NetworkX Reference
Release 2.0.dev20161129121305

Aric Hagberg, Dan Schult, Pieter Swart

Nov 29, 2016

Contents

Overview 1
1.1 Whouses NetworkX? e 1
L2 Goals . . . o e 1
1.3 The Python programming language e 1
1.4 Freesoftware L L e e e e e e e e 2
1.5 HiStOry oo o e e e 2
Introduction 3
2.1 NetworkX Basics o . o e e e e e 3
22 Nodesand Edges e 4
Graph types 9
3.1 Which graph class should Tuse? L 9
3.2 Basicgraphtypes. e 9
Algorithms 119
4.1 Approximation L L e e 119
4.2 ASSOTTAtIVILY . . . v v v e e e e e e e e e e e 128
43 BIpartite e e e e e e e e e e e e e e e e e 137
4.4 Boundaryo e e e e e e e e e e 165
45 Centrality e e e e e e e e e e 166
4.6 Chains e e 191
47 Chordal L e e e 192
4.8 CHQUe o e 194
49 CIUSEEIING . . v v v o v e 199
410 Coloring e e e e e e e e e e e e 203
411 Communicability 207
412 CommuUNIties o v ot e e e e e e e e e e e e 208
413 COMPONENLS © v v v v v o e 214
414 COonnectivVity v v v v e 230
415 COres . . . o e e e e e 249
416 Covering e e e 252
417 Cycles . . . o e 254
418 CUtS . . o o e e e e 257
4.19 Directed Acyclic Graphs i e e e e e e e e e 261
420 DISPErsion v v e 266
421 Distance Measures e e e e e e e e e e e e e e 266
4.22 Distance-Regular Graphs L 268

423 DOMINANCE . . . v v v v e 270
424 Dominating SetS i i e e e e e e e e e e e e e e e e e e e 272
425 Efficiency o o e e e e e e e e e e e 273
426 Eulerian. e e e e e e e e e 275
427 FIOWS . . v o e e e e e e e e e e e e e e e 276
4.28 Graphical degree SeqUENCE v v v v it e e e e e e e e e e e e e 301
429 Hierarchy o e e e e e e e e e e e e e e 305
430 Hybrid e e e 305
431 Isolates L e e e e 307
4.32 TIsomorphism e 308
433 Link AnalysiS. o o e e e e e 322
434 Link Prediction L e e e 328
435 Matching o e e e e e e e e e e e e 334
436 MINOTS . . . o ottt o e e e e e e e e 336
4.37 Maximal independentset. 342
438 OPerators v v v v e e e e e e e e e e e 342
439 RECIPIOCILY . & v v v v v o e 352
440 RichClub e e 353
441 ShortestPaths L e 354
442 SimplePaths e 381
443 SWAD .« . L e e e e e e e e e e e e e 384
444 TOUMMAMENE . . . v v v v v v e 386
445 Traversal e e e e e e 389
446 TIE . . . o o i e e e e e e 398
447 Triads oL e e e 407
448 Vitality e e 408
449 Voronoicells e e e e e e e e e e e e e 408
450 Wienerindex o e e e e e e 409
Functions 411
5.1 Graph . . . o e 411
5.2 NOAES . . . o e e e e e e 414
5.3 Edges e e e e e 415
540 AUIIDULES L e e e e e e e e e e e e e 416
5.5 Freezing graph StrUCtUI® v i v vttt e e e e e e e e e e e e e e e 418
Graph generators 421
6.1 Atlas e e e 421
6.2 ClaSsSiC o ot e e e e e e e e e e e e e e 422
6.3 Expanders 430
6.4 Small e e 432
6.5 Random Graphs L e e e e e e 436
6.6 Duplication Divergence L e 445
6.7 DegreeSequence Lo 446
6.8 Random Clustered i i e e e e e e e e e e 452
6.9 Directed e e 453
6.10 GEOMELIiC v v vt e e e e e e e e e e e 456
6.11 Line Graph o e e e e e e e 461
6.12 EgoGraph e 462
6.13 Stochastic e e e e e e e e e e e e e 463
6.14 INtersection v v i vt e 463
6.15 Social Networks o e e e 465
6.16 Community o e 466
6.17 NonIsomorphic Trees e 471

10

11

12

13

14

15

6.18 Triads L e e e
6.19 Joint Degree Sequenceo e e e e e e e e e e

Linear algebra

7.1 Graph Matrix o o o e
7.2 Laplacian Matrix o o i e e e e e e e e e e e e e e e e e e e
T3 SPECHUM . . . v v it v e e e i e
7.4 Algebraic Connectivity o Lo e e e e e e e e e e e e
7.5 Attribute Matrices L e e e e e e e

Converting to and from other data formats

8.1 ToNetworkX Graph e e e
8.2 DICHONAIICS . . .« ¢ v v v vt e e e e e e e e e e e e e e e e
8.3 LIStS . . . e
84 NUMPY . . o vt e e e e e e e e
8.5 SCIPY . . e e e e
8.6 Pandas L e e e e

Reading and writing graphs

9.1 Adjacency List L e e e e e e
9.2 Multiline Adjacency List oL e e e e e
0.3 EdgeList e
04 GEXF.
0.5 GML
9.6 Pickle L e
9.7 GraphML © . e
0.8 JSON
0.9 LEDA e
0.10 YAML
9.11 SparseGraph® o e e e e e e e e
0.12 Pajek e e e e e
9.13 GISShapefile e

Drawing

10.1 Matplotlib e
10.2 Graphviz AGraph (dot) o e e e
10.3 Graphviz with pydot L e e
10.4 Graph Layout. 0 e e e e e e e e e e e e e

Exceptions
T1.1 EXCEPLONS . . . v o v v o et e

Utilities

12.1 Helper Functions L L e e
12.2 Data Structures and Algorithms L e e
12.3 Random Sequence Generators v v v v v v v v v e e e e e e e e e e e e e e
124 Decorators v v vt i e e e e e e e e e e e e e e e e e
12.5 Cuthill-Mckee Ordering o o i e e e e e e e e e e e
12.6 Context Managers o o i e e e e e e e e e e e e e

License
Citing

Credits

475
475
477
479
480
483

487
487
488
489
490
494
496

501
501
504
508
514
516
520
521
523
528
529
532
537
538

543
543
551
553
556

561
561

563
563
564
565
567
568
570

571

573

575

15.1 Contributions
15.2 Support

16 Glossary
Bibliography

Python Module Index

579

581

583

CHAPTER 1

Overview

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics,
and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of
random and classic networks, analyze network structure, build network models, design new network algorithms, draw
networks, and much more.

1.1 Who uses NetworkX?

The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social
scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabasi
[BAO2], Newman [Newman03], and Dorogovtsev and Mendes [DMO03]. See also the classic texts [Bollobas01],
[Diestel97] and [WestO1] for graph theoretic results and terminology. For basic graph algorithms, we recommend the
texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BEO5].

1.2 Goals

NetworkX is intended to provide
¢ tools for the study of the structure and dynamics of social, biological, and infrastructure networks,
* astandard programming interface and graph implementation that is suitable for many applications,
* arapid development environment for collaborative, multidisciplinary projects,
* an interface to existing numerical algorithms and code written in C, C++, and FORTRAN,

* the ability to painlessly slurp in large nonstandard data sets.

1.3 The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and
concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem
of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition
Python is also an excellent “glue” language for putting together pieces of software from other languages which allows
reuse of legacy code and engineering of high-performance algorithms [Langtangen04].

Equally important, Python is free, well-supported, and a joy to use.

NetworkX Reference, Release 2.0.dev20161129121305

In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among
the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli
[MartelliO3].

1.4 Free software

NetworkX is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome
contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone
at Github https://github.com/networkx/networkx

1.5 History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and
Pieter Swart in 2002 and 2003. The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits.

1.5.1 What Next

¢ A Brief Tour
* Installing
¢ Reference

* Examples

2 Chapter 1. Overview

http://www.python.org
https://github.com/networkx/networkx

CHAPTER 2

Introduction

The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph
objects, generators to create standard graphs, 10 routines for reading in existing datasets, algorithms to analyse the
resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph
object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also
makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be
easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have
put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please
contact us by joining the NetworkX Google group.

Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names
are lower_case_underscore (lowercase with an underscore representing a space between words).

2.1 NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

’>>> import networkx as nx

To save repetition, in the documentation we assume that NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your
PYTHONPATH.

The following basic graph types are provided as Python classes:

Graph This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow
self-loop edges between a node and itself.

DiGraph Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of
Graph).

MultiGraph A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional
flexibility leads to some degradation in performance, though usually not significant.

MultiDiGraph A directed version of a MultiGraph.

Empty graph-like objects are created with

>>> G=nx.Graph ()
>>> G=nx.DiGraph ()

http://groups.google.com/group/networkx-discuss

NetworkX Reference, Release 2.0.dev20161129121305

>>> G=nx.MultiGraph ()
>>> G=nx.MultiDiGraph ()

All graph classes allow any hashable object as a node. Hashable objects include strings, tuples, integers, and more.
Arbitrary edge attributes such as weights and labels can be associated with an edge.

The graph internal data structures are based on an adjacency list representation and implemented using Python dic-
tionary datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer
dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge at-
tributes associated with that edge. This “dict-of-dicts” structure allows fast addition, deletion, and lookup of nodes
and neighbors in large graphs. The underlying datastructure is accessed directly by methods (the programming in-
terface “API”) in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via
those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the
‘dicts-of-dicts’-based datastructure with an alternative datastructure that implements the same methods.

2.1.1 Graphs

The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection
of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or
edges. NetworkX graph objects come in different flavors depending on two main properties of the network:

¢ Directed: Are the edges directed? Does the order of the edge pairs (u,v) matter? A directed graph is specified
by the “Di” prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph
properties are defined differently for directed graphs.

* Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges
requires a different data structure, though tricky users could design edge data objects to support this function-
ality. We provide a standard data structure and interface for this type of graph using the prefix “Multi”, e.g.
MultiGraph().

The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph

2.2 Nodes and Edges

The next choice you have to make when specifying a graph is what kinds of nodes and edges to use.

If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you
need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use
that structure as your nodes provided it is hashable. If it is not hashable you can use a unique identifier to represent
the node and assign the data as a node attribute.

Edges often have data associated with them. Arbitrary data can associated with edges as an edge attribute. If the data
is numeric and the intent is to represent a weighted graph then use the ‘weight’ keyword for the attribute. Some of the
graph algorithms, such as Dijkstra’s shortest path algorithm, use this attribute name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword
except ‘weight’ to name your attribute and can then easily query the edge data by that attribute keyword.

Once you’ve decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or
without multiedges you are ready to build your network.

2.2.1 Graph Creation

NetworkX graph objects can be created in one of three ways:

4 Chapter 2. Introduction

NetworkX Reference, Release 2.0.dev20161129121305

* Graph generators — standard algorithms to create network topologies.
* Importing data from pre-existing (usually file) sources.
* Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manip-
ulate the graph. For example,

>>> import networkx as nx

>>> G=nx.Graph ()

>>> G.add_edge (1, 2) # default edge data=1

>>> G.add_edge (2, 3,weight=0.9) # specify edge data

Edge attributes can be anything:

>>> import math
>>> G.add_edge('y', 'x', function=math.cos)
>>> G.add_node (math.cos) # any hashable can be a node

You can add many edges at one time:

>>> elist=[('a','b"'",5.0), ('b",'c",3.0),('a'",'c",1.0), ('c","'d",7.3)]
>>> G.add_weighted_edges_from(elist)

See the /tutorial/index for more examples.
Some basic graph operations such as union and intersection are described in the Operators module documentation.
Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files see the Reading and writing
graphs subpackage.

2.2.2 Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed
only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges()
and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save
memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or
one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric
and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges
as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most
data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it
doesn’t really matter which way you examine the graph. G.edges() removes duplicate representations of each edge
while G.neighbors(n) or G[n] is slightly faster but doesn’t remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example
nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the
code and documentation under the term algorithms.

2.2.3 Algorithms

A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see
traversal), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If

2.2. Nodes and Edges 5

NetworkX Reference, Release 2.0.dev20161129121305

you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google
group or the Github Developer Zone.

As an example here is code to use Dijkstra’s algorithm to find the shortest weighted path:

>>> G=nx.Graph ()

>>> e=[('a','p",0.3), ('b",'c",0.9), ('a"','c'",0.5),('c','d",1.2)]
>>> G.add_weighted_edges_from(e)

>>> print (nx.dijkstra_path(G, 'a','d"))

[Val, Vcl, ’dV]

2.2.4 Drawing

While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some
simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested)
pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python
package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module
drawing.

The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed
with a layout function. The edges are then lines between those dots.

>>> G=nx.cubical_graph ()
>>> nx.draw (G) # default spring_layout
>>> nx.draw (G, pos=nx.spectral_layout (G), nodecolor='r',edge_color="Db")

See the examples for more ideas.

2.2.5 Data Structure

NetworkX uses a “dictionary of dictionaries of dictionaries” as the basic network data structure. This allows fast
lookup with reasonable storage for large sparse networks. The keys are nodes so G[u] returns an adjacency dictionary
keyed by neighbor to the edge attribute dictionary. The expression G[u][v] returns the edge attribute dictionary itself.
A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge
data.

Advantages of dict-of-dicts-of-dicts data structure:
* Find edges and remove edges with two dictionary look-ups.
* Prefer to “lists” because of fast lookup with sparse storage.
 Prefer to “sets” since data can be attached to edge.
¢ G[u][v] returns the edge attribute dictionary.
e n in G testsif node n is in graph G.
e for n in G: iterates through the graph.
e for nbr in G[n]: iterates through neighbors.

As an example, here is a representation of an undirected graph with the edges (‘A’,’B’), (‘B’,;’C’)

>>> G=nx.Graph ()

>>> G.add_edge ('A','B'")

>>> G.add_edge('B','C")

>>> print (G.adj)

{("A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}, 'C': {}}}

6 Chapter 2. Introduction

http://groups.google.com/group/networkx-discuss
http://groups.google.com/group/networkx-discuss
https://github.com/networkx/networkx

NetworkX Reference, Release 2.0.dev20161129121305

The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts-of-dicts structures
are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-
dicts-of-dicts ! where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains
the edge attributes for that edge between the two nodes.

Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner
dictionary storing ‘“name-value” relationships for that edge.

>>> G=nx.Graph ()

>>> G.add_edge(l,2,color="red',weight=0.84,size=300)
>>> print (G[1][2]['size'])

300

! “It’s dictionaries all the way down.”

2.2. Nodes and Edges 7

NetworkX Reference, Release 2.0.dev20161129121305

8 Chapter 2. Introduction

CHAPTER 3

Graph types

NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an
edge attribute.

The choice of graph class depends on the structure of the graph you want to represent.

3.1 Which graph class should | use?

Graph Type NetworkX Class
Undirected Simple | Graph

Directed Simple DiGraph

With Self-loops Graph, DiGraph

With Parallel edges | MultiGraph, MultiDiGraph

3.2 Basic graph types

3.2.1 Graph - Undirected graphs with self loops

Overview

Graph (data=None, **attr)
Base class for undirected graphs.
A Graph stores nodes and edges with optional data, or attributes.
Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.

Parameters

 data (input graph) — Data to initialize graph. If data=None (default) an empty graph is
created. The data can be any format that is supported by the to_networkx_graph() function,
currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or
2d ndarray, SciPy sparse matrix, or PyGraphviz graph.

NetworkX Reference, Release 2.0.dev20161129121305

o attr (keyword arguments, optional (default= no attributes)) — Attributes to add to graph as
key=value pairs.

See also:

DiGraph (), MultiGraph (), MultiDiGraph ()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.Graph()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H = nx.path_graph(10)

>>> G.add_nodes_from (H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

’>>> G.add_edge (1, 2)

a list of edges,

’>>> G.add_edges_from([(1,2), (1,3)1)

or a collection of edges,

’>>> G.add_edges_from(H.edges ())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

10 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.Graph (day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm")
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]

{'"time': 'Spm'}

>>> G.node[l]['room'] = 714

>>> del G.node[l]['room'] # remove attribute
>>> list (G.nodes (data=True))

[(1, {'time': '"Spm'}), (3, {'time': '"2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge (1, 2, weight=4.7)
>>> G.add_edges_from([(3,4), (4,5)], color='red")
>>> G.add_edges_from([(1,2, {'color':"'blue'}), (2,3,{'weight':8})1])

>>> G[1][2]['weight'] = 4.7
>>> G.edge[l][2]['weight'] = 4
Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> [n for n in G if n<3] # iterate through nodes
(1, 2]

>>> len (G) # number of nodes in graph

5

The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more conve-
nient.

>>> for n,nbrsdict in G.adjacency():
for nbr,eattr in nbrsdict.items() :
if 'weight' in eattr:
(n,nbr,eattr['weight'])
14 14

’

’ 14

)
)
)
)

N W N
Q0 00 W W

(
(
(
(

w NN

’ 14

>>> list (G.edges (data='weight'))
[, 2, 4y, (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Reporting methods usually return iterators instead of
containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as
well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

3.2. Basic graph types 11

NetworkX Reference, Release 2.0.dev20161129121305

The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information
keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by
neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by
attribute names.

Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like
features should be maintained but extra features can be added. To replace one of the dicts create a new graph
class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are
node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the dict containing node
attributes, keyed by node id. It should require no arguments and return a dict-like object

adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node. It should require no arguments and return a
dict-like object.

adjlist_inner_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a graph subclass that tracks the order nodes are added.

>>> from collections import OrderedDict

>>> class OrderedNodeGraph (nx.Graph) :
node_dict_factory=OrderedDict

C. adjlist_outer_dict_factory=OrderedDict

>>> G=0OrderedNodeGraph ()

>>> G.add_nodes_from((2,1))

>>> list (G.nodes())

[2, 1]

>>> G.add_edges_from(((2,2), (2,1), (1,1)))

>>> list (G.edges())

[, 1)y, (2, 2y, (1, 1)]

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are
added.

>>> class OrderedGraph (nx.Graph) :
node_dict_factory = OrderedDict
adjlist_outer_dict_factory = OrderedDict
adjlist_inner_dict_factory = OrderedDict

>>> G OrderedGraph ()

>>> G.add_nodes_from((2,1))

>>> list (G.nodes())

[2, 1]

>>> G.add_edges_from(((2,2), (2,1), (1,1)))

>>> list (G.edges())

(2, 20, (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all
edges. This reduces the memory used, but you lose edge attributes.

12

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> class ThinGraph (nx.Graph) :

def single_edge_dict (self):

>>> G = ThinGraph ()

>>> G.add_edge (2,1)

>>> list (G.edges (data= True))
[(1, 2, {'weight': 1})]

>>> G.add_edge (2,2)

>>> G[2][1] is G[2][2]

True

all_edge_dict = {'weight': 1}

return self.all_edge_dict
edge_attr_dict_factory = single_edge_dict

3.2.2 Methods

Adding and removing nodes and edges

Graph.__init__ ([data])

Initialize a graph with edges, name, graph attributes.

Graph.add_node(n, **attr)

Add a single node n and update node attributes.

Graph.add_nodes_ from(nodes, **attr)

Add multiple nodes.

Graph.remove_node(n)

Remove node n.

Graph.remove_nodes_ from(nodes)

Remove multiple nodes.

Graph.add_edge(u, v, \¥**attr)

Add an edge between u and v.

Graph.add_edges_ from(ebunch, **attr)

Add all the edges in ebunch.

Graph.add weighted edges_ from(ebunchl,
weight])

Add all the edges in ebunch as weighted edges with speci-

fied weights.

Graph.remove_edge(u, V)

Remove the edge between u and v.

Graph.remove edges_ from(ebunch)

Remove all edges specified in ebunch.

Graph.clear()

Remove all nodes and edges from the graph.

__init__

Graph._ _init__ (data=None, **attr)

Initialize a graph with edges, name, graph attributes.

