnects G. ### **Parameters** - **G** (NetworkX graph) - **s** (*node*) Source node. Optional. Default value: None. - **t** (*node*) Target node. Optional. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns cutset** – Set of edges that, if removed, would disconnect G. If source and target nodes are provided, the set contians the edges that if removed, would destroy all paths between source and target. Return type set # **Examples** ``` >>> # Platonic icosahedral graph has edge connectivity 5 >>> G = nx.icosahedral_graph() >>> len(nx.minimum_edge_cut(G)) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm <code>shortest_augmenting_path()</code> will usually perform better than the default <code>edmonds_karp()</code>, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path)) 5 ``` If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity. ``` >>> nx.edge_connectivity(G, 3, 7) 5 ``` If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See local_edge_connectivity() for details. ### **Notes** This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in 1) and computing the maximum flow between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in 1 . For directed graphs, the algorithm does n calls to the max flow function. The function raises an error if the directed graph is not weakly connected and returns an empty set if it is weakly connected. It is an implementation of algorithm 8 in 1 . #### See also: #### References ### minimum node cut ``` minimum node cut (G, s=None, t=None, flow func=None) ``` Returns a set of nodes of minimum cardinality that disconnects G. If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G. If not, it returns a set of nodes of minimum cardinality that disconnects G. #### **Parameters** - **G** (NetworkX graph) - **s** (*node*) Source node. Optional. Default value: None. - **t** (*node*) Target node. Optional. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, ¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns cutset** – Set of nodes that, if removed, would disconnect G. If source and target nodes are provided, the set contians the nodes that if removed, would destroy all paths between source and target. Return type set ## **Examples** ``` >>> # Platonic icosahedral graph has node connectivity 5 >>> G = nx.icosahedral_graph() >>> node_cut = nx.minimum_node_cut(G) >>> len(node_cut) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path) True ``` If you specify a pair of nodes (source and target) as parameters, this function returns a local st node cut. ``` >>> len(nx.minimum_node_cut(G, 3, 7)) 5 ``` If you need to perform several local st cuts among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>minimum_st_node_cut()</code> for details. ### **Notes** This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in 1 . ### See also: ``` minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ¹ Abdol-Hossein Esfahanian, Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ## minimum st edge cut $minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)$ Returns the edges of the cut-set of a minimum (s, t)-cut. This function returns the set of edges of minimum cardinality that, if removed, would destroy all paths among source and target in G. Edge weights are not considered. See minimum_cut () for computing minimum cuts considering edge weights. ### **Parameters** - **G** (NetworkX graph) - **s** (*node*) Source node for the flow. - **t** (*node*) Sink node for the flow. - auxiliary (*NetworkX DiGraph*) Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See node_connectivity() for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **residual** (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. **Returns cutset** – Set of edges that, if removed from the graph, will disconnect it. Return type set #### See also: ``` minimum_cut(), minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import minimum_st_edge_cut ``` We use in this example the platonic icosahedral graph, which has edge connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> len(minimum_st_edge_cut(G, 0, 6)) 5 ``` If you need to compute local edge cuts on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local edge cuts among all pairs of nodes of the platonic icosahedral graph reusing the data structures. ``` >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import (build_auxiliary_edge_connectivity) >>> H = build_auxiliary_edge_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> result = dict.fromkeys(G, dict()) >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> for u, v in itertools.combinations(G, 2): k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R)) result[u][v] = k >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) ``` You can also use alternative flow algorithms for computing edge cuts. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path)) 5 ``` # minimum_st_node_cut minimum_st_node_cut (*G*, *s*, *t*, *flow_func=None*, *auxiliary=None*, *residual=None*) Returns a set of nodes of minimum cardinality that disconnect source from target in G. This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G. ### **Parameters** - **G** (NetworkX graph) - **s** (*node*) Source node. - **t** (node) Target node. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - auxiliary (*NetworkX DiGraph*) Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. - **residual** (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. **Returns cutset** – Set of nodes that, if removed, would destroy all paths between source and target in G. Return type set # **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import minimum_st_node_cut ``` We use in this example the platonic icosahedral graph, which has node connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> len(minimum_st_node_cut(G, 0, 6)) 5 ``` If you need to compute local st cuts between several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity and node cuts, and the residual network for the underlying maximum flow computation. Example of how to compute local st node cuts reusing the data structures: ``` >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import (... build_auxiliary_node_connectivity) >>> H = build_auxiliary_node_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R)) ``` You can also use alternative flow algorithms for computing minimum st node cuts. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path)) 5 ``` ### **Notes** This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in 1 . ### See also: ``` minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` #### References # 4.14.5 Stoer-Wagner minimum cut Stoer-Wagner minimum cut algorithm. | stoer_wagner(G[, weight, heap]) | Returns the weighted minimum edge cut using the Stoer- | |---------------------------------|--| | | Wagner algorithm. | ### stoer wagner **stoer_wagner** (*G*, weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>) Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases, all weights must be nonnegative. The running time of the algorithm depends on the type of heaps used: | Type of heap | Running time | |----------------|---| | Binary heap | O(n (m + n) log n) | | Fibonacci heap | $O(nm + n^2 log n)$ | | Pairing heap | O(2^{2 sqrt{log log n}} nm + n^2 log n) | ### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute named by the weight parameter below. If this attribute is not present, the edge is considered to have unit weight. - **weight** (*string*) Name of the weight attribute of the edges. If the attribute is not present, unit weight is assumed. Default value: 'weight'. - **heap** (*class*) Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface. If a stock heap implementation is to be used, BinaryHeap is recommeded over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap. 4.14. Connectivity 247 ¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ### Returns - cut_value (integer or float) The sum of weights of edges in a minimum cut. - partition (pair of node lists) A partitioning of the nodes that defines a minimum cut. ### Raises - NetworkXNotImplemented If the graph is directed or a multigraph. - NetworkXError If the graph has less than two nodes, is not connected or has a negative-weighted edge. ### **Examples** ``` >>> G = nx.Graph() >>> G.add_edge('x','a', weight=3) >>> G.add_edge('x','b', weight=1) >>> G.add_edge('a','c', weight=3) >>> G.add_edge('b','c', weight=5) >>> G.add_edge('b','d', weight=4) >>> G.add_edge('d','e', weight=2) >>> G.add_edge('c','y', weight=2) >>> G.add_edge('e','y', weight=3) >>> cut_value, partition = nx.stoer_wagner(G) >>> cut_value ``` # 4.14.6 Utils for flow-based connectivity Utilities for connectivity package | build_auxiliary_edge_connectivity(G) | Auxiliary digraph for computing flow based edge connectivity | |--------------------------------------|--| | build_auxiliary_node_connectivity(G) | Creates
a directed graph D from an undirected graph G to compute flow based node connectivity. | # build_auxiliary_edge_connectivity ## $build_auxiliary_edge_connectivity(G)$ Auxiliary digraph for computing flow based edge connectivity If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. Part of algorithm 1 in 1 . ¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a chapter, look for the reference of the book). http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ### References # build_auxiliary_node_connectivity ### $build_auxiliary_node_connectivity(G)$ Creates a directed graph D from an undirected graph G to compute flow based node connectivity. For an undirected graph G having n nodes and m edges we derive a directed graph D with 2n nodes and 2m+n arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc in D. Then for each edge (u, v) in G we add two arcs (uB, vA) and (vB, uA) in D. Finally we set the attribute capacity = 1 for each arc in D 1 . For a directed graph having n nodes and m arcs we derive a directed graph D with 2n nodes and m+n arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc (vA, vB) in D. Then for each arc (u, v) in G we add one arc (uB, vA) in D. Finally we set the attribute capacity = 1 for each arc in D. A dictionary with a mapping between nodes in the original graph and the auxiliary digraph is stored as a graph attribute: H.graph['mapping']. ### References # **4.15 Cores** Find the k-cores of a graph. The k-core is found by recursively pruning nodes with degrees less than k. See the following references for details: An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049 Generalized Cores Vladimir Batagelj and Matjaz Zaversnik, 2002. http://arxiv.org/pdf/cs/0202039 For directed graphs a more general notion is that of D-cores which looks at (k, l) restrictions on (in, out) degree. The (k, k) D-core is the k-core. D-cores: Measuring Collaboration of Directed Graphs Based on Degeneracy Christos Giatsidis, Dimitrios M. Thilikos, Michalis Vazirgiannis, ICDM 2011. http://www.graphdegeneracy.org/dcores_ICDM_2011.pdf | core_number(G) | Return the core number for each vertex. | |----------------------------------|---| | $k_core(G[, k, core_number])$ | Return the k-core of G. | | $k_shell(G[, k, core_number])$ | Return the k-shell of G. | | k_crust(G[, k, core_number]) | Return the k-crust of G. | | k_corona(G, k[, core_number]) | Return the k-corona of G. | # 4.15.1 core number ### $core_number(G)$ Return the core number for each vertex. 4.15. Cores 249 ¹ Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf A k-core is a maximal subgraph that contains nodes of degree k or more. The core number of a node is the largest value k of a k-core containing that node. Parameters G (NetworkX graph) – A graph or directed graph **Returns core_number** – A dictionary keyed by node to the core number. Return type dictionary **Raises** NetworkXError – The k-core is not implemented for graphs with self loops or parallel edges. ### **Notes** Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. ### References # 4.15.2 k core $k_core(G, k=None, core_number=None)$ Return the k-core of G. A k-core is a maximal subgraph that contains nodes of degree k or more. # **Parameters** - **G** (NetworkX graph) A graph or directed graph - **k** (*int*, *optional*) The order of the core. If not specified return the main core. - **core_number** (*dictionary*, *optional*) Precomputed core numbers for the graph G. **Returns G** – The k-core subgraph **Return type** NetworkX graph **Raises** NetworkXError – The k-core is not defined for graphs with self loops or parallel edges. ### **Notes** The main core is the core with the largest degree. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. ### See also: ``` core_number() ``` ### References # 4.15.3 k shell **k_shell** (*G*, *k=None*, *core_number=None*) Return the k-shell of G. The k-shell is the subgraph induced by nodes with core number k. That is, nodes in the k-core that are not in the (k+1)-core. ### **Parameters** - **G** (*NetworkX graph*) A graph or directed graph. - **k** (*int*, *optional*) The order of the shell. If not specified return the outer shell. - **core_number** (*dictionary*, *optional*) Precomputed core numbers for the graph G. **Returns G** – The k-shell subgraph Return type NetworkX graph Raises NetworkXError – The k-shell is not implemented for graphs with self loops or parallel edges. ### **Notes** This is similar to k_corona but in that case only neighbors in the k-core are considered. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. #### See also: ``` core_number(), k_corona() ``` ### References # 4.15.4 k crust **k_crust** (*G*, *k=None*, *core_number=None*) Return the k-crust of G. The k-crust is the graph G with the k-core removed. #### **Parameters** - **G** (*NetworkX graph*) A graph or directed graph. - **k** (*int*, *optional*) The order of the shell. If not specified return the main crust. - **core_number** (*dictionary, optional*) Precomputed core numbers for the graph G. **Returns G** – The k-crust subgraph Return type NetworkX graph **Raises** NetworkXError – The k-crust is not implemented for graphs with self loops or parallel edges. 4.15. Cores 251 ### **Notes** This definition of k-crust is different than the definition in ¹. The k-crust in ¹ is equivalent to the k+1 crust of this algorithm. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. #### See also: ``` core_number() ``` ### References # 4.15.5 k corona # **k_corona** (*G*, *k*, *core_number=None*) Return the k-corona of G. The k-corona is the subgraph of nodes in the k-core which have exactly k neighbours in the k-core. ### **Parameters** - **G** (NetworkX graph) A graph or directed graph - **k** (*int*) The order of the corona. - **core_number** (*dictionary*, *optional*) Precomputed core numbers for the graph G. **Returns G** – The k-corona subgraph Return type NetworkX graph Raises NetworkXError – The k-cornoa is not defined for graphs with self loops or parallel edges. ### **Notes** Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. #### See also: ``` core_number() ``` ### References # 4.16 Covering Functions related to graph covers. ¹ A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full | min_edge_cover(G[, matching_algorithm]) | Returns a set of edges which constitutes the minimum edge | |---|---| | | cover of the graph. | | is_edge_cover(G, cover) | Decides whether a set of edges is a valid edge cover of the | | | graph. | # 4.16.1 min_edge_cover # min_edge_cover(G, matching_algorithm=None) Returns a set of edges which constitutes the minimum edge cover of the graph. A smallest edge cover can be found in polynomial time by finding a maximum matching and extending it greedily so that all nodes are covered. #### **Parameters** - **G** (*NetworkX graph*) An undirected bipartite graph. - matching_algorithm (function) A function that returns a maximum cardinality matching in a given bipartite graph. The function must take one input, the graph G, and return a dictionary mapping each node to its mate. If not specified, hopcroft_karp_matching() will be used. Other possibilities include eppstein_matching(), or matching algorithms in the networkx.algorithms.matching module. **Returns** min_cover – It contains all the edges of minimum edge cover in form of tuples. It contains both the edges (u, v) and (v, u) for given nodes u and v among the edges of minimum edge cover. ### Return type set ## **Notes** An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of the set. The minimum edge cover is an edge covering of smallest cardinality. Due to its implementation, the worst-case running time of this algorithm is bounded by the worst-case running time of the function matching_algorithm. Minimum edge cover for bipartite graph can also be found using the function present in networks.algorithms.bipartite.covering # 4.16.2 is_edge_cover ### is_edge_cover(G, cover) Decides whether a set of edges is a valid edge cover of the graph. Given a set of edges, whether it is an edge covering can be decided if we just check whether all nodes of the graph has an edge from the set, incident on it. ### **Parameters** - **G** (*NetworkX graph*) An undirected bipartite graph. - **cover** (*set*) Set of edges to be checked. Returns Whether the set of edges is a valid edge cover of the graph.
Return type bool 4.16. Covering 253 ### **Notes** An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of the set. # 4.17 Cycles # 4.17.1 Cycle finding algorithms | cycle_basis(G[, root]) | Returns a list of cycles which form a basis for cycles of G. | |--------------------------------------|--| | simple_cycles(G) | Find simple cycles (elementary circuits) of a directed | | | graph. | | find_cycle(G[, source, orientation]) | Returns the edges of a cycle found via a directed, depth- | | | first traversal. | # 4.17.2 cycle_basis ### cycle_basis(G, root=None) Returns a list of cycles which form a basis for cycles of G. A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written as a sum of cycles in the basis. Here summation of cycles is defined as "exclusive or" of the edges. Cycle bases are useful, e.g. when deriving equations for electric circuits using Kirchhoff's Laws. ### **Parameters** - **G** (NetworkX Graph) - root (node, optional) Specify starting node for basis. ### Returns - A list of cycle lists. Each cycle list is a list of nodes - which forms a cycle (loop) in G. # **Examples** ``` >>> G=nx.Graph() >>> nx.add_cycle(G, [0, 1, 2, 3]) >>> nx.add_cycle(G, [0, 3, 4, 5]) >>> print(nx.cycle_basis(G,0)) [[3, 4, 5, 0], [1, 2, 3, 0]] ``` ### **Notes** This is adapted from algorithm CACM 491 ¹. ¹ Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518. ### References #### See also: ``` simple_cycles() ``` # 4.17.3 simple cycles ### $simple_cycles(G)$ Find simple cycles (elementary circuits) of a directed graph. A simple cycle, or elementary circuit, is a closed path where no node appears twice. Two elementary circuits are distinct if they are not cyclic permutations of each other. This is a nonrecursive, iterator/generator version of Johnson's algorithm ¹. There may be better algorithms for some cases ^{2 3}. Parameters G (NetworkX DiGraph) – A directed graph **Returns** cycle_generator – A generator that produces elementary cycles of the graph. Each cycle is represented by a list of nodes along the cycle. Return type generator # **Examples** ``` >>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]) >>> len(list(nx.simple_cycles(G))) 5 ``` To filter the cycles so that they don't include certain nodes or edges, copy your graph and eliminate those nodes or edges before calling ``` >>> copyG = G.copy() >>> copyG.remove_nodes_from([1]) >>> copyG.remove_edges_from([(0, 1)]) >>> len(list(nx.simple_cycles(copyG))) 3 ``` #### **Notes** The implementation follows pp. 79-80 in ¹. The time complexity is 0 ((n+e) (c+1)) for n nodes, e edges and c elementary circuits. ### References ### See also: 4.17. Cycles 255 ¹ Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. http://dx.doi.org/10.1137/0204007 ² Enumerating the cycles of a digraph: a new preprocessing strategy. G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982. ³ A search strategy for the elementary cycles of a directed graph. J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS, v. 16, no. 2, 192-204, 1976. ``` cycle basis() ``` # 4.17.4 find_cycle ${\tt find_cycle}\,(\textit{G}, \textit{source=None}, \textit{orientation='original'})$ Returns the edges of a cycle found via a directed, depth-first traversal. #### **Parameters** - **G** (*graph*) A directed/undirected graph/multigraph. - **source** (*node*, *list of nodes*) The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched. - **orientation** ('original' | 'reverse' | 'ignore') For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm. Returns edges – A list of directed edges indicating the path taken for the loop. If no cycle is found, then an exception is raised. For graphs, an edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, an edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is 'ignore', then an edge takes the form (u, v, key, direction) where direction indicates if the edge was followed in the forward (tail to head) or reverse (head to tail) direction. When the direction is forward, the value of direction is 'forward'. When the direction is reverse, the value of direction is 'reverse'. ## Return type directed edges Raises NetworkXNoCycle - If no cycle was found. ### **Examples** In this example, we construct a DAG and find, in the first call, that there are no directed cycles, and so an exception is raised. In the second call, we ignore edge orientations and find that there is an undirected cycle. Note that the second call finds a directed cycle while effectively traversing an undirected graph, and so, we found an "undirected cycle". This means that this DAG structure does not form a directed tree (which is also known as a polytree). ``` >>> import networkx as nx >>> G = nx.DiGraph([(0,1), (0,2), (1,2)]) >>> try: ... find_cycle(G, orientation='original') ... except: ... pass ... >>> list(find_cycle(G, orientation='ignore')) [(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')] ``` # 4.18 Cuts Functions for finding and evaluating cuts in a graph. | boundary_expansion(G, S) | Returns the boundary expansion of the set S. | |---|--| | conductance(G, S[, T, weight]) | Returns the conductance of two sets of nodes. | | <pre>cut_size(G, S[, T, weight])</pre> | Returns the size of the cut between two sets of nodes. | | $edge_expansion(G, S[, T, weight])$ | Returns the edge expansion between two node sets. | | $mixing_{expansion}(G, S[, T, weight])$ | Returns the mixing expansion between two node sets. | | node_expansion(G, S) | Returns the node expansion of the set S. | | normalized_cut_size(G, S[, T, weight]) | Returns the normalized size of the cut between two sets of | | | nodes. | | volume(G, S[, weight]) | Returns the volume of a set of nodes. | # 4.18.1 boundary_expansion ### $boundary_expansion(G, S)$ Returns the boundary expansion of the set S. The boundary expansion is the quotient of the size of the edge boundary and the cardinality of S. [1] ### **Parameters** - **G** (NetworkX graph) - **S** (*sequence*) A sequence of nodes in G. **Returns** The boundary expansion of the set S. Return type number ### See also: edge_expansion(), mixing_expansion(), node_expansion() #### References # 4.18.2 conductance **conductance** (*G*, *S*, *T*=*None*, *weight*=*None*) Returns the conductance of two sets of nodes. The *conductance* is the quotient of the cut size and the smaller of the volumes of the two sets. [1] ### **Parameters** - **G** (NetworkX graph) - **S** (*sequence*) A sequence of nodes in G. - T (sequence) A sequence of nodes in G. - weight (object) Edge attribute key to use as weight. If not specified, edges have weight one **Returns** The conductance between the two sets S and T. Return type number 4.18. Cuts 257 ### See also: ``` cut_size(), edge_expansion(), normalized_cut_size(), volume() ``` ### References # 4.18.3 cut size ``` cut size(G, S, T=None, weight=None) ``` Returns the size of the cut between two sets of nodes. A *cut* is a partition of the nodes of a graph into two sets. The *cut size* is the sum of the weights of the edges "between" the two sets of nodes. ### **Parameters** - **G** (NetworkX graph) - **S** (*sequence*) A sequence of nodes in G. - **T** (*sequence*) A sequence of nodes in G. If not specified, this is taken to be the set complement of S. - weight (object) Edge attribute key to use as weight. If not specified, edges have weight one. **Returns** Total weight of all edges from nodes in set S to nodes in set T (and, in the case of directed graphs, all edges from nodes in T to nodes in S). Return type number # **Examples** In the graph with two cliques joined by a single edges, the natural bipartition of the graph into two blocks, one for each clique, yields a cut of weight one: ``` >>> G = nx.barbell_graph(3, 0) >>> S = {0, 1, 2} >>> T = {3, 4, 5} >>> nx.cut_size(G, S, T) ``` Each parallel edge in a multigraph is counted when determining the cut size: ``` >>> G = nx.MultiGraph(['ab', 'ab']) >>> S = {'a'} >>> T = {'b'} >>> nx.cut_size(G, S, T) 2 ``` # **Notes** In a multigraph, the cut size is the total weight of edges including multiplicity. # 4.18.4 edge expansion ### edge_expansion(G, S, T=None, weight=None) Returns the edge expansion between two node sets. The edge expansion is the quotient of the cut size and the smaller of the cardinalities of the two sets. [1] #### **Parameters** - **G** (NetworkX graph) - **S** (*sequence*) A sequence of nodes in G. - **T** (sequence) A sequence of nodes in G. - weight (object) Edge attribute key to use as weight. If not specified, edges have weight one. **Returns** The edge expansion between the two sets S and T. Return type number #### See also: ``` boundary_expansion(), mixing_expansion(), node_expansion() ``` #### References # 4.18.5 mixing expansion ### $mixing_expansion(G, S, T=None, weight=None)$ Returns the mixing expansion between two node sets. The mixing expansion is the quotient of the cut size and twice
the number of edges in the graph. [1] ### **Parameters** - **G** (NetworkX graph) - **S** (*sequence*) A sequence of nodes in G. - T (sequence) A sequence of nodes in G. - weight (object) Edge attribute key to use as weight. If not specified, edges have weight one **Returns** The mixing expansion between the two sets S and T. Return type number # See also: ``` boundary_expansion(), edge_expansion(), node_expansion() ``` # References # 4.18.6 node expansion # $node_expansion(G, S)$ Returns the node expansion of the set S. The node expansion is the quotient of the size of the node boundary of S and the cardinality of S. [1] 4.18. Cuts 259 ### **Parameters** - **G** (NetworkX graph) - **S** (sequence) A sequence of nodes in G. **Returns** The node expansion of the set S. Return type number #### See also: ``` boundary_expansion(), edge_expansion(), mixing_expansion() ``` ### References # 4.18.7 normalized cut size ``` normalized_cut_size(G, S, T=None, weight=None) ``` Returns the normalized size of the cut between two sets of nodes. The normalized cut size is the cut size times the sum of the reciprocal sizes of the volumes of the two sets. [1] ### **Parameters** - **G** (*NetworkX graph*) - **S** (*sequence*) A sequence of nodes in G. - **T** (*sequence*) A sequence of nodes in G. - weight (*object*) Edge attribute key to use as weight. If not specified, edges have weight one. **Returns** The normalized cut size between the two sets S and T. Return type number ### **Notes** In a multigraph, the cut size is the total weight of edges including multiplicity. ### See also: ``` conductance(), cut size(), edge expansion(), volume() ``` ### References # 4.18.8 volume ``` volume(G, S, weight=None) ``` Returns the volume of a set of nodes. The *volume* of a set S is the sum of the (out-)degrees of nodes in S (taking into account parallel edges in multigraphs). [1] ### **Parameters** - **G** (NetworkX graph) - **S** (*sequence*) A sequence of nodes in G. • weight (object) – Edge attribute key to use as weight. If not specified, edges have weight one. **Returns** The volume of the set of nodes represented by S in the graph G. Return type number ### See also: ``` conductance(), cut_size(), edge_expansion(), edge_boundary(), normalized cut size() ``` #### References # 4.19 Directed Acyclic Graphs Algorithms for directed acyclic graphs (DAGs). | ancestors(G, source) | Return all nodes having a path to source in G. | |--|---| | descendants(G, source) | Return all nodes reachable from source in G. | | topological_sort(G) | Return a generator of nodes in topologically sorted order. | | lexicographical_topological_sort(G[, key]) | Return a generator of nodes in lexicographically topologi- | | | cally sorted order. | | is_directed_acyclic_graph(G) | Return True if the graph G is a directed acyclic graph | | | (DAG) or False if not. | | is_aperiodic(G) | Return True if G is aperiodic. | | transitive_closure(G) | Returns transitive closure of a directed graph | | transitive_reduction(G) | Returns transitive reduction of a directed graph | | antichains(G) | Generates antichains from a DAG. | | <pre>dag_longest_path(G[, weight, default_weight])</pre> | Returns the longest path in a DAG If G has edges with | | | 'weight' attribute the edge data are used as weight values. | | $dag_longest_path_length(G[, weight,])$ | Returns the longest path length in a DAG | # 4.19.1 ancestors ancestors(G, source) Return all nodes having a path to source in G. ## **Parameters** - **G** (NetworkX DiGraph) - source (node in G) Returns ancestors – The ancestors of source in G Return type set() # 4.19.2 descendants descendants (G, source) Return all nodes reachable from source in G. ### **Parameters** - **G** (NetworkX DiGraph) - **source** (node in G) **Returns** des – The descendants of source in G Return type set() # 4.19.3 topological sort ``` topological_sort(G) ``` Return a generator of nodes in topologically sorted order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. Parameters G (NetworkX digraph) – A directed graph **Returns topologically_sorted_nodes** – An iterable of node names in topological sorted order. Return type iterable ### Raises - NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. - NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. This can also be raised if G is changed while the returned iterator is being processed. - RuntimeError If G is changed while the returned iterator is being processed. # **Examples** To get the reverse order of the topological sort: ``` >>> DG = nx.DiGraph([(1, 2), (2, 3)]) >>> list(reversed(list(nx.topological_sort(DG)))) [3, 2, 1] ``` ### **Notes** This algorithm is based on a description and proof in Introduction to algorithms - a creative approach 1. ### See also: ``` is_directed_acyclic_graph(), lexicographical_topological_sort() ``` ¹ Manber, U. (1989). Introduction to algorithms - a creative approach. Addison-Wesley. http://www.amazon.com/Introduction-Algorithms-A-Creative-Approach/dp/0201120372 ### References # 4.19.4 lexicographical_topological_sort ### lexicographical_topological_sort(G, key=None) Return a generator of nodes in lexicographically topologically sorted order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. ### **Parameters** - **G** (*NetworkX digraph*) A directed graph - **key** (*function*, *optional*) This function maps nodes to keys with which to resolve ambiguities in the sort order. Defaults to the identity function. **Returns lexicographically_topologically_sorted_nodes** – An iterable of node names in lexicographical topological sort order. Return type iterable #### Raises - NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. - NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. This can also be raised if G is changed while the returned iterator is being processed. - RuntimeError If G is changed while the returned iterator is being processed. ### **Notes** This algorithm is based on a description and proof in Introduction to algorithms - a creative approach ¹. ### See also: ``` topological_sort() ``` #### References # 4.19.5 is_directed_acyclic_graph ### $is_directed_acyclic_graph(G)$ Return True if the graph G is a directed acyclic graph (DAG) or False if not. Parameters G (NetworkX graph) – A graph **Returns** is_dag – True if G is a DAG, false otherwise Return type bool ¹ Manber, U. (1989). Introduction to algorithms - a creative approach. Addison-Wesley. http://www.amazon.com/Introduction-Algorithms-A-Creative-Approach/dp/0201120372 # 4.19.6 is aperiodic ### $is_aperiodic(G)$ Return True if G is aperiodic. A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph. Parameters G (NetworkX DiGraph) – Graph **Returns** aperiodic – True if the graph is aperiodic False otherwise Return type boolean Raises NetworkXError - If G is not directed ### **Notes** This uses the method outlined in ¹, which runs in O(m) time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles. ### References # 4.19.7 transitive closure # $transitive_closure(G)$ Returns transitive closure of a directed graph The transitive closure of G = (V,E) is a graph G + = (V,E+) such that for all v,w in V there is an edge (v,w) in E+ if and only if there is a non-null path from v to w in G. Parameters G (NetworkX DiGraph) – Graph Returns TC - Graph **Return type** NetworkX DiGraph Raises NetworkXNotImplemented - If G is not directed ### References # 4.19.8 transitive_reduction ### $transitive_reduction(G)$ Returns transitive reduction of a directed graph The transitive reduction of G = (V,E) is a graph G = (V,E) such that for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is in E and there is no path from v to w in G with length greater than 1. Parameters G (NetworkX DiGraph) – Graph Returns TR - Graph Return type NetworkX DiGraph **Raises** NetworkXError – If G is not a directed acyclic graph (DAG) transitive reduction is not uniquely defined and a NetworkXError exception is raised. ¹ Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press. ### References https://en.wikipedia.org/wiki/Transitive_reduction # 4.19.9 antichains ### antichains(G) Generates antichains from a DAG. An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable. Parameters G (NetworkX DiGraph) – Graph Returns antichain Return type generator object Raises - NetworkXNotImplemented If G is not directed - NetworkXUnfeasible If G contains a cycle ### **Notes** This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It's included in NetworkX with permission from the authors. Original SAGE code at: https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py ## References # 4.19.10 dag longest path ``` dag_longest_path (G, weight='weight', default_weight=1) ``` Returns the longest path in a DAG If G has edges with 'weight' attribute the edge data are used as weight values. ### **Parameters** - **G** (NetworkX DiGraph) Graph - weight (string (default 'weight')) Edge data key to use for weight - **default_weight** (*integer* (*default 1*)) The weight of
edges that do not have a weight attribute Returns path - Longest path Return type list Raises NetworkXNotImplemented - If G is not directed ## See also: ``` dag_longest_path_length() ``` # 4.19.11 dag longest path length dag_longest_path_length (G, weight='weight', default_weight=1) Returns the longest path length in a DAG ### **Parameters** - **G** (NetworkX DiGraph) Graph - weight (string (default 'weight')) Edge data key to use for weight - **default_weight** (*integer* (*default 1*)) The weight of edges that do not have a weight attribute Returns path_length - Longest path length Return type int Raises NetworkXNotImplemented - If G is not directed See also: dag_longest_path() # 4.20 Dispersion dispersion # 4.21 Distance Measures Graph diameter, radius, eccentricity and other properties. | center(G[,e]) | Return the center of the graph G. | |--------------------------|--| | diameter(G[,e]) | Return the diameter of the graph G. | | eccentricity(G[, v, sp]) | Return the eccentricity of nodes in G. | | periphery(G[,e]) | Return the periphery of the graph G. | | radius(G[, e]) | Return the radius of the graph G. | # 4.21.1 center center(G, e=None) Return the center of the graph G. The center is the set of nodes with eccentricity equal to radius. ### **Parameters** - **G** (*NetworkX graph*) A graph - e (eccentricity dictionary, optional) A precomputed dictionary of eccentricities. **Returns** c – List of nodes in center Return type list # 4.21.2 diameter ``` diameter(G, e=None) ``` Return the diameter of the graph G. The diameter is the maximum eccentricity. #### **Parameters** - **G** (NetworkX graph) A graph - e (eccentricity dictionary, optional) A precomputed dictionary of eccentricities. **Returns d** – Diameter of graph Return type integer #### See also: eccentricity() # 4.21.3 eccentricity ``` eccentricity(G, v=None, sp=None) ``` Return the eccentricity of nodes in G. The eccentricity of a node v is the maximum distance from v to all other nodes in G. ### **Parameters** - **G** (*NetworkX graph*) A graph - v (node, optional) Return value of specified node - sp (dict of dicts, optional) All pairs shortest path lengths as a dictionary of dictionaries **Returns** ecc – A dictionary of eccentricity values keyed by node. Return type dictionary # 4.21.4 periphery ``` periphery(G, e=None) ``` Return the periphery of the graph G. The periphery is the set of nodes with eccentricity equal to the diameter. ### **Parameters** - **e** (eccentricity dictionary, optional) A precomputed dictionary of eccentricities. **Returns p** – List of nodes in periphery Return type list # 4.21.5 radius ### radius(G, e=None) Return the radius of the graph G. The radius is the minimum eccentricity. #### **Parameters** - **G** (*NetworkX graph*) A graph - e (eccentricity dictionary, optional) A precomputed dictionary of eccentricities. **Returns** r – Radius of graph Return type integer # 4.22 Distance-Regular Graphs # 4.22.1 Distance-regular graphs | is_distance_regular(G) | Returns True if the graph is distance regular, False other- | |-------------------------|--| | | wise. | | is_strongly_regular(G) | Returns True if and only if the given graph is strongly reg- | | | ular. | | intersection_array(G) | Returns the intersection array of a distance-regular graph. | | global_parameters(b, c) | Return global parameters for a given intersection array. | # 4.22.2 is_distance_regular ### $is_distance_regular(G)$ Returns True if the graph is distance regular, False otherwise. A connected graph G is distance-regular if for any nodes x,y and any integers i,j=0,1,...,d (where d is the graph diameter), the number of vertices at distance i from x and distance j from y depends only on i,j and the graph distance between x and y, independently of the choice of x and y. **Parameters G** (*Networkx graph (undirected)*) **Returns** True if the graph is Distance Regular, False otherwise Return type bool ### **Examples** ``` >>> G=nx.hypercube_graph(6) >>> nx.is_distance_regular(G) True ``` ### See also: ``` intersection_array(), global_parameters() ``` ### **Notes** For undirected and simple graphs only ### References # 4.22.3 is strongly regular ### $is_strongly_regular(G)$ Returns True if and only if the given graph is strongly regular. An undirected graph is strongly regular if - •it is regular, - •each pair of adjacent vertices has the same number of neighbors in common, - •each pair of nonadjacent vertices has the same number of neighbors in common. Each strongly regular graph is a distance-regular graph. Conversely, if a distance-regular graph has diameter two, then it is a strongly regular graph. For more information on distance-regular graphs, see <code>is_distance_regular()</code>. **Parameters G** (*NetworkX graph*) – An undirected graph. **Returns** Whether G is strongly regular. Return type bool ### **Examples** The cycle graph on five vertices is strongly regular. It is two-regular, each pair of adjacent vertices has no shared neighbors, and each pair of nonadjacent vertices has one shared neighbor: ``` >>> import networkx as nx >>> G = nx.cycle_graph(5) >>> nx.is_strongly_regular(G) True ``` # 4.22.4 intersection array ### $intersection_array(G)$ Returns the intersection array of a distance-regular graph. Given a distance-regular graph G with integers b_i , c_i , i = 0,...,d such that for any 2 vertices x,y in G at a distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a distance of i+1 from x. A distance regular graph's intersection array is given by, [b_0,b_1,....b_{d-1};c_1,c_2,....c_d] **Parameters G** (Networkx graph (undirected)) Returns b,c Return type tuple of lists # **Examples** ``` >>> G=nx.icosahedral_graph() >>> nx.intersection_array(G) ([5, 2, 1], [1, 2, 5]) ``` #### References ### See also: global_parameters() # 4.22.5 global parameters ## ${\tt global_parameters}\,(b,c)$ Return global parameters for a given intersection array. Given a distance-regular graph G with integers b_i , c_i , i = 0,...,d such that for any 2 vertices x,y in G at a distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a distance of i+1 from x. Thus, a distance regular graph has the global parameters, $[[c_0,a_0,b_0],[c_1,a_1,b_1],....,[c_d,a_d,b_d]]$ for the intersection array $[b_0,b_1,....b_{d-1};c_1,c_2,....c_d]$ where $a_i+b_i+c_i=k$, k=degree of every vertex. ### **Parameters** - **b** (*list*) - **c** (*list*) **Returns** An iterable over three tuples. Return type iterable # **Examples** ``` >>> G = nx.dodecahedral_graph() >>> b, c = nx.intersection_array(G) >>> list(nx.global_parameters(b, c)) [(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)] ``` ### References #### See also: intersection_array() # 4.23 Dominance Dominance algorithms. | immediate_dominators(G, start) | Returns the immediate dominators of all nodes of a directed | |--------------------------------|---| | | graph. | | dominance_frontiers(G, start) | Returns the dominance frontiers of all nodes of a directed | | | graph. | # 4.23.1 immediate dominators ### immediate_dominators (G, start) Returns the immediate dominators of all nodes of a directed graph. ### **Parameters** - **G** (a DiGraph or MultiDiGraph) The graph where dominance is to be computed. - **start** (*node*) The start node of dominance computation. Returns idom - A dict containing the immediate dominators of each node reachable from start. Return type dict keyed by nodes ### Raises - NetworkXNotImplemented If G is undirected. - NetworkXError If start is not in G. #### **Notes** Except for start, the immediate dominators are the parents of their corresponding nodes in the dominator tree. # **Examples** ``` >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) >>> sorted(nx.immediate_dominators(G, 1).items()) [(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)] ``` # References # 4.23.2 dominance_frontiers # $dominance_frontiers(G, start)$ Returns the dominance frontiers of all nodes of a directed graph. #### **Parameters** - **G** (a DiGraph or MultiDiGraph) The graph where dominance is to be computed. - **start** (*node*) The start node of dominance computation. **Returns** df – A dict containing the dominance frontiers of each node reachable from start as lists. Return type dict keyed by nodes ### Raises • NetworkXNotImplemented - If G is undirected. 4.23. Dominance 271 • NetworkXError - If start is not in G. # **Examples** ``` >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) >>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items()) [(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])] ``` #### References # 4.24 Dominating Sets Functions for computing dominating sets in a graph. | dominating_set(G[, start_with]) | Finds a dominating set for the graph G. | |---------------------------------|---| | is_dominating_set(G, nbunch) | Checks if nbunch is a dominating set for G. | # 4.24.1 dominating set dominating_set (G, start_with=None) Finds a dominating set for the graph G. A *dominating set* for a graph with node set V is a subset D of V such that every node not in D is adjacent to at least one member of D^{\perp} . #### **Parameters** - **G** (NetworkX graph) - start_with (node (default=None)) Node to use as a starting point for the algorithm. **Returns** \mathbf{D} – A dominating set for G. Return type set ### **Notes** This function is an implementation of algorithm 7 in ² which finds some dominating set, not necessarily the smallest one. ### See also: ``` is dominating set() ``` ¹ http://en.wikipedia.org/wiki/Dominating_set ² Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ###
References # 4.24.2 is_dominating_set ### is_dominating_set(G, nbunch) Checks if nbunch is a dominating set for G. A *dominating set* for a graph with node set V is a subset D of V such that every node not in D is adjacent to at least one member of D^{\perp} . ### **Parameters** - **G** (NetworkX graph) - **nbunch** (*iterable*) An iterable of nodes in the graph G. ### See also: dominating_set() ### References # 4.25 Efficiency Provides functions for computing the efficiency of nodes and graphs. | efficiency(G, u, v) | Returns the efficiency of a pair of nodes in a graph. | |----------------------|---| | local_efficiency(G) | Returns the average local efficiency of the graph. | | global_efficiency(G) | Returns the average global efficiency of the graph. | # 4.25.1 efficiency # efficiency (G, u, v) Returns the efficiency of a pair of nodes in a graph. The *efficiency* of a pair of nodes is the multiplicative inverse of the shortest path distance between the nodes ¹. ### **Parameters** - **G** (networkx.Graph) An undirected graph for which to compute the average local efficiency. - \mathbf{u} , \mathbf{v} (node) Nodes in the graph G. **Returns** Multiplicative inverse of the shortest path distance between the nodes. Return type float ### **Notes** Edge weights are ignored when computing the shortest path distances. 4.25. Efficiency 273 ¹ http://en.wikipedia.org/wiki/Dominating_set ¹ Latora, Vito, and Massimo Marchiori. "Efficient behavior of small-world networks." *Physical Review Letters* 87.19 (2001): 198701. http://dx.doi.org/10.1103/PhysRevLett.87.198701> ### See also: ``` local_efficiency(), global_efficiency() ``` ### References # 4.25.2 local efficiency ### $local_efficiency(G)$ Returns the average local efficiency of the graph. The *efficiency* of a pair of nodes in a graph is the multiplicative inverse of the shortest path distance between the nodes. The *local efficiency* of a node in the graph is the average global efficiency of the subgraph induced by the neighbors of the node. The *average local efficiency* is the average of the local efficiencies of each node ¹. **Parameters** G (networkx. Graph) – An undirected graph for which to compute the average local efficiency. **Returns** The average local efficiency of the graph. Return type float ### **Notes** Edge weights are ignored when computing the shortest path distances. ### See also: ``` global_efficiency() ``` ### References # 4.25.3 global efficiency # ${\tt global_efficiency}\,(G)$ Returns the average global efficiency of the graph. The *efficiency* of a pair of nodes in a graph is the multiplicative inverse of the shortest path distance between the nodes. The *average global efficiency* of a graph is the average efficiency of all pairs of nodes ¹. **Parameters G** (networkx.Graph) – An undirected graph for which to compute the average global efficiency. Returns The average global efficiency of the graph. Return type float ¹ Latora, Vito, and Massimo Marchiori. "Efficient behavior of small-world networks." *Physical Review Letters* 87.19 (2001): 198701. http://dx.doi.org/10.1103/PhysRevLett.87.198701> ¹ Latora, Vito, and Massimo Marchiori. "Efficient behavior of small-world networks." *Physical Review Letters* 87.19 (2001): 198701. http://dx.doi.org/10.1103/PhysRevLett.87.198701> ### **Notes** Edge weights are ignored when computing the shortest path distances. ### See also: ``` local_efficiency() ``` #### References # 4.26 Eulerian Eulerian circuits and graphs. | is_eulerian(G) | Returns True if and only if G is Eulerian. | |--|--| | <pre>eulerian_circuit(G[, source])</pre> | Returns an iterator over the edges of an Eulerian circuit in | | | G. | # 4.26.1 is eulerian # $is_eulerian(G)$ Returns True if and only if G is Eulerian. An graph is *Eulerian* if it has an Eulerian circuit. An *Eulerian circuit* is a closed walk that includes each edge of a graph exactly once. **Parameters** G (*NetworkX graph*) – A graph, either directed or undirected. # **Examples** ``` >>> nx.is_eulerian(nx.DiGraph({0: [3], 1: [2], 2: [3], 3: [0, 1]})) True >>> nx.is_eulerian(nx.complete_graph(5)) True >>> nx.is_eulerian(nx.petersen_graph()) False ``` ### **Notes** If the graph is not connected (or not strongly connected, for directed graphs), this function returns False. # 4.26.2 eulerian circuit ``` eulerian_circuit (G, source=None) ``` Returns an iterator over the edges of an Eulerian circuit in G. An Eulerian circuit is a closed walk that includes each edge of a graph exactly once. ### **Parameters** • G (NetworkX graph) – A graph, either directed or undirected. 4.26. Eulerian 275 • source (node, optional) – Starting node for circuit. Returns edges – An iterator over edges in the Eulerian circuit. Return type iterator Raises NetworkXError – If the graph is not Eulerian. #### See also: ``` is eulerian() ``` ### **Notes** This is a linear time implementation of an algorithm adapted from ¹. For general information about Euler tours, see ². #### References # **Examples** To get an Eulerian circuit in an undirected graph: ``` >>> G = nx.complete_graph(3) >>> list(nx.eulerian_circuit(G)) [(0, 2), (2, 1), (1, 0)] >>> list(nx.eulerian_circuit(G, source=1)) [(1, 2), (2, 0), (0, 1)] ``` To get the sequence of vertices in an Eulerian circuit: ``` >>> [u for u, v in nx.eulerian_circuit(G)] [0, 2, 1] ``` # **4.27 Flows** # 4.27.1 Maximum Flow | <pre>maximum_flow(G, s, t[, capacity, flow_func])</pre> | Find a maximum single-commodity flow. | |--|---| | <pre>maximum_flow_value(G, s, t[, capacity,])</pre> | Find the value of maximum single-commodity flow. | | <pre>minimum_cut(G, s, t[, capacity, flow_func])</pre> | Compute the value and the node partition of a minimum (s, | | | t)-cut. | | <pre>minimum_cut_value(G, s, t[, capacity, flow_func])</pre> | Compute the value of a minimum (s, t)-cut. | # maximum flow ``` maximum_flow (G, s, t, capacity='capacity', flow_func=None, **kwargs) Find a maximum single-commodity flow. ``` ¹ J. Edmonds, E. L. Johnson. Matching, Euler tours and the Chinese postman. Mathematical programming, Volume 5, Issue 1 (1973), 111-114. ² http://en.wikipedia.org/wiki/Eulerian_path ### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - **t** (*node*) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - flow_func (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **kwargs** (Any other keyword parameter is passed to the function that) computes the maximum flow. #### Returns - flow_value (integer, float) Value of the maximum flow, i.e., net outflow from the source. - flow_dict (dict) A dictionary containing the value of the flow that went through each edge. #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. ### See also: ``` maximum_flow_value(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### **Notes** The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in ${\mathbb R}$. 4.27. Flows 277 The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. ### **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>>
G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('c','y', capacity=3.0) ``` maximum_flow returns both the value of the maximum flow and a dictionary with all flows. ``` >>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y') >>> flow_value 3.0 >>> print(flow_dict['x']['b']) 1.0 ``` You can also use alternative algorithms for computing the maximum flow by using the flow func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> flow_value == nx.maximum_flow(G, 'x', 'y', ... flow_func=shortest_augmenting_path)[0] True ``` ### maximum flow value **maximum_flow_value** (G, s, t, capacity='capacity', $flow_func=None$, **kwargs) Find the value of maximum single-commodity flow. ### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - s (node) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - flow_func (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. • **kwargs** (Any other keyword parameter is passed to the function that) – computes the maximum flow. **Returns** flow_value – Value of the maximum flow, i.e., net outflow from the source. Return type integer, float ### **Raises** - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` #### **Notes** The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u,v) and (v,u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v,u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. ### **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) ``` maximum_flow_value computes only the value of the maximum flow: 4.27. Flows 279 ``` >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 ``` You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> flow_value == nx.maximum_flow_value(G, 'x', 'y', ... flow_func=shortest_augmenting_path) True ``` ### minimum cut **minimum_cut** (G, s, t, capacity='capacity', $flow_func=None$, **kwargs) Compute the value and the node partition of a minimum (s, t)-cut. Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - flow_func (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **kwargs** (*Any other keyword parameter is passed to the function that*) computes the maximum flow. #### Returns - **cut_value** (*integer*, *float*) Value of the minimum cut. - partition (pair of node sets) A partitioning of the nodes that defines a minimum cut. Raises NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError. ### See also: ``` maximum_flow(), maximum_flow_value(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### **Notes** The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. # **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity = 3.0) >>> G.add_edge('x','b', capacity = 1.0) >>> G.add_edge('a','c', capacity = 3.0) >>> G.add_edge('b','c', capacity = 5.0) >>> G.add_edge('b','d', capacity = 4.0) >>> G.add_edge('d','e', capacity = 2.0) >>> G.add_edge('c','y', capacity = 2.0) >>> G.add_edge('e','y', capacity = 3.0) ``` minimum_cut computes both the value of the minimum cut and the node partition: ``` >>> cut_value, partition = nx.minimum_cut(G, 'x', 'y') >>> reachable, non_reachable = partition ``` 'partition' here is a tuple with the two sets of nodes that define the minimum cut. You can compute the cut set of edges that induce the minimum cut as follows: ``` >>> cutset = set() >>> for u, nbrs in ((n, G[n]) for n in reachable): ... cutset.update((u, v) for v in nbrs if v in non_reachable) >>> print(sorted(cutset)) [('c', 'y'), ('x', 'b')] >>> cut_value == sum(G.edge[u][v]['capacity'] for (u, v) in cutset) True ``` You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> cut_value == nx.minimum_cut(G, 'x', 'y', ... flow_func=shortest_augmenting_path)[0] True ``` 4.27. Flows 281 ### minimum cut value ``` minimum_cut_value (G, s, t, capacity='capacity', flow_func=None, **kwargs) Compute the value of a minimum (s, t)-cut. ``` Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow. ### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - **t** (*node*) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - flow_func (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a
target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **kwargs** (Any other keyword parameter is passed to the function that) computes the maximum flow. **Returns** cut_value – Value of the minimum cut. Return type integer, float **Raises** NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError. ### See also: ``` maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### **Notes** The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. # **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity = 3.0) >>> G.add_edge('x','b', capacity = 1.0) >>> G.add_edge('a','c', capacity = 3.0) >>> G.add_edge('b','c', capacity = 5.0) >>> G.add_edge('b','d', capacity = 4.0) >>> G.add_edge('d','e', capacity = 2.0) >>> G.add_edge('c','y', capacity = 2.0) >>> G.add_edge('e','y', capacity = 3.0) ``` minimum_cut_value computes only the value of the minimum cut: ``` >>> cut_value = nx.minimum_cut_value(G, 'x', 'y') >>> cut_value 3.0 ``` You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> cut_value == nx.minimum_cut_value(G, 'x', 'y', ... flow_func=shortest_augmenting_path) True ``` # 4.27.2 Edmonds-Karp ``` edmonds_karp(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the Edmonds-Karp algorithm. ``` # edmonds karp **edmonds_karp** (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *value_only=False*, *cutoff=None*) Find a maximum single-commodity flow using the Edmonds-Karp algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $O(n \text{ m}^2)$ for n nodes and m edges. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - value_only (bool) If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable. - **cutoff** (*integer*, *float*) If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path() ``` #### **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u,v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. # **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import edmonds_karp ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) ``` ``` >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) >>> R = edmonds_karp(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 >>> flow_value == R.graph['flow_value'] True ``` # 4.27.3 Shortest Augmenting Path ``` shortest_augmenting_path(G, s, t[, ...]) Find a maximum single-commodity flow using the shortest augmenting path algorithm. ``` # shortest_augmenting_path Find a maximum single-commodity flow using the shortest augmenting path algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $0 (n^2 m)$ for n nodes and m edges. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - **value_only** (*bool*) If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable. - **two_phase** (*bool*) If True, a two-phase variant is used. The two-phase variant improves the running time on unit-capacity networks from O(nm) to $O(min(n^{2/3}, m^{1/2}))$ m). Default value: False. - **cutoff** (*integer*, *float*) If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push() ``` #### **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u,v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. # **Examples** ``` >>> import
networkx as nx >>> from networkx.algorithms.flow import shortest_augmenting_path ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('b','d', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) >>> R = shortest_augmenting_path(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 >>> flow_value == R.graph['flow_value'] True ``` ### 4.27.4 Preflow-Push | preflow_push(G, s, t[, capacity, residual,]) | Find a maximum single-commodity flow using the highest- | |--|---| | | label preflow-push algorithm. | #### preflow push **preflow_push** (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *global_relabel_freq=1*, *value_only=False*) Find a maximum single-commodity flow using the highest-label preflow-push algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $O(n^2 \operatorname{sqrt}\{m\})$ for n nodes and m edges. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - **global_relabel_freq** (*integer*, *float*) Relative frequency of applying the global relabeling heuristic to speed up the algorithm. If it is None, the heuristic is disabled. Default value: 1. - value_only (bool) If False, compute a maximum flow; otherwise, compute a maximum preflow which is enough for computing the maximum flow value. Default value: False. **Returns R** – Residual network after computing the maximum flow. **Return type** NetworkX DiGraph #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path() ``` ### **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u,v) and (v,u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v,u) exists in G. For each node u in R, R.node [u] ['excess'] represents the difference between flow into u and flow out of u. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. # **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import preflow_push ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) >>> R = preflow_push(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value == R.graph['flow_value'] True >>> # preflow_push also stores the maximum flow value >>> # in the excess attribute of the sink node t >>> flow_value == R.node['y']['excess'] True >>> # For some problems, you might only want to compute a >>> # maximum preflow. >>> R = preflow_push(G, 'x', 'y', value_only=True) >>> flow_value == R.graph['flow_value'] True >>> flow_value == R.node['y']['excess'] True ``` # 4.27.5 Dinitz ``` dinitz(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using Dinitz' algorithm. ``` #### dinitz **dinitz** (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *value_only=False*, *cutoff=None*) Find a maximum single-commodity flow using Dinitz' algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $O(n^2 m)$ for n nodes and m edges _[1]. # **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - value_only (bool) If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable. - **cutoff** (*integer*, *float*) If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. # See also: maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path() # **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u,v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. ### **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import dinitz ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('b','d', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) >>> R = dinitz(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 >>> flow_value == R.graph['flow_value'] True ``` #### References # 4.27.6 Boykov-Kolmogorov | boykov_kolmogorov(G, s, t[, capacity,]) | Find a maximum single-commodity flow using Boykov- | |---|--| | | Kolmogorov algorithm. | # boykov_kolmogorov **boykov_kolmogorov** (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *value_only=False*, *cutoff=None*) Find a maximum single-commodity flow using Boykov-Kolmogorov algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has worse case complexity $O(n^2 m |C|)$ for n nodes, m edges, and |C| the cost of the minimum cut ¹. This implementation uses the marking heuristic
defined in ² which improves its running time in many practical problems. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - **t** (*node*) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. ¹ Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9), 1124-1137. http://www.csd.uwo.ca/~yuri/Papers/pami04.pdf ² Vladimir Kolmogorov. Graph-based Algorithms for Multi-camera Reconstruction Problem. PhD thesis, Cornell University, CS Department, 2003. pp. 109-114. https://pub.ist.ac.at/~vnk/papers/thesis.pdf - value_only (bool) If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable. - **cutoff** (*integer*, *float*) If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path() ``` #### **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u,v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. ### **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import boykov_kolmogorov ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('b','d', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('c','y', capacity=3.0) >>> R = boykov_kolmogorov(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value ``` ``` 3.0 >>> flow_value == R.graph['flow_value'] True ``` A nice feature of the Boykov-Kolmogorov algorithm is that a partition of the nodes that defines a minimum cut can be easily computed based on the search trees used during the algorithm. These trees are stored in the graph attribute trees of the residual network. ``` >>> source_tree, target_tree = R.graph['trees'] >>> partition = (set(source_tree), set(G) - set(source_tree)) ``` # Or equivalently: ``` >>> partition = (set(G) - set(target_tree), set(target_tree)) ``` #### References # 4.27.7 Utils | <pre>build_residual_network(G, capacity)</pre> | Build a residual network and initialize a zero flow. | |--|--| ### build_residual_network #### build_residual_network(G, capacity) Build a residual network and initialize a zero flow. The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u,v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. # 4.27.8 Network Simplex | <pre>network_simplex(G[, demand, capacity, weight])</pre> | Find a minimum cost flow satisfying all demands in digraph G. | |--|---| | <pre>min_cost_flow_cost(G[, demand, capacity, weight])</pre> | Find the cost of a minimum cost flow satisfying all de- | | | mands in digraph G. | | min_cost_flow(G[, demand, capacity, weight]) | Return a minimum cost flow satisfying all demands in di- | | | graph G. | | <pre>cost_of_flow(G, flowDict[, weight])</pre> | Compute the cost of the flow given by flowDict on graph | | | G. | | <pre>max_flow_min_cost(G, s, t[, capacity, weight])</pre> | Return a maximum (s, t)-flow of minimum cost. | # network_simplex network_simplex(G, demand='demand', capacity='capacity', weight='weight') Find a minimum cost flow satisfying all demands in digraph G. This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. #### **Parameters** - G (NetworkX graph) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. #### Returns - flowCost (integer, float) Cost of a minimum cost flow satisfying all demands. - **flowDict** (*dictionary*) Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). #### Raises - NetworkXError This exception is raised if the input graph is not directed, not connected or is a multigraph. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### **Notes** This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant edge attributes by a convenient constant factor (eg 100). # See also: ``` cost_of_flow(), max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost() ``` # **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand=-5) >>> G.add_node('d', demand=5) >>> G.add_edge('a', 'b', weight=3, capacity=4) >>> G.add_edge('a', 'c', weight=6, capacity=10) >>> G.add_edge('b', 'd', weight=1, capacity=9) >>> G.add_edge('c', 'd', weight=2, capacity=5) >>> flowCost, flowDict = nx.network_simplex(G) >>> flowCost 24 >>> flowDict {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} ``` The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path. ``` >>> G=nx.DiGraph() >>> G.add_weighted_edges_from([('s', 'u' ,10),
('s' ,'x' ,5), ('u', 'v',1), ('u','x',2), ('v', 'y', 1), ('x', 'u', 3), . . . ('x', 'v', 5), ('x', 'y', 2), . . . ('y', 's', 7), ('y', 'v', 6)]) \rightarrow \rightarrow G.add_node('s', demand = -1) >>> G.add node('v', demand = 1) >>> flowCost, flowDict = nx.network_simplex(G) >>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight') True >>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0]) [('s', 'x'), ('u', 'v'), ('x', 'u')] >>> nx.shortest_path(G, 's', 'v', weight = 'weight') ['s', 'x', 'u', 'v'] ``` It is possible to change the name of the attributes used for the algorithm. ``` >>> G = nx.DiGraph() >>> G.add_node('p', spam=-4) >>> G.add_node('q', spam=2) >>> G.add_node('a', spam=-2) >>> G.add_node('d', spam=-1) >>> G.add_node('t', spam=2) >>> G.add_node('w', spam=3) >>> G.add_edge('p', 'q', cost=7, vacancies=5) >>> G.add_edge('p', 'a', cost=1, vacancies=4) >>> G.add_edge('q', 'd', cost=2, vacancies=3) >>> G.add_edge('t', 'q', cost=1, vacancies=2) >>> G.add_edge('a', 't', cost=2, vacancies=4) >>> G.add_edge('d', 'w', cost=3, vacancies=4) >>> G.add_edge('t', 'w', cost=4, vacancies=1) >>> flowCost, flowDict = nx.network_simplex(G, demand='spam', . . . capacity='vacancies', weight='cost') ``` #### References # min_cost_flow_cost min_cost_flow_cost (*G*, demand='demand', capacity='capacity', weight='weight') Find the cost of a minimum cost flow satisfying all demands in digraph G. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. ### **Parameters** - G (NetworkX graph) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. **Returns** flowCost – Cost of a minimum cost flow satisfying all demands. Return type integer, float #### Raises - NetworkXError This exception is raised if the input graph is not directed or not connected. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### See also: ``` cost_of_flow(), max_flow_min_cost(), min_cost_flow(), network_simplex() ``` #### **Notes** This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant edge attributes by a convenient constant factor (eg 100). # **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost = nx.min_cost_flow_cost(G) >>> flowCost ``` #### min cost flow min_cost_flow (*G*, demand='demand', capacity='capacity', weight='weight') Return a minimum cost flow satisfying all demands in digraph G. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. # **Parameters** - **G** (*NetworkX graph*) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. **Returns flowDict** – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). Return type dictionary Raises - NetworkXError This exception is raised if the input graph is not directed or not connected. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### See also: ``` cost_of_flow(), max_flow_min_cost(), min_cost_flow_cost(), network_simplex() ``` #### **Notes** This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant edge attributes by a convenient constant factor (eg 100). # **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowDict = nx.min_cost_flow(G) ``` # cost_of_flow ``` cost_of_flow(G, flowDict, weight='weight') ``` Compute the cost of the flow given by flowDict on graph G. Note that this function does not check for the validity of the flow flowDict. This function will fail if the graph G and the flow don't have the same edge set. ### **Parameters** - **G** (*NetworkX graph*) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **weight** (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. - **flowDict** (*dictionary*) Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). **Returns cost** – The total cost of the flow. This is given by the sum over all edges of the product of the edge's flow and the edge's weight. Return type Integer, float #### See also: ``` max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost(), network_simplex() ``` #### **Notes** This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant edge attributes by a convenient constant factor (eg 100). #### max flow min cost ``` max_flow_min_cost (G, s, t, capacity='capacity', weight='weight') Return a maximum (s, t)-flow of minimum cost. ``` G is a digraph with edge costs and capacities. There is a source node s and a sink node t. This function finds a maximum flow from s to t whose total cost is minimized. #### **Parameters** - G (NetworkX graph) DiGraph on which a minimum cost flow satisfying all demands is to be found. - s (node label) Source of the flow. - t (node label) Destination of the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **weight** (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. **Returns** flowDict – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). ### Return type dictionary ### Raises - NetworkXError This exception is raised if the input graph is not directed or not connected. - NetworkXUnbounded This exception is raised if there is an infinite capacity path from s to t in G. In this case there is no maximum flow. This exception is also raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow is unbounded below. #### See also: ```
cost_of_flow(), min_cost_flow(), min_cost_flow_cost(), network_simplex() ``` #### **Notes** This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant edge attributes by a convenient constant factor (eg 100). # **Examples** ``` >>> G = nx.DiGraph() >>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}), (1, 3, {'capacity': 20, 'weight': 6}), (2, 3, {'capacity': 6, 'weight': -3}), (2, 6, {'capacity': 14, 'weight': 1}), . . . (3, 4, {'weight': 9}), . . . (3, 5, {'capacity': 10, 'weight': 5}), (4, 2, {'capacity': 19, 'weight': 13}), (4, 5, {'capacity': 4, 'weight': 0}), (5, 7, {'capacity': 28, 'weight': 2}), (6, 5, {'capacity': 11, 'weight': 1}), . . . (6, 7, {'weight': 8}), . . . (7, 4, {'capacity': 6, 'weight': 6})]) . . . >>> mincostFlow = nx.max_flow_min_cost(G, 1, 7) >>> mincost = nx.cost_of_flow(G, mincostFlow) >>> mincost 373 >>> from networkx.algorithms.flow import maximum_flow >>> maxFlow = maximum_flow(G, 1, 7)[1] >>> nx.cost_of_flow(G, maxFlow) >= mincost >>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7))) - sum((mincostFlow[7][v] for v in G.successors(7)))) >>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7) True ``` # 4.27.9 Capacity Scaling Minimum Cost Flow ``` capacity_scaling(G[, demand, capacity, ...]) Find a minimum cost flow satisfying all demands in digraph G. ``` ### capacity scaling This is a capacity scaling successive shortest augmenting path algorithm. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. #### **Parameters** - G (NetworkX graph) DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. - **heap** (*class*) Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface. If a stock heap implementation is to be used, BinaryHeap is recommeded over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap. #### Returns - flowCost (integer) Cost of a minimum cost flow satisfying all demands. - flowDict (dictionary) If G is a digraph, a dict-of-dicts keyed by nodes such that flow-Dict[u][v] is the flow on edge (u, v). If G is a MultiDiGraph, a dict-of-dicts-of-dicts keyed by nodes so that flowDict[u][v][key] is the flow on edge (u, v, key). #### Raises - NetworkXError This exception is raised if the input graph is not directed, not connected. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### **Notes** This algorithm does not work if edge weights are floating-point numbers. #### See also: ``` network_simplex() ``` #### **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost, flowDict = nx.capacity_scaling(G) >>> flowCost 24 >>> flowDict {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} ``` It is possible to change the name of the attributes used for the algorithm. ``` >>> G = nx.DiGraph() >>> G.add_node('p', spam = -4) >>> G.add_node('q', spam = 2) >>> G.add_node('a', spam = -2) \rightarrow \rightarrow G.add_node('d', spam = -1) >>> G.add_node('t', spam = 2) >>> G.add_node('w', spam = 3) >>> G.add_edge('p', 'q', cost = 7, vacancies = 5) >>> G.add_edge('p', 'a', cost = 1, vacancies = 4) >>> G.add_edge('q', 'd', cost = 2, vacancies = 3) >>> G.add_edge('t', 'q', cost = 1, vacancies = 2) >>> G.add_edge('a', 't', cost = 2, vacancies = 4) >>> G.add_edge('d', 'w', cost = 3, vacancies = 4) >>> G.add_edge('t', 'w', cost = 4, vacancies = 1) >>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam', capacity = 'vacancies', . . . weight = 'cost') . . . >>> flowCost 37 >>> flowDict {'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, → 'w': 1}, 'w': {}} ``` # 4.28 Graphical degree sequence Test sequences for graphiness. | <pre>is_graphical(sequence[, method])</pre> | Returns True if sequence is a valid degree sequence. | |---|---| | is_digraphical(in_sequence, out_sequence) | Returns True if some directed graph can realize the in- and | | | out-degree sequences. | | is_multigraphical(sequence) | Returns True if some multigraph can realize the sequence. | | is_pseudographical(sequence) | Returns True if some pseudograph can realize the se- | | | quence. | | is_valid_degree_sequence_havel_hakimi() | Returns True if deg_sequence can be realized by a simple | | | graph. | | is_valid_degree_sequence_erdos_gallai() | Returns True if deg_sequence can be realized by a simple | | | graph. | # 4.28.1 is graphical ### is_graphical (sequence, method='eg') Returns True if sequence is a valid degree sequence. A degree sequence is valid if some graph can realize it. #### **Parameters** - sequence (list or iterable container) A sequence of integer node degrees - **method** ("eg" | "hh") The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm. **Returns** valid – True if the sequence is a valid degree sequence and False if not. Return type bool # **Examples** ``` >>> G = nx.path_graph(4) >>> sequence = (d for n, d in G.degree()) >>> nx.is_valid_degree_sequence(sequence) True ``` #### References Erdős-Gallai [EG1960], [choudum1986] Havel-Hakimi [havel1955], [hakimi1962], [CL1996] # 4.28.2 is digraphical # is_digraphical (in_sequence, out_sequence) Returns True if some directed graph can realize the in- and out-degree sequences. #### **Parameters** - in_sequence (list or iterable container) A sequence of integer node in-degrees - out_sequence (list or iterable container) A sequence of integer node out-degrees **Returns** valid – True if in and out-sequences are digraphic False if not. Return type bool #### **Notes** This algorithm is from Kleitman and Wang 1 . The worst case runtime is O(s * log n) where s and n are the sum and length of the sequences respectively. ¹ D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973) ### References # 4.28.3 is_multigraphical #### is_multigraphical(sequence) Returns True if some multigraph can realize the sequence. **Parameters deg_sequence** (*list*) – A list of integers Returns valid – True if deg_sequence is a multigraphic degree sequence and False if not. Return type bool # **Notes** The worst-case run time is O(n) where n is the length of the sequence. #### References # 4.28.4 is_pseudographical # is_pseudographical(sequence) Returns True if some pseudograph can realize the sequence. Every nonnegative integer sequence with an even sum is pseudographical (see ¹). Parameters sequence (list or iterable container) - A sequence of integer node degrees **Returns valid** – True if the sequence is a pseudographic degree sequence and False if not. Return type bool #### **Notes** The worst-case run time is O(n) where n is the length of the sequence. #### References # 4.28.5 is_valid_degree_sequence_havel_hakimi # is_valid_degree_sequence_havel_hakimi (deg_sequence) Returns True if deg_sequence can be realized by a simple graph. The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: O(s) where s is the sum of the sequence. **Parameters deg_sequence** (*list*) – A list of integers where each element specifies the degree of a node in a graph. Returns valid – True if deg_sequence is graphical and False if not. Return type bool ¹ F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976). #### **Notes** The ZZ condition says that for the sequence d if $$|d| > = \frac{(\max(d) + \min(d) + 1)^2}{4 * \min(d)}$$ then d is graphical. This was shown in Theorem 6 in ¹. #### References [havel1955], [hakimi1962], [CL1996] # 4.28.6 is_valid_degree_sequence_erdos_gallai #
is_valid_degree_sequence_erdos_gallai(deg_sequence) Returns True if deg_sequence can be realized by a simple graph. The validation is done using the Erdős-Gallai theorem [EG1960]. **Parameters deg_sequence** (*list*) – A list of integers **Returns valid** – True if deg_sequence is graphical and False if not. Return type bool #### **Notes** This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: O(n) where n is the length of the sequence. Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence, $$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{j=k+1}^{n} \min(d_i, k) = k(n-1) - (k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j)$$ A strong index k is any index where $d_k \ge k$ and the value n_j is the number of occurrences of j in d. The maximal strong index is called the Durfee index. This particular rearrangement comes from the proof of Theorem 3 in ². The ZZ condition says that for the sequence d if $$|d| > = \frac{(\max(d) + \min(d) + 1)^2}{4 * \min(d)}$$ then d is graphical. This was shown in Theorem 6 in ². ¹ I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). ² I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). #### References [EG1960], [choudum1986] # 4.29 Hierarchy Flow Hierarchy. | flow_hierarchy(G[, weight]) | Returns the flow hierarchy of a directed network. | |-----------------------------|---| # 4.29.1 flow hierarchy # flow_hierarchy (G, weight=None) Returns the flow hierarchy of a directed network. Flow hierarchy is defined as the fraction of edges not participating in cycles in a directed graph ¹. ### **Parameters** - **G** (*DiGraph or MultiDiGraph*) A directed graph - weight (key,optional (default=None)) Attribute to use for node weights. If None the weight defaults to 1. **Returns** h – Flow heirarchy value Return type float # **Notes** The algorithm described in 1 computes the flow hierarchy through exponentiation of the adjacency matrix. This function implements an alternative approach that finds strongly connected components. An edge is in a cycle if and only if it is in a strongly connected component, which can be found in O(m) time using Tarjan's algorithm. # References # 4.30 Hybrid Provides functions for finding and testing for locally (k, 1) -connected graphs. | kl_connected_subgraph(G, k, l[, low_memory,]) | Returns the maximum locally (k, 1) -connected subgraph | |---|---| | | of G. | | $is_kl_connected(G, k, l[, low_memory])$ | Returns True if and only if G is locally (k, 1) -connected. | ¹ Luo, J.; Magee, C.L. (2011), Detecting evolving patterns of self-organizing networks by flow hierarchy measurement, Complexity, Volume 16 Issue 6 53-61. DOI: 10.1002/cplx.20368 http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf 4.30. Hybrid 305 # 4.30.1 kl connected subgraph **kl_connected_subgraph** (*G*, *k*, *l*, *low_memory=False*, *same_as_graph=False*) Returns the maximum locally (k, 1) -connected subgraph of G. A graph is locally (k, 1)-connected if for each edge (u, v) in the graph there are at least 1 edge-disjoint paths of length at most k joining u to v. #### **Parameters** - **G** (*NetworkX graph*) The graph in which to find a maximum locally (k, 1) -connected subgraph. - **k** (*integer*) The maximum length of paths to consider. A higher number means a looser connectivity requirement. - 1 (*integer*) The number of edge-disjoint paths. A higher number means a stricter connectivity requirement. - **low_memory** (*bool*) If this is True, this function uses an algorithm that uses slightly more time but less memory. - same_as_graph (bool) If True then return a tuple of the form (H, is_same), where H is the maximum locally (k, 1) -connected subgraph and is_same is a Boolean representing whether G is locally (k, 1) -connected (and hence, whether H is simply a copy of the input graph G). **Returns** If same_as_graph is True, then this function returns a two-tuple as described above. Otherwise, it returns only the maximum locally (k, 1)-connected subgraph. Return type NetworkX graph or two-tuple ### See also: ``` is_kl_connected() ``` ### References # 4.30.2 is_kl_connected # is_kl_connected(G, k, l, low_memory=False) Returns True if and only if G is locally (k, 1)-connected. A graph is locally (k, 1)-connected if for each edge (u, v) in the graph there are at least 1 edge-disjoint paths of length at most k joining u to v. # **Parameters** - **G** (*NetworkX graph*) The graph to test for local (k, 1) -connectedness. - **k** (*integer*) The maximum length of paths to consider. A higher number means a looser connectivity requirement. - 1 (*integer*) The number of edge-disjoint paths. A higher number means a stricter connectivity requirement. - **low_memory** (*bool*) If this is True, this function uses an algorithm that uses slightly more time but less memory. **Returns** Whether the graph is locally (k, 1)-connected subgraph. Return type bool ### See also: ``` kl_connected_subgraph() ``` # References # 4.31 Isolates Functions for identifying isolate (degree zero) nodes. | is_isolate(G, n) | Determines whether a node is an isolate. | |------------------|--| | isolates(G) | Iterator over isolates in the graph. | # 4.31.1 is isolate #### $is_isolate(G, n)$ Determines whether a node is an isolate. An *isolate* is a node with no neighbors (that is, with degree zero). For directed graphs, this means no in-neighbors and no out-neighbors. #### **Parameters** - **G** (NetworkX graph) - **n** (*node*) A node in G. **Returns** is_isolate – True if and only if n has no neighbors. Return type bool # **Examples** ``` >>> G=nx.Graph() >>> G.add_edge(1,2) >>> G.add_node(3) >>> nx.is_isolate(G,2) False >>> nx.is_isolate(G,3) True ``` # **4.31.2** isolates #### isolates(G) Iterator over isolates in the graph. An *isolate* is a node with no neighbors (that is, with degree zero). For directed graphs, this means no in-neighbors and no out-neighbors. **Parameters G** (NetworkX graph) **Returns** An iterator over the isolates of G. Return type iterator 4.31. Isolates 307 # **Examples** To get a list of all isolates of a graph, use the list constructor: ``` >>> G = nx.Graph() >>> G.add_edge(1, 2) >>> G.add_node(3) >>> list(nx.isolates(G)) [3] ``` To remove all isolates in the graph, first create a list of the isolates, then use Graph.remove_nodes_from(): ``` >>> G.remove_nodes_from(list(nx.isolates(G))) >>> list(G) [1, 2] ``` For digraphs, isolates have zero in-degree and zero out_degre: ``` >>> G = nx.DiGraph([(0, 1), (1, 2)]) >>> G.add_node(3) >>> list(nx.isolates(G)) [3] ``` # 4.32 Isomorphism | is_isomorphic(G1, G2[, node_match, edge_match]) | Returns True if the graphs G1 and G2 are isomorphic and | |---|---| | | False otherwise. | | $could_be_isomorphic(G1,G2)$ | Returns False if graphs are definitely not isomorphic. | | fast_could_be_isomorphic(G1, G2) | Returns False if graphs are definitely not isomorphic. | | faster_could_be_isomorphic(G1, G2) | Returns False if graphs are definitely not isomorphic. | # 4.32.1 is isomorphic $\verb|is_isomorphic| (G1, G2, node_match=None, edge_match=None)|$ Returns True if the graphs G1 and G2 are isomorphic and False otherwise. #### **Parameters** - G1, G2 (graphs) The two graphs G1 and G2 must be the same type. - **node_match** (*callable*) A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. If node_match is not specified then node attributes are not considered. The function will be called like ``` node_match(G1.node[n1], G2.node[n2]). ``` That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. • edge_match (callable) – A function that returns True if the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. If edge_match is not specified then edge attributes are not considered. The function will be called like ``` edge_match(G1[u1][v1], G2[u2][v2]). ``` That is, the function will receive the edge attribute dictionaries of the edges under consideration. #### **Notes** Uses the vf2 algorithm ¹. # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso ``` For digraphs G1 and G2, using 'weight' edge attribute (default: 1) ``` >>> G1 = nx.DiGraph() >>> G2 = nx.DiGraph() >>> nx.add_path(G1, [1,2,3,4], weight=1) >>> nx.add_path(G2, [10,20,30,40], weight=2) >>> em = iso.numerical_edge_match('weight', 1) >>> nx.is_isomorphic(G1, G2) # no weights considered True >>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights False ``` For multidigraphs G1 and G2, using 'fill' node attribute (default: ") ``` >>> G1 = nx.MultiDiGraph() >>> G2 = nx.MultiDiGraph() >>> G1.add_nodes_from([1,2,3], fill='red') >>> G2.add_nodes_from([10,20,30,40], fill='red') >>> nx.add_path(G1, [1,2,3,4], weight=3, linewidth=2.5) >>> nx.add_path(G2, [10,20,30,40], weight=3) >>> nm = iso.categorical_node_match('fill', 'red') >>> nx.is_isomorphic(G1, G2, node_match=nm) True ``` For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7) ``` >>> G1.add_edge(1,2, weight=7) 1 >>> G2.add_edge(10,20) 1 >>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6) >>> nx.is_isomorphic(G1, G2, edge_match=em) True ``` For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes with default values 7 and 2.5. Also using 'fill' node attribute with default value 'red'. ¹ L. P. Cordella, P. Foggia, C. Sansone, M.
Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf ``` >>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5]) >>> nm = iso.categorical_node_match('fill', 'red') >>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm) True ``` #### See also: ``` numerical_node_match(), numerical_edge_match(), numerical_multiedge_match(), categorical_node_match(), categorical_edge_match(), categorical_multiedge_match() ``` #### References # 4.32.2 could be isomorphic ``` could_be_isomorphic(G1, G2) ``` Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. **Parameters** G1, G2 (graphs) – The two graphs G1 and G2 must be the same type. ### **Notes** Checks for matching degree, triangle, and number of cliques sequences. # 4.32.3 fast_could_be_isomorphic ``` fast_could_be_isomorphic(G1, G2) ``` Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. **Parameters G1, G2** (*graphs*) – The two graphs G1 and G2 must be the same type. ### **Notes** Checks for matching degree and triangle sequences. # 4.32.4 faster could be isomorphic ``` {\tt faster_could_be_isomorphic}\,(\mathit{G1},\mathit{G2}) ``` Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. **Parameters G1, G2** (*graphs*) – The two graphs G1 and G2 must be the same type. #### **Notes** Checks for matching degree sequences. # 4.32.5 Advanced Interface to VF2 Algorithm # **VF2 Algorithm** # **VF2 Algorithm** An implementation of VF2 algorithm for graph ismorphism testing. The simplest interface to use this module is to call networkx.is_isomorphic(). #### Introduction The GraphMatcher and DiGraphMatcher are responsible for matching graphs or directed graphs in a predetermined manner. This usually means a check for an isomorphism, though other checks are also possible. For example, a subgraph of one graph can be checked for isomorphism to a second graph. Matching is done via syntactic feasibility. It is also possible to check for semantic feasibility. Feasibility, then, is defined as the logical AND of the two functions. To include a semantic check, the (Di)GraphMatcher class should be subclassed, and the semantic_feasibility() function should be redefined. By default, the semantic feasibility function always returns True. The effect of this is that semantics are not considered in the matching of G1 and G2. # **Examples** Suppose G1 and G2 are isomorphic graphs. Verification is as follows: ``` >>> from networkx.algorithms import isomorphism >>> G1 = nx.path_graph(4) >>> G2 = nx.path_graph(4) >>> GM = isomorphism.GraphMatcher(G1,G2) >>> GM.is_isomorphic() True ``` GM.mapping stores the isomorphism mapping from G1 to G2. ``` >>> GM.mapping {0: 0, 1: 1, 2: 2, 3: 3} ``` Suppose G1 and G2 are isomorphic directed graphs graphs. Verification is as follows: ``` >>> G1 = nx.path_graph(4, create_using=nx.DiGraph()) >>> G2 = nx.path_graph(4, create_using=nx.DiGraph()) >>> DiGM = isomorphism.DiGraphMatcher(G1,G2) >>> DiGM.is_isomorphic() True ``` DiGM.mapping stores the isomorphism mapping from G1 to G2. ``` >>> DiGM.mapping {0: 0, 1: 1, 2: 2, 3: 3} ``` 4.32. Isomorphism 311 # Subgraph Isomorphism Graph theory literature can be ambiguious about the meaning of the above statement, and we seek to clarify it now. In the VF2 literature, a mapping M is said to be a graph-subgraph isomorphism iff M is an isomorphism between G2 and a subgraph of G1. Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2. Other literature uses the phrase 'subgraph isomorphic' as in 'G1 does not have a subgraph isomorphic to G2'. Another use is as an in adverb for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2. Finally, the term 'subgraph' can have multiple meanings. In this context, 'subgraph' always means a 'node-induced subgraph'. Edge-induced subgraph isomorphisms are not directly supported, but one should be able to perform the check by making use of nx.line_graph(). For subgraphs which are not induced, the term 'monomorphism' is preferred over 'isomorphism'. Currently, it is not possible to check for monomorphisms. Let G=(N,E) be a graph with a set of nodes N and set of edges E. If G'=(N',E') is a subgraph, then: N' is a subset of N E' is a subset of E - If G'=(N',E') is a node-induced subgraph, then: N' is a subset of N E' is the subset of edges in E relating nodes in N' - If G'=(N',E') is an edge-induced subgraph, then: N' is the subset of nodes in N related by edges in E' E' is a subset of E #### References - [1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-1372, Oct., 2004. http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf - [2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf #### See also: syntactic_feasibliity, semantic_feasibility #### **Notes** Modified to handle undirected graphs. Modified to handle multiple edges. In general, this problem is NP-Complete. # **Graph Matcher** | <pre>GraphMatcherinit(G1, G2[, node_match,])</pre> | Initialize graph matcher. | |--|---| | GraphMatcher.initialize() | Reinitializes the state of the algorithm. | | GraphMatcher.is_isomorphic() | Returns True if G1 and G2 are isomorphic graphs. | | GraphMatcher.subgraph_is_isomorphic() | Returns True if a subgraph of G1 is isomorphic to G2. | | GraphMatcher.isomorphisms_iter() | Generator over isomorphisms between G1 and G2. | | | Continued on next page | | Table 4.87 – continued from previous | us page | |--------------------------------------|---------| |--------------------------------------|---------| | <pre>GraphMatcher.subgraph_isomorphisms_iter()</pre> | Generator over isomorphisms between a subgraph of G1 | |--|--| | | and G2. | | GraphMatcher.candidate_pairs_iter() | Iterator over candidate pairs of nodes in G1 and G2. | | GraphMatcher.match() | Extends the isomorphism mapping. | | GraphMatcher.semantic_feasibility(G1_node, | Returns True if mapping G1_node to G2_node is semanti- | |) | cally feasible. | | GraphMatcher.syntactic_feasibility(G1_node | e,Returns True if adding (G1_node, G2_node) is syntacti- | |) | cally feasible. | # __init__ GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None) Initialize graph matcher. #### **Parameters** - **G1**, **G2** (*graph*) The graphs to be tested. - **node_match** (*callable*) A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like: ``` node_match(G1.node[n1], G2.node[n2]) ``` That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism. • edge_match (callable) – A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like: ``` edge_match(G1[u1][v1], G2[u2][v2]) ``` That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism. # initialize ``` GraphMatcher.initialize() ``` Reinitializes the state of the algorithm. This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a redefinition is not necessary. ### is_isomorphic ``` GraphMatcher.is_isomorphic() ``` Returns True if G1 and G2 are isomorphic graphs. ### subgraph is isomorphic ``` GraphMatcher.subgraph_is_isomorphic() ``` Returns True if a subgraph of G1 is isomorphic to G2. 4.32. Isomorphism 313 # isomorphisms iter ``` GraphMatcher.isomorphisms_iter() ``` Generator over isomorphisms between G1 and G2. #### subgraph isomorphisms iter ``` GraphMatcher.subgraph_isomorphisms_iter() ``` Generator over isomorphisms between a subgraph of G1 and G2. # candidate_pairs_iter ``` GraphMatcher.candidate_pairs_iter() ``` Iterator over candidate pairs of nodes in G1 and G2. #### match GraphMatcher.match() Extends the isomorphism mapping. This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping. # semantic feasibility ``` GraphMatcher.semantic_feasibility(G1_node, G2_node) ``` Returns True if mapping G1_node to G2_node is semantically feasible. ### syntactic feasibility ``` GraphMatcher.syntactic_feasibility(G1_node, G2_node) ``` Returns True if adding (G1_node, G2_node) is syntactically feasible. This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found. # **DiGraph Matcher** | $ extit{DiGraphMatcher.} extit{_init} extit{_(G1, G2[,])}$ | Initialize graph matcher. | |--|---| | DiGraphMatcher.initialize() | Reinitializes the state of the algorithm. | |
DiGraphMatcher.is_isomorphic() | Returns True if G1 and G2 are isomorphic graphs. | | DiGraphMatcher.subgraph_is_isomorphic() | Returns True if a subgraph of G1 is isomorphic to G2. | | DiGraphMatcher.isomorphisms_iter() | Generator over isomorphisms between G1 and G2. | | DiGraphMatcher.subgraph_isomorphisms_ite | rGenerator over isomorphisms between a subgraph of G1 | | | and G2. | | DiGraphMatcher.candidate_pairs_iter() | Iterator over candidate pairs of nodes in G1 and G2. | | | Continued on next page | Table 4.88 – continued from previous page | DiGraphMatcher.match() | Extends the isomorphism mapping. | |--|--| | DiGraphMatcher.semantic_feasibility(G1_nodReturns True if mapping G1_node to G2_node is semanti- | | |) | cally feasible. | | DiGraphMatcher.syntactic_feasibility() | Returns True if adding (G1_node, G2_node) is syntacti- | | | cally feasible. | # init DiGraphMatcher.__init__(G1, G2, node_match=None, edge_match=None) Initialize graph matcher. #### **Parameters** - **G1, G2** (*graph*) The graphs to be tested. - **node_match** (*callable*) A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like: ``` node_match(G1.node[n1], G2.node[n2]) ``` That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism. • edge_match (callable) – A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like: ``` edge_match(G1[u1][v1], G2[u2][v2]) ``` That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism. #### initialize DiGraphMatcher.initialize() Reinitializes the state of the algorithm. This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher, a redefinition is not necessary. # is_isomorphic DiGraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs. # subgraph is isomorphic DiGraphMatcher.subgraph_is_isomorphic() Returns True if a subgraph of G1 is isomorphic to G2. 4.32. Isomorphism 315 # isomorphisms iter ``` DiGraphMatcher.isomorphisms_iter() Generator over isomorphisms between G1 and G2. ``` # subgraph isomorphisms iter ``` DiGraphMatcher.subgraph_isomorphisms_iter() Generator over isomorphisms between a subgraph of G1 and G2. ``` # candidate_pairs_iter ``` DiGraphMatcher.candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2. ``` #### match DiGraphMatcher.match() Extends the isomorphism mapping. This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping. # semantic feasibility ``` DiGraphMatcher.semantic_feasibility(G1_node, G2_node) Returns True if mapping G1 node to G2 node is semantically feasible. ``` ### syntactic feasibility ``` DiGraphMatcher.syntactic_feasibility (G1_node, G2_node) Returns True if adding (G1_node, G2_node) is syntactically feasible. ``` This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found. # **Match helpers** | categorical_node_match(attr, default) | Returns a comparison function for a categorical node at- | |--|--| | | tribute. | | categorical_edge_match(attr, default) | Returns a comparison function for a categorical edge at- | | | tribute. | | categorical_multiedge_match(attr, default) | Returns a comparison function for a categorical edge at- | | | tribute. | | <pre>numerical_node_match(attr, default[, rtol, atol])</pre> | Returns a comparison function for a numerical node at- | | | tribute. | | | Continued on next page | Table 4.89 – continued from previous page | | , , , | |--|--| | <pre>numerical_edge_match(attr, default[, rtol, atol])</pre> | Returns a comparison function for a numerical edge at- | | | tribute. | | <pre>numerical_multiedge_match(attr, default[,])</pre> | Returns a comparison function for a numerical edge at- | | | tribute. | | generic_node_match(attr, default, op) | Returns a comparison function for a generic attribute. | | <pre>generic_edge_match(attr, default, op)</pre> | Returns a comparison function for a generic attribute. | | <pre>generic_multiedge_match(attr, default, op)</pre> | Returns a comparison function for a generic attribute. | # categorical_node_match ### categorical_node_match (attr, default) Returns a comparison function for a categorical node attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. #### **Parameters** - attr (*string* | *list*) The categorical node attribute to compare, or a list of categorical node attributes to compare. - **default** (*value* | *list*) The default value for the categorical node attribute, or a list of default values for the categorical node attributes. **Returns match** – The customized, categorical node_match function. Return type function ### **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_node_match('size', 1) >>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2]) ``` ### categorical edge match # categorical_edge_match (attr, default) Returns a comparison function for a categorical edge attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. ### **Parameters** - attr (*string* | *list*) The categorical edge attribute to compare, or a list of categorical edge attributes to compare. - **default** (*value* | *list*) The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes. **Returns match** – The customized, categorical edge_match function. Return type function # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_edge_match('size', 1) >>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2]) ``` # categorical multiedge match ### categorical_multiedge_match (attr, default) Returns a comparison function for a categorical edge attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. #### **Parameters** - attr (*string* | *list*) The categorical edge attribute to compare, or a list of categorical edge attributes to compare. - **default** (*value* | *list*) The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes. **Returns match** – The customized, categorical edge_match function. **Return type** *function* # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_multiedge_match('size', 1) >>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2]) ``` #### numerical node match # numerical_node_match (attr, default, rtol=1e-05, atol=1e-08) Returns a comparison function for a numerical node attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. # **Parameters** - attr (*string* | *list*) The numerical node attribute to compare, or a list of numerical node attributes to compare. - **default** (*value* | *list*) The default value for the numerical node attribute, or a list of default values for the numerical node attributes. - **rtol** (*float*) The relative error tolerance. - **atol** (*float*) The absolute error tolerance. Returns match - The customized, numerical node_match function. Return type function # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_node_match('weight', 1.0) >>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5]) ``` #### numerical edge match ### numerical_edge_match (attr, default, rtol=1e-05, atol=1e-08) Returns a comparison function for a numerical edge attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. #### **Parameters** - attr (string | list) The numerical edge attribute to compare, or a list of numerical edge attributes to compare. - **default** (*value* | *list*) The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes. - **rtol** (*float*) The relative error tolerance. - **atol** (*float*) The absolute error tolerance. **Returns match** – The customized, numerical edge match function. Return type function # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_edge_match('weight', 1.0) >>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5]) ``` # numerical_multiedge_match ### numerical_multiedge_match (attr, default,
rtol=1e-05, atol=1e-08) Returns a comparison function for a numerical edge attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. #### **Parameters** - attr (*string* | *list*) The numerical edge attribute to compare, or a list of numerical edge attributes to compare. - **default** (*value* | *list*) The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes. - **rtol** (*float*) The relative error tolerance. - atol (*float*) The absolute error tolerance. **Returns match** – The customized, numerical edge_match function. #### **Return type** *function* # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_multiedge_match('weight', 1.0) >>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5]) ``` ### generic node match ``` generic_node_match (attr, default, op) ``` Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. #### **Parameters** - attr (string | list) The node attribute to compare, or a list of node attributes to compare. - default (value | list) The default value for the node attribute, or a list of default values for the node attributes. - **op** (*callable* | *list*) The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. **Returns match** – The customized, generic node_match function. Return type function # **Examples** ``` >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_node_match >>> nm = generic_node_match('weight', 1.0, close) >>> nm = generic_node_match('color', 'red', eq) >>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq]) ``` ### generic edge match ``` generic edge match(attr, default, op) ``` Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. ### **Parameters** - attr (string | list) The edge attribute to compare, or a list of edge attributes to compare. - **default** (*value* | *list*) The default value for the edge attribute, or a list of default values for the edge attributes. • **op** (*callable* | *list*) – The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. **Returns match** – The customized, generic edge_match function. Return type function ### **Examples** ``` >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_edge_match >>> nm = generic_edge_match('weight', 1.0, close) >>> nm = generic_edge_match('color', 'red', eq) >>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq]) ``` ### generic multiedge match ``` generic_multiedge_match (attr, default, op) ``` Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False. #### **Parameters** - attr (string | list) The edge attribute to compare, or a list of node attributes to compare. - **default** (*value* | *list*) The default value for the edge attribute, or a list of default values for the dgeattributes. - **op** (*callable* | *list*) The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. **Returns match** – The customized, generic edge_match function. **Return type** function ### **Examples** # 4.33 Link Analysis # 4.33.1 PageRank PageRank analysis of graph structure. | pagerank(G[, alpha, personalization,]) | Return the PageRank of the nodes in the graph. | |--|--| | pagerank_numpy(G[, alpha, personalization,]) | Return the PageRank of the nodes in the graph. | | pagerank_scipy(G[, alpha, personalization,]) | Return the PageRank of the nodes in the graph. | | <pre>google_matrix(G[, alpha, personalization,])</pre> | Return the Google matrix of the graph. | ### pagerank $\label{eq:pagerank} \begin{subarray}{ll} \textbf{pagerank} (G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', \\ dangling=None) \end{subarray}$ Return the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - alpha (*float*, *optional*) Damping parameter for PageRank, default=0.85. - **personalization** (*dict*, *optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and personalization value for each node. At least one personalization value must be non-zero. By default, a uniform distribution is used. - max_iter (integer, optional) Maximum number of iterations in power method eigenvalue solver. - tol (float, optional) Error tolerance used to check convergence in power method solver. - **nstart** (dictionary, optional) Starting value of PageRank iteration for each node. - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns pagerank – Dictionary of nodes with PageRank as value Return type dictionary ### **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank(G, alpha=0.9) ``` The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after an error tolerance of len(G) \star tol has been reached. If the number of iterations exceed max_iter, a networkx.exception.PowerIterationFailedConvergence exception is raised. The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges. #### See also: ``` pagerank_numpy(), pagerank_scipy(), google_matrix() ``` **Raises** PowerIterationFailedConvergence – If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. #### References ### pagerank numpy **pagerank_numpy** (*G*, alpha=0.85, personalization=None, weight='weight', dangling=None) Return the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - alpha (float, optional) Damping parameter for PageRank, default=0.85. - **personalization** (*dict, optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. **Returns** pagerank – Dictionary of nodes with PageRank as value. **Return type** dictionary #### **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank_numpy(G, alpha=0.9) ``` 4.33. Link Analysis 323 The eigenvector calculation uses NumPy's interface to the LAPACK eigenvalue solvers. This will be the fastest and most accurate for small graphs. This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes. #### See also ``` pagerank(), pagerank_scipy(), google_matrix() ``` #### References # pagerank_scipy $\label{eq:pagerank_scipy} \textbf{pagerank_scipy} (G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, weight='weight', dangling=None)$ Return the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.
- **alpha** (*float*, *optional*) Damping parameter for PageRank, default=0.85. - **personalization** (*dict, optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. - max_iter (integer, optional) Maximum number of iterations in power method eigenvalue solver. - tol (float, optional) Error tolerance used to check convergence in power method solver. - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns pagerank - Dictionary of nodes with PageRank as value **Return type** dictionary ### **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank_scipy(G, alpha=0.9) ``` The eigenvector calculation uses power iteration with a SciPy sparse matrix representation. This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes. #### See also: ``` pagerank(), pagerank_numpy(), google_matrix() ``` **Raises** PowerIterationFailedConvergence – If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. #### References ### google_matrix $google_matrix(G, alpha=0.85, personalization=None, nodelist=None, weight='weight', dan-gling=None)$ Return the Google matrix of the graph. #### **Parameters** - G (graph) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - **alpha** (*float*) The damping factor. - **personalization** (*dict, optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes below). It may be common to have the dangling dict to be the same as the personalization dict. **Returns** A – Google matrix of the graph Return type NumPy matrix # **Notes** The matrix returned represents the transition matrix that describes the Markov chain used in PageRank. For PageRank to converge to a unique solution (i.e., a unique stationary distribution in a Markov chain), the transition matrix must be irreducible. In other words, it must be that there exists a path between every pair of nodes in the graph, or else there is the potential of "rank sinks." This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes. 4.33. Link Analysis 325 #### See also: ``` pagerank(), pagerank_numpy(), pagerank_scipy() ``` #### 4.33.2 Hits Hubs and authorities analysis of graph structure. | hits(G[, max_iter, tol, nstart, normalized]) | Return HITS hubs and authorities values for nodes. | |--|--| | hits_numpy(G[, normalized]) | Return HITS hubs and authorities values for nodes. | | hits_scipy(G[, max_iter, tol, normalized]) | Return HITS hubs and authorities values for nodes. | | hub_matrix(G[, nodelist]) | Return the HITS hub matrix. | | $authority_matrix(G[, nodelist])$ | Return the HITS authority matrix. | #### hits hits (G, max_iter=100, tol=1e-08, nstart=None, normalized=True) Return HITS hubs and authorities values for nodes. The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links. ### **Parameters** - **G** (graph) A NetworkX graph - max_iter (interger, optional) Maximum number of iterations in power method. - tol (float, optional) Error tolerance used to check convergence in power method iteration. - **nstart** (*dictionary*, *optional*) Starting value of each node for power method iteration. - **normalized** (*bool* (*default=True*)) Normalize results by the sum of all of the values. **Returns** (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values. Return type two-tuple of dictionaries Raises PowerIterationFailedConvergence — If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. # **Examples** ``` >>> G=nx.path_graph(4) >>> h,a=nx.hits(G) ``` #### **Notes** The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs. #### References # hits_numpy # hits_numpy (G, normalized=True) Return HITS hubs and authorities values for nodes. The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links. #### **Parameters** - **G** (graph) A NetworkX graph - **normalized** (*bool* (*default=True*)) Normalize results by the sum of all of the values. **Returns** (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values. Return type two-tuple of dictionaries # **Examples** ``` >>> G=nx.path_graph(4) >>> h,a=nx.hits(G) ``` #### **Notes** The eigenvector calculation uses NumPy's interface to LAPACK. The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs. ### References # hits_scipy hits_scipy (G, max_iter=100, tol=1e-06, normalized=True) Return HITS hubs and authorities values for nodes. The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links. ### Parameters - **G** (graph) A NetworkX graph - max_iter (interger, optional) Maximum number of iterations in power method. - tol (float, optional) Error tolerance used to check convergence in power method iteration. - **nstart** (dictionary, optional) Starting value of each node for power method iteration. - **normalized** (*bool* (*default=True*)) Normalize results by the sum of all of the values. **Returns** (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values. 4.33. Link Analysis 327 # Return type two-tuple of dictionaries # **Examples** ``` >>> G=nx.path_graph(4) >>> h,a=nx.hits(G) ``` #### **Notes** This implementation uses SciPy sparse matrices. The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after \max_i iterations or an error tolerance of $number_of_nodes(G)$ *tol has been reached. The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs. **Raises** PowerIterationFailedConvergence – If the algorithm fails to converge to the specified tolerance within the specified number of iterations of the power iteration method. #### References ### hub_matrix hub_matrix (*G*, nodelist=None) Return the HITS hub matrix. # authority_matrix **authority_matrix** (*G*, nodelist=None) Return the HITS authority matrix. # 4.34 Link Prediction # Link prediction algorithms. | $resource_allocation_index(G[,ebunch])$ | Compute the resource allocation index of all node pairs in ebunch. | |---|--| | <pre>jaccard_coefficient(G[, ebunch])</pre> | Compute the Jaccard coefficient of all node pairs in ebunch. | | adamic_adar_index(G[, ebunch]) | Compute the Adamic-Adar index of all node pairs in | | | ebunch. | | <pre>preferential_attachment(G[, ebunch])</pre> | Compute the preferential attachment score of all node pairs | | | in ebunch. | | cn_soundarajan_hopcroft(G[, ebunch, commu- | Count the number of common neighbors of all node pairs | | nity]) | in ebunch using community information. | | $ra_index_soundarajan_hopcroft(G[, ebunch,$ | Compute the resource allocation index of all node pairs in | |]) | ebunch using community information. | | within_inter_cluster(G[, ebunch, delta,]) | Compute the ratio of within- and inter-cluster common | | | neighbors of all node pairs in ebunch. | # 4.34.1 resource allocation index ### resource_allocation_index(G, ebunch=None) Compute the resource allocation index of all node pairs in ebunch. Resource allocation index of u and v is defined as $$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}$$ where $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (*graph*) A
NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None*)) Resource allocation index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their resource allocation index. **Return type** iterator # **Examples** ### References # 4.34.2 jaccard_coefficient jaccard coefficient(G, ebunch=None) Compute the Jaccard coefficient of all node pairs in ebunch. Jaccard coefficient of nodes u and v is defined as $$\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$ where $\Gamma(u)$ denotes the set of neighbors of u. ### **Parameters** - **G** (graph) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default = None*)) Jaccard coefficient will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. 4.34. Link Prediction 329 **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Jaccard coefficient. Return type iterator # **Examples** ``` >>> import networkx as nx >>> G = nx.complete_graph(5) >>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)]) >>> for u, v, p in preds: ... '(%d, %d) -> %.8f' % (u, v, p) ... '(0, 1) -> 0.60000000' '(2, 3) -> 0.60000000' ``` #### References # 4.34.3 adamic adar index ``` adamic_adar_index(G, ebunch=None) ``` Compute the Adamic-Adar index of all node pairs in ebunch. Adamic-Adar index of u and v is defined as $$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}$$ where $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (*graph*) NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default* = *None*)) Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Adamic-Adar index. Return type iterator ### **Examples** ``` >>> import networkx as nx >>> G = nx.complete_graph(5) >>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)]) >>> for u, v, p in preds: ... '(%d, %d) -> %.8f' % (u, v, p) ... '(0, 1) -> 2.16404256' '(2, 3) -> 2.16404256' ``` #### References # 4.34.4 preferential_attachment ``` preferential_attachment(G, ebunch=None) ``` Compute the preferential attachment score of all node pairs in ebunch. Preferential attachment score of u and v is defined as $$|\Gamma(u)||\Gamma(v)|$$ where $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (graph) NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default = None*)) Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their preferential attachment score. Return type iterator # **Examples** ``` >>> import networkx as nx >>> G = nx.complete_graph(5) >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)]) >>> for u, v, p in preds: ... '(%d, %d) -> %d' % (u, v, p) ... '(0, 1) -> 16' '(2, 3) -> 16' ``` ### References # 4.34.5 cn_soundarajan_hopcroft cn_soundarajan_hopcroft (G, ebunch=None, community='community') Count the number of common neighbors of all node pairs in ebunch using community information. For two nodes u and v, this function computes the number of common neighbors and bonus one for each common neighbor belonging to the same community as u and v. Mathematically, $$|\Gamma(u)\cap\Gamma(v)|+\sum_{w\in\Gamma(u)\cap\Gamma(v)}f(w)$$ where f (w) equals 1 if w belongs to the same community as u and v or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of u. **Parameters** 4.34. Link Prediction 331 - **G** (*graph*) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default* = *None*)) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. - **community** (*string*, *optional* (*default* = '*community*')) Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Return type iterator # **Examples** ### References # 4.34.6 ra index soundarajan hopcroft ra_index_soundarajan_hopcroft(G, ebunch=None, community='community') Compute the resource allocation index of all node pairs in ebunch using community information. For two nodes u and v, this function computes the resource allocation index considering only common neighbors belonging to the same community as u and v. Mathematically, $$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}$$ where f (w) equals 1 if w belongs to the same community as u and v or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of u. # **Parameters** - **G** (*graph*) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default* = *None*)) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. - **community** (*string*, *optional* (*default* = '*community*')) Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Return type iterator ### **Examples** #### References # 4.34.7 within inter cluster within_inter_cluster (*G*, ebunch=None, delta=0.001, community='community') Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch. For two nodes u and v, if a common neighbor w belongs to the same community as them, w is considered as within-cluster common neighbor of u and v. Otherwise, it is considered as inter-cluster common neighbor of u and v. The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the WIC measure. 1 ### **Parameters** - **G** (graph) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None*)) The WIC measure will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. - **delta** (*float*, *optional* (*default* = 0.001)) Value to prevent division by zero in case there is no inter-cluster common neighbor between two nodes. See ¹ for details. Default value: 0.001. - **community** (*string*, *optional* (*default* = '*community*')) Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their WIC measure. # Return type iterator 4.34. Link Prediction 333 ¹ Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA*12) http://dx.doi.org/10.1007/978-3-642-34459-6_10 ### **Examples** ``` >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)]) >>> G.node[0]['community'] = 0 >>> G.node[1]['community'] = 1 >>> G.node[2]['community'] = 0 >>> G.node[3]['community'] = 0 >>> G.node[4]['community'] = 0 >>> preds = nx.within_inter_cluster(G, [(0, 4)]) >>> for u, v, p in preds: '(%d, %d) -> %.8f' % (u, v, p) '(0, 4) -> 1.99800200' >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5) >>> for u, v, p in preds: '(%d, %d) -> %.8f' % (u, v, p) '(0, 4) -> 1.333333333 ``` #### References # 4.35 Matching Functions for computing and verifying matchings in a graph. | is_matching(G, matching) | Decides whether the given set or dictionary represents a | |---|--| | | valid matching in G. | | is_maximal_matching(G, matching) | Decides whether the given set or dictionary represents a | | | valid maximal matching in G. | | $maximal_matching(G)$ | Find a maximal matching in the graph. | | <pre>max_weight_matching(G[, maxcardinality, weight])</pre> | Compute a maximum-weighted matching of G. | # 4.35.1 is matching ### is_matching(G, matching) Decides whether the given set or dictionary represents a valid matching in G. A matching in a graph is a set of edges in which no two distinct edges share a common endpoint. # **Parameters** - **G** (NetworkX graph) - matching (dict or set) A dictionary or set
representing a matching. If a dictionary, it must have matching [u] == v and matching [v] == u for each edge (u, v) in the matching. If a set, it must have elements of the form (u, v), where (u, v) is an edge in the matching. **Returns** Whether the given set or dictionary represents a valid matching in the graph. Return type bool # 4.35.2 is maximal matching ### is_maximal_matching(G, matching) Decides whether the given set or dictionary represents a valid maximal matching in G. A *maximal matching* in a graph is a matching in which adding any edge would cause the set to no longer be a valid matching. #### **Parameters** - **G** (NetworkX graph) - matching (dict or set) A dictionary or set representing a matching. If a dictionary, it must have matching[u] == v and matching[v] == u for each edge (u, v) in the matching. If a set, it must have elements of the form (u, v), where (u, v) is an edge in the matching. **Returns** Whether the given set or dictionary represents a valid maximal matching in the graph. Return type bool # 4.35.3 maximal_matching ### $maximal_matching(G)$ Find a maximal matching in the graph. A matching is a subset of edges in which no node occurs more than once. A maximal matching cannot add more edges and still be a matching. Parameters G (NetworkX graph) – Undirected graph **Returns** matching – A maximal matching of the graph. Return type set #### **Notes** The algorithm greedily selects a maximal matching M of the graph G (i.e. no superset of M exists). It runs in O(|E|) time. # 4.35.4 max_weight_matching max_weight_matching(G, maxcardinality=False, weight='weight') Compute a maximum-weighted matching of G. A matching is a subset of edges in which no node occurs more than once. The weight of a matching is the sum of the weights of its edges. A maximal matching cannot add more edges and still be a matching. The cardinality of a matching is the number of matched edges. #### **Parameters** - **G** (*NetworkX graph*) Undirected graph - maxcardinality (bool, optional (default=False)) If maxcardinality is True, compute the maximum-cardinality matching with maximum weight among all maximum-cardinality matchings. - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight. If key not found, uses 1 as weight. 4.35. Matching 335 **Returns** mate – The matching is returned as a dictionary, mate, such that mate[v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. Return type dictionary #### **Notes** If G has edges with weight attributes the edge data are used as weight values else the weights are assumed to be This function takes time O(number_of_nodes ** 3). If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used, the algorithm could return a slightly suboptimal matching due to numeric precision errors. This method is based on the "blossom" method for finding augmenting paths and the "primal-dual" method for finding a matching of maximum weight, both methods invented by Jack Edmonds ¹. Bipartite graphs can also be matched using the functions present in networks.algorithms.bipartite.matching. #### References # 4.36 Minors Provides functions for computing minors of a graph. | contracted_edge(G, edge[, self_loops]) | Returns the graph that results from contracting the specified | |--|---| | | edge. | | <pre>contracted_nodes(G, u, v[, self_loops])</pre> | Returns the graph that results from contracting u and v. | | <pre>identified_nodes(G, u, v[, self_loops])</pre> | Returns the graph that results from contracting u and v. | | quotient_graph(G, partition[,]) | Returns the quotient graph of G under the specified equiva- | | | lence relation on nodes. | | blockmodel(G, partition[, multigraph]) | Returns a reduced graph constructed using the generalized | | | block modeling technique. | # 4.36.1 contracted edge contracted_edge (G, edge, self_loops=True) Returns the graph that results from contracting the specified edge. Edge contraction identifies the two endpoints of the edge as a single node incident to any edge that was incident to the original two nodes. A graph that results from edge contraction is called a *minor* of the original graph. #### **Parameters** - **G** (*NetworkX graph*) The graph whose edge will be contracted. - edge (tuple) Must be a pair of nodes in G. - **self_loops** (*Boolean*) If this is True, any edges (including edge) joining the endpoints of edge in G become self-loops on the new node in the returned graph. ¹ "Efficient Algorithms for Finding Maximum Matching in Graphs", Zvi Galil, ACM Computing Surveys, 1986. **Returns** A new graph object of the same type as G (leaving G unmodified) with endpoints of edge identified in a single node. The right node of edge will be merged into the left one, so only the left one will appear in the returned graph. Return type Networkx graph Raises ValueError - If edge is not an edge in G. # **Examples** Attempting to contract two nonadjacent nodes yields an error: ``` >>> import networkx as nx >>> G = nx.cycle_graph(4) >>> nx.contracted_edge(G, (1, 3)) Traceback (most recent call last): ... ValueError: Edge (1, 3) does not exist in graph G; cannot contract it ``` Contracting two adjacent nodes in the cycle graph on n nodes yields the cycle graph on n - 1 nodes: ``` >>> import networkx as nx >>> C5 = nx.cycle_graph(5) >>> C4 = nx.cycle_graph(4) >>> M = nx.contracted_edge(C5, (0, 1), self_loops=False) >>> nx.is_isomorphic(M, C4) True ``` #### See also: ``` contracted_nodes(), quotient_graph() ``` # 4.36.2 contracted nodes ``` contracted_nodes (G, u, v, self_loops=True) ``` Returns the graph that results from contracting u and v. Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes. #### **Parameters** - **G** (*NetworkX graph*) The graph whose nodes will be contracted. - **u**, **v** (*nodes*) Must be nodes in G. - **self_loops** (*Boolean*) If this is True, any edges joining u and v in G become self-loops on the new node in the returned graph. **Returns** A new graph object of the same type as G (leaving G unmodified) with u and v identified in a single node. The right node v will be merged into the node u, so only u will appear in the returned graph. Return type Networkx graph 4.36. Minors 337 # **Examples** Contracting two nonadjacent nodes of the cycle graph on four nodes C_4 yields the path graph (ignoring parallel edges): ``` >>> import networkx as nx >>> G = nx.cycle_graph(4) >>> M = nx.contracted_nodes(G, 1, 3) >>> P3 = nx.path_graph(3) >>> nx.is_isomorphic(M, P3) True ``` #### See also: ``` contracted_edge(), quotient_graph() ``` #### **Notes** This function is also available as identified_nodes. # 4.36.3 identified nodes ``` identified_nodes (G, u, v, self_loops=True) ``` Returns the graph that results from contracting \boldsymbol{u} and \boldsymbol{v} . Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes. # **Parameters** - **G** (*NetworkX graph*) The graph whose nodes will be contracted. - **u**, **v** (*nodes*) Must be nodes in G. - **self_loops** (*Boolean*) If this is True, any edges joining u and v in G become self-loops on the new node in the returned graph. **Returns** A new graph object of the same type as G (leaving G unmodified) with u and v identified in a single node. The right node v will be merged into the node u, so only u will appear in the returned graph. Return type Networkx graph # **Examples** Contracting two nonadjacent nodes of the cycle graph on four nodes C_4 yields the path graph (ignoring parallel edges): ``` >>> import networkx as nx >>> G = nx.cycle_graph(4) >>> M = nx.contracted_nodes(G, 1, 3) >>> P3 = nx.path_graph(3) >>> nx.is_isomorphic(M, P3) True ``` #### See also: ``` contracted_edge(), quotient_graph() ``` #### **Notes** This function is also available as identified_nodes. # 4.36.4 quotient graph Returns the quotient graph of G under the specified equivalence relation on nodes. ### **Parameters** - **G** (*NetworkX graph*) The graph for which to return the quotient graph with the specified node relation. - **partition** (*function or list of sets*) If a function, this function must represent an equivalence relation on the nodes of G. It must take two arguments u and v and return True exactly when u and v are in the same equivalence class. The equivalence classes form the nodes in the returned graph. If a list of sets, the list must form a valid partition of the nodes of the graph. That is, each node must be in exactly one block of the partition. • edge_relation (Boolean function with two arguments) — This function must represent an edge relation on the blocks of G in the partition induced by node_relation. It must take two arguments, B and C, each one a set of nodes, and return True exactly when there should be an edge joining block B to block C in the returned graph. If edge_relation is not specified, it is assumed to be the following relation. Block *B* is related to block *C* if and only if some node in *B* is adjacent to some node in *C*, according to the edge set of G. • edge_data (function) – This function takes two arguments, B and C, each one a set of nodes, and must return a dictionary representing the edge data attributes to set on the edge joining B and C, should there be an edge joining B and C in the quotient graph (if no such edge occurs in the quotient graph as determined by edge_relation, then the output of this function is ignored). If the quotient graph would be a multigraph, this function is not applied, since the edge data from each edge in the graph G appears in the edges of the quotient graph. - **node_data** (*function*) This function takes one argument, *B*, a set of nodes in G, and must
return a dictionary representing the node data attributes to set on the node representing *B* in the quotient graph. If None, the following node attributes will be set: - 'graph', the subgraph of the graph G that this block represents, - 'nnodes', the number of nodes in this block, - 'nedges', the number of edges within this block, - 'density', the density of the subgraph of G that this block represents. - relabel (bool) If True, relabel the nodes of the quotient graph to be nonnegative integers. Otherwise, the nodes are identified with frozenset instances representing the blocks given in partition. 4.36. Minors 339 • **create_using** (*NetworkX graph*) – If specified, this must be an instance of a NetworkX graph class. The nodes and edges of the quotient graph will be added to this graph and returned. If not specified, the returned graph will have the same type as the input graph. **Returns** The quotient graph of G under the equivalence relation specified by partition. If the partition were given as a list of set instances and relabel is False, each node will be a frozenset corresponding to the same set. ### Return type NetworkX graph Raises NetworkXException - If the given partition is not a valid partition of the nodes of G. ### **Examples** The quotient graph of the complete bipartite graph under the "same neighbors" equivalence relation is K_2. Under this relation, two nodes are equivalent if they are not adjacent but have the same neighbor set: The quotient graph of a directed graph under the "same strongly connected component" equivalence relation is the condensation of the graph (see condensation()). This example comes from the Wikipedia article 'Strongly connected component': Node identification can be represented as the quotient of a graph under the equivalence relation that places the two nodes in one block and each other node in its own singleton block: ``` >>> import networkx as nx >>> K24 = nx.complete_bipartite_graph(2, 4) >>> K34 = nx.complete_bipartite_graph(3, 4) >>> C = nx.contracted_nodes(K34, 1, 2) >>> nodes = {1, 2} >>> is_contracted = lambda u, v: u in nodes and v in nodes >>> Q = nx.quotient_graph(K34, is_contracted) >>> nx.is_isomorphic(Q, C) ``` ``` True >>> nx.is_isomorphic(Q, K24) True ``` The blockmodeling technique described in ¹ can be implemented as a quotient graph: ``` >>> G = nx.path_graph(6) >>> partition = [{0, 1}, {2, 3}, {4, 5}] >>> M = nx.quotient_graph(G, partition, relabel=True) >>> list(M.edges()) [(0, 1), (1, 2)] ``` #### References # 4.36.5 blockmodel blockmodel(G, partition, multigraph=False) Returns a reduced graph constructed using the generalized block modeling technique. The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each partition of nodes (block) is represented as a single node in the reduced graph. Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights between nodes in the original graph The default is a weight of 1 if weights are not specified. If the parameter multigraph is True then multiple edges are added each with the edge data from the original graph. ### **Parameters** - **G** (*graph*) A networkx Graph or DiGraph - partition (list of lists, or list of sets) The partition of the nodes. Must be non-overlapping. - multigraph (bool, optional) If True return a MultiGraph with the edge data of the original graph applied to each corresponding edge in the new graph. If False return a Graph with the sum of the edge weights, or a count of the edges if the original graph is unweighted. ### Returns blockmodel Return type a Networkx graph object # **Examples** ``` >>> G = nx.path_graph(6) >>> partition = [[0,1],[2,3],[4,5]] >>> M = nx.blockmodel(G,partition) ``` ### References **Note:** Deprecated in NetworkX v1.11 4.36. Minors 341 ¹ Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj. *Generalized Blockmodeling*. Cambridge University Press, 2004. blockmodel will be removed in NetworkX 2.0. Instead use quotient_graph with keyword argument relabel=True, and create_using=nx.MultiGraph() for multigraphs. # 4.37 Maximal independent set Algorithm to find a maximal (not maximum) independent set. ``` maximal_independent_set(G[, nodes]) Return a random maximal independent set guaranteed to contain a given set of nodes. ``` # 4.37.1 maximal independent set #### maximal_independent_set (G, nodes=None) Return a random maximal independent set guaranteed to contain a given set of nodes. An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximal independent set is an independent set such that it is not possible to add a new node and still get an independent set. #### **Parameters** - **G** (NetworkX graph) - **nodes** (*list or iterable*) Nodes that must be part of the independent set. This set of nodes must be independent. **Returns** indep_nodes – List of nodes that are part of a maximal independent set. Return type list **Raises** NetworkXUnfeasible – If the nodes in the provided list are not part of the graph or do not form an independent set, an exception is raised. # **Examples** ``` >>> G = nx.path_graph(5) >>> nx.maximal_independent_set(G) [4, 0, 2] >>> nx.maximal_independent_set(G, [1]) [1, 3] ``` ### **Notes** This algorithm does not solve the maximum independent set problem. # 4.38 Operators Unary operations on graphs | <pre>complement(G[, name])</pre> | Return the graph complement of G. | |----------------------------------|---| | reverse(G[, copy]) | Return the reverse directed graph of G. | # 4.38.1 complement complement (G, name=None) Return the graph complement of G. ### **Parameters** - **G** (*graph*) A NetworkX graph - name (string) Specify name for new graph #### Returns GC Return type A new graph. #### **Notes** Note that complement() does not create self-loops and also does not produce parallel edges for MultiGraphs. Graph, node, and edge data are not propagated to the new graph. # 4.38.2 reverse reverse(G, copy=True) Return the reverse directed graph of G. # **Parameters** - G (directed graph) A NetworkX directed graph - **copy** (*bool*) If True, then a new graph is returned. If False, then the graph is reversed in place. **Returns H** – The reversed G. Return type directed graph Operations on graphs including union, intersection, difference. | compose(G, H[, name]) | Return a new graph of G composed with H. | |-----------------------------|---| | union(G, H[, rename, name]) | Return the union of graphs G and H. | | disjoint_union(G, H) | Return the disjoint union of graphs G and H. | | intersection(G, H) | Return a new graph that contains only the edges that exist | | | in both G and H. | | difference(G, H) | Return a new graph that contains the edges that exist in G | | | but not in H. | | symmetric_difference(G, H) | Return new graph with edges that exist in either G or H but | | | not both. | 4.38. Operators 343 # 4.38.3 compose compose(G, H, name=None) Return a new graph of G composed with H. Composition is the simple union of the node sets and edge sets. The node sets of G and H do not need to be disjoint. #### **Parameters** - **G,H** (*graph*) A NetworkX graph - name (string) Specify name for new graph #### Returns C **Return type** A new graph with the same type as G #### **Notes** It is recommended that G and H be either both directed or both undirected. Attributes from H take precedent over attributes from G. For MultiGraphs, the edges are identified by incident nodes AND edge-key. This can cause surprises (i.e., edge (1, 2) may or may not be the same in two graphs) if you use MultiGraph without keeping track of edge keys. # 4.38.4 union union (G, H, rename=(None, None), name=None) Return the union of graphs G and H. Graphs G and H must be disjoint, otherwise an exception is raised. ### **Parameters** - **G,H** (*graph*) A NetworkX graph - create_using (NetworkX graph) Use specified graph for result. Otherwise - **rename** (*bool*, *default=*(*None*, *None*)) Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v". - name (string) Specify the name for the union graph ### Returns U **Return type** A union graph with the same type as G. ### **Notes** To force a disjoint union with node relabeling, use disjoint_union(G,H) or convert_node_labels_to integers(). Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used. #### See also: disjoint_union() # 4.38.5 disjoint_union ``` disjoint_union(G, H) ``` Return the disjoint union of graphs G and H. This algorithm forces distinct integer node labels. ``` Parameters G,H (graph) – A NetworkX graph ``` Returns U **Return type** A union graph with the same type as G. #### **Notes** A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both undirected. The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are relabeled len(G) to len(G)+len(H)-1. Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used. # 4.38.6 intersection ``` intersection(G, H) ``` Return a new graph that contains only the edges that exist in both G and H. The node sets of H and G must be the same. **Parameters** G,H (graph) – A NetworkX graph. G and H must have the same node sets. **Returns GH** **Return type** A new graph with the same type as G. ### **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the intersection of G and H with the attributes
(including edge data) from G use remove_nodes_from() as follows ``` >>> G=nx.path_graph(3) >>> H=nx.path_graph(5) >>> R=G.copy() >>> R.remove_nodes_from(n for n in G if n not in H) ``` # 4.38.7 difference ### difference(G, H) Return a new graph that contains the edges that exist in G but not in H. The node sets of H and G must be the same. **Parameters G,H** (*graph*) – A NetworkX graph. G and H must have the same node sets. Returns D 4.38. Operators 345 **Return type** A new graph with the same type as G. #### **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the difference of G and H with with the attributes (including edge data) from G use remove_nodes_from() as follows: ``` >>> G = nx.path_graph(3) >>> H = nx.path_graph(5) >>> R = G.copy() >>> R.remove_nodes_from(n for n in G if n in H) ``` # 4.38.8 symmetric difference ### $symmetric_difference(G, H)$ Return new graph with edges that exist in either G or H but not both. The node sets of H and G must be the same. **Parameters** G,H (graph) – A NetworkX graph. G and H must have the same node sets. Returns D **Return type** A new graph with the same type as G. #### **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. Operations on many graphs. | compose_all(graphs[, name]) | Return the composition of all graphs. | |-----------------------------------|--| | union_all(graphs[, rename, name]) | Return the union of all graphs. | | disjoint_union_all(graphs) | Return the disjoint union of all graphs. | | intersection_all(graphs) | Return a new graph that contains only the edges that exist | | | in all graphs. | # 4.38.9 compose all ``` compose_all (graphs, name=None) ``` Return the composition of all graphs. Composition is the simple union of the node sets and edge sets. The node sets of the supplied graphs need not be disjoint. #### **Parameters** - graphs (list) List of NetworkX graphs - name (string) Specify name for new graph # Returns C **Return type** A graph with the same type as the first graph in list It is recommended that the supplied graphs be either all directed or all undirected. Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used. # 4.38.10 union_all union_all (graphs, rename=(None,), name=None) Return the union of all graphs. The graphs must be disjoint, otherwise an exception is raised. #### **Parameters** - graphs (list of graphs) List of NetworkX graphs - **rename** (*bool*, *default=*(*None*, *None*)) Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v". - name (string) Specify the name for the union graph@not_implemnted_for('direct ### Returns U **Return type** a graph with the same type as the first graph in list #### **Notes** To force a disjoint union with node relabeling, use disjoint_union_all(G,H) or convert_node_labels_to integers(). Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used. # See also: ``` union(), disjoint_union_all() ``` # 4.38.11 disjoint_union_all # disjoint_union_all (graphs) Return the disjoint union of all graphs. This operation forces distinct integer node labels starting with 0 for the first graph in the list and numbering consecutively. **Parameters graphs** (*list*) – List of NetworkX graphs Returns U **Return type** A graph with the same type as the first graph in list 4.38. Operators 347 It is recommended that the graphs be either all directed or all undirected. Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used. # 4.38.12 intersection_all #### intersection_all (graphs) Return a new graph that contains only the edges that exist in all graphs. All supplied graphs must have the same node set. Parameters graphs_list (list) – List of NetworkX graphs Returns R **Return type** A new graph with the same type as the first graph in list #### **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. # Graph products. | cartesian_product(G, H) | Return the Cartesian product of G and H. | |-----------------------------|--| | lexicographic_product(G, H) | Return the lexicographic product of G and H. | | strong_product(G, H) | Return the strong product of G and H. | | tensor_product(G, H) | Return the tensor product of G and H. | | power(G, k) | Returns the specified power of a graph. | # 4.38.13 cartesian_product # $cartesian_product(G, H)$ Return the Cartesian product of G and H. The Cartesian product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P) = V(G)imesV(H). P has an edge ((u,v),(x,y)) if and only if either u is equal to x and v & y are adjacent in H or if v is equal to y and u & x are adjacent in G. **Parameters G, H** (*graphs*) – Networkx graphs. **Returns P** – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError – If G and H are not both directed or both undirected. ### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. # **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.cartesian_product(G,H) >>> list(P) [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.38.14 lexicographic_product ### $lexicographic_product(G, H)$ Return the lexicographic product of G and H. The lexicographical product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G or u==v and (x,y) is an edge in H. **Parameters G, H** (*graphs*) – Networkx graphs. **Returns** P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError – If G and H are not both directed or both undirected. ### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. ### **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.lexicographic_product(G,H) >>> list(P) [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.38.15 strong product # $\verb|strong_product|(G,H)$ Return the strong product of G and H. The strong product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if u==v and (x,y) is an edge in H, or x==y and (u,v) is an edge in G, or (u,v) is an edge in G and (x,y) is an edge in H. 4.38. Operators 349 **Parameters G, H** (*graphs*) – Networkx graphs. **Returns P** – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError – If G and H are not both directed or both undirected. ### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. # **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.strong_product(G,H) >>> list(P) [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.38.16 tensor_product ### $tensor_product(G, H)$ Return the tensor product of G and H. The tensor product P of the graphs G and H has a node set that is the tensor product of the node sets, $V(P) = V(G) \times V(H)$. P has an edge ((u,v),(x,y)) if and only if (u,x) is an edge in G and (v,y) is an edge in H. Tensor product is sometimes also referred to as the categorical product, direct product, cardinal product or conjunction. **Parameters G, H** (*graphs*) – Networkx graphs. **Returns P** – The tensor product of G and H. P will be a multi-graph if either G or H is a multi-graph, will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError - If G and H are not both directed or both undirected. #### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. # **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.tensor_product(G,H) >>> list(P) [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.38.17 power #### power(G, k) Returns the specified power of a graph. The k'th power of a simple graph 'G, denoted G^k , is a graph on the same set of nodes in which two distinct nodes u and v are adjacent in G^k if and only if the shortest path distance between u and v in G is at most k. #### **Parameters** - **G** (graph) A NetworkX simple graph object. - **k** (positive integer) The power to which to raise the graph G. **Returns** G to the power k. **Return type** NetworkX simple graph #### Raises - ValueError If the exponent k is not positive. - NetworkXNotImplemented If G is not a simple
graph. ### **Examples** The number of edges will never decrease when taking successive powers: ``` >>> G = nx.path_graph(4) >>> list(nx.power(G, 2).edges()) [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)] >>> list(nx.power(G, 3).edges()) [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)] ``` The k'th power of a cycle graph on *n* nodes is the complete graph on *n* nodes, if 'k is at least n // 2: ``` >>> G = nx.cycle_graph(5) >>> H = nx.complete_graph(5) >>> nx.is_isomorphic(nx.power(G, 2), H) True >>> G = nx.cycle_graph(8) >>> H = nx.complete_graph(8) >>> nx.is_isomorphic(nx.power(G, 4), H) True ``` 4.38. Operators 351 #### References #### **Notes** This definition of "power graph" comes from Exercise 3.1.6 of *Graph Theory* by Bondy and Murty ¹. # 4.39 Reciprocity Algorithms to calculate reciprocity in a directed graph. | reciprocity(G[, nodes]) | Compute the reciprocity in a directed graph. | |-------------------------|--| | overall_reciprocity(G) | Compute the reciprocity for the whole graph. | # 4.39.1 reciprocity ### reciprocity(G, nodes=None) Compute the reciprocity in a directed graph. The reciprocity of a directed graph is defined as the ratio of the number of edges pointing in both directions to the total number of edges in the graph. Formally, $r = |(u, v) \in G|(v, u) \in G|/|(u, v) \in G|$. The reciprocity of a single node u is defined similarly, it is the ratio of the number of edges in both directions to the total number of edges attached to node u. # **Parameters** - **G** (*graph*) A networkx directed graph - **nodes** (container of nodes, optional (default=whole graph)) Compute reciprocity for nodes in this container. **Returns** out – Reciprocity keyed by node label. **Return type** dictionary # **Notes** The reciprocity is not defined for isolated nodes. In such cases this function will return None. # 4.39.2 overall_reciprocity ### $overall_reciprocity(G)$ Compute the reciprocity for the whole graph. See the doc of reciprocity for the definition. **Parameters G** (*graph*) – A networkx graph 10. (a)Bondy, U. S. R. Murty, Graph Theory. Springer, 2008. # 4.40 Rich Club Functions for computing rich-club coefficients. rich club coefficient(G[, normalized, Q]) Returns the rich-club coefficient of the graph G. # 4.40.1 rich club coefficient rich_club_coefficient (G, normalized=True, Q=100) Returns the rich-club coefficient of the graph G. For each degree *k*, the *rich-club coefficient* is the ratio of the number of actual to the number of potential edges for nodes with degree greater than *k*: $$\phi(k) = \frac{2E_k}{N_k(N_k - 1)}$$ where N_k is the number of nodes with degree larger than k, and k is the number of edges among those nodes. #### **Parameters** - **G** (*NetworkX graph*) Undirected graph with neither parallel edges nor self-loops. - **normalized** (bool (optional)) Normalize using randomized network as in ¹ - **Q** (*float* (*optional*, *default=100*)) If normalized is True, perform Q * m double-edge swaps, where m is the number of edges in G, to use as a null-model for normalization. **Returns** rc – A dictionary, keyed by degree, with rich-club coefficient values. Return type dictionary ### **Examples** ``` >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)]) >>> rc = nx.rich_club_coefficient(G, normalized=False) >>> rc[0] 0.4 ``` ### **Notes** The rich club definition and algorithm are found in ¹. This algorithm ignores any edge weights and is not defined for directed graphs or graphs with parallel edges or self loops. Estimates for appropriate values of Q are found in 2 . 4.40. Rich Club 353 ¹ Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano, "The rich-club phenomenon across complex network hierarchies", Applied Physics Letters Vol 91 Issue 8, August 2007. http://arxiv.org/abs/physics/0701290 ² R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon, "Uniform generation of random graphs with arbitrary degree sequences", 2006. http://arxiv.org/abs/cond-mat/0312028 #### References # 4.41 Shortest Paths Compute the shortest paths and path lengths between nodes in the graph. These algorithms work with undirected and directed graphs. | shortest_path(G[, source, target, weight]) | Compute shortest paths in the graph. | |--|---| | <pre>all_shortest_paths(G, source, target[, weight])</pre> | Compute all shortest paths in the graph. | | $shortest_path_length(G[, source, target, weight])$ | Compute shortest path lengths in the graph. | | $average_shortest_path_length(G[, weight])$ | Return the average shortest path length. | | has_path(G, source, target) | Return <i>True</i> if <i>G</i> has a path from <i>source</i> to <i>target</i> . | # 4.41.1 shortest path **shortest_path** (*G*, *source=None*, *target=None*, *weight=None*) Compute shortest paths in the graph. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Starting node for path. If not specified, compute shortest paths for each possible starting node. - **target** (*node*, *optional*) Ending node for path. If not specified, compute shortest paths to all possible nodes. - weight (None or string, optional (default = None)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. #### Returns **path** – All returned paths include both the source and target in the path. If the source and target are both specified, return a single list of nodes in a shortest path from the source to the target. If only the source is specified, return a dictionary keyed by targets with a list of nodes in a shortest path from the source to one of the targets. If only the target is specified, return a dictionary keyed by sources with a list of nodes in a shortest path from one of the sources to the target. If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=[list of nodes in path]. Return type list or dictionary # **Examples** ``` >>> G = nx.path_graph(5) >>> print(nx.shortest_path(G, source=0, target=4)) [0, 1, 2, 3, 4] >>> p = nx.shortest_path(G, source=0) # target not specified ``` ``` >>> p[4] [0, 1, 2, 3, 4] >>> p = nx.shortest_path(G, target=4) # source not specified >>> p[0] [0, 1, 2, 3, 4] >>> p = nx.shortest_path(G) # source, target not specified >>> p[0][4] [0, 1, 2, 3, 4] ``` #### **Notes** There may be more than one shortest path between a source and target. This returns only one of them. #### See also: ``` all_pairs_shortest_path(), single_source_shortest_path(), single_source_dijkstra_path() ``` # 4.41.2 all shortest paths all_shortest_paths (G, source, target, weight=None) Compute all shortest paths in the graph. #### **Parameters** - **G** (*NetworkX graph*) - **source** (*node*) Starting node for path. - **target** (*node*) Ending node for path. - **weight** (*None or string, optional (default = None)*) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. **Returns** paths – A generator of all paths between source and target. Return type generator of lists ### **Examples** ``` >>> G = nx.Graph() >>> nx.add_path(G, [0, 1, 2]) >>> nx.add_path(G, [0, 10, 2]) >>> print([p for p in nx.all_shortest_paths(G, source=0, target=2)]) [[0, 1, 2], [0, 10, 2]] ``` ### **Notes** There may be many shortest paths between the source and target. #### See also: ``` shortest_path(), single_source_shortest_path(), all_pairs_shortest_path() ``` # 4.41.3 shortest path length **shortest_path_length** (*G*, *source=None*, *target=None*, *weight=None*) Compute shortest path lengths in the graph. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Starting node for path. If not specified, compute shortest path lengths using all nodes as source nodes. - **target** (*node*, *optional*) Ending node for path. If not specified, compute shortest path lengths using all nodes as target nodes. - weight (None or string, optional (default = None)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. #### Returns **length** – If the source and target are both specified, return the length of the shortest path from the source to the target. If only the source is specified, return a tuple (target, shortest path length) iterator, where shortest path lengths are the lengths of the shortest path from the source to one of the targets. If only the target is specified, return a tuple (source, shortest path length) iterator, where shortest path lengths are the lengths of the shortest path from one of the sources to the target. If neither the source nor target are specified, return a (source, dictionary) iterator with dictionary keyed by target and shortest path length as the key value. ### Return type int or iterator Raises NetworkXNoPath – If no path exists between source and target. ### **Examples** ``` >>> G = nx.path_graph(5) >>> nx.shortest_path_length(G, source=0, target=4) 4 >>> p = nx.shortest_path_length(G, source=0) # target not specified >>> dict(p)[4] 4 >>> p = nx.shortest_path_length(G, target=4) # source not specified >>> dict(p)[0] 4 >>> p = nx.shortest_path_length(G) # source, target not specified >>> dict(p)[0][4] ``` #### **Notes** The length of the path is always 1 less than the number of nodes involved in the path since the length measures the number of edges followed. For digraphs this returns the shortest directed path length. To find path lengths in the reverse direction use G.reverse(copy=False) first to flip the edge orientation. #### See also: ``` all_pairs_shortest_path_length(), single_source_shortest_path_length(), single_source_dijkstra_path_length() ```