Parameters

» data (input graph) — Data to initialize graph. If data=None (default) an empty graph is
created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

* name (string, optional (default="")) — An optional name for the graph.

e attr (keyword arguments, optional (default= no attributes)) — Attributes to add to graph as

key=value pairs.
See also:

convert ()

3.2. Basic graph types

13

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')

>>> e = [(1,2),(2,3),(3,4)] # list of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{'day': 'Friday'}

add_node

Graph.add_node (n, **attr)

Add a single node n and update node attributes.
Parameters
* n (node) — A node can be any hashable Python object except None.
o attr (keyword arguments, optional) — Set or change node attributes using key=value.
See also:

add_nodes_from/()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node('Hello")

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)1)

>>> G.add_node (K3)

>>> G.number_of_nodes ()

3

Use keywords set/change node attributes:

>>> G.add_node(1l,size=10)
>>> G.add_node (3,weight=0.4,UTM=("'13S"',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

14

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

add_nodes_from

Graph.add_nodes_from (nodes, **attr)
Add multiple nodes.

Parameters

* nodes (iterable container) — A container of nodes (list, dict, set, etc.). OR A container of
(node, attribute dict) tuples. Node attributes are updated using the attribute dict.

o attr (keyword arguments, optional (default= no attributes)) — Update attributes for all nodes
in nodes. Node attributes specified in nodes as a tuple take precedence over attributes spec-
ified via keyword arguments.

See also:

add_node ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello")

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes (), key=str)

[O, l, 2’ lHl, leI, le’ 'O']

Use keywords to update specific node attributes for every node.

>>>
>>>

G.add_nodes_from([1,2], size=10)
G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>>
>>>
11

>>>
>>>
>>>
11

G.add_nodes_from ([(1,dict (size=11)), (2,{'color':"'blue'})])
G.node[l]['size']

H = nx.Graph()
.add_nodes_from(G.nodes (data=True))
H.node[1l]['size']

jas}

remove_node

Graph.remove_node (n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n (node) — A node in the graph

Raises NetworkXError —If nis notin the graph.

See also:

remove_nodes_from()

3.2. Basic graph types 15

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> list (G.edges|())

[0, 1), (1, 2)]

>>> G.remove_node (1)

>>> list (G.edges())

[]

remove_nodes_from

Graph.remove_nodes_from (nodes)
Remove multiple nodes.

Parameters nodes (iterable container) — A container of nodes (list, dict, set, etc.). If a node in the
container is not in the graph it is silently ignored.

See also:

remove_node ()

Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list (G.nodes())
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> list (G.nodes())
[]
add_edge

Graph.add_edge (u, v, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See
examples below.

Parameters

* u, v (nodes) — Nodes can be, for example, strings or numbers. Nodes must be hashable (and
not None) Python objects.

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

See also:

add _edges_ from() add a collection of edges

16 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to
a keyword which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two-node form

>>> G.add_edge (*e) # single edge as tuple of two nodes
>>> G.add_edges_from ([(1, 2)1) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge (1, 2, weight=3)
>>> G.add_edge (1, 3, weight=7, capacity=15, length=342.7)

For non-string associations, directly access the edge’s attribute dictionary.

>>> G.add_edge (1, 2)
>>> G[1][2].update({0: 5})

add_edges_from

Graph.add_edges_from (ebunch, **attr)
Add all the edges in ebunch.

Parameters

* ebunch (container of edges) — Each edge given in the container will be added to the graph.
The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary
containing edge data.

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

See also:

add _edge () add a single edge

add weighted edges from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.

3.2. Basic graph types 17

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_edges_from ([(0,1), (1,2)]) # using a list of edge tuples
= zip(range (0, 3),range(l,4))

.add_edges_from(e) # Add the path graph 0-1-2-3

>>>
>>>

QD0 Q0

>>>

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

add_weighted_edges_from

Graph.add_weighted_edges_from (ebunch, weight="weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

* ebunch (container of edges) — Each edge given in the list or container will be added to the
graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

» weight (string, optional (default= ‘weight’)) — The attribute name for the edge weights to
be added.

o attr (keyword arguments, optional (default= no attributes)) — Edge attributes to add/update
for all edges.

See also:

add_edge () add a single edge
add _edges_ from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)1)

remove_edge

Graph.remove_edge (u, v)
Remove the edge between u and v.

Parameters u, v (nodes) — Remove the edge between nodes u and v.

Raises NetworkXError —If there is not an edge between u and v.

18 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

See also:

remove_ edges_from() remove a collection of edges

Examples

>>> G = nx.path_graph(4) # or DiGraph, etc

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple

>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge (xe[:2]) # select first part of edge tuple

remove_edges_from

Graph.remove_edges_from (ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) — Each edge given in the list or container will
be removed from the graph. The edges can be:

e 2-tuples (u,v) edge between u and v.
* 3-tuples (u,v,k) where k is ignored.

See also:

remove_edge () remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from (ebunch)

clear

Graph.clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

3.2. Basic graph types 19

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.clear ()
>>> 1list (G.nodes())
[]
>>> list (G.edges())
[]
Iterating over nodes and edges
Graph . nodes([data, default]) Returns an iterator over the nodes.
Graph.__iter () Iterate over the nodes.
Graph . edges([nbunch, data, default]) Return an iterator over the edges.
Graph.get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge (u,v).
Graph.neighbors(n) Return an iterator over all neighbors of node n.
Graph.__getitem _(n) Return a dict of neighbors of node n.
Graph.adjacency() Return an iterator over (node, adjacency dict) tuples for all
nodes.
Graph.nbunch_ iter([nbunch]) Return an iterator over nodes contained in nbunch that are
also in the graph.
nodes

Graph.nodes (data=False, default=None)
Returns an iterator over the nodes.

Not

Parameters

» data (string or bool, optional (default=False)) — The node attribute returned in 2-tuple
(n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just

the nodes n.

o default (value, optional (default=None)) — Value used for nodes that dont have the requested
attribute. Only relevant if data is not True or False.

Returns An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over
nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in
data. If data is True then the attribute becomes the entire data dictionary.

Return type iterator

es

If the node data is not required, it is simpler and equivalent to use the expression for n in G,or list (G).

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>>
>>>
(o,

G = nx.path_graph(3)
list (G.nodes ())
1, 2]

20

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> 1list (G)
[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node (1, time='5pm')

>>> G.node[0]['foo'] = 'bar'
>>> list (G.nodes (data=True))
[(0, {'"foo': 'bar'}), (1, {'time': 'Spm'}), (2, {})]

>>> 1list (G.nodes (data="'foo'"))

[(O, 'bar'), (1, None), (2, None)]

>>> list (G.nodes (data="time'))

[(0O, None), (1, 'Spm'), (2, None)]

>>> list (G.nodes (data="time', default='Not Available'))
[(0, 'Not Available'), (1, 'Spm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create
a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never

None:

>>> G = nx.Graph()

>>> G.add_node (0)

>>> G.add_node (1, weight=2)

>>> G.add_node (2, weight=3)

>>> dict (G.nodes (data='weight', default=1))

{(0: 1, 1: 2, 2: 3}

__iter__

Graph._ _iter_ ()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter — An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G]
ll

o, 2, 3]

edges

Graph .edges (nbunch=None, data=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters

* nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

3.2. Basic graph types

NetworkX Reference, Release 2.0.dev20161129121305

 data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns edges — An iterator over (u,v) or (u,v,d) tuples of edges.

Return type iterator

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.path_graph(3) # or MultiGraph, etc
>>> G.add_edge (2, 3,weight=5)

>>> [e for e in G.edges()]

[, 1), (1, 23, (2, 3)]

>>> list (G.edges (data=True)) # default data is {} (empty dict)
[, 1, {H, (1, 2, {1, (2, 3, {'weight': 5})]
>>> list (G.edges (data='weight', default=1))

[(o, 1, 1), (1, 2, 1), (2, 3, 5)]

>>> list (G.edges ([0,3]))

[0, 1), (3, 2)]

>>> 1list (G.edges (0))

[(0, 1)1

get_edge_data

Graph.get_edge_data (u, v, default=None)

Return the attribute dictionary associated with edge (u,v).
Parameters
e u, v (nodes)
o default (any Python object (default=None)) — Value to return if the edge (u,v) is not found.
Returns edge_dict — The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[O0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

22

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> G[O0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1]1[0] ['"weight']
7
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.get_edge_data (0, 1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data (*e) # tuple form
{}
>>> G.get_edge_data('a', 'b',default=0) # edge not in graph, return 0
0
neighbors

Graph.neighbors (n)
Return an iterator over all neighbors of node n.

Parameters n (node) — A node in the graph
Returns neighbors — An iterator over all neighbors of node n
Return type iterator

Raises NetworkXError —If the node n is not in the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G.neighbors (0)]

[1]

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G [n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b', weight=7)

>>> G['a']

{'b': {'weight': 7}}

>>> G = nx.path_graph (4)

>>> [n for n in G[0]]

[1]

3.2. Basic graph types 23

NetworkX Reference, Release 2.0.dev20161129121305

__getitem__

Graph._ _getitem__ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) — A node in the graph.
Returns adj_dict — The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
{1: {}}

adjacency

Graph.adjacency ()
Return an iterator over (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter — An iterator over (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n,nbrdict) for n,nbrdict in G.adjacency ()]
[0, {1: {}hH), (1, {0z {3}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

Graph.nbunch_iter (nbunch=None)
Return an iterator over nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The
container will be iterated through once.

Returns niter — An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

24 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Return type iterator

Raises NetworkXError —If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

See also:

Graph.__iter__ ()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a Net workXError is raised. Also, if
any object in nbunch is not hashable, a Net workXError is raised.

Information about graph structure

Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len () Return the number of nodes.
Graph . degree([nbunch, weight]) Return an iterator for (node, degree) or degree for single
node.

Graph. size([weight]) Return the number of edges or total of all edge weights.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with selfloops() Returns an iterator over nodes with self loops.
Graph.selfloop_edges([data, default]) Returns an iterator over selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

has_node

Graph.has_node (n)
Return True if the graph contains the node n.

Parameters n (node)

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_node (0)
True

It is more readable and simpler to use

>>> 0 in G
True

3.2. Basic graph types 25

NetworkX Reference, Release 2.0.dev20161129121305

__contains__

Graph._ _contains__ (n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> 1 in G
True

has_edge

Graph.has_edge (u, v)
Return True if the edge (u,v) is in the graph.

Parameters u, v (nodes) — Nodes can be, for example, strings or numbers. Nodes must be hashable
(and not None) Python objects.

Returns edge_ind — True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.has_edge (0, 1) # using two nodes

True

>>> e = (0,1)

>>> G.has_edge (*e) # e is a 2-tuple (u,v)

True

>>> e = (0,1, {'weight':7})

>>> G.has_edge(xe[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge (0, 1)

True

>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

Graph.order ()
Return the number of nodes in the graph.

Returns nnodes — The number of nodes in the graph.

Return type int

26 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

See also:

number_of_nodes (),__len__ ()

number_of nodes

Graph.number of nodes ()
Return the number of nodes in the graph.

Returns nnodes — The number of nodes in the graph.
Return type int
See also:

order(),__len ()

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
3

_len__

Graph.__len_ ()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes — The number of nodes in the graph.

Return type int

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, e
>>> len (G)
4

ot
o)

degree

Graph .degree (nbunch=None, weight=None)
Return an iterator for (node, degree) or degree for single node.

The node degree is the number of edges adjacent to the node. This function returns the degree for a single node
or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

e nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

3.2. Basic graph types 27

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

Returns
* [f a single node is requested
* deg (int) — Degree of the node
* OR if multiple nodes are requested

* nd_iter (iterator) — The iterator returns two-tuples of (node, degree).

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.degree (0) # node 0 with degree 1

1

>>> list (G.degree([0,11]))

[0, 1), (1, 2)]

size
Graph.size (weight=None)
Return the number of edges or total of all edge weights.

Parameters weight (string or None, optional (default=None)) — The edge attribute that holds the
numerical value used as a weight. If None, then each edge has weight 1.

Returns
size — The number of edges or (if weight keyword is provided) the total weight sum.

If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are
more general).

Return type numeric
See also:

number._of_edges ()

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size()

3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b',weight=2)

>>> G.add_edge('b','c',weight=4)

>>> G.size ()

2

>>> G.size (weight="weight')

6.0

28 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

number_of_edges

Graph.number_ of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u, v (nodes, optional (default=all edges)) — If u and v are specified, return the number
of edges between u and v. Otherwise return the total number of all edges.

Returns nedges — The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int

See also:

size ()

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.number_of_edges|()

3

>>> G.number_of_edges(0,1)
1

>>> e = (0,1)

>>> G.number_of_edges (xe)
1

nodes_with_selfloops

Graph.nodes_with_selfloops ()
Returns an iterator over nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist — A iterator over nodes with self loops.
Return type iterator

See also:

selfloop_edges (), number_of_selfloops ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1, 1)

>>> G.add_edge(l, 2)

>>> list (G.nodes_with_selfloops())

3.2. Basic graph types 29

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

selfloop_edges

Graph.selfloop_edges (data=False, default=None)
Returns an iterator over selfloop edges.

A selfloop edge has the same node at both ends.
Parameters

 data (string or bool, optional (default=False)) — Return selfloop edges as two tuples
(u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue)
(data=’attrname’)

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns edgeiter — An iterator over all selfloop edges.
Return type iterator over edge tuples
See also:

nodes_with selfloops (), number_of selfloops ()

Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> list (G.selfloop_edges())

[(1, 1)]
>>> list (G.selfloop_edges (data=True))
(1, 1, {1

number_of_selfloops

Graph.number_ of_ selfloops ()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.
Returns nloops — The number of selfloops.
Return type int

See also:

nodes_with _selfloops (), selfloop_edges ()

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops|()

30 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

Making copies and subgraphs

Graph. copy([with_data]) Return a copy of the graph.

Graph.to_undirected() Return an undirected copy of the graph.

Graph.to_directed() Return a directed representation of the graph.

Graph. subgraph(nbunch) Return the subgraph induced on nodes in nbunch.

Graph.edge_subgraph(edges) Returns the subgraph induced by the specified edges.
copy

Graph.copy (with_data=True)
Return a copy of the graph.

All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four
types of copies of a graph that people might want.

Deepcopy — The default behavior is a “deepcopy” where the graph structure as well as all data attributes and any
objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect
the original object.

Data Reference (Shallow) — For a shallow copy (with_data=False) the graph structure is copied but the edge,
node and graph attribute dicts are references to those in the original graph. This saves time and memory but
could cause confusion if you change an attribute in one graph and it changes the attribute in the other.

Independent Shallow — This copy creates new independent attribute dicts and then does a shallow copy of the
attributes. That is, any attributes that are containers are shared between the new graph and the original. This
type of copy is not enabled. Instead use:

>>> G = nx.path_graph(5)
>>> H = G.__class__ (G)

Fresh Data— For fresh data, the graph structure is copied while new empty data attribute dicts are created. The
resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not
enabled. Instead use:

>>> H = G.__class__ ()
>>> H.add_nodes_from(G)
>>> H.add_edges_from(G.edges())

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Parameters with_data (bool, optional (default=True)) — If True, the returned graph will have a
deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph
will be a shallow copy.

Returns G — A copy of the graph.
Return type Graph

See also:

to_directed () return a directed copy of the graph.

3.2. Basic graph types 31

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.copy ()

to_undirected

Graph.to_undirected()

Return an undirected copy of the graph.
Returns G — A deepcopy of the graph.
Return type Graph/MultiGraph

See also:

copy (), add _edge (), add_edges_from/()
Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Examples

>>> G = nx.path_graph(2) # or MultiGraph, etc
>>> H = G.to_directed()

>>> list (H.edges())

[0, 1), (1, 0)]

>>> G2 H.to_undirected()
>>> 1ist (G2.edges())
[(0, 1)]

to_directed

Graph.to_directed()

Return a directed representation of the graph.

Returns G — A directed graph with the same name, same nodes, and with each edge (u,v,data)
replaced by two directed edges (u,v,data) and (v,u,data).

Return type DiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

32

Chapter 3. Graph types

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not
transfer to the DiGraph created by this method.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[(0, 1)]

subgraph

Graph.subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch (/ist, iterable) — A container of nodes which will be iterated through once.
Returns G — A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.subgraph([0,1,2])

>>> list (H.edges())

[0, 1), (1, 2)]

3.2. Basic graph types 33

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

edge_subgraph

Graph.edge_subgraph (edges)

Returns the subgraph induced by the specified edges.

The induced subgraph contains each edge in edges and each node incident to any one of those edges.
Parameters edges (iterable) — An iterable of edges in this graph.
Returns G — An edge-induced subgraph of this graph with the same edge attributes.

Return type Graph

Notes

The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in
the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the
original graph, but changes to the attributes will.

To create a subgraph with its own copy of the edge or node attributes, use:

>>> nx.Graph (G.edge_subgraph (edges))

If edge attributes are containers, a deep copy of the attributes can be obtained using:

>>> G.edge_subgraph (edges) .copy ()

Examples

>>> G = nx.path_graph (5)

>>> H = G.edge_subgraph ([(0, 1), (3, 4)1)
>>> list (H.nodes())

[o, 1, 3, 4]

>>> list (H.edges())

[(0, 1), (3, 4)]

3.2.3 DiGraph - Directed graphs with self loops

Overview

DiGraph (data=None, **attr)

Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.
Parameters

 data (input graph) — Data to initialize graph. If data=None (default) an empty graph is
created. The data can be any format that is supported by the to_networkx_graph() function,

34

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or
2d ndarray, SciPy sparse matrix, or PyGraphviz graph.

e attr (keyword arguments, optional (default= no attributes)) — Attributes to add to graph as
key=value pairs.

See also:

Graph (), MultiGraph (), MultiDiGraph ()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.DiGraph ()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph(10)

>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

’>>> G.add_edge (1, 2)

a list of edges,

>>> G.add_edges_from([(1,2), (1,3)1)

or a collection of edges,

’>>> G.add_edges_from(H.edges ())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

3.2. Basic graph types 35

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.DiGraph (day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm")
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]

{'"time': 'Spm'}

>>> G.node[l]['room'] = 714

>>> del G.node[l]['room'] # remove attribute
>>> list (G.nodes (data=True))

[(1, {'time': '"Spm'}), (3, {'time': '"2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge (1, 2, weight=4.7)

>>> G.add_edges_from([(3,4), (4,5)], color='red")

>>> G.add_edges_from([(1,2, {'color':"'blue'}), (2,3,{'weight':8})1])
>>> G[1][2]['weight'] = 4.7

>>> G.edge[l][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> [n for n in G if n<3] # iterate through nodes
(1, 2]

>>> len (G) # number of nodes in graph

5

The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more conve-
nient.

>>> for n,nbrsdict in G.adjacency():

for nbr,eattr in nbrsdict.items() :
if 'weight' in eattr:
C. (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> list (G.edges (data="'weight'))
[(x, 2, 4), (2, 3, 8, (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Reporting methods usually return iterators instead of
containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as
well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.
Subclasses (Advanced):

The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information
keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by

36

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by
attribute names.

Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like
features should be maintained but extra features can be added. To replace one of the dicts create a new graph
class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are
node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the dict containing node
attributes, keyed by node id. It should require no arguments and return a dict-like object

adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node. It should require no arguments and return a
dict-like object.

adjlist_inner_dict_factory [function, optional (default: dict)] Factory function to be used to create the adja-
cency list dict which holds edge data keyed by neighbor. It should require no arguments and return a
dict-like object

edge_attr_dict_factory [function, optional (default: dict)] Factory function to be used to create the edge at-
tribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return
a dict-like object.

Examples

Create a graph subclass that tracks the order nodes are added.

>>> from collections import OrderedDict

>>> class OrderedNodeGraph (nx.Graph) :
node_dict_factory=OrderedDict

C. adjlist_outer_dict_factory=OrderedDict

>>> G=0OrderedNodeGraph ()

>>> G.add_nodes_from((2,1))

>>> list (G.nodes())

[2, 1]

>>> G.add_edges_from(((2,2), (2,1), (1,1)))

>>> list (G.edges())
[z, 1y, 2, 2y, (1, 1)]

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are
added.

>>> class OrderedGraph (nx.Graph) :
node_dict_factory = OrderedDict
adjlist_outer_dict_factory=OrderedDict

.. adjlist_inner_dict_factory = OrderedDict

>>> G = OrderedGraph ()

>>> G.add_nodes_from((2,1))

>>> 1list (G.nodes())

[2, 1]

>>> G.add_edges_from(((2,2), (2,1), (1,1)))

>>> list (G.edges())

[z, 2y, 2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all
edges. This reduces the memory used, but you lose edge attributes.

3.2. Basic graph types 37

NetworkX Reference, Release 2.0.dev20161129121305

>>> class ThinGraph (nx.Graph) :
all_edge_dict = {'weight': 1}
def single_edge_dict (self):
return self.all_edge_dict

>>> G = ThinGraph ()

>>> G.add_edge (2,1)

>>> list (G.edges (data= True))
[(1, 2, {'weight': 1})]

>>> G.add_edge (2,2)

>>> G[2][1] is G[2][2]

True

edge_attr_dict_factory = single_edge_dict

3.2.4 Methods

Adding and removing nodes and edges

DiGraph.___init__([data])

Initialize a graph with edges, name, graph attributes.

DiGraph.add node(n, *¥*attr)

Add a single node n and update node attributes.

DiGraph.add _nodes_ from(nodes, **attr)

Add multiple nodes.

DiGraph.remove_node(n)

Remove node n.

DiGraph.remove_nodes_ from(nbunch)

Remove multiple nodes.

DiGraph.add edge(u, v, **attr)

Add an edge between u and v.

DiGraph.add edges_ from(ebunch, *¥*attr)

Add all the edges in ebunch.

DiGraph.add weighted edges_ from(ebunchl,
weight])

Add all the edges in ebunch as weighted edges with speci-
fied weights.

DiGraph.remove_edge(u, V)

Remove the edge between u and v.

DiGraph.remove_edges_ from(ebunch)

Remove all edges specified in ebunch.

DiGraph.clear()

Remove all nodes and edges from the graph.

__init__

DiGraph.__init__ (data=None, **attr)

Initialize a graph with edges, name, graph attributes.

Parameters

» data (input graph) — Data to initialize graph. If data=None (default) an empty graph is
created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

* name (string, optional (default="")) — An optional name for the graph.

e attr (keyword arguments, optional (default= no attributes)) — Attributes to add to graph as

key=value pairs.
See also:

convert ()

38

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')

>>> e = [(1,2),(2,3),(3,4)] # list of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{'day': 'Friday'}

add_node

DiGraph.add_node (n, **attr)

Add a single node n and update node attributes.
Parameters
* n (node) — A node can be any hashable Python object except None.
o attr (keyword arguments, optional) — Set or change node attributes using key=value.
See also:

add_nodes_from/()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node('Hello")

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)1)

>>> G.add_node (K3)

>>> G.number_of_nodes ()

3

Use keywords set/change node attributes:

>>> G.add_node(1l,size=10)
>>> G.add_node (3,weight=0.4,UTM=("'13S"',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

3.2. Basic graph types 39

NetworkX Reference, Release 2.0.dev20161129121305

add_nodes_from

DiGraph.add_nodes_from (nodes, **attr)
Add multiple nodes.

Parameters

* nodes (iterable container) — A container of nodes (list, dict, set, etc.). OR A container of
(node, attribute dict) tuples. Node attributes are updated using the attribute dict.

o attr (keyword arguments, optional (default= no attributes)) — Update attributes for all nodes
in nodes. Node attributes specified in nodes as a tuple take precedence over attributes spec-
ified via keyword arguments.

See also:

add_node ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello")

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes (), key=str)

(o, 1, 2, 'H', 'e', '1', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from ([(1,dict (size=11)), (2,{'color':'blue'})])
>>> G.node[l] ['size'"]

11

>>> H = nx.Graph()

>>> H.add_nodes_from(G.nodes (data=True))
>>> H.node[l]['size']
11

remove_node

DiGraph.remove_node (n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n (node) — A node in the graph
Raises NetworkXError —If nis notin the graph.

See also:

remove_nodes_from()

40 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> list (G.edges|())

[0, 1), (1, 2)]

>>> G.remove_node (1)

>>> list (G.edges())

[]

remove_nodes_from

DiGraph.remove_nodes_from (nbunch)
Remove multiple nodes.

Parameters nodes (iterable container) — A container of nodes (list, dict, set, etc.). If a node in the
container is not in the graph it is silently ignored.

See also:

remove_node ()

Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list (G.nodes())
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> list (G.nodes())
[]
add_edge

DiGraph.add_edge (u, v, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See
examples below.

Parameters

* u, v (nodes) — Nodes can be, for example, strings or numbers. Nodes must be hashable (and
not None) Python objects.

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

See also:

add _edges_ from() add a collection of edges

3.2. Basic graph types 4

NetworkX Reference, Release 2.0.dev20161129121305

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to
a keyword which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two-node form

>>> G.add_edge (*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge (1, 2, weight=3)
>>> G.add_edge (1, 3, weight=7, capacity=15, length=342.7)

For non-string associations, directly access the edge’s attribute dictionary.

>>> G.add_edge (1, 2)
>>> G[1][2].update({0: 5})

add_edges_from

DiGraph.add_edges_from (ebunch, **attr)
Add all the edges in ebunch.

Parameters

* ebunch (container of edges) — Each edge given in the container will be added to the graph.
The edges must be given as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary contain-
ing edge data.

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

See also:

add _edge () add a single edge

add weighted edges from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.

42 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_edges_from ([(0,1), (1,2)]) # using a list of edge tuples
= zip(range (0, 3),range(l,4))

.add_edges_from(e) # Add the path graph 0-1-2-3

>>>
>>>

QD0 Q0

>>>

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

add_weighted_edges_from

DiGraph.add_weighted_edges_from (ebunch, weight="weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

* ebunch (container of edges) — Each edge given in the list or container will be added to the
graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

» weight (string, optional (default= ‘weight’)) — The attribute name for the edge weights to
be added.

* attr (keyword arguments, optional (default= no attributes)) — Edge attributes to add/update
for all edges.

See also:

add_edge () add a single edge
add _edges_ from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,

duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)1)

remove_edge

DiGraph.remove_edge (u, V)
Remove the edge between u and v.

Parameters u, v (nodes) — Remove the edge between nodes u and v.

Raises NetworkXError —If there is not an edge between u and v.

3.2. Basic graph types

NetworkX Reference, Release 2.0.dev20161129121305

See also:

remove_ edges_from() remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 31)
>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple

>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge (xe[:2]) # select first part of edge tuple

remove_edges_from

DiGraph.remove_edges_from (ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) — Each edge given in the list or container will
be removed from the graph. The edges can be:

* 2-tuples (u,v) edge between u and v.
* 3-tuples (u,v,k) where k is ignored.

See also:

remove_edge () remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from(ebunch)

clear

DiGraph.clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

44 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph (4) # or DiGraph,
>>> G.clear ()

list (G.nodes())

list (G.edges())

MultiGraph, MultiDiGraph, etc

Iterating over nodes and edges

DiGraph.nodes([data, default]) Returns an iterator over the nodes.
DiGraph.__iter_ () Iterate over the nodes.
DiGraph.edges([nbunch, data, default]) Return an iterator over the edges.
DiGraph.out_edges([nbunch, data, default]) Return an iterator over the edges.
DiGraph. in_edges([nbunch, data, default]) Return an iterator over the incoming edges.
DiGraph.get_edge_ data(u, v[, default]) Return the attribute dictionary associated with edge (u,v).
DiGraph.neighbors(n) Return an iterator over successor nodes of n.
DiGraph._ _getitem _(n) Return a dict of neighbors of node n.
DiGraph.successors(n) Return an iterator over successor nodes of n.
DiGraph.predecessors(n) Return an iterator over predecessor nodes of n.
DiGraph.adjacency() Return an iterator over (node, adjacency dict) tuples for all
nodes.
DiGraph.nbunch_iter([nbunch]) Return an iterator over nodes contained in nbunch that are
also in the graph.
nodes
DiGraph .nodes (data=False, default=None)

Returns an iterator over the nodes.

Parameters

» data (string or bool, optional (default=False)) — The node attribute returned in 2-tuple
(n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just

the nodes n.

 default (value, optional (default=None)) — Value used for nodes that dont have the requested
attribute. Only relevant if data is not True or False.

Returns An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over
nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in
data. If data is True then the attribute becomes the entire data dictionary.

Return type iterator

Notes

If the node data is not required, it is simpler and equivalent to use the expression for n in G,or list (G).

3.2. Basic graph types

45

NetworkX Reference, Release 2.0.dev20161129121305

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph (3)
>>> list (G.nodes ())

[0, 1, 2]

>>> list (G)

[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node (1, time='S5pm')

>>> G.node[0] ['foo'] = 'bar'
>>> list (G.nodes (data=True))
[(0, {'"foo': 'bar'}), (1, {'time': 'Spm'}), (2, {})]

>>> list (G.nodes (data="'foo'))

[(O, 'bar'), (1, None), (2, None)]

>>> list (G.nodes (data="time'))

[(0O, None), (1, 'Spm'), (2, None)]

>>> list (G.nodes (data='time', default='Not Available'))
[(0, 'Not Available'), (1, 'S5pm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create
a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never
None:

>>> G = nx.Graph()

>>> G.add_node (0)

>>> G.add_node (1, weight=2)

>>> G.add_node (2, weight=3)

>>> dict (G.nodes (data='weight', default=1))

{0: 1, 1: 2, 2: 3}

__iter__

DiGraph.__iter_ ()
Iterate over the nodes. Use the expression ‘for nin G’.

Returns niter — An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G]
o, 1, 2, 31

edges

DiGraph.edges (nbunch=None, data=False, default=None)
Return an iterator over the edges.

46 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

* nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

 data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns edge — An iterator over (u,v) or (u,v,d) tuples of edges.
Return type iterator
See also:

in_edges (), out_edges ()
Notes
Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 21)

>>> G.add_edge (2, 3,weight=5)

>>> [e for e in G.edges()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges (data=True)) # default data is {} (empty dict)
(¢, 1, {nH, (1, 2, {1, (2, 3, {'weight': 5})]
>>> list (G.edges (data='weight', default=1))
r¢o, 1, vy, 1, 2, 1), (2, 3, 5)]

>>> list (G.edges ([0,2]1))

[0, 1), (2, 3)]

>>> list (G.edges (0))

[(0, 1)]

out_edges

DiGraph.out_edges (nbunch=None, data=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters

* nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

 data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

3.2. Basic graph types 47

NetworkX Reference, Release 2.0.dev20161129121305

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns edge — An iterator over (u,v) or (u,v,d) tuples of edges.
Return type iterator
See also:

in_edges (), out_edges ()

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 21)

>>> G.add_edge (2, 3,weight=5)

>>> [e for e in G.edges()]

[0, 1), (1, 2), (2, 3)]

>>> 1list (G.edges (data=True)) # default data is {} (empty dict)
[0, 1, {¥), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list (G.edges (data="'weight', default=1))
[¢o, 1, 1y, (1, 2, 1), (2, 3, 51

>>> list (G.edges ([0,2]))

[0, 1), (2, 3)]

>>> list (G.edges (0))

[(0, 1)]

in_edges

DiGraph.in_edges (nbunch=None, data=False, default=None)
Return an iterator over the incoming edges.

Parameters

* nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

* data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns in_edge — An iterator over (u,v) or (u,v,d) tuples of incoming edges.
Return type iterator

See also:

edges () return an iterator over edges

48 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

get _edge data

DiGraph.get_edge_data (u, v, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters

* u, v (nodes)

o default (any Python object (default=None)) — Value to return if the edge (u,v) is not found.
Returns edge_dict — The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

>>> G[O0][1]['weight'] = 7

>>> G[O][1]['weight']

7

>>> G[1][0]['weight']

7

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.get_edge_data (0, 1) # default edge data is {}
{}

>>> e = (0,1)

>>> G.get_edge_data (xe) # tuple form

{}
>>> G.get_edge_data('a', 'b',default=0) # edge not in graph, return 0

neighbors

DiGraph.neighbors (n)
Return an iterator over successor nodes of n.

neighbors() and successors() are the same.

__getitem__

DiGraph.__getitem (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

3.2. Basic graph types 49

NetworkX Reference, Release 2.0.dev20161129121305

Parameters n (node) — A node in the graph.
Returns adj_dict — The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
{1: {}}

successors

DiGraph.successors (n)
Return an iterator over successor nodes of n.

neighbors() and successors() are the same.

predecessors

DiGraph.predecessors (n)
Return an iterator over predecessor nodes of n.

adjacency

DiGraph.adjacency ()
Return an iterator over (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter — An iterator over (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n,nbrdict) for n,nbrdict in G.adjacency ()]
[0, {1: {}}), (1, {0z {}, 2: {}}), (2, {1: {3}, 3: {}}), (3, {2: {}})]

50 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

nbunch_iter

DiGraph.nbunch_iter (nbunch=None)
Return an iterator over nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The

container will be iterated through once.

Returns niter — An iterator over nodes in nbunch that are also in the graph. If nbunch is None,

iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError —If nbunch is not a node or or sequence of nodes. If a node in nbunch is

not hashable.

See also:

Graph.__iter__ ()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a Net workXError is raised. Also, if
any object in nbunch is not hashable, a Net workXError is raised.

Information about graph structure

DiGraph.has_node(n) Return True if the graph contains the node n.
DiGraph._ _contains__ (n) Return True if n is a node, False otherwise.
DiGraph.has_edge(u, V) Return True if the edge (u,v) is in the graph.
DiGraph.order() Return the number of nodes in the graph.
DiGraph.number_of_nodes() Return the number of nodes in the graph.
DiGraph.__len__() Return the number of nodes.
DiGraph.degree([nbunch, weight]) Return an iterator for (node, degree) or degree for single

node.

DiGraph.

in_degree([nbunch, weight])

Return an iterator for (node, in-degree) or in-degree for sin-
gle node.

DiGraph.

out_degree([nbunch, weight])

Return an iterator for (node, out-degree) or out-degree for
single node.

DiGraph. size([weight]) Return the number of edges or total of all edge weights.
DiGraph.number_of_edges([u, v]) Return the number of edges between two nodes.
DiGraph.nodes_with_selfloops() Returns an iterator over nodes with self loops.
DiGraph.selfloop_edges([data, default]) Returns an iterator over selfloop edges.

DiGraph.

number_of_selfloops()

Return the number of selfloop edges.

3.2. Basic graph types

51

NetworkX Reference, Release 2.0.dev20161129121305

has_node
DiGraph.has_node (n)

Return True if the graph contains the node n.

Parameters n (node)

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_node (0)
True

It is more readable and simpler to use

>>> 0 in G
True

__contains__

DiGraph.___contains__ (n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> 1 in G
True

has_edge

DiGraph.has_edge (u, v)
Return True if the edge (u,v) is in the graph.

Parameters u, v (nodes) — Nodes can be, for example, strings or numbers. Nodes must be hashable
(and not None) Python objects.

Returns edge_ind — True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_edge (0, 1) # using two nodes

True

>>> e = (0,1)

>>> G.has_edge (*e) # e is a 2-tuple (u,v)

52 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

True

>>> e = (0,1, {'weight':7})

>>> G.has_edge (*xe[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge (0, 1)

True

>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

DiGraph.order ()

Return the number of nodes in the graph.
Returns nnodes — The number of nodes in the graph.
Return type int

See also:

number_of_nodes (), len ()

number_of nodes

DiGraph.number_of nodes ()

Return the number of nodes in the graph.
Returns nnodes — The number of nodes in the graph.
Return type int

See also:

order(),__len ()

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
3

_len__

DiGraph.__len__ ()

Return the number of nodes. Use the expression ‘len(G)’.
Returns nnodes — The number of nodes in the graph.

Return type int

3.2. Basic graph types 53

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
4

degree

DiGraph.degree (nbunch=None, weight=None)
Return an iterator for (node, degree) or degree for single node.

The node degree is the number of edges adjacent to the node. This function returns the degree for a single node
or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

* nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

Returns
* If a single node is requested
* deg (int) — Degree of the node
* OR if multiple nodes are requested
* nd_iter (iterator) — The iterator returns two-tuples of (node, degree).
See also:

in degree (), out_degree ()

Examples

>>> G = nx.DiGraph () # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.degree(0) # node 0 with degree 1

1

>>> list (G.degree([0,1]1))

[0, 1), (1, 2)]

in_degree

DiGraph.in_degree (nbunch=None, weight=None)
Return an iterator for (node, in-degree) or in-degree for single node.

The node in-degree is the number of edges pointing in to the node. This function returns the in-degree for a
single node or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

54 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

* nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

Returns
* If a single node is requested
* deg (int) — In-degree of the node
* OR if multiple nodes are requested
* nd_iter (iterator) — The iterator returns two-tuples of (node, in-degree).
See also:

degree (), out_degree ()

Examples

>>> G nx.DiGraph ()

>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.in_degree (0) # node 0 with degree 0
0

>>> list (G.in_degree([0,1]))

[0, 0), (1, 1)]

out_degree

DiGraph.out_degree (nbunch=None, weight=None)
Return an iterator for (node, out-degree) or out-degree for single node.

The node out-degree is the number of edges pointing out of the node. This function returns the out-degree for a
single node or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

* nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

Returns
* If a single node is requested
* deg (int) — Out-degree of the node
* OR if multiple nodes are requested
* nd_iter (iterator) — The iterator returns two-tuples of (node, out-degree).
See also:

degree (), in_degree ()

3.2. Basic graph types 55

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.DiGraph ()

>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.out_degree (0) # node 0 with degree 1
1

>>> 1ist (G.out_degree([0,1]))

[0, 1), (1, 1)]

size
DiGraph.size (weight=None)
Return the number of edges or total of all edge weights.

Parameters weight (string or None, optional (default=None)) — The edge attribute that holds the
numerical value used as a weight. If None, then each edge has weight 1.

Returns
size — The number of edges or (if weight keyword is provided) the total weight sum.

If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are
more general).

Return type numeric
See also:

number._of_edges ()

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size ()

3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b',weight=2)

>>> G.add_edge('b','c',weight=4)

>>> G.size ()

2

>>> G.size (weight="weight'")

6.0

number_of_edges

DiGraph.number_ of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u, v (nodes, optional (default=all edges)) — If u and v are specified, return the number
of edges between u and v. Otherwise return the total number of all edges.

Returns nedges — The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

56 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Return type int
See also:

size ()

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.number_of_edges|()

>>> G.number_of_edges (0, 1)

>>> e = (0,1)
>>> G.number_of_edges (*e)

nodes_with_selfloops

DiGraph.nodes_with_selfloops ()
Returns an iterator over nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist — A iterator over nodes with self loops.
Return type iterator

See also:

selfloop_edges (), number_of_selfloops ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1, 1)

>>> G.add_edge (1, 2)

>>> list (G.nodes_with_selfloops())

selfloop_edges

DiGraph.selfloop_edges (data=Fualse, default=None)
Returns an iterator over selfloop edges.

A selfloop edge has the same node at both ends.
Parameters

» data (string or bool, optional (default=False)) — Return selfloop edges as two tuples
(u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue)
(data="attrname’)

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

3.2. Basic graph types 57

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

Returns edgeiter — An iterator over all selfloop edges.
Return type iterator over edge tuples
See also:

nodes_with selfloops (), number_of_selfloops ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> list (G.selfloop_edges())

[(1, 1)]
>>> list (G.selfloop_edges (data=True))
[(1, 1, {1H]

number_of_selfloops

DiGraph.number_ of_ selfloops ()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.
Returns nloops — The number of selfloops.
Return type int

See also:

nodes_with selfloops (), selfloop _edges ()

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops|()

Making copies and subgraphs

DiGraph . copy([with_data]) Return a copy of the graph.
DiGraph.to_undirected([reciprocal]) Return an undirected representation of the digraph.
DiGraph.to_directed() Return a directed copy of the graph.