4.41.4 average shortest path length ``` average_shortest_path_length(G, weight=None) ``` Return the average shortest path length. The average shortest path length is $$a = \sum_{s,t \in V} \frac{d(s,t)}{n(n-1)}$$ where V is the set of nodes in G, d (s, t) is the shortest path from s to t, and n is the number of nodes in G. #### **Parameters** - **G** (NetworkX graph) - weight (None or string, optional (default = None)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. ### Raises - $\bullet \ \ {\tt NetworkXPointlessConcept-If} \ {\tt Gis} \ the \ null \ graph \ (that \ is, the \ graph \ on \ zero \ nodes).$ - NetworkXError If G is not connected (or not weakly connected, in the case of a directed graph). ### **Examples** ``` >>> G = nx.path_graph(5) >>> nx.average_shortest_path_length(G) 2.0 ``` For disconnected graphs, you can compute the average shortest path length for each component ``` >>> G = nx.Graph([(1, 2), (3, 4)]) >>> for C in nx.connected_component_subgraphs(G): ... print(nx.average_shortest_path_length(C)) 1.0 1.0 ``` # 4.41.5 has path has_path(G, source, target) Return *True* if *G* has a path from *source* to *target*. ### **Parameters** - **G** (NetworkX graph) - source (node) Starting node for path - target (node) Ending node for path # 4.41.6 Advanced Interface Shortest path algorithms for unweighted graphs. | $\begin{tabular}{ll} single_source_shortest_path(G, source[, cut-off]) \end{tabular}$ | Compute shortest path between source and all other nodes reachable from source. | |--|---| | $ ext{single_source_shortest_path_length}(G,$ | Compute the shortest path lengths from source to all reach- | | source) | able nodes. | | $all_pairs_shortest_path(G[, cutoff])$ | Compute shortest paths between all nodes. | | all_pairs_shortest_path_length(G[, cutoff]) | Computes the shortest path lengths between all nodes in G. | | predecessor(G, source[, target, cutoff,]) | Returns dictionary of predecessors for the path from source | | | to all nodes in G. | ### single_source_shortest_path ``` single_source_shortest_path(G, source, cutoff=None) ``` Compute shortest path between source and all other nodes reachable from source. #### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - **cutoff** (*integer*, *optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** lengths – Dictionary, keyed by target, of shortest paths. **Return type** dictionary # **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.single_source_shortest_path(G,0) >>> path[4] [0, 1, 2, 3, 4] ``` #### **Notes** The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same 'shortest' length. For each target node, this function returns only one of those paths. #### See also: ``` shortest_path() ``` ### single source shortest path length ``` single_source_shortest_path_length(G, source, cutoff=None) ``` Compute the shortest path lengths from source to all reachable nodes. ### **Parameters** - **G** (NetworkX graph) - source (node) Starting node for path - **cutoff** (*integer*, *optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** lengths – (target, shortest path length) iterator Return type iterator # **Examples** ``` >>> G = nx.path_graph(5) >>> length = nx.single_source_shortest_path_length(G, 0) >>> dict(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} ``` ### See also: ``` shortest_path_length() ``` ### all pairs shortest path ### all_pairs_shortest_path(G, cutoff=None) Compute shortest paths between all nodes. #### **Parameters** - **G** (NetworkX graph) - **cutoff** (*integer*, *optional*) Depth at which to stop the search. Only paths of length at most cutoff are returned. **Returns** lengths – Dictionary, keyed by source and target, of shortest paths. **Return type** dictionary ### **Examples** ``` >>> G = nx.path_graph(5) >>> path = nx.all_pairs_shortest_path(G) >>> print(path[0][4]) [0, 1, 2, 3, 4] ``` #### See also: ``` floyd_warshall() ``` # all_pairs_shortest_path_length ### all_pairs_shortest_path_length(G, cutoff=None) Computes the shortest path lengths between all nodes in G. ### **Parameters** • **G** (NetworkX graph) • **cutoff** (*integer*, *optional*) – Depth at which to stop the search. Only paths of length at most cutoff are returned. **Returns lengths** – (source, dictionary) iterator with dictionary keyed by target and shortest path length as the key value. Return type iterator ### **Notes** The iterator returned only has reachable node pairs. # **Examples** ``` >>> G = nx.path_graph(5) >>> length = nx.all_pairs_shortest_path_length(G) >>> dict(length)[1] {0: 1, 1: 0, 2: 1, 3: 2, 4: 3} ``` ### predecessor **predecessor** (*G*, *source*, *target=None*, *cutoff=None*, *return_seen=None*) Returns dictionary of predecessors for the path from source to all nodes in G. ### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - **target** (*node label*, *optional*) Ending node for path. If provided only predecessors between source and target are returned - **cutoff** (*integer*, *optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** pred – Dictionary, keyed by node, of predecessors in the shortest path. Return type dictionary ### **Examples** ``` >>> G = nx.path_graph(4) >>> list(G) [0, 1, 2, 3] >>> nx.predecessor(G, 0) {0: [], 1: [0], 2: [1], 3: [2]} ``` Shortest path algorithms for weighed graphs. ``` dijkstra_predecessor_and_distance(G, source) Compute weighted shortest path length and predecessors. Continued on next page ``` | T | 4 40 4 | | • | | |----------|----------|-------------|---------|---------------| | Iania | 4 104 - | CONTINUED | trom | previous page | | iabic | T. 1 O T | COLITICIACA | 11 0111 | providus page | | Table 4.104 – Continue | | | |---|--|--| | <pre>dijkstra_path(G, source, target[, weight])</pre> | Returns the shortest weighted path from source to target in | | | | G. | | | dijkstra_path_length(G, source, target[, weight]) | Returns the shortest weighted path length in G from source | | | | to target. | | | single_source_dijkstra(G, source[, target,]) | Find shortest weighted paths and lengths from a source | | | y <u>y</u> | node. | | | single_source_dijkstra_path(G, source[,]) | Find shortest weighted paths in G from a source node. | | | single_source_dijkstra_path_length(G, source,) | Find shortest weighted path lengths in G from a source | | | | | | | source) | node. | | | multi_source_dijkstra_path(G, sources[,]) | Find shortest weighted paths in G from a given set of source | | | | nodes. | | | $ exttt{multi_source_dijkstra_path_length}(G,$ | Find shortest weighted path lengths in G from a given set | | | sources) | of source nodes. | | | all_pairs_dijkstra_path(G[, cutoff, weight]) | Compute shortest paths between all nodes in a weighted | | | | graph. | | | all_pairs_dijkstra_path_length(G[, cutoff, | Compute shortest path lengths between all nodes in a | | |]) | weighted graph. | | | bidirectional_dijkstra(G, source, target[,]) | Dijkstra's algorithm for shortest paths using bidirectional | | | brarrectionar_argustra(o, source, target[,]) | search. | | | bellman_ford_path(G, source, target[, weight]) | Returns the shortest path from source to target in a | | | | weighted graph G. | | | bellman_ford_path_length(G, source, target) | Returns the shortest path length from source to target in a | | | zerman_rera_paen_rengen(e, veuree, unger) | weighted graph. | | | single_source_bellman_ford_path(G, source[, | Compute shortest path between source and all other reach- | | | | able nodes for a weighted graph. | | | | Compute the shortest path length between source and all | | | | | | | source) | other reachable nodes for a weighted graph. | | | all_pairs_bellman_ford_path(G[, cutoff, | Compute shortest paths between all nodes in a weighted | | | weight]) | graph. | | | all_pairs_bellman_ford_path_length($G[,$ | Compute shortest path lengths between all nodes in a | | |]) | weighted graph. | | | single_source_bellman_ford(G, source[,]) | Compute shortest paths and lengths in a weighted graph G. | | | bellman_ford_predecessor_and_distance(G, | Compute shortest path lengths and predecessors on shortest | | | source) | paths in weighted graphs. | | | negative_edge_cycle(G[, weight]) | Return True if there exists a negative edge cycle anywhere | | | | in G. | | | johnson(G[, weight]) | Uses Johnson's Algorithm to compute shortest paths. | | | 2 (- 10 ··· - 10 11) | | | # dijkstra_predecessor_and_distance dijkstra_predecessor_and_distance (G, source, cutoff=None, weight='weight') Compute weighted shortest path length and predecessors. Uses Dijkstra's Method to obtain the shortest weighted paths and return dictionaries of predecessors for each node and distance for each node from the source. #### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. • weight (string or function) — If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge
attributes for that edge. The function must return a number. **Returns pred, distance** – Returns two dictionaries representing a list of predecessors of a node and the distance to each node. Return type dictionaries #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The list of predecessors contains more than one element only when there are more than one shortest paths to the key node. # dijkstra_path ``` dijkstra_path (G, source, target, weight='weight') ``` Returns the shortest weighted path from source to target in G. Uses Dijkstra's Method to compute the shortest weighted path between two nodes in a graph. ### **Parameters** - **G** (NetworkX graph) - source (node) Starting node - target (node) Ending node - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** path – List of nodes in a shortest path. Return type list Raises NetworkXNoPath - If no path exists between source and target. # **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.dijkstra_path(G,0,4)) [0, 1, 2, 3, 4] ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. The weight function can be used to include node weights. "" def func(u, v, d): ``` return G.node[u].get('node_weight', 1)/2 + G.node[v].get('node_weight', 1)/2 + d.get('weight', 1) ``` "In this example we take the average of start and end node weights of an edge and add it to the weight of the edge. #### See also: ``` bidirectional dijkstra(), bellman ford path() ``` # dijkstra_path_length ``` dijkstra_path_length(G, source, target, weight='weight') ``` Returns the shortest weighted path length in G from source to target. Uses Dijkstra's Method to compute the shortest weighted path length between two nodes in a graph. #### **Parameters** - **G** (NetworkX graph) - source (node label) starting node for path - target (node label) ending node for path - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** length – Shortest path length. Return type number **Raises** NetworkXNoPath – If no path exists between source and target. # **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.dijkstra_path_length(G,0,4)) 4 ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. #### See also: ``` bidirectional_dijkstra(), bellman_ford_path_length() ``` ### single source dijkstra ``` \verb|single_source_dijkstra| (\textit{G}, \textit{source}, \textit{target=None}, \textit{cutoff=None}, \textit{weight='weight'})| ``` Find shortest weighted paths and lengths from a source node. Compute the shortest path length between source and all other reachable nodes for a weighted graph. Uses Dijkstra's algorithm to compute shortest paths and lengths between a source and all other reachable nodes in a weighted graph. ### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - target (node label, optional) Ending node for path - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns distance,path** – Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance from the source. The second stores the path from the source to that node. Return type dictionaries ### **Examples** ``` >>> G=nx.path_graph(5) >>> length,path=nx.single_source_dijkstra(G,0) >>> print(length[4]) 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} >>> path[4] [0, 1, 2, 3, 4] ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466 This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems). #### See also: # single_source_dijkstra_path ``` \verb|single_source_dijkstra_path| (\textit{G}, \textit{source}, \textit{cutoff} = \textit{None}, \textit{weight} = \textit{`weight'})| ``` Find shortest weighted paths in G from a source node. Compute shortest path between source and all other reachable nodes for a weighted graph. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Starting node for path. - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** paths – Dictionary of shortest path lengths keyed by target. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.single_source_dijkstra_path(G,0) >>> path[4] [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. See also: ``` single source dijkstra().single source bellman ford() ``` ### single_source_dijkstra_path_length ``` single_source_dijkstra_path_length(G, source, cutoff=None, weight='weight') ``` Find shortest weighted path lengths in G from a source node. Compute the shortest path length between source and all other reachable nodes for a weighted graph. #### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** length – (target, shortest path length) iterator Return type iterator ### **Examples** ``` >>> G = nx.path_graph(5) >>> length = dict(nx.single_source_dijkstra_path_length(G, 0)) >>> length[4] 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} ``` # **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. #### See also: ``` single_source_dijkstra(), single_source_bellman_ford_path_length() ``` # multi_source_dijkstra_path ``` multi_source_dijkstra_path(G, sources, cutoff=None, weight='weight') ``` Find shortest weighted paths in G from a given set of source nodes. Compute shortest path between any of the source nodes and all other reachable nodes for a weighted graph. #### **Parameters** - **G** (NetworkX graph) - **sources** (*non-empty set of nodes*) Starting nodes for paths. If this is just a set containing a single node, then all paths computed by this function will start from that node. If there are two or more nodes in the set, the computed paths may begin from any one of the start nodes. - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this
is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** paths – Dictionary of shortest paths keyed by target. **Return type** dictionary ### **Examples** ``` >>> G = nx.path_graph(5) >>> path = nx.multi_source_dijkstra_path(G, {0, 4}) >>> path[1] [0, 1] >>> path[3] [4, 3] ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. Raises ValueError – If sources is empty. #### See also: ``` multi_source_dijkstra(), multi_source_bellman_ford() ``` # multi_source_dijkstra_path_length ``` multi_source_dijkstra_path_length (G, sources, cutoff=None, weight='weight') ``` Find shortest weighted path lengths in G from a given set of source nodes. Compute the shortest path length between any of the source nodes and all other reachable nodes for a weighted graph. # **Parameters** • **G** (NetworkX graph) - **sources** (*non-empty set of nodes*) Starting nodes for paths. If this is just a set containing a single node, then all paths computed by this function will start from that node. If there are two or more nodes in the set, the computed paths may begin from any one of the start nodes. - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** length – (target, shortest path length) iterator Return type iterator ### **Examples** ``` >>> G = nx.path_graph(5) >>> length = dict(nx.multi_source_dijkstra_path_length(G, {0, 4})) >>> length {0: 0, 1: 1, 2: 2, 3: 1, 4: 0} ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So weight = lambda u, v, d: 1 if d['color'] == "red" else None will find the shortest red path. Raises ValueError – If sources is empty. ### See also: ``` multi_source_dijkstra() ``` #### all_pairs_dijkstra_path ``` all_pairs_dijkstra_path(G, cutoff=None, weight='weight') ``` Compute shortest paths between all nodes in a weighted graph. #### **Parameters** - **G** (NetworkX graph) - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns distance** – Dictionary, keyed by source and target, of shortest paths. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.all_pairs_dijkstra_path(G) >>> print(path[0][4]) [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` floyd_warshall(), all_pairs_bellman_ford_path() ``` ### all_pairs_dijkstra_path_length ``` all_pairs_dijkstra_path_length (G, cutoff=None, weight='weight') Compute shortest path lengths between all nodes in a weighted graph. ``` # Parameters - **G** (NetworkX graph) - **cutoff** (*integer or float, optional*) Depth to stop the search. Only return paths with length <= cutoff. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns distance** – (source, dictionary) iterator with dictionary keyed by target and shortest path length as the key value. **Return type** iterator # **Examples** ``` >>> G = nx.path_graph(5) >>> length = dict(nx.all_pairs_dijkstra_path_length(G)) >>> length[1][4] 3 ``` ``` >>> length[1] {0: 1, 1: 0, 2: 1, 3: 2, 4: 3} ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The dictionary returned only has keys for reachable node pairs. ### bidirectional dijkstra ``` bidirectional_dijkstra(G, source, target, weight='weight') ``` Dijkstra's algorithm for shortest paths using bidirectional search. #### **Parameters** - **G** (NetworkX graph) - source (node) Starting node. - target (node) Ending node. - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. ### Returns - **length** (*number*) Shortest path length. - Returns a tuple of two dictionaries keyed by node. - The first dictionary stores distance from the source. - *The second stores the path from the source to that node.* Raises NetworkXNoPath – If no path exists between source and target. ### **Examples** ``` >>> G=nx.path_graph(5) >>> length,path=nx.bidirectional_dijkstra(G,0,4) >>> print(length) 4 >>> print(path) [0, 1, 2, 3, 4] ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra. Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will eventually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and the target, making two spheres of half this radius. Volume of the first sphere is pi*r*r while the others are 2*pi*r/2*r/2, making up half the volume. This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems). #### See also: ``` shortest_path(), shortest_path_length() ``` # bellman_ford_path bellman ford path (G, source, target, weight='weight') Returns the shortest path from source to target in a weighted graph G. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Starting node - target (node) Ending node - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight **Returns** path – List of nodes in a shortest path. Return type list **Raises** NetworkXNoPath – If no path exists between source and target. # **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.bellman_ford_path(G,0,4)) [0, 1, 2, 3, 4] ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. # See also: ``` dijkstra_path(), bellman_ford_path_length() ``` ### bellman ford path length bellman_ford_path_length(G, source, target, weight='weight') Returns the shortest path length from source to target in a weighted graph. #### **Parameters** - **G** (NetworkX graph) - source (node label) starting node for path - target (node label) ending node for path - **weight** (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight **Returns** length – Shortest path length. Return type number **Raises** NetworkXNoPath – If no path exists between source and target. ### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.bellman_ford_path_length(G,0,4)) 4 ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. ### See also: ``` dijkstra_path_length(), bellman_ford_path() ``` ### single source bellman ford path ``` single_source_bellman_ford_path (G, source, cutoff=None, weight='weight') ``` Compute shortest path between source and all other reachable nodes for a weighted graph. ### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Starting node for path. - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight - **cutoff** (*integer or float, optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** paths – Dictionary of shortest path lengths keyed by target. Return type dictionary # **Examples** ``` >>> G=nx.path_graph(5) >>>
path=nx.single_source_bellman_ford_path(G,0) >>> path[4] [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` single_source_dijkstra(), single_source_bellman_ford() ``` ### single_source_bellman_ford_path_length ``` single_source_bellman_ford_path_length(G, source, cutoff=None, weight='weight') ``` Compute the shortest path length between source and all other reachable nodes for a weighted graph. #### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight. - **cutoff** (*integer or float, optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** length – (target, shortest path length) iterator Return type iterator # **Examples** ``` >>> G = nx.path_graph(5) >>> length = dict(nx.single_source_bellman_ford_path_length(G, 0)) >>> length[4] 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` single_source_dijkstra(), single_source_bellman_ford() ``` ### all pairs bellman ford path ``` all_pairs_bellman_ford_path (G, cutoff=None, weight='weight') ``` Compute shortest paths between all nodes in a weighted graph. #### **Parameters** - **G** (NetworkX graph) - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight - **cutoff** (*integer or float, optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns distance** – Dictionary, keyed by source and target, of shortest paths. Return type dictionary # **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.all_pairs_bellman_ford_path(G) >>> print(path[0][4]) [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` floyd_warshall(), all_pairs_dijkstra_path() ``` ### all_pairs_bellman_ford_path_length ``` all_pairs_bellman_ford_path_length(G, cutoff=None, weight='weight') ``` Compute shortest path lengths between all nodes in a weighted graph. #### **Parameters** - **G** (NetworkX graph) - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight - **cutoff** (*integer or float, optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns distance** – (source, dictionary) iterator with dictionary keyed by target and shortest path length as the key value. Return type iterator ### **Examples** ``` >>> G = nx.path_graph(5) >>> length = dict(nx.all_pairs_bellman_ford_path_length(G)) >>> length[1][4] 3 >>> length[1] {0: 1, 1: 0, 2: 1, 3: 2, 4: 3} ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The dictionary returned only has keys for reachable node pairs. ### single_source_bellman_ford ``` single_source_bellman_ford (G, source, target=None, cutoff=None, weight='weight') Compute shortest paths and lengths in a weighted graph G. ``` Uses Bellman-Ford algorithm for shortest paths. #### **Parameters** - **G** (NetworkX graph) - source (node label) Starting node for path - target (node label, optional) Ending node for path - **cutoff** (*integer or float, optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns distance,path** – Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance from the source. The second stores the path from the source to that node. Return type dictionaries # **Examples** ``` >>> G=nx.path_graph(5) >>> length,path=nx.single_source_bellman_ford(G,0) >>> print(length[4]) 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} >>> path[4] [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. See also: # bellman_ford_predecessor_and_distance ``` \begin{tabular}{ll} bellman_ford_predecessor_and_distance (G, & source, & target=None, & cutoff=None, \\ & weight='weight') \end{tabular} ``` Compute shortest path lengths and predecessors on shortest paths in weighted graphs. The algorithm has a running time of O(mn) where n is the number of nodes and m is the number of edges. It is slower than Dijkstra but can handle negative edge weights. #### **Parameters** - **G** (*NetworkX graph*) The algorithm works for all types of graphs, including directed graphs and multigraphs. - source (node label) Starting node for path - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns pred, dist** – Returns two dictionaries keyed by node to predecessor in the path and to the distance from the source respectively. ### Return type dictionaries Raises NetworkXUnbounded – If the (di)graph contains a negative cost (di)cycle, the algorithm raises an exception to indicate the presence of the negative cost (di)cycle. Note: any negative weight edge in an undirected graph is a negative cost cycle. ### **Examples** ``` >>> import networkx as nx >>> G = nx.path_graph(5, create_using = nx.DiGraph()) >>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0) >>> sorted(pred.items()) [(0, [None]), (1, [0]), (2, [1]), (3, [2]), (4, [3])] >>> sorted(dist.items()) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The dictionaries returned only have keys for nodes reachable from the source. In the case where the (di)graph is not connected, if a component not containing the source contains a negative cost (di)cycle, it will not be detected. # negative_edge_cycle ``` negative_edge_cycle (G, weight='weight') ``` Return True if there exists a negative edge cycle anywhere in G. #### **Parameters** - **G** (NetworkX graph) - weight (string or function) If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns** negative_cycle – True if a negative edge cycle exists, otherwise False. Return type bool # **Examples** ``` >>> import networkx as nx >>> G = nx.cycle_graph(5, create_using = nx.DiGraph()) >>> print(nx.negative_edge_cycle(G)) False >>> G[1][2]['weight'] = -7 >>> print(nx.negative_edge_cycle(G)) True ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. This algorithm uses bellman_ford_predecessor_and_distance() but finds negative cycles on any component by first adding a new node connected to every node, and starting bellman_ford_predecessor_and_distance on that node. It then removes that extra node. ### johnson ``` johnson (G, weight='weight') ``` Uses Johnson's Algorithm to compute shortest paths. Johnson's Algorithm finds a shortest path between each pair of nodes in a weighted graph even if negative weights are present. #### **Parameters** • **G** (NetworkX graph) • weight (string or function) — If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining u to v will be G.edge[u][v][weight]). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number. **Returns distance** – Dictionary, keyed by source and target, of shortest paths. **Return type** dictionary Raises NetworkXError – If given graph is not weighted. # **Examples** ``` >>> import networkx as nx >>> graph = nx.DiGraph() >>> graph.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5), ... ('0', '2', 2), ('1', '2', 4), ('2', '3', 1)]) >>> paths = nx.johnson(graph, weight='weight') >>> paths['0']['2'] ['0', '1', '2'] ``` #### **Notes** Johnson's algorithm is suitable even for graphs with negative weights. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra's algorithm to be used on the transformed graph. The time complexity of this algorithm is $O(n^2 \log n + n m)$, where n is the number of nodes and m the number of edges in the graph. For dense graphs, this may be faster than the Floyd–Warshall algorithm. ### See also: # 4.41.7 Dense Graphs Floyd-Warshall algorithm for shortest paths. | floyd_warshall(G[, weight]) | Find all-pairs shortest path lengths using Floyd's algorithm. | |---|---| | floyd_warshall_predecessor_and_distance | e(G[Find all-pairs shortest path lengths using Floyd's algorithm. | |]) | | | floyd warshall numpy(G[, nodelist, weight]) | Find all-pairs shortest path lengths using Floyd's algorithm. | ###
floyd warshall ``` floyd_warshall (G, weight='weight') ``` Find all-pairs shortest path lengths using Floyd's algorithm. #### **Parameters** - **G** (NetworkX graph) - weight (string, optional (default= 'weight')) Edge data key corresponding to the edge weight. **Returns distance** – A dictionary, keyed by source and target, of shortest paths distances between nodes. Return type dict ### **Notes** Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. #### See also: ### floyd warshall predecessor and distance ``` floyd_warshall_predecessor_and_distance(G, weight='weight') ``` Find all-pairs shortest path lengths using Floyd's algorithm. #### **Parameters** - **G** (NetworkX graph) - weight (string, optional (default= 'weight')) Edge data key corresponding to the edge weight. **Returns predecessor, distance** – Dictionaries, keyed by source and target, of predecessors and distances in the shortest path. Return type dictionaries #### **Notes** Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. ### See also: ``` floyd_warshall(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length() ``` ### floyd_warshall_numpy floyd_warshall_numpy (G, nodelist=None, weight='weight') Find all-pairs shortest path lengths using Floyd's algorithm. #### **Parameters** - **G** (NetworkX graph) - **nodelist** (*list*, *optional*) The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes(). - weight (string, optional (default= 'weight')) Edge data key corresponding to the edge weight. **Returns distance** – A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf. Return type NumPy matrix #### **Notes** Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. # 4.41.8 A* Algorithm Shortest paths and path lengths using the A* ("A star") algorithm. | <pre>astar_path(G, source, target[, heuristic,])</pre> | Return a list of nodes in a shortest path between source and | |--|--| | | target using the A* ("A-star") algorithm. | | <pre>astar_path_length(G, source, target[,])</pre> | Return the length of the shortest path between source and | | | target using the A* ("A-star") algorithm. | ### astar_path astar_path (G, source, target, heuristic=None, weight='weight') Return a list of nodes in a shortest path between source and target using the A* ("A-star") algorithm. There may be more than one shortest path. This returns only one. ### **Parameters** - **G** (NetworkX graph) - source (node) Starting node for path - target (node) Ending node for path - **heuristic** (*function*) A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number. - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight. **Raises** NetworkXNoPath – If no path exists between source and target. ### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.astar_path(G,0,4)) [0, 1, 2, 3, 4] >>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y) >>> def dist(a, b): ... (x1, y1) = a ... (x2, y2) = b ... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 >>> print(nx.astar_path(G,(0,0),(2,2),dist)) [(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)] ``` #### See also: ``` shortest_path(), dijkstra_path() ``` #### astar path length ``` astar_path_length (G, source, target, heuristic=None, weight='weight') ``` Return the length of the shortest path between source and target using the A* ("A-star") algorithm. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Starting node for path - target (node) Ending node for path - **heuristic** (*function*) A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number. **Raises** NetworkXNoPath – If no path exists between source and target. ### See also: ``` astar_path() ``` # 4.42 Simple Paths | all_simple_paths(G, source, target[, cutoff]) | Generate all simple paths in the graph G from source to | |---|---| | | target. | | is_simple_path(G, nodes) | Returns True if and only if the given nodes form a simple | | | path in G. | | shortest_simple_paths(G, source, target[,]) | Generate all simple paths in the graph G from source to | | | target, starting from shortest ones. | ### 4.42.1 all simple paths ### all_simple_paths (G, source, target, cutoff=None) Generate all simple paths in the graph G from source to target. A simple path is a path with no repeated nodes. ### **Parameters** 4.42. Simple Paths 381 - **G** (NetworkX graph) - source (node) Starting node for path - target (node) Ending node for path - **cutoff** (*integer*, *optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns path_generator** – A generator that produces lists of simple paths. If there are no paths between the source and target within the given cutoff the generator produces no output. Return type generator ### **Examples** This iterator generates lists of nodes: ``` >>> G = nx.complete_graph(4) >>> for path in nx.all_simple_paths(G, source=0, target=3): ... print(path) ... [0, 1, 2, 3] [0, 1, 3] [0, 2, 1, 3] [0, 2, 3] [0, 2, 3] ``` You can generate only those paths that are shorter than a certain length by using the cutoff keyword argument: ``` >>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2) >>> print(list(paths)) [[0, 1, 3], [0, 2, 3], [0, 3]] ``` To get each path as the corresponding list of edges, you can use the networkx.utils.pairwise() helper function: ``` >>> paths = nx.all_simple_paths(G, source=0, target=3) >>> for path in map(nx.utils.pairwise, paths): ... print(list(path)) [(0, 1), (1, 2), (2, 3)] [(0, 1), (1, 3)] [(0, 2), (2, 1), (1, 3)] [(0, 2), (2, 3)] ``` #### **Notes** This algorithm uses a modified depth-first search to generate the paths 1 . A single path can be found in O(V+E) time but the number of simple paths in a graph can be very large, e.g. O(n!) in the complete graph of order n. ### References #### See also: ¹ R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms", Addison Wesley Professional, 3rd ed., 2001. ``` all_shortest_paths(), shortest_path() ``` # 4.42.2 is simple path ``` is_simple_path(G, nodes) ``` Returns True if and only if the given nodes form a simple path in G. A *simple path* in a graph is a nonempty sequence of nodes in which no node appears more than once in the sequence, and each adjacent pair of nodes in the sequence is adjacent in the graph. **Parameters nodes** (*list*) – A list of one or more nodes in the graph G. Returns Whether the given list of nodes represents a simple path in G. Return type bool #### **Notes** A list of zero nodes is not a path and a list of one node is a path. Here's an explanation why. This function operates on *node paths*. One could also consider *edge paths*. There is a bijection between node paths and edge paths. The *length of a path* is the number of edges in the path, so a list of nodes of length n corresponds to a path of length n - 1. Thus the smallest edge path would be a list of zero edges, the empty path. This corresponds to a list of one node. To convert between a node path and an edge path, you can use code like the following: ``` >>> from networkx.utils import pairwise >>> nodes = [0, 1, 2, 3] >>> edges = list(pairwise(nodes)) >>> edges [(0, 1), (1, 2), (2, 3)] >>> nodes = [edges[0][0]] + [v for u, v in edges] >>> nodes [0, 1, 2, 3] ``` ### **Examples** ``` >>> G = nx.cycle_graph(4) >>> nx.is_simple_path(G, [2, 3, 0]) True >>> nx.is_simple_path(G, [0, 2]) False ``` ### 4.42.3 shortest simple paths shortest_simple_paths (G, source, target, weight=None) Generate all simple paths in the graph G from source to target, starting from shortest ones. A simple path is a path with no repeated nodes. If a weighted shortest path search is to be used, no negative weights are allawed. 4.42. Simple Paths 383 #### **Parameters** - **G** (NetworkX graph) - source (node) Starting node for path - target (node) Ending node for path - weight (*string*) Name of the edge attribute to be used as a weight. If None all edges are considered to have unit weight. Default value None. **Returns** path_generator – A generator that produces lists of simple paths, in order from shortest to longest. ### Return type generator #### Raises - NetworkXNoPath If no path exists between source and target. - NetworkXError If source or target nodes are not in the input graph. - NetworkXNotImplemented If the input graph is a Multi[Di]Graph. ### **Examples** ``` >>> G = nx.cycle_graph(7) >>> paths = list(nx.shortest_simple_paths(G, 0, 3)) >>> print(paths) [[0, 1, 2, 3], [0, 6, 5, 4, 3]] ``` You can use this function to efficiently compute the k shortest/best paths between two nodes. #### **Notes** This procedure is based on algorithm by Jin Y. Yen ¹. Finding the first K paths requires O(KN³) operations. #### See also: ``` all_shortest_paths(), shortest_path(), all_simple_paths() ``` # References # 4.43 Swap Swap edges in a graph. ¹ Jin Y. Yen, "Finding the K Shortest Loopless
Paths in a Network", Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 712-716. | double_edge_swap(G[, nswap, max_tries]) | Swap two edges in the graph while keeping the node de- | |--|---| | | grees fixed. | | $connected_double_edge_swap(G[, nswap,])$ | Attempts the specified number of double-edge swaps in the | | | graph G. | # 4.43.1 double_edge_swap $double_edge_swap(G, nswap=1, max_tries=100)$ Swap two edges in the graph while keeping the node degrees fixed. A double-edge swap removes two randomly chosen edges u-v and x-y and creates the new edges u-x and v-y: ``` u--v u v becomes | | x--y x y ``` If either the edge u-x or v-y already exist no swap is performed and another attempt is made to find a suitable edge pair. #### **Parameters** - **G** (graph) An undirected graph - **nswap** (*integer* (*optional*, *default=1*)) Number of double-edge swaps to perform - max_tries (integer (optional)) Maximum number of attempts to swap edges **Returns** G – The graph after double edge swaps. Return type graph #### **Notes** Does not enforce any connectivity constraints. The graph G is modified in place. # 4.43.2 connected_double_edge_swap connected_double_edge_swap (G, nswap=1, _window_threshold=3) Attempts the specified number of double-edge swaps in the graph G. A double-edge swap removes two randomly chosen edges (u, v) and (x, y) and creates the new edges (u, x) and (v, y): ``` u--v u v becomes | | x--y x y ``` If either (u, x) or (v, y) already exist, then no swap is performed so the actual number of swapped edges is always at most nswap. #### **Parameters** - **G** (graph) An undirected graph - **nswap** (*integer* (*optional*, *default=1*)) Number of double-edge swaps to perform 4.43. Swap 385 • _window_threshold (integer) – The window size below which connectedness of the graph will be checked after each swap. The "window" in this function is a dynamically updated integer that represents the number of swap attempts to make before checking if the graph remains connected. It is an optimization used to decrease the running time of the algorithm in exchange for increased complexity of implementation. If the window size is below this threshold, then the algorithm checks after each swap if the graph remains connected by checking if there is a path joining the two nodes whose edge was just removed. If the window size is above this threshold, then the algorithm performs do all the swaps in the window and only then check if the graph is still connected. **Returns** The number of successful swaps ### Return type int Raises NetworkXError – If the input graph is not connected, or if the graph has fewer than four nodes. #### **Notes** The initial graph G must be connected, and the resulting graph is connected. The graph G is modified in place. #### References # 4.44 Tournament Functions concerning tournament graphs. A tournament graph is a complete oriented graph. In other words, it is a directed graph in which there is exactly one directed edge joining each pair of distinct nodes. For each function in this module that accepts a graph as input, you must provide a tournament graph. The responsibility is on the caller to ensure that the graph is a tournament graph. To access the functions in this module, you must access them through the networkx.algorithms.tournament module: ``` >>> import networkx as nx >>> from networkx.algorithms import tournament >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) >>> tournament.is_tournament(G) True ``` | $hamiltonian_path(G)$ | Returns a Hamiltonian path in the given tournament graph. | |--------------------------|--| | is_reachable(G, s, t) | Decides whether there is a path from s to t in the tourna- | | | ment. | | is_strongly_connected(G) | Decides whether the given tournament is strongly con- | | | nected. | | is_tournament(G) | Returns True if and only if G is a tournament. | | random_tournament(n) | Returns a random tournament graph on n nodes. | | score_sequence(G) | Returns the score sequence for the given tournament graph. | # 4.44.1 hamiltonian path ### $hamiltonian_path(G)$ Returns a Hamiltonian path in the given tournament graph. Each tournament has a Hamiltonian path. If furthermore, the tournament is strongly connected, then the returned Hamiltonian path is a Hamiltonian cycle (by joining the endpoints of the path). **Parameters G** (*NetworkX graph*) – A directed graph representing a tournament. **Returns** Whether the given graph is a tournament graph. Return type bool ### **Notes** This is a recursive implementation with an asymptotic running time of $O(n^2)$, ignoring multiplicative polylogarithmic factors, where n is the number of nodes in the graph. # 4.44.2 is reachable ### $is_reachable(G, s, t)$ Decides whether there is a path from s to t in the tournament. This function is more theoretically efficient than the reachability checks than the shortest path algorithms in networkx.algorithms.shortest_paths. The given graph **must** be a tournament, otherwise this function's behavior is undefined. #### **Parameters** - **G** (*NetworkX graph*) A directed graph representing a tournament. - **s** (*node*) A node in the graph. - **t** (*node*) A node in the graph. **Returns** Whether there is a path from s to t in G. Return type bool #### **Notes** Although this function is more theoretically efficient than the generic shortest path functions, a speedup requires the use of parallelism. Though it may in the future, the current implementation does not use parallelism, thus you may not see much of a speedup. This algorithm comes from [1]. #### References # 4.44.3 is strongly connected ### $is_strongly_connected(G)$ Decides whether the given tournament is strongly connected. This function is more theoretically efficient than the <code>is_strongly_connected()</code> function. 4.44. Tournament 387 The given graph **must** be a tournament, otherwise this function's behavior is undefined. **Parameters G** (*NetworkX graph*) – A directed graph representing a tournament. Returns Whether the tournament is strongly connected. Return type bool #### **Notes** Although this function is more theoretically efficient than the generic strong connectivity function, a speedup requires the use of parallelism. Though it may in the future, the current implementation does not use parallelism, thus you may not see much of a speedup. This algorithm comes from [1]. #### References # 4.44.4 is tournament ### $is_tournament(G)$ Returns True if and only if G is a tournament. A tournament is a directed graph, with neither self-loops nor multi-edges, in which there is exactly one directed edge joining each pair of distinct nodes. **Parameters** G (*NetworkX graph*) – A directed graph representing a tournament. **Returns** Whether the given graph is a tournament graph. Return type bool # **Notes** Some definitions require a self-loop on each node, but that is not the convention used here. # 4.44.5 random tournament # $random_tournament(n)$ Returns a random tournament graph on n nodes. **Parameters n** (*int*) – The number of nodes in the returned graph. **Returns** Whether the given graph is a tournament graph. Return type bool #### **Notes** This algorithm adds, for each pair of distinct nodes, an edge with uniformly random orientation. In other words, $binom\{n\}\{2\}$ flips of an unbiased coin decide the orientations of the edges in the graph. # 4.44.6 score sequence # ${\tt score_sequence}\,(G)$ Returns the score sequence for the given tournament graph. The score sequence is the sorted list of the out-degrees of the nodes of the graph. **Parameters G** (*NetworkX graph*) – A directed graph representing a tournament. **Returns** A sorted list of the out-degrees of the nodes of G. Return type list # 4.45 Traversal # 4.45.1 Depth First Search Basic algorithms for depth-first searching the nodes of a graph. Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. | dfs_edges(G[, source]) | Produce edges in a depth-first-search (DFS). | |------------------------------------|--| | <pre>dfs_tree(G[, source])</pre> | Return oriented tree constructed from a depth-first-search | | | from source. | | dfs_predecessors(G[, source]) | Return dictionary of predecessors in depth-first-search | | | from source. | | dfs_successors(G[, source]) | Return dictionary of successors in depth-first-search from | | | source. | | dfs_preorder_nodes(G[, source]) | Produce nodes in a depth-first-search pre-ordering starting | | | from source. | | $dfs_postorder_nodes(G[, source])$ | Produce nodes in a depth-first-search post-ordering starting | | | from source. | | $dfs_labeled_edges(G[, source])$ | Produce edges in a depth-first-search (DFS) labeled by | | | type. | ### dfs_edges ### dfs_edges (G, source=None) Produce edges in a depth-first-search (DFS). ### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns** edges – A generator of edges in the depth-first-search. Return type generator 4.45. Traversal 389 ### **Examples** ``` >>> G = nx.path_graph(3) >>> print(list(nx.dfs_edges(G,0))) [(0, 1), (1, 2)] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ### dfs_tree ``` dfs_tree(G, source=None) ``` Return oriented tree constructed from a depth-first-search from source. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Specify starting node for depth-first search. **Returns** T – An oriented tree Return type NetworkX DiGraph ###
Examples ``` >>> G = nx.path_graph(3) >>> T = nx.dfs_tree(G,0) >>> print(list(T.edges())) [(0, 1), (1, 2)] ``` ### dfs predecessors ``` dfs_predecessors(G, source=None) ``` Return dictionary of predecessors in depth-first-search from source. ### **Parameters** - **G** (*NetworkX graph*) - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns** pred – A dictionary with nodes as keys and predecessor nodes as values. Return type dict # **Examples** ``` >>> G = nx.path_graph(3) >>> print(nx.dfs_predecessors(G,0)) {1: 0, 2: 1} ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. # dfs_successors ``` dfs_successors(G, source=None) ``` Return dictionary of successors in depth-first-search from source. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. Returns succ – A dictionary with nodes as keys and list of successor nodes as values. Return type dict # **Examples** ``` >>> G = nx.path_graph(3) >>> print(nx.dfs_successors(G,0)) {0: [1], 1: [2]} ``` ### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. # dfs_preorder_nodes # dfs_preorder_nodes (G, source=None) Produce nodes in a depth-first-search pre-ordering starting from source. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. 4.45. Traversal 391 **Returns nodes** – A generator of nodes in a depth-first-search pre-ordering. Return type generator # **Examples** ``` >>> G = nx.path_graph(3) >>> print(list(nx.dfs_preorder_nodes(G,0))) [0, 1, 2] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. # dfs_postorder_nodes ``` dfs_postorder_nodes (G, source=None) ``` Produce nodes in a depth-first-search post-ordering starting from source. #### **Parameters** - **G** (*NetworkX graph*) - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns nodes** – A generator of nodes in a depth-first-search post-ordering. Return type generator # **Examples** ``` >>> G = nx.path_graph(3) >>> print(list(nx.dfs_postorder_nodes(G,0))) [2, 1, 0] ``` ## **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ### dfs labeled edges ``` dfs_labeled_edges(G, source=None) ``` Produce edges in a depth-first-search (DFS) labeled by type. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns edges** – A generator of triples of the form (u, v, d), where (u, v) is the edge being explored in the depth-first search and d is one of the strings 'forward', 'nontree', or 'reverse'. A 'forward' edge is one in which u has been visited but v has not. A 'nontree' edge is one in which both u and v have been visited but the edge is not in the DFS tree. A 'reverse' edge is on in which both u and v have been visited and the edge is in the DFS tree. Return type generator # **Examples** The labels reveal the complete transcript of the depth-first search algorithm in more detail than, for example, $dfs_edges()$: ``` >>> from pprint import pprint >>> >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 1)]) >>> pprint(list(nx.dfs_labeled_edges(G, source=0))) [(0, 0, 'forward'), (0, 1, 'forward'), (1, 2, 'forward'), (2, 1, 'nontree'), (1, 2, 'reverse'), (0, 1, 'reverse')] ``` # **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. # 4.45.2 Breadth First Search Basic algorithms for breadth-first searching the nodes of a graph. | bfs_edges(G, source[, reverse]) | Produce edges in a breadth-first-search starting at source. | |---------------------------------|--| | bfs_tree(G, source[, reverse]) | Return an oriented tree constructed from of a breadth-first- | | | search starting at source. | | bfs_predecessors(G, source) | Returns an iterator of predecessors in breadth-first-search | | | from source. | | bfs_successors(G, source) | Returns an iterator of successors in breadth-first-search | | | from source. | 4.45. Traversal 393 ### bfs edges ``` bfs_edges (G, source, reverse=False) ``` Produce edges in a breadth-first-search starting at source. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. - reverse (bool, optional) If True traverse a directed graph in the reverse direction **Returns** edges – A generator of edges in the breadth-first-search. **Return type** generator ### **Examples** ``` >>> G = nx.path_graph(3) >>> print(list(nx.bfs_edges(G,0))) [(0, 1), (1, 2)] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. # bfs_tree ``` bfs_tree (G, source, reverse=False) ``` Return an oriented tree constructed from of a breadth-first-search starting at source. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. - reverse (bool, optional) If True traverse a directed graph in the reverse direction **Returns** T – An oriented tree Return type NetworkX DiGraph # **Examples** ``` >>> G = nx.path_graph(3) >>> print(list(nx.bfs_tree(G,1).edges())) [(1, 0), (1, 2)] ``` ### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. # bfs predecessors #### bfs_predecessors(G, source) Returns an iterator of predecessors in breadth-first-search from source. #### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. **Returns pred** – (node, predecessors) iterator where predecessors is the list of predecessors of the node. Return type iterator # **Examples** ``` >>> G = nx.path_graph(3) >>> print(dict(nx.bfs_predecessors(G, 0))) {1: 0, 2: 1} >>> H = nx.Graph() >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) >>> dict(nx.bfs_predecessors(H, 0)) {1: 0, 2: 0, 3: 1, 4: 1, 5: 2, 6: 2} ``` ### Notes Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. ### bfs successors ### bfs_successors(G, source) Returns an iterator of successors in breadth-first-search from source. ## **Parameters** - **G** (NetworkX graph) - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. **Returns succ** – (node, successors) iterator where successors is the list of successors of the node. Return type iterator 4.45. Traversal 395 # **Examples** ``` >>> G = nx.path_graph(3) >>> print(dict(nx.bfs_successors(G,0))) {0: [1], 1: [2]} >>> H = nx.Graph() >>> H.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]) >>> dict(nx.bfs_successors(H, 0)) {0: [1, 2], 1: [3, 4], 2: [5, 6]} ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. ## 4.45.3 Beam search Basic algorithms for breadth-first searching the nodes of a graph. ``` bfs_beam_edges(G, source, value[, width]) ``` Iterates over edges in a beam search. ### bfs beam edges bfs_beam_edges (G, source, value, width=None) Iterates over edges in a beam search. The beam search is a generalized breadth-first search in which only the "best" w neighbors of the current node are enqueued, where w is the beam width and "best" is an application-specific heuristic. In general, a beam search with a small beam width might not visit each node in the graph. ### **Parameters** - **G** (NetworkX graph) - **source** (*node*) Starting node for the breadth-first search; this function iterates over only those edges in the component reachable from this node. - value (function) A function that takes a node of the graph as input and returns a real number indicating how "good" it is. A higher value means it is more likely to be visited sooner during the search. When visiting a new node, only the width neighbors with the highest value are enqueued (in decreasing order of value). - width (int (default = None)) The beam width for the search. This is the number of neighbors (ordered by value) to enqueue when visiting each new node. **Yields** *edge* – Edges in the beam search starting from source, given as a pair of nodes. # **Examples** To give nodes with, for example, a higher centrality precedence during the search, set the value function to return the centrality value of the node: ``` >>> G = nx.karate_club_graph() >>> centrality = nx.eigenvector_centrality(G) ``` ``` >>> source = 0 >>> width = 5 >>> for u, v in nx.bfs_beam_edges(G, source, centrality.get, width): ... print((u, v)) ``` # 4.45.4 Depth First Search on Edges ### **Depth First Search on Edges** Algorithms for a depth-first traversal of edges in a graph. ``` edge_dfs(G[, source, orientation]) A directed, depth-first traversal of edges
in G, beginning at source. ``` # edge_dfs ``` edge_dfs (G, source=None, orientation='original') A directed, depth-first traversal of edges in G, beginning at source. ``` #### **Parameters** - **G** (*graph*) A directed/undirected graph/multigraph. - **source** (*node*, *list of nodes*) The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched. - **orientation** ('original' | 'reverse' | 'ignore') For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm. Yields edge (directed edge) — A directed edge indicating the path taken by the depth-first traversal. For graphs, edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is 'reverse' or 'ignore', then edge takes the form (u, v, key, direction) where direction is a string, 'forward' or 'reverse', that indicates if the edge was traversed in the forward (tail to head) or reverse (head to tail) direction, respectively. #### **Examples** ``` >>> import networkx as nx >>> nodes = [0, 1, 2, 3] >>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] >>> list(nx.edge_dfs(nx.Graph(edges), nodes)) [(0, 1), (1, 2), (1, 3)] ``` 4.45. Traversal 397 ``` >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes)) [(0, 1), (1, 0), (2, 1), (3, 1)] ``` ``` >>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes)) [(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)] ``` ``` >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes)) [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)] ``` ``` >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore')) [(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')] ``` #### **Notes** The goal of this function is to visit edges. It differs from the more familiar depth-first traversal of nodes, as provided by networkx.algorithms.traversal.depth_first_search.dfs_edges(), in that it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited if not for the functionality provided by this function. #### See also: dfs_edges() # 4.46 Tree # 4.46.1 Recognition ## **Recognition Tests** A *forest* is an acyclic, undirected graph, and a *tree* is a connected forest. Depending on the subfield, there are various conventions for generalizing these definitions to directed graphs. In one convention, directed variants of forest and tree are defined in an identical manner, except that the direction of the edges is ignored. In effect, each directed edge is treated as a single undirected edge. Then, additional restrictions are imposed to define *branchings* and *arborescences*. In another convention, directed variants of forest and tree correspond to the previous convention's branchings and arborescences, respectively. Then two new terms, *polyforest* and *polytree*, are defined to correspond to the other convention's forest and tree. # Summarizing: Each convention has its reasons. The first convention emphasizes definitional similarity in that directed forests and trees are only concerned with acyclicity and do not have an in-degree constraint, just as their undirected counterparts do not. The second convention emphasizes functional similarity in the sense that the directed analog of a spanning tree is a spanning arborescence. That is, take any spanning tree and choose one node as the root. Then every edge is assigned a direction such there is a directed path from the root to every other node. The result is a spanning arborescence. NetworkX follows convention "A". Explicitly, these are: undirected forest An undirected graph with no undirected cycles. undirected tree A connected, undirected forest. **directed forest** A directed graph with no undirected cycles. Equivalently, the underlying graph structure (which ignores edge orientations) is an undirected forest. In convention B, this is known as a polyforest. **directed tree** A weakly connected, directed forest. Equivalently, the underlying graph structure (which ignores edge orientations) is an undirected tree. In convention B, this is known as a polytree. **branching** A directed forest with each node having, at most, one parent. So the maximum in-degree is equal to 1. In convention B, this is known as a forest. **arborescence** A directed tree with each node having, at most, one parent. So the maximum in-degree is equal to 1. In convention B, this is known as a tree. For trees and arborescences, the adjective "spanning" may be added to designate that the graph, when considered as a forest/branching, consists of a single tree/arborescence that includes all nodes in the graph. It is true, by definition, that every tree/arborescence is spanning with respect to the nodes that define the tree/arborescence and so, it might seem redundant to introduce the notion of "spanning". However, the nodes may represent a subset of nodes from a larger graph, and it is in this context that the term "spanning" becomes a useful notion. | is_tree(G) | Returns True if G is a tree. | |--------------------------|---------------------------------------| | is_forest(G) | Returns True if G is a forest. | | is_arborescence(G) | Returns True if G is an arborescence. | | is_branching(G) | Returns True if G is a branching. | #### is tree #### $is_tree(G)$ Returns True if G is a tree. A tree is a connected graph with no undirected cycles. For directed graphs, G is a tree if the underlying graph is a tree. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph. **Parameters** G(graph) – The graph to test. **Returns** \mathbf{b} – A boolean that is True if G is a tree. Return type bool ### **Notes** In another convention, a directed tree is known as a *polytree* and then *tree* corresponds to an *arborescence*. 4.46. Tree 399 #### See also: ``` is_arborescence() ``` # is forest #### is forest (G) Returns True if G is a forest. A forest is a graph with no undirected cycles. For directed graphs, G is a forest if the underlying graph is a forest. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph. **Parameters** G(graph) – The graph to test. **Returns** b - A boolean that is True if G is a forest. Return type bool ### **Notes** In another convention, a directed forest is known as a polyforest and then forest corresponds to a branching. #### See also: ``` is_branching() ``` ### is arborescence # $is_arborescence(G)$ Returns True if G is an arborescence. An arborescence is a directed tree with maximum in-degree equal to 1. **Parameters** G(graph) – The graph to test. **Returns** b - A boolean that is True if G is an arborescence. Return type bool #### **Notes** In another convention, an arborescence is known as a tree. #### See also: ``` is_tree() ``` ### is branching ### $is_branching(G)$ Returns True if G is a branching. A branching is a directed forest with maximum in-degree equal to 1. **Parameters G** (*directed graph*) – The directed graph to test. **Returns** b - A boolean that is True if G is a branching. Return type bool ### **Notes** In another convention, a branching is also known as a *forest*. #### See also: ``` is_forest() ``` # 4.46.2 Branchings and Spanning Arborescences Algorithms for finding optimum branchings and spanning arborescences. This implementation is based on: J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967), 233–240. URL: http://archive.org/details/jresv71Bn4p233 | branching_weight(G[, attr, default]) | | | Returns the total weight of a branching. | |---|-------|-----|--| | greedy_branching(G[, attr, default, kind]) | | | Returns a branching obtained through a greedy algorithm. | | maximum_branching(G[, attr, default]) | | | Returns a maximum branching from G. | | minimum_branching(G[, attr, default]) | | | Returns a minimum branching from G. | | $ exttt{maximum_spanning_arborescence}(G[,$ | attr, | de- | Returns a maximum spanning arborescence from G. | | fault]) | | | | | ${\it minimum_spanning_arborescence}(G[,$ | attr, | de- | Returns a minimum spanning arborescence from G. | | fault]) | | | | | Edmonds(G[, seed]) | | | Edmonds algorithm for finding optimal branchings and | | | | | spanning arborescences. | # branching_weight branching_weight (G, attr='weight', default=1) Returns the total weight of a branching. ### greedy branching greedy_branching (G, attr='weight', default=1, kind='max') Returns a branching obtained through a greedy algorithm. This algorithm is wrong, and cannot give a proper optimal branching. However, we include it for pedagogical reasons, as it can be helpful to see what its outputs are. The output is a branching, and possibly, a spanning arborescence. However, it is not guaranteed to be optimal in either case. ### **Parameters** - **G** (*DiGraph*) The directed graph to scan. - attr (str) The attribute to use as weights. If None, then each edge will be treated equally with a weight of 1. 4.46. Tree 401 - **default** (*float*) When attr is not None, then if an edge does not have that attribute, default specifies what value it should take. - **kind** (*str*) The type of optimum to search for: 'min' or 'max' greedy branching. **Returns B** –