DiGraph. subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
DiGraph.edge_subgraph(edges) Returns the subgraph induced by the specified edges.
DiGraph. reverse([copy]) Return the reverse of the graph.

58 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

copy

DiGraph.copy (with_data=True)
Return a copy of the graph.

All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four
types of copies of a graph that people might want.

Deepcopy — The default behavior is a “deepcopy” where the graph structure as well as all data attributes and any
objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect
the original object.

Data Reference (Shallow) — For a shallow copy (with_data=False) the graph structure is copied but the edge,
node and graph attribute dicts are references to those in the original graph. This saves time and memory but
could cause confusion if you change an attribute in one graph and it changes the attribute in the other.

Independent Shallow — This copy creates new independent attribute dicts and then does a shallow copy of the
attributes. That is, any attributes that are containers are shared between the new graph and the original. This
type of copy is not enabled. Instead use:

>>> G = nx.path_graph(5)
>>> H = G.__class__ (G)

Fresh Data— For fresh data, the graph structure is copied while new empty data attribute dicts are created. The
resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not
enabled. Instead use:

>>> H = G.__class__ ()
>>> H.add_nodes_from(G)
>>> H.add_edges_from(G.edges())

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Parameters with_data (bool, optional (default=True)) — If True, the returned graph will have a
deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph
will be a shallow copy.

Returns G — A copy of the graph.
Return type Graph

See also:

to_directed () return a directed copy of the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.copy ()

to_undirected

DiGraph.to_undirected (reciprocal=False)
Return an undirected representation of the digraph.

3.2. Basic graph types 59

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

Parameters reciprocal (bool (optional)) — If True only keep edges that appear in both directions in
the original digraph.

Returns G — An undirected graph with the same name and nodes and with edge (u,v,data) if either
(u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is
different, only one edge is created with an arbitrary choice of which edge data to use. You must
check and correct for this manually if desired.

Return type Graph

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a
combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the
edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not
transfer to the Graph created by this method.

to_directed

DiGraph.to_directed ()

Return a directed copy of the graph.
Returns G — A deepcopy of the graph.
Return type DiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[(0O, 1), (1, 0)]

If already directed, return a (deep) copy

60

Chapter 3. Graph types

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[(0, 1)]

subgraph

DiGraph.subgraph (nbunch)

Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch (/ist, iterable) — A container of nodes which will be iterated through once.
Returns G — A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.subgraph([0,1,2])

>>> list (H.edges())

[0, 1), (1, 2)]

edge_subgraph

DiGraph.edge_subgraph (edges)

Returns the subgraph induced by the specified edges.

The induced subgraph contains each edge in edge s and each node incident to any one of those edges.
Parameters edges (iterable) — An iterable of edges in this graph.
Returns G — An edge-induced subgraph of this graph with the same edge attributes.
Return type Graph

3.2. Basic graph types 61

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in
the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the
original graph, but changes to the attributes will.

To create a subgraph with its own copy of the edge or node attributes, use:

’>>> nx.DiGraph (G.edge_subgraph (edges))

If edge attributes are containers, a deep copy of the attributes can be obtained using:

’>>> G.edge_subgraph (edges) .copy ()

Examples

>>> G = nx.DiGraph (nx.path_graph(5))

>>> H = G.edge_subgraph([(0, 1), (3, 4)1)
>>> list (H.nodes())

[0, 1, 3, 4]

>>> list (H.edges())

[0, 1), (3, 491

reverse

DiGraph.reverse (copy=True)

Return the reverse of the graph.
The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy (bool optional (default=True)) — If True, return a new DiGraph holding the re-
versed edges. If False, reverse the reverse graph is created using the original graph (this changes
the original graph).

3.2.5 MultiGraph - Undirected graphs with self loops and parallel edges

Overview

MultiGraph (data=None, **attr)

An undirected graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.
A MultiGraph holds undirected edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.
Parameters

 data (input graph) — Data to initialize graph. If data=None (default) an empty graph is
created. The data can be any format that is supported by the to_networkx_graph() function,
currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or
2d ndarray, SciPy sparse matrix, or PyGraphviz graph.

62

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

o attr (keyword arguments, optional (default= no attributes)) — Attributes to add to graph as
key=value pairs.

See also:

Graph (), DiGraph (), MultiDiGraph ()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.MultiGraph ()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph(10)

>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

’>>> key = G.add_edge (1, 2)

a list of edges,

’>>> keys = G.add_edges_from([(1,2), (1,3)1)

or a collection of edges,

’>>> keys = G.add_edges_from(list (H.edges()))

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused
integer.

>>> keys = G.add_edges_from ([(4,5,dict (route=282)), (4,5,dict (route=37))1])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

3.2. Basic graph types 63

NetworkX Reference, Release 2.0.dev20161129121305

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiGraph (day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm'")
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1l]

{"time': 'S5pm'}

>>> G.node[l]['room'] = 714

>>> del G.node[l]['room'] # remove attribute
>>> list (G.nodes (data=True))

[(1, {'time': '"Spm'}), (3, {'time': '"2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> key = G.add_edge(l, 2, weight=4.7)

>>> keys = G.add_edges_from ([(3,4), (4,5)], color='red")

>>> keys = G.add_edges_from([(1,2,{'color':"blue'}), (2,3,{'weight':8})1])
>>> G[1][2]1[0]['weight'] = 4.7

>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> [n for n in G if n<3] # iterate through nodes
(1, 2]

>>> len (G) # number of nodes 1in graph

5

>>> G[1l] # adjacency dict keyed by neighbor to edge attributes
ce # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more conve-
nient.

>>> for n,nbrsdict in G.adjacency () :
for nbr,keydict in nbrsdict.items():
for key,eattr in keydict.items():
if 'weight' in eattr:
(n, nbr, key,eattr['weight'])
OI
14 OI
0,

~

)
)
)

QO 00

0, 8)
ist (G.edges (data='weight', keys=True))
r(, 2, o, 4, (1, 2, 1, None), (2, 3, 0, 8), (3, 4, 0, None), (4, 5, 0, None)]

~

w NN
~

H N W RN
~

64

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Reporting:

Simple graph information is obtained using methods. Reporting methods usually return iterators instead of
containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as
well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.
Subclasses (Advanced):

The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adja-
cency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds
edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner
dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-like
object. In general, the dict-like features should be maintained but extra features can be added. To replace one
of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like
structure. The variable names are node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and
edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the dict containing node
attributes, keyed by node id. It should require no arguments and return a dict-like object

adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node. It should require no arguments and return a
dict-like object.

adjlist_inner_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a
dict-like object.

edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which
holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a multigraph subclass that tracks the order nodes are added.

>>> from collections import OrderedDict

>>> class OrderedGraph (nx.MultiGraph) :
node_dict_factory = OrderedDict

.. adjlist_outer_dict_factory = OrderedDict

>>> G = OrderedGraph ()

>>> G.add_nodes_from((2,1))

>>> 1list (G.nodes())

[2, 1]

>>> keys = G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))

>>> list (G.edges())

[2, 1), 2, 1), (2, 2), (1, 1)]

Create a multgraph object that tracks the order nodes are added and for each node track the order that neighbors
are added and for each neighbor tracks the order that multiedges are added.

3.2. Basic graph types 65

NetworkX Reference, Release 2.0.dev20161129121305

>>> class OrderedGraph (nx.MultiGraph) :
node_dict_factory = OrderedDict
adjlist_outer_dict_factory = OrderedDict
adjlist_inner_dict_factory = OrderedDict
edge_key_dict_factory = OrderedDict

>>> G = OrderedGraph ()

>>> G.add_nodes_from((2,1))

>>> list (G.nodes())

[2, 1]

>>> elist = ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1))

>>> keys = G.add_edges_from(elist)

>>> list (G.edges (keys=True))

[z, 2, 0, 2, 1, 2, (2, 1, 1), (1, 1, 0)]

3.2.6 Methods

Adding and removing nodes and edges

MultiGraph.__init__ ([data])

MultiGraph.

add_node(n, **attr)

Add a single node n and update node attributes.

MultiGraph.add nodes_ from(nodes, **attr) Add multiple nodes.

MultiGraph.remove node(n) Remove node n.

MultiGraph.remove nodes_ from(nodes) Remove multiple nodes.

MultiGraph.add_edge(u, v[, key]) Add an edge between u and v.

MultiGraph.add edges_ from(ebunch, **attr) Add all the edges in ebunch.

MultiGraph.add weighted edges_from(ebunch[, Add all the edges in ebunch as weighted edges with speci-
]) fied weights.

MultiGraph.new_edge_key(u, V) Return an unused key for edges between nodes u and v.
MultiGraph.remove_edge(u, v[, key]) Remove an edge between u and v.
MultiGraph.remove_edges_ from(ebunch) Remove all edges specified in ebunch.

MultiGraph.

clear()

Remove all nodes and edges from the graph.

__init__

MultiGraph._ _init__ (data=None, **attr)

add_node

MultiGraph.add_node (n, **attr)
Add a single node n and update node attributes.

Parameters
* n (node) — A node can be any hashable Python object except None.
* attr (keyword arguments, optional) — Set or change node attributes using key=value.
See also:

add_nodes_from/()

66 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node('Hello")

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)1)

>>> G.add_node (K3)

>>> G.number_of_nodes ()

Use keywords set/change node attributes:

>>> G.add_node(1l,size=10)
>>> G.add_node (3,weight=0.4,UTM=("'13S"',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

add_nodes_from

MultiGraph.add_nodes_from (nodes, **attr)
Add multiple nodes.

Parameters

e nodes (iterable container) — A container of nodes (list, dict, set, etc.). OR A container of
(node, attribute dict) tuples. Node attributes are updated using the attribute dict.

e attr (keyword arguments, optional (default= no attributes)) — Update attributes for all nodes
in nodes. Node attributes specified in nodes as a tuple take precedence over attributes spec-
ified via keyword arguments.

See also:

add _node ()

Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello")

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes (), key=str)

(o, 1, 2, '"H', 'e', '1', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

3.2. Basic graph types 67

NetworkX Reference, Release 2.0.dev20161129121305

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from([(1,dict (size=11)), (2,{'color':"'blue'})])

>>> G.node[l]['size']

11

>>> H = nx.Graph()

>>> H.add_nodes_from(G.nodes (data=True))
>>> H.node[1l] ['size']

11

remove_nhode

MultiGraph.remove_node (n)

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n (node) — A node in the graph
Raises NetworkXError —If nis not in the graph.

See also:

remove_nodes_from/()

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> list (G.edges())

[0, 1), (1, 2)]

>>> G.remove_node (1)

>>> list (G.edges())

[]

remove_nodes_from

MultiGraph.remove_nodes_from (nodes)

Remove multiple nodes.

Parameters nodes (iterable container) — A container of nodes (list, dict, set, etc.). If a node in the
container is not in the graph it is silently ignored.

See also:

remove_node ()

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list (G.nodes())

>>> e

(o, 1, 2]

>>> G.remove_nodes_from(e)

68

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> list (G.nodes ())

[]

add_edge

MultiGraph.add_edge (u, v, key=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See
examples below.

Parameters

* u, v (nodes) — Nodes can be, for example, strings or numbers. Nodes must be hashable (and
not None) Python objects.

* key (hashable identifier; optional (default=Ilowest unused integer)) — Used to distinguish
multiedges between a pair of nodes.

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

Returns
Return type The edge key assigned to the edge.

See also:

add_edges_from() add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge
will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear
how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph
algorithms.

Default keys are generated using the method new_edge_key (). This method can be overridden by subclass-
ing the base class and providing a custom new_edge_key () method.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two-node form

>>> G.add_edge (xe) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

3.2. Basic graph types 69

NetworkX Reference, Release 2.0.dev20161129121305

N

>>> G.add_edge (1,
>>> G.add_edge (1,
>>> G.add_edge (1,

, weilght=3)
, key=0, weight=4) # update data for key=0
, weilght=7, capacity=15, length=342.7)

w N

add_edges_from

MultiGraph.add edges_from (ebunch, **attr)

Add all the edges in ebunch.
Parameters

* ebunch (container of edges) — Each edge given in the container will be added to the graph.
The edges can be:

— 2-tuples (u,v) or
— 3-tuples (u,v,d) for an edge attribute dict d, or
— 4-tuples (u,v,k,d) for an edge identified by key k

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

Returns
Return type A list of edge keys assigned to the edges in ebunch.

See also:
add_edge () add a single edge

add weighted edges from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.

Default keys are generated using the method new_edge_key (). This method can be overridden by subclass-
ing the base class and providing a custom new_edge_key () method.

Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_edges_from ([(0,1), (1,2)]) # using a list of edge tuples
= zip(range (0, 3),range(1,4))

.add_edges_from(e) # Add the path graph 0-1-2-3

>>>
>>>

Q0 Q0

>>>

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

70

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

add_weighted_edges_from

MultiGraph.add weighted_edges_from (ebunch, weight="weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

* ebunch (container of edges) — Each edge given in the list or container will be added to the
graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

» weight (string, optional (default= ‘weight’)) — The attribute name for the edge weights to
be added.

o attr (keyword arguments, optional (default= no attributes)) — Edge attributes to add/update
for all edges.

See also:

add_edge () add a single edge
add edges_ from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)1)

new_edge_key

MultiGraph.new_edge_key (u, V)
Return an unused key for edges between nodes u and v.

The nodes u and v do not need to be already in the graph.

Notes

In the standard MultiGraph class the new key is the number of existing edges between u and v (increased
if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further
new_edge_keys may not be in this order.

Parameters u, v (nodes)
Returns key
Return type int

3.2. Basic graph types 4

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

remove_edge

MultiGraph.remove_edge (u, v, key=None)
Remove an edge between u and v.

Parameters
* u, v (nodes) — Remove an edge between nodes u and v.

» key (hashable identifier, optional (default=None)) — Used to distinguish multiple edges be-
tween a pair of nodes. If None remove a single (arbitrary) edge between u and v.

Raises NetworkXError — If there is not an edge between u and v, or if there is no edge with the
specified key.

See also:

remove_edges_from() remove a collection of edges

Examples

>>> G = nx.MultiGraph ()

>>> nx.add_path(G, [0, 1, 2, 31)

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edges_from([(1,2), (1,2), (1,2)]) # key_list returned
[0, 1, 2]

>>> G.remove_edge (l,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edge (1, 2,key="first")

'first'

>>> G.add_edge (1,2, key="second")

'second’

>>> G.remove_edge (1, 2,key="second")

remove_edges_from

MultiGraph.remove_edges_from (ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) — Each edge given in the list or container will
be removed from the graph. The edges can be:

e 2-tuples (u,v) All edges between u and v are removed.
* 3-tuples (u,v,key) The edge identified by key is removed.

* 4-tuples (u,v,key,data) where data is ignored.

72 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

See also:

remove_edge () remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>>
>>>
>>>

G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
ebunch=[(1,2), (2,3)]
G.remove_edges_from (ebunch)

Removing multiple copies of edges

>>>
>>>
>>>
>>>

>>>
>>>

[]

[(1,

G = nx.MultiGraph ()
keys = G.add_edges_from([(1,2), (1,2),(1,2)1)
G.remove_edges_from([(1,2), (1,2)])

list (G.edges())

2)]
G.remove_edges_from ([(1,2),(1,2)]) # silently ignore extra copy
list (G.edges ()) # now empty graph

clear

MultiGraph.clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
G.clear ()
list (G.nodes ())

list (G.edges())

Iterating over nodes and edges

MultiGraph.nodes([data, default]) Returns an iterator over the nodes.
MultiGraph.__iter () Iterate over the nodes.

MultiGraph.edges([nbunch, data, keys, default]) Return an iterator over the edges.
MultiGraph.get_edge_data(u, v[, key, default]) Return the attribute dictionary associated with edge (u,v).
MultiGraph.neighbors(n) Return an iterator over all neighbors of node n.

Continued on next page |

3.2. Basic graph types 73

NetworkX Reference, Release 2.0.dev20161129121305

Table 3.10 — continued from previous page

MultiGraph.__ _getitem _(n) Return a dict of neighbors of node n.

MultiGraph.adjacency() Return an iterator over (node, adjacency dict) tuples for all
nodes.

MultiGraph.nbunch_iter([nbunch]) Return an iterator over nodes contained in nbunch that are

also in the graph.

nodes

MultiGraph.nodes (data=False, default=None)
Returns an iterator over the nodes.

Parameters

 data (string or bool, optional (default=False)) — The node attribute returned in 2-tuple
(n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just
the nodes n.

o default (value, optional (default=None)) — Value used for nodes that dont have the requested
attribute. Only relevant if data is not True or False.

Returns An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over
nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in
data. If data is True then the attribute becomes the entire data dictionary.

Return type iterator

Notes

If the node data is not required, it is simpler and equivalent to use the expression for n in G,or list (G).

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph(3)
>>> list (G.nodes())

[0, 1, 2]

>>> list (G)

[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node (1, time='S5pm')

>>> G.node[0] ['foo'] = 'bar'
>>> list (G.nodes (data=True))
[(0, {'foo': 'bar'}), (1, {'time': 'Spm'}), (2, {})]

>>> list (G.nodes (data="'foo'))

[(O, 'bar'), (1, None), (2, None)]

>>> list (G.nodes (data="time"'))

[(0O, None), (1, 'Spm'), (2, None)]

>>> list (G.nodes (data='time', default='Not Available'))
[(0O, 'Not Available'), (1, 'Sbpm'), (2, 'Not Available')]

74 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create
a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never
None:

>>> G = nx.Graph()

>>> G.add_node (0)

>>> G.add_node (1, weight=2)

>>> G.add_node (2, weight=3)

>>> dict (G.nodes (data='weight', default=1))
{0: 1, 1: 2, 2: 3}

__iter__

MultiGraph._ iter ()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter — An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, e
>>> [n for n in G]
o, 1, 2, 3]

t
Q

edges

MultiGraph.edges (nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters

e nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

» data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

* keys (bool, optional (default=False)) — If True, return edge keys with each edge.
Returns edge — An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

3.2. Basic graph types 75

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.MultiGraph () # or MultiDiGraph

>>> nx.add_path(G, [0, 1, 21)

>>> key = G.add_edge (2, 3,weight=5)

>>> [e for e in G.edges|()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges (data=True)) # default data is {} (empty dict)
(¢, 1, {H, (1, 2, {1, (2, 3, {'weight': 5})]

>>> list (G.edges (data='weight', default=1))

[(o, 1, 1y, (1, 2, 1), (2, 3, 51

>>> list (G.edges (keys=True)) # default keys are integers
[¢, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list (G.edges (data=True, keys=True)) # default keys are integers

[(o, 1, o, {y), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list (G.edges (data='weight',default=1,keys=True))
r¢o, 1, o, 1y, (1, 2, 0, 1), (2, 3, 0, 5]

>>> list (G.edges ([0,3]))

[0, 1), (3, 2)]

>>> list (G.edges (0))

[(0, 1)]

get_edge_data

MultiGraph.get_edge_data (u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters
e u, v (nodes)
o default (any Python object (default=None)) — Value to return if the edge (u,v) is not found.

» Kkey (hashable identifier, optional (default=None)) — Return data only for the edge with
specified key.

Returns edge_dict — The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> key = G.add_edge(0,1,key="a',weight=7)
>>> G[0][1]['a"] # key='a'

{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that

dictionary,

>>> G[0][1]['a']l['weight'] = 10
>>> G[O][1]['a'"]l['weight']

10

76 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.get_edge_data(0,1)

{0: {}}

>>> e = (0,1)

>>> G.get_edge_data(xe) # tuple form

{0: {}}

>>> G.get_edge_data('a', 'b',default=0) # edge not in graph, return 0

neighbors

MultiGraph.neighbors (n)
Return an iterator over all neighbors of node n.

Parameters n (node) — A node in the graph
Returns neighbors — An iterator over all neighbors of node n
Return type iterator

Raises NetworkXError —If the node n is not in the graph.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G.neighbors (0)]
[1]

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G [n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b', weight=7)

>>> G['a']

{'b': {'weight': 7}}

>>> G = nx.path_graph(4)

>>> [n for n in G[0]]

[1]

__getitem__

MultiGraph._ _getitem__ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

3.2. Basic graph types 77

NetworkX Reference, Release 2.0.dev20161129121305

Parameters n (node) — A node in the graph.
Returns adj_dict — The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
{1: {}}

adjacency

MultiGraph.adjacency ()
Return an iterator over (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter — An iterator over (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n,nbrdict) for n,nbrdict in G.adjacency ()]
[0, {1: {}h), (I, {0z {3}, 2: {}+}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

MultiGraph.nbunch_iter (nbunch=None)
Return an iterator over nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The
container will be iterated through once.

Returns niter — An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError —If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

78 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

See also:

Graph.__iter__ ()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a Net workXError is raised. Also, if
any object in nbunch is not hashable, a Net workXError is raised.

Information about graph structure

MultiGraph.

has_node(n)

Return True if the graph contains the node n.

MultiGraph._

contains__ (n)

Return True if n is a node, False otherwise.

MultiGraph

.has_edge(u, v[, key])

Return True if the graph has an edge between nodes u and
v.

MultiGraph.

order()

Return the number of nodes in the graph.

MultiGraph.

number_of_nodes()

Return the number of nodes in the graph.

MultiGraph.___

len_ ()

Return the number of nodes.

MultiGraph

. degree([nbunch, weight])

Return an iterator for (node, degree) or degree for single
node.

MultiGraph.

size([weight])

Return the number of edges or total of all edge weights.

MultiGraph.

number_of_edges([u, v])

Return the number of edges between two nodes.

MultiGraph.nodes_with _selfloops() Returns an iterator over nodes with self loops.
MultiGraph.selfloop_edges([data, keys, default]) Return a list of selfloop edges.
MultiGraph.number._of_selfloops() Return the number of selfloop edges.

has_node

MultiGraph.has_node (n)
Return True if the graph contains the node n.

Parameters n (node)

Examples

>>> G =

True

nx.path_graph (3)
>>> G.has_node (0)

or DiGraph,

MultiGraph, MultiDiGraph, etc

It is more readable and simpler to use

True

>>> 0 in G

3.2. Basic graph types

79

NetworkX Reference, Release 2.0.dev20161129121305

__contains__

MultiGraph.__contains__ (n)

Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> 1 in G
True

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph,

MultiDiGraph, etc

has_edge

MultiGraph.has_edge (u, v, key=None)
Return True if the graph has an edge between nodes u and v.

Parameters

* u, v (nodes) — Nodes can be, for example, strings or numbers.

* key (hashable identifier, optional (default=None)) — If specified return True only if the edge

with key is found.

Returns edge_ind — True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph () # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 31)

>>> G.has_edge (0, 1) # using two nodes
True

>>> e = (0,1)

>>> G.has_edge (*e) # e is a 2-tuple (u,v)
True

>>> G.add_edge (0, 1,key="a')

1at

>>> G.has_edge(0,1,key="a') # specify key
True

>>> e=(0,1,"a")
>>> G.has_edge(*e) # e is a 3-tuple (u,v, 'a’)
True

The following syntax are equivalent:

>>> G.has_edge (0, 1)
True

True

>>> 1 in G[O0] # though this gives :exc: KeyError'

if 0 not in G

80

Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

order

MultiGraph.order ()
Return the number of nodes in the graph.

Returns nnodes — The number of nodes in the graph.
Return type int
See also:

number_of_nodes(),__len ()

number_of nodes

MultiGraph.number_of_ nodes ()
Return the number of nodes in the graph.

Returns nnodes — The number of nodes in the graph.
Return type int
See also:

order(),__len ()

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
3

_len__

MultiGraph.__len__ ()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes — The number of nodes in the graph.

Return type int

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
4

degree

MultiGraph.degree (nbunch=None, weight=None)
Return an iterator for (node, degree) or degree for single node.

3.2. Basic graph types

81

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

The node degree is the number of edges adjacent to the node. This function returns the degree for a single node
or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

e nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

Returns
* [fa single node is requested
* deg (int) — Degree of the node, if a single node is passed as argument.
* OR if multiple nodes are requested

* nd_iter (iterator) — The iterator returns two-tuples of (node, degree).

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.degree(0) # node 0 with degree 1

1

>>> 1list (G.degree([0,11))

[, 1), (1, 2)]

size
MultiGraph.size (weight=None)

Return the number of edges or total of all edge weights.

Parameters weight (string or None, optional (default=None)) — The edge attribute that holds the
numerical value used as a weight. If None, then each edge has weight 1.

Returns
size — The number of edges or (if weight keyword is provided) the total weight sum.

If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are
more general).

Return type numeric
See also:

number._of_edges ()

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size ()
3

82 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_edge('a', 'b',weight=2)

G
>>> G

>>> G.add_edge('b', 'c',weight=4)
G

>>> G.size ()

2

>>> G.size (welight="weight'")
6.0

number_of_edges

MultiGraph.number_ of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u, v (nodes, optional (default=all edges)) — If u and v are specified, return the number
of edges between u and v. Otherwise return the total number of all edges.

Returns nedges — The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int
See also:

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 31)
>>> G.number_of_edges|()

3

>>> G.number_of_edges (0,1)
1

>>> e = (0,1)

>>> G.number_of_edges (xe)
1

nodes_with_selfloops

MultiGraph.nodes_with_selfloops ()
Returns an iterator over nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist — A iterator over nodes with self loops.
Return type iterator

See also:

selfloop_edges (), number_of_ selfloops ()

3.2. Basic graph types 83

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1, 1)

>>> G.add_edge (1, 2)

>>> list (G.nodes_with_selfloops())

selfloop_edges

MultiGraph.selfloop_edges (data=False, keys=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.
Parameters

» data (bool, optional (default=False)) — Return selfloop edges as two tuples (u,v)
(data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue)
(data=’attrname’)

 default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

* keys (bool, optional (default=False)) — If True, return edge keys with each edge.
Returns edgelist — A list of all selfloop edges.
Return type list of edge tuples
See also:

nodes_with selfloops (), number_of selfloops ()

Examples

>>> G nx.MultiGraph () # or MultiDiGraph
>>> G.add_edge(1,1)

0

>>> G.add_edge (1,2)

0

>>> list (G.selfloop_edges())

[(1, 1)1

>>> list (G.selfloop_edges (data=True))

[(1, 1, {H]

>>> list (G.selfloop_edges (keys=True))

[(1, 1, 0)1

>>> 1list (G.selfloop_edges (keys=True, data=True))
[, 1, 0, {P)1]

number_of_selfloops

MultiGraph.number_of_ selfloops ()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

84 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Returns nloops — The number of selfloops.
Return type int
See also:

nodes_with _selfloops (), selfloop_edges ()

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops()

Making copies and subgraphs

MultiGraph.copy([with_data]) Return a copy of the graph.

MultiGraph.to_undirected() Return an undirected copy of the graph.

MultiGraph.to_directed() Return a directed representation of the graph.

MultiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.

MultiGraph.edge_subgraph(edges) Returns the subgraph induced by the specified edges.
copy

MultiGraph.copy (with_data=True)
Return a copy of the graph.

All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four
types of copies of a graph that people might want.

Deepcopy — The default behavior is a “deepcopy” where the graph structure as well as all data attributes and any
objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect
the original object.

Data Reference (Shallow) — For a shallow copy (with_data=False) the graph structure is copied but the edge,
node and graph attribute dicts are references to those in the original graph. This saves time and memory but
could cause confusion if you change an attribute in one graph and it changes the attribute in the other.

Independent Shallow — This copy creates new independent attribute dicts and then does a shallow copy of the
attributes. That is, any attributes that are containers are shared between the new graph and the original. This
type of copy is not enabled. Instead use:

>>> G = nx.path_graph(5)
>>> H = G.__class__ (G)

Fresh Data— For fresh data, the graph structure is copied while new empty data attribute dicts are created. The
resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not
enabled. Instead use:

>>> H = G.__class__ ()
>>> H.add_nodes_from(G)
>>> H.add_edges_from(G.edges())

3.2. Basic graph types 85

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Parameters with_data (bool, optional (default=True)) — If True, the returned graph will have a
deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph
will be a shallow copy.

Returns G — A copy of the graph.
Return type Graph

See also:

to_directed() return a directed copy of the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.copy ()

to_undirected

MultiGraph.to_undirected()

Return an undirected copy of the graph.
Returns G — A deepcopy of the graph.
Return type Graph/MultiGraph

See also:

copy (), add_edge (), add_edges_from/()

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Examples

>>> G = nx.path_graph(2) # or MultiGraph, etc
>>> H = G.to_directed()
>>> list (H.edges())

[(0, 1), (1, 0)]

>>> G2 = H.to_undirected()
>>> 1ist (G2.edges())

[(0, 1)]

86

Chapter 3. Graph types

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

to_directed

MultiGraph.to_directed()
Return a directed representation of the graph.

Returns G — A directed graph with the same name, same nodes, and with each edge (u,v,data)
replaced by two directed edges (u,v,data) and (v,u,data).

Return type MultiDiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not
transfer to the MultiDiGraph created by this method.

Examples

>>> G = nx.Graph () # or MultiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[(0, 1)]

subgraph

MultiGraph.subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch (/ist, iterable) — A container of nodes which will be iterated through once.
Returns G — A subgraph of the graph with the same edge attributes.

Return type Graph

3.2. Basic graph types 87

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 3])

>>> H = G.subgraph([0,1,2])

>>> list (H.edges())

[0, 1), (1, 2)]

edge_subgraph

MultiGraph.edge_subgraph (edges)
Returns the subgraph induced by the specified edges.

The induced subgraph contains each edge in edges and each node incident to any one of those edges.
Parameters edges (iterable) — An iterable of edges in this graph.
Returns G — An edge-induced subgraph of this graph with the same edge attributes.
Return type Graph

Notes

The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in
the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the
original graph, but changes to the attributes will.

To create a subgraph with its own copy of the edge or node attributes, use:

>>> nx.MultiGraph (G.edge_subgraph (edges))

If edge attributes are containers, a deep copy of the attributes can be obtained using:

>>> G.edge_subgraph (edges) .copy ()

Examples

Get a subgraph induced by only those edges that have a certain attribute:

88 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> # Create a graph in which some edges are "good" and some "bad".
>>> G = nx.MultiGraph ()

>>> key = G.add_edge (0, 1, key=0, good=True)

>>> key = G.add_edge (0, 1, key=1, good=False)

>>> key = G.add_edge(l, 2, key=0, good=False)

>>> key = G.add_edge(l, 2, key=1l, good=True)

>>> # Keep only those edges that are marked as "good".

>>> edges = G.edges (keys=True, data='good")

>>> edges = ((u, v, k) for (u, v, k, good) in edges if good)
>>> H = G.edge_subgraph (edges)

>>> list (H.edges (keys=True, data=True))

[(0, 1, 0, {'good': True}), (1, 2, 1, {'good': True})]

3.2.7 MultiDiGraph - Directed graphs with self loops and parallel edges

Overview
MultiDiGraph (data=None, **attr)
A directed graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.
A MultiDiGraph holds directed edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.
Parameters

 data (input graph) — Data to initialize graph. If data=None (default) an empty graph is
created. The data can be any format that is supported by the to_networkx_graph() function,
currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or
2d ndarray, SciPy sparse matrix, or PyGraphviz graph.

o attr (keyword arguments, optional (default= no attributes)) — Attributes to add to graph as
key=value pairs.

See also:

Graph (), DiGraph (), MultiGraph ()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.MultiDiGraph ()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

3.2. Basic graph types 89

NetworkX Reference, Release 2.0.dev20161129121305

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph(10)

>>> G.add_nodes_from (H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

’>>> key = G.add_edge (1, 2)

a list of edges,

’>>> keys = G.add_edges_from([(1,2), (1,3)1)

or a collection of edges,

’>>> keys = G.add_edges_from(H.edges ())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused
integer.

>>> keys = G.add_edges_from ([(4,5,dict (route=282)), (4,5,dict (route=37))1])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph (day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]

{'"time': 'Spm'}

>>> G.node[l]['room'] = 714

>>> del G.node[l]['room'] # remove attribute
>>> list (G.nodes (data=True))

[(1, {'time': 'Spm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

90

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> key = G.add_edge(l, 2, weight=4.7)
>>> keys = G.add_edges_from([(3,4), (4,5)], color='red")
>>> keys = G.add_edges_from([(1,2,{'color':"blue'}), (2,3,{'weight':8})1])

>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2]1[0]['weight'] = 4
Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> [n for n in G if n<3] # iterate through nodes
[1, 2]

>>> len(G) # number of nodes in graph

5

>>> G[1l] # adjacency dict keyed by neighbor to edge attributes
e # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency(), but the edges() method is often more conve-
nient.

>>> for n,nbrsdict in G.adjacency () :
for nbr,keydict in nbrsdict.items () :

for key,eattr in keydict.items() :

if 'weight' in eattr:
C. (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> list (G.edges (data="'weight'))
[(x, 2, 4, (1, 2, None), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Reporting methods usually return iterators instead of
containers to reduce memory usage. Methods exist for reporting nodes(), edges(), neighbors() and degree() as
well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.
Subclasses (Advanced):

The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. The outer dict (node_dict) holds adjacency
information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge_key
dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict
(edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-like
object. In general, the dict-like features should be maintained but extra features can be added. To replace one
of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like
structure. The variable names are node_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, and
edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the dict containing node
attributes, keyed by node id. It should require no arguments and return a dict-like object

adjlist_outer_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node. It should require no arguments and return a
dict-like object.

3.2. Basic graph types 91

NetworkX Reference, Release 2.0.dev20161129121305

adjlist_inner_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list

dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a
dict-like object.

edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which

edge_

holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a multigraph subclass that tracks the order nodes are added.

>>> from collections import OrderedDict

>>> class OrderedGraph (nx.MultiDiGraph) :
node_dict_factory = OrderedDict
adjlist_outer_dict_factory = OrderedDict

>>> G = OrderedGraph ()

>>> G.add_nodes_from((2,1))

>>> list (G.nodes())

[2, 1]

>>> keys = G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))

>>> list (G.edges())

[z, 1y, 2, 1), 2, 2y, (1, 1)1

Create a multdigraph object that tracks the order nodes are added and for each node track the order that neighbors
are added and for each neighbor tracks the order that multiedges are added.

>>>

class OrderedGraph (nx.MultiDiGraph) :
node_dict_factory = OrderedDict

adjlist_outer_dict_factory = OrderedDict
adjlist_inner_dict_factory = OrderedDict
edge_key_dict_factory = OrderedDict

>>> G = OrderedGraph ()

>>> G.add_nodes_from((2,1))

>>> list (G.nodes())

[2, 1]

>>> elist = ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1))
>>> keys = G.add_edges_from(elist)

>>> list (G.edges (keys=True))

[2, 2, 0, 2, 1, 2, (2, 1, 1), (1, 1, 0)]

3.2.8 Methods

Adding and Removing Nodes and Edges

MultiDiGraph.___init__([data])

MultiDiGraph.add node(n, \¥**attr) Add a single node n and update node attributes.
MultiDiGraph.add_nodes_ from(nodes, **attr) Add multiple nodes.
MultiDiGraph.remove_node(n) Remove node n.
MultiDiGraph.remove_nodes_ from(nbunch) Remove multiple nodes.
\ Continued on next page |
92 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Table 3.13 — continued from previous page

MultiDiGraph.add_edge(u, v[, key]) Add an edge between u and v.
MultiDiGraph.add_edges_ from(ebunch, \¥**attr) Add all the edges in ebunch.
MultiDiGraph.add _weighted_edges_ from(ebunchAdd all the edges in ebunch as weighted edges with speci-
fied weights.

MultiDiGraph.new_edge_key(u, V) Return an unused key for edges between nodes u and v.
MultiDiGraph.remove_edge(u, v[, key]) Remove an edge between u and v.
MultiDiGraph.remove_ edges_ from(ebunch) Remove all edges specified in ebunch.
MultiDiGraph.clear() Remove all nodes and edges from the graph.

__init__

MultiDiGraph.__init__ (data=None, **attr)

add_node

MultiDiGraph.add_node (n, **attr)
Add a single node n and update node attributes.

Parameters

* n (node) — A node can be any hashable Python object except None.

* attr (keyword arguments, optional) — Set or change node attributes using key=value.

See also:

add_nodes__from/()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node('Hello")

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)1])

>>> G.add_node (K3)

>>> G.number_of_nodes ()

Use keywords set/change node attributes:

>>> G.add_node(1l,size=10)
>>> G.add_node (3,weight=0.4,UTM=("'13S"',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

3.2. Basic graph types 93

NetworkX Reference, Release 2.0.dev20161129121305

add_nodes_from

MultiDiGraph.add_nodes_from (nodes, **attr)
Add multiple nodes.

Parameters

* nodes (iterable container) — A container of nodes (list, dict, set, etc.). OR A container of
(node, attribute dict) tuples. Node attributes are updated using the attribute dict.

o attr (keyword arguments, optional (default= no attributes)) — Update attributes for all nodes
in nodes. Node attributes specified in nodes as a tuple take precedence over attributes spec-
ified via keyword arguments.

See also:

add_node ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello")

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes (), key=str)

(o, 1, 2, 'H', 'e', '1', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from ([(1,dict (size=11)), (2,{'color':'blue'})])
>>> G.node[l] ['size'"]

11

>>> H = nx.Graph()

>>> H.add_nodes_from(G.nodes (data=True))
>>> H.node[l]['size']
11

remove_node

MultiDiGraph.remove_node (n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n (node) — A node in the graph
Raises NetworkXError —If nis notin the graph.

See also:

remove_nodes_from()

94 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph (3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> list (G.edges())

[0, 1), (1, 2)]

>>> G.remove_node (1)

>>> list (G.edges())

[]

remove_nodes_from

MultiDiGraph.remove_nodes_from (nbunch)
Remove multiple nodes.

Parameters nodes (iterable container) — A container of nodes (list, dict, set, etc.). If a node in the
container is not in the graph it is silently ignored.

See also:

remove_node ()

Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list (G.nodes())
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> list (G.nodes())
[]
add_edge

MultiDiGraph.add_edge (u, v, key=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See

examples below.
Parameters

* u, v (nodes) — Nodes can be, for example, strings or numbers. Nodes must be hashable (and
not None) Python objects.

» key (hashable identifier, optional (default=Ilowest unused integer)) — Used to distinguish
multiedges between a pair of nodes.

* attr_dict (dictionary, optional (default= no attributes)) — Dictionary of edge attributes.
Key/value pairs will update existing data associated with the edge.

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

Returns

3.2. Basic graph types

95

NetworkX Reference, Release 2.0.dev20161129121305

Return type The edge key assigned to the edge.

See also:

add_edges_from() add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge
will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear
how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph
algorithms.

Default keys are generated using the method new_edge_key (). This method can be overridden by subclass-
ing the base class and providing a custom new_edge_key () method.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.MultiDiGraph ()

>>> e = (1,2)

>>> key = G.add_edge(1l, 2) # explicit two-node form

>>> G.add_edge (*e) # single edge as tuple of two nodes
1

>>> G.add_edges_from([(1,2)]) # add edges from iterable container
[2]

Associate data to edges using keywords:

>>> key = G.add_edge(l, 2, weight=3)
>>> key = G.add_edge(l, 2, key=0, weight=4) # update data for key=0
>>> key = G.add_edge(l, 3, weight=7, capacity=15, length=342.7)

For non-string associations, directly access the edge’s attribute dictionary.

add_edges_from

MultiDiGraph.add_edges_from (ebunch, **attr)
Add all the edges in ebunch.