The greedily obtained branching. Return type directed graph ### maximum branching ### maximum_branching(G, attr='weight', default=1) Returns a maximum branching from G. #### **Parameters** - **G** ((multi)digraph-like) The graph to be searched. - attr (str) The edge attribute used to in determining optimality. - **default** (*float*) The value of the edge attribute used if an edge does not have the attribute attr. **Returns** B - A maximum branching. Return type (multi)digraph-like ### minimum branching # $minimum_branching(G, attr='weight', default=1)$ Returns a minimum branching from G. #### **Parameters** - **G** ((multi)digraph-like) The graph to be searched. - attr (str) The edge attribute used to in determining optimality. - **default** (*float*) The value of the edge attribute used if an edge does not have the attribute attr. **Returns** B - A minimum branching. **Return type** (multi)digraph-like #### maximum spanning arborescence # maximum_spanning_arborescence(G, attr='weight', default=1) Returns a maximum spanning arborescence from G. # **Parameters** - **G** ((multi)digraph-like) The graph to be searched. - attr (str) The edge attribute used to in determining optimality. - **default** (*float*) The value of the edge attribute used if an edge does not have the attribute attr. **Returns B** – A maximum spanning arborescence. Return type (multi)digraph-like Raises NetworkXException – If the graph does not contain a maximum spanning arborescence. # minimum_spanning_arborescence minimum_spanning_arborescence(G, attr='weight', default=1) Returns a minimum spanning arborescence from G. #### **Parameters** - **G** ((multi)digraph-like) The graph to be searched. - attr (str) The edge attribute used to in determining optimality. - **default** (*float*) The value of the edge attribute used if an edge does not have the attribute attr. **Returns B** – A minimum spanning arborescence. Return type (multi)digraph-like Raises NetworkXException – If the graph does not contain a minimum spanning arborescence. #### **Edmonds** class Edmonds (G, seed=None) Edmonds algorithm for finding optimal branchings and spanning arborescences. ``` ___init__(G, seed=None) ``` # **Methods** | init(G[, seed]) | | |---|-----------------------------| | <pre>find_optimum([attr, default, kind, style])</pre> | Returns a branching from G. | # 4.46.3 Spanning Trees Algorithms for calculating min/max spanning trees/forests. | <pre>minimum_spanning_tree(G[, weight, algorithm])</pre> | Returns a minimum spanning tree or forest on an undi- | |--|---| | | rected graph G. | | <pre>maximum_spanning_tree(G[, weight, algorithm])</pre> | Returns a maximum spanning tree or forest on an undi- | | | rected graph G. | | minimum_spanning_edges(G[, algorithm,]) | Generate edges in a minimum spanning forest of an undi- | | | rected weighted graph. | | maximum_spanning_edges(G[, algorithm,]) | Generate edges in a maximum spanning forest of an undi- | | | rected weighted graph. | # minimum_spanning_tree minimum_spanning_tree (G, weight='weight', algorithm='kruskal') Returns a minimum spanning tree or forest on an undirected graph G. #### **Parameters** 4.46. Tree 403 - **G** (*undirected graph*) An undirected graph. If G is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. - weight (str) Data key to use for edge weights. - **algorithm** (*string*) The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. **Returns** G - A minimum spanning tree or forest. Return type NetworkX Graph ### **Examples** ``` >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> T = nx.minimum_spanning_tree(G) >>> sorted(T.edges(data=True)) [(0, 1, {}), (1, 2, {}), (2, 3, {})] ``` #### **Notes** For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. There may be more than one tree with the same minimum or maximum weight. See networkx.tree.recognition for more detailed definitions. # maximum_spanning_tree ``` maximum_spanning_tree (G, weight='weight', algorithm='kruskal') Returns a maximum spanning tree or forest on an undirected graph G. ``` #### **Parameters** - **G** (*undirected graph*) An undirected graph. If G is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. - weight (str) Data key to use for edge weights. - **algorithm** (*string*) The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. **Returns** G - A minimum spanning tree or forest. Return type NetworkX Graph ### **Examples** ``` >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> T = nx.maximum_spanning_tree(G) >>> sorted(T.edges(data=True)) [(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})] ``` #### **Notes** For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. There may be more than one tree with the same minimum or maximum weight. See networkx.tree.recognition for more detailed definitions. # minimum_spanning_edges minimum_spanning_edges (G, algorithm='kruskal', weight='weight', keys=True, data=True) Generate edges in a minimum spanning forest of an undirected weighted graph. A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. #### **Parameters** - **G** (*undirected Graph*) An undirected graph. If G is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. - **algorithm** (*string*) The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. - weight (*string*) Edge data key to use for weight (default 'weight'). - **keys** (*bool*) Whether to yield edge key in multigraphs in addition to the edge. If G is not a multigraph, this is ignored. - data (bool, optional) If True yield the edge data along with the edge. # Returns edges - An iterator over tuples representing edges in a minimum spanning tree of G. If G is a multigraph and both keys and data are True, then the tuples are four-tuples of the form (u, v, k, w), where (u, v) is an edge, k is the edge key identifying the particular edge joining u with v, and w is the weight of the edge. If keys is True but data is False, the tuples are three-tuples of the form (u, v, k). If G is not a multigraph, the tuples are of the form (u, v, w) if data is True or (u, v) if data is False. Return type iterator ## **Examples** ``` >>> from networkx.algorithms import tree ``` Find minimum spanning edges by Kruskal's algorithm ``` >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.minimum_spanning_edges(G, algorithm='kruskal', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (1, 2), (2, 3)] ``` 4.46. Tree 405 Find minimum spanning edges by Prim's algorithm ``` >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.minimum_spanning_edges(G, algorithm='prim', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (1, 2), (2, 3)] ``` #### **Notes** For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ ### maximum_spanning_edges maximum_spanning_edges (G, algorithm='kruskal', weight='weight', data=True) Generate edges in a maximum spanning forest of an undirected weighted graph. A maximum spanning tree is a subgraph of the graph (a tree) with the maximum possible sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. #### **Parameters** - **G** (*undirected Graph*) An undirected graph. If G is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. - **algorithm** (*string*) The algorithm to use when finding a maximum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. - weight (string) Edge data key to use for weight (default 'weight'). - **keys** (*bool*) Whether to yield edge key in multigraphs in addition to the edge. If G is not a multigraph, this is ignored. - data (bool, optional) If True yield the edge data along with the edge. #### Returns edges - An iterator over tuples representing edges in a maximum spanning tree of G. If G is a multigraph and both keys and data are True, then the tuples are four-tuples of the form (u, v, k, w), where (u, v) is an edge, k is the edge key identifying the particular edge joining u with v, and w is the weight of the edge. If keys is True but data is False, the tuples are three-tuples of the form (u, v, k). If G is not a multigraph, the tuples are of the form (u, v, w) if data is True or (u, v) if data is False. # **Return type** iterator ## **Examples** ``` >>> from networkx.algorithms import tree ``` Find maximum spanning edges by Kruskal's algorithm ``` >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.maximum_spanning_edges(G, algorithm='kruskal', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (0, 3), (1, 2)] ``` Find maximum spanning edges by Prim's algorithm ``` >>> G = nx.cycle_graph(4) >>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3 >>> mst =
tree.maximum_spanning_edges(G, algorithm='prim', data=False) >>> edgelist = list(mst) >>> sorted(edgelist) [(0, 1), (0, 3), (3, 2)] ``` ### **Notes** For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ # 4.47 Triads Functions for analyzing triads of a graph. ``` triadic census(G) ``` Determines the triadic census of a directed graph. # 4.47.1 triadic_census #### triadic census(G) Determines the triadic census of a directed graph. The triadic census is a count of how many of the 16 possible types of triads are present in a directed graph. **Parameters G** (*digraph*) – A NetworkX DiGraph Returns census – Dictionary with triad names as keys and number of occurrences as values. Return type dict #### **Notes** This algorithm has complexity O(m) where m is the number of edges in the graph. ### See also: ``` triad_graph() ``` 4.47. Triads 407 #### References # 4.48 Vitality Vitality measures. closeness_vitality(G[, node, weight, ...]) Returns the closeness vitality for nodes in the graph. # 4.48.1 closeness vitality $\verb|closeness_vitality| (G, node=None, weight=None, wiener_index=None)|$ Returns the closeness vitality for nodes in the graph. The *closeness vitality* of a node, defined in Section 3.6.2 of [1], is the change in the sum of distances between all node pairs when excluding that node. ### **Parameters** - **G** (*NetworkX graph*) A strongly-connected graph. - weight (*string*) The name of the edge attribute used as weight. This is passed directly to the wiener_index() function. - **node** (*object*) If specified, only the closeness vitality for this node will be returned. Otherwise, a dictionary mapping each node to its closeness vitality will be returned. **Other Parameters wiener_index** (*number*) – If you have already computed the Wiener index of the graph G, you can provide that value here. Otherwise, it will be computed for you. #### Returns If node is None, this function returns a dictionary with nodes as keys and closeness vitality as the value. Otherwise, it returns only the closeness vitality for the specified node. The closeness vitality of a node may be negative infinity if removing that node would disconnect the graph. Return type dictionary or float # **Examples** ``` >>> G = nx.cycle_graph(3) >>> nx.closeness_vitality(G) {0: 2.0, 1: 2.0, 2: 2.0} ``` #### See also: ``` closeness_centrality() ``` #### References # 4.49 Voronoi cells Functions for computing the Voronoi cells of a graph. | voronoi_cells(G, center_nodes[, weight]) | Returns the Voronoi cells centered at center_nodes | |--|--| | | with respect to the shortest-path distance metric. | # 4.49.1 voronoi cells voronoi_cells (G, center_nodes, weight='weight') Returns the Voronoi cells centered at center_nodes with respect to the shortest-path distance metric. If C is a set of nodes in the graph and c is an element of C, the *Voronoi cell* centered at a node c is the set of all nodes v that are closer to c than to any other center node in C with respect to the shortest-path distance metric. 1 For directed graphs, this will compute the "outward" Voronoi cells, as defined in ¹, in which distance is measured from the center nodes to the target node. For the "inward" Voronoi cells, use the DiGraph.reverse() method to reverse the orientation of the edges before invoking this function on the directed graph. #### **Parameters** - G (NetworkX graph) - **center_nodes** (*set*) A nonempty set of nodes in the graph G that represent the center of the Voronoi cells. - weight (*string or function*) The edge attribute (or an arbitrary function) representing the weight of an edge. This keyword argument is as described in the documentation for multi_source_dijkstra_path(), for example. **Returns** A mapping from center node to set of all nodes in the graph closer to that center node than to any other center node. The keys of the dictionary are the element of center_nodes, and the values of the dictionary form a partition of the nodes of G. Return type dictionary # **Examples** To get only the partition of the graph induced by the Voronoi cells, take the collection of all values in the returned dictionary: ``` >>> G = nx.path_graph(6) >>> center_nodes = {0, 3} >>> cells = nx.voronoi_cells(G, center_nodes) >>> partition = set(map(frozenset, cells.values())) >>> sorted(map(sorted, partition)) [[0, 1], [2, 3, 4, 5]] ``` Raises ValueError - If center_nodes is empty. ### References # 4.50 Wiener index Functions related to the Wiener index of a graph. 4.50. Wiener index 409 ¹ Erwig, Martin. (2000), "The graph Voronoi diagram with applications." *Networks*, 36: 156–163. <dx.doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L> ``` wiener_index(G[, weight]) ``` Returns the Wiener index of the given graph. # 4.50.1 wiener_index ``` wiener_index(G, weight=None) ``` Returns the Wiener index of the given graph. The *Wiener index* of a graph is the sum of the shortest-path distances between each pair of reachable nodes. For pairs of nodes in undirected graphs, only one orientation of the pair is counted. #### **Parameters** - **G** (NetworkX graph) - weight (*object*) The edge attribute to use as distance when computing shortest-path distances. This is passed directly to the networkx.shortest_path_length() function. **Returns** The Wiener index of the graph G. Return type float Raises NetworkXError - If the graph G is not connected. #### **Notes** If a pair of nodes is not reachable, the distance is assumed to be infinity. This means that for graphs that are not strongly-connected, this function returns inf. The Wiener index is not usually defined for directed graphs, however this function uses the natural generalization of the Wiener index to directed graphs. ### **Examples** The Wiener index of the (unweighted) complete graph on n nodes equals the number of pairs of the n nodes, since each pair of nodes is at distance one: ``` >>> import networkx as nx >>> n = 10 >>> G = nx.complete_graph(n) >>> nx.wiener_index(G) == n * (n - 1) / 2 True ``` Graphs that are not strongly-connected have infinite Wiener index: ``` >>> G = nx.empty_graph(2) >>> nx.wiener_index(G) inf ``` # **Functions** Functional interface to graph methods and assorted utilities. # 5.1 Graph | degree(G[, nbunch, weight]) | Return degree of single node or of nbunch of nodes. | |-----------------------------------|---| | degree_histogram(G) | Return a list of the frequency of each degree value. | | density(G) | Return the density of a graph. | | info(G[, n]) | Print short summary of information for the graph G or the | | | node n. | | create_empty_copy(G[, with_data]) | Return a copy of the graph G with all of the edges removed. | | is_directed(G) | Return True if graph is directed. | | add_star(G, nodes, **attr) | Add a star to Graph G. | | $add_path(G, nodes, *\$ | Add a path to the Graph G. | | add_cycle(G, nodes, **attr) | Add a cycle to the Graph G. | # **5.1.1** degree degree(G, nbunch=None, weight=None) Return degree of single node or of nbunch of nodes. If nbunch is ommitted, then return degrees of all nodes. # 5.1.2 degree histogram # ${\tt degree_histogram}\,(G)$ Return a list of the frequency of each degree value. Parameters G (Networkx graph) – A graph Returns hist – A list of frequencies of degrees. The degree values are the index in the list. Return type list # **Notes** Note: the bins are width one, hence len(list) can be large (Order(number_of_edges)) # 5.1.3 density ## $\mathtt{density}(G)$ Return the density of a graph. The density for undirected graphs is $$d = \frac{2m}{n(n-1)},$$ and for directed graphs is $$d = \frac{m}{n(n-1)},$$ where n is the number of nodes and m is the number of edges in G. ### **Notes** The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher than 1. Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1. # 5.1.4 info info(G, n=None) Print short summary of information for the graph G or the node n. #### **Parameters** - **G** (Networkx graph) A graph - **n** (node (any hashable)) A node in the graph G # 5.1.5 create_empty_copy create_empty_copy (G, with_data=True) Return a copy of the graph G with all of the edges removed. ### **Parameters** - **G** (*graph*) A NetworkX graph - with_data (bool (default=True)) Propagate Graph and Nodes data to the new graph. See also: empty_graph() # 5.1.6 is directed ### $is_directed(G)$ Return True if graph is directed. # 5.1.7 add star ``` add_star (G, nodes, **attr) Add a star to Graph G. ``` The first node in nodes is the middle of the star. It is connected to all other nodes. #### **Parameters** - nodes (iterable container) A container of nodes. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in star. ### See also: ``` add_path(), add_cycle() ``` ### **Examples** ``` >>> G = nx.Graph() >>> nx.add_star(G, [0, 1, 2, 3]) >>> nx.add_star(G, [10, 11, 12], weight=2) ``` # 5.1.8 add path ``` add_path (G, nodes, **attr) Add a path to the Graph G. ``` ### **Parameters** - **nodes** (*iterable container*) A container of nodes. A path will be constructed from the nodes (in order) and added to the graph. - attr (*keyword arguments*, *optional* (*default= no attributes*)) Attributes to add to every edge in path. ### See also: ``` add_star(), add_cycle() ``` # **Examples** ``` >>> G = nx.Graph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> nx.add_path(G, [10, 11, 12], weight=7) ``` # 5.1.9 add cycle ``` add_cycle (G, nodes, **attr) Add a cycle to the Graph G. ``` ### **Parameters** •
nodes (*iterable container*) – A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph. 5.1. Graph 413 • attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle. #### See also: ``` add_path(), add_star() ``` # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> nx.add_cycle(G, [0, 1, 2, 3]) >>> nx.add_cycle(G, [10, 11, 12], weight=7) ``` # 5.2 Nodes | nodes(G) | Return an iterator over the graph nodes. | |----------------------------|--| | number_of_nodes(G) | Return the number of nodes in the graph. | | all_neighbors(graph, node) | Returns all of the neighbors of a node in the graph. | | non_neighbors(graph, node) | Returns the non-neighbors of the node in the graph. | | common_neighbors(G, u, v) | Return the common neighbors of two nodes in a graph. | # 5.2.1 nodes # nodes(G) Return an iterator over the graph nodes. # 5.2.2 number of nodes ## $number_of_nodes(G)$ Return the number of nodes in the graph. # 5.2.3 all neighbors ### all_neighbors (graph, node) Returns all of the neighbors of a node in the graph. If the graph is directed returns predecessors as well as successors. ### **Parameters** - **graph** (*NetworkX graph*) Graph to find neighbors. - **node** (*node*) The node whose neighbors will be returned. **Returns neighbors** – Iterator of neighbors Return type iterator # 5.2.4 non neighbors ``` non_neighbors (graph, node) ``` Returns the non-neighbors of the node in the graph. #### **Parameters** - graph (NetworkX graph) Graph to find neighbors. - **node** (*node*) The node whose neighbors will be returned. Returns non_neighbors – Iterator of nodes in the graph that are not neighbors of the node. Return type iterator # 5.2.5 common_neighbors ``` common_neighbors(G, u, v) ``` Return the common neighbors of two nodes in a graph. #### **Parameters** - **G** (*graph*) A NetworkX undirected graph. - **u**, **v** (*nodes*) Nodes in the graph. **Returns** cnbors – Iterator of common neighbors of u and v in the graph. Return type iterator **Raises** NetworkXError – If u or v is not a node in the graph. ### **Examples** ``` >>> G = nx.complete_graph(5) >>> sorted(nx.common_neighbors(G, 0, 1)) [2, 3, 4] ``` # 5.3 Edges | edges(G[, nbunch]) | Return iterator over edges incident to nodes in nbunch. | |--------------------|---| | number_of_edges(G) | Return the number of edges in the graph. | | non_edges(graph) | Returns the non-existent edges in the graph. | # **5.3.1 edges** ``` edges (G, nbunch=None) ``` Return iterator over edges incident to nodes in nbunch. Return all edges if nbunch is unspecified or nbunch=None. For digraphs, edges=out_edges 5.3. Edges 415 # 5.3.2 number of edges ### $number_of_edges(G)$ Return the number of edges in the graph. # 5.3.3 non edges ``` non_edges (graph) ``` Returns the non-existent edges in the graph. **Parameters** graph (*NetworkX graph*.) – Graph to find non-existent edges. **Returns non_edges** – Iterator of edges that are not in the graph. **Return type** iterator # 5.4 Attributes | set_node_attributes(G, name, values) | Sets node attributes from a given value or dictionary of val- | |---|---| | | ues. | | <pre>get_node_attributes(G, name)</pre> | Get node attributes from graph | | set_edge_attributes(G, name, values) | Sets edge attributes from a given value or dictionary of val- | | | ues. | | get_edge_attributes(G, name) | Get edge attributes from graph | # 5.4.1 set_node_attributes ### set_node_attributes(G, name, values) Sets node attributes from a given value or dictionary of values. ### **Parameters** - **G** (NetworkX Graph) - name (*string*) Name of the node attribute to set. - values (*dict*) Dictionary of attribute values keyed by node. If values is not a dictionary, then it is treated as a single attribute value that is then applied to every node in G. This means that if you provide a mutable object, like a list, updates to that object will be reflected in the node attribute for each node. ### **Examples** After computing some property of the nodes of a graph, you may want to assign a node attribute to store the value of that property for each node: ``` >>> G = nx.path_graph(3) >>> bb = nx.betweenness_centrality(G) # this is a dictionary >>> nx.set_node_attributes(G, 'betweenness', bb) >>> G.node[1]['betweenness'] 1.0 ``` If you provide a list as the third argument, updates to the list will be reflected in the node attribute for each node: ``` >>> labels = [] >>> nx.set_node_attributes(G, 'labels', labels) >>> labels.append('foo') >>> G.node[0]['labels'] ['foo'] >>> G.node[1]['labels'] ['foo'] >>> G.node[2]['labels'] ``` # 5.4.2 get_node_attributes ``` get_node_attributes (G, name) ``` Get node attributes from graph #### **Parameters** - **G** (NetworkX Graph) - name (string) Attribute name #### Returns **Return type** Dictionary of attributes keyed by node. ## **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([1,2,3],color='red') >>> color=nx.get_node_attributes(G,'color') >>> color[1] 'red' ``` # 5.4.3 set edge attributes ### set_edge_attributes (G, name, values) Sets edge attributes from a given value or dictionary of values. #### **Parameters** - **G** (NetworkX Graph) - **name** (*string*) Name of the edge attribute to set. - values (dict) Dictionary of attribute values keyed by edge (tuple). For multigraphs, the tuples must be of the form (u, v, key), where u and v are nodes and key is the key corresponding to the edge. For non-multigraphs, the keys must be tuples of the form (u, v). If values is not a dictionary, then it is treated as a single attribute value that is then applied to every edge in G. This means that if you provide a mutable object, like a list, updates to that object will be reflected in the edge attribute for each edge. 5.4. Attributes 417 ## **Examples** After computing some property of the nodes of a graph, you may want to assign a node attribute to store the value of that property for each node: ``` >>> G = nx.path_graph(3) >>> bb = nx.edge_betweenness_centrality(G, normalized=False) >>> nx.set_edge_attributes(G, 'betweenness', bb) >>> G.edge[1][2]['betweenness'] 2.0 ``` If you provide a list as the third argument, updates to the list will be reflected in the edge attribute for each node: ``` >>> labels = [] >>> nx.set_edge_attributes(G, 'labels', labels) >>> labels.append('foo') >>> G.edge[0][1]['labels'] ['foo'] >>> G.edge[1][2]['labels'] ['foo'] ``` # 5.4.4 get edge attributes ``` {\tt get_edge_attributes}\:(G,name) ``` Get edge attributes from graph #### **Parameters** - **G** (NetworkX Graph) - name (string) Attribute name ### Returns - Dictionary of attributes keyed by edge. For (di)graphs, the keys are - **2-tuples of the form** ((u,v). For multi(di)graphs, the keys are 3-tuples of) - **the form** ((*u*, *v*, *key*).) # **Examples** ``` >>> G=nx.Graph() >>> nx.add_path(G, [1, 2, 3], color='red') >>> color=nx.get_edge_attributes(G, 'color') >>> color[(1, 2)] 'red' ``` # 5.5 Freezing graph structure | freeze(G) | Modify graph to prevent further change by adding or re- | |--------------|---| | | moving nodes or edges. | | is_frozen(G) | Return True if graph is frozen. | # **5.5.1** freeze #### freeze(G) Modify graph to prevent further change by adding or removing nodes or edges. Node and edge data can still be modified. **Parameters G** (*graph*) – A NetworkX graph # **Examples** ``` >>> G=nx.path_graph(4) >>> G=nx.freeze(G) >>> try: ... G.add_edge(4,5) ... except nx.NetworkXError as e: ... print(str(e)) Frozen graph can't be modified ``` #### **Notes** To "unfreeze" a graph you must make a copy by creating a new graph object: ``` >>> graph = nx.path_graph(4) >>> frozen_graph = nx.freeze(graph) >>> unfrozen_graph = nx.Graph(frozen_graph) >>> nx.is_frozen(unfrozen_graph) False ``` #### See also: ``` is_frozen() ``` # 5.5.2 is frozen ### $is_frozen(G)$ Return True if graph is frozen. Parameters G (graph) – A NetworkX graph # See also: ``` freeze() ``` # **Graph generators** # 6.1 Atlas Generators for the small graph atlas. | graph_atlas(i) | Returns graph number i from the Graph Atlas. | |-----------------|--| | graph_atlas_g() | Return the list of all graphs with up to seven nodes named | | | in the Graph Atlas. | # 6.1.1 graph_atlas # $\mathtt{graph_atlas}\left(i\right)$ Returns graph number i from the Graph Atlas. For more information, see graph_atlas_g(). **Parameters i** (*int*) – The index of the graph from the atlas to get. The graph at index 0 is assumed to be the null graph. **Returns** A list of Graph objects, the one at index i corresponding to the graph i in the Graph Atlas. Return type list # See also: ``` graph_atlas_g() ``` # **Notes** The time required by this function increases linearly with the argument i, since it reads a large file sequentially in order to generate the graph. # References # 6.1.2 graph_atlas_g # graph_atlas_g() Return the list of all graphs with up to seven nodes named in the Graph Atlas. The graphs are listed in increasing order by - 1.number of nodes, - 2.number of edges, - 3.degree sequence (for example 111223 < 112222), - 4.number of automorphisms, in that order, with three exceptions as described in the *Notes* section below. This causes the list to correspond with the index of the graphs in the Graph Atlas [atlas], with the first graph, G[0], being the null graph. **Returns** A list of Graph objects, the one at index i corresponding to the graph i in the Graph Atlas. Return type list #### See also: graph_atlas() #### **Notes** This function may be expensive in both time and space, since it reads a large file sequentially in order to populate the
list. Although the NetworkX atlas functions match the order of graphs given in the "Atlas of Graphs" book, there are (at least) three errors in the ordering described in the book. The following three pairs of nodes violate the lexicographically nondecreasing sorted degree sequence rule: - •graphs 55 and 56 with degree sequences 001111 and 000112, - •graphs 1007 and 1008 with degree sequences 3333444 and 3333336, - •graphs 1012 and 1213 with degree sequences 1244555 and 1244456. ## References # 6.2 Classic Generators for some classic graphs. The typical graph generator is called as follows: ``` >>> G=nx.complete_graph(100) ``` returning the complete graph on n nodes labeled 0, ..., 99 as a simple graph. Except for empty_graph, all the generators in this module return a Graph class (i.e. a simple, undirected graph). | balanced_tree(r, h[, create_using]) | Return the perfectly balanced r-ary tree of height h. | |--|--| | barbell_graph(m1, m2[, create_using]) | Return the Barbell Graph: two complete graphs connected | | | by a path. | | complete_graph(n[, create_using]) | Return the complete graph K_n with n nodes. | | <pre>complete_multipartite_graph(*subset_sizes)</pre> | Returns the complete multipartite graph with the specified | | | subset sizes. | | circular_ladder_graph(n[, create_using]) | Return the circular ladder graph CL_n of length n. | | cycle_graph(n[, create_using]) | Return the cycle graph C_n of cyclicly connected nodes. | | | Continued on next page | | Table | 6.2 – continued t | from previous page | |-------|-------------------|--------------------| | | | | | dorogovtsev_goltsev_mendes_graph(n[,]) | Return the hierarchically constructed Dorogovtsev- | |--|---| | | Goltsev-Mendes graph. | | <pre>empty_graph([n, create_using])</pre> | Return the empty graph with n nodes and zero edges. | | <pre>grid_2d_graph(m, n[, periodic, create_using])</pre> | Return the 2d grid graph of mxn nodes | | <pre>grid_graph(dim[, periodic])</pre> | Return the n-dimensional grid graph. | | hypercube_graph(n) | Return the n-dimensional hypercube. | | ladder_graph(n[, create_using]) | Return the Ladder graph of length n. | | lollipop_graph(m, n[, create_using]) | Return the Lollipop Graph; K_m connected to P_n. | | null_graph([create_using]) | Return the Null graph with no nodes or edges. | | <pre>path_graph(n[, create_using])</pre> | Return the Path graph P_n of linearly connected nodes. | | star_graph(n[, create_using]) | Return the star graph | | trivial_graph([create_using]) | Return the Trivial graph with one node (with label 0) and | | | no edges. | | turan_graph(n,r) | Return the Turan Graph | | <pre>wheel_graph(n[, create_using])</pre> | Return the wheel graph | # 6.2.1 balanced_tree balanced_tree (r, h, create_using=None) Return the perfectly balanced r-ary tree of height h. #### **Parameters** - **r** (*int*) Branching factor of the tree; each node will have r children. - **h** (*int*) Height of the tree. - **create_using** (*Graph*, *optional* (*default None*)) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. **Returns** G – A balanced r-ary tree of height h. Return type NetworkX graph #### **Notes** This is the rooted tree where all leaves are at distance h from the root. The root has degree r and all other internal nodes have degree r + 1. Node labels are integers, starting from zero. A balanced tree is also known as a *complete r-ary tree*. # 6.2.2 barbell_graph barbell_graph (m1, m2, create_using=None) Return the Barbell Graph: two complete graphs connected by a path. For m1 > 1 and m2 >= 0. Two identical complete graphs K_{m1} form the left and right bells, and are connected by a path P_{m2} . The 2*m1+m2 nodes are numbered $0, \ldots, m1-1$ for the left barbell, $m1, \ldots, m1+m2-1$ for the path, and $m1+m2, \ldots, 2*m1+m2-1$ for the right barbell. 6.2. Classic 423 The 3 subgraphs are joined via the edges (m1-1, m1) and (m1+m2-1, m1+m2). If m2=0, this is merely two complete graphs joined together. This graph is an extremal example in David Aldous and Jim Fill's e-text on Random Walks on Graphs. # 6.2.3 complete_graph ``` complete_graph (n, create_using=None) ``` Return the complete graph K_n with n nodes. #### **Parameters** - **n** (*int or iterable container of nodes*) If n is an integer, nodes are from range(n). If n is a container of nodes, those nodes appear in the graph. - **create_using** (*Graph*, *optional* (*default None*)) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. ### **Examples** ``` >>> G = nx.complete_graph(9) >>> len(G) 9 >>> G.size() 36 >>> G = nx.complete_graph(range(11,14)) >>> list(G.nodes()) [11, 12, 13] >>> G = nx.complete_graph(4, nx.DiGraph()) >>> G.is_directed() True ``` # 6.2.4 complete multipartite graph ``` complete_multipartite_graph(*subset_sizes) ``` Returns the complete multipartite graph with the specified subset sizes. **Parameters subset_sizes** (*tuple of integers or tuple of node iterables*) – The arguments can either all be integer number of nodes or they can all be iterables of nodes. If integers, they represent the number of vertices in each subset of the multipartite graph. If iterables, each is used to create the nodes for that subset. The length of subset_sizes is the number of subsets. #### Returns **G** – Returns the complete multipartite graph with the specified subsets. For each node, the node attribute 'subset' is an integer indicating which subset contains the node. **Return type** NetworkX Graph #### **Examples** Creating a complete tripartite graph, with subsets of one, two, and three vertices, respectively. ``` >>> import networkx as nx >>> G = nx.complete_multipartite_graph(1, 2, 3) >>> [G.node[u]['subset'] for u in G] [0, 1, 1, 2, 2, 2] >>> list(G.edges(0)) [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] >>> list(G.edges(2)) [(2, 0), (2, 3), (2, 4), (2, 5)] >>> list(G.edges(4)) [(4, 0), (4, 1), (4, 2)] ``` ``` >>> G = nx.complete_multipartite_graph('a', 'bc', 'def') >>> [G.node[u]['subset'] for u in sorted(G)] [0, 1, 1, 2, 2, 2] ``` #### **Notes** This function generalizes several other graph generator functions. - •If no subset sizes are given, this returns the null graph. - •If a single subset size n is given, this returns the empty graph on n nodes. - •If two subset sizes m and n are given, this returns the complete bipartite graph on m + n nodes. - •If subset sizes 1 and n are given, this returns the star graph on n + 1 nodes. ### See also: ``` complete_bipartite_graph() ``` # 6.2.5 circular_ladder_graph ``` circular_ladder_graph (n, create_using=None) ``` Return the circular ladder graph CL_n of length n. CL_n consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge. Node labels are the integers 0 to n-1 # 6.2.6 cycle graph ``` cycle_graph (n, create_using=None) ``` Return the cycle graph C_n of cyclicly connected nodes. C_n is a path with its two end-nodes connected. #### **Parameters** - **n** (*int or iterable container of nodes*) If **n** is an integer, nodes are from range (n). If **n** is a container of nodes, those nodes appear in the graph. - **create_using** (*Graph*, *optional* (*default Graph*())) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. 6.2. Classic 425 #### **Notes** If create_using is directed, the direction is in increasing order. # 6.2.7 dorogovtsev goltsev mendes graph ``` dorogovtsev_goltsev_mendes_graph (n, create_using=None) ``` Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph. n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes. # 6.2.8 empty graph ``` empty_graph (n=0, create_using=None) ``` Return the empty graph with n nodes and zero edges. #### **Parameters** - **n** (int or iterable container of nodes (default = 0)) If n is an integer, nodes are from range (n). If n is a container of nodes, those nodes appear in the graph. - **create_using** (*Graph*, *optional* (*default Graph*())) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. - · For example - >>> G=nx.empty_graph(10) - >>> G.number_of_nodes() - 10 - >>> G.number_of_edges() - 0 - >>> G=nx.empty_graph("ABC") - >>> G.number_of_nodes() - 3 - >>> sorted(G) - ['A', 'B', 'C'] ### **Notes** The variable create_using should point to a "graph"-like object that will be cleared (nodes and edges will be removed) and refitted as an empty "graph" with nodes specified in n. This capability is useful for specifying the class-nature of the resulting empty "graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.). The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty digraph, multigraph, etc. For example, ``` >>> n=10 >>> G=nx.empty_graph(n, create_using=nx.DiGraph()) ``` will create an empty digraph on n nodes. Secondly, one can pass an existing graph (digraph, multigraph, etc.) via create_using. For example, if G is an existing graph (resp. digraph, multigraph, etc.), then empty_graph(n, create_using=G) will empty G (i.e. delete all nodes and edges using G.clear()) and then add n nodes and zero edges, and return the modified graph. See also create_empty_copy(G). # 6.2.9 grid 2d graph ### grid_2d_graph (m, n, periodic=False, create_using=None) Return the 2d grid graph of mxn nodes The grid graph has each node connected to its four nearest neighbors. #### **Parameters** - **m, n** (*int or iterable container of nodes (default = 0)*) If an integer, nodes are from range (n). If a
container, those become the coordinate of the node. - **periodic** (bool (default = False)) If True will connect boundary nodes in periodic fashion. - **create_using** (*Graph*, *optional* (*default Graph*())) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. # 6.2.10 grid graph ### grid_graph (dim, periodic=False) Return the n-dimensional grid graph. 'dim' is a tuple or list with the size in each dimension or an iterable of nodes for each dimension. The dimension of the grid_graph is the length of the tuple or list 'dim'. E.g. G=grid_graph(dim=[2, 3]) produces a 2x3 grid graph. E.g. G=grid graph(dim=[range(7, 9), range(3, 6)]) produces a 2x3 grid graph. If periodic=True then join grid edges with periodic boundary conditions. # 6.2.11 hypercube_graph ### $hypercube_graph(n)$ Return the n-dimensional hypercube. Node labels are the integers 0 to 2**n - 1. # 6.2.12 ladder graph ### ladder_graph (n, create_using=None) Return the Ladder graph of length n. This is two rows of n nodes, with each pair connected by a single edge. Node labels are the integers 0 to 2*n - 1. 6.2. Classic 427 # 6.2.13 lollipop graph ### lollipop_graph (m, n, create_using=None) Return the Lollipop Graph; K_m connected to P_n. This is the Barbell Graph without the right barbell. #### **Parameters** • m, n (int or iterable container of nodes (default = 0)) – If an integer, nodes are from range (m) and range (m, m+n). If a container, the entries are the coordinate of the node. The nodes for m appear in the complete graph K_m and the nodes for n appear in the path P_n • **create_using** (*Graph*, *optional* (*default Graph*())) – If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. #### **Notes** The 2 subgraphs are joined via an edge (m-1, m). If n=0, this is merely a complete graph. (This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs.) # 6.2.14 null graph ### null_graph (create_using=None) Return the Null graph with no nodes or edges. See empty_graph for the use of create_using. # 6.2.15 path_graph #### path graph (n, create using=None) Return the Path graph P_n of linearly connected nodes. ### **Parameters** - **n** (*int or iterable*) If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. - **create_using** (*Graph*, *optional* (*default Graph*())) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. # 6.2.16 star_graph ### star_graph (n, create_using=None) Return the star graph The star graph consists of one center node connected to n outer nodes. #### **Parameters** n (int or iterable) – If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. • **create_using** (*Graph*, *optional* (*default Graph*())) – If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. #### **Notes** The graph has n+1 nodes for integer n. So star graph(3) is the same as star graph(range(4)). # 6.2.17 trivial graph ### trivial_graph (create_using=None) Return the Trivial graph with one node (with label 0) and no edges. ### 6.2.18 turan graph ### $turan_graph(n, r)$ Return the Turan Graph The Turan Graph is a complete multipartite graph on n vertices with r disjoint subsets. It is the graph with the edges for any graph with n vertices and r disjoint subsets. Given n and r, we generate a complete multipartite graph with $r - (n \mod r)$ partitions of size n/r, rounded down, and $n \mod r$ partitions of size n/r + 1, rounded down. #### **Parameters** - **n** (*int*) The number of vertices. - \mathbf{r} (int) The number of partitions. Must be less than or equal to n. ### **Notes** Must satisfy $1 \le r \le n$. The graph has $(r-1)(n^2)/(2r)$ edges, rounded down. # 6.2.19 wheel graph ``` wheel_graph (n, create_using=None) ``` Return the wheel graph The wheel graph consists of a hub node connected to a cycle of (n-1) nodes. #### **Parameters** - **n** (*int or iterable*) If an integer, node labels are 0 to n with center 0. If an iterable of nodes, the center is the first. - **create_using** (*Graph*, *optional* (*default Graph*())) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. - Node labels are the integers 0 to n 1. 6.2. Classic 429 # 6.3 Expanders Provides explicit constructions of expander graphs. | margulis_gabber_galil_graph(n[, | cre- | Return the Margulis-Gabber-Galil undirected MultiGraph | |--|------|--| | ate_using]) | | on n^2 nodes. | | chordal_cycle_graph(p[, create_using]) | | Return the chordal cycle graph on p nodes. | # 6.3.1 margulis_gabber_galil_graph #### margulis gabber galil graph(n, create using=None) Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes. The undirected MultiGraph is regular with degree 8. Nodes are integer pairs. The second-largest eigenvalue of the adjacency matrix of the graph is at most 5 sqrt {2}, regardless of n. #### **Parameters** - **n** (*int*) Determines the number of nodes in the graph: n^2. - **create_using** (*graph-like*) A graph-like object that receives the constructed edges. If None, then a *MultiGraph* instance is used. **Returns G** – The constructed undirected multigraph. Return type graph **Raises** NetworkXError – If the graph is directed or not a multigraph. # 6.3.2 chordal cycle graph #### chordal_cycle_graph (p, create_using=None) Return the chordal cycle graph on p nodes. The returned graph is a cycle graph on p nodes with chords joining each vertex x to its inverse modulo p. This graph is a (mildly explicit) 3-regular expander 1 . p *must* be a prime number. #### **Parameters** - **p** (*a prime number*) The number of vertices in the graph. This also indicates where the chordal edges in the cycle will be created. - **create_using** (*graph-like*) A graph-like object that receives the constructed edges. If None, then a *MultiGraph* instance is used. **Returns** G – The constructed undirected multigraph. Return type graph **Raises** NetworkXError – If the graph provided in create_using is directed or not a multigraph. 6.3. Expanders 431 ¹ Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and invariant measures", volume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994. ### References # 6.4 Small Various small and named graphs, together with some compact generators. | 7 7 7 7 (| D. 4 | |--|--| | make_small_graph(graph_description[,]) | Return the small graph described by graph_description. | | <pre>LCF_graph(n, shift_list, repeats[, create_using])</pre> | Return the cubic graph specified in LCF notation. | | bull_graph([create_using]) | Return the Bull graph. | | chvatal_graph([create_using]) | Return the Chvátal graph. | | cubical_graph([create_using]) | Return the 3-regular Platonic Cubical graph. | | desargues_graph([create_using]) | Return the Desargues graph. | | diamond_graph([create_using]) | Return the Diamond graph. | | dodecahedral_graph([create_using]) | Return the Platonic Dodecahedral graph. | | <pre>frucht_graph([create_using])</pre> | Return the Frucht Graph. | | heawood_graph([create_using]) | Return the Heawood graph, a (3,6) cage. | | house_graph([create_using]) | Return the House graph (square with triangle on top). | | house_x_graph([create_using]) | Return the House graph with a cross inside the house | | | square. | | | | | icosahedral_graph([create_using]) | Return the Platonic Icosahedral graph. | | <pre>icosahedral_graph([create_using]) krackhardt_kite_graph([create_using])</pre> | Return the Platonic Icosahedral graph. Return the Krackhardt Kite Social Network. | | | | | krackhardt_kite_graph([create_using]) | Return the Krackhardt Kite Social Network. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using])</pre> | Return the Krackhardt Kite Social Network. Return the Moebius-Kantor graph. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using]) octahedral_graph([create_using])</pre> | Return the Krackhardt Kite Social Network. Return the Moebius-Kantor graph. Return the Platonic Octahedral graph. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using]) octahedral_graph([create_using]) pappus_graph()</pre> | Return the Krackhardt Kite Social Network. Return the Moebius-Kantor graph. Return the Platonic Octahedral graph. Return the Pappus graph. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using]) octahedral_graph([create_using]) pappus_graph() petersen_graph([create_using])</pre> | Return the Krackhardt Kite Social Network. Return the Moebius-Kantor graph. Return the Platonic Octahedral graph. Return the Pappus graph. Return the Petersen graph. Return a small maze with a cycle. Return the 3-regular Platonic Tetrahedral graph. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using]) octahedral_graph([create_using]) pappus_graph() petersen_graph([create_using]) sedgewick_maze_graph([create_using])</pre> | Return the Krackhardt Kite Social
Network. Return the Moebius-Kantor graph. Return the Platonic Octahedral graph. Return the Pappus graph. Return the Petersen graph. Return a small maze with a cycle. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using]) octahedral_graph([create_using]) pappus_graph() petersen_graph([create_using]) sedgewick_maze_graph([create_using]) tetrahedral_graph([create_using])</pre> | Return the Krackhardt Kite Social Network. Return the Moebius-Kantor graph. Return the Platonic Octahedral graph. Return the Pappus graph. Return the Petersen graph. Return a small maze with a cycle. Return the 3-regular Platonic Tetrahedral graph. | | <pre>krackhardt_kite_graph([create_using]) moebius_kantor_graph([create_using]) octahedral_graph([create_using]) pappus_graph() petersen_graph([create_using]) sedgewick_maze_graph([create_using]) tetrahedral_graph([create_using]) truncated_cube_graph([create_using])</pre> | Return the Krackhardt Kite Social Network. Return the Moebius-Kantor graph. Return the Platonic Octahedral graph. Return the Pappus graph. Return the Petersen graph. Return a small maze with a cycle. Return the 3-regular Platonic Tetrahedral graph. Return the skeleton of the truncated cube. | # 6.4.1 make small graph make_small_graph (graph_description, create_using=None) Return the small graph described by graph_description. graph_description is a list of the form [ltype,name,n,xlist] Here ltype is one of "adjacencylist" or "edgelist", name is the name of the graph and n the number of nodes. This constructs a graph of n nodes with integer labels 0,..,n-1. If ltype="adjacencylist" then xlist is an adjacency list with exactly n entries, in with the j'th entry (which can be empty) specifies the nodes connected to vertex j. e.g. the "square" graph C_4 can be obtained by ``` >>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]]) ``` or, since we do not need to add edges twice, ``` >>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]]) ``` If ltype="edgelist" then xlist is an edge list written as [[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in the range 1,...,n e.g. the "square" graph C_4 can be obtained by ``` >>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]]) ``` Use the create_using argument to choose the graph class/type. # 6.4.2 LCF graph LCF_graph (n, shift_list, repeats, create_using=None) Return the cubic graph specified in LCF notation. LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, hea-wood_graph and pappus_graph below. **n (number of nodes)** The starting graph is the n-cycle with nodes 0,...,n-1. (The null graph is returned if n < 0.) $shift_list = [s1, s2, ..., sk]$, a list of integer shifts mod n, **repeats** integer specifying the number of times that shifts in shift_list are successively applied to each v_current in the n-cycle to generate an edge between v_current and v_current+shift mod n. For v1 cycling through the n-cycle a total of k*repeats with shift cycling through shiftlist repeats times connect v1 with v1+shift mod n The utility graph $K_{\{3,3\}}$ ``` >>> G=nx.LCF_graph(6,[3,-3],3) ``` The Heawood graph ``` >>> G=nx.LCF_graph(14,[5,-5],7) ``` See http://mathworld.wolfram.com/LCFNotation.html for a description and references. # 6.4.3 bull graph ``` bull_graph (create_using=None) Return the Bull graph. ``` # 6.4.4 chvatal graph ``` chvatal_graph (create_using=None) Return the Chvátal graph. ``` ### 6.4.5 cubical graph ``` cubical_graph (create_using=None) Return the 3-regular Platonic Cubical graph. ``` # 6.4.6 desargues graph ``` desargues_graph (create_using=None) Return the Desargues graph. ``` 6.4. Small 433 # 6.4.7 diamond graph **diamond_graph** (*create_using=None*) Return the Diamond graph. # 6.4.8 dodecahedral_graph dodecahedral_graph (create_using=None) Return the Platonic Dodecahedral graph. ### 6.4.9 frucht graph frucht_graph (create_using=None) Return the Frucht Graph. The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element. # 6.4.10 heawood_graph heawood_graph (create_using=None) Return the Heawood graph, a (3,6) cage. # 6.4.11 house graph house_graph (create_using=None) Return the House graph (square with triangle on top). # 6.4.12 house_x_graph house_x_graph (create_using=None) Return the House graph with a cross inside the house square. # 6.4.13 icosahedral graph icosahedral_graph (create_using=None) Return the Platonic Icosahedral graph. # 6.4.14 krackhardt_kite_graph krackhardt_kite_graph (create_using=None) Return the Krackhardt Kite Social Network. A 10 actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, closeness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10. # 6.4.15 moebius kantor graph **moebius_kantor_graph** (*create_using=None*) Return the Moebius-Kantor graph. # 6.4.16 octahedral_graph octahedral_graph (create_using=None) Return the Platonic Octahedral graph. # 6.4.17 pappus_graph pappus_graph () Return the Pappus graph. # 6.4.18 petersen_graph petersen_graph (create_using=None) Return the Petersen graph. # 6.4.19 sedgewick_maze_graph sedgewick_maze_graph(create_using=None) Return a small maze with a cycle. This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and following. Nodes are numbered 0,..,7 # 6.4.20 tetrahedral_graph tetrahedral_graph (create_using=None) Return the 3-regular Platonic Tetrahedral graph. # 6.4.21 truncated cube graph truncated_cube_graph (create_using=None) Return the skeleton of the truncated cube. # 6.4.22 truncated tetrahedron graph truncated_tetrahedron_graph(create_using=None) Return the skeleton of the truncated Platonic tetrahedron. # 6.4.23 tutte_graph **tutte_graph** (*create_using=None*) Return the Tutte graph. 6.4. Small 435 # 6.5 Random Graphs Generators for random graphs. | <pre>fast_gnp_random_graph(n, p[, seed, directed])</pre> | Returns a G_{n,p} random graph, also known as an | |--|--| | | Erdős-Rényi graph or a binomial graph. | | <pre>gnp_random_graph(n, p[, seed, directed])</pre> | Returns a G_{n,p} random graph, also known as an | | | Erdős-Rényi graph or a binomial graph. | | dense_gnm_random_graph(n, m[, seed]) | Returns a G_{n,m} random graph. | | <pre>gnm_random_graph(n, m[, seed, directed])</pre> | Returns a G_{n,m} random graph. | | erdos_renyi_graph(n, p[, seed, directed]) | Returns a G_{n,p} random graph, also known as an | | | Erdős-Rényi graph or a binomial graph. | | binomial_graph(n, p[, seed, directed]) | Returns a G_{n,p} random graph, also known as an | | | Erdős-Rényi graph or a binomial graph. | | newman_watts_strogatz_graph(n, k, p[, seed]) | Return a Newman–Watts–Strogatz small-world graph. | | watts_strogatz_graph(n, k, p[, seed]) | Return a Watts-Strogatz small-world graph. | | $connected_watts_strogatz_graph(n, k, p[,])$ | Returns a connected Watts-Strogatz small-world graph. | | random_regular_graph(d, n[, seed]) | Returns a random d-regular graph on n nodes. | | barabasi_albert_graph(n, m[, seed]) | Returns a random graph according to the Barabási-Albert | | | preferential attachment model. | | <pre>powerlaw_cluster_graph(n, m, p[, seed])</pre> | Holme and Kim algorithm for growing graphs with pow- | | | erlaw degree distribution and approximate average cluster- | | | ing. | | random_kernel_graph(n, kernel_integral[,]) | Return an random graph based on the specified kernel. | | random_lobster(n, p1, p2[, seed]) | Returns a random lobster graph. | | random_shell_graph(constructor[, seed]) | Returns a random shell graph for the constructor given. | | random_powerlaw_tree(n[, gamma, seed, tries]) | Returns a tree with a power law degree distribution. | | random_powerlaw_tree_sequence(n[, gamma, | Returns a degree sequence for a tree with a power law dis- | |]) | | # 6.5.1 fast gnp random graph $fast_gnp_random_graph(n, p, seed=None, directed=False)$ Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. ### **Parameters** - **n** (*int*) The number of nodes. - **p** (*float*) Probability for edge creation. - seed (int, optional) Seed for random number generator (default=None). - **directed** (*bool*, *optional* (*default=False*)) If True, this function returns a directed graph. ### **Notes** The $G_{n,p}$ graph algorithm chooses each of the [n (n-1)] / 2 (undirected) or n (n-1) (directed) possible edges with probability p. This algorithm runs in O(n + m) time, where m is the expected number of edges, which equals p n (n - 1) / 2. This should be faster than $gnp_random_graph()$ when p is small and the expected number of edges is small (that is, the graph is sparse). #### See also: ``` gnp_random_graph() ``` #### References # 6.5.2 gnp random graph ### gnp_random_graph (n, p, seed=None, directed=False) Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. The $G_{n,p}$ model chooses each of the possible edges with probability p. The functions binomial_graph() and erdos_renyi_graph() are aliases of this function. #### **Parameters** - **n** (*int*) The number of nodes. - **p** (*float*) Probability for edge creation. - seed (int, optional) Seed for random number generator (default=None). - **directed** (bool, optional (default=False)) If True, this function returns a directed graph. #### See also: ``` fast_gnp_random_graph() ``` #### **Notes** This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), $fast_gnp_random_graph()$ is a faster algorithm. #### References # 6.5.3 dense gnm_random_graph ```
dense_gnm_random_graph(n, m, seed=None) ``` Returns a G_{n,m} random graph. In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set of all graphs with n nodes and m edges. This algorithm should be faster than <code>gnm_random_graph()</code> for dense graphs. #### **Parameters** - **n** (*int*) The number of nodes. - **m** (*int*) The number of edges. - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### See also: ``` gnm_random_graph() ``` #### **Notes** Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth's Algorithm S (Selection sampling technique), in section 3.4.2 of ¹. #### References # 6.5.4 gnm random graph ``` gnm_random_graph(n, m, seed=None, directed=False) ``` Returns a G_{n,m} random graph. In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set of all graphs with n nodes and m edges. This algorithm should be faster than dense_gnm_random_graph() for sparse graphs. #### **Parameters** - **n** (*int*) The number of nodes. - **m** (*int*) The number of edges. - seed (int, optional) Seed for random number generator (default=None). - **directed** (bool, optional (default=False)) If True return a directed graph #### See also: dense_gnm_random_graph() # 6.5.5 erdos_renyi_graph ### erdos_renyi_graph (n, p, seed=None, directed=False) Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. The $G_{n,p}$ model chooses each of the possible edges with probability p. The functions binomial_graph() and erdos_renyi_graph() are aliases of this function. #### **Parameters** - **n** (*int*) The number of nodes. - **p** (*float*) Probability for edge creation. - seed (int, optional) Seed for random number generator (default=None). - **directed** (bool, optional (default=False)) If True, this function returns a directed graph. #### See also: ``` fast_gnp_random_graph() ``` #### **Notes** This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), $fast_gnp_random_graph()$ is a faster algorithm. ¹ Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997. #### References # 6.5.6 binomial graph **binomial_graph** (n, p, seed=None, directed=False) Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. The $G_{n,p}$ model chooses each of the possible edges with probability p. The functions binomial_graph() and erdos_renyi_graph() are aliases of this function. #### **Parameters** - **n** (*int*) The number of nodes. - **p** (*float*) Probability for edge creation. - seed (int, optional) Seed for random number generator (default=None). - **directed** (bool, optional (default=False)) If True, this function returns a directed graph. #### See also: ``` fast_gnp_random_graph() ``` #### **Notes** This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), $fast_gnp_random_graph()$ is a faster algorithm. #### References # 6.5.7 newman_watts_strogatz_graph ``` newman watts strogatz graph (n, k, p, seed=None) ``` Return a Newman-Watts-Strogatz small-world graph. ### **Parameters** - **n** (*int*) The number of nodes. - **k** (*int*) Each node is joined with its k nearest neighbors in a ring topology. - **p** (*float*) The probability of adding a new edge for each edge. - seed (int, optional) The seed for the random number generator (the default is None). ### **Notes** First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors (or k-1 neighbors if k is odd). Then shortcuts are created by adding new edges as follows: for each edge (u, v) in the underlying "n-ring with k nearest neighbors" with probability p add a new edge (u, w) with randomly-chosen existing node w. In contrast with $watts_strogatz_graph()$, no edges are removed. #### See also: ``` watts_strogatz_graph() ``` #### References ### 6.5.8 watts_strogatz_graph ### watts_strogatz_graph (n, k, p, seed=None) Return a Watts-Strogatz small-world graph. #### **Parameters** - **n** (*int*) The number of nodes - **k** (*int*) Each node is joined with its k nearest neighbors in a ring topology. - **p** (*float*) The probability of rewiring each edge - **seed** (*int*, *optional*) Seed for random number generator (default=None) #### See also: ``` newman_watts_strogatz_graph(), connected_watts_strogatz_graph() ``` ### **Notes** First create a ring over n nodes. Then each node in the ring is joined to its k nearest neighbors (or k-1 neighbors if k is odd). Then shortcuts are created by replacing some edges as follows: for each edge (u, v) in the underlying "n-ring with k nearest neighbors" with probability p replace it with a new edge (u, w) with uniformly random choice of existing node w. In contrast with <code>newman_watts_strogatz_graph()</code>, the random rewiring does not increase the number of edges. The rewired graph is not guaranteed to be connected as in <code>connected_watts_strogatz_graph()</code>. #### References # 6.5.9 connected_watts_strogatz_graph ``` connected_watts_strogatz_graph(n, k, p, tries=100, seed=None) ``` Returns a connected Watts-Strogatz small-world graph. Attempts to generate a connected graph by repeated generation of Watts-Strogatz small-world graphs. An exception is raised if the maximum number of tries is exceeded. #### **Parameters** - **n** (*int*) The number of nodes - **k** (*int*) Each node is joined with its k nearest neighbors in a ring topology. - **p** (*float*) The probability of rewiring each edge - **tries** (*int*) Number of attempts to generate a connected graph. - seed (int, optional) The seed for random number generator. ### See also: ``` newman_watts_strogatz_graph(), watts_strogatz_graph() ``` # 6.5.10 random regular graph ### $random_regular_graph(d, n, seed=None)$ Returns a random d-regular graph on n nodes. The resulting graph has no self-loops or parallel edges. #### **Parameters** - **d** (*int*) The degree of each node. - \mathbf{n} (integer) The number of nodes. The value of n*d must be even. - **seed** (hashable object) The seed for random number generator. ### **Notes** The nodes are numbered from 0 to n - 1. Kim and Vu's paper 2 shows that this algorithm samples in an asymptotically uniform way from the space of random graphs when $d = O(n^{1 / 3 - epsilon})$. **Raises** NetworkXError – If n * d is odd or d is greater than or equal to n. #### References # 6.5.11 barabasi albert graph ### barabasi_albert_graph (n, m, seed=None) Returns a random graph according to the Barabási-Albert preferential attachment model. A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to existing nodes with high degree. #### **Parameters** - **n** (*int*) Number of nodes - m (int) Number of edges to attach from a new node to existing nodes - seed (int, optional) Seed for random number generator (default=None). #### Returns G ### Return type Graph Raises NetworkXError – If m does not satisfy 1 <= m < n. ### References # 6.5.12 powerlaw_cluster_graph # powerlaw_cluster_graph (n, m, p, seed=None) Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering. ² Jeong Han Kim and Van H. Vu, Generating random regular graphs, Proceedings of the thirty-fifth ACM symposium on Theory of computing, San Diego, CA, USA, pp 213–222, 2003. http://portal.acm.org/citation.cfm?id=780542.780576 #### **Parameters** - **n** (*int*) the number of nodes - m (int) the number of random edges to add for each new node - **p** (*float*,) Probability of adding a triangle after adding a random edge - seed (int, optional) Seed for random number generator (default=None). #### **Notes** The average clustering has a hard time getting above a certain cutoff that depends on m. This cutoff is often quite low. The transitivity (fraction of triangles to possible triangles) seems to decrease with network size. It is essentially the Barabási–Albert (BA) growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle). This algorithm improves on BA in the sense that it enables a higher average clustering to be attained if desired. It seems possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked to a new node on the first iteration like the BA model. ``` Raises NetworkXError – If m does not satisfy 1 \le m \le n or p does not satisfy 0 \le p \le 1. ``` #### References # 6.5.13 random_kernel_graph random_kernel_graph (n, kernel_integral, kernel_root=None, seed=None) Return an random graph based on the specified kernel. The algorithm chooses each of the [n(n-1)]/2 possible edges with probability specified by a kernel kappa (x, y)¹. The kernel kappa (x, y) must be a symmetric (in x, y), non-negative, bounded function. ### **Parameters** - **n** (*int*) The number of nodes - **kernal_integral** (*function*) Function that returns the definite integral of the kernel kappa (x, y), F (y, a, b) := int_a^b kappa (x, y) dx - **kernel_root** (*function* (*optional*)) Function that returns the root b of the equation F(y,a,b) = r. If None, the root is found using scipy.optimize.brentq() (this requires SciPy). - seed (int, optional) Seed for random number generator (default=None) ### **Notes** The kernel is specified through its definite integral which must be provided as one of the arguments. If the integral and root of the kernel integral can be found in O(1) time then this algorithm runs in time O(n+m) where m is the expected number of edges 2 . ¹ Bollobás, Béla, Janson, S. and Riordan, O. "The phase transition in inhomogeneous random graphs", *Random Structures Algorithms*, 31, 3–122, 2007. ² Hagberg A, Lemons N (2015), "Fast Generation of Sparse Random Kernel Graphs". PLoS ONE 10(9): e0135177, 2015. doi:10.1371/journal.pone.0135177 The nodes are set to integers
from 0 to n-1. ### **Examples** Generate an Erdős–Rényi random graph G(n, c/n), with kernel kappa (x, y) = c where c is the mean expected degree. #### See also: ``` gnp_random_graph(), expected_degree_graph() ``` #### References # 6.5.14 random lobster ``` random_lobster (n, p1, p2, seed=None) ``` Returns a random lobster graph. A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes. A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes; setting p2 to zero produces a caterillar. ### **Parameters** - **n** (*int*) The expected number of nodes in the backbone - **p1** (*float*) Probability of adding an edge to the backbone - **p2** (*float*) Probability of adding an edge one level beyond backbone - seed (int, optional) Seed for random number generator (default=None). # 6.5.15 random shell graph ``` random_shell_graph (constructor, seed=None) ``` Returns a random shell graph for the constructor given. #### **Parameters** - **constructor** (*list of three-tuples*) Represents the parameters for a shell, starting at the center shell. Each element of the list must be of the form (n, m, d), where n is the number of nodes in the shell, m is the number of edges in the shell, and d is the ratio of inter-shell (next) edges to intra-shell edges. If d is zero, there will be no intra-shell edges, and if d is one there will be all possible intra-shell edges. - **seed** (*int*, *optional*) Seed for random number generator (default=None). ### **Examples** ``` >>> constructor = [(10, 20, 0.8), (20, 40, 0.8)] >>> G = nx.random_shell_graph(constructor) ``` # 6.5.16 random powerlaw tree random_powerlaw_tree (n, gamma=3, seed=None, tries=100) Returns a tree with a power law degree distribution. #### **Parameters** - **n** (*int*) The number of nodes. - gamma (*float*) Exponent of the power law. - seed (int, optional) Seed for random number generator (default=None). - **tries** (*int*) Number of attempts to adjust the sequence to make it a tree. Raises NetworkXError - If no valid sequence is found within the maximum number of attempts. #### **Notes** A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes). ### 6.5.17 random powerlaw tree sequence random_powerlaw_tree_sequence (n, gamma=3, seed=None, tries=100) Returns a degree sequence for a tree with a power law distribution. ### **Parameters** - **n** (*int*,) The number of nodes. - gamma (*float*) Exponent of the power law. - seed (int, optional) Seed for random number generator (default=None). - **tries** (*int*) Number of attempts to adjust the sequence to make it a tree. Raises NetworkXError - If no valid sequence is found within the maximum number of attempts. ### **Notes** 444 A trial power law degree sequence is chosen and then elements are swapped with new elements from a power law distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes). # 6.6 Duplication Divergence Functions for generating graphs based on the "duplication" method. These graph generators start with a small initial graph then duplicate nodes and (partially) duplicate their edges. These functions are generally inspired by biological networks. | duplication_divergence_graph(n, p[, seed]) | Returns an undirected graph using the duplication- | |--|--| | | divergence model. | | <pre>partial_duplication_graph(N, n, p, q[, seed])</pre> | Return a random graph using the partial duplication model. | # 6.6.1 duplication_divergence_graph ### duplication_divergence_graph (n, p, seed=None) Returns an undirected graph using the duplication-divergence model. A graph of n nodes is created by duplicating the initial nodes and retaining edges incident to the original nodes with a retention probability p. ### **Parameters** - **n** (*int*) The desired number of nodes in the graph. - **p** (*float*) The probability for retaining the edge of the replicated node. - seed (int, optional) A seed for the random number generator of random (default=None). #### Returns G #### **Return type** *Graph* Raises NetworkXError – If p is not a valid probability. If n is less than 2. ### **Notes** This algorithm appears in [1]. This implementation disallows the possibility of generating disconnected graphs. #### References # 6.6.2 partial_duplication_graph ### $partial_duplication_graph(N, n, p, q, seed=None)$ Return a random graph using the partial duplication model. #### **Parameters** - N(int) The total number of nodes in the final graph. - **n** (*int*) The number of nodes in the initial clique. - **p** (*float*) The probability of joining each neighbor of a node to the duplicate node. Must be a number in the between zero and one, inclusive. - **q** (*float*) The probability of joining the source node to the duplicate node. Must be a number in the between zero and one, inclusive. • **seed** (*int*, *optional*) – Seed for random number generator (default=None). #### **Notes** A graph of nodes is grown by creating a fully connected graph of size n. The following procedure is then repeated until a total of N nodes have been reached. - 1.A random node, u, is picked and a new node, v, is created. - 2. For each neighbor of u an edge from the neighbor to v is created with probability p. - 3.An edge from u to v is created with probability q. This algorithm appears in [1]. This implementation allows the possibility of generating disconnected graphs. #### References # 6.7 Degree Sequence Generate graphs with a given degree sequence or expected degree sequence. | configuration_model(deg_sequence[,]) | Return a random graph with the given degree sequence. | |--|--| | directed_configuration_model([,]) | Return a directed_random graph with the given degree se- | | | quences. | | expected_degree_graph(w[, seed, selfloops]) | Return a random graph with given expected degrees. | | havel_hakimi_graph(deg_sequence[, create_using]) | Return a simple graph with given degree sequence con- | | | structed using the Havel-Hakimi algorithm. | | directed_havel_hakimi_graph(in_deg_sequence, | Return a directed graph with the given degree sequences. | |) | | | degree_sequence_tree(deg_sequence[,]) | Make a tree for the given degree sequence. | | random_degree_sequence_graph(sequence[,]) | Return a simple random graph with the given degree se- | | | quence. | # 6.7.1 configuration model configuration_model (deg_sequence, create_using=None, seed=None) Return a random graph with the given degree sequence. The configuration model generates a random pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequence. #### **Parameters** - **deg_sequence** (*list of integers*) Each list entry corresponds to the degree of a node. - **create_using** (*graph*, *optional* (*default MultiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (*hashable object, optional*) Seed for random number generator. **Returns G** – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. Return type MultiGraph **Raises** NetworkXError – If the degree sequence does not have an even sum. #### See also: ``` is_valid_degree_sequence() ``` #### **Notes** As described by Newman ¹. A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even sum. This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. The density of self-loops and parallel edges tends to decrease as the number of nodes increases. However, typically the number of self-loops will approach a Poisson distribution with a nonzero mean, and similarly for the number of parallel edges. Consider a node with k stubs. The probability of being joined to another stub of the same node is basically (k-1)/N where k is the degree and N is the number of nodes. So the probability of a self-loop scales like c/N for some constant c. As N grows, this means we expect c self-loops. Similarly for parallel edges. #### References ### **Examples** ``` >>> from networkx.utils import powerlaw_sequence >>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence) >>> G=nx.configuration_model(z) ``` To remove parallel edges: ``` >>> G=nx.Graph(G) ``` To remove self loops: ``` >>> G.remove_edges_from(G.selfloop_edges()) ``` # 6.7.2 directed configuration model Return a directed_random graph with the given degree sequences. The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequences. ### **Parameters** • in_degree_sequence (list of integers) – Each list entry corresponds to the in-degree of a node. ¹ M.E.J. Newman, "The structure and function of complex networks", SIAM REVIEW 45-2, pp 167-256, 2003. - out_degree_sequence (list of integers) Each list entry corresponds to the out-degree of a node. - **create_using** (*graph*, *optional* (*default MultiDiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (*hashable object, optional*) Seed for random number generator. **Returns** G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.