Parameters

* ebunch (container of edges) — Each edge given in the container will be added to the graph.
The edges can be:

— 2-tuples (u,v) or
— 3-tuples (u,v,d) for an edge attribute dict d, or
— 4-tuples (u,v,k,d) for an edge identified by key k

o attr (keyword arguments, optional) — Edge data (or labels or objects) can be assigned using
keyword arguments.

96 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

Returns
Return type A list of edge keys assigned to the edges in ebunch.

See also:
add_edge () add a single edge

add weighted _edges from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.

Default keys are generated using the method new_edge_key (). This method can be overridden by subclass-
ing the base class and providing a custom new_edge_key () method.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range (0,3),range(l,4))

>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

add_weighted_edges_from

MultiDiGraph.add_weighted edges_from (ebunch, weight="weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

* ebunch (container of edges) — Each edge given in the list or container will be added to the
graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

» weight (string, optional (default= ‘weight’)) — The attribute name for the edge weights to
be added.

e attr (keyword arguments, optional (default= no attributes)) — Edge attributes to add/update
for all edges.

See also:

add_edge () add a single edge
add _edges from() add multiple edges

3.2. Basic graph types 97

NetworkX Reference, Release 2.0.dev20161129121305

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)1)

new_edge_key

MultiDiGraph.new_edge_key (u, v)
Return an unused key for edges between nodes u and v.

The nodes u and v do not need to be already in the graph.

Notes

In the standard MultiGraph class the new key is the number of existing edges between u and v (increased
if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further
new_edge_keys may not be in this order.

Parameters u, v (nodes)
Returns key

Return type int

remove_edge

MultiDiGraph.remove_edge (u, v, key=None)
Remove an edge between u and v.

Parameters
* u, v (nodes) — Remove an edge between nodes u and v.

» key (hashable identifier, optional (default=None)) — Used to distinguish multiple edges be-
tween a pair of nodes. If None remove a single (arbitrary) edge between u and v.

Raises NetworkXError — If there is not an edge between u and v, or if there is no edge with the
specified key.

See also:

remove_edges_from() remove a collection of edges

Examples

98 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.MultiDiGraph ()

>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiDiGraph ()

>>> G.add_edges_from([(1,2), (1,2),(1,2)1]) # key_list returned
[0, 1, 2]

>>> G.remove_edge(l,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiDiGraph ()

>>> G.add_edge(l,2,key="first")
'first'

>>> G.add_edge (1,2, key="second")
'second’

>>> G.remove_edge (1, 2,key="second")

remove_edges_from

MultiDiGraph.remove_edges_from (ebunch)

Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) — Each edge given in the list or container will

be removed from the graph. The edges can be:
» 2-tuples (u,v) All edges between u and v are removed.
* 3-tuples (u,v,key) The edge identified by key is removed.
* 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge () remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph,
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from (ebunch)

etc

Removing multiple copies of edges

3.2. Basic graph types

99

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.MultiGraph()

>>> keys = G.add_edges_from([(1,2), (1,2),(1,2)])
>>> G.remove_edges_from([(1,2), (1,2)])

>>> list (G.edges())

[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> list (G.edges()) # now empty graph

[]

clear

MultiDiGraph.clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.clear ()
>>> list (G.nodes())

>>> list (G.edges())

Iterating over nodes and edges

MultiDiGraph.nodes([data, default]) Returns an iterator over the nodes.

MultiDiGraph.__iter_ () Iterate over the nodes.

MultiDiGraph.edges([nbunch, data, keys, default]) Return an iterator over the edges.

MultiDiGraph.out_edges([nbunch, data, keys, ...]) Return an iterator over the edges.

MultiDiGraph. in_edges([nbunch, data, keys, ...]) Return an iterator over the incoming edges.
MultiDiGraph.get_edge_data(u, v[, key, default]) Return the attribute dictionary associated with edge (u,v).
MultiDiGraph.neighbors(n) Return an iterator over successor nodes of n.
MultiDiGraph._ _getitem _(n) Return a dict of neighbors of node n.
MultiDiGraph.successors(n) Return an iterator over successor nodes of n.
MultiDiGraph.predecessors(n) Return an iterator over predecessor nodes of n.
MultiDiGraph.adjacency() Return an iterator over (node, adjacency dict) tuples for all
nodes.
MultiDiGraph.nbunch_iter([nbunch]) Return an iterator over nodes contained in nbunch that are

also in the graph.

nodes

MultiDiGraph.nodes (data=False, default=None)
Returns an iterator over the nodes.

Parameters

* data (string or bool, optional (default=False)) — The node attribute returned in 2-tuple

100 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

(n,ddict[data]). If True, return entire node attribute dict as (n,ddict). If False, return just
the nodes n.

o default (value, optional (default=None)) — Value used for nodes that dont have the requested
attribute. Only relevant if data is not True or False.

Returns An iterator over nodes, or (n,d) tuples of node with data. If data is False, an iterator over
nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in
data. If data is True then the attribute becomes the entire data dictionary.

Return type iterator

Notes

If the node data is not required, it is simpler and equivalent to use the expression for n in G, or 1ist (G).

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>> G = nx.path_graph (3)
>>> list (G.nodes ())

[0, 1, 2]

>>> list (G)

[0, 1, 2]

To get the node data along with the nodes:

>>> G.add_node (1, time='5pm")

>>> G.node[0]['foo'] = 'bar'
>>> list (G.nodes (data=True))
[(0, {'"foo': 'bar'}), (1, {'time': 'Spm'}), (2, {})]

>>> list (G.nodes (data="'foo'))

[(0, 'bar'), (1, None), (2, None)]

>>> list (G.nodes (data="'time'"))

[(O, None), (1, 'Spm'), (2, None)]

>>> list (G.nodes (data='time', default='Not Available'))
[(0O, 'Not Available'), (1, 'Spm'), (2, 'Not Available')]

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create
a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never
None:

>>> G = nx.Graph()

>>> G.add_node (0)

>>> G.add_node (1, weight=2)

>>> G.add_node (2, weight=3)

>>> dict (G.nodes (data='weight', default=1))
{0: 1, 1: 2, 2: 3}

_iter__

MultiDiGraph.__iter_ ()
Iterate over the nodes. Use the expression ‘for n in G’.

3.2. Basic graph types 101

NetworkX Reference, Release 2.0.dev20161129121305

Returns niter — An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G]
o, 1, 2, 3]

edges

MultiDiGraph.edges (nbunch=None, data=False, keys=False, default=None)

Return an iterator over the edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters

e nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

» data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

* keys (bool, optional (default=False)) — If True, return edge keys with each edge.

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns edge — An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph ()

>>> nx.add_path(G, [0, 1, 21)

>>> key = G.add_edge (2, 3,weight=5)

>>> [e for e in G.edges()]

[0, 1), (1, 2y, (2, 3)]

>>> 1list (G.edges (data=True)) # default data is {} (empty dict)
[, 1, {H, (1, 2, {1, (2, 3, {'weight': 5})]

>>> list (G.edges (data='weight', default=1))

r¢o, 1, 1y, (1, 2, 1), (2, 3, 51

>>> list (G.edges (keys=True)) # default keys are integers
[, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list (G.edges (data=True, keys=True)) # default keys are integers

(o, 1, o, {H, (, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list (G.edges (data='weight',default=1,keys=True))

102

Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

r¢o, 1, o, 1y, (1, 2, 0, 1), (2, 3, 0, 5]
>>> list (G.edges ([0,2]1))

[0, 1), (2, 3)]

>>> list (G.edges (0))

[(0, 1)]

See also:

in_edges (), out_edges ()

out_edges

MultiDiGraph.out_edges (nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters

* nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

» data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

* keys (bool, optional (default=False)) — If True, return edge keys with each edge.

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns edge — An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph ()

>>> nx.add_path(G, [0, 1, 21)

>>> key = G.add_edge (2, 3,weight=5)

>>> [e for e in G.edges()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges (data=True)) # default data is {} (empty dict)
(¢, 1, {H, (1, 2, {1, 2, 3, {'weight': 5})]

>>> list (G.edges (data='weight', default=1))

[(o, 1, 1), (1, 2, 1), (2, 3, 5)]

>>> 1list (G.edges (keys=True)) # default keys are integers
(¢, 1, 0y, (1, 2, 0), (2, 3, 0)]
>>> list (G.edges (data=True, keys=True)) # default keys are integers

(o, 1, o, {», (1, 2, 0, {¥), (2, 3, 0, {'weight': 5})]
>>> 1list (G.edges (data='weight',default=1,keys=True))
(¢, 1, o, 1, (1, 2, 0, 1), (2, 3, 0, 5)1

3.2. Basic graph types 103

NetworkX Reference, Release 2.0.dev20161129121305

>>> list (G.edges ([0,2]))
[0, 1), (2, 3]

>>> list (G.edges (0))
[0, 1)1

See also:

in_edges (), out_edges ()

in_edges

MultiDiGraph.in_edges (nbunch=None, data=False, keys=False, default=None)
Return an iterator over the incoming edges.

Parameters

* nbunch (iterable container, optional (default= all nodes)) — A container of nodes. The
container will be iterated through once.

 data (string or bool, optional (default=False)) — The edge attribute returned in 3-tuple
(u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return
2-tuple (u,v).

* keys (bool, optional (default=False)) — If True, return edge keys with each edge.

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

Returns in_edge — An iterator over (u,v), (u,v,d) or (u,v,key,d) tuples of edges.
Return type iterator

See also:

edges () return an iterator over edges

get_edge_data

MultiDiGraph.get_edge_data (u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters
e u, Vv (nodes)
* default (any Python object (default=None)) — Value to return if the edge (u,v) is not found.

* key (hashable identifier, optional (default=None)) — Return data only for the edge with
specified key.

Returns edge_dict — The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v][key].

104 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> key = G.add_edge(0,1,key="a',weight=7)
>>> G[0][1]['a"] # key='a'

{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that
dictionary,

I
I

'"1['weight'] = 10

>>> G[O0][
0] '] ['weight']

>>> G| [
10

>>> G[1][0]['a']['weight "]
10

1 a
1 a

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> nx.add_path(G, [0, 1, 2, 3])

>>> G.get_edge_data(0,1)

{0: {}}

>>> e = (0,1)

>>> G.get_edge_data(xe) # tuple form

{0: {}}

>>> G.get_edge_data('a', 'b',default=0) # edge not in graph, return 0

neighbors

MultiDiGraph.neighbors (n)
Return an iterator over successor nodes of n.

neighbors() and successors() are the same.

__getitem__

MultiDiGraph.__getitem__ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) — A node in the graph.
Returns adj_dict — The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of an iterator.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

3.2. Basic graph types 105

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
{1: {}}

successors

MultiDiGraph.successors (n)
Return an iterator over successor nodes of n.

neighbors() and successors() are the same.

predecessors

MultiDiGraph.predecessors (n)
Return an iterator over predecessor nodes of n.

adjacency

MultiDiGraph.adjacency ()
Return an iterator over (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter — An iterator over (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n,nbrdict) for n,nbrdict in G.adjacency ()]
[0, {1: {}+}), (1, {0: {}, 2: {}}), (2, {I: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

MultiDiGraph.nbunch_iter (nbunch=None)
Return an iterator over nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The
container will be iterated through once.

Returns niter — An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError —If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

106 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

See also:

Graph.__iter__ ()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a Net workXError is raised. Also, if

any object in nbunch is not hashable, a Net workXError is raised.

Information about graph structure

MultiDiGraph.

has_node(n)

Return True if the graph contains the node n.

MultiDiGraph._

contains__ (n)

Return True if n is a node, False otherwise.

MultiDiGraph

.has_edge(u, v[, key])

Return True if the graph has an edge between nodes u and
v.

MultiDiGraph.order() Return the number of nodes in the graph.
MultiDiGraph.number_of_nodes() Return the number of nodes in the graph.
MultiDiGraph.___len_ () Return the number of nodes.

MultiDiGraph

. degree([nbunch, weight])

Return an iterator for (node, degree) or degree for single
node.

MultiDiGraph.

in_degree([nbunch, weight])

Return an iterator for (node, in-degree) or in-degree for sin-
gle node.

MultiDiGraph.

out_degree([nbunch, weight])

Return an iterator for (node, out-degree) or out-degree for
single node.

MultiDiGraph. size([weight]) Return the number of edges or total of all edge weights.
MultiDiGraph.number_of_edges([u, v]) Return the number of edges between two nodes.
MultiDiGraph.nodes_with selfloops() Returns an iterator over nodes with self loops.
MultiDiGraph.selfloop_edges([data, keys, ...]) Return a list of selfloop edges.
MultiDiGraph.number_of_ selfloops() Return the number of selfloop edges.

has_node

MultiDiGraph.has_node (n)
Return True if the graph contains the node n.

Parameters n (node)

Examples

>>> G =

True

nx.path_graph (3)
>>> G.has_node (0)

or DiGraph, MultiGraph, MultiDiGraph,

etc

It is more readable and simpler to use

3.2. Basic graph types

107

NetworkX Reference, Release 2.0.dev20161129121305

>>> (0 in G
True

__contains___

MultiDiGraph.__contains__ (n)
Return True if n is a node, False otherwise. Use the expression ‘nin G’.

Examples

>>> G = nx.path_graph (4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> 1 in G
True

has_edge

MultiDiGraph.has_edge (u, v, key=None)
Return True if the graph has an edge between nodes u and v.

Parameters
* u, v (nodes) — Nodes can be, for example, strings or numbers.

* key (hashable identifier, optional (default=None)) — If specified return True only if the edge
with key is found.

Returns edge_ind — True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph () # or MultiDiGraph
>>> nx.add_path(G, [0, 1, 2, 31)

>>> G.has_edge (0, 1) # using two nodes
True

>>> e = (0,1)

>>> G.has_edge (*e) # e is a 2-tuple (u,v)
True

>>> G.add_edge (0, 1,key="a')

lal

>>> G.has_edge (0,1,key="a'") # specify key
True

>>> e=(0,1,"'a")

>>> G.has_edge(xe) # e is a 3-tuple (u,v,'a’)
True

The following syntax are equivalent:

108 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

>>> G.has_edge (0, 1)

True

>>> 1 in G[0] # though this gives :exc: KeyError 1if 0 not in G
True

order

MultiDiGraph.order ()

Return the number of nodes in the graph.
Returns nnodes — The number of nodes in the graph.
Return type int

See also:

number_of_nodes (),__len__ ()

number_of nodes

MultiDiGraph.number_of_ nodes ()

Return the number of nodes in the graph.
Returns nnodes — The number of nodes in the graph.
Return type int

See also:

order(),__len ()

Examples

>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
3

_len__

MultiDiGraph.__len__ ()

Return the number of nodes. Use the expression ‘len(G)’.
Returns nnodes — The number of nodes in the graph.

Return type int

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len (G)
4

3.2. Basic graph types 109

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

degree

MultiDiGraph.degree (nbunch=None, weight=None)
Return an iterator for (node, degree) or degree for single node.

The node degree is the number of edges adjacent to the node. This function returns the degree for a single node
or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

* nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights.

Returns
* If a single nodes is requested
* deg (int) — Degree of the node
* OR if multiple nodes are requested
* nd_iter (iterator) — The iterator returns two-tuples of (node, degree).
See also:

out_degree (), in_degree ()

Examples

>>> G = nx.MultiDiGraph ()

>>> nx.add_path(G, [0, 1, 2, 31)

>>> G.degree(0) # node 0 with degree 1
1

>>> list (G.degree([0,1]1))

[0, 1), (1, 2)]

in_degree

MultiDiGraph.in_degree (nbunch=None, weight=None)
Return an iterator for (node, in-degree) or in-degree for single node.

The node in-degree is the number of edges pointing in to the node. This function returns the in-degree for a
single node or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

* nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

Returns

* If a single node is requested

110 Chapter 3. Graph types

NetworkX Reference, Release 2.0.dev20161129121305

* deg (int) — Degree of the node

* OR if multiple nodes are requested

* nd_iter (iterator) — The iterator returns two-tuples of (node, in-degree).
See also:

degree (), out_degree ()

Examples

>>> G = nx.MultiDiGraph ()

>>> nx.add_path(G, [0, 1, 2, 31)

>>> G.in_degree (0) # node 0 with degree 0
0

>>> 1ist (G.in_degree([0,1]))

[0, 0), (1, 1)1

out_degree

MultiDiGraph.out_degree (nbunch=None, weight=None)
Return an iterator for (node, out-degree) or out-degree for single node.

The node out-degree is the number of edges pointing out of the node. This function returns the out-degree for a
single node or an iterator for a bunch of nodes or if nothing is passed as argument.

Parameters

* nbunch (iterable container, optional (default=all nodes)) — A container of nodes. The con-
tainer will be iterated through once.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights.

Returns
* [fa single node is requested
* deg (int) — Degree of the node
* OR if multiple nodes are requested
* nd_iter (iterator) — The iterator returns two-tuples of (node, out-degree).
See also:

degree (), in_degree ()

Examples

>>> G = nx.MultiDiGraph ()

>>> nx.add_path(G, [0, 1, 2, 31])

>>> G.out_degree (0) # node 0 with degree 1
1

>>> list (G.out_degree([0,1]))

[0, 1), (1, 1)]

3.2. Basic graph types 111

NetworkX Reference, Release 2.0.dev20161129121305

size
MultiDiGraph.size (weight=None)

Return the number of edges or total of all edge weights.

Parameters weight (string or None, optional (default=None)) — The edge attribute that holds the
numerical value used as a weight. If None, then each edge has weight 1.

Returns
size — The number of edges or (if weight keyword is provided) the total weight sum.

If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are
more general).

Return type numeric
See also:

number._of_edges ()

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size()

3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b',weight=2)

>>> G.add_edge('b','c',weight=4)

>>> G.size()

2

>>> G.size (weight="weight'")

6.0

number_of_edges

MultiDiGraph.number_of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u, v (nodes, optional (default=all edges)) — If u and v are specified, return the number
of edges between u and v. Otherwise return the total number of all edges.

Returns nedges — The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int
See also:

size()

Examples

112 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.number_of_edges()

3

>>> G.number_of_edges(0,1)
1

>>> e = (0,1)

>>> G.number_of_edges (xe)
1

nodes_with_selfloops

MultiDiGraph.nodes_with_ selfloops ()
Returns an iterator over nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist — A iterator over nodes with self loops.
Return type iterator

See also:

selfloop_edges (), number_of_selfloops ()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1, 1)

>>> G.add_edge (1, 2)

>>> list (G.nodes_with_selfloops())

selfloop_edges

MultiDiGraph.selfloop_edges (data=False, keys=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.
Parameters

e data (bool, optional (default=False)) — Return selfloop edges as two tuples (u,v)
(data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue)
(data="attrname’)

o default (value, optional (default=None)) — Value used for edges that dont have the requested
attribute. Only relevant if data is not True or False.