Return type MultiDiGraph Raises NetworkXError - If the degree sequences do not have the same sum. #### See also: ``` configuration_model() ``` #### **Notes** Algorithm as described by Newman ¹. A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same sum. This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases. #### References #### **Examples** ``` >>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph >>> din=list(d for n, d in D.in_degree()) >>> dout=list(d for n, d in D.out_degree()) >>> din.append(1) >>> dout[0]=2 >>> D=nx.directed_configuration_model(din,dout) ``` To remove parallel edges: ``` >>> D=nx.DiGraph(D) ``` To remove self loops: ``` >>> D.remove_edges_from(D.selfloop_edges()) ``` ¹ Newman, M. E. J. and Strogatz, S. H. and Watts, D. J. Random graphs with arbitrary degree distributions and their applications Phys. Rev. E, 64, 026118 (2001) # 6.7.3 expected degree graph expected_degree_graph (w, seed=None, selfloops=True) Return a random graph with given expected degrees. Given a sequence of expected degrees $W=(w_0, w_1, ldots, w_{n-1})$ of length n this algorithm assigns an edge between node u and node v with probability $$p_{uv} = \frac{w_u w_v}{\sum_k w_k}.$$ #### **Parameters** - w (list) The list of expected degrees. - selfloops (bool (default=True)) Set to False to remove the possibility of self-loop edges. - seed (hashable object, optional) The seed for the random number generator. #### Returns Return type Graph ### **Examples** ``` >>> z=[10 for i in range(100)] >>> G=nx.expected_degree_graph(z) ``` ### **Notes** The nodes have integer labels corresponding to index of expected degrees input sequence. The complexity of this algorithm is $mathcal{O}$ (n+m) where n is the number of nodes and m is the expected number of edges. The model in ¹ includes the possibility of self-loop edges. Set selfloops=False to produce a graph without self loops. For finite graphs this model doesn't produce exactly the given expected degree sequence. Instead the expected degrees are as follows. For the case without self loops (selfloops=False), $$E[deg(u)] = \sum_{v \neq u} p_{uv} = w_u \left(1 - \frac{w_u}{\sum_k w_k} \right).$$ NetworkX uses the standard convention that a self-loop edge counts 2 in the degree of a node, so with self loops (selfloops=True), $$E[deg(u)] = \sum_{v \neq u} p_{uv} + 2p_{uu} = w_u \left(1 + \frac{w_u}{\sum_k w_k} \right).$$ ¹ Fan Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann. Combinatorics, 6, pp. 125-145, 2002. ### References # 6.7.4 havel_hakimi_graph havel_hakimi_graph (deg_sequence, create_using=None) Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm. #### **Parameters** - **deg_sequence** (*list of integers*) Each integer corresponds to the degree of a node (need not be sorted). - **create_using** (*graph*, *optional* (*default Graph*)) Return graph of this type. The instance will be cleared. Directed graphs are not allowed. **Raises** NetworkXException – For a non-graphical degree sequence (i.e. one not realizable by some simple graph). #### **Notes** The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting graph has a high degree-associativity. Nodes are labeled 1,.., len(deg_sequence), corresponding to their position in deg_sequence. The basic algorithm is from Hakimi ¹ and was generalized by Kleitman and Wang ². ### References ### 6.7.5 directed havel hakimi graph directed_havel_hakimi_graph (in_deg_sequence, out_deg_sequence, create_using=None) Return a directed graph with the given degree sequences. ### Parameters - in_deg_sequence (list of integers) Each list entry corresponds to the in-degree of a node. - out_deg_sequence (list of integers) Each list entry corresponds to the out-degree of a node. - **create_using** (*graph*, *optional* (*default DiGraph*)) Return graph of this type. The instance will be cleared. **Returns** G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence Return type DiGraph Raises NetworkXError – If the degree sequences are not digraphical. # See also: configuration_model() ¹ Hakimi S., On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I, Journal of SIAM, 10(3), pp. 496-506 (1962) ² Kleitman D.J. and Wang D.L. Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973) ### **Notes** Algorithm as described by Kleitman and Wang ¹. ### References # 6.7.6 degree sequence tree degree_sequence_tree (deg_sequence, create_using=None) Make a tree for the given degree sequence. A tree has #nodes-#edges=1 so the degree sequence must have len(deg_sequence)-sum(deg_sequence)/2=1 # 6.7.7 random_degree_sequence_graph random_degree_sequence_graph (sequence, seed=None, tries=10) Return a simple random graph with the given degree sequence. If the maximum degree d_m in the sequence is $O(m^{1/4})$ then the algorithm produces almost uniform random graphs in $O(m d_m)$ time where m is the number of edges. #### **Parameters** - **sequence** (*list of integers*) Sequence of degrees - seed (hashable object, optional) Seed for random number generator - tries (int, optional) Maximum number of tries to create a graph **Returns** G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in the sequence. ### Return type Graph ### Raises - NetworkXUnfeasible If the degree sequence is not graphical. - NetworkXError If a graph is not produced in specified number of tries ### See also: is_valid_degree_sequence(), configuration_model() #### **Notes** The generator algorithm ¹ is not guaranteed to produce a graph. ¹ D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973) ¹ Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1 #### References ### **Examples** ``` >>> sequence = [1, 2, 2, 3] >>> G = nx.random_degree_sequence_graph(sequence) >>> sorted(d for n, d in G.degree()) [1, 2, 2, 3] ``` ### 6.8 Random Clustered Generate graphs with given degree and triangle sequence. random_clustered_graph(joint_degree_sequence) Generate a random graph with the given joint independent edge degree and triangle degree sequence. # 6.8.1 random clustered graph random_clustered_graph (joint_degree_sequence, create_using=None, seed=None) Generate a random graph with the given joint independent edge degree and triangle degree sequence. This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops) by randomly assigning edges to match the given joint degree sequence. The joint degree sequence is a list of pairs of integers of the form $[(d_{1,i},d_{1,t}),d_{1,t}),d_{1,t}]$. According to this list, vertex u is a member of $d_{u,t}$ triangles and has $d_{u,i}$ other edges. The number $d_{u,t}$ is the *triangle degree* of u and the number $d_{u,i}$ is the *independent edge degree*. ### Parameters - **joint_degree_sequence** (*list of integer pairs*) Each list entry corresponds to the independent edge degree and triangle degree of a node. - **create_using** (*graph*, *optional* (*default MultiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (*hashable object, optional*) The seed for the random number generator. **Returns** G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. ### Return type MultiGraph **Raises** NetworkXError – If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3. #### **Notes** As described by Miller ¹ (see also Newman ² for an equivalent description). ¹ Joel C. Miller. "Percolation and epidemics in random clustered networks". In: Physical review. E, Statistical, nonlinear, and soft matter physics 80 (2 Part 1 August 2009). ² M. E. J. Newman. "Random Graphs with Clustering". In: Physical Review Letters 103 (5 July 2009) A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3. This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases. #### References ### **Examples** ``` >>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)] >>> G = nx.random_clustered_graph(deg) ``` ### To remove parallel edges: ``` >>> G = nx.Graph(G) ``` #### To remove self loops: ``` >>> G.remove_edges_from(G.selfloop_edges()) ``` # 6.9 Directed Generators for some directed graphs, including growing network (GN) graphs and scale-free graphs. | Return the growing network (GN) digraph with n nodes. | |--| |
Return the growing network with redirection (GNR) di- | | graph with n nodes and redirection probability p. | | Return the growing network with copying (GNC) digraph | | with n nodes. | | Returns a random k-out graph with preferential attachment. | | Returns a scale-free directed graph. | | | ### 6.9.1 gn graph gn_graph (n, kernel=None, create_using=None, seed=None) Return the growing network (GN) digraph with n nodes. The GN graph is built by adding nodes one at a time with a link to one previously added node. The target node for the link is chosen with probability based on degree. The default attachment kernel is a linear function of the degree of a node. The graph is always a (directed) tree. #### **Parameters** - **n** (*int*) The number of nodes for the generated graph. - **kernel** (function) The attachment kernel. 6.9. Directed 453 - **create_using** (*graph*, *optional* (*default DiGraph*)) Return graph of this type. The instance will be cleared. - seed (hashable object, optional) The seed for the random number generator. ### **Examples** To create the undirected GN graph, use the to_directed() method: ``` >>> D = nx.gn_graph(10) # the GN graph >>> G = D.to_undirected() # the undirected version ``` To specify an attachment kernel, use the kernel keyword argument: ``` >>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5 ``` #### References # 6.9.2 gnr_graph ``` gnr_graph (n, p, create_using=None, seed=None) ``` Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p. The GNR graph is built by adding nodes one at a time with a link to one previously added node. The previous target node is chosen uniformly at random. With probability p the link is instead "redirected" to the successor node of the target. The graph is always a (directed) tree. ### Parameters - **n** (*int*) The number of nodes for the generated graph. - **p** (*float*) The redirection probability. - **create_using** (*graph*, *optional* (*default DiGraph*)) Return graph of this type. The instance will be cleared. - seed (hashable object, optional) The seed for the random number generator. ### **Examples** To create the undirected GNR graph, use the to_directed() method: ``` >>> D = nx.gnr_graph(10, 0.5) # the GNR graph >>> G = D.to_undirected() # the undirected version ``` ### References ### 6.9.3 gnc graph ``` gnc_graph (n, create_using=None, seed=None) ``` Return the growing network with copying (GNC) digraph with n nodes. The GNC graph is built by adding nodes one at a time with a link to one previously added node (chosen uniformly at random) and to all of that node's successors. #### **Parameters** - **n** (*int*) The number of nodes for the generated graph. - create_using (graph, optional (default DiGraph)) Return graph of this type. The instance will be cleared. - seed (hashable object, optional) The seed for the random number generator. #### References # 6.9.4 random k out graph random_k_out_graph (n, k, alpha, self_loops=True, seed=None) Returns a random k-out graph with preferential attachment. A random k-out graph with preferential attachment is a multidigraph generated by the following algorithm. - 1.Begin with an empty digraph, and initially set each node to have weight alpha. - 2. Choose a node u with out-degree less than k uniformly at random. - 3. Choose a node v from with probability proportional to its weight. - 4.Add a directed edge from u to v, and increase the weight of v by one. - 5.If each node has out-degree k, halt, otherwise repeat from step 2. For more information on this model of random graph, see [1]. #### **Parameters** - **n** (*int*) The number of nodes in the returned graph. - **k** (*int*) The out-degree of each node in the returned graph. - alpha (float) A positive float representing the initial weight of each vertex. A higher number means that in step 3 above, nodes will be chosen more like a true uniformly random sample, and a lower number means that nodes are more likely to be chosen as their in-degree increases. If this parameter is not positive, a ValueError is raised. - **self_loops** (*bool*) If True, self-loops are allowed when generating the graph. - seed (int) If provided, this is used as the seed for the random number generator. **Returns** A k-out-regular multidigraph generated according to the above algorithm. Return type MultiDiGraph Raises ValueError – If alpha is not positive. #### **Notes** The returned multidigraph may not be strongly connected, or even weakly connected. 6.9. Directed 455 #### References [1]: **Peterson, Nicholas R., and Boris Pittel.** "Distance between two random k-out digraphs, with and without preferential attachment." arXiv preprint arXiv:1311.5961 (2013). http://arxiv.org/abs/1311.5961> # 6.9.5 scale free graph #### **Parameters** - **n** (*integer*) Number of nodes in graph - **alpha** (*float*) Probability for adding a new node connected to an existing node chosen randomly according to the in-degree distribution. - **beta** (*float*) Probability for adding an edge between two existing nodes. One existing node is chosen randomly according the in-degree distribution and the other chosen randomly according to the out-degree distribution. - **gamma** (*float*) Probability for adding a new node connected to an existing node chosen randomly according to the out-degree distribution. - **delta_in** (*float*) Bias for choosing ndoes from in-degree distribution. - **delta_out** (*float*) Bias for choosing ndoes from out-degree distribution. - **create_using** (*graph*, *optional* (*default MultiDiGraph*)) Use this graph instance to start the process (default=3-cycle). - seed (integer, optional) Seed for random number generator ### **Examples** Create a scale-free graph on one hundred nodes: ``` >>> G = nx.scale_free_graph(100) ``` ### **Notes** The sum of alpha, beta, and gamma must be 1. #### References # 6.10 Geometric Generators for geometric graphs. | <pre>random_geometric_graph(n, radius[, dim,])</pre> | Returns a random geometric graph in the unit cube. | |--|--| | <pre>geographical_threshold_graph(n, theta[,])</pre> | Returns a geographical threshold graph. | | | Continued on next page | Table 6.10 – continued from previous page | <pre>waxman_graph(n[, alpha, beta, L, domain, metric])</pre> | Return a Waxman random graph. | |--|---------------------------------------| | navigable_small_world_graph(n[, p, q, r,]) | Return a navigable small-world graph. | # 6.10.1 random_geometric_graph random_geometric_graph (n, radius, dim=2, pos=None, metric=None) Returns a random geometric graph in the unit cube. The random geometric graph model places n nodes uniformly at random in the unit cube. Two nodes are joined by an edge if the distance between the nodes is at most radius. #### **Parameters** - **n** (int or iterable) Number of nodes or iterable of nodes - radius (float) Distance threshold value - dim (int, optional) Dimension of graph - pos (dict, optional) A dictionary keyed by node with node positions as values. - **metric** (*function*) A metric on vectors of numbers (represented as lists or tuples). This must be a function that accepts two lists (or tuples) as input and yields a number as output. The function must also satisfy the four requirements of a metric. Specifically, if *d* is the function and *x*, *y*, and *z* are vectors in the graph, then *d* must satisfy - 1. d*(*x, y) 0, - 2. $d^*(x, y) = 0$ if and only if x = y, - 3. d*(*x, y) = d*(*y, x), - 4. $d^*(x, z) d^*(x, y) + d^*(y, z)$. If this argument is not specified, the Euclidean distance metric is used. **Returns** A random geometric graph, undirected and without self-loops. Each node has a node attribute 'pos' that stores the position of that node in Euclidean space as provided by the pos keyword argument or, if pos was not provided, as generated by this function. Return type Graph ### **Examples** Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most 0.1: ``` >>> G = nx.random_geometric_graph(20, 0.1) ``` Specify an alternate distance metric using the metric keyword argument. For example, to use the "taxicab metric" instead of the default Euclidean metric: ``` >>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y)) >>> G = nx.random_geometric_graph(10, 0.1, metric=dist) ``` 6.10. Geometric 457 #### **Notes** This uses an $O(n^2)$ algorithm to build the graph. A faster algorithm is possible using k-d trees. The pos keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions. For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2: ``` >>> import random >>> n = 20 >>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)} >>> G = nx.random_geometric_graph(n, 0.2, pos=p) ``` #### References # 6.10.2 geographical_threshold_graph **geographical_threshold_graph** (*n*, *theta*, *alpha=2*, *dim=2*, *pos=None*, *weight=None*, *metric=None*) Returns a geographical threshold graph. The geographical threshold graph model places n nodes uniformly at random in a rectangular domain. Each node u is assigned a weight w_u . Two nodes u and v are joined by an edge if $$w_u + w_v \ge \theta r^{\alpha}$$ where r is the distance between u and v, and θ , α are parameters. #### **Parameters** - **n** (*int or iterable*) Number of nodes or iterable of nodes - theta (float) Threshold value - alpha (float, optional) Exponent of distance function - dim (int, optional) Dimension of graph - **pos** (*dict*) Node positions as a dictionary of tuples keyed by node. - weight (dict) Node weights as a dictionary of numbers keyed by node. - **metric** (*function*) A metric on
vectors of numbers (represented as lists or tuples). This must be a function that accepts two lists (or tuples) as input and yields a number as output. The function must also satisfy the four requirements of a metric. Specifically, if *d* is the function and *x*, *y*, and *z* are vectors in the graph, then *d* must satisfy - 1. d*(*x, y) 0, - 2. $d^*(x, y) = 0$ if and only if x = y, - 3. d*(*x, y) = d*(*y, x), - 4. $d^*(x, z) d^*(x, y) + d^*(y, z)$. If this argument is not specified, the Euclidean distance metric is used. #### Returns A random geographic threshold graph, undirected and without self-loops. Each node has a node attribute 'pos' that stores the position of that node in Euclidean space as provided by the pos keyword argument or, if pos was not provided, as generated by this function. Similarly, each node has a node attribute 'weight' that stores the weight of that node as provided or as generated. Return type Graph ### **Examples** Specify an alternate distance metric using the metric keyword argument. For example, to use the "taxicab metric" instead of the default Euclidean metric: ``` >>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y)) >>> G = nx.geographical_threshold_graph(10, 0.1, metric=dist) ``` #### **Notes** If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter $\lambda = 1$. To specify weights from a different distribution, use the weight keyword argument: ``` >>> import random >>> n = 20 >>> w = {i: random.expovariate(5.0) for i in range(n)} >>> G = nx.geographical_threshold_graph(20, 50, weight=w) ``` If node positions are not specified they are randomly assigned from the uniform distribution. ### References # 6.10.3 waxman_graph waxman_graph (n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1), metric=None)Return a Waxman random graph. The Waxman random graph model places n nodes uniformly at random in a rectangular domain. Each pair of nodes at distance d is joined by an edge with probability $$p = \alpha \exp(-d/\beta L)$$. This function implements both Waxman models, using the L keyword argument. - •Waxman-1: if L is not specified, it is set to be the maximum distance between any pair of nodes. - •Waxman-2: if L is specified, the distance between a pair of nodes is chosen uniformly at random from the interval [0, L]. ### **Parameters** - **n** (*int or iterable*) Number of nodes or iterable of nodes - alpha (*float*) Model parameter - **beta** (*float*) Model parameter - L (*float*, *optional*) Maximum distance between nodes. If not specified, the actual distance is calculated. 6.10. Geometric 459 - **domain** (four-tuple of numbers, optional) Domain size, given as a tuple of the form (x_min, y_min, x_max, y_max). - **metric** (*function*) A metric on vectors of numbers (represented as lists or tuples). This must be a function that accepts two lists (or tuples) as input and yields a number as output. The function must also satisfy the four requirements of a metric. Specifically, if *d* is the function and *x*, *y*, and *z* are vectors in the graph, then *d* must satisfy - 1. d*(*x, y) = 0, - 2. $d^*(x, y) = 0$ if and only if x = y, - 3. d*(*x, y) = d*(*y, x), - 4. $d^*(x, z) d^*(x, y) + d^*(y, z)$. If this argument is not specified, the Euclidean distance metric is used. **Returns** A random Waxman graph, undirected and without self-loops. Each node has a node attribute 'pos' that stores the position of that node in Euclidean space as generated by this function. Return type Graph # **Examples** Specify an alternate distance metric using the metric keyword argument. For example, to use the "taxicab metric" instead of the default Euclidean metric: ``` >>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y)) >>> G = nx.waxman_graph(10, 0.5, 0.1, metric=dist) ``` ### References # 6.10.4 navigable small world graph ``` \verb"navigable_small_world_graph" (n, p=1, q=1, r=2, dim=2, seed=None) ``` Return a navigable small-world graph. A navigable small-world graph is a directed grid with additional long-range connections that are chosen randomly. ``` [...] we begin with a set of nodes [...] that are identified with the set of lattice points in an n \times n square, \{(i,j): i \in \{1,2,\ldots,n\}, j \in \{1,2,\ldots,n\}\}, and we define the lattice distance between two nodes (i,j) and (k,1) to be the number of "lattice steps" separating them: d((i,j),(k,1)) = |k-i| + |1-j|. ``` For a universal constant p >= 1, the node u has a directed edge to every other node within lattice distance p— these are its *local contacts*. For universal constants q >= 0 and r >= 0 we also construct directed edges from u to q other nodes (the *long-range contacts*) using independent random trials; the i`th directed edge from `u has endpoint v with probability proportional to $[d(u,v)]^{-r}$. ___1 ### **Parameters** ¹ J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000. - **n** (*int*) The number of nodes. - **p** (*int*) The diameter of short range connections. Each node is joined with every other node within this lattice distance. - q (int) The number of long-range connections for each node. - **r** (*float*) Exponent for decaying probability of connections. The probability of connecting to a node at lattice distance d is 1/d^r. - dim (int) Dimension of grid - seed (int, optional) Seed for random number generator (default=None). #### References # 6.11 Line Graph Functions for generating line graphs. line_graph(G[, create_using]) Returns the line graph of the graph or digraph G. # 6.11.1 line graph ### line_graph (G, create_using=None) Returns the line graph of the graph or digraph G. The line graph of a graph G has a node for each edge in G and an edge joining those nodes if the two edges in G share a common node. For directed graphs, nodes are adjacent exactly when the edges they represent form a directed path of length two. The nodes of the line graph are 2-tuples of nodes in the original graph (or 3-tuples for multigraphs, with the key of the edge as the third element). For information about self-loops and more discussion, see the **Notes** section below. **Parameters** G (graph) – A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph. **Returns** L – The line graph of G. Return type graph ### **Examples** ``` >>> import networkx as nx >>> G = nx.star_graph(3) >>> L = nx.line_graph(G) >>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3 [[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]] ``` ### **Notes** Graph, node, and edge data are not propagated to the new graph. For undirected graphs, the nodes in G must be sortable, otherwise the constructed line graph may not be correct. 6.11. Line Graph 461 Self-loops in undirected graphs For an undirected graph G without multiple edges, each edge can be written as a set $\{u,v\}$. Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then $\{x,y\}$ is an edge in L if and only if the intersection of x and y is nonempty. Thus, the set of all edges is determined by the set of all pairwise intersections of edges in G. Trivially, every edge in G would have a nonzero intersection with itself, and so every node in L should have a self-loop. This is not so interesting, and the original context of line graphs was with simple graphs, which had no self-loops or multiple edges. The line graph was also meant to be a simple graph and thus, self-loops in L are not part of the standard definition of a line graph. In a pairwise intersection matrix, this is analogous to excluding the diagonal entries from the line graph definition. Self-loops and multiple edges in G add nodes to L in a natural way, and do not require any fundamental changes to the definition. It might be argued that the self-loops we excluded before should now be included. However, the self-loops are still "trivial" in some sense and thus, are usually excluded. Self-loops in directed graphs For a directed graph G without multiple edges, each edge can be written as a tuple (u, v). Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then (x, y) is an edge in L if and only if the tail of x matches the head of y, for example, if x = (a, b) and y = (b, c) for some vertices a, b, and c in G. Due to the directed nature of the edges, it is no longer the case that every edge in G should have a self-loop in L. Now, the only time self-loops arise is if a node in G itself has a self-loop. So such self-loops are no longer "trivial" but instead, represent essential features of the topology of G. For this reason, the historical development of line digraphs is such that self-loops are included. When the graph G has multiple edges, once again only superficial changes are required to the definition. ### References - •Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs", Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161–168. - •Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs", in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory, Academic Press Inc., pp. 271–305. # 6.12 Ego Graph Ego graph. | ego_graph(G, n[, radius, center,]) | Returns induced subgraph of neighbors centered at node n | |------------------------------------|--| | | within a given radius. | # 6.12.1 ego graph **ego_graph** (*G*, *n*, *radius=1*, *center=True*, *undirected=False*, *distance=None*) Returns induced subgraph of neighbors centered at node n within a given radius. #### **Parameters** - **G** (*graph*) A NetworkX Graph or DiGraph - **n** (node) A single node - radius (number, optional) Include all neighbors of distance<=radius from n. - center (bool, optional) If False, do not include center node in graph - undirected (bool, optional) If True use both in- and out-neighbors of directed graphs. - **distance**
(*key, optional*) Use specified edge data key as distance. For example, setting distance='weight' will use the edge weight to measure the distance from the node n. ## **Notes** For directed graphs D this produces the "out" neighborhood or successors. If you want the neighborhood of predecessors first reverse the graph with D.reverse(). If you want both directions use the keyword argument undirected=True. Node, edge, and graph attributes are copied to the returned subgraph. # 6.13 Stochastic Functions for generating stochastic graphs from a given weighted directed graph. | stochastic_graph(G[, copy, weight]) | Returns a right-stochastic representation of directed graph | |-------------------------------------|---| | | G. | # 6.13.1 stochastic_graph stochastic_graph(G, copy=True, weight='weight') Returns a right-stochastic representation of directed graph G. A right-stochastic graph is a weighted digraph in which for each node, the sum of the weights of all the out-edges of that node is 1. If the graph is already weighted (for example, via a 'weight' edge attribute), the reweighting takes that into account. #### **Parameters** - **G** (directed graph) A DiGraph or MultiDiGraph. - **copy** (*boolean*, *optional*) If this is True, then this function returns a new graph with the stochastic reweighting. Otherwise, the original graph is modified in-place (and also returned, for convenience). - weight (edge attribute key (optional, default='weight')) Edge attribute key used for reading the existing weight and setting the new weight. If no attribute with this key is found for an edge, then the edge weight is assumed to be 1. If an edge has a weight, it must be a a positive number. # 6.14 Intersection Generators for random intersection graphs. ``` uniform_random_intersection_graph(n, m, p[, Return a uniform random intersection graph. ...]) Continued on next page ``` 6.14. Intersection 463 ## Table 6.14 – continued from previous page | | <u> </u> | |---|--| | $k_{random_intersection_graph(n, m, k)}$ | Return a intersection graph with randomly chosen attribute | | | sets for each node that are of equal size (k). | | <pre>general_random_intersection_graph(n, m, p)</pre> | Return a random intersection graph with independent prob- | | | abilities for connections between node and attribute sets. | # 6.14.1 uniform_random_intersection_graph ## uniform_random_intersection_graph (n, m, p, seed=None) Return a uniform random intersection graph. #### **Parameters** - **n** (*int*) The number of nodes in the first bipartite set (nodes) - **m** (*int*) The number of nodes in the second bipartite set (attributes) - **p** (*float*) Probability of connecting nodes between bipartite sets - **seed** (*int*, *optional*) Seed for random number generator (default=None). ## See also: ``` gnp_random_graph() ``` #### References # 6.14.2 k random intersection graph ## $k_random_intersection_graph(n, m, k)$ Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k). ## **Parameters** - **n** (*int*) The number of nodes in the first bipartite set (nodes) - m (int) The number of nodes in the second bipartite set (attributes) - **k** (*float*) Size of attribute set to assign to each node. - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### See also: ``` gnp_random_graph(), uniform_random_intersection_graph() ``` ## References # 6.14.3 general_random_intersection_graph ## ${\tt general_random_intersection_graph}\ (n,m,p)$ Return a random intersection graph with independent probabilities for connections between node and attribute sets. ## **Parameters** - **n** (*int*) The number of nodes in the first bipartite set (nodes) - **m** (*int*) The number of nodes in the second bipartite set (attributes) - p (list of floats of length m) Probabilities for connecting nodes to each attribute - **seed** (*int*, *optional*) Seed for random number generator (default=None). ### See also: ``` gnp_random_graph(), uniform_random_intersection_graph() ``` #### References # 6.15 Social Networks #### Famous social networks. | karate_club_graph() | Return Zachary's Karate Club graph. | |------------------------------|---| | davis_southern_women_graph() | Return Davis Southern women social network. | | florentine_families_graph() | Return Florentine families graph. | # 6.15.1 karate_club_graph ## karate_club_graph() Return Zachary's Karate Club graph. Each node in the returned graph has a node attribute 'club' that indicates the name of the club to which the member represented by that node belongs, either 'Mr. Hi' or 'Officer'. ## **Examples** To get the name of the club to which a node belongs: ``` >>> import networkx as nx >>> G = nx.karate_club_graph() >>> G.node[5]['club'] 'Mr. Hi' >>> G.node[9]['club'] 'Officer' ``` # References # 6.15.2 davis_southern_women_graph ## davis_southern_women_graph() Return Davis Southern women social network. This is a bipartite graph. 6.15. Social Networks 465 #### References # 6.15.3 florentine families graph ## florentine_families_graph() Return Florentine families graph. #### References # 6.16 Community Generators for classes of graphs used in studying social networks. | caveman_graph(l, k) | Returns a caveman graph of 1 cliques of size k. | |--|--| | | | | ${\it connected_caveman_graph}(l,k)$ | Returns a connected caveman graph of 1 cliques of size k. | | $relaxed_caveman_graph(l, k, p[, seed])$ | Return a relaxed caveman graph. | | <pre>random_partition_graph(sizes, p_in, p_out[,])</pre> | Return the random partition graph with a partition of sizes. | | $planted_partition_graph(l, k, p_in, p_out[,])$ | Return the planted l-partition graph. | | <pre>gaussian_random_partition_graph(n, s, v,)</pre> | Generate a Gaussian random partition graph. | | ring_of_cliques(num_cliques, clique_size) | Defines a "ring of cliques" graph. | # 6.16.1 caveman_graph ## ${\tt caveman_graph}\,(l,k)$ Returns a caveman graph of 1 cliques of size k. #### **Parameters** - **l** (*int*) Number of cliques - **k** (*int*) Size of cliques **Returns G** – caveman graph Return type NetworkX Graph ## **Notes** This returns an undirected graph, it can be converted to a directed graph using $nx.to_directed()$, or a multigraph using $nx.MultiGraph(nx.caveman_graph(l,k))$. Only the undirected version is described in 1 and it is unclear which of the directed generalizations is most useful. # **Examples** ``` >>> G = nx.caveman_graph(3, 3) ``` ## See also: connected_caveman_graph() ¹ Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. ## References # 6.16.2 connected caveman graph ## $connected_caveman_graph(l, k)$ Returns a connected caveman graph of 1 cliques of size k. The connected caveman graph is formed by creating n cliques of size k, then a single edge in each clique is rewired to a node in an adjacent clique. #### **Parameters** - I (int) number of cliques - **k** (*int*) size of cliques Returns G - connected caveman graph Return type NetworkX Graph #### **Notes** This returns an undirected graph, it can be converted to a directed graph using $nx.to_directed()$, or a multigraph using $nx.MultiGraph(nx.caveman_graph(l,k))$. Only the undirected version is described in l and it is unclear which of the directed generalizations is most useful. ## **Examples** ``` >>> G = nx.connected_caveman_graph(3, 3) ``` ### References # 6.16.3 relaxed caveman graph ## relaxed_caveman_graph (l, k, p, seed=None) Return a relaxed caveman graph. A relaxed caveman graph starts with 1 cliques of size k. Edges are then randomly rewired with probability p to link different cliques. #### **Parameters** - **l** (*int*) Number of groups - **k** (*int*) Size of cliques - **p** (*float*) Probabilty of rewiring each edge. - **seed** (*int,optional*) Seed for random number generator(default=None) Returns G – Relaxed Caveman Graph Return type NetworkX Graph **Raises** NetworkXError: – If p is not in [0,1] 6.16. Community 467 ¹ Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. ## **Examples** ``` >>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42) ``` #### References # 6.16.4 random partition graph $random_partition_graph$ (sizes, p_in , p_out , seed=None, directed=False) Return the random partition graph with a partition of sizes. A partition graph is a graph of communities with sizes defined by s in sizes. Nodes in the same group are connected with probability p_in and nodes of different groups are connected with probability p_out. #### **Parameters** - sizes (list of ints) Sizes of groups - **p_in** (*float*) probability of edges with in groups - **p_out** (*float*) probability of edges between groups - **directed** (boolean optional, default=False) Whether to create a directed graph - seed (int optional, default None) A seed for the random number generator **Returns** G – random partition graph of size sum(gs) Return type NetworkX Graph or DiGraph **Raises** NetworkXError – If p_in or p_out is not in [0,1] ## **Examples** ``` >>> G = nx.random_partition_graph([10,10,10],.25,.01) >>> len(G) 30 >>> partition = G.graph['partition'] >>> len(partition) 3 ``` ## Notes This is a generalization of the planted-1-partition described in ¹. It allows for the creation of groups of any size. The partition is store as a graph attribute 'partition'. ¹ Santo Fortunato 'Community Detection in Graphs' Physical Reports Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612 http://arxiv.org/abs/0906.0612 #### References # 6.16.5 planted_partition_graph $\verb|planted_partition_graph| (l, k, p_in,
p_out, seed=None, directed=False)|$ Return the planted 1-partition graph. This model partitions a graph with n=1*k vertices in 1 groups with k vertices each. Vertices of the same group are linked with a probability p_in, and vertices of different groups are linked with probability p_out. #### **Parameters** - **l** (*int*) Number of groups - **k** (*int*) Number of vertices in each group - **p_in** (*float*) probability of connecting vertices within a group - **p_out** (*float*) probability of connected vertices between groups - **seed** (*int,optional*) Seed for random number generator(default=None) - directed (bool, optional (default=False)) If True return a directed graph **Returns** G – planted l-partition graph Return type NetworkX Graph or DiGraph **Raises** NetworkXError: – If p_in,p_out are not in [0,1] or ## **Examples** ``` >>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42) ``` ## See also: random_partition_model() #### References # 6.16.6 gaussian_random_partition_graph **gaussian_random_partition_graph** (n, s, v, p_in, p_out, directed=False, seed=None) Generate a Gaussian random partition graph. A Gaussian random partition graph is created by creating k partitions each with a size drawn from a normal distribution with mean s and variance s/v. Nodes are connected within clusters with probability p_in and between clusters with probability p_out[1] #### **Parameters** - **n** (*int*) Number of nodes in the graph - **s** (*float*) Mean cluster size - v (float) Shape parameter. The variance of cluster size distribution is s/v. - **p_in** (*float*) Probabilty of intra cluster connection. - **p_out** (*float*) Probability of inter cluster connection. 6.16. Community 469 - directed (boolean, optional default=False) Whether to create a directed graph or not - seed (int) Seed value for random number generator Returns G – gaussian random partition graph Return type NetworkX Graph or DiGraph **Raises** NetworkXError – If s is > n If p_in or p_out is not in [0,1] #### **Notes** Note the number of partitions is dependent on s,v and n, and that the last partition may be considerably smaller, as it is sized to simply fill out the nodes [1] #### See also: ``` random_partition_graph() ``` ## **Examples** ``` >>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1) >>> len(G) 100 ``` #### References # 6.16.7 ring of cliques ``` ring_of_cliques (num_cliques, clique_size) ``` Defines a "ring of cliques" graph. A ring of cliques graph is consisting of cliques, connected through single links. Each clique is a complete graph. ## **Parameters** - num_cliques (int) Number of cliques - **clique_size** (*int*) Size of cliques **Returns** G – ring of cliques graph Return type NetworkX Graph **Raises** NetworkXError – If the number of cliques is lower than 2 or if the size of cliques is smaller than 2. ## **Examples** ``` >>> G = nx.ring_of_cliques(8, 4) ``` ## See also: ``` connected_caveman_graph() ``` ## **Notes** The <code>connected_caveman_graph</code> graph removes a link from each clique to connect it with the next clique. Instead, the <code>ring_of_cliques</code> graph simply adds the link without removing any link from the cliques. # 6.17 Non Isomorphic Trees Implementation of the Wright, Richmond, Odlyzko and McKay (WROM) algorithm for the enumeration of all non-isomorphic free trees of a given order. Rooted trees are represented by level sequences, i.e., lists in which the i-th element specifies the distance of vertex i to the root. | nonisomorphic_trees(order[, create]) | Returns a list of nonisomporphic trees | |---|---| | <pre>number_of_nonisomorphic_trees(order)</pre> | Returns the number of nonisomorphic trees | # 6.17.1 nonisomorphic_trees nonisomorphic_trees (order, create='graph') Returns a list of nonisomporphic trees #### **Parameters** - **order** (*int*) order of the desired tree(s) - **create** (*graph or matrix* (*default="Graph*)) If graph is selected a list of trees will be returned, if matrix is selected a list of adjancency matrix will be returned #### Returns - **G** (*List of NetworkX Graphs*) - M (List of Adjacency matrices) ### References # 6.17.2 number of nonisomorphic trees ``` number_of_nonisomorphic_trees(order) ``` Returns the number of nonisomorphic trees **Parameters order** (*int*) – order of the desired tree(s) Returns length **Return type** Number of nonisomorphic graphs for the given order #### References # 6.18 Triads Functions that generate the triad graphs, that is, the possible digraphs on three nodes. 6.18. Triads 471 | triad graph(triad name) | Returns the triad graph with the given name. | |-------------------------|--| | | | | | | | | | | | | # 6.18.1 triad_graph #### triad_graph (triad_name) Returns the triad graph with the given name. Each string in the following tuple is a valid triad name: ``` ('003', '012', '102', '021D', '021U', '021C', '111D', '111U', '030T', '030C', '201', '120D', '120U', '120C', '210', '300') ``` Each triad name corresponds to one of the possible valid digraph on three nodes. **Parameters triad_name** (*string*) – The name of a triad, as described above. **Returns** The digraph on three nodes with the given name. The nodes of the graph are the single-character strings 'a', 'b', and 'c'. Return type DiGraph Raises ValueError - If triad_name is not the name of a triad. See also: triadic_census() # 6.19 Joint Degree Sequence Generate graphs with a given joint degree | is_valid_joint_degree(joint_degrees) | Checks whether the given joint degree dictionary is realiz- | |--|---| | | able as a simple graph. | | <pre>joint_degree_graph(joint_degrees[, seed])</pre> | Generates a random simple graph with the given joint de- | | | gree dictionary. | # 6.19.1 is valid joint degree ## is_valid_joint_degree (joint_degrees) Checks whether the given joint degree dictionary is realizable as a simple graph. A *joint degree dictionary* is a dictionary of dictionaries, in which entry $joint_degrees[k][1]$ is an integer representing the number of edges joining nodes of degree k with nodes of degree l. Such a dictionary is realizable as a simple graph if and only if the following conditions are satisfied. - •each entry must be an integer, - •the total number of nodes of degree k, computed by $sum(joint_degrees[k].values()) / k$, must be an integer, - •the total number of edges joining nodes of degree k with nodes of degree l cannot exceed the total number of possible edges, - •each diagonal entry joint_degrees[k][k] must be even (this is a convention assumed by the joint_degree_graph() function). **Parameters joint_degrees** (*dictionary of dictionary of integers*) – A joint degree dictionary in which entry joint_degrees [k] [l] is the number of edges joining nodes of degree k with nodes of degree l. **Returns** Whether the given joint degree dictionary is realizable as a simple graph. Return type bool #### References # 6.19.2 joint_degree_graph ``` joint_degree_graph (joint_degrees, seed=None) ``` Generates a random simple graph with the given joint degree dictionary. ## **Parameters** - **joint_degrees** (*dictionary of dictionary of integers*) A joint degree dictionary in which entry <code>joint_degrees[k][l]</code> is the number of edges joining nodes of degree k with nodes of degree l. - **seed** (hashable object, optional) Seed for random number generator. **Returns** G - A graph with the specified joint degree dictionary. Return type Graph Raises NetworkXError - If joint_degrees dictionary is not realizable. #### **Notes** In each iteration of the "while loop" the algorithm picks two disconnected nodes v and w, of degree k and l correspondingly, for which <code>joint_degrees[k][l]</code> has not reached its target yet. It then adds edge (v, w) and increases the number of edges in graph G by one. The intelligence of the algorithm lies in the fact that it is always possible to add an edge between such disconnected nodes v and w, even if one or both nodes do not have free stubs. That is made possible by executing a "neighbor switch", an edge rewiring move that releases a free stub while keeping the joint degree of G the same. The algorithm continues for E (number of edges) iterations of the "while loop", at the which point all entries of the given joint_degrees [k] [1] have reached their target values and the construction is complete. #### References # **Examples** # Linear algebra # 7.1 Graph Matrix Adjacency matrix and incidence matrix of graphs. | adjacency_matrix(G[, nodelist, weight]) | Return adjacency matrix of G. | |---|-------------------------------| | <pre>incidence_matrix(G[, nodelist, edgelist,])</pre> | Return incidence matrix of G. | # 7.1.1 adjacency_matrix adjacency_matrix(G, nodelist=None, weight='weight') Return adjacency matrix of G. #### **Parameters** - **G** (graph) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. **Returns** A – Adjacency matrix representation of G. **Return type** SciPy sparse matrix ## **Notes** For directed graphs, entry i,j corresponds to an edge from i to j. If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will return a dictionary-of-dictionaries format that can be addressed as a sparse matrix. For MultiGraph/MultiDiGraph with parallel edges the weights are summed. See to_numpy_matrix for other options. The convention used for self-loop edges in graphs is to assign the diagonal
matrix entry value to the edge weight attribute (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: ``` >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.adjacency_matrix(G) >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] ``` #### See also: ``` to_numpy_matrix(),to_scipy_sparse_matrix(),to_dict_of_dicts() ``` # 7.1.2 incidence_matrix incidence_matrix (G, nodelist=None, edgelist=None, oriented=False, weight=None) Return incidence matrix of G. The incidence matrix assigns each row to a node and each column to an edge. For a standard incidence matrix a 1 appears wherever a row's node is incident on the column's edge. For an oriented incidence matrix each edge is assigned an orientation (arbitrarily for undirected and aligning to direction for directed). A -1 appears for the tail of an edge and 1 for the head of the edge. The elements are zero otherwise. #### **Parameters** - **G** (graph) A NetworkX graph - **nodelist** (*list*, *optional* (*default= all nodes in G*)) The rows are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - **edgelist** (*list*, *optional* (*default= all edges in G*)) The columns are ordered according to the edges in edgelist. If edgelist is None, then the ordering is produced by G.edges(). - **oriented** (*bool*, *optional* (*default=False*)) If True, matrix elements are +1 or -1 for the head or tail node respectively of each edge. If False, +1 occurs at both nodes. - weight (*string or None, optional (default=None)*) The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. Edge weights, if used, should be positive so that the orientation can provide the sign. **Returns** A – The incidence matrix of G. **Return type** SciPy sparse matrix ## **Notes** For MultiGraph/MultiDiGraph, the edges in edgelist should be (u,v,key) 3-tuples. "Networks are the best discrete model for so many problems in applied mathematics" ¹. ¹ Gil Strang, Network applications: A = incidence matrix, http://academicearth.org/lectures/network-applications-incidence-matrix ## References # 7.2 Laplacian Matrix Laplacian matrix of graphs. | laplacian_matrix(G[, nodelist, weight]) | Return the Laplacian matrix of G. | |---|--| | normalized_laplacian_matrix(G[, nodelist,]) | Return the normalized Laplacian matrix of G. | | directed_laplacian_matrix(G[, nodelist,]) | Return the directed Laplacian matrix of G. | # 7.2.1 laplacian_matrix laplacian_matrix(G, nodelist=None, weight='weight') Return the Laplacian matrix of G. The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the diagonal matrix of node degrees. ## **Parameters** - **G** (*graph*) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. **Returns** L – The Laplacian matrix of G. **Return type** SciPy sparse matrix #### **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. #### See also: to_numpy_matrix(), normalized_laplacian_matrix() # 7.2.2 normalized laplacian matrix normalized_laplacian_matrix(G, nodelist=None, weight='weight') Return the normalized Laplacian matrix of G. The normalized graph Laplacian is the matrix $$N = D^{-1/2}LD^{-1/2}$$ where L is the graph Laplacian and D is the diagonal matrix of node degrees. ## **Parameters** • **G** (*graph*) – A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. **Returns** N – The normalized Laplacian matrix of G. Return type NumPy matrix #### **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options. If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is the adjacency matrix ². #### See also: laplacian_matrix() #### References # 7.2.3 directed_laplacian_matrix **directed_laplacian_matrix** (*G*, nodelist=None, weight='weight', walk_type=None, alpha=0.95) Return the directed Laplacian matrix of G. The graph directed Laplacian is the matrix $$L = I - (\Phi^{1/2}P\Phi^{-1/2} + \Phi^{-1/2}P^T\Phi^{1/2})/2$$ where I is the identity matrix, P is the transition matrix of the graph, and Phi a matrix with the Perron vector of P in the diagonal and zeros elsewhere. Depending on the value of walk_type, P can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank). ### **Parameters** - **G** (*DiGraph*) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. - walk_type (*string or None, optional (default=None)*) If None, P is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank' - alpha (real) (1 alpha) is the teleportation probability used with pagerank **Returns** L – Normalized Laplacian of G. Return type NumPy array Raises • NetworkXError - If NumPy cannot be imported ² Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98, March 2007. • NetworkXNotImplemnted - If G is not a DiGraph #### **Notes** Only implemented for DiGraphs #### See also: ``` laplacian_matrix() ``` #### References # 7.3 Spectrum Eigenvalue spectrum of graphs. | laplacian_spectrum(G[, weight]) | Return eigenvalues of the Laplacian of G | |---------------------------------|--| | adjacency_spectrum(G[, weight]) | Return eigenvalues of the adjacency matrix of G. | # 7.3.1 laplacian spectrum ${\tt laplacian_spectrum}\,(\textit{G},\textit{weight='weight'})$ Return eigenvalues of the Laplacian of G ### **Parameters** - **G** (graph) A NetworkX graph - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns evals - Eigenvalues Return type NumPy array ## **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options. #### See also: ``` laplacian_matrix() ``` # 7.3.2 adjacency_spectrum ``` adjacency_spectrum(G, weight='weight') ``` Return eigenvalues of the adjacency matrix of G. ## **Parameters** - **G** (*graph*) A NetworkX graph - weight (*string or None*, *optional* (*default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. 7.3. Spectrum 479 **Returns** evals – Eigenvalues **Return type** NumPy array ## **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options. #### See also: adjacency_matrix() # 7.4 Algebraic Connectivity Algebraic connectivity and Fiedler vectors of undirected graphs. | algebraic_connectivity(G[, weight,]) | Return the algebraic connectivity of an undirected graph. | |---|--| | fiedler_vector(G[, weight, normalized, tol,]) | Return the Fiedler vector of a connected undirected graph. | | spectral_ordering(G[, weight, normalized,]) | Compute the spectral_ordering of a graph. | # 7.4.1 algebraic_connectivity **algebraic_connectivity** (*G*, weight='weight', normalized=False, tol=1e-08, method='tracemin') Return the algebraic connectivity of an undirected graph. The algebraic connectivity of a connected undirected graph is the second smallest eigenvalue of its Laplacian matrix. #### **Parameters** - **G** (*NetworkX graph*) An undirected graph. - weight (*object, optional*) The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. - **normalized** (*bool*, *optional*) Whether the normalized Laplacian matrix is used. Default value: False. - tol (*float*, *optional*) Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. - **method** (*string*, *optional*) Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. | Value | Solver | |-----------------|--| | 'tracemin_pcg' | Preconditioned conjugate gradient method | | 'tracemin_chol' | Cholesky factorization | | 'tracemin_lu' | LU factorization | Returns algebraic_connectivity - Algebraic connectivity. Return type float Raises - NetworkXNotImplemented If G is directed. - NetworkXError If G has less than two nodes. ## **Notes** Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed. #### See also: laplacian_matrix() # 7.4.2 fiedler vector **fiedler_vector** (G, weight='weight', normalized=False, tol=1e-08, method='tracemin') Return the Fiedler vector of a
connected undirected graph. The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix of of the graph. #### **Parameters** - **G** (*NetworkX graph*) An undirected graph. - weight (*object*, *optional*) The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. - **normalized** (*bool*, *optional*) Whether the normalized Laplacian matrix is used. Default value: False. - tol (*float*, *optional*) Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. - **method** (*string*, *optional*) Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. | Value | Solver | |-----------------|--| | 'tracemin_pcg' | Preconditioned conjugate gradient method | | 'tracemin_chol' | Cholesky factorization | | 'tracemin_lu' | LU factorization | Returns fiedler_vector - Fiedler vector. Return type NumPy array of floats. #### Raises - NetworkXNotImplemented If G is directed. - NetworkXError If G has less than two nodes or is not connected. #### **Notes** Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed. #### See also: ``` laplacian_matrix() ``` # 7.4.3 spectral_ordering **spectral_ordering** (*G*, weight='weight', normalized=False, tol=1e-08, method='tracemin') Compute the spectral_ordering of a graph. The spectral ordering of a graph is an ordering of its nodes where nodes in the same weakly connected components appear contiguous and ordered by their corresponding elements in the Fiedler vector of the component. #### **Parameters** - **G** (*NetworkX graph*) A graph. - weight (object, optional) The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. - **normalized** (*bool*, *optional*) Whether the normalized Laplacian matrix is used. Default value: False. - tol (*float*, *optional*) Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. - **method** (*string*, *optional*) Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. | Value | Solver | |-----------------|--| | 'tracemin_pcg' | Preconditioned conjugate gradient method | | 'tracemin_chol' | Cholesky factorization | | 'tracemin_lu' | LU factorization | **Returns** spectral_ordering – Spectral ordering of nodes. **Return type** NumPy array of floats. Raises NetworkXError - If G is empty. #### **Notes** Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed. #### See also: ``` laplacian_matrix() ``` # 7.5 Attribute Matrices Functions for constructing matrix-like objects from graph attributes. | <pre>attr_matrix(G[, edge_attr, node_attr,])</pre> | Returns a NumPy matrix using attributes from G. | |--|--| | <pre>attr_sparse_matrix(G[, edge_attr,])</pre> | Returns a SciPy sparse matrix using attributes from G. | # 7.5.1 attr_matrix Returns a NumPy matrix using attributes from G. If only G is passed in, then the adjacency matrix is constructed. Let A be a discrete set of values for the node attribute node_attr. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of the edge attribute edge_attr. If ua and va are the values of the node attribute node_attr for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va). #### **Parameters** - G(graph) The NetworkX graph used to construct the NumPy matrix. - edge_attr (str; optional) Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element. - **node_attr** (*str*; *optional*) Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph. - **normalized** (*bool*, *optional*) If True, then each row is normalized by the summation of its values. - rc_order (*list*, *optional*) A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value). #### **Other Parameters** - **dtype** (*NumPy data-type, optional*) A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used. - **order** (*f'C'*, *'F'*}, *optional*) Whether to store multidimensional data in C- or Fortrancontiguous (row- or column-wise) order in memory. This parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used. #### Returns - M (*NumPy matrix*) The attribute matrix. - **ordering** (*list*) If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well. 7.5. Attribute Matrices 483 ## **Examples** Construct an adjacency matrix: Alternatively, we can obtain the matrix describing edge thickness. We can also color the nodes and ask for the probability distribution over all edges (u,v) describing: Pr(v has color Y | u has color X) For example, the above tells us that for all edges (u,v): ``` Pr(v \text{ is red} \mid u \text{ is red}) = 1/3 Pr(v \text{ is blue} \mid u \text{ is red}) = 2/3 ``` $Pr(v \text{ is } red \mid u \text{ is } blue) = 1 Pr(v \text{ is } blue \mid u \text{ is } blue) = 0$ Finally, we can obtain the total weights listed by the node colors. Thus, the total weight over all edges (u,v) with u and v having colors: (red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints # 7.5.2 attr_sparse_matrix Returns a SciPy sparse matrix using attributes from G. If only G is passed in, then the adjacency matrix is constructed. Let A be a discrete set of values for the node attribute node_attr. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of the edge attribute edge_attr. If ua and va are the values of the node attribute node_attr for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va). #### **Parameters** - **G** (graph) The NetworkX graph used to construct the NumPy matrix. - edge_attr (str, optional) Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element. - **node_attr** (*str*, *optional*) Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph. - normalized (bool, optional) If True, then each row is normalized by the summation of its values. - rc_order (*list*, *optional*) A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value). **Other Parameters dtype** (*NumPy data-type, optional*) – A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used. ## Returns - M (*SciPy sparse matrix*) The attribute matrix. - **ordering** (*list*) If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well. ## **Examples** Construct an adjacency matrix: Alternatively, we can obtain the matrix describing edge thickness. 7.5. Attribute Matrices 485 We can also color the nodes and ask for the probability distribution over all edges (u,v) describing: Pr(v has color Y | u has color X) For example, the above tells us that for all edges (u,v): ``` Pr(v \text{ is red} \mid u \text{ is red}) = 1/3 Pr(v \text{ is blue} \mid u \text{ is red}) = 2/3 ``` $Pr(v \text{ is } red \mid u \text{ is } blue) = 1