* keys (bool, optional (default=False)) — If True, return edge keys with each edge.
Returns edgelist — A list of all selfloop edges.
Return type list of edge tuples

3.2. Basic graph types 113

NetworkX Reference, Release 2.0.dev20161129121305

See also:

nodes_with_selfloops (), number_of_selfloops ()

Examples

>>> G = nx.MultiGraph () # or MultiDiGraph
>>> G.add_edge (1,1)

0

>>> G.add_edge (1, 2)

0

>>> list (G.selfloop_edges())

[(1, 1)]

>>> list (G.selfloop_edges (data=True))
(L, 1, {1

>>> list (G.selfloop_edges (keys=True))
[(1, 1, 0)]

>>> list (G.selfloop_edges (keys=True, data=True))
[, 1, 0, {H1

number_of_selfloops

MultiDiGraph.number_of_ selfloops ()

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.
Returns nloops — The number of selfloops.
Return type int

See also:

nodes_with_selfloops (), selfloop_edges ()

Examples
>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)
>>> G.add_edge (1, 2)
>>> G.number_of_selfloops|()
1
Making copies and subgraphs
MultiDiGraph.copy([with_data]) Return a copy of the graph.
MultiDiGraph.to_undirected([reciprocal]) Return an undirected representation of the digraph.
MultiDiGraph.to_directed() Return a directed copy of the graph.
MultiDiGraph.edge_ subgraph(edges) Returns the subgraph induced by the specified edges.
MultiDiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
MultiDiGraph.reverse([copy]) Return the reverse of the graph.
114 Chapter 3. Graph types

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

copy

MultiDiGraph.copy (with_data=True)
Return a copy of the graph.

All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four
types of copies of a graph that people might want.

Deepcopy — The default behavior is a “deepcopy” where the graph structure as well as all data attributes and any
objects they might contain are copied. The entire graph object is new so that changes in the copy do not affect
the original object.

Data Reference (Shallow) — For a shallow copy (with_data=False) the graph structure is copied but the edge,
node and graph attribute dicts are references to those in the original graph. This saves time and memory but
could cause confusion if you change an attribute in one graph and it changes the attribute in the other.

Independent Shallow — This copy creates new independent attribute dicts and then does a shallow copy of the
attributes. That is, any attributes that are containers are shared between the new graph and the original. This
type of copy is not enabled. Instead use:

>>> G = nx.path_graph(5)
>>> H = G.__class__ (G)

Fresh Data— For fresh data, the graph structure is copied while new empty data attribute dicts are created. The
resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not
enabled. Instead use:

>>> H = G.__class__ ()
>>> H.add_nodes_from(G)
>>> H.add_edges_from(G.edges())

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Parameters with_data (bool, optional (default=True)) — If True, the returned graph will have a
deep copy of the graph, node, and edge attributes of this object. Otherwise, the returned graph
will be a shallow copy.

Returns G — A copy of the graph.
Return type Graph

See also:

to_directed () return a directed copy of the graph.

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.copy ()

to_undirected

MultiDiGraph.to_undirected (reciprocal=False)
Return an undirected representation of the digraph.

3.2. Basic graph types 115

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

Parameters reciprocal (bool (optional)) — If True only keep edges that appear in both directions in
the original digraph.

Returns G — An undirected graph with the same name and nodes and with edge (u,v,data) if either
(u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is
different, only one edge is created with an arbitrary choice of which edge data to use. You must
check and correct for this manually if desired.

Return type MultiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not
transfer to the MultiDiGraph created by this method.

to_directed

MultiDiGraph.to_directed ()

Return a directed copy of the graph.
Returns G — A deepcopy of the graph.
Return type MultiDiGraph

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a
combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the
edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/
copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_edge (0, 1)

>>> H = G.to_directed()

>>> list (H.edges())

[(0O, 1), (1, 0)]

If already directed, return a (deep) copy

116

Chapter 3. Graph types

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.MultiDiGraph ()
>>> key = G.add_edge (0, 1)
>>> H = G.to_directed()
>>> list (H.edges())

[(0, 1)]

edge_subgraph

MultiDiGraph.edge_subgraph (edges)
Returns the subgraph induced by the specified edges.

The induced subgraph contains each edge in edges and each node incident to any one of those edges.

Parameters edges (iterable) — An iterable of edges in this graph.

Returns G — An edge-induced subgraph of this graph with the same edge attributes.

Return type Graph

Notes

The graph, edge, and node attributes in the returned subgraph are references to the corresponding attributes in
the original graph. Thus changes to the node or edge structure of the returned graph will not be reflected in the

original graph, but changes to the attributes will.

To create a subgraph with its own copy of the edge or node attributes, use:

’>>> nx.MultiDiGraph (G.edge_subgraph (edges))

If edge attributes are containers, a deep copy of the attributes can be obtained using:

’>>> G.edge_subgraph (edges) . copy ()

Examples

Get a subgraph induced by only those edges that have a certain attribute:

>>> # Create a graph in which some edges are "good" and some "bad".
>>> G = nx.MultiDiGraph ()

>>> key = G.add_edge (0, 1, key=0, good=True)

>>> key = G.add_edge (0, 1, key=1l, good=False)

>>> key G.add_edge (1, 2, key=0, good=False)

>>> key = G.add_edge(l, 2, key=1l, good=True)

>>> # Keep only those edges that are marked as "good".

>>> edges = G.edges (keys=True, data='good'")

>>> edges = ((u, v, k) for (u, v, k, good) in edges if good)
>>> H = G.edge_subgraph (edges)

>>> list (H.edges (keys=True, data=True))

[(0, 1, 0, {'good': True}), (1, 2, 1, {'good': True})]

3.2. Basic graph types

117

NetworkX Reference, Release 2.0.dev20161129121305

subgraph

MultiDiGraph.subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch (list, iterable) — A container of nodes which will be iterated through once.
Returns G — A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.subgraph([0,1,2])

>>> list (H.edges())

[0, 1), (1, 2)]

reverse

MultiDiGraph.reverse (copy=True)
Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy (bool optional (default=True)) — If True, return a new DiGraph holding the re-
versed edges. If False, reverse the reverse graph is created using the original graph (this changes
the original graph).

118 Chapter 3. Graph types

CHAPTER 4

Algorithms

4.1 Approximation

Warning: The approximation submodule is not imported automatically with networkx.

Approximate algorithms can be imported with from networkx.algorithms import approximation.

4.1.1 Connectivity

Fast approximation for node connectivity

all pairs_node_connectivity(G[, nbunch, cut- Compute node connectivity between all pairs of nodes.

off])

local node_ connectivity(G, source, target|, ...]) Compute node connectivity between source and target.

node_connectivity(Gl,s,t]) Returns an approximation for node connectivity for a graph
or digraph G.

all_pairs_node_connectivity

all pairs_node_connectivity (G, nbunch=None, cutoff=None)
Compute node connectivity between all pairs of nodes.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of
nodes that must be removed (minimum separating cutset) to disconnect them. By Menger’s theorem, this is
equal to the number of node independent paths (paths that share no nodes other than source and target). Which
is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent
paths between two nodes '. It works for both directed and undirected graphs.

Parameters
* G (NetworkX graph)

* nbunch (container) — Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.

! White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

119

http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX Reference, Release 2.0.dev20161129121305

* cutoff (integer) — Maximum node connectivity to consider. If None, the minimum degree
of source or target is used as a cutoff in each pair of nodes. Default value None.

Returns K — Dictionary, keyed by source and target, of pairwise node connectivity
Return type dictionary
See also:

local_node_connectivity(),all_pairs_node_connectivity/()

References

local_node_connectivity

local_node_connectivity (G, source, target, cutoff=None)

Compute node connectivity between source and target.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of
nodes that must be removed (minimum separating cutset) to disconnect them. By Menger’s theorem, this is
equal to the number of node independent paths (paths that share no nodes other than source and target). Which
is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent
paths between two nodes '. It works for both directed and undirected graphs.

Parameters
* G (NetworkX graph)
* source (node) — Starting node for node connectivity
* target (node) — Ending node for node connectivity

* cutoff (integer) — Maximum node connectivity to consider. If None, the minimum degree
of source or target is used as a cutoff. Default value None.

Returns k — pairwise node connectivity

Return type integer

Examples

>>> # Platonic icosahedral graph has node connectivity 5
>>> # for each non adjacent node pair
>>> from networkx.algorithms import approximation as approx

>>> G = nx.icosahedral_graph ()

>>> approx.local_node_connectivity (G, 0, 6)
5

Notes

This algorithm ! finds node independents paths between two nodes by computing their shortest path using BFS,
marking the nodes of the path found as ‘used’ and then searching other shortest paths excluding the nodes
marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path

! White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

Chapter 4. Algorithms

http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX Reference, Release 2.0.dev20161129121305

were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound
on node connectivity.

Note that the authors propose a further refinement, losing accuracy and gaining speed, which is not implemented
yet.

See also:

all _pairs_node_connectivity (), node_connectivity ()

References

node_connectivity
node_connectivity (G, s=None, t=None)
Returns an approximation for node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it
trivial. By Menger’s theorem, this is equal to the number of node independent paths (paths that share no nodes
other than source and target).

If source and target nodes are provided, this function returns the local node connectivity: the minimum number
of nodes that must be removed to break all paths from source to target in G.

This algorithm is based on a fast approximation that gives an strict lower bound on the actual number of node
independent paths between two nodes !. It works for both directed and undirected graphs.

Parameters
* G (NetworkX graph) — Undirected graph
* s (node) — Source node. Optional. Default value: None.
* t (node) — Target node. Optional. Default value: None.
Returns K — Node connectivity of G, or local node connectivity if source and target are provided.

Return type integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected

>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()

>>> approx.node_connectivity (G)

Notes

This algorithm ! finds node independents paths between two nodes by computing their shortest path using BFS,
marking the nodes of the path found as ‘used’ and then searching other shortest paths excluding the nodes
marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path
were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound
on node connectivity.

! White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

4.1. Approximation 121

http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX Reference, Release 2.0.dev20161129121305

See also:

all _pairs_node_connectivity (), local_node_connectivity/()

References

4.1.2 K-components

Fast approximation for k-component structure

k_component s(G[, min_density])

G.

k_components

k_components (G, min_density=0.95)
Returns the approximate k-component structure of a graph G.

A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at
least k nodes to break it into more components. k-components have an inherent hierarchical structure because
they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which

can contain one or more 3-components, and so forth.

This implementation is based on the fast heuristics to approximate the k-component sturcture of a graph '.
Which, in turn, it is based on a fast approximation algorithm for finding good lower bounds of the number of

node independent paths between two nodes .

Parameters
* G (NetworkX graph) — Undirected graph

* min_density (Float) — Density relaxation treshold. Default value 0.95

Returns k_components — Dictionary with connectivity level k as key and a list of sets of nodes that

form a k-component of level k as values.

Return type dict

Examples

>>>

Petersen graph has 10 nodes and it 1is triconnected, thus all

>>> # nodes are in a single component on all three connectivity levels
>>> from networkx.algorithms import approximation as apxa

>>> G = nx.petersen_graph ()

>>> k_components = apxa.k_components (G)

Notes

The logic of the approximation algorithm for computing the k-component structure ! is based on repeatedly
applying simple and fast algorithms for k-cores and biconnected components in order to narrow down the

! Torrents, J. and F. Ferraro (2015) Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1
2 White, Douglas R., and Mark Newman (2001) A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035

http://eclectic.ss.uci.edu/~drwhite/working.pdf

122

Chapter 4. Algorithms

Returns the approximate k-component structure of a graph

https://docs.python.org/2/library/stdtypes.html#dict
http://arxiv.org/pdf/1503.04476v1
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX Reference, Release 2.0.dev20161129121305

number of pairs of nodes over which we have to compute White and Newman’s approximation algorithm for
finding node independent paths 2. More formally, this algorithm is based on Whitney’s theorem, which states
an inclusion relation among node connectivity, edge connectivity, and minimum degree for any graph G. This
theorem implies that every k-component is nested inside a k-edge-component, which in turn, is contained in a
k-core. Thus, this algorithm computes node independent paths among pairs of nodes in each biconnected part
of each k-core, and repeats this procedure for each k from 3 to the maximal core number of a node in the input
graph.

Because, in practice, many nodes of the core of level k inside a bicomponent actually are part of a component
of level k, the auxiliary graph needed for the algorithm is likely to be very dense. Thus, we use a complement
graph data structure (see AntiGraph) to save memory. AntiGraph only stores information of the edges that
are not present in the actual auxiliary graph. When applying algorithms to this complement graph data structure,
it behaves as if it were the dense version.

See also:

k_components ()

References

4.1.3 Clique

Cliques.
max_clique(G) Find the Maximum Clique
clique_removal(G) Repeatedly remove cliques from the graph.
max_clique

max_clique (G)
Find the Maximum Clique

Findsthe O (| V| / (log|V]) ~2) apx of maximum clique/independent set in the worst case.
Parameters G (NetworkX graph) — Undirected graph
Returns clique — The apx-maximum clique of the graph

Return type set

Notes

A clique in an undirected graph G = (V, E) is a subset of the vertex set C subseteq V, such that for every two
vertices in C, there exists an edge connecting the two. This is equivalent to saying that the subgraph induced by
C is complete (in some cases, the term clique may also refer to the subgraph).

A maximum clique is a clique of the largest possible size in a given graph. The clique number omega (G) of
a graph G is the number of vertices in a maximum clique in G. The intersection number of G is the smallest
number of cliques that together cover all edges of G.

http://en.wikipedia.org/wiki/Maximum_clique

4.1. Approximation 123

https://docs.python.org/2/library/stdtypes.html#set
http://en.wikipedia.org/wiki/Maximum_clique

NetworkX Reference, Release 2.0.dev20161129121305

References

clique_removal
clique_removal (G)
Repeatedly remove cliques from the graph.

Results ina O (|V|/ (log |V|)"2) approximation of maximum clique & independent set. Returns the
largest independent set found, along with found maximal cliques.

Parameters G (NetworkX graph) — Undirected graph

Returns max_ind_cliques — Maximal independent set and list of maximal cliques (sets) in the
graph.

Return type (set, list) tuple

References

4.1.4 Clustering

average_clustering(Gl, trials]) Estimates the average clustering coefficient of G.

average_clustering
average_clustering (G, trials=1000)
Estimates the average clustering coefficient of G.

The local clustering of each node in G is the fraction of triangles that actually exist over all possible triangles in
its neighborhood. The average clustering coefficient of a graph G is the mean of local clusterings.

This function finds an approximate average clustering coefficient for G by repeating n times (defined in
trials) the following experiment: choose a node at random, choose two of its neighbors at random, and
check if they are connected. The approximate coefficient is the fraction of triangles found over the number of
trials !

Parameters

* G (NetworkX graph)

* trials (integer) — Number of trials to perform (default 1000).
Returns ¢ — Approximated average clustering coefficient.

Return type float

References

4.1.5 Dominating Set

Functions for finding node and edge dominating sets.

! Schank, Thomas, and Dorothea Wagner. Approximating clustering coefficient and transitivity. Universitit Karlsruhe, Fakultit fiir Informatik,
2004. http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf

124 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf

NetworkX Reference, Release 2.0.dev20161129121305

A ‘dominating set‘_[1] for an undirected graph *G with vertex set V and edge set E is a subset D of V such that every
vertex not in D is adjacent to at least one member of D. An ‘edge dominating set‘_[2] is a subset *F of E such that
every edge not in F is incident to an endpoint of at least one edge in F.

min _weighted dominating_ set(G[, weight]) Returns a dominating set that approximates the minimum
weight node dominating set.
min_edge _dominating_set(G) Return minimum cardinality edge dominating set.

min_weighted_dominating_set
min_weighted_dominating_set (G, weight=None)
Returns a dominating set that approximates the minimum weight node dominating set.
Parameters
* G (NetworkX graph) — Undirected graph.

» weight (string) — The node attribute storing the weight of an edge. If provided, the node
attribute with this key must be a number for each node. If not provided, each node is assumed
to have weight one.

Returns min_weight_dominating set — A set of nodes, the sum of whose weights is no more than
(log w(V)) w(V~*),wherew (V) denotes the sum of the weights of each node in the graph
and w (V~+) denotes the sum of the weights of each node in the minimum weight dominating
set.

Return type set

Notes

This algorithm computes an approximate minimum weighted dominating set for the graph G. The returned
solution has weight (log w(V)) w(V”~*), where w (V) denotes the sum of the weights of each node in the
graph and w (V~*) denotes the sum of the weights of each node in the minimum weight dominating set for the
graph.

This implementation of the algorithm runs in O (m) time, where m is the number of edges in the graph.

References

min_edge_dominating_set
min_edge_dominating_ set (G)
Return minimum cardinality edge dominating set.
Parameters G (NetworkX graph) — Undirected graph

Returns min_edge_dominating_set — Returns a set of dominating edges whose size is no more
than 2 * OPT.

Return type set

4.1. Approximation 125

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The algorithm computes an approximate solution to the edge dominating set problem. The result is no more
than 2 * OPT in terms of size of the set. Runtime of the algorithmis O (|E|) .

4.1.6 Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices
such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at
most one endpoint in I. The size of an independent set is the number of vertices it contains.

A maximum independent set is a largest independent set for a given graph G and its size is denoted «(G). The problem
of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As
such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.

http://en.wikipedia.org/wiki/Independent_set_(graph_theory)
Independent set algorithm is based on the following paper:
O(IV]/(logl|V])"2) apx of maximum clique/independent set.

Boppana, R., & Halldérsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT
Numerical Mathematics, 32(2), 180—-196. Springer. doi:10.1007/BF01994876

maximum_independent_set(G) Return an approximate maximum independent set.

maximum_independent_set

maximum_independent_set (G)
Return an approximate maximum independent set.

Parameters G (NetworkX graph) — Undirected graph
Returns iset — The apx-maximum independent set

Return type Set

Notes

Findsthe O (|V|/ (Log|V]|) ~2) apx of independent set in the worst case.

References

4.1.7 Matching

Graph Matching

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a
common vertex.

http://en.wikipedia.org/wiki/Matching_(graph_theory)

126 Chapter 4. Algorithms

http://en.wikipedia.org/wiki/Independent_set_(graph_theory
http://en.wikipedia.org/wiki/Matching_(graph_theory

NetworkX Reference, Release 2.0.dev20161129121305

min_maximal_matching(G) Returns the minimum maximal matching of G.

min_maximal_matching

min_maximal_matching (G)
Returns the minimum maximal matching of G. That is, out of all maximal matchings of the graph G, the smallest
is returned.

Parameters G (NetworkX graph) — Undirected graph

Returns min_maximal_matching — Returns a set of edges such that no two edges share a common
endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will
be 2*OPT in the worst case.

Return type set

Notes

The algorithm computes an approximate solution fo the minimum maximal cardinality matching problem. The
solution is no more than 2 * OPT in size. Runtime isO (|E |).

References

4.1.8 Ramsey

Ramsey numbers.

ramsey_R2(G) Approximately computes the Ramsey number R (2; s, t)
for graph.

ramsey_R2
ramsey_R2 (G)
Approximately computes the Ramsey number R (2; s, t) for graph.
Parameters G (NetworkX graph) — Undirected graph
Returns max_pair — Maximum clique, Maximum independent set.

Return type (set, set) tuple

4.1.9 Vertex Cover

Functions for computing an approximate minimum weight vertex cover.

A vertex cover is a subset of nodes such that each edge in the graph is incident to at least one node in the subset.

min_weighted vertex_cover(G[, weight]) Returns an approximate minimum weighted vertex cover.

4.1. Approximation 127

https://docs.python.org/2/library/stdtypes.html#set
https://en.wikipedia.org/wiki/Vertex_cover

NetworkX Reference, Release 2.0.dev20161129121305

min_weighted_vertex_cover
min_weighted_vertex_ cover (G, weight=None)
Returns an approximate minimum weighted vertex cover.

The set of nodes returned by this function is guaranteed to be a vertex cover, and the total weight of the set is
guaranteed to be at most twice the total weight of the minimum weight vertex cover. In other words,

w(S) < 2% w(S*),
where S is the vertex cover returned by this function, S* is the vertex cover of minimum weight out of all vertex
covers of the graph, and w is the function that computes the sum of the weights of each node in that given set.
Parameters
* G (NetworkX graph)

» weight (string, optional (default = None)) — If None, every edge has weight 1. If a string,
use this node attribute as the node weight. A node without this attribute is assumed to have
weight 1.

Returns min_weighted_cover — Returns a set of nodes whose weight sum is no more than twice
the weight sum of the minimum weight vertex cover.