Pr(v \text{ is } blue \mid u \text{ is } blue) = 0$ Finally, we can obtain the total weights listed by the node colors. Thus, the total weight over all edges (u,v) with u and v having colors: (red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints # Converting to and from other data formats # 8.1 To NetworkX Graph Functions to convert NetworkX graphs to and from other formats. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. ## **Examples** Create a graph with a single edge from a dictionary of dictionaries ``` >>> d={0: {1: 1}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) ``` #### See also: nx_agraph, nx_pydot ``` to_networkx_graph(data[, create_using, ...]) ``` Make a NetworkX graph from a known data structure. # 8.1.1 to_networkx_graph $\verb"to_networkx_graph" (data, create_using=None, multigraph_input=False)$ Make a NetworkX graph from a known data structure. The preferred way to call this is automatically from the class constructor ``` >>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) ``` instead of the equivalent ``` >>> G=nx.from_dict_of_dicts(d) ``` #### **Parameters** • data (object to be converted) – **Current known types are:** any NetworkX graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph - create_using (NetworkX graph) Use specified graph for result. Otherwise a new graph is created. - multigraph_input (bool (default False)) If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph. # 8.2 Dictionaries | to_dict_of_dicts(G[, nodelist, edge_data]) | Return adjacency representation of graph as a dictionary of dictionaries. | |---|---| | <pre>from_dict_of_dicts(d[, create_using,])</pre> | Return a graph from a dictionary of dictionaries. | # 8.2.1 to_dict_of_dicts to_dict_of_dicts (G, nodelist=None, edge_data=None) Return adjacency representation of graph as a dictionary of dictionaries. #### **Parameters** - **G** (*graph*) A NetworkX graph - nodelist (list) Use only nodes specified in nodelist - edge_data (*list*, optional) If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u,v). # 8.2.2 from dict of dicts **from_dict_of_dicts** (*d*, *create_using=None*, *multigraph_input=False*) Return a graph from a dictionary of dictionaries. ## **Parameters** - **d** (dictionary of dictionaries) A dictionary of dictionaries adjacency representation. - create_using (NetworkX graph) Use specified graph for result. Otherwise a new graph is created. - multigraph_input (bool (default False)) When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons. ## **Examples** ``` >>> dod= {0: {1:{'weight':1}}} # single edge (0,1) >>> G=nx.from_dict_of_dicts(dod) ``` or >>> G=nx.Graph(dod) # use Graph constructor # 8.3 Lists | to_dict_of_lists(G[, nodelist]) | Return adjacency representation of graph as a dictionary of | |--|---| | | lists. | | <pre>from_dict_of_lists(d[, create_using])</pre> | Return a graph from a dictionary of lists. | | to_edgelist(G[, nodelist]) | Return a list of edges in the graph. | | <pre>from_edgelist(edgelist[, create_using])</pre> | Return a graph from a list of edges. | # 8.3.1 to_dict_of_lists to_dict_of_lists(G, nodelist=None) Return adjacency representation of graph as a dictionary of lists. #### **Parameters** - **G** (*graph*) A NetworkX graph - **nodelist** (*list*) Use only nodes specified in nodelist ## **Notes** Completely ignores edge data for MultiGraph and MultiDiGraph. # 8.3.2 from dict of lists from_dict_of_lists (d, create_using=None) Return a graph from a dictionary of lists. #### **Parameters** - **d** (*dictionary of lists*) A dictionary of lists adjacency representation. - **create_using** (*NetworkX graph*) Use specified graph for result. Otherwise a new graph is created. ## **Examples** ``` >>> dol= {0:[1]} # single edge (0,1) >>> G=nx.from_dict_of_lists(dol) ``` or >>> G=nx.Graph(dol) # use Graph constructor # 8.3.3 to edgelist to_edgelist(G, nodelist=None) Return a list of edges in the graph. ### Parameters - **G** (graph) A NetworkX graph - nodelist (list) Use only nodes specified in nodelist 8.3. Lists 489 # 8.3.4 from edgelist from_edgelist (edgelist, create_using=None) Return a graph from a list of edges. #### **Parameters** - edgelist (list or iterator) Edge tuples - **create_using** (*NetworkX graph*) Use specified graph for result. Otherwise a new graph is created. # **Examples** ``` >>> edgelist= [(0,1)] # single edge (0,1) >>> G=nx.from_edgelist(edgelist) ``` or >>> G=nx.Graph(edgelist) # use Graph constructor # 8.4 Numpy Functions to convert NetworkX graphs to and from numpy/scipy matrices. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. ## **Examples** Create a 10 node random graph from a numpy matrix ``` >>> import numpy >>> a = numpy.reshape(numpy.random_random_integers(0,1,size=100),(10,10)) >>> D = nx.DiGraph(a) ``` ## or equivalently ``` >>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph()) ``` ### See also: nx_agraph, nx_pydot | <pre>to_numpy_matrix(G[, nodelist, dtype, order,])</pre> | Return the graph adjacency matrix as a NumPy matrix. | |--|--| | to_numpy_recarray(G[, nodelist, dtype, order]) | Return the graph adjacency matrix as a NumPy recarray. | | <pre>from_numpy_matrix(A[, parallel_edges,])</pre> | Return a graph from numpy matrix. | # 8.4.1 to_numpy_matrix to_numpy_matrix (G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0) Return the graph adjacency matrix as a NumPy matrix. ## **Parameters** - G (graph) The NetworkX graph used to construct the NumPy matrix. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - **dtype** (*NumPy data type, optional*) A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used. - **order** (*f* '*C*', '*F*'}, optional) Whether to store multidimensional data in C- or Fortrancontiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. - multigraph_weight ({sum, min, max}, optional) An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. - weight (string or None optional (default = 'weight')) The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. - **nonedge** (*float* (*default* = 0.0)) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. **Returns** M – Graph adjacency matrix Return type NumPy matrix #### See also: ``` to_numpy_recarray(), from_numpy_matrix() ``` ### **Notes** The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the multigraph_weight parameter. The default is to sum the weight attributes for each of the parallel edges. When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows: ``` >>> import numpy as np >>> G = nx.Graph([(1, 1)]) >>> A = nx.to_numpy_matrix(G) >>> A matrix([[1.]]) >>> A.A[np.diag_indices_from(A)] *= 2 >>> A matrix([[2.]]) ``` 8.4. Numpy 491 ## **Examples** # 8.4.2 to_numpy_recarray to_numpy_recarray (*G*, nodelist=None, dtype=None, order=None) Return the graph adjacency matrix as a NumPy recarray. #### **Parameters** - $\mathbf{G}(graph)$ The NetworkX graph used to construct the NumPy matrix. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - **dtype** (*NumPy data-type, optional*) A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary. - **order** (*f* '*C*', '*F*'}, optional) Whether
to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. Returns M - The graph with specified edge data as a Numpy recarray **Return type** NumPy recarray #### **Notes** When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. ## **Examples** ``` >>> G = nx.Graph() >>> G.add_edge(1,2,weight=7.0,cost=5) >>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)]) >>> print(A.weight) [[0. 7.] [7. 0.]] >>> print(A.cost) ``` ``` [[0 5] [5 0]] ``` # 8.4.3 from_numpy_matrix **from_numpy_matrix** (A, parallel_edges=False, create_using=None) Return a graph from numpy matrix. The numpy matrix is interpreted as an adjacency matrix for the graph. #### **Parameters** - A (numpy matrix) An adjacency matrix representation of a graph - **parallel_edges** (*Boolean*) If this is True, create_using is a multigraph, and A is an integer matrix, then entry (*i*, *j*) in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. - **create_using** (*NetworkX graph*) Use specified graph for result. The default is Graph() #### **Notes** If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph, parallel_edges is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges. If create_using is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph. If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type. If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph. ## See also: ``` to_numpy_matrix(), to_numpy_recarray() ``` ## **Examples** Simple integer weights on edges: ``` >>> import numpy >>> A=numpy.matrix([[1, 1], [2, 1]]) >>> G=nx.from_numpy_matrix(A) ``` If create_using is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): ``` >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} ``` 8.4. Numpy 493 If create_using is a multigraph and the matrix has only integer entries but parallel_edges is True, then the entries will be interpreted as the number of parallel edges joining those two vertices: ``` >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> temp = nx.MultiGraph() >>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} ``` User defined compound data type on edges: ``` >>> import numpy >>> dt = [('weight', float), ('cost', int)] >>> A = numpy.matrix([[(1.0, 2)]], dtype = dt) >>> G = nx.from_numpy_matrix(A) >>> list(G.edges()) [(0, 0)] >>> G[0][0]['cost'] 2 >>> G[0][0]['weight'] 1.0 ``` # 8.5 Scipy | to_scipy_sparse_matrix(G[, nodelist, dtype,]) | Return the graph adjacency matrix as a SciPy sparse matrix. | |---|--| | from_scipy_sparse_matrix(A[,]) | Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. | # 8.5.1 to scipy sparse matrix to_scipy_sparse_matrix (G, nodelist=None, dtype=None, weight='weight', format='csr') Return the graph adjacency matrix as a SciPy sparse matrix. ### **Parameters** - **G** (*graph*) The NetworkX graph used to construct the NumPy matrix. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - **dtype** (*NumPy data-type, optional*) A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. - weight (*string or None optional (default='weight'*)) The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. - **format** (*str in {'bsr'*, '*csr'*, '*csc'*, '*coo'*, '*lil'*, '*dia'*, '*dok'}*) The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See ¹ for details. **Returns** M – Graph adjacency matrix. ¹ Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html ## Return type SciPy sparse matrix #### **Notes** The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1. For multiple edges the matrix values are the sums of the edge weights. When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. Uses coo_matrix format. To convert to other formats specify the format= keyword. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: ``` >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.to_scipy_sparse_matrix(G) >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] ``` ## **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) 0 >>> G.add_edge(1,0) 0 >>> G.add_edge(2,2,weight=3) 0 >>> G.add_edge(2,2) 1 >>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2]) >>> print(S.todense()) [[0 2 0] [1 0 0] [0 0 4]] ``` #### References # 8.5.2 from_scipy_sparse_matrix **from_scipy_sparse_matrix** (A, parallel_edges=False, create_using=None, edge_attribute='weight') Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. ## **Parameters** • A (scipy sparse matrix) – An adjacency matrix representation of a graph 8.5. Scipy 495 - **parallel_edges** (*Boolean*) If this is True, create_using is a multigraph, and A is an integer matrix, then entry (*i*, *j*) in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. - **create_using** (*NetworkX graph*) Use specified graph for result. The default is Graph() - edge_attribute (*string*) Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). #### **Notes** If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph, parallel_edges is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges. In this case, edge_attribute will be ignored. If create_using is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph. ## **Examples** ``` >>> import scipy.sparse >>> A = scipy.sparse.eye(2,2,1) >>> G = nx.from_scipy_sparse_matrix(A) ``` If create_using is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): ``` >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} ``` If create_using is a multigraph and the matrix has only integer entries but parallel_edges is True, then the entries will be interpreted as the number of parallel edges joining those two vertices: # 8.6 Pandas | to_pandas_dataframe(G[, nodelist, dtype,]) | Return the graph adjacency matrix as a Pandas DataFrame. | |---|--| | <pre>from_pandas_dataframe(df, source, target[,])</pre> | Return a graph from Pandas DataFrame. | # 8.6.1 to pandas dataframe to_pandas_dataframe (G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0) Return the graph adjacency matrix as a Pandas DataFrame. #### **Parameters** - **G** (*graph*) The NetworkX graph used to construct the Pandas DataFrame. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - multigraph_weight ([sum, min, max], optional) An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. - weight (*string or None, optional*) The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. - **nonedge** (*float*, *optional*) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. **Returns df** – Graph adjacency matrix **Return type** Pandas DataFrame #### **Notes** The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the 'multigraph_weight' parameter. The default is to sum the weight attributes for each of the parallel edges. When nodelist does not
contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows: ## **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) ``` 8.6. Pandas 497 # 8.6.2 from pandas dataframe **from_pandas_dataframe** (*df*, *source*, *target*, *edge_attr=None*, *create_using=None*) Return a graph from Pandas DataFrame. The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance. Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example. #### **Parameters** - **df** (*Pandas DataFrame*) An edge list representation of a graph - **source** (*str or int*) A valid column name (string or iteger) for the source nodes (for the directed case). - **target** (*str or int*) A valid column name (string or iteger) for the target nodes (for the directed case). - edge_attr (*str or int, iterable, True*) A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If True, all of the remaining columns will be added. - create_using (NetworkX graph) Use specified graph for result. The default is Graph() #### See also: ``` to_pandas_dataframe() ``` ## **Examples** Simple integer weights on edges: ``` >>> import pandas as pd >>> import numpy as np >>> r = np.random.RandomState(seed=5) >>> ints = r.random_integers(1, 10, size=(3,2)) >>> a = ['A', 'B', 'C'] >>> b = ['D', 'A', 'E'] >>> df = pd.DataFrame(ints, columns=['weight', 'cost']) >>> df[0] = a >>> df['b'] = b ``` ``` >>> df weight cost 0 b 0 4 7 A D 1 7 1 B A 2 10 9 C E >>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost']) >>> G['E']['C']['weight'] 10 >>> G['E']['C']['cost'] 9 ``` 8.6. Pandas 499 # Reading and writing graphs # 9.1 Adjacency List # 9.1.1 Adjacency List Read and write NetworkX graphs as adjacency lists. Adjacency list format is useful for graphs without data associated with nodes or edges and for nodes that can be meaningfully represented as strings. ### **Format** The adjacency list format consists of lines with node labels. The first label in a line is the source node. Further labels in the line are considered target nodes and are added to the graph along with an edge between the source node and target node. The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment): ``` a b c # source target target d e ``` | read_adjlist(path[, comments, delimiter,]) | Read graph in adjacency list format from path. | |---|--| | write_adjlist(G, path[, comments,]) | Write graph G in single-line adjacency-list format to path. | | <pre>parse_adjlist(lines[, comments, delimiter,])</pre> | Parse lines of a graph adjacency list representation. | | <pre>generate_adjlist(G[, delimiter])</pre> | Generate a single line of the graph G in adjacency list for- | | | mat. | # 9.1.2 read adjlist read_adjlist (path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8') Read graph in adjacency list format from path. ### **Parameters** - **path** (*string or file*) Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed. - create_using (NetworkX graph container) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - **comments** (*string*, *optional*) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. **Returns** G – The graph corresponding to the lines in adjacency list format. Return type NetworkX graph ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_adjlist(G, "test.adjlist") >>> G=nx.read_adjlist("test.adjlist") ``` The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'rb' mode. ``` >>> fh=open("test.adjlist", 'rb') >>> G=nx.read_adjlist(fh) ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_adjlist(G,"test.adjlist.gz") >>> G=nx.read_adjlist("test.adjlist.gz") ``` The optional nodetype is a function to convert node strings to nodetype. For example ``` >>> G=nx.read_adjlist("test.adjlist", nodetype=int) ``` will attempt to convert all nodes to integer type. Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use ``` >>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph()) ``` ### **Notes** This format does not store graph or node data. See also: ``` write_adjlist() ``` ## 9.1.3 write adjlist ``` write_adjlist (G, path, comments='#', delimiter=' ', encoding='utf-8') Write graph G in single-line adjacency-list format to path. ``` ### **Parameters** - **G** (NetworkX graph) - **path** (*string or file*) Filename or file handle for data output. Filenames ending in .gz or .bz2 will be compressed. - **comments** (*string*, *optional*) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels - **encoding** (*string*, *optional*) Text encoding. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_adjlist(G,"test.adjlist") ``` The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'wb' mode. ``` >>> fh=open("test.adjlist",'wb') >>> nx.write_adjlist(G, fh) ``` ### **Notes** This format does not store graph, node, or edge data. #### See also: ``` read_adjlist(), generate_adjlist() ``` # 9.1.4 parse adjlist parse_adjlist (lines, comments='#', delimiter=None, create_using=None, nodetype=None) Parse lines of a graph adjacency list representation. #### **Parameters** - lines (list or iterator of strings) Input data in adjlist format - **create_using** (*NetworkX graph container*) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. **Returns** G – The graph corresponding to the lines in adjacency list format. Return type NetworkX graph # **Examples** ### See also: read_adjlist() # 9.1.5 generate_adjlist ``` generate_adjlist(G, delimiter=' ') ``` Generate a single line of the graph G in adjacency list format. #### **Parameters** - **G** (NetworkX graph) - **delimiter** (*string*, *optional*) Separator for node labels **Returns** lines – Lines of data in adjlist format. Return type string ## **Examples** ### See also: ``` write_adjlist(), read_adjlist() ``` # 9.2 Multiline Adjacency List # 9.2.1 Multi-line Adjacency List Read and write NetworkX graphs as multi-line adjacency lists. The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With this format simple edge data can be stored but node or graph data is not. ### **Format** The first label in a line is the source node label followed by the node degree d. The next d lines are target node labels and optional edge data. That pattern repeats for all nodes in the graph. The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment): ``` # example.multiline-adjlist a 2 b c d 1 e ``` | read_multiline_adjlist(path[, comments,]) | Read graph in multi-line adjacency list format from path. | |--|---| | <pre>write_multiline_adjlist(G, path[,])</pre> | Write the graph G in multiline adjacency list format to path | | <pre>parse_multiline_adjlist(lines[, comments,])</pre> | Parse lines of a multiline adjacency list representation of a | | | graph. | | <pre>generate_multiline_adjlist(G[, delimiter])</pre> | Generate a single line of the graph G in multiline adjacency | | | list format. | # 9.2.2 read_multiline_adjlist read_multiline_adjlist (path, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None, encoding='utf-8') Read graph in multi-line adjacency list format from path. ### **Parameters** - **path** (*string or file*) Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed. - **create_using** (*NetworkX graph container*) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - edgetype (*Python type, optional*) Convert edge data to this type. - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. ### Returns G Return type NetworkX graph ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_multiline_adjlist(G,"test.adjlist") >>> G=nx.read_multiline_adjlist("test.adjlist") ``` The path can be a file or a string with the name of the file. If a file s provided, it has to be opened in 'rb' mode. ``` >>> fh=open("test.adjlist", 'rb') >>> G=nx.read_multiline_adjlist(fh)
``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_multiline_adjlist(G,"test.adjlist.gz") >>> G=nx.read_multiline_adjlist("test.adjlist.gz") ``` The optional nodetype is a function to convert node strings to nodetype. For example ``` >>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int) ``` will attempt to convert all nodes to integer type. The optional edgetype is a function to convert edge data strings to edgetype. ``` >>> G=nx.read_multiline_adjlist("test.adjlist") ``` The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use ``` >>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph()) ``` #### **Notes** This format does not store graph, node, or edge data. ### See also: ``` write_multiline_adjlist() ``` # 9.2.3 write_multiline_adjlist ``` write_multiline_adjlist (G, path, delimiter=' ', comments='#', encoding='utf-8') Write the graph G in multiline adjacency list format to path ``` ### **Parameters** - **G** (NetworkX graph) - **comments** (*string*, *optional*) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels - **encoding** (*string*, *optional*) Text encoding. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_multiline_adjlist(G,"test.adjlist") ``` The path can be a file handle or a string with the name of the file. If a file handle is provided, it has to be opened in 'wb' mode. ``` >>> fh=open("test.adjlist",'wb') >>> nx.write_multiline_adjlist(G,fh) ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_multiline_adjlist(G,"test.adjlist.gz") ``` #### See also: ``` read_multiline_adjlist() ``` # 9.2.4 parse multiline adjlist ``` parse_multiline_adjlist(lines, comments='#', delimiter=None, create_using=None, node- type=None, edgetype=None) ``` Parse lines of a multiline adjacency list representation of a graph. #### **Parameters** - **lines** (*list or iterator of strings*) Input data in multiline adjlist format - create_using (NetworkX graph container) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type*, *optional*) Convert nodes to this type. - **comments** (*string*, *optional*) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. **Returns** G – The graph corresponding to the lines in multiline adjacency list format. Return type NetworkX graph ### **Examples** # 9.2.5 generate_multiline_adjlist ``` generate_multiline_adjlist(G, delimiter='') ``` Generate a single line of the graph G in multiline adjacency list format. #### **Parameters** - **G** (NetworkX graph) - **delimiter** (*string*, *optional*) Separator for node labels Returns lines – Lines of data in multiline adjlist format. ### Return type string # **Examples** ``` >>> G = nx.lollipop_graph(4, 3) >>> for line in nx.generate_multiline_adjlist(G): print(line) 0 3 1 {} 2 {} 3 {} 1 2 2 {} 3 {} 2 1 3 {} 3 1 4 {} 4 1 5 {} 5 1 6 {} 6 0 ``` #### See also: ``` write_multiline_adjlist(), read_multiline_adjlist() ``` # 9.3 Edge List # 9.3.1 Edge Lists Read and write NetworkX graphs as edge lists. The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing isolated nodes unless the node has a self-loop edge. ## **Format** You can read or write three formats of edge lists with these functions. Node pairs with no data: ``` 1 2 ``` Python dictionary as data: ``` 1 2 {'weight':7, 'color':'green'} ``` Arbitrary data: ``` 1 2 7 green ``` | read_edgelist(path[, comments, delimiter,]) | Read a graph from a list of edges. | |----------------------------------------------------------|------------------------------------------------------------| | write_edgelist(G, path[, comments,]) | Write graph as a list of edges. | | read_weighted_edgelist(path[, comments,]) | Read a graph as list of edges with numeric weights. | | write_weighted_edgelist(G, path[, comments, | Write graph G as a list of edges with numeric weights. | | ]) | | | <pre>generate_edgelist(G[, delimiter, data])</pre> | Generate a single line of the graph G in edge list format. | | <pre>parse_edgelist(lines[, comments, delimiter,])</pre> | Parse lines of an edge list representation of a graph. | # 9.3.2 read edgelist #### **Parameters** - **path** (*file or string*) File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. - **comments** (*string*, *optional*) The character used to indicate the start of a comment. - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - **create_using** (*Graph container, optional*,) Use specified container to build graph. The default is networkx.Graph, an undirected graph. - **nodetype** (*int*, *float*, *str*, *Python type*, *optional*) Convert node data from strings to specified type - **data** (*bool or list of (label,type) tuples*) Tuples specifying dictionary key names and types for edge data - **edgetype** (*int, float, str, Python type, optional OBSOLETE*) Convert edge data from strings to specified type and use as 'weight' - encoding (string, optional) Specify which encoding to use when reading file. **Returns** G – A networkx Graph or other type specified with create_using Return type graph ### **Examples** ``` >>> nx.write_edgelist(nx.path_graph(4), "test.edgelist") >>> G=nx.read_edgelist("test.edgelist") >>> fh=open("test.edgelist", 'rb') >>> G=nx.read_edgelist(fh) >>> fh.close() >>> G=nx.read_edgelist("test.edgelist", nodetype=int) >>> G=nx.read_edgelist("test.edgelist", create_using=nx.DiGraph()) ``` Edgelist with data in a list: 9.3. Edge List 509 ``` >>> textline = '1 2 3' >>> fh = open('test.edgelist','w') >>> d = fh.write(textline) >>> fh.close() >>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),)) >>> list(G) [1, 2] >>> list(G.edges(data=True)) [(1, 2, {'weight': 3.0})] ``` See parse_edgelist() for more examples of formatting. #### See also: ``` parse_edgelist() ``` ### **Notes** Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) # 9.3.3 write edgelist ``` write_edgelist (G, path, comments='#', delimiter=' ', data=True, encoding='utf-8') Write graph as a list of edges. ``` #### **Parameters** - **G** (graph) A NetworkX graph - path (file or string) File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed. - comments (string, optional) The character used to indicate the start of a comment - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - data (bool or list, optional) If False write no edge data. If True write a string representation of the edge data dictionary.. If a list (or other iterable) is provided, write the keys specified in the list. - **encoding** (*string*, *optional*) Specify which encoding to use when writing file. ## **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_edgelist(G, "test.edgelist") >>> G=nx.path_graph(4) >>> fh=open("test.edgelist",'wb') >>> nx.write_edgelist(G, fh) >>> nx.write_edgelist(G, "test.edgelist.gz") >>> nx.write_edgelist(G, "test.edgelist.gz", data=False) ``` ``` >>> G=nx.Graph() >>> G.add_edge(1,2,weight=7,color='red') >>> nx.write_edgelist(G,'test.edgelist',data=False) ``` ``` >>> nx.write_edgelist(G,'test.edgelist',data=['color']) >>> nx.write_edgelist(G,'test.edgelist',data=['color','weight']) ``` #### See also: ``` write_edgelist(), write_weighted_edgelist() ``` # 9.3.4 read weighted edgelist Read a graph as list of edges with numeric weights. #### **Parameters** - **path** (*file or string*) File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. - **comments** (*string*, *optional*) The character used to indicate the start of a comment. - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - **create_using** (*Graph container, optional*,) Use specified container to build graph. The default is networkx.Graph, an undirected graph. - **nodetype** (*int*, *float*, *str*, *Python type*, *optional*) Convert node data from strings to specified type - encoding (string, optional) Specify which encoding to use when reading file. **Returns** G – A networkx Graph or other type specified with create_using Return type graph #### **Notes** Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) Example edgelist file format. With numeric edge data: ``` # read with # >>> G=nx.read_weighted_edgelist(fh) # source target data a b 1 a c 3.14159 d e 42 ``` # 9.3.5 write weighted edgelist ``` write_weighted_edgelist (G, path, comments='#', delimiter=' ', encoding='utf-8') Write graph G as a list of edges with numeric weights. ``` ### **Parameters** • **G** (graph) – A NetworkX graph 9.3. Edge List 511 - **path** (*file or string*) File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed. - **comments** (*string*, *optional*) The character used to indicate the start of a comment - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - **encoding** (*string*, *optional*) Specify which encoding to use when writing file. ## **Examples** ``` >>> G=nx.Graph() >>> G.add_edge(1,2,weight=7) >>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist') ``` #### See also: ``` read_edgelist(), write_edgelist(), write_weighted_edgelist() ``` # 9.3.6 generate_edgelist ```
generate_edgelist(G, delimiter=' ', data=True) ``` Generate a single line of the graph G in edge list format. ### **Parameters** - **G** (NetworkX graph) - **delimiter** (*string*, *optional*) Separator for node labels - **data** (*bool or list of keys*) If False generate no edge data. If True use a dictionary representation of edge data. If a list of keys use a list of data values corresponding to the keys. **Returns** lines – Lines of data in adjlist format. Return type string ### **Examples** #### See also: ``` write_adjlist(), read_adjlist() ``` # 9.3.7 parse_edgelist ### **Parameters** - lines (list or iterator of strings) Input data in edgelist format - **comments** (*string*, *optional*) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels - **create_using** (*NetworkX graph container, optional*) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - data (bool or list of (label,type) tuples) If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data. **Returns** G – The graph corresponding to lines Return type NetworkX Graph ### **Examples** Edgelist with no data: 9.3. Edge List 513 Edgelist with data in Python dictionary representation: Edgelist with data in a list: #### See also: read_weighted_edgelist() # **9.4 GEXF** Read and write graphs in GEXF format. GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data and dynamics. This implementation does not support mixed graphs (directed and undirected edges together). ## **9.4.1 Format** GEXF is an XML format. See http://gexf.net/format/schema.html for the specification and http://gexf.net/format/basic.html for examples. | <pre>read_gexf(path[, node_type, relabel, version])</pre> | Read graph in GEXF format from path. | |-----------------------------------------------------------|----------------------------------------------------------| | write_gexf(G, path[, encoding, prettyprint,]) | Write G in GEXF format to path. | | $relabel_gexf_graph(G)$ | Relabel graph using "label" node keyword for node label. | # 9.4.2 read gexf **read_gexf** (path, node_type=None, relabel=False, version='1.1draft') Read graph in GEXF format from path. "GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" ¹. ### **Parameters** - path (file or string) File or file name to write. File names ending in .gz or .bz2 will be compressed. - node_type (Python type (default: None)) Convert node ids to this type if not None. - **relabel** (*bool* (*default: False*)) If True relabel the nodes to use the GEXF node "label" attribute instead of the node "id" attribute as the NetworkX node label. **Returns** graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a Multi-Graph or MultiDiGraph is returned. Return type NetworkX graph #### **Notes** This implementation does not support mixed graphs (directed and undirected edges together). #### References # 9.4.3 write gexf ``` write_gexf (G, path, encoding='utf-8', prettyprint=True, version='1.1draft') Write G in GEXF format to path. ``` "GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" ¹. # **Parameters** - G (graph) A NetworkX graph - **path** (*file or string*) File or file name to write. File names ending in .gz or .bz2 will be compressed. - **encoding** (*string* (*optional*)) Encoding for text data. - **prettyprint** (*bool* (*optional*)) If True use line breaks and indenting in output XML. ### **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gexf(G, "test.gexf") ``` 9.4. GEXF 515 ¹ GEXF graph format, http://gexf.net/format/ ¹ GEXF graph format, http://gexf.net/format/ #### **Notes** This implementation does not support mixed graphs (directed and undirected edges together). The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node 'a' to 1. #### References # 9.4.4 relabel gexf graph ### $relabel_gexf_graph(G)$ Relabel graph using "label" node keyword for node label. **Parameters** G (graph) – A NetworkX graph read from GEXF data Returns H – A NetworkX graph with relabed nodes Return type graph Raises NetworkXError - If node labels are missing or not unique while relabel=True. #### **Notes** This function relabels the nodes in a NetworkX graph with the "label" attribute. It also handles relabeling the specific GEXF node attributes "parents", and "pid". # 9.5 GML Read graphs in GML format. "GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML's key features are portability, simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs can be annotated with arbitrary data structures. The idea for a common file format was born at the GD'95; this proposal is the outcome of many discussions. GML is the standard file format in the Graphlet graph editor system. It has been overtaken and adapted by several other systems for drawing graphs." See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html # **9.5.1 Format** See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format specification. Example graphs in GML format http://www-personal.umich.edu/~mejn/netdata/ | read_gml(path[, label, destringizer]) | Read graph in GML format from path. | |----------------------------------------------------|------------------------------------------------------------| | <pre>write_gml(G, path[, stringizer])</pre> | Write a graph G in GML format to the file or file handle | | | path. | | <pre>parse_gml(lines[, label, destringizer])</pre> | Parse GML graph from a string or iterable. | | <pre>generate_gml(G[, stringizer])</pre> | Generate a single entry of the graph G in GML format. | | literal_destringizer(rep) | Convert a Python literal to the value it represents. | | literal_stringizer(value) | Convert a value to a Python literal in GML representation. | # 9.5.2 read gml ``` read_gml (path, label='label', destringizer=None) Read graph in GML format from path. ``` ### **Parameters** - path (filename or filehandle) The filename or filehandle to read from. - **label** (*string*, *optional*) If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'. - destringizer (callable, optional) A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None. **Returns G** – The parsed graph. Return type NetworkX graph Raises NetworkXError – If the input cannot be parsed. #### See also: ``` write_gml(), parse_gml() ``` #### **Notes** The GML specification says that files should be ASCII encoded, with any extended ASCII characters (iso8859-1) appearing as HTML character entities. ### References GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html ## **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gml(G, 'test.gml') >>> H = nx.read_gml('test.gml') ``` # 9.5.3 write gml ``` write_gml (G, path, stringizer=None) ``` Write a graph G in GML format to the file or file handle path. #### **Parameters** - **G** (*NetworkX graph*) The graph to be converted to GML. - path (*filename or filehandle*) The filename or filehandle to write. Files whose names end with .gz or .bz2 will be compressed. - **stringizer** (*callable*, *optional*) A stringizer which converts non-int/non-float/non-dict values into strings. If it cannot convert a value into a string, it should raise a ValueError to indicate that. Default value: None. 9.5. GML 517 **Raises** NetworkXError – If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None. #### See also: ``` read_gml(), generate_gml() ``` #### **Notes** Graph attributes named 'directed', 'multigraph', 'node' or 'edge',node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure. # **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gml(G, "test.gml") ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_gml(G, "test.gml.gz") ``` # 9.5.4 parse gml parse_gml (lines, label='label', destringizer=None) Parse GML graph from a string or iterable. ### **Parameters** - lines (string or iterable of strings) Data in GML format. - **label** (*string*, *optional*) If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'. - **destringizer** (*callable*, *optional*) A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None. **Returns** G – The parsed graph. Return type NetworkX graph Raises NetworkXError – If the input cannot be parsed. ### See also: ``` write_gml(), read_gml() ``` ## **Notes** This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures. #### References GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html # 9.5.5 generate gml ### generate_gml (G, stringizer=None) Generate a single entry of the graph G in GML format. #### **Parameters** - **G** (*NetworkX graph*) The graph to be converted to GML. - **stringizer** (*callable*, *optional*) A stringizer which converts non-int/float/dict values into strings. If it cannot convert a value into a string, it should raise a ValueError raised to indicate that. Default value: None. Returns lines – Lines of GML data. Newlines are not appended. Return type
generator of strings **Raises** NetworkXError – If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None. ### **Notes** Graph attributes named 'directed', 'multigraph', 'node' or 'edge',node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure. # 9.5.6 literal_destringizer # ${\tt literal_destringizer}\ (\textit{rep})$ Convert a Python literal to the value it represents. **Parameters rep** (*string*) – A Python literal. **Returns value** – The value of the Python literal. Return type object Raises ValueError – If rep is not a Python literal. # 9.5.7 literal stringizer ### literal stringizer(value) Convert a value to a Python literal in GML representation. **Parameters** value (*object*) – The value to be converted to GML representation. **Returns** rep – A double-quoted Python literal representing value. Unprintable characters are replaced by XML character references. Return type string Raises ValueError – If value cannot be converted to GML. 9.5. GML 519 #### **Notes** literal_stringizer is largely the same as repr in terms of functionality but attempts prefix unicode and bytes literals with u and b to provide better interoperability of data generated by Python 2 and Python 3. The original value can be recovered using the <code>networkx.readwrite.gml.literal_destringizer()</code> function. # 9.6 Pickle # 9.6.1 Pickled Graphs Read and write NetworkX graphs as Python pickles. "The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python object structure. "Pickling" is the process whereby a Python object hierarchy is converted into a byte stream, and "unpickling" is the inverse operation, whereby a byte stream is converted back into an object hierarchy." Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). For arbitrary data types it may be difficult to represent the data as text. In that case using Python pickles to store the graph data can be used. #### **Format** See http://docs.python.org/library/pickle.html | read_gpickle(path) | Read graph object in Python pickle format. | |------------------------------------|--------------------------------------------| | write_gpickle(G, path[, protocol]) | Write graph in Python pickle format. | # 9.6.2 read_gpickle ### read_gpickle(path) Read graph object in Python pickle format. Pickles are a serialized byte stream of a Python object ¹. This format will preserve Python objects used as nodes or edges. **Parameters path** (*file or string*) – File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. Returns G – A NetworkX graph Return type graph ### **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") >>> G = nx.read_gpickle("test.gpickle") ``` http://docs.python.org/library/pickle.html ### References # 9.6.3 write gpickle ``` write_gpickle(G, path, protocol=2) ``` Write graph in Python pickle format. Pickles are a serialized byte stream of a Python object ¹. This format will preserve Python objects used as nodes or edges. #### **Parameters** - **G** (*graph*) A NetworkX graph - path (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - **protocol** (*integer*) Pickling protocol to use. Default value: pickle.HIGHEST_PROTOCOL. ## **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") ``` #### References # 9.7 GraphML # 9.7.1 GraphML Read and write graphs in GraphML format. This implementation does not support mixed graphs (directed and unidirected edges together), hyperedges, nested graphs, or ports. "GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features include support of - · directed, undirected, and mixed graphs, - · hypergraphs, - · hierarchical graphs, - graphical representations, - · references to external data, - · application-specific attribute data, and - light-weight parsers. 9.7. GraphML 521 ¹ http://docs.python.org/library/pickle.html Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs." http://graphml.graphdrawing.org/ #### **Format** GraphML is an XML format. See http://graphml.graphdrawing.org/specification.html for the specification and http://graphml.graphdrawing.org/primer/graphml-primer.html for examples. | read_graphml(path[, node_type]) | Read graph in GraphML format from path. | |-------------------------------------|-----------------------------------------| | write_graphml(G, path[, encoding,]) | Write G in GraphML XML format to path | # 9.7.2 read graphml read_graphml (path, node_type=<type 'str'>) Read graph in GraphML format from path. #### **Parameters** - path (file or string) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - **node_type** (*Python type (default: str)*) Convert node ids to this type **Returns** graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a Multi-Graph or MultiDiGraph is returned. Return type NetworkX graph #### **Notes** This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports. For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided. Files with the yEd "yfiles" extension will can be read but the graphics information is discarded. yEd compressed files ("file.graphmlz" extension) can be read by renaming the file to "file.graphml.gz". # 9.7.3 write_graphml $\label{lem:write_graphml} \begin{subarray}{ll} \textbf{write_graphml} (\textit{G},\textit{path},\textit{encoding='utf-8'},\textit{prettyprint=True},\textit{infer_numeric_types=False}) \\ \textbf{Write G in GraphML XML format to path} \end{subarray}$ #### **Parameters** - **G** (graph) A networkx graph - infer_numeric_types (boolean) Determine if numeric types should be generalized despite different python values. For example, if edges have both int and float 'weight' attributes, it will be inferred in GraphML that they are both floats (which translates to double in GraphML). - **path** (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - **encoding** (*string* (*optional*)) Encoding for text data. - **prettyprint** (*bool* (*optional*)) If True use line breaks and indenting in output XML. ## **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_graphml(G, "test.graphml") ``` ### **Notes** This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports. # **9.8 JSON** ## 9.8.1 JSON data Generate and parse JSON serializable data for NetworkX graphs. These formats are suitable for use with the d3.js examples http://d3js.org/ The three formats that you can generate with NetworkX are: - node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045 - tree like in the d3.js example http://bl.ocks.org/mbostock/4063550 - adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/ | node_link_data(G[, attrs]) | Return data in node-link format that is suitable for JSON | |------------------------------------|--------------------------------------------------------------| | | serialization and use in Javascript documents. | | node_link_graph(data[, directed,]) | Return graph from node-link data format. | | adjacency_data(G[, attrs]) | Return data in adjacency format that is suitable for JSON | | | serialization and use in Javascript documents. | | adjacency_graph(data[, directed,]) | Return graph from adjacency data format. | | tree_data(G, root[, attrs]) | Return data in tree format that is suitable for JSON serial- | | | ization and use in Javascript documents. | | tree_graph(data[, attrs]) | Return graph from tree data format. | | <pre>jit_data(G[, indent])</pre> | Return data in JIT JSON format. | | jit_graph(data) | Read a graph from JIT JSON. | # 9.8.2 node_link_data # node_link_data(G, attrs=None) Return data in node-link format that is suitable for JSON serialization and use in Javascript documents. #### **Parameters** 9.8. JSON 523 - **G** (NetworkX graph) - attrs (dict) A dictionary that contains five keys 'source', 'target', 'name', 'key' and 'link'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: ``` dict(source='source', target='target', name='name', key='key', link='links') ``` If some user-defined graph data use these attribute names as data keys, they may be silently dropped. **Returns data** – A dictionary with node-link formatted data. Return type dict Raises NetworkXError – If values in attrs are not unique. ### **Examples** To serialize with json ``` >>> import json >>> s1 = json.dumps(data1) >>> s2 = json.dumps(data2, {'link': 'edges', 'source': 'from', 'target': 'to'}) ``` ### **Notes** Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON. Attribute 'key' is only used for multigraphs. #### See also: ``` node_link_graph(), adjacency_data(), tree_data() ``` # 9.8.3 node link graph node_link_graph (data, directed=False, multigraph=True, attrs=None) Return graph from node-link data format. ### **Parameters** - data (dict) node-link formatted graph data - **directed** (bool) If True, and direction not
specified in data, return a directed graph. - multigraph (bool) If True, and multigraph not specified in data, return a multigraph. • attrs (*dict*) – A dictionary that contains five keys 'source', 'target', 'name', 'key' and 'link'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. Default value: ``` dict(source='source', target='target', name='name', key='key', link='links') ``` **Returns** G – A NetworkX graph object Return type NetworkX graph # **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([('A', 'B')]) >>> data = json_graph.node_link_data(G) >>> H = json_graph.node_link_graph(data) ``` #### **Notes** Attribute 'key' is only used for multigraphs. #### See also: ``` node link data(), adjacency data(), tree data() ``` # 9.8.4 adjacency data ``` adjacency_data(G, attrs={'id': 'id', 'key': 'key'}) ``` Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents. ### **Parameters** - **G** (NetworkX graph) - attrs (*dict*) A dictionary that contains two keys 'id' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', key='key'). If some user-defined graph data use these attribute names as data keys, they may be silently dropped. **Returns data** – A dictionary with adjacency formatted data. Return type dict Raises NetworkXError – If values in attrs are not unique. ## **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([(1,2)]) >>> data = json_graph.adjacency_data(G) ``` To serialize with json 9.8. JSON 525 ``` >>> import json >>> s = json.dumps(data) ``` ### **Notes** Graph, node, and link attributes will be written when using this format but attribute keys must be strings if you want to serialize the resulting data with JSON. The default value of attrs will be changed in a future release of NetworkX. #### See also: ``` adjacency_graph(), node_link_data(), tree_data() ``` # 9.8.5 adjacency graph adjacency_graph (data, directed=False, multigraph=True, attrs={'id': 'id', 'key': 'key'}) Return graph from adjacency data format. Parameters data (dict) – Adjacency list formatted graph data #### Returns - **G** (NetworkX graph) A NetworkX graph object - **directed** (*bool*) If True, and direction not specified in data, return a directed graph. - multigraph (bool) If True, and multigraph not specified in data, return a multigraph. - attrs (dict) A dictionary that contains two keys 'id' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', key='key'). ### **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([(1,2)]) >>> data = json_graph.adjacency_data(G) >>> H = json_graph.adjacency_graph(data) ``` ### **Notes** The default value of attrs will be changed in a future release of NetworkX. #### See also: ``` adjacency_graph(), node_link_data(), tree_data() ``` # 9.8.6 tree data ``` tree data(G, root, attrs={'children': 'children', 'id': 'id'}) ``` Return data in tree format that is suitable for JSON serialization and use in Javascript documents. #### **Parameters** - **G** (NetworkX graph) G must be an oriented tree - **root** (*node*) The root of the tree - attrs (*dict*) A dictionary that contains two keys 'id' and 'children'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id',children='children'). If some user-defined graph data use these attribute names as data keys, they may be silently dropped. **Returns data** – A dictionary with node-link formatted data. Return type dict Raises NetworkXError – If values in attrs are not unique. ## **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.DiGraph([(1,2)]) >>> data = json_graph.tree_data(G,root=1) ``` ### To serialize with json ``` >>> import json >>> s = json.dumps(data) ``` #### **Notes** Node attributes are stored in this format but keys for attributes must be strings if you want to serialize with JSON. Graph and edge attributes are not stored. The default value of attrs will be changed in a future release of NetworkX. ### See also: ``` tree_graph(), node_link_data(), node_link_data() ``` ## 9.8.7 tree graph ``` tree_graph (data, attrs={'children': 'children', 'id': 'id'}) Return graph from tree data format. ``` Parameters data (dict) – Tree formatted graph data ### Returns - **G** (NetworkX DiGraph) - attrs (dict) A dictionary that contains two keys 'id' and 'children'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict (id='id', children='children'). 9.8. JSON 527 ### **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.DiGraph([(1,2)]) >>> data = json_graph.tree_data(G,root=1) >>> H = json_graph.tree_graph(data) ``` #### **Notes** The default value of attrs will be changed in a future release of NetworkX. #### See also: ``` tree graph(), node link data(), adjacency data() ``` # 9.8.8 jit data ``` jit_data(G, indent=None) ``` Return data in JIT JSON format. #### **Parameters** - **G** (NetworkX Graph) - **indent** (*optional*, *default=None*) If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0, or negative, will only insert newlines. None (the default) selects the most compact representation. ### Returns data **Return type** JIT JSON string # 9.8.9 jit graph ``` jit_graph(data) ``` Read a graph from JIT JSON. Parameters data (JSON Graph Object) Returns G Return type NetworkX Graph # **9.9 LEDA** Read graphs in LEDA format. LEDA is a C++ class library for efficient data types and algorithms. ### 9.9.1 Format See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html | read_leda(path[, encoding]) | Read graph in LEDA format from path. | |-----------------------------|----------------------------------------------------| | parse_leda(lines) | Read graph in LEDA format from string or iterable. | # 9.9.2 read_leda read_leda (path, encoding='UTF-8') Read graph in LEDA format from path. **Parameters path** (*file or string*) – File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed. Returns G **Return type** NetworkX graph ## **Examples** G=nx.read_leda('file.leda') ### References # 9.9.3 parse_leda ### parse_leda(lines) Read graph in LEDA format from string or iterable. **Parameters lines** (*string or iterable*) – Data in LEDA format. Returns G Return type NetworkX graph ### **Examples** G=nx.parse_leda(string) ### References # 9.10 YAML ### 9.10.1 YAML Read and write NetworkX graphs in YAML format. "YAML is a data serialization format designed for human readability and interaction with scripting languages." See http://www.yaml.org for documentation. 9.10. YAML 529 # **Format** http://pyyaml.org/wiki/PyYAML | read_yaml(path) | Read graph in YAML format from path. | |--------------------------------------------|---------------------------------------| | <pre>write_yaml(G, path[, encoding])</pre> | Write graph G in YAML format to path. | # 9.10.2 read_yaml ### read_yaml (path) Read graph in YAML format from path. YAML is a data serialization format designed for human readability and interaction with scripting languages 1. **Parameters path** (*file or string*) – File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed. #### Returns G Return type NetworkX graph # **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_yaml(G,'test.yaml') >>> G=nx.read_yaml('test.yaml') ``` #### References # 9.10.3 write yaml ``` write_yaml (G, path, encoding='UTF-8', **kwds) ``` Write graph G in YAML format to path. YAML is a data serialization format designed for human readability and interaction with scripting languages ¹. ### **Parameters** - **G** (graph) A NetworkX graph - **path** (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - encoding (string, optional) Specify which encoding to use when writing file. ## **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_yaml(G,'test.yaml') ``` 9.10. YAML 531 ¹ http://www.yaml.org ¹ http://www.yaml.org #### References # 9.11 SparseGraph6 Functions for reading and writing graphs in the graph6 or sparse6 file formats. According to the author of these formats, *graph6* and *sparse6* are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph. graph6 is suitable for small graphs, or large dense graphs. sparse6 is more space-efficient for large sparse graphs. -graph6 and sparse6 homepage # 9.11.1 Graph6 Functions for reading and writing graphs in the graph6 format. The *graph6* file format is suitable for small graphs or large dense graphs. For large sparse graphs, use the *sparse6* format. For more information, see the graph6 homepage. | parse_graph6(string) | Read a simple undirected graph in graph6 format from | |----------------------------------------|-----------------------------------------------------------| | | string. | | read_graph6(path) | Read simple undirected graphs in graph6 format from path. | | generate_graph6(G[, nodes, header]) | Generate graph6 format string from a simple undirected | | | graph. | | write_graph6(G, path[, nodes, header]) | Write a simple undirected graph to path in graph6 format. | # parse_graph6 parse_graph6 (string) Read a simple undirected graph in graph6 format from string. Parameters string (string) – Data in graph6 format Returns G Return type Graph Raises NetworkXError – If the string is unable to be parsed in graph6 format ## **Examples** ``` >>> G =
nx.parse_graph6('A_') >>> sorted(G.edges()) [(0, 1)] ``` #### See also: ``` generate_graph6(), read_graph6(), write_graph6() ``` ### References ## read_graph6 ## read_graph6 (path) Read simple undirected graphs in graph6 format from path. **Parameters path** (*file or string*) – File or filename to write. **Returns** G – If the file contains multiple lines then a list of graphs is returned Return type Graph or list of Graphs Raises NetworkXError – If the string is unable to be parsed in graph6 format ## **Examples** ``` >>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6') >>> G = nx.read_graph6('test.g6') >>> sorted(G.edges()) [(0, 1)] ``` #### See also: ``` generate_graph6(), parse_graph6(), write_graph6() ``` ### References ### generate graph6 ``` generate_graph6 (G, nodes=None, header=True) ``` Generate graph6 format string from a simple undirected graph. ### **Parameters** - **G** (Graph (undirected)) - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>graph6<<' string to head of data Returns s – String in graph6 format Return type string Raises NetworkXError – If the graph is directed or has parallel edges # **Examples** ``` >>> G = nx.Graph([(0, 1)]) >>> nx.generate_graph6(G) '>>graph6<<A_' ``` ### See also: ``` read_graph6(), parse_graph6(), write_graph6() ``` #### **Notes** The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored. #### References ### write graph6 write_graph6 (G, path, nodes=None, header=True) Write a simple undirected graph to path in graph6 format. #### **Parameters** - **G** (*Graph* (*undirected*)) - path (file or string) File or filename to write. - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - **header** (*bool*) If True add '>>graph6<<' string to head of data Raises NetworkXError – If the graph is directed or has parallel edges ## **Examples** ``` >>> G = nx.Graph([(0, 1)]) >>> nx.write_graph6(G, 'test.g6') ``` ### See also: ``` generate_graph6(), parse_graph6(), read_graph6() ``` ### **Notes** The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored. ### References # 9.11.2 Sparse6 Functions for reading and writing graphs in the sparse6 format. The *sparse6* file format is a space-efficient format for large sparse graphs. For small graphs or large dense graphs, use the *graph6* file format. For more information, see the sparse6 homepage. | parse_sparse6(string) | Read an undirected graph in sparse6 format from string. | |-----------------------|---------------------------------------------------------| | read_sparse6(path) | Read an undirected graph in sparse6 format from path. | | | Continued on next page | Table 9.12 – continued from previous page | <pre>generate_sparse6(G[, nodes, header])</pre> | Generate sparse6 format string from an undirected graph. | |-------------------------------------------------|----------------------------------------------------------| | write_sparse6(G, path[, nodes, header]) | Write graph G to given path in sparse6 format. | ### parse_sparse6 ### parse_sparse6 (string) Read an undirected graph in sparse6 format from string. Parameters string (string) – Data in sparse6 format Returns G Return type Graph Raises NetworkXError – If the string is unable to be parsed in sparse6 format ### **Examples** ``` >>> G = nx.parse_sparse6(':A_') >>> sorted(G.edges()) [(0, 1), (0, 1), (0, 1)] ``` #### See also: ``` generate_sparse6(), read_sparse6(), write_sparse6() ``` #### References ## read_sparse6 ### read_sparse6(path) Read an undirected graph in sparse6 format from path. **Parameters path** (*file or string*) – File or filename to write. **Returns** G – If the file contains multple lines then a list of graphs is returned Return type Graph/Multigraph or list of Graphs/MultiGraphs Raises NetworkXError – If the string is unable to be parsed in sparse6 format ## **Examples** ``` >>> nx.write_sparse6(nx.Graph([(0,1),(0,1),(0,1)]), 'test.s6') >>> G = nx.read_sparse6('test.s6') >>> sorted(G.edges()) [(0, 1)] ``` #### See also: ``` generate_sparse6(), read_sparse6(), parse_sparse6() ``` #### References ### generate_sparse6 ``` generate_sparse6 (G, nodes=None, header=True) ``` Generate sparse6 format string from an undirected graph. #### **Parameters** - **G** (*Graph* (*undirected*)) - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>sparse6<<' string to head of data **Returns** s – String in sparse6 format Return type string Raises NetworkXError – If the graph is directed ### **Examples** ``` >>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)]) >>> nx.generate_sparse6(G) '>>sparse6<<:A_' ``` ### See also: ``` read_sparse6(), parse_sparse6(), write_sparse6() ``` ### **Notes** The format does not support edge or node labels. #### References ### write_sparse6 ``` write_sparse6 (G, path, nodes=None, header=True) ``` Write graph G to given path in sparse6 format. ### **Parameters** - **G** (Graph (undirected)) - path (file or string) File or filename to write - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>sparse6<<' string to head of data Raises NetworkXError – If the graph is directed ### **Examples** ``` >>> G = nx.Graph([(0, 1), (0, 1), (0, 1)]) >>> nx.write_sparse6(G, 'test.s6') ``` ### See also: ``` read_sparse6(), parse_sparse6(), generate_sparse6() ``` ### **Notes** The format does not support edge or node labels. #### References # 9.12 Pajek # 9.12.1 Pajek Read graphs in Pajek format. This implementation handles directed and undirected graphs including those with self loops and parallel edges. #### **Format** See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information. | <pre>read_pajek(path[, encoding])</pre> | Read graph in Pajek format from path. | |-----------------------------------------|---------------------------------------------------| | write_pajek(G, path[, encoding]) | Write graph in Pajek format to path. | | parse_pajek(lines) | Parse Pajek format graph from string or iterable. | # 9.12.2 read pajek ``` read_pajek (path, encoding='UTF-8') ``` Read graph in Pajek format from path. **Parameters path** (*file or string*) – File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. Returns G Return type NetworkX MultiGraph or MultiDiGraph. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_pajek(G, "test.net") >>> G=nx.read_pajek("test.net") ``` To create a Graph instead of a MultiGraph use 9.12. Pajek 537 ``` >>> G1=nx.Graph(G) ``` ### References See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information. # 9.12.3 write pajek ``` write_pajek (G, path, encoding='UTF-8') Write graph in Pajek format to path. ``` #### **Parameters** - **G** (*graph*) A Networkx graph - **path** (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_pajek(G, "test.net") ``` ### References See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information. # 9.12.4 parse pajek ``` parse_pajek (lines) ``` Parse Pajek format graph from string or iterable. **Parameters lines** (*string or iterable*) – Data in Pajek format. Returns G Return type NetworkX graph See also: ``` read_pajek() ``` # 9.13 GIS Shapefile # 9.13.1 Shapefile Generates a networkx. DiGraph from point and line shapefiles. "The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software. It is developed and regulated by Esri as a (mostly) open specification for data interoperability among Esri and other software products." See <a href="http://en.wikipedia.org/wiki/Shapefile">http://en.wikipedia.org/wiki/Shapefile</a> for additional information. 9.13. GIS Shapefile 539 | read_shp(path[, simplify, geom_attrs]) | Generates a networkx.DiGraph from shapefiles. | |----------------------------------------|--------------------------------------------------------| | write_shp(G, outdir) | Writes a networkx.DiGraph to two shapefiles, edges and | | | nodes. | ## 9.13.2 read_shp #### read_shp (path, simplify=True, geom_attrs=True) Generates a networkx.DiGraph from shapefiles. Point geometries are translated into nodes, lines into edges. Coordinate tuples are used as keys. Attributes are preserved, line geometries are simplified into start and end coordinates. Accepts a single shapefile or directory of many shapefiles. "The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software ¹." #### **Parameters** - path (file or string) File, directory, or filename to read. - **simplify** (*bool*) If True, simplify line geometries to start and end coordinates. If False, and line feature geometry has multiple segments, the non-geometric attributes for that feature will be repeated for each edge comprising that feature. - **geom_attrs** (*bool*) If True, include the Wkb, Wkt and Json geometry attributes with each edge. NOTE: if these attributes are available, write_shp will use them to write the geometry. If nodes store the underlying coordinates for the edge geometry as well (as they do when they are read via this method) and they change, your geometry will be out of sync. #### Returns G Return type NetworkX graph ### **Examples** ``` >>> G=nx.read_shp('test.shp') ``` #### References ### 9.13.3 write shp #### write shp(G, outdir) Writes a networkx.DiGraph to two shapefiles, edges and nodes. Nodes and edges are expected to have a Well Known
Binary (Wkb) or Well Known Text (Wkt) key in order to generate geometries. Also acceptable are nodes with a numeric tuple key (x,y). "The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software ¹." **Parameters outdir** (*directory path*) – Output directory for the two shapefiles. #### Returns ¹ http://en.wikipedia.org/wiki/Shapefile ¹ http://en.wikipedia.org/wiki/Shapefile # Return type None # **Examples** nx.write_shp(digraph, '/shapefiles') # doctest +SKIP # References 9.13. GIS Shapefile 541 # **Drawing** NetworkX provides basic functionality for visualizing graphs, but its main goal is to enable graph analysis rather than perform graph visualization. In the future, graph visualization functionality may be removed from NetworkX or only available as an add-on package. Proper graph visualization is hard, and we highly recommend that people visualize their graphs with tools dedicated to that task. Notable examples of dedicated and fully-featured graph visualization tools are Cytoscape, Gephi, Graphviz and, for LaTeX typesetting, PGF/TikZ. To use these and other such tools, you should export your NetworkX graph into a format that can be read by those tools. For example, Cytoscape can read the GraphML format, and so, networkx.write_graphml(G) might be an appropriate choice. # 10.1 Matplotlib # 10.1.1 Matplotlib Draw networks with matplotlib. See also: matplotlib http://matplotlib.org/ pygraphviz http://pygraphviz.github.io/ | draw(G[, pos, ax, hold]) | Draw the graph G with Matplotlib. | |-----------------------------------------------------|------------------------------------------| | draw_networkx(G[, pos, arrows, with_labels]) | Draw the graph G using Matplotlib. | | draw_networkx_nodes(G, pos[, nodelist,]) | Draw the nodes of the graph G. | | <pre>draw_networkx_edges(G, pos[, edgelist,])</pre> | Draw the edges of the graph G. | | draw_networkx_labels(G, pos[, labels,]) | Draw node labels on the graph G. | | draw_networkx_edge_labels(G, pos[,]) | Draw edge labels. | | draw_circular(G, **kwargs) | Draw the graph G with a circular layout. | | draw_random(G, **kwargs) | Draw the graph G with a random layout. | | draw_spectral(G, **kwargs) | Draw the graph G with a spectral layout. | | draw_spring(G, **kwargs) | Draw the graph G with a spring layout. | | draw_shell(G, **kwargs) | Draw networkx graph with shell layout. | ### 10.1.2 draw **draw** (*G*, *pos=None*, *ax=None*, *hold=None*, **kwds) Draw the graph G with Matplotlib. Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc. #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*, *optional*) A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.drawing.layout for functions that compute node positions. - ax (Matplotlib Axes object, optional) Draw the graph in specified Matplotlib axes. - **hold** (*bool*, *optional*) Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes. - **kwds** (*optional keywords*) See networkx.draw_networkx() for a description of optional keywords. ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout ``` #### See also: #### **Notes** This function has the same name as pylab.draw and pyplot.draw so beware when using ``` >>> from networkx import * ``` since you might overwrite the pylab.draw function. With pyplot use ``` >>> import matplotlib.pyplot as plt >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> plt.draw() # pyplot draw() ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html ### 10.1.3 draw networkx ``` draw_networkx (G, pos=None, arrows=True, with_labels=True, **kwds) Draw the graph G using Matplotlib. ``` Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes. #### **Parameters** - **G** (*graph*) A networkx graph - **pos** (*dictionary*, *optional*) A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.drawing.layout for functions that compute node positions. - **arrows** (*bool*, *optional* (*default=True*)) For directed graphs, if True draw arrowheads. - with labels (bool, optional (default=True)) Set to True to draw labels on the nodes. - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - nodelist (list, optional (default G.nodes())) Draw only specified nodes - edgelist (list, optional (default=G.edges())) Draw only specified edges - **node_size** (*scalar or array, optional (default=300)*) Size of nodes. If an array is specified it must be the same length as nodelist. - node_color (color string, or array of floats, (default='r')) Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. - **node_shape** (*string*, *optional* (*default='o'*)) The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'. - alpha (float, optional (default=1.0)) The node and edge transparency - **cmap** (*Matplotlib colormap*, *optional* (*default=None*)) Colormap for mapping intensities of nodes - vmin,vmax (*float*, *optional* (*default=None*)) Minimum and maximum for node colormap scaling - **linewidths** ([None | scalar | sequence]) Line width of symbol border (default =1.0) - width (float, optional (default=1.0)) Line width of edges - edge_color (color string, or array of floats (default='r')) Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. - edge_cmap (Matplotlib colormap, optional (default=None)) Colormap for mapping intensities of edges - edge_vmin,edge_vmax (floats, optional (default=None)) Minimum and maximum for edge colormap scaling - style (string, optional (default='solid')) Edge line style (solidldashedldotted,dashdot) - **labels** (*dictionary*, *optional* (*default=None*)) Node labels in a dictionary keyed by node of text labels - **font_size** (*int, optional (default=12)*) Font size for text labels - **font_color** (*string*, *optional* (*default='k' black*)) Font color string - **font_weight** (*string*, *optional* (*default='normal'*)) Font weight - **font_family** (*string*, *optional* (*default='sans-serif'*)) Font family - label (string, optional) Label for graph legend 10.1. Matplotlib 545 #### **Notes** For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout ``` ``` >>> import matplotlib.pyplot as plt >>> limits=plt.axis('off') # turn of axis ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html #### See also: ``` draw(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels() ``` ## 10.1.4 draw networkx nodes Draw the nodes of the graph G. This draws only the nodes of the graph G. #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - **nodelist** (*list*, *optional*) Draw only specified nodes (default G.nodes()) - **node_size** (*scalar or array*) Size of nodes (default=300). If an array is specified it must be the same length as nodelist. - **node_color** (color string, or array of floats) Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin, vmax parameters. See matplotlib.scatter for more details. - node_shape (string) The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o').</li> - **alpha** (*float*) The node transparency (default=1.0) - cmap (Matplotlib colormap) Colormap for mapping intensities of nodes (default=None) - vmin,vmax (floats) Minimum and maximum for node colormap scaling (default=None) - **linewidths** ([None | scalar | sequence]) Line width of symbol border (default =1.0) • label ([None| string]) – Label for legend Returns PathCollection of the nodes. Return type matplotlib.collections.PathCollection ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html #### See also: ``` draw(), draw_networkx(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels() ``` # 10.1.5 draw_networkx_edges ```
\label{local_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continu ``` This draws only the edges of the graph G. ins draws only the eages of the ### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - edgelist (collection of edge tuples) Draw only specified edges(default=G.edges()) - width (float, or array of floats) Line width of edges (default=1.0) - edge_color (color string, or array of floats) Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. - **style** (*string*) Edge line style (default='solid') (solid|dashed|dotted,dashdot) - **alpha** (*float*) The edge transparency (default=1.0) - edge_ cmap (*Matplotlib colormap*) Colormap for mapping intensities of edges (default=None) - edge_vmin,edge_vmax (*floats*) Minimum and maximum for edge colormap scaling (default=None) - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - arrows (bool, optional (default=True)) For directed graphs, if True draw arrowheads. - label ([None| string]) Label for legend Returns LineCollection of the edges Return type matplotlib.collection.LineCollection 10.1. Matplotlib 547 #### **Notes** For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html #### See also: ``` draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_labels(), draw_networkx_edge_labels() ``` # 10.1.6 draw_networkx_labels ``` \label{local_cont_size} \begin{split} \textbf{draw_networkx_labels} & (G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', \\ & font_weight='normal', alpha=1.0, bbox=None, ax=None, **kwds) \\ & \text{Draw node labels on the graph G.} \end{split} ``` #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - labels (dictionary, optional (default=None)) Node labels in a dictionary keyed by node of text labels - **font_size** (*int*) Font size for text labels (default=12) - **font_color** (*string*) Font color string (default='k' black) - **font_family** (*string*) Font family (default='sans-serif') - **font_weight** (*string*) Font weight (default='normal') - **alpha** (*float*) The text transparency (default=1.0) - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. **Returns** dict of labels keyed on the nodes Return type dict ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html ### See also: ``` draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw networkx edge labels() ``` # 10.1.7 draw_networkx_edge_labels ``` \label{local_decomposition} \begin{split} \textbf{draw_networkx_edge_labels} &(G, pos, edge_labels=None, label_pos=0.5, font_size=10, \\ &font_color='k', font_family='sans-serif', font_weight='normal', \\ &alpha=1.0, bbox=None, ax=None, rotate=True, **kwds) \end{split} ``` Draw edge labels. #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - **alpha** (*float*) The text transparency (default=1.0) - **edge_labels** (*dictionary*) Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn. - label_pos (float) Position of edge label along edge (0=head, 0.5=center, 1=tail) - **font_size** (*int*) Font size for text labels (default=12) - **font_color** (*string*) Font color string (default='k' black) - **font_weight** (*string*) Font weight (default='normal') - **font_family** (*string*) Font family (default='sans-serif') - **bbox** (*Matplotlib bbox*) Specify text box shape and colors. - clip_on (bool) Turn on clipping at axis boundaries (default=True) Returns dict of labels keyed on the edges Return type dict ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html #### See also: ``` draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels() ``` ## 10.1.8 draw_circular ``` draw_circular (G, **kwargs) Draw the graph G with a circular layout. ``` **Parameters** 10.1. Matplotlib 549 - **G** (graph) A networkx graph - **kwargs** (*optional keywords*) See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. ## 10.1.9 draw random draw_random(G, **kwargs) Draw the graph G with a random layout. #### **Parameters** - **G** (graph) A networkx graph - **kwargs** (*optional keywords*) See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. ## 10.1.10 draw spectral draw_spectral(G, **kwargs) Draw the graph G with a spectral layout. #### **Parameters** - **G** (graph) A networkx graph - **kwargs** (*optional keywords*) See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.1.11 draw_spring draw_spring(G, **kwargs) Draw the graph G with a spring layout. #### **Parameters** - **G** (graph) A networkx graph - **kwargs** (*optional keywords*) See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.1.12 draw shell draw_shell(G, **kwargs) Draw networkx graph with shell layout. #### **Parameters** - **G** (graph) A networkx graph - **kwargs** (*optional keywords*) See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.2 Graphviz AGraph (dot) # 10.2.1 Graphviz AGraph Interface to pygraphviz AGraph class. ### **Examples** ``` >>> G = nx.complete_graph(5) >>> A = nx.nx_agraph.to_agraph(G) >>> H = nx.nx_agraph.from_agraph(A) ``` #### See also: ### Pygraphviz http://pygraphviz.github.io/ | from_agraph(A[, create_using]) | Return a NetworkX Graph or DiGraph from a PyGraphviz | |-----------------------------------------------------|--------------------------------------------------------| | | graph. | | to_agraph(N) | Return a pygraphviz graph from a NetworkX graph N. | | write_dot(G, path) | Write NetworkX graph G to Graphviz dot format on path. | | read_dot(path) | Return a NetworkX graph from a dot file on path. | | <pre>graphviz_layout(G[, prog, root, args])</pre> | Create node positions for G using Graphviz. | | <pre>pygraphviz_layout(G[, prog, root, args])</pre> | Create node positions for G using Graphviz. | # 10.2.2 from_agraph from_agraph (A, create_using=None) Return a NetworkX Graph or DiGraph from a PyGraphviz graph. #### **Parameters** - A (*PyGraphviz AGraph*) A graph created with PyGraphviz - **create_using** (*NetworkX graph class instance*) The output is created using the given graph class instance ### **Examples** ``` >>> K5 = nx.complete_graph(5) >>> A =
nx.nx_agraph.to_agraph(K5) >>> G = nx.nx_agraph.from_agraph(A) >>> G = nx.nx_agraph.from_agraph(A) ``` ### **Notes** The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes and edges. Default node attributes will be in the dictionary G.node_attr which is keyed by node. Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge weight attribute or the value 1 if no edge weight attribute is found. # 10.2.3 to agraph ### $to_agraph(N)$ Return a pygraphviz graph from a NetworkX graph N. **Parameters** N (NetworkX graph) – A graph created with NetworkX ### **Examples** ``` >>> K5 = nx.complete_graph(5) >>> A = nx.nx_agraph.to_agraph(K5) ``` # **Notes** If N has an dict N.graph_attr an attempt will be made first to copy properties attached to the graph (see from_agraph) and then updated with the calling arguments if any. ### 10.2.4 write dot ### write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path. #### **Parameters** - **G** (*graph*) A networkx graph - path (filename) Filename or file handle to write ### 10.2.5 read dot #### read dot(path) Return a NetworkX graph from a dot file on path. **Parameters path** (*file or string*) – File name or file handle to read. # 10.2.6 graphviz_layout ``` graphviz_layout (G, prog='neato', root=None, args='') ``` Create node positions for G using Graphviz. #### **Parameters** - G (NetworkX graph) A graph created with NetworkX - **prog** (*string*) Name of Graphviz layout program - root (string, optional) Root node for twopi layout - args (string, optional) Extra arguments to Graphviz layout program - **Returns** (*dictionary*) Dictionary of x,y, positions keyed by node. ### **Examples** ``` >>> G = nx.petersen_graph() >>> pos = nx.nx_agraph.graphviz_layout(G) >>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot') ``` #### **Notes** This is a wrapper for pygraphviz_layout. # 10.2.7 pygraphviz_layout ``` pygraphviz_layout (G, prog='neato', root=None, args='') Create node positions for G using Graphviz. ``` #### **Parameters** - G (NetworkX graph) A graph created with NetworkX - **prog** (*string*) Name of Graphviz layout program - root (string, optional) Root node for twopi layout - args (string, optional) Extra arguments to Graphviz layout program - **Returns** (*dictionary*) Dictionary of x,y, positions keyed by node. ### **Examples** ``` >>> G = nx.petersen_graph() >>> pos = nx.nx_agraph.graphviz_layout(G) >>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot') ``` # 10.3 Graphviz with pydot ## 10.3.1 Pydot Import and export NetworkX graphs in Graphviz dot format using pydot. Either this module or nx_agraph can be used to interface with graphviz. ### See also: pydot https://github.com/erocarrera/pydot Graphviz http://www.research.att.com/sw/tools/graphviz/ DOT | from_pydot(P) | Return a NetworkX graph from a Pydot graph. | |-----------------------|--------------------------------------------------------| | to_pydot(N[, strict]) | Return a pydot graph from a NetworkX graph N. | | write_dot(G, path) | Write NetworkX graph G to Graphviz dot format on path. | | | Continued on next page | Table 10.3 – continued from previous page | read_dot(path) | Return a NetworkX MultiGraph or MultiDiGraph | |---------------------------------------------|-------------------------------------------------| | | from the dot file with the passed path. | | <pre>graphviz_layout(G[, prog, root])</pre> | Create node positions using Pydot and Graphviz. | | <pre>pydot_layout(G[, prog, root])</pre> | Create node positions using pydot and Graphviz. | # 10.3.2 from_pydot ### $from_pydot(P)$ Return a NetworkX graph from a Pydot graph. Parameters P (Pydot graph) – A graph created with Pydot **Returns G** – A MultiGraph or MultiDiGraph. Return type NetworkX multigraph ## **Examples** ``` >>> K5 = nx.complete_graph(5) >>> A = nx.nx_pydot.to_pydot(K5) >>> G = nx.nx_pydot.from_pydot(A) # return MultiGraph ``` # make a Graph instead of MultiGraph >>> $G = nx.Graph(nx.nx_pydot.from_pydot(A))$ # 10.3.3 to_pydot ### to_pydot (N, strict=True) Return a pydot graph from a NetworkX graph N. **Parameters** N (NetworkX graph) – A graph created with NetworkX ### **Examples** ``` >>> K5 = nx.complete_graph(5) >>> P = nx.nx_pydot.to_pydot(K5) ``` ### **Notes** # 10.3.4 write_dot ### write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path. Path can be a string or a file handle. ## 10.3.5 read dot ### read_dot (path) $Return\ a\ Network X\ \texttt{MultiGraph}\ or\ \texttt{MultiDiGraph}\ from\ the\ dot\ file\ with\ the\ passed\ path.$ If this file contains multiple graphs, only the first such graph is returned. All graphs _except_ the first are silently ignored. **Parameters** path (*str or file*) – Filename or file handle. **Returns** G - A MultiGraph or MultiDiGraph. Return type MultiGraph or MultiDiGraph ### **Notes** Use G = nx.Graph (read_dot (path)) to return a Graph instead of a MultiGraph. # 10.3.6 graphviz_layout ``` graphviz_layout (G, prog='neato', root=None, **kwds) ``` Create node positions using Pydot and Graphviz. Returns a dictionary of positions keyed by node. ## **Examples** ``` >>> G = nx.complete_graph(4) >>> pos = nx.nx_pydot.graphviz_layout(G) >>> pos = nx.nx_pydot.graphviz_layout(G, prog='dot') ``` #### **Notes** This is a wrapper for pydot_layout. # 10.3.7 pydot layout ``` pydot_layout (G, prog='neato', root=None, **kwds) Create node positions using pydot and Graphviz. ``` #### **Parameters** - **G** (*Graph*) NetworkX graph to be laid out. - **prog** (*optional[str]*) Basename of the GraphViz command with which to layout this graph. Defaults to neato, the default GraphViz command for undirected graphs. **Returns** Dictionary of positions keyed by node. Return type dict ### **Examples** ``` >>> G = nx.complete_graph(4) >>> pos = nx.nx_pydot.pydot_layout(G) >>> pos = nx.nx_pydot.pydot_layout(G, prog='dot') ``` # 10.4 Graph Layout # 10.4.1 Layout Node positioning algorithms for graph drawing. For random_layout () the possible resulting shape is a square of side [0, scale] (default: [0, 1]) Changing center shifts the layout by that amount. For the other layout routines, the extent is [center - scale, center + scale] (default: [-1, 1]). Warning: Most layout routines have only been tested in 2-dimensions. | circular_layout(G[, scale, center, dim]) | Position nodes on a circle. | |---------------------------------------------------------|--------------------------------------------------------------| | random_layout(G[, center, dim]) | Position nodes uniformly at random in the unit square. | | rescale_layout(pos[, scale]) | Return scaled position array to (-scale, scale) in all axes. | | <pre>shell_layout(G[, nlist, scale, center, dim])</pre> | Position nodes in concentric circles. | | <pre>spring_layout(G[, k, pos, fixed,])</pre> | Position nodes using Fruchterman-Reingold force-directed | | | algorithm. | | spectral_layout(G[, weight, scale, center, dim]) | Position nodes using the eigenvectors of the graph Lapla- | | | cian. | # 10.4.2 circular_layout circular_layout (G, scale=1, center=None, dim=2) Position nodes on a circle. #### **Parameters** - **G** (NetworkX graph or list of nodes) - scale (*float*) Scale factor for positions - center (array-like or None) Coordinate pair around which to center the layout. - **dim** (*int*) Dimension of layout, currently only dim=2 is supported Returns pos – A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G = nx.path_graph(4) >>> pos = nx.circular_layout(G) ``` ### **Notes** This algorithm currently only works in two dimensions and does not try to minimize edge crossings. # 10.4.3 random_layout ``` random_layout (G, center=None, dim=2) ``` Position nodes uniformly at random in the unit square. For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0). NumPy (http://scipy.org) is required for this function. ### **Parameters** - **G** (*NetworkX graph or list of nodes*) A position will be assigned to every node in G. - center (array-like or None) Coordinate pair around which to center the layout. - **dim** (*int*) Dimension of layout. **Returns** pos – A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G = nx.lollipop_graph(4, 3) >>> pos = nx.random_layout(G) ``` # 10.4.4 rescale_layout ``` rescale_layout (pos, scale=1) ``` Return scaled position array to (-scale, scale) in all axes. The function acts on NumPy arrays which hold position information. Each position is one row of the array. The dimension of the space equals the number of columns. Each coordinate in one column. To rescale, the mean (center) is subtracted from each axis separately. Then all values are scaled so that the largest magnitude value from all axes equals scale (thus, the aspect ratio is preserved). The resulting NumPy Array is returned (order of rows unchanged). ### **Parameters** - pos (numpy array) positions to be scaled. Each row is a position. - scale (number (default: 1)) The size of the resulting extent in all directions. **Returns** pos – scaled positions. Each row is a position. Return type numpy array 10.4. Graph Layout 557 ## 10.4.5 shell layout **shell_layout** (*G*, *nlist=None*, *scale=1*, *center=None*, *dim=2*) Position nodes in concentric circles. #### **Parameters** - **G** (NetworkX graph or list of nodes) - **nlist** (*list of lists*) List of node lists for each shell. - scale (*float*) Scale factor for positions - center (array-like or None) Coordinate pair around which to center the layout. - **dim** (*int*) Dimension of layout, currently only dim=2 is supported Returns pos – A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G = nx.path_graph(4) >>> shells = [[0], [1, 2, 3]] >>> pos = nx.shell_layout(G, shells) ``` #### **Notes** This algorithm currently only works in two dimensions
and does not try to minimize edge crossings. # 10.4.6 spring_layout $spring_layout$ (G, k=None, pos=None, fixed=None, iterations=50, weight='weight', scale=1.0, center=None, dim=2) Position nodes using Fruchterman-Reingold force-directed algorithm. ### **Parameters** - **G** (NetworkX graph or list of nodes) - **k** (*float* (*default=None*)) Optimal distance between nodes. If None the distance is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther apart. - **pos** (dict or None optional (default=None)) Initial positions for nodes as a dictionary with node as keys and values as a coordinate list or tuple. If None, then use random initial positions. - fixed (list or None optional (default=None)) Nodes to keep fixed at initial position. - iterations (int optional (default=50)) Number of iterations of spring-force relaxation - weight (*string or None optional (default='weight'*)) The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. - scale (float (default=1.0)) Scale factor for positions. The nodes are positioned in a box of size [0, scale] x [0, scale]. - center (array-like or None) Coordinate pair around which to center the layout. • dim (int) – Dimension of layout **Returns** pos – A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G = nx.path_graph(4) >>> pos = nx.spring_layout(G) ``` # The same using longer but equivalent function name >>> pos = nx.fruchterman_reingold_layout(G) # 10.4.7 spectral layout $\verb|spectral_layout| (G, weight='weight', scale=1, center=None, dim=2)$ Position nodes using the eigenvectors of the graph Laplacian. #### **Parameters** - **G** (NetworkX graph or list of nodes) - weight (*string or None optional (default='weight'*)) The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. - scale (*float*) Scale factor for positions - center (array-like or None) Coordinate pair around which to center the layout. - **dim** (*int*) Dimension of layout **Returns** pos – A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G = nx.path_graph(4) >>> pos = nx.spectral_layout(G) ``` #### **Notes** Directed graphs will be considered as undirected graphs when positioning the nodes. For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK). 10.4. Graph Layout 559 # **Exceptions** # 11.1 Exceptions Base exceptions and errors for NetworkX. #### class NetworkXException Base class for exceptions in NetworkX. ### class NetworkXError Exception for a serious error in NetworkX ### class NetworkXPointlessConcept Harary, F. and Read, R. "Is the Null Graph a Pointless Concept?" In Graphs and Combinatorics Conference, George Washington University. New York: Springer-Verlag, 1973. ### class NetworkXAlgorithmError Exception for unexpected termination of algorithms. ### class NetworkXUnfeasible Exception raised by algorithms trying to solve a problem instance that has no feasible solution. ### class NetworkXNoPath Exception for algorithms that should return a path when running on graphs where such a path does not exist. ### class NodeNotFound Exception raised if requested node is not present in the graph ### class NetworkXUnbounded Exception raised by algorithms trying to solve a maximization or a minimization problem instance that is unbounded. # **Utilities** # 12.1 Helper Functions Miscellaneous Helpers for NetworkX. These are not imported into the base networkx namespace but can be accessed, for example, as ``` >>> import networkx >>> networkx.utils.is_string_like('spam') True ``` | is_string_like(obj) | Check if obj is string. | |------------------------------|------------------------------------------------------------| | flatten(obj[, result]) | Return flattened version of (possibly nested) iterable ob- | | | ject. | | iterable(obj) | Return True if obj is iterable with a well-defined len(). | | is_list_of_ints(intlist) | Return True if list is a list of ints. | | make_str(x) | Return the string representation of t. | | generate_unique_node() | Generate a unique node label. | | default_opener(filename) | Opens filename using system's default program. | | pairwise(iterable[, cyclic]) | s -> (s0, s1), (s1, s2), (s2, s3), | | groups(many_to_one) | Converts a many-to-one mapping into a one-to-many map- | | | ping. | # 12.1.1 is_string_like ``` is_string_like (obj) Check if obj is string. ``` # 12.1.2 flatten flatten (obj, result=None) Return flattened version of (possibly nested) iterable object. ## 12.1.3 iterable ### iterable(obj) Return True if obj is iterable with a well-defined len(). ## 12.1.4 is list of ints ### is_list_of_ints(intlist) Return True if list is a list of ints. # 12.1.5 make str ``` make_str(x) ``` Return the string representation of t. ### 12.1.6 generate unique node ``` generate_unique_node() ``` Generate a unique node label. # 12.1.7 default opener ``` default_opener (filename) ``` Opens filename using system's default program. **Parameters filename** (*str*) – The path of the file to be opened. ## 12.1.8 pairwise ``` pairwise (iterable, cyclic=False) s -> (s0, s1), (s1, s2), (s2, s3), ... ``` # 12.1.9 groups ``` groups (many_to_one) ``` Converts a many-to-one mapping into a one-to-many mapping. many_to_one must be a dictionary whose keys and values are all hashable. The return value is a dictionary mapping values from many_to_one to sets of keys from many_to_one that have that value. For example: ``` >>> from networkx.utils import groups >>> many_to_one = {'a': 1, 'b': 1, 'c': 2, 'd': 3, 'e': 3} >>> groups(many_to_one) {1: {'a', 'b'}, 2: {'c'}, 3: {'d', 'e'}} ``` # 12.2 Data Structures and Algorithms Union-find data structure. UnionFind.union(*objects) Find the sets containing the objects and merge them all. ## 12.2.1 union UnionFind.union(*objects) Find the sets containing the objects and merge them all. # 12.3 Random Sequence Generators Utilities for generating random numbers, random sequences, and random selections. | create_degree_sequence(n[, | sfunction, | | |---------------------------------------------|------------|------------------------------------------------------------| | max_tries]) | | | | <pre>pareto_sequence(n[, exponent])</pre> | | Return sample sequence of length n from a Pareto distribu- | | | | tion. | | <pre>powerlaw_sequence(n[, exponent])</pre> | | Return sample sequence of length n from a power law dis- | | | | tribution. | | uniform_sequence(n) | | Return sample sequence of length n from a uniform distri- | | | | bution. | | cumulative_distribution(distribution) | | Return normalized cumulative distribution from discrete | | | | distribution. | | discrete_sequence(n[, distribution,]) | | Return sample sequence of length n from a given discrete | | | | distribution or discrete cumulative distribution. | | zipf_sequence(n[, alpha, xmin]) | | Return a sample sequence of length n from a Zipf distri- | | | | bution with exponent parameter alpha and minimum value | | | | xmin. | | zipf_rv(alpha[, xmin, seed]) | | Return a random value chosen from the Zipf distribution. | | random_weighted_sample(mapping, k) | | Return k items without replacement from a weighted sam- | | | | ple. | | weighted_choice(mapping) | | Return a single element from a weighted sample. | ## 12.3.1 create degree sequence create_degree_sequence (n, sfunction=None, max_tries=50, **kwds) ## 12.3.2 pareto_sequence pareto_sequence (n, exponent=1.0) Return sample sequence of length n from a Pareto distribution. # 12.3.3 powerlaw_sequence powerlaw_sequence(n, exponent=2.0) Return sample sequence of length n from a power law distribution. # 12.3.4 uniform_sequence $uniform_sequence(n)$ Return sample sequence of length n from a uniform distribution. # 12.3.5 cumulative_distribution ### cumulative_distribution (distribution) Return normalized cumulative distribution from discrete distribution. ## 12.3.6 discrete sequence #### discrete_sequence (n, distribution=None, cdistribution=None) Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution. One of the following must be specified. distribution = histogram of values, will be normalized cdistribution = normalized discrete cumulative distribution # 12.3.7 zipf_sequence ## zipf_sequence(n, alpha=2.0, xmin=1) Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin. #### See also: ``` zipf_rv() ``` # 12.3.8 zipf_rv ### zipf_rv (alpha, xmin=1, seed=None) Return a random value chosen from the Zipf distribution. The return value is an integer drawn from the probability distribution ::math: ``` p(x) = \frac{x^{-\alpha}}{x^{-\alpha}} \{ (\alpha, x_{\min}) \}, ``` where zeta (alpha, $x_{\min}$ ) is the Hurwitz zeta function. #### **Parameters** - alpha (*float*) Exponent value of the distribution - **xmin** (*int*) Minimum value - seed (int) Seed value for random number generator **Returns** x – Random value from Zipf distribution Return type int Raises ValueError: – If xmin < 1 or If alpha <= 1 #### **Notes** The rejection algorithm generates random values for a the power-law distribution in uniformly bounded expected time dependent on parameters. See [1] for details on its operation. ### **Examples** ``` >>> nx.zipf_rv(alpha=2, xmin=3, seed=42) ``` #### References ..[1] Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986. # 12.3.9 random_weighted_sample ``` random_weighted_sample (mapping, k) ``` Return k items without replacement from a weighted sample. The input is a dictionary of items with weights as values. # 12.3.10 weighted_choice ``` weighted_choice (mapping) ``` Return a single element from a weighted sample. The input is a dictionary of items with weights as values. # 12.4 Decorators open_file(path_arg[, mode]) Decorator to ensure clean opening and closing of files. ##
12.4.1 open_file ``` open_file (path_arg, mode='r') ``` Decorator to ensure clean opening and closing of files. #### **Parameters** - path_arg (int) Location of the path argument in args. Even if the argument is a named positional argument (with a default value), you must specify its index as a positional argument. - **mode** (*str*) String for opening mode. **Returns** _open_file - Function which cleanly executes the io. **Return type** function ### **Examples** Decorate functions like this: ``` @open_file(0,'r') def read_function(pathname): pass ``` 12.4. Decorators 567 ``` @open_file(1,'w') def write_function(G,pathname): pass @open_file(1,'w') def write_function(G, pathname='graph.dot') pass @open_file('path', 'w+') def another_function(arg, **kwargs): path = kwargs['path'] pass ``` # 12.5 Cuthill-Mckee Ordering Cuthill-McKee ordering of graph nodes to produce sparse matrices | <pre>cuthill_mckee_ordering(G[, heuristic])</pre> | | Generate an ordering (permutation) of the graph nodes to | |---------------------------------------------------|---------|----------------------------------------------------------| | | | make a sparse matrix. | | $reverse_cuthill_mckee_ordering(G[,$ | heuris- | Generate an ordering (permutation) of the graph nodes to | | tic]) | | make a sparse matrix. | # 12.5.1 cuthill mckee ordering ``` cuthill_mckee_ordering(G, heuristic=None) ``` Generate an ordering (permutation) of the graph nodes to make a sparse matrix. Uses the Cuthill-McKee heuristic (based on breadth-first search) ¹. #### **Parameters** - **G** (graph) A NetworkX graph - heuristic (function, optional) Function to choose starting node for RCM algorithm. If None a node from a pseudo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node. **Returns** nodes – Generator of nodes in Cuthill-McKee ordering. Return type generator ### **Examples** ``` >>> from networkx.utils import cuthill_mckee_ordering >>> G = nx.path_graph(4) >>> rcm = list(cuthill_mckee_ordering(G)) >>> A = nx.adjacency_matrix(G, nodelist=rcm) ``` Smallest degree node as heuristic function: $^{^1}$ E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969. http://doi.acm.org/10.1145/800195.805928 ``` >>> def smallest_degree(G): ... return min(G, key=G.degree) >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree)) ``` #### See also: ``` reverse_cuthill_mckee_ordering() ``` #### **Notes** The optimal solution the the bandwidth reduction is NP-complete ². #### References # 12.5.2 reverse_cuthill_mckee_ordering ``` reverse_cuthill_mckee_ordering(G, heuristic=None) ``` Generate an ordering (permutation) of the graph nodes to make a sparse matrix. Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) ¹. #### **Parameters** - **G** (graph) A NetworkX graph - heuristic (function, optional) Function to choose starting node for RCM algorithm. If None a node from a pseudo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node. **Returns** nodes – Generator of nodes in reverse Cuthill-McKee ordering. **Return type** generator ### **Examples** ``` >>> from networkx.utils import reverse_cuthill_mckee_ordering >>> G = nx.path_graph(4) >>> rcm = list(reverse_cuthill_mckee_ordering(G)) >>> A = nx.adjacency_matrix(G, nodelist=rcm) ``` Smallest degree node as heuristic function: ``` >>> def smallest_degree(G): ... return min(G, key=G.degree) >>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree)) ``` ### See also: ``` cuthill_mckee_ordering() ``` $^{^2}$ Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA. ¹ E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969. http://doi.acm.org/10.1145/800195.805928 ### **Notes** The optimal solution the the bandwidth reduction is NP-complete ². ### References # 12.6 Context Managers | reversed(*args, **kwds) | A context manager for temporarily reversing a directed | |----------------------------|--------------------------------------------------------| | | graph in place. | # 12.6.1 reversed reversed(*args, **kwds) A context manager for temporarily reversing a directed graph in place. This is a no-op for undirected graphs. **Parameters G** (*graph*) – A NetworkX graph. Chapter 12. Utilities ² Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA. # License #### NetworkX is distributed with the BSD license. Copyright (C) 2004-2016, NetworkX Developers Aric Hagberg <a href="mailto:hagberg@lanl.gov">hagberg@lanl.gov</a> Dan Schult <a href="mailto:dschult@colgate.edu">dschult@colgate.edu</a> Pieter Swart <a href="mailto:swart@lanl.gov">swart@lanl.gov</a> All rights reserved. Redistribution **and** use **in** source **and** binary forms, **with or** without modification, are permitted provided that the following conditions are met: - $\star$ Redistributions of source code must retain the above copyright notice, this list of conditions ${\bf and}$ the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - * Neither the name of the NetworkX Developers nor the names of its contributors may be used to endorse **or** promote products derived **from this** software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 572 Chapter 13. License | СН | ΔP. | TER | 1 | 4 | |----|-----|-----|---|---| | | | | | | | Citin | | |---------|---| | ( .itin | a | To cite NetworkX please use the following publication: Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, "Exploring network structure, dynamics, and function using NetworkX", in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008 574 Chapter 14. Citing # **Credits** NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart, and has been developed with the help of many others. Thanks to everyone who has improved NetworkX by contributing code, bug reports (and fixes), documentation, and input on design, features, and the future of NetworkX. ### 15.1 Contributions This section aims to provide a list of people and projects that have contributed to networks. It is intended to be an *inclusive* list, and anyone who has contributed and wishes to make that contribution known is welcome to add an entry into this file. Generally, no name should be added to this list without the approval of the person associated with that name. Creating a comprehensive list of contributors can be difficult, and the list within this file is almost certainly incomplete. Contributors include testers, bug reporters, contributors who wish to remain anonymous, funding sources, academic advisors, end users, and even build/integration systems (such as TravisCI, coveralls, and readthedocs). Do you want to make your contribution known? If you have commit access, edit this file and add your name. If you do not have commit access, feel free to open an issue, submit a pull request, or get in contact with one of the official team members. A supplementary (but still incomplete) list of contributors is given by the list of names that have commits in networkx's git repository. This can be obtained via: ``` git log --raw | grep "^Author: " | sort | uniq ``` A historical, partial listing of contributors and their contributions to some of the earlier versions of NetworkX can be found here. # 15.1.1 Original Authors Aric Hagberg Dan Schult Pieter Swart ### 15.1.2 Contributors Optionally, add your desired name and include a few relevant links. The order is partially historical, and now, mostly arbitrary. - Aric Hagberg, GitHub: hagberg - Dan Schult, GitHub: dschult - · Pieter Swart - Katy Bold - · Hernan Rozenfeld - · Brendt Wohlberg - Jim Bagrow - · Holly Johnsen - Arnar Flatberg - Chris Myers - Joel Miller - · Keith Briggs - Ignacio Rozada - Phillipp Pagel - · Sverre Sundsdal - Ross M. Richardson - Eben Kenah - · Sasha Gutfriend - Udi Weinsberg - Matteo Dell'Amico - · Andrew Conway - Raf Guns - · Salim Fadhley - Fabrice Desclaux - · Arpad Horvath - Minh Van Nguyen - Willem Ligtenberg - Loïc Séguin-C. - · Paul McGuire - · Jesus Cerquides - · Ben Edwards - Jon Olav Vik - Hugh Brown 576 Chapter 15. Credits - Ben Reilly - · Leo Lopes - Jordi Torrents, GitHub: jtorrents - · Dheeraj M R - · Franck Kalala - Simon Knight - · Conrad Lee - · Sérgio Nery Simões - · Robert King - · Nick Mancuso - · Brian Cloteaux - Alejandro Weinstein - Dustin Smith - · Mathieu Larose - · Vincent Gauthier - chebee7i, GitHub: chebee7i - · Jeffrey Finkelstein - Jean-Gabriel Young, Github: jg-you - · Andrey Paramonov, http://aparamon.msk.ru - Mridul Seth, GitHub: MridulS - Thodoris Sotiropoulos, GitHub: theosotr - Konstantinos Karakatsanis, GitHub: k-karakatsanis - Ryan Nelson, GitHub: rnelsonchem - Niels van Adrichem, GitHub:
NvanAdrichem - Michael E. Rose, GitHub: Michael-E-Rose # 15.2 Support networkx and those who have contributed to networkx have received support throughout the years from a variety of sources. We list them below. If you have provided support to networkx and a support acknowledgment does not appear below, please help us remedy the situation, and similarly, please let us know if you'd like something modified or corrected. # 15.2.1 Research Groups networkx acknowledges support from the following: - Center for Nonlinear Studies, Los Alamos National Laboratory, PI: Aric Hagberg - Open Source Programs Office, Google 15.2. Support 577 - Complexity Sciences Center, Department of Physics, University of California-Davis, PI: James P. Crutchfield - Center for Complexity and Collective Computation, Wisconsin Institute for Discovery, University of Wisconsin-Madison, PIs: Jessica C. Flack and David C. Krakauer # **15.2.2 Funding** networkx acknowledges support from the following: - Google Summer of Code via Python Software Foundation - U.S. Army Research Office grant W911NF-12-1-0288 - DARPA Physical Intelligence Subcontract No. 9060-000709 - NSF Grant No. PHY-0748828 - John Templeton Foundation through a grant to the Santa Fe Institute to study complexity - U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-13-1-0340 578 Chapter 15. Credits # Glossary **dictionary** A Python dictionary maps keys to values. Also known as "hashes", or "associative arrays". See http://docs.python.org/tutorial/datastructures.html#dictionaries **ebunch** An iteratable container of edge tuples like a list, iterator, or file. edge Edges are either two-tuples of nodes (u,v) or three tuples of nodes with an edge attribute dictionary (u,v,dict). **edge attribute** Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding an edge assigning to the G.edge[u][v] attribute dictionary for the specified edge u-v. hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects which compare equal must have the same hash value. Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash value internally. All of Python's immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal, and their hash value is their id(). Definition from http://docs.python.org/glossary.html **nbunch** An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an iterator, e.g. a list, set, graph, file, etc.. **node** A node can be any hashable Python object except None. **node attribute** Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding a node or assigning to the G.node[n] attribute dictionary for the specified node n. | Bibliography | |--------------| | C 1 . | | | [atlas] Ronald C. Read and Robin J. Wilson, *An Atlas of Graphs*. Oxford University Press, 1998. [atlas] Ronald C. Read and Robin J. Wilson, *An Atlas of Graphs*. Oxford University Press, 1998. 582 Bibliography ``` а networkx.algorithms.bipartite.spectral, networkx.algorithms.approximation, 119 networkx.algorithms.approximation.clique,networkx.algorithms.boundary, 165 networkx.algorithms.centrality, 166 123 networkx.algorithms.approximation.clustePthyotografithms.chains,191 networkx.algorithms.chordal, 192 124 networkx.algorithms.approximation.connectetvveykx.algorithms.clique, 194 networkx.algorithms.cluster, 199 \verb"networkx.algorithms.approximation.domina \verb"leftworkx", \verb"algorithms.coloring", 203 networkx.algorithms.communicability_alg, networkx.algorithms.approximation.independent_set, networkx.algorithms.community, 208 networkx.algorithms.approximation.kcompofiefits;kx.algorithms.community.asyn_lpa, networkx.algorithms.approximation.matching,tworkx.algorithms.community.centrality, networkx.algorithms.approximation.ramsey, networkx.algorithms.community.kclique, 209 \verb"networkx.algorithms.approximation.vertex" \underline{\texttt{networkx.algorithms.community.kernighan_lin,}} \\ networkx.algorithms.community.quality, networkx.algorithms.assortativity, 128 211 networkx.algorithms.bipartite, 137 networkx.algorithms.bipartite.basic, 138 networkx.algorithms.components, 214 networkx.algorithms.bipartite.centrality, networkx.algorithms.connectivity, 230 networkx.algorithms.connectivity.connectivity, 157 networkx.algorithms.bipartite.cluster, networkx.algorithms.connectivity.cuts, networkx.algorithms.bipartite.covering, networkx.algorithms.connectivity.kcomponents, 230 networkx.algorithms.bipartite.generators, networkx.algorithms.connectivity.kcutsets, 232 networkx.algorithms.bipartite.matching, networkx.algorithms.connectivity.stoerwagner, 247 networkx.algorithms.bipartite.matrix, networkx.algorithms.connectivity.utils, networkx.algorithms.bipartite.projection, networkx.algorithms.core, 249 \verb"networkx.algorithms.bipartite.redundancy, \verb"networkx.algorithms.covering," 252 networkx.algorithms.cuts, 257 156 networkx.algorithms.cycles, 254 networkx.algorithms.dag, 261 ``` ``` networkx.algorithms.distance_measures, networkx.algorithms.tree.mst, 403 266 networkx.algorithms.tree.recognition, networkx.algorithms.distance regular, networkx.algorithms.triads, 407 268 networkx.algorithms.dominance, 270 networkx.algorithms.vitality, 408 networkx.algorithms.dominating, 272 networkx.algorithms.voronoi, 408 networkx.algorithms.efficiency, 273 networkx.algorithms.wiener, 409 networkx.algorithms.euler, 275 networkx.algorithms.flow, 276 networkx.algorithms.graphical, 301 networkx.classes.function,411 networkx.algorithms.hierarchy, 305 networkx.convert, 487 networkx.algorithms.hybrid, 305 networkx.convert matrix, 490 networkx.algorithms.isolate, 307 networkx.algorithms.isomorphism, 308 networkx.algorithms.isomorphism.isomorphm&&workx.drawing.layout,556 311 networkx.drawing.nx_agraph, 551 networkx.algorithms.link_analysis.hits_ah@tworkx.drawing.nx_pydot,553 networkx.drawing.nx_pylab, 543 networkx.algorithms.link_analysis.pagerank_alg, 322 networkx.algorithms.link_prediction, 328 networkx.exception, 561 networkx.algorithms.matching, 334 networkx.algorithms.minors, 336 g networkx.algorithms.mis, 342 networkx.generators.atlas,421 networkx.algorithms.operators.all,346 networkx.generators.classic,422 networkx.algorithms.operators.binary, networkx.generators.community, 466 networkx.generators.degree seg, 446 networkx.algorithms.operators.product, networkx.generators.directed, 453 networkx.generators.duplication, 445 networkx.algorithms.operators.unary, 342 networkx.generators.ego, 462 networkx.algorithms.reciprocity, 352 networkx.generators.expanders, 430 networkx.algorithms.richclub, 353 networkx.generators.geometric, 456 \verb|networkx.algorithms.shortest_paths.astar_{networkx.generators.intersection}, 463| networkx.generators.joint_degree_seq, networkx.algorithms.shortest paths.dense. 472 networkx.generators.line,461 471 \verb"networkx.algorithms.shortest_paths.unweighted" rkx.generators.random_clustered, 452 networkx.generators.small, 432 networkx.algorithms.simple_paths, 381 networkx.generators.social, 465 networkx.algorithms.swap, 384 networkx.generators.stochastic, 463 networkx.algorithms.tournament, 386 networkx.generators.triads, 471 networkx.algorithms.traversal.beamsearch, \verb"networkx.algorithms.traversal.breadth_first_wsearch_inalg.algebraic connectivity, 480 \verb|networkx.algorithms.traversal.depth_first_search, linealg.attrmatrix, 483| networkx.linalq.graphmatrix,475 networkx.algorithms.traversal.edgedfs, networkx.linalg.laplacianmatrix,477 networkx.linalg.spectrum, 479 networkx.algorithms.tree.branchings, 401 ``` 584 Python Module Index #### r ``` networkx.readwrite.adjlist,501 networkx.readwrite.edgelist, 508 networkx.readwrite.gexf, 514 networkx.readwrite.gml, 516 networkx.readwrite.gpickle,520 networkx.readwrite.graph6,532 networkx.readwrite.graphml, 521 networkx.readwrite.json_graph,523 networkx.readwrite.leda, 528 networkx.readwrite.multiline_adjlist, 504 networkx.readwrite.nx_shp,538 networkx.readwrite.nx_yaml,529 networkx.readwrite.pajek, 537 networkx.readwrite.sparse6,534 u networkx.utils,563 networkx.utils.contextmanagers, 570 networkx.utils.decorators, 567 networkx.utils.misc, 563 networkx.utils.random_sequence, 565 networkx.utils.rcm, 568 networkx.utils.union find, 564 ``` Python Module Index 585 586 Python Module Index | Symbols | add_node() (MultiGraph method), 66 | | | |--------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--| | contains() (DiGraph method), 52 | add_nodes_from() (DiGraph method), 40 | | | | contains() (Graph method), 26 | add_nodes_from() (Graph method), 15 | | | | contains() (MultiDiGraph method), 108 | add_nodes_from() (MultiDiGraph method), 94 | | | | contains() (MultiGraph method), 80 | add_nodes_from() (MultiGraph method), 67 | | | | getitem() (DiGraph method), 49 | add_path() (in module networkx.classes.function), 413 | | | | getitem() (Graph method), 24 | add_star() (in module networkx.classes.function), 413 | | | | getitem() (MultiDiGraph method), 105 | add_weighted_edges_from() (DiGraph method), 43 | | | | getitem() (MultiGraph method), 77 | add_weighted_edges_from() (Graph method), 18 | | | | init() (DiGraph method), 38 | add_weighted_edges_from() (MultiDiGraph method), 97 | | | | init() (DiGraphMatcher method), 315 | add_weighted_edges_from() (MultiGraph method), 71 | | | | init() (Edmonds method), 403 | adjacency() (DiGraph method), 50 | | | | init() (Graph method), 13 | adjacency() (Graph method), 24 | | | | init()
(GraphMatcher method), 313 | adjacency() (MultiDiGraph method), 106 | | | | init() (MultiDiGraph method), 93 | adjacency() (MultiGraph method), 78 | | | | init() (MultiGraph method), 66 | adjacency_data() (in module net- | | | | iter() (DiGraph method), 46 | workx.readwrite.json_graph), 525 | | | | iter() (Graph method), 21 | adjacency_graph() (in module net- | | | | iter() (MultiDiGraph method), 101 | workx.readwrite.json_graph), 526 | | | | iter() (MultiGraph method), 75 | adjacency_matrix() (in module net- | | | | len() (DiGraph method), 53 | workx.linalg.graphmatrix), 475 | | | | len() (Graph method), 27 | adjacency_spectrum() (in module net- | | | | len() (MultiDiGraph method), 109 | workx.linalg.spectrum), 479 | | | | len() (MultiGraph method), 81 | algebraic_connectivity() (in module net- | | | | | workx.linalg.algebraicconnectivity), 480 | | | | A | all_neighbors() (in module networkx.classes.function), | | | | adamic_adar_index() (in module net- | 414 | | | | workx.algorithms.link_prediction), 330 | all_node_cuts() (in module net- | | | | add_cycle() (in module networkx.classes.function), 413 | workx.algorithms.connectivity.kcutsets), | | | | add_edge() (DiGraph method), 41 | 232 | | | | add_edge() (Graph method), 16 | all_pairs_bellman_ford_path() (in module net- | | | | add_edge() (MultiDiGraph method), 95 | workx.algorithms.shortest_paths.weighted), | | | | add_edge() (MultiGraph method), 69 | 374 | | | | add_edges_from() (DiGraph method), 42 | all_pairs_bellman_ford_path_length() (in module net- | | | | add_edges_from() (Graph method), 17 | workx.algorithms.shortest_paths.weighted), | | | | add_edges_from() (MultiDiGraph method), 96 | 374 | | | | add_edges_from() (MultiGraph method), 70 | all_pairs_dijkstra_path() (in module net- | | | | add_node() (DiGraph method), 39 | workx.algorithms.shortest_paths.weighted), | | | | add_node() (Graph method), 14 | 368 | | | | add_node() (MultiDiGraph method), 93 | all_pairs_dijkstra_path_length() (in module net-<br>workx.algorithms.shortest_paths.weighted), | | | | 369 | average_clustering() (in module net- | |-----------------------------------------------------------------------------|----------------------------------------------------------| | all_pairs_node_connectivity() (in module net- | workx.algorithms.cluster), 201 | | workx.algorithms.approximation.connectivity), | average_degree_connectivity() (in module net- | | 119 | workx.algorithms.assortativity), 133 | | all_pairs_node_connectivity() (in module net- | average_neighbor_degree() (in module net- | | workx.algorithms.connectivity.connectivity), | workx.algorithms.assortativity), 132 | | 234 | average_node_connectivity() (in module net- | | all_pairs_shortest_path() (in module net- | workx.algorithms.connectivity.connectivity), | | workx.algorithms.shortest_paths.unweighted), | 233 | | 359 | average_shortest_path_length() (in module net- | | all_pairs_shortest_path_length() (in module net- | workx.algorithms.shortest_paths.generic), | | workx.algorithms.shortest_paths.unweighted), | 357 | | 359 | | | all_shortest_paths() (in module net- | В | | workx.algorithms.shortest_paths.generic), | balanced_tree() (in module networkx.generators.classic), | | 355 | 423 | | all_simple_paths() (in module net- | barabasi_albert_graph() (in module net- | | workx.algorithms.simple_paths), 381 | workx.generators.random_graphs), 441 | | alternating_havel_hakimi_graph() (in module net- | barbell_graph() (in module networkx.generators.classic), | | workx.algorithms.bipartite.generators), 162 | 423 | | ancestors() (in module networkx.algorithms.dag), 261 | bellman_ford_path() (in module net- | | antichains() (in module networkx.algorithms.dag), 265 | workx.algorithms.shortest_paths.weighted), | | approximate_current_flow_betweenness_centrality() (in | 371 | | module networkx.algorithms.centrality), 181 | bellman_ford_path_length() (in module net- | | articulation_points() (in module net- | workx.algorithms.shortest_paths.weighted), | | workx.algorithms.components), 229 | 372 | | | - · · · | | astar_path() (in module net-<br>workx.algorithms.shortest_paths.astar), 380 | bellman_ford_predecessor_and_distance() (in module | | · · · · · · · · · · · · · · · · · · · | networkx.algorithms.shortest_paths.weighted), | | astar_path_length() (in module net- | 376 | | workx.algorithms.shortest_paths.astar), 381 | betweenness_centrality() (in module net- | | asyn_lpa_communities() (in module net- | workx.algorithms.bipartite.centrality), 159 | | workx.algorithms.community.asyn_lpa), | betweenness_centrality() (in module net- | | 210 | workx.algorithms.centrality), 175 | | attr_matrix() (in module networkx.linalg.attrmatrix), 483 | betweenness_centrality_subset() (in module net- | | attr_sparse_matrix() (in module net- | workx.algorithms.centrality), 177 | | workx.linalg.attrmatrix), 484 | bfs_beam_edges() (in module net- | | attracting_component_subgraphs() (in module net- | workx.algorithms.traversal.beamsearch), | | workx.algorithms.components), 224 | 396 | | attracting_components() (in module net- | bfs_edges() (in module net- | | workx.algorithms.components), 224 | workx.algorithms.traversal.breadth_first_search), | | attribute_assortativity_coefficient() (in module net- | 394 | | workx.algorithms.assortativity), 129 | bfs_predecessors() (in module net- | | attribute_mixing_dict() (in module net- | workx.algorithms.traversal.breadth_first_search), | | workx.algorithms.assortativity), 137 | 395 | | attribute_mixing_matrix() (in module net- | bfs_successors() (in module net- | | workx.algorithms.assortativity), 135 | workx.algorithms.traversal.breadth_first_search), | | authority_matrix() (in module net- | 395 | | workx.algorithms.link_analysis.hits_alg), | bfs_tree() (in module net- | | 328 | workx.algorithms.traversal.breadth_first_search), | | average_clustering() (in module net- | 394 | | workx.algorithms.approximation.clustering_coef | | | workx.argoritims.approximation.crustering_coer | | | | workx.algorithms.bipartite.matrix), 144 | | | biconnected_component_edges() (in module net- | | workx.algorithms.bipartite.cluster), 153 | workx.algorithms.components), 227 | | biconnected_component_subgraphs() (in module workx.algorithms.components), 228 | net- | circular_layout() (in module networkx.drawing.layo | ut), | |------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------|-------| | <u>-</u> | net- | clear() (DiGraph method), 44 | | | workx.algorithms.components), 226 | IICt- | clear() (Graph method), 19 | | | <u>-</u> | net- | clear() (MultiDiGraph method), 100 | | | • | | clear() (MultiGraph method), 73 | | | workx.algorithms.shortest_paths.weighted) 370 | , | • | nat | | | not | • | net- | | | net- | workx.algorithms.approximation.clique),<br>124 | | | workx.generators.random_graphs), 439<br>blockmodel() (in module networkx.algorithms.mine | ora) | | nat | | 341 | ors), | r – C– v v | net- | | | 4 | workx.algorithms.clique), 198 closeness centrality() (in module | 4 | | 7— 1 | net- | | net- | | workx.algorithms.cuts), 257 | 4 | workx.algorithms.bipartite.centrality), 157 | 4 | | , – & v v | net- | _ • • • • | net- | | workx.algorithms.flow), 290 | | workx.algorithms.centrality), 173 | | | E- E | net- | _ · · · · · · · · · · · · · · · · · · · | net- | | workx.algorithms.tree.branchings), 401 | | workx.algorithms.vitality), 408 | | | | net- | · · · · · · · · · · · · · · · · · · · | net- | | workx.algorithms.connectivity.utils), 248 | | workx.algorithms.bipartite.cluster), 152 | 200 | | _ | net- | clustering() (in module networkx.algorithms.cluster), 2 | | | workx.algorithms.connectivity.utils), 249 | | = <b>v</b> = <b>1</b> • · · · | net- | | | net- | workx.algorithms.link_prediction), 331 | | | workx.algorithms.flow), 292 | 122 | collaboration_weighted_projected_graph() (in mod | | | bull_graph() (in module networkx.generators.small), | 433 | networkx.algorithms.bipartite.projection), 1 | | | C | | color() (in module networkx.algorithms.bipartite.bas | sic), | | C | | 140 | | | candidate_pairs_iter() (DiGraphMatcher method), 31 | 6 | <b>–</b> & | net- | | candidate_pairs_iter() (GraphMatcher method), 314 | | workx.classes.function), 415 | | | capacity_scaling() (in module networkx.algorithms.flo | ow), | • • • • • • • • • • • • • • • • • • • • | net- | | 299 | | workx.algorithms.communicability_alg), | | | | net- | 207 | | | workx.algorithms.operators.product), 348 | | communicability_betweenness_centrality() (in mod | ıuıe | | • • • • • • • | net- | networkx.algorithms.centrality), 184 | 4 | | workx.algorithms.isomorphism), 317 | | • • • • | net- | | C - C - v · | net- | workx.algorithms.communicability_alg), | | | workx.algorithms.isomorphism), 318 | | 208 | 4 | | <i>e</i> = = · · · · | net- | 1 , | net- | | workx.algorithms.isomorphism), 317 | | workx.algorithms.operators.unary), 343 | 4 | | =8 1 0 | net- | 1 – 1 – 0 1 0 0 | net- | | workx.generators.community), 466 | | workx.algorithms.bipartite.generators), 160 | nat | | · · · · · · · · · · · · · · · · · · · | net- | complete_graph() (in module workx.generators.classic), 424 | net- | | workx.algorithms.distance_measures), 266 | | | nat | | _ ` ` ` | net- | workx.generators.classic), 424 | net- | | workx.algorithms.chains), 191 | | | net- | | - ; -e i · · · | net- | workx.algorithms.operators.binary), 344 | iict- | | workx.generators.expanders), 431 | | 110 | net | | —E 1 — 1 · · · | net- | workx.algorithms.operators.all), 346 | net- | | workx.algorithms.chordal), 193 | | | net- | | <b>-</b> € 1 - | net- | workx.algorithms.components), 220 | iict- | | workx.algorithms.chordal), 193 | · a 11 \ | conductance() (in module networkx.algorithms.cuts), 220 | 257 | | chvatal_graph() (in module networkx.generators.sm<br>433 | ıan), | | net- | | | net | workx.algorithms.bipartite.generators), 161 | | | circular_ladder_graph() (in module<br>workx.generators.classic), 425 
 net- | | | | configuration_model() (in module net- | dag_longest_path_length() (in module net- | |---------------------------------------------------------|----------------------------------------------------------| | workx.generators.degree_seq), 446 | workx.algorithms.dag), 266 | | connected_caveman_graph() (in module net- | davis_southern_women_graph() (in module net- | | workx.generators.community), 467 | workx.generators.social), 465 | | connected_component_subgraphs() (in module net- | default_opener() (in module networkx.utils.misc), 564 | | workx.algorithms.components), 215 | degree() (DiGraph method), 54 | | connected_components() (in module net- | degree() (Graph method), 27 | | workx.algorithms.components), 215 | degree() (in module networkx.classes.function), 411 | | connected_double_edge_swap() (in module net- | degree() (MultiDiGraph method), 110 | | workx.algorithms.swap), 385 | degree() (MultiGraph method), 81 | | connected_watts_strogatz_graph() (in module net- | degree_assortativity_coefficient() (in module net- | | workx.generators.random_graphs), 440 | workx.algorithms.assortativity), 129 | | contracted_edge() (in module net- | degree_centrality() (in module net- | | workx.algorithms.minors), 336 | workx.algorithms.bipartite.centrality), 158 | | contracted_nodes() (in module net- | degree_centrality() (in module net- | | workx.algorithms.minors), 337 | workx.algorithms.centrality), 167 | | copy() (DiGraph method), 59 | degree_histogram() (in module net- | | copy() (Graph method), 31 | workx.classes.function), 411 | | copy() (MultiDiGraph method), 115 | degree_mixing_dict() (in module net- | | copy() (MultiGraph method), 85 | workx.algorithms.assortativity), 136 | | core_number() (in module networkx.algorithms.core), | degree_mixing_matrix() (in module net- | | 249 | workx.algorithms.assortativity), 136 | | cost_of_flow() (in module networkx.algorithms.flow), | degree_pearson_correlation_coefficient() (in module net- | | 297 | workx.algorithms.assortativity), 131 | | could_be_isomorphic() (in module net- | degree_sequence_tree() (in module net- | | | e = 1 = v · | | workx.algorithms.isomorphism), 310 | workx.generators.degree_seq), 451 | | coverage() (in module net- | degrees() (in module net- | | workx.algorithms.community.quality), 211 | workx.algorithms.bipartite.basic), 141 | | create_degree_sequence() (in module net- | dense_gnm_random_graph() (in module net- | | workx.utils.random_sequence), 565 | workx.generators.random_graphs), 437 | | create_empty_copy() (in module net- | density() (in module net- | | workx.classes.function), 412 | workx.algorithms.bipartite.basic), 141 | | cubical_graph() (in module networkx.generators.small), | density() (in module networkx.classes.function), 412 | | 433 | desargues_graph() (in module net- | | cumulative_distribution() (in module net- | workx.generators.small), 433 | | workx.utils.random_sequence), 566 | descendants() (in module networkx.algorithms.dag), 261 | | current_flow_betweenness_centrality() (in module net- | dfs_edges() (in module net- | | workx.algorithms.centrality), 179 | $work x. algorithms. traversal. depth_first_search),$ | | current_flow_betweenness_centrality_subset() (in mod- | 389 | | ule networkx.algorithms.centrality), 182 | dfs_labeled_edges() (in module net- | | current_flow_closeness_centrality() (in module net- | workx.algorithms.traversal.depth_first_search), | | workx.algorithms.centrality), 174 | 392 | | cut_size() (in module networkx.algorithms.cuts), 258 | dfs_postorder_nodes() (in module net- | | cuthill_mckee_ordering() (in module net- | workx.algorithms.traversal.depth_first_search), | | workx.utils.rcm), 568 | 392 | | cycle_basis() (in module networkx.algorithms.cycles), | dfs_predecessors() (in module net- | | 254 | workx.algorithms.traversal.depth_first_search), | | cycle_graph() (in module networkx.generators.classic), | 390 | | 425 | dfs_preorder_nodes() (in module net- | | | workx.algorithms.traversal.depth_first_search), | | D | 391 | | dag_longest_path() (in module networkx.algorithms.dag), | dfs_successors() (in module net- | | 265 | workx.algorithms.traversal.depth_first_search), | | 203 | 391 | | | | | dfs_tree() (in mod | | draw_networkx_nodes() (in module net- | |----------------------------------------|-----------------------------------------|-----------------------------------------------------------------| | workx.algorithms.traversal.de | epth_first_search), | workx.drawing.nx_pylab), 546 | | 390 | | <pre>draw_random() (in module networkx.drawing.nx_pylab),</pre> | | diameter() (in mod | dule net- | 550 | | workx.algorithms.distance_m | neasures), 267 | draw_shell() (in module networkx.drawing.nx_pylab), | | diamond_graph() (in module networkx | .generators.small), | 550 | | 434 | | draw_spectral() (in module networkx.drawing.nx_pylab), | | dictionary, 579 | | 550 | | | dule net- | <pre>draw_spring() (in module networkx.drawing.nx_pylab),</pre> | | workx.algorithms.operators.b | oinary), 345 | 550 | | DiGraph() (in module networkx), 34 | • • • • • • • • • • • • • • • • • • • • | duplication_divergence_graph() (in module net- | | | odule net- | workx.generators.duplication), 445 | | workx.algorithms.shortest_pa | | | | 362 | attio. Weighted); | E | | | module net- | | | workx.algorithms.shortest_pa | | ebunch, 579 | | 363 | atiis.weigiited), | eccentricity() (in module net- | | dijkstra_predecessor_and_distance() ( | (in module not | workx.algorithms.distance_measures), 267 | | | | edge, <b>579</b> | | workx.algorithms.shortest_pa | ains.weighted), | edge attribute, 579 | | 361 | g \ 200 | edge_betweenness_centrality() (in module net- | | dinitz() (in module networkx.algorithm | * * * * * * * * * * * * * * * * * * * * | workx.algorithms.centrality), 176 | | directed_configuration_model() (in | | edge_betweenness_centrality_subset() (in module net- | | workx.generators.degree_seq | • | workx.algorithms.centrality), 178 | | directed_havel_hakimi_graph() (in | module net- | edge_boundary() (in module net- | | workx.generators.degree_seq | _I ), 450 | workx.algorithms.boundary), 165 | | directed_laplacian_matrix() (in | module net- | edge_connectivity() (in module net- | | workx.linalg.laplacianmatrix | ), 478 | workx.algorithms.connectivity.connectivity), | | discrete_sequence() (in n | nodule net- | 234 | | workx.utils.random_sequence | e), 566 | edge_current_flow_betweenness_centrality() (in module | | disjoint_union() (in me | odule net- | networkx.algorithms.centrality), 180 | | workx.algorithms.operators.b | oinary), 345 | edge_current_flow_betweenness_centrality_subset() (in | | | nodule net- | module networkx.algorithms.centrality), 183 | | workx.algorithms.operators.a | all), 347 | edge_dfs() (in module net- | | | module net- | workx.algorithms.traversal.edgedfs), 397 | | workx.generators.small), 434 | | edge_expansion() (in module networkx.algorithms.cuts), | | _ | module net- | 259 | | workx.algorithms.dominance | | | | 2 | nodule net- | • | | workx.algorithms.dominating | | workx.algorithms.centrality), 185 | | dorogovtsev_goltsev_mendes_graph() | | edge_subgraph() (DiGraph method), 61 | | workx.generators.classic), 42 | | edge_subgraph() (Graph method), 34 | | | | edge_subgraph() (MultiDiGraph method), 117 | | | | edge_subgraph() (MultiGraph method), 88 | | workx.algorithms.swap), 385 | | edges() (DiGraph method), 46 | | draw() (in module networkx.drawing.n | | edges() (Graph method), 21 | | draw_circular() (in module networkx.d | rawing.nx_pyiab), | edges() (in module networkx.classes.function), 415 | | 549 | | edges() (MultiDiGraph method), 102 | | | nodule net- | edges() (MultiGraph method), 75 | | workx.drawing.nx_pylab), 54 | | Edmonds (class in networkx.algorithms.tree.branchings), | | draw_networkx_edge_labels() (in | module net- | 403 | | workx.drawing.nx_pylab), 54 | | edmonds_karp() (in module networkx.algorithms.flow), | | draw_networkx_edges() (in | module net- | 283 | | workx.drawing.nx_pylab), 54 | | efficiency() (in module networkx.algorithms.efficiency), | | draw_networkx_labels() (in | module net- | 273 | | workx.drawing.nx pylab), 54 | 18 | ego graph() (in module networky generators ego) 462 | | E - 3 · · · | et- | from_edgelist() (in module networkx.convert), 490 | 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------| | workx.algorithms.centrality), 168 | | from_numpy_matrix() (in module net- | | eigenvector_centrality_numpy() (in module ne | et- | workx.convert_matrix), 493 | | workx.algorithms.centrality), 169 | | from_pandas_dataframe() (in module net- | | empty_graph() (in module networkx.generators.classic | c), | workx.convert_matrix), 498 | | 426 | | <pre>from_pydot() (in module networkx.drawing.nx_pydot),</pre> | | enumerate_all_cliques() (in module ne | et- | 554 | | workx.algorithms.clique), 195 | | from_scipy_sparse_matrix() (in module net- | | <u> </u> | et- | workx.convert_matrix), 495 | | workx.algorithms.bipartite.matching), 142 | | frucht_graph() (in module networkx.generators.small), | | 2 | et- | 434 | | workx.generators.random_graphs), 438 | Ci | 13.1 | | | et- | G | | workx.algorithms.centrality), 188 | | | | eulerian_circuit() (in module networkx.algorithms.eule | | gaussian_random_partition_graph() (in module net- | | | 1), | workx.generators.community), 469 | | 275 | | general_random_intersection_graph() (in module net- | | | et- | workx.generators.intersection), 464 | | workx.generators.degree_seq), 449 | | generalized_degree() (in module net- | | Г | | workx.algorithms.cluster), 202 | | F | | $generate_adjlist()\ (in\ module\ networkx.readwrite.adjlist),$ | | fast_could_be_isomorphic() (in module ne | et- | 504 | | workx.algorithms.isomorphism), 310 | | generate_edgelist() (in module net- | | fast_gnp_random_graph() (in module ne | et- | workx.readwrite.edgelist), 512 | | workx.generators.random_graphs), 436 | | generate_gml() (in module networkx.readwrite.gml), 519 | | | et- | generate_graph6() (in module net- | | workx.algorithms.isomorphism), 310 | | workx.readwrite.graph6), 533 | | | et- | generate_multiline_adjlist() (in module net- | | workx.linalg.algebraicconnectivity), 481 | | workx.readwrite.multiline_adjlist), 507 | | find_cliques() (in module networkx.algorithms.clique | e) | generate_sparse6() (in module net- | | 195 | <i>-</i> ), | workx.readwrite.sparse6), 536 | | find_cycle() (in module networkx.algorithms.cycles), 23 | 56 | generate_unique_node() (in module networkx.utils.misc), | | | et- | 564 | | workx.algorithms.chordal), 194 | Ct- | generic_edge_match() (in module net- | | flatten() (in module networkx.utils.misc), 563 | | workx.algorithms.isomorphism), 320 | | | a+ | generic_multiedge_match() (in module net- | | = = = 1 | et- | workx.algorithms.isomorphism), 321 | | workx.generators.social), 466 | | | | | et- | <b>e</b> – , , | | workx.algorithms.hierarchy), 305 | | workx.algorithms.isomorphism), 320 | | <i>y</i> = | et- | generic_weighted_projected_graph() (in module net- | | workx.algorithms.shortest_paths.dense), | | workx.algorithms.bipartite.projection), 150 | | 379 | | geographical_threshold_graph() (in module net- | | 3 — — 13 ·· · | et- | workx.generators.geometric), 458 | | workx.algorithms.shortest_paths.dense), | | get_edge_attributes() (in module net- | | 380 | | workx.classes.function), 418 | | $floyd_warshall_predecessor_and_distance() \ \ (in \ \ modulation of the content content$ | ıle | get_edge_data() (DiGraph method), 49 | | networkx.algorithms.shortest_paths.dense), | | get_edge_data() (Graph method), 22 | | 379 | | get_edge_data() (MultiDiGraph method), 104 | | freeze() (in module networkx.classes.function), 419 | | get_edge_data() (MultiGraph method), 76 | | <pre>from_agraph() (in module networkx.drawing.nx_agraph</pre> | h) | get_node_attributes() (in module net- | | | 11), | | | 551 | | workx.classes.function), 417 | | | | girvan_newman() (in module net- | | | | | | from_biadjacency_matrix() (in module no | et- | girvan_newman() (in module net- | | global_efficiency() | (in | module | net- | has_node() (MultiDiGraph method), 107 | | |----------------------------------------------------|--------------|------------------------------|---------|----------------------------------------------------------------------------------|-------| | workx.algorithi | | | | has_node() (MultiGraph method), 79 | | | | (in | module | net- | <b>-1</b> | net- | | workx.algorithi | | | | workx.algorithms.shortest_paths.generic), | | | global_reaching_centralit | | | net- | 357 | | | workx.algorith | | | | hashable, 579 | | | gn_graph() (in module 453 | networkx | .generators.dire | ected), | havel_hakimi_graph() (in module r<br>workx.algorithms.bipartite.generators), 161 | net- | | gnc_graph() (in module | networky | generators dire | cted) | | net- | | 454 | networka | generators.une | cica), | workx.generators.degree_seq), 450 | ict- | | gnm_random_graph() | (in | module | net- | heawood_graph() (in module networkx.generators.sma | 111 | | workx.generate | • | | net | 434 | 111), | | gnmk_random_graph() | in (in | module | net- | | net- | | workx.algorith | | | | workx.algorithms.link_analysis.hits_alg), | ict | | gnp_random_graph() | in (in | module | net- | 326 | | | workx.generate | | | nct- | | net- | | gnr_graph() (in module | | | octed) | workx.algorithms.link_analysis.hits_alg), | ict- | | 454 | | | | 327 | | | | (in | module | net- | _ 1, , , | net- | | workx.algorithi<br>325 | ns.lınk_an | alysis.pagerank _. | _alg), | workx.algorithms.link_analysis.hits_alg), 327 | | | Graph() (in module netwo | orkx), 9 | | | hopcroft_karp_matching() (in module r | net- | | graph_atlas() (in module | networkx.g | generators.atlas) | , 421 | workx.algorithms.bipartite.matching), 143 | | | graph_atlas_g() (in mod<br>421 | lule netwo | orkx.generators. | atlas), | house_graph() (in module networkx.generators.sma | all), | | graph_clique_number()<br>workx.algorith | (in | module | net- | house_x_graph() (in module networkx.generators.sma | all), | | graph_number_of_clique | - | | net- | | net- | | workx.algorith | | | net | workx.algorithms.link_analysis.hits_alg), | ict | | graphviz_layout() | _ | module | net- | 328 | | | workx.drawing | * | | net | | net- | | graphviz_layout() | | module | net- | workx.generators.classic), 427 | ict | | workx.drawing | • | | net | works.generators.classic), 427 | | | greedy_branching() | (in | module | net- | | | | workx.algorith | | | net | · · · · · · · · · · · · · · · · · · · | 4 | | • | | module | net- | <b>-</b> C 1 | net- | | workx.algorith | | | 1101 | workx.generators.small), 434 | a a t | | grid_2d_graph() (in modu | - | • • | assic) | | net- | | 427 | iie iietworn | an.generators.en | ,, | 8 | a a t | | grid_graph() (in modul | e network | x generators cla | assic) | = | net- | | 427 | c network | ax.generators.en | assic), | workx.algorithms.dominance), 271 | | | groups() (in module netw | orkx.utils.ı | misc), 564 | | in_degree() (DiGraph method), 54<br>in_degree() (MultiDiGraph method), 110 | | | Н | | | | - 6 - 50 | net- | | | | | | workx.algorithms.centrality), 167 | | | hamiltonian_path() | (in | module | net- | in_edges() (DiGraph method), 48 | | | workx.algorithi | | | | in_edges() (MultiDiGraph method), 104 | | | harmonic_centrality() | (in | module | net- | _ | net- | | workx.algorith | | ty), 188 | | workx.linalg.graphmatrix), 476 | | | has_edge() (DiGraph met | | | | info() (in module networkx.classes.function), 412 | | | has_edge() (Graph metho | | 100 | | initialize() (DiGraphMatcher method), 315 | | | has_edge() (MultiDiGrap | | | | initialize() (GraphMatcher method), 313 | | | has_edge() (MultiGraph i | | J | | · · · · · · · · · · · · · · · · · · · | net- | | has_node() (DiGraph methods_node() (Graph methods) | | | | workx.algorithms.operators.binary), 345 | | | nue nogal Mitroph mathe | (I). 75 | | | | | | intersection_all() (in module | net- | is_reachable() (in module net- | 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------| | workx.algorithms.operators.all), 348 | | workx.algorithms.tournament), 387 | | intersection_array() (in module | net- | is_semiconnected() (in module net- | | workx.algorithms.distance_regular), 269 | | workx.algorithms.components), 230 | | is_aperiodic() (in module networkx.algorithms.dag), | 264 | is_simple_path() (in module net- | | is_arborescence() (in module | net- | workx.algorithms.simple_paths), 383 | | workx.algorithms.tree.recognition), 400 | | is_string_like() (in module networkx.utils.misc), 563 | | is_attracting_component() (in module | net- | is_strongly_connected() (in module net- | | workx.algorithms.components), 223 | | workx.algorithms.components), 217 | | is_biconnected() (in module | net- | is_strongly_connected() (in module net- | | workx.algorithms.components), 225 | | workx.algorithms.tournament), 387 | | is_bipartite() (in module | net- | is_strongly_regular() (in module net- | | workx.algorithms.bipartite.basic), 139 | | workx.algorithms.distance_regular), 269 | | is_bipartite_node_set() (in module | net- | is_tournament() (in module net- | | workx.algorithms.bipartite.basic), 139 | 1101 | workx.algorithms.tournament), 388 | | is_branching() (in module | net- | is_tree() (in module net- | | workx.algorithms.tree.recognition), 400 | net | workx.algorithms.tree.recognition), 399 | | is_chordal() (in module networkx.algorithms.chor | rdal) | is_valid_degree_sequence_erdos_gallai() (in module net- | | 192 | iuai), | workx.algorithms.graphical), 304 | | is_connected() (in module | net- | is_valid_degree_sequence_havel_hakimi() (in module | | workx.algorithms.components), 214 | | networkx.algorithms.graphical), 303 | | is_digraphical() (in module | net- | is_valid_joint_degree() (in module net- | | workx.algorithms.graphical), 302 | | workx.generators.joint_degree_seq), 472 | | is_directed() (in module networkx.classes.function), | 412 | is_weakly_connected() (in module net- | | is_directed_acyclic_graph() (in module | net- | workx.algorithms.components), 221 | | workx.algorithms.dag), 263 | 1101 | isolates() (in module networkx.algorithms.isolate), 307 | | is_distance_regular() (in module | net- | isomorphisms_iter() (DiGraphMatcher method), 316 | | workx.algorithms.distance_regular), 268 | net | isomorphisms_iter() (GraphMatcher method), 314 | | is_dominating_set() (in module | net- | iterable() (in module networkx.utils.misc), 563 | | workx.algorithms.dominating), 273 | nct- | iterable() (iii inodule networks.utils.iiise), 505 | | is_edge_cover() (in module | net- | J | | workx.algorithms.covering), 253 | net- | | | is_eulerian() (in module networkx.algorithms.euler), | 275 | jaccard_coefficient() (in module net- | | The state of s | | workx.algorithms.link_prediction), 329 | | is_forest() (in module | net- | jit_data() (in module networkx.readwrite.json_graph), | | workx.algorithms.tree.recognition), 400 | 10 | 528 | | is_frozen() (in module networkx.classes.function), 4 | | <pre>jit_graph() (in module networkx.readwrite.json_graph),</pre> | | is_graphical() (in module | net- | 528 | | workx.algorithms.graphical), 302 | 205 | johnson() (in module net- | | is_isolate() (in module networkx.algorithms.isolate), | , 307 | workx.algorithms.shortest_paths.weighted), | | is_isomorphic() (DiGraphMatcher method), 315 | | 377 | | is_isomorphic() (GraphMatcher method), 313 | | joint_degree_graph() (in module net- | | is_isomorphic() (in module | net- | workx.generators.joint_degree_seq), 473 | | workx.algorithms.isomorphism), 308 | | | | is_kl_connected() (in module | net- | K | | workx.algorithms.hybrid), 306 | | k_clique_communities() (in module net- | | is_list_of_ints() (in module networkx.utils.misc), 56 | 4 | workx.algorithms.community.kclique), 209 | | is_matching() (in module | net- | k_components() (in module net- | | workx.algorithms.matching), 334 | | workx.algorithms.approximation.kcomponents), | | is_maximal_matching() (in module | net- | 122 | | workx.algorithms.matching), 335 | | k_components() (in module net- | | is_multigraphical() (in module | net- | workx.algorithms.connectivity.kcomponents), | | workx.algorithms.graphical), 303 | | 231 | | is_pseudographical() (in module | net- | k_core() (in module networkx.algorithms.core), 250 | | workx.algorithms.graphical), 303 | | k_corona() (in module networkx.algorithms.core), 252 | | | | k_corona() (in module networks.aigurunnis.core), 232 | | k_crust() (in module networkx.algorithms.core), 251 k_nearest_neighbors() (in module net- workx.algorithms.assortativity), 134 k_random_intersection_graph() (in module net- | local_reaching_centrality() (in module net-<br>workx.algorithms.centrality), 189<br>lollipop_graph() (in module networkx.generators.classic),<br>428 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------| | workx.generators.intersection), 464<br>k_shell() (in module networkx.algorithms.core), 251 | M | | karate_club_graph() (in module net-<br>workx.generators.social), 465 | make_clique_bipartite() (in module net-<br>workx.algorithms.clique), 197 | | katz_centrality() (in module networkx.algorithms.centrality), 170 | make_max_clique_graph() (in module net-<br>workx.algorithms.clique), 196 | | katz_centrality_numpy() (in module networkx.algorithms.centrality), 172 | make_small_graph() (in module net-<br>workx.generators.small), 432 | | kernighan_lin_bisection() (in module net- | make_str() (in module networkx.utils.misc), 564 | | workx.algorithms.community.kernighan_lin), 209 | margulis_gabber_galil_graph() (in module networkx.generators.expanders), 431 | | kl_connected_subgraph() (in module net- | match() (DiGraphMatcher method), 316 | | workx.algorithms.hybrid), 306 | match() (GraphMatcher method), 314 | | kosaraju_strongly_connected_components() (in module | max_clique() (in module net- | | networkx.algorithms.components), 220 | workx.algorithms.approximation.clique), | | krackhardt_kite_graph() (in module net- | 123 | | workx.generators.small), 434 | max_flow_min_cost() (in module net-<br>workx.algorithms.flow), 298 | | | max_weight_matching() (in module net- | | ladder_graph() (in module networkx.generators.classic), 427 | workx.algorithms.matching), 335 maximal_independent_set() (in module net- | | laplacian_matrix() (in module net- | workx.algorithms.mis), 342 maximal_matching() (in module net- | | workx.linalg.laplacianmatrix), 477 laplacian_spectrum() (in module net- | workx.algorithms.matching), 335 | | workx.linalg.spectrum), 479 | maximum_branching() (in module net- | | latapy_clustering() (in module net- | workx.algorithms.tree.branchings), 402 | | workx.algorithms.bipartite.cluster), 154 | maximum_flow() (in module networkx.algorithms.flow), | | LCF_graph() (in module networkx.generators.small), 433 | 276 | | lexicographic_product() (in module net- | maximum_flow_value() (in module net- | | workx.algorithms.operators.product), 349 | workx.algorithms.flow), 278 maximum_independent_set() (in module net- | | lexicographical_topological_sort() (in module networkx.algorithms.dag), 263 | workx.algorithms.approximation.independent_set) | | line_graph() (in module networkx.generators.line), 461 | 126 | | literal_destringizer() (in module net- | maximum_spanning_arborescence() (in module net- | | workx.readwrite.gml), 519 | workx.algorithms.tree.branchings), 402 | | literal_stringizer() (in module networkx.readwrite.gml), 519 | maximum_spanning_edges() (in module networkx.algorithms.tree.mst), 406 | | load_centrality() (in module net- | maximum_spanning_tree() (in module net- | | workx.algorithms.centrality), 185 | workx.algorithms.tree.mst), 404 | |
local_edge_connectivity() (in module net- | min_cost_flow() (in module networkx.algorithms.flow), | | workx.algorithms.connectivity.connectivity), | 296 min_cost_flow_cost() (in module net- | | 235<br>local_efficiency() (in module net- | min_cost_flow_cost() (in module net-<br>workx.algorithms.flow), 295 | | local_efficiency() (in module net-<br>workx.algorithms.efficiency), 274 | min_edge_cover() (in module net- | | local_node_connectivity() (in module net- | workx.algorithms.bipartite.covering), 164 | | workx.algorithms.approximation.connectivity), | min_edge_cover() (in module net- | | 120 | workx.algorithms.covering), 253 | | local_node_connectivity() (in module net- | min_edge_dominating_set() (in module net- | | workx.algorithms.connectivity.connectivity), | $work x. algorithms. approximation. dominating_set),\\$ | | 237 | 125 | | min_maximal_matching() (in module net | | |----------------------------------------------------------------------------|-----------------------------------------------------------| | workx.algorithms.approximation.matching), | neighbors() (MultiDiGraph method), 105 | | 127 | neighbors() (MultiGraph method), 77 | | min_weighted_dominating_set() (in module net- | _ • • • • • • • • • • • • • • • • • • • | | workx.algorithms.approximation.dominating_s | | | 125 | networkx.algorithms.approximation (module), 119 | | min_weighted_vertex_cover() (in module net- | - networkx.algorithms.approximation.clique (module), 123 | | workx.algorithms.approximation.vertex_cover | , networkx.algorithms.approximation.clustering_coefficien | | 128 | (module), 124 | | minimum_branching() (in module net- | networkx.algorithms.approximation.connectivity (mod- | | workx.algorithms.tree.branchings), 402 | ule), 119 | | minimum_cut() (in module networkx.algorithms.flow) | , networkx.algorithms.approximation.dominating_set | | 280 | (module), 124 | | minimum_cut_value() (in module net- | | | workx.algorithms.flow), 282 | (module), 126 | | minimum_edge_cut() (in module net | | | workx.algorithms.connectivity.cuts), 241 | ule), 122 | | minimum_node_cut() (in module net | | | workx.algorithms.connectivity.cuts), 242 | 126 | | minimum_spanning_arborescence() (in module net- | | | workx.algorithms.tree.branchings), 403 | 127 | | minimum_spanning_edges() (in module net | | | workx.algorithms.tree.mst), 405 | ule), 127 | | · · · · · · · · · · · · · · · · · · · | | | minimum_spanning_tree() (in module net-<br>workx.algorithms.tree.mst), 403 | networkx.algorithms.bipartite (module), 128 | | <u> </u> | | | = = = " | | | workx.algorithms.connectivity.cuts), 244 | networkx.algorithms.bipartite.centrality (module), 157 | | minimum_st_node_cut() (in module net | C 1 ,,, | | workx.algorithms.connectivity.cuts), 245 | networkx.algorithms.bipartite.covering (module), 164 | | mixing_expansion() (in module net | | | workx.algorithms.cuts), 259 | networkx.algorithms.bipartite.matching (module), 142 | | moebius_kantor_graph() (in module net | | | workx.generators.small), 435 | networkx.algorithms.bipartite.projection (module), 145 | | multi_source_dijkstra_path() (in module net | | | workx.algorithms.shortest_paths.weighted), | networkx.algorithms.bipartite.spectral (module), 151 | | 366 | networkx.algorithms.boundary (module), 165 | | multi_source_dijkstra_path_length() (in module net- | · · · · · · · · · · · · · · · · · · · | | workx.algorithms.shortest_paths.weighted), | networkx.algorithms.chains (module), 191 | | 367 | networkx.algorithms.chordal (module), 192 | | MultiDiGraph() (in module networkx), 89 | networkx.algorithms.clique (module), 194 | | MultiGraph() (in module networkx), 62 | networkx.algorithms.cluster (module), 199 | | N.I. | networkx.algorithms.coloring (module), 203 | | N | networkx.algorithms.communicability_alg (module), 207 | | navigable_small_world_graph() (in module net- | | | workx.generators.geometric), 460 | networkx.algorithms.community.asyn_lpa (module), 210 | | nbunch, <b>579</b> | networkx.algorithms.community.centrality (module), 212 | | nbunch_iter() (DiGraph method), 51 | networkx.algorithms.community.kclique (module), 209 | | nbunch_iter() (Graph method), 24 | networkx.algorithms.community.kernighan_lin (module), | | nbunch_iter() (MultiDiGraph method), 106 | 208 | | nbunch_iter() (MultiGraph method), 78 | networkx.algorithms.community.quality (module), 211 | | negative_edge_cycle() (in module net | networkx.algorithms.components (module), 214 | | workx.algorithms.shortest_paths.weighted), | networkx.algorithms.connectivity (module), 230 | | 377 | networkx.algorithms.connectivity.connectivity (module), | | neighbors() (DiGraph method) 49 | 233 | | networkx.algorithms.connectivity.cuts (module), 241<br>networkx.algorithms.connectivity.kcomponents (mod- | networkx.algorithms.traversal.depth_first_search (module), 389 | |-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------| | ule), 230 | networkx.algorithms.traversal.edgedfs (module), 397 | | networkx.algorithms.connectivity.kcutsets (module), 232 | networkx.algorithms.tree.branchings (module), 401 | | networkx.algorithms.connectivity.stoerwagner (module), | networkx.algorithms.tree.mst (module), 403 | | 247 | networkx.algorithms.tree.recognition (module), 398 | | networkx.algorithms.connectivity.utils (module), 248 | networkx.algorithms.triads (module), 407 | | networkx.algorithms.core (module), 249 | networkx.algorithms.vitality (module), 408 | | networkx.algorithms.covering (module), 252 | networkx.algorithms.voronoi (module), 408 | | networkx.algorithms.cuts (module), 257 | networkx.algorithms.wiener (module), 409 | | networkx.algorithms.cycles (module), 254 | networkx.classes.function (module), 411 | | networkx.algorithms.dag (module), 261 | networkx.convert (module), 487 | | networkx.algorithms.distance_measures (module), 266 | networkx.convert_matrix (module), 490 | | networkx.algorithms.distance_regular (module), 268 | networkx.drawing.layout (module), 556 | | networkx.algorithms.dominance (module), 270 | networkx.drawing.nx_agraph (module), 551 | | networkx.algorithms.dominating (module), 272 | networkx.drawing.nx_pydot (module), 553 | | networkx.algorithms.efficiency (module), 273 | networkx.drawing.nx_pylab (module), 543 | | networkx.algorithms.euler (module), 275 | networkx.exception (module), 561 | | networkx.algorithms.flow (module), 276 | networkx.generators.atlas (module), 421 | | networkx.algorithms.graphical (module), 301 | networkx.generators.classic (module), 422 | | networkx.algorithms.hierarchy (module), 305 | networkx.generators.community (module), 466 | | networkx.algorithms.hybrid (module), 305 | networkx.generators.degree_seq (module), 446 | | networkx.algorithms.isolate (module), 307 | networkx.generators.directed (module), 453 | | networkx.algorithms.isomorphism (module), 308 | networkx.generators.duplication (module), 445 | | networkx.algorithms.isomorphism.isomorphyf2 (mod- | networkx.generators.ego (module), 462 | | ule), 311 | networkx.generators.expanders (module), 430 | | networkx.algorithms.link_analysis.hits_alg (module), | networkx.generators.geometric (module), 456 | | 326 | networkx.generators.intersection (module), 463 | | networkx.algorithms.link_analysis.pagerank_alg (mod- | networkx.generators.joint_degree_seq (module), 472 | | ule), 322 | networkx.generators.line (module), 461 | | networkx.algorithms.link_prediction (module), 328 | networkx.generators.nonisomorphic_trees (module), 471 | | networkx.algorithms.matching (module), 334 | networkx.generators.random_clustered (module), 452 | | networkx.algorithms.minors (module), 336 | networkx.generators.random_graphs (module), 436 | | networkx.algorithms.mis (module), 342 | networkx.generators.small (module), 432 | | networkx.algorithms.operators.all (module), 346 | networkx.generators.social (module), 465 | | networkx.algorithms.operators.binary (module), 343 | networkx.generators.stochastic (module), 463 | | networkx.algorithms.operators.product (module), 348 | networkx.generators.triads (module), 471 | | networkx.algorithms.operators.unary (module), 342 | networkx.linalg.algebraicconnectivity (module), 480 | | networkx.algorithms.reciprocity (module), 352 | networkx.linalg.attrmatrix (module), 483 | | networkx.algorithms.richclub (module), 353 | networkx.linalg.graphmatrix (module), 475 | | networkx.algorithms.shortest_paths.astar (module), 380 | networkx.linalg.laplacianmatrix (module), 477 | | networkx.algorithms.shortest_paths.dense (module), 378 | networkx.linalg.spectrum (module), 479 | | networkx.algorithms.shortest_paths.generic (module), | networkx.readwrite.adjlist (module), 501 | | 354 | networkx.readwrite.edgelist (module), 508 | | networkx.algorithms.shortest_paths.unweighted (mod- | networkx.readwrite.gexf (module), 514 | | ule), 358 | networkx.readwrite.gml (module), 516 | | networkx.algorithms.shortest_paths.weighted (module), | networkx.readwrite.gpickle (module), 520 | | 360 | networkx.readwrite.graph6 (module), 532 | | networkx.algorithms.simple_paths (module), 381 | networkx.readwrite.graphml (module), 521 | | networkx.algorithms.swap (module), 384 | networkx.readwrite.json_graph (module), 523 | | networkx.algorithms.tournament (module), 386 | networkx.readwrite.leda (module), 528 | | networkx.algorithms.traversal.beamsearch (module), 396 | networkx.readwrite.multiline_adjlist (module), 504 | | networkx.algorithms.traversal.breadth_first_search (mod- | networkx.readwrite.nx_shp (module), 538 | | ule). 393 | networkx readwrite.nx_snp (module), 529 | | networkx.readwrite.pajek (module), 537 | non_neighbors() (in module networkx.classes.function), | |-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------| | networkx.readwrite.sparse6 (module), 534 | 415 | | networkx.utils (module), 563 |
nonisomorphic_trees() (in module net- | | networkx.utils.contextmanagers (module), 570 | workx.generators.nonisomorphic_trees), | | networkx.utils.decorators (module), 567 | 471 | | networks.utils.misc (module), 563 | normalized_cut_size() (in module net- | | networkx.utils.random_sequence (module), 565 | workx.algorithms.cuts), 260<br>normalized_laplacian_matrix() (in module net- | | networkx.utils.rcm (module), 568<br>networkx.utils.union_find (module), 564 | normalized_laplacian_matrix() (in module net-<br>workx.linalg.laplacianmatrix), 477 | | NetworkXAlgorithmError (class in networkx), 561 | null_graph() (in module networkx.generators.classic), | | NetworkXError (class in networkx), 561 | 428 | | NetworkXException (class in networkx), 561 | number_attracting_components() (in module net- | | NetworkXNoPath (class in networkx), 561 | workx.algorithms.components), 224 | | NetworkXPointlessConcept (class in networkx), 561 | number_connected_components() (in module net- | | NetworkXUnbounded (class in networkx), 561 | workx.algorithms.components), 214 | | NetworkXUnfeasible (class in networkx), 561 | number_of_cliques() (in module net- | | new_edge_key() (MultiDiGraph method), 98 | workx.algorithms.clique), 198 | | new_edge_key() (MultiGraph method), 71 | number_of_edges() (DiGraph method), 56 | | newman_watts_strogatz_graph() (in module net- | number_of_edges() (Graph method), 29 | | workx.generators.random_graphs), 439 | number_of_edges() (in module net- | | node, 579 | workx.classes.function), 416 | | node attribute, 579 | number_of_edges() (MultiDiGraph method), 112 | | node_boundary() (in module net- | number_of_edges() (MultiGraph method), 83 | | workx.algorithms.boundary), 166 | number_of_nodes() (DiGraph method), 53 | | node_clique_number() (in module net- | number_of_nodes() (Graph method), 27 | | workx.algorithms.clique), 198 | number_of_nodes() (in module net- | | node_connected_component() (in module net- | workx.classes.function), 414 | | workx.algorithms.components), 216 | number_of_nodes() (MultiDiGraph method), 109 | | node_connectivity() (in module net- | number_of_nodes() (MultiGraph method), 81 | | workx.algorithms.approximation.connectivity), | number_of_nonisomorphic_trees() (in module net- | | 121 | workx.generators.nonisomorphic_trees), 471 | | node_connectivity() (in module net- | number_of_selfloops() (DiGraph method), 58 | | workx.algorithms.connectivity.connectivity), | number_of_selfloops() (Graph method), 30 | | 239 | number_of_selfloops() (MultiDiGraph method), 114 | | node_expansion() (in module networkx.algorithms.cuts), | number_of_selfloops() (MultiGraph method), 84<br>number_strongly_connected_components() (in module | | node_link_data() (in module net- | networkx.algorithms.components), 217 | | workx.readwrite.json_graph), 523 | number_weakly_connected_components() (in module | | node_link_graph() (in module net- | networkx.algorithms.components), 221 | | workx.readwrite.json_graph), 524 | numeric_assortativity_coefficient() (in module net- | | node_redundancy() (in module net- | workx.algorithms.assortativity), 130 | | workx.algorithms.bipartite.redundancy), | numerical_edge_match() (in module net- | | 156 | workx.algorithms.isomorphism), 319 | | NodeNotFound (class in networkx), 561 | numerical_multiedge_match() (in module net- | | nodes() (DiGraph method), 45 | workx.algorithms.isomorphism), 319 | | nodes() (Graph method), 20 | numerical_node_match() (in module net- | | nodes() (in module networkx.classes.function), 414 | workx.algorithms.isomorphism), 318 | | nodes() (MultiDiGraph method), 100 | | | nodes() (MultiGraph method), 74 | 0 | | nodes_with_selfloops() (DiGraph method), 57 | octahedral_graph() (in module net- | | nodes_with_selfloops() (Graph method), 29 | workx.generators.small), 435 | | nodes_with_selfloops() (MultiDiGraph method), 113 | open_file() (in module networkx.utils.decorators), 567 | | nodes_with_selfloops() (MultiGraph method), 83 | order() (DiGraph method), 53 | | non_edges() (in module networkx.classes.function), 416 | order() (Graph method), 26 | | 1 0 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | order() (MultiDiGraph method), 109<br>order() (MultiGraph method), 81 | power() (in module networkx.algorithms.operators.product), 351 | | out_degree() (DiGraph method), 55<br>out_degree() (MultiDiGraph method), 111 | powerlaw_cluster_graph() (in module net-<br>workx.generators.random_graphs), 441 | | out_degree_centrality() (in module net-<br>workx.algorithms.centrality), 167 | powerlaw_sequence() (in module networkx.utils.random_sequence), 565 | | out_edges() (DiGraph method), 47 | predecessor() (in module net- | | out_edges() (MultiDiGraph method), 103 | workx.algorithms.shortest_paths.unweighted), | | overall_reciprocity() (in module net- | 360 | | workx.algorithms.reciprocity), 352 | predecessors() (DiGraph method), 50 | | overlap_weighted_projected_graph() (in module net- | predecessors() (MultiDiGraph method), 106 | | workx.algorithms.bipartite.projection), 148 | | | | preferential_attachment() (in module net-<br>workx.algorithms.link_prediction), 331 | | P | preferential_attachment_graph() (in module net- | | pagerank() (in module net- | workx.algorithms.bipartite.generators), 163 | | | preflow_push() (in module networkx.algorithms.flow), | | workx.algorithms.link_analysis.pagerank_alg), 322 | 287 | | pagerank_numpy() (in module net- | projected_graph() (in module net- | | | workx.algorithms.bipartite.projection), 145 | | workx.algorithms.link_analysis.pagerank_alg), | pydot_layout() (in module networkx.drawing.nx_pydot), | | 323 | 555 | | pagerank_scipy() (in module net- | | | workx.algorithms.link_analysis.pagerank_alg), | pygraphviz_layout() (in module net- | | 324 | workx.drawing.nx_agraph), 553 | | pairwise() (in module networkx.utils.misc), 564 | Q | | pappus_graph() (in module networkx.generators.small), | Q | | 435 |
quotient_graph() (in module net- | | pareto_sequence() (in module net- | workx.algorithms.minors), 339 | | workx.utils.random_sequence), 565 | _ | | parse_adjlist() (in module networkx.readwrite.adjlist), | R | | 503 | ra_index_soundarajan_hopcroft() (in module net- | | | | | parse_edgelist() (in module networkx.readwrite.edgelist), | 2 | | parse_edgelist() (in module networkx.readwrite.edgelist), 513 | workx.algorithms.link_prediction), 332 | | | workx.algorithms.link_prediction), 332 radius() (in module net- | | 513<br>parse_gml() (in module networkx.readwrite.gml), 518 | radius() workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 | | 513 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), | radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module net- | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 | $workx.algorithms.link_prediction), 332\\ radius() & (in module networkx.algorithms.distance_measures), 268\\ ramsey_R2() & (in module networkx.algorithms.approximation.ramsey), \\ 127\\ random_clustered_graph() & (in module networkx.generators.random_clustered), 452\\ \\ \end{array}$ | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module net- | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module net- | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networks. | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module net-module networkx.generators.geometric), 457 random_graph() (in module net-module net- | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module net- | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.generators.classic) | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.algorithms.community.quality), 211 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module
networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.directed), 455 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.generators.classic), 429 performance() (in module networkx.generators.classic), 421 periphery() (in module networkx.generators.classic), 421 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_kout_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.random_graphs), 442 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.pajek), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.generators.classic), 428 performance() (in module networkx.algorithms.community.quality), 211 periphery() (in module networkx.algorithms.distance_measures), 267 | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.random_graphs), 442 random_layout() (in module networkx.drawing.layout), | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.pajek), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.directed), 455 random_layout() (in module networkx.drawing.layout), 557 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.pajek), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.generators.classic), periphery() (in module networkx.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generator | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.random_graphs), 442 random_layout() (in module networkx.drawing.layout), 557 random_lobster() (in module net- | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.pajek), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.generators.classic), 428 performance() (in module networkx.algorithms.community.quality), 211 periphery() (in module networkx.generators.small), 435 petersen_graph() (in module networkx.generators.small), 435 planted_partition_graph() (in module net- | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.random_graphs), 442 random_layout() (in module networkx.drawing.layout), 557 random_lobster() (in module networkx.drawing.layout), 443 | | 513 parse_gml() (in module networkx.readwrite.gml), 518 parse_graph6() (in module networkx.readwrite.graph6), 532 parse_leda() (in module networkx.readwrite.leda), 529 parse_multiline_adjlist() (in module networkx.readwrite.pajek), 507 parse_pajek() (in module networkx.readwrite.pajek), 538 parse_sparse6() (in module networkx.readwrite.sparse6), 535 partial_duplication_graph() (in module networkx.generators.duplication), 445 path_graph() (in module networkx.generators.classic), 428 performance() (in module networkx.generators.classic), periphery() (in module
networkx.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generators.generator | workx.algorithms.link_prediction), 332 radius() (in module networkx.algorithms.distance_measures), 268 ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 127 random_clustered_graph() (in module networkx.generators.random_clustered), 452 random_degree_sequence_graph() (in module networkx.generators.degree_seq), 451 random_geometric_graph() (in module networkx.generators.geometric), 457 random_graph() (in module networkx.algorithms.bipartite.generators), 163 random_k_out_graph() (in module networkx.generators.directed), 455 random_kernel_graph() (in module networkx.generators.random_graphs), 442 random_layout() (in module networkx.drawing.layout), 557 random_lobster() (in module net- | | random_powerlaw_tree() (in module net- | remove_nodes_from() (DiGraph method), 41 | |------------------------------------------------------------|-----------------------------------------------------------------------| | workx.generators.random_graphs), 444 | remove_nodes_from() (Graph method), 16 | | random_powerlaw_tree_sequence() (in module net- | remove_nodes_from() (MultiDiGraph method), 95 | | workx.generators.random_graphs), 444 | remove_nodes_from() (MultiGraph method), 68 | | random_regular_graph() (in module net- | rescale_layout() (in module networkx.drawing.layout), | | workx.generators.random_graphs), 441 | 557 | | random_shell_graph() (in module net- | resource_allocation_index() (in module net- | | workx.generators.random_graphs), 443 | workx.algorithms.link_prediction), 329 | | random_tournament() (in module net- | reverse() (DiGraph method), 62 | | workx.algorithms.tournament), 388 | reverse() (in module net- | | random_weighted_sample() (in module net- | workx.algorithms.operators.unary), 343 | | workx.utils.random_sequence), 567 | reverse() (MultiDiGraph method), 118 | | read_adjlist() (in module networkx.readwrite.adjlist), 501 | reverse_cuthill_mckee_ordering() (in module net- | | read_dot() (in module networkx.drawing.nx_agraph), 552 | workx.utils.rcm), 569 | | read_dot() (in module networkx.drawing.nx_pydot), 555 | reverse_havel_hakimi_graph() (in module net- | | read_edgelist() (in module networkx.readwrite.edgelist), | workx.algorithms.bipartite.generators), 162 | | 509 | reversed() (in module networkx.utils.contextmanagers), | | read_gexf() (in module networkx.readwrite.gexf), 515 | 570 | | read_gml() (in module networkx.readwrite.gml), 517 | rich_club_coefficient() (in module net- | | read_gpickle() (in module networkx.readwrite.gpickle), | workx.algorithms.richclub), 353 | | 520 | ring_of_cliques() (in module net- | | read_graph6() (in module networkx.readwrite.graph6), | workx.generators.community), 470 | | 533 | robins_alexander_clustering() (in module net- | | read_graphml() (in module networkx.readwrite.graphml), | workx.algorithms.bipartite.cluster), 155 | | 522 | works.aigorumis.orparate.oraster), 155 | | read_leda() (in module networkx.readwrite.leda), 529 | S | | read_multiline_adjlist() (in module net- | | | workx.readwrite.multiline_adjlist), 505 | scale_free_graph() (in module net-<br>workx.generators.directed), 456 | | read_pajek() (in module networkx.readwrite.pajek), 537 | | | read_shp() (in module networkx.readwrite.nx_shp), 540 | * | | read_sparse6() (in module networkx.readwrite.sparse6), | workx.algorithms.tournament), 389 | | 535 | sedgewick_maze_graph() (in module net- | | read_weighted_edgelist() (in module net- | workx.generators.small), 435 | | workx.readwrite.edgelist), 511 | selfloop_edges() (DiGraph method), 57 | | read_yaml() (in module networkx.readwrite.nx_yaml), | selfloop_edges() (Graph method), 30 | | 531 | selfloop_edges() (MultiDiGraph method), 113 | | reciprocity() (in module net- | selfloop_edges() (MultiGraph method), 84 | | workx.algorithms.reciprocity), 352 | semantic_feasibility() (DiGraphMatcher method), 316 | | relabel_gexf_graph() (in module net- | semantic_feasibility() (GraphMatcher method), 314 | | workx.readwrite.gexf), 516 | set_edge_attributes() (in module net- | | relaxed_caveman_graph() (in module net- | workx.classes.function), 417 | | workx.generators.community), 467 | set_node_attributes() (in module net- | | remove_edge() (DiGraph method), 43 | workx.classes.function), 416 | | remove_edge() (Graph method), 18 | sets() (in module networkx.algorithms.bipartite.basic), | | remove_edge() (MultiDiGraph method), 98 | 140 | | remove_edge() (MultiGraph method), 72 | shell_layout() (in module networkx.drawing.layout), 558 | | remove_edges_from() (DiGraph method), 44 | shortest_augmenting_path() (in module net- | | remove_edges_from() (Graph method), 19 | workx.algorithms.flow), 285 | | remove_edges_from() (MultiDiGraph method), 99 | shortest_path() (in module net- | | remove_edges_from() (MultiGraph method), 72 | workx.algorithms.shortest_paths.generic), | | remove_node() (DiGraph method), 40 | 354 | | remove_node() (Graph method), 15 | shortest_path_length() (in module net- | | remove_node() (MultiDiGraph method), 94 | workx.algorithms.shortest_paths.generic), | | remove_node() (MultiGraph method) 68 | 356 | | IVIDATA TOURA ELIMINIA DE MICHOULE UN | | | shortest_simple_paths() (in module net- | strategy_independent_set() (in module net- | |-----------------------------------------------------------|------------------------------------------------------| | workx.algorithms.simple_paths), 383 | workx.algorithms.coloring), 206 | | simple_cycles() (in module networkx.algorithms.cycles), | strategy_largest_first() (in module net- | | 255 | workx.algorithms.coloring), 206 | | single_source_bellman_ford() (in module net- | strategy_random_sequential() (in module net- | | workx.algorithms.shortest_paths.weighted), | workx.algorithms.coloring), 206 | | 375 | strategy_saturation_largest_first() (in module net- | | single_source_bellman_ford_path() (in module net- | workx.algorithms.coloring), 206 | | workx.algorithms.shortest_paths.weighted), | strategy_smallest_last() (in module net- | | 372 | workx.algorithms.coloring), 206 | | single_source_bellman_ford_path_length() (in module | strong_product() (in module net- | | networkx.algorithms.shortest_paths.weighted), | workx.algorithms.operators.product), 349 | | 373 | strongly_connected_component_subgraphs() (in module | | single_source_dijkstra() (in module net- | networkx.algorithms.components), 218 | | workx.algorithms.shortest_paths.weighted), | strongly_connected_components() (in module net- | | 364 | workx.algorithms.components), 218 | | single_source_dijkstra_path() (in module net- | strongly_connected_components_recursive() (in module | | workx.algorithms.shortest_paths.weighted), | networkx.algorithms.components), 219 | | 365 | subgraph() (DiGraph method), 61 | | single_source_dijkstra_path_length() (in module net- | subgraph() (Graph method), 33 | | workx.algorithms.shortest_paths.weighted), | subgraph() (MultiDiGraph method), 118 | | 366 | subgraph() (MultiGraph method), 87 | | single_source_shortest_path() (in module net- | subgraph_centrality() (in module net- | | workx.algorithms.shortest_paths.unweighted), | workx.algorithms.centrality), 186 | | 358 | • | | | subgraph_centrality_exp() (in module net- | | single_source_shortest_path_length() (in module net- | workx.algorithms.centrality), 187 | | workx.algorithms.shortest_paths.unweighted), | subgraph_is_isomorphic() (DiGraphMatcher method), | | 358 | 315 | | size() (DiGraph method), 56 | subgraph_is_isomorphic() (GraphMatcher method), 313 | | size() (Graph method), 28 | subgraph_isomorphisms_iter() (DiGraphMatcher | | size() (MultiDiGraph method), 112 | method), 316 | | size() (MultiGraph method), 82 | subgraph_isomorphisms_iter() (GraphMatcher method), | | spectral_bipartivity() (in module net- | 314 | | workx.algorithms.bipartite.spectral), 151 | successors() (DiGraph method), 50 | | spectral_layout() (in module networkx.drawing.layout), | successors() (MultiDiGraph method), 106 | | 559 | symmetric_difference() (in module net- | | spectral_ordering() (in module net- | workx.algorithms.operators.binary), 346 | | workx.linalg.algebraicconnectivity), 482 | syntactic_feasibility() (DiGraphMatcher method), 316 | | spring_layout() (in module networkx.drawing.layout), | syntactic_feasibility() (GraphMatcher method), 314 | | 558 | <b>T</b> | | square_clustering() (in module net- | T | | workx.algorithms.cluster), 202 | tensor_product() (in module net- | | star_graph() (in module networkx.generators.classic), 428 | workx.algorithms.operators.product), 350 | | stochastic_graph() (in
module net- | tetrahedral_graph() (in module net- | | workx.generators.stochastic), 463 | workx.generators.small), 435 | | stoer_wagner() (in module net- | to_agraph() (in module networkx.drawing.nx_agraph), | | workx.algorithms.connectivity.stoerwagner), | 552 | | 247 | to_dict_of_dicts() (in module networkx.convert), 488 | | strategy_connected_sequential() (in module net- | to_dict_of_lists() (in module networkx.convert), 489 | | workx.algorithms.coloring), 205 | to_directed() (DiGraph method), 60 | | strategy_connected_sequential_bfs() (in module net- | to_directed() (Graph method), 32 | | workx.algorithms.coloring), 205 | to_directed() (MultiDiGraph method), 116 | | strategy_connected_sequential_dfs() (in module net- | to_directed() (MultiGraph method), 87 | | workx.algorithms.coloring), 205 | to_edgelist() (in module networkx.convert), 489 | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | to_cagenst() (in inoduic networks.convert), 409 | | to_networkx_graph() (in module networkx.convert), 487 | V | |---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------| | to_numpy_matrix() (in module net- | volume() (in module networkx.algorithms.cuts), 260 | | workx.convert_matrix), 490 | voronoi_cells() (in module net- | | to_numpy_recarray() (in module net- | workx.algorithms.voronoi), 409 | | workx.convert_matrix), 492 | | | to_pandas_dataframe() (in module net- | W | | workx.convert_matrix), 497 | watts_strogatz_graph() (in module net- | | to_pydot() (in module networkx.drawing.nx_pydot), 554 | workx.generators.random_graphs), 440 | | to_scipy_sparse_matrix() (in module net- | waxman_graph() (in module net- | | workx.convert_matrix), 494 | workx.generators.geometric), 459 | | to_undirected() (DiGraph method), 59 | weakly_connected_component_subgraphs() (in module | | to_undirected() (Graph method), 32 | networkx.algorithms.components), 222 | | to_undirected() (MultiDiGraph method), 115 | weakly_connected_components() (in module net- | | to_undirected() (MultiGraph method), 86 | workx.algorithms.components), 222 | | to_vertex_cover() (in module net- | weighted_choice() (in module net- | | workx.algorithms.bipartite.matching), 143 | workx.utils.random_sequence), 567 | | topological_sort() (in module networkx.algorithms.dag), | weighted_projected_graph() (in module net- | | 262 | workx.algorithms.bipartite.projection), 146 | | transitive_closure() (in module net-<br>workx.algorithms.dag), 264 | wheel_graph() (in module networkx.generators.classic), | | transitive_reduction() (in module net- | 429 | | workx.algorithms.dag), 264 | wiener_index() (in module networkx.algorithms.wiener), | | transitivity() (in module networkx.algorithms.cluster), | 410 | | 199 | within_inter_cluster() (in module net- | | tree_data() (in module networkx.readwrite.json_graph), | workx.algorithms.link_prediction), 333 | | 526 | write_adjlist() (in module networkx.readwrite.adjlist), | | tree_graph() (in module networkx.readwrite.json_graph), | 502 | | 527 | write_dot() (in module networkx.drawing.nx_agraph), | | triad_graph() (in module networkx.generators.triads), 472 | 552 | | triadic_census() (in module networkx.algorithms.triads), | write_dot() (in module networkx.drawing.nx_pydot), 554 | | 407 | write_edgelist() (in module networkx.readwrite.edgelist), 510 | | triangles() (in module networkx.algorithms.cluster), 199 | | | trivial_graph() (in module networkx.generators.classic), | write_gexf() (in module networkx.readwrite.gexf), 515 write_gml() (in module networkx.readwrite.gml), 517 | | 429 | write_gpickle() (in module networkx.readwrite.gpickle), 917 | | truncated_cube_graph() (in module net- | 521 | | workx.generators.small), 435 | write_graph6() (in module networkx.readwrite.graph6), | | truncated_tetrahedron_graph() (in module net- | 534 | | workx.generators.small), 435 | write_graphml() (in module net- | | turan_graph() (in module networkx.generators.classic), | workx.readwrite.graphml), 522 | | 429 | write_multiline_adjlist() (in module net- | | tutte_graph() (in module networkx.generators.small), 435 | workx.readwrite.multiline_adjlist), 506 | | U | write_pajek() (in module networkx.readwrite.pajek), 538 | | | write_shp() (in module networkx.readwrite.nx_shp), 540 | | uniform_random_intersection_graph() (in module net- | write_sparse6() (in module networkx.readwrite.sparse6), | | workx.generators.intersection), 464 | 536 | | uniform_sequence() (in module net- | write_weighted_edgelist() (in module net- | | workx.utils.random_sequence), 565 | workx.readwrite.edgelist), 511 | | union() (in module net- | write_yaml() (in module networkx.readwrite.nx_yaml), | | workx.algorithms.operators.binary), 344 | 531 | | union() (UnionFind method), 565<br>union_all() (in module net- | Z | | union_all() (in module net-<br>workx.algorithms.operators.all), 347 | | | works.argorumis.operators.am, 547 | zipf_rv() (in module networkx.utils.random_sequence), | | | 566 | zipf_sequence() (in module networkx.utils.random_sequence), 566