Return type set

Notes

For a directed graph, a vertex cover has the same definition: a set of nodes such that each edge in the graph is
incident to at least one node in the set. Whether the node is the head or tail of the directed edge is ignored.

This is the local-ratio algorithm for computing an approximate vertex cover. The algorithm greedily reduces
the costs over edges, iteratively building a cover. The worst-case runtime of this implementation is O(m logn),
where n is the number of nodes and m the number of edges in the graph.

References

4.2 Assortativity

4.2.1 Assortativity

degree_assortativity_coefficient(G[, X, y, Compute degree assortativity of graph.

)

attribute_assortativity_ coefficient(G, Compute assortativity for node attributes.

attribute)

numeric_assortativity_coefficient(G, Compute assortativity for numerical node attributes.
attribute)

degree_pearson_correlation_coefficient(G[, Compute degree assortativity of graph.

n)

128 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

degree_assortativity_coefficient
degree_assortativity_ coefficient (G, x="out’, y="in’, weight=None, nodes=None)
Compute degree assortativity of graph.
Assortativity measures the similarity of connections in the graph with respect to the node degree.
Parameters
* G (NetworkX graph)
* x (string (‘in’, out’)) — The degree type for source node (directed graphs only).
* y (string (‘in’, out’)) — The degree type for target node (directed graphs only).

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

* nodes (list or iterable (optional)) — Compute degree assortativity only for nodes in container.
The default is all nodes.

Returns r — Assortativity of graph by degree.

Return type float

Examples

>>> G=nx.path_graph (4)

>>> r=nx.degree_assortativity_coefficient (G)
>>> print (" "Sr)

-0.5

See also:

attribute_assortativity coefficient (), numeric_assortativity coefficient (),
neighbor_connectivity (), degree _mixing dict (), degree_mixing matrix()

Notes

This computes Eq. (21) in Ref. | , where e is the joint probability distribution (mixing matrix) of the degrees. If
G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target.

References

attribute_assortativity_coefficient
attribute_assortativity coefficient (G, attribute, nodes=None)
Compute assortativity for node attributes.
Assortativity measures the similarity of connections in the graph with respect to the given attribute.
Parameters

* G (NetworkX graph)

I'M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003

4.2. Assortativity 129

https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

« attribute (string) — Node attribute key

* nodes (list or iterable (optional)) — Compute attribute assortativity for nodes in container.
The default is all nodes.

Returns r — Assortativity of graph for given attribute

Return type float

Examples

>>> G=nx.Graph ()

>>> G.add_nodes_from([0,1],color="red")

>>> G.add_nodes_from([2,3],color="blue')

>>> G.add_edges_from([(0,1), (2,3)])

>>> print (nx.attribute_assortativity_coefficient (G, 'color'))
1.0

Notes

This computes Eq. (2) in Ref. ! , trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution
(mixing matrix) of the specified attribute.

References

numeric_assortativity_coefficient
numeric_assortativity coefficient (G, attribute, nodes=None)
Compute assortativity for numerical node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute.
The numeric attribute must be an integer.

Parameters
* G (NetworkX graph)
* attribute (string) — Node attribute key. The corresponding attribute value must be an integer.

* nodes (list or iterable (optional)) — Compute numeric assortativity only for attributes of
nodes in container. The default is all nodes.

Returns r — Assortativity of graph for given attribute

Return type float

Examples

>>> G=nx.Graph ()

>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1), (2,3)1])

I'M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003

130 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

>>> print (nx.numeric_assortativity_coefficient (G, 'size'"))
1.0

Notes

This computes Eq. (21) in Ref. ! , for the mixing matrix of of the specified attribute.

References

degree_pearson_correlation_coefficient
degree_pearson_correlation_coefficient (G, x="out’, y="in’, weight=None, nodes=None)
Compute degree assortativity of graph.
Assortativity measures the similarity of connections in the graph with respect to the node degree.
This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function.
Parameters
* G (NetworkX graph)
* x (string (‘in’,’out’)) — The degree type for source node (directed graphs only).
* y (string (‘in’, out’)) — The degree type for target node (directed graphs only).

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

* nodes (list or iterable (optional)) — Compute pearson correlation of degrees only for speci-
fied nodes. The default is all nodes.

Returns r — Assortativity of graph by degree.

Return type float

Examples

>>> G=nx.path_graph (4)

>>> r=nx.degree_pearson_correlation_coefficient (G)
>>> print (" "$r)

-0.5

Notes

This calls scipy.stats.pearsonr.

I'M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003

4.2. Assortativity 131

https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

References

4.2.2 Average neighbor degree

average_neighbor_degree(G[, source, target, ...]) Returns the average degree of the neighborhood of each
node.

average_neighbor_degree
average_neighbor_degree (G, source="out’, target="out’, nodes=None, weight=None)
Returns the average degree of the neighborhood of each node.

The average degree of a node 1 is
i = —— >k
NG S

where N (1) are the neighbors of node i and k__j is the degree of node j which belongs to N (1) . For weighted
graphs, an analogous measure can be defined ',

1
kY= = L
nn,w i Z wl] k]
JEN(i)
where s_ 1 is the weighted degree of node i, w_{17} is the weight of the edge that links i and j and N (1)
are the neighbors of node 1.
Parameters
* G (NetworkX graph)

[73e)

* source (string (“in”|”out”)) — Directed graphs only. Use “in
node.

or “out’-degree for source

o9

* target (string (“in”1”out”)) — Directed graphs only. Use “in
node.

or “out’-degree for target

* nodes (list or iterable, optional) — Compute neighbor degree for specified nodes. The default
is all nodes in the graph.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1.

Returns d - A dictionary keyed by node with average neighbors degree value.

Return type dict

Examples

>>> G=nx.path_graph (4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2] [3]['weight']

|
w

I A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11):
3747-3752 (2004).

132 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#dict

NetworkX Reference, Release 2.0.dev20161129121305

>>> nx.average_neighbor_degree (G)

{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}

>>> nx.average_neighbor_degree (G, weight='weight')
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}

>>> G=nx.DiGraph ()

>>> nx.add_path(G, [0, 1, 2, 31)

>>> nx.average_neighbor_degree (G, source='in', target='in'")
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}

>>> nx.average_neighbor_degree (G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}

Notes

For directed graphs you can also specify in-degree or out-degree by passing keyword arguments.
See also:

average_degree_connectivity ()

References

4.2.3 Average degree connectivity

average_degree_connectivity(Gl, source, ...]) Compute the average degree connectivity of graph.

k_nearest_neighbors(Gl, source, target, ...]) Compute the average degree connectivity of graph.

average_degree_connectivity

average_degree_connectivity (G, source="in+out’, target="in+out’, nodes=None, weight=None)
Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted
graphs, an analogous measure can be computed using the weighted average neighbors degree defined in !, for a
node i, as

1
kY = — ik
nn,t i Z U‘)U k]
JEN()
where s_1 is the weighted degree of node i, w_ {17} is the weight of the edge that links 1 and j, and N (1)
are the neighbors of node 1.
Parameters
* G (NetworkX graph)

ul ”»

* source (“in”|”out”|”in+out” (default:’in+out”)) — Directed graphs only. Use “in”- or
“out”-degree for source node.

I A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11):
3747-3752 (2004).

4.2. Assortativity 133

NetworkX Reference, Release 2.0.dev20161129121305

* target (“in”|”out”|”in+out” (default:”in+out”) — Directed graphs only. Use “in”- or
“out”-degree for target node.

* nodes (list or iterable (optional)) — Compute neighbor connectivity for these nodes. The
default is all nodes.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1.

Returns d — A dictionary keyed by degree k with the value of average connectivity.
Return type dict

Raises ValueError - If either source or target are not one of ‘in’, ‘out’, or ‘in+out’.

Examples

>>> G=nx.path_graph (4)

>>> G.edge[l][2]['weight'] = 3

>>> nx.k_nearest_neighbors (G)

{l1: 2.0, 2: 1.5}

>>> nx.k_nearest_neighbors (G, weight='weight")
{l: 2.0, 2: 1.75}

See also:

neighbors_average_degree ()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also available as k_nearest_neighbors.

References

k_nearest_neighbors

k_nearest_neighbors (G, source="in+out’, target="in+out’, nodes=None, weight=None)
Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted
graphs, an analogous measure can be computed using the weighted average neighbors degree defined in !, for a

node i, as

1
nn,i S; E : wUk]

" GEN(H)

where s_1 is the weighted degree of node i, w_ {17} is the weight of the edge that links 1 and j, and N (1)

are the neighbors of node 1.
Parameters

* G (NetworkX graph)

! A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11):

3747-3752 (2004).

134 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#dict

NetworkX Reference, Release 2.0.dev20161129121305

ul ”»

* source (“in”|”out”|”in+out” (default:"in+out”)) — Directed graphs only. Use “in”- or
“out”-degree for source node.

o target (“in”|”out”|”in+out” (default:”in+out”) — Directed graphs only. Use “in”- or
“out”-degree for target node.

* nodes (list or iterable (optional)) — Compute neighbor connectivity for these nodes. The
default is all nodes.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1.

Returns d - A dictionary keyed by degree k with the value of average connectivity.
Return type dict

s

Raises ValueError —If either source or target are not one of ‘in’, ‘out’, or ‘in+out’.

Examples

>>> G=nx.path_graph (4)

>>> G.edge[l][2]['weight'] = 3

>>> nx.k_nearest_neighbors (G)

{l: 2.0, 2: 1.5}

>>> nx.k_nearest_neighbors (G, weight='weight')
{1: 2.0, 2: 1.75}

See also:

neighbors_average_degree ()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also available as k_nearest_neighbors.

References

4.2.4 Mixing

attribute mixing matrix(G, attribute[, ...]) Return mixing matrix for attribute.

degree_mixing_matrix(G[, x,y, weight, ...]) Return mixing matrix for attribute.

degree_mixing_dict(Gl, X, y, weight, nodes, ...]) Return dictionary representation of mixing matrix for de-
gree.

attribute mixing_ dict(G, attribute[, nodes, ...]) Return dictionary representation of mixing matrix for at-
tribute.

attribute_mixing_matrix
attribute_mixing matrix (G, attribute, nodes=None, mapping=None, normalized=True)
Return mixing matrix for attribute.
Parameters

* G (graph) — NetworkX graph object.

4.2. Assortativity 135

https://docs.python.org/2/library/stdtypes.html#dict

NetworkX Reference, Release 2.0.dev20161129121305

« attribute (string) — Node attribute key.

* nodes (list or iterable (optional)) — Use only nodes in container to build the matrix. The
default is all nodes.

» mapping (dictionary, optional) — Mapping from node attribute to integer index in matrix. If
not specified, an arbitrary ordering will be used.

* normalized (bool (default=False)) — Return counts if False or probabilities if True.
Returns m — Counts or joint probability of occurrence of attribute pairs.

Return type numpy array

degree_mixing_matrix
degree_mixing matrix (G, x="out’, y="in’, weight=None, nodes=None, normalized=True)
Return mixing matrix for attribute.
Parameters
* G (graph) — NetworkX graph object.
* X (string (‘in’, out’)) — The degree type for source node (directed graphs only).
* y (string (‘in’, out’)) — The degree type for target node (directed graphs only).

* nodes (/ist or iterable (optional)) — Build the matrix using only nodes in container. The
default is all nodes.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

* normalized (bool (default=False)) — Return counts if False or probabilities if True.
Returns m — Counts, or joint probability, of occurrence of node degree.

Return type numpy array

degree_mixing_dict
degree_mixing_dict (G, x="out’, y="in’, weight=None, nodes=None, normalized=False)
Return dictionary representation of mixing matrix for degree.
Parameters
* G (graph) — NetworkX graph object.
* x (string (‘in’,’out’)) — The degree type for source node (directed graphs only).
* y (string (‘in’, out’)) — The degree type for target node (directed graphs only).

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

» normalized (bool (default=False)) — Return counts if False or probabilities if True.
Returns d — Counts or joint probability of occurrence of degree pairs.

Return type dictionary

136 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

attribute_mixing_dict

attribute_mixing_dict (G, attribute, nodes=None, normalized=False)
Return dictionary representation of mixing matrix for attribute.

Parameters
* G (graph) — NetworkX graph object.
* attribute (string) — Node attribute key.

* nodes (list or iterable (optional)) — Unse nodes in container to build the dict. The default is
all nodes.

* normalized (bool (default=False)) — Return counts if False or probabilities if True.

Examples

>>> G=nx.Graph ()

>>> G.add_nodes_from([0,1],color="red")

>>> G.add_nodes_from([2,3],color="blue')

>>> G.add_edge (1, 3)

>>> d=nx.attribute_mixing_dict (G, 'color")

>>> print(d['red'] ['blue'])

1

>>> print(d['blue']l['red']) # d symmetric for undirected graphs
1

Returns d — Counts or joint probability of occurrence of attribute pairs.

Return type dictionary

4.3 Bipartite

This module provides functions and operations for bipartite graphs. Bipartite graphs B = (U, V, E) have two node
sets U, V and edges in E that only connect nodes from opposite sets. It is common in the literature to use an spatial
analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them
is with:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite

NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent
bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no
edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named “bipartite”
with values O or 1 to identify the sets each node belongs to.

For example:

>>> B = nx.Graph()

>>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite"

>>> B.add_nodes_from(['a','b"',"'c'], bipartite=1)

>>> B.add_edges_from([(1,'a"), (1,'b"), (2,'D"), (2,'c"), (3,'c"), (4,'a")])

4.3. Bipartite 137

NetworkX Reference, Release 2.0.dev20161129121305

Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that
belong to one set, in addition to the bipartite graph B. If B is connected, you can find the node sets using a two-
coloring algorithm:

>>> nx.1s_connected (B)
True
>>> pbottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) [’a’, ‘c’, ‘b’]

However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result
is correct:

>>> B.remove_edge (2, 'c")

>>> nx.is_connected (B)

False

>>> pbottom_nodes, top_nodes = bipartite.sets (B)

list(top_nodes) [1, 2, 4, ‘c’] list(bottom_nodes) [’a’, 3, ‘b’]

Using the “bipartite” node attribute, you can easily get the two node sets:

>>> top_nodes set (n for n,d in B.nodes (data=True) if d['bipartite']==0)
>>> pbottom_nodes = set (B) - top_nodes

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) [’a’, ‘c’, ‘b’]

So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to
one node set:

>>> print (round (bipartite.density (B, bottom_nodes),2))
0.42

>>> G = bipartite.projected_graph (B, top_nodes)

>>> list (G.edges())

[(1, 2), (1, 4)]

All bipartite graph generators in NetworkX build bipartite graphs with the “bipartite” node attribute. Thus, you can
use the same approach:

>>> RB = bipartite.random_graph(5, 7, 0.2)

>>> RB_top = set (n for n,d in RB.nodes (data=True) if d['bipartite']==0)
>>> RB_bottom set (RB) — RB_top

>>> list (RB_top)

(o, 1, 2, 3, 4]

>>> 1list (RB_bottom)

[5, 6, 7, 8, 9, 10, 11]

For other bipartite graph generators see the bipartite section of Graph generators.

4.3.1 Basic functions

Bipartite Graph Algorithms

is_bipartite(G) Returns True if graph G is bipartite, False if not.
is_bipartite_node_set(G, nodes) Returns True if nodes and G/nodes are a bipartition of G.
\ Continued on next page |

138 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

Table 4.15 — continued from previous page

sets(G) Returns bipartite node sets of graph G.
color(G) Returns a two-coloring of the graph.
density(B, nodes) Return density of bipartite graph B.
degrees(B, nodes[, weight]) Return the degrees of the two node sets in the bipartite
graph B.
is_bipartite

is_bipartite (G)
Returns True if graph G is bipartite, False if not.

Parameters G (NetworkX graph)

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)

>>> print (bipartite.is_bipartite(G))

True

See also:

color(),1is _bipartite node_set ()

is_bipartite_node_set
is_bipartite_node_set (G, nodes)
Returns True if nodes and G/nodes are a bipartition of G.
Parameters
* G (NetworkX graph)

* nodes (list or container) — Check if nodes are a one of a bipartite set.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)

>>> X = set ([1,3])

>>> bipartite.is_bipartite_node_set (G, X)

True

Notes

For connected graphs the bipartite sets are unique. This function handles disconnected graphs.

4.3. Bipartite 139

NetworkX Reference, Release 2.0.dev20161129121305

sets
sets (G)
Returns bipartite node sets of graph G.
Raises an exception if the graph is not bipartite.

Parameters G (NetworkX graph)

Returns (X,Y) — One set of nodes for each part of the bipartite graph.

Return type two-tuple of sets

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)

>>> X, Y = bipartite.sets (G)

>>> list (X)

[0, 2]

>>> list (Y)

[1, 31

See also:

color ()

color
color (G)
Returns a two-coloring of the graph.
Raises an exception if the graph is not bipartite.

Parameters G (NetworkX graph)

Returns color — A dictionary keyed by node with a 1 or 0 as data for each node color.

Return type dictionary

Raises exc:NetworkXError if the graph is not two-colorable.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)

>>> c = bipartite.color (G)

>>> print (c)

{0: 1, 1: 0, 2: 1, 3: 0}

You can use this to set a node attribute indicating the biparite set:

>>> nx.set_node_attributes (G, 'bipartite', c)
>>> print (G.node[0] ['bipartite'])

1

>>> print (G.node[l]['bipartite'])

0

140

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

density

density (B, nodes)
Return density of bipartite graph B.

Parameters

* G (NetworkX graph)

* nodes (list or container) — Nodes in one set of the bipartite graph.
Returns d — The bipartite density
Return type float

Examples

>>>
>>>
>>>
>>>
1.0
>>>
>>>
1.0

from networkx.algorithms import bipartite
G = nx.complete_bipartite_graph (3, 2)
X=set ([0,1,2])

bipartite.density (G, X)

Y=set ([3,4])
bipartite.density (G, Y)

See also:

color ()

degrees

degrees (B, nodes, weight=None)
Return the degrees of the two node sets in the bipartite graph B.

Parameters
* G (NetworkX graph)
* nodes (l/ist or container) — Nodes in one set of the bipartite graph.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1. The degree is the sum of
the edge weights adjacent to the node.

Returns (degX,degY) — The degrees of the two bipartite sets as dictionaries keyed by node.

Return type tuple of dictionaries

Examples

>>>
>>>
>>>
>>>
>>>
{0:

from networkx.algorithms import bipartite
G = nx.complete_bipartite_graph(3,2)
Y=set ([3,4])

degX, degY=bipartite.degrees (G, Y)

dict (degX)

2, 1: 2, 2: 2}

4.3. Bipartite 141

https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

See also:

color(),density ()

4.3.2 Matching

Provides functions for computing a maximum cardinality matching in a bipartite graph.

If you don’t care about the particular implementation of the maximum matching algorithm, simply use the
maximum_matching (). If you do care, you can import one of the named maximum matching algorithms directly.

For example, to find a maximum matching in the complete bipartite graph with two vertices on the left and three
vertices on the right:

>>> import networkx as nx

>>> G = nx.complete_bipartite_graph(2, 3)
>>> left, right = nx.bipartite.sets(G)
>>> list (left)

[0, 1]
>>> list (right)
[2, 3, 4]

>>> nx.bipartite.maximum_matching (G)
{0: 2, 1: 3, 2: 0, 3: 1}

The dictionary returned by maximum_matching () includes a mapping for vertices in both the left and right vertex
sets.

eppstein _matching(G) Returns the maximum cardinality matching of the bipartite
graph G.

hopcroft_karp_matching(G) Returns the maximum cardinality matching of the bipartite
graph G.

to_vertex_cover(G, matching) Returns the minimum vertex cover corresponding to the

given maximum matching of the bipartite graph G.

eppstein_matching
eppstein_matching (G)
Returns the maximum cardinality matching of the bipartite graph G.
Parameters G (NetworkX graph) — Undirected bipartite graph

Returns matches — The matching is returned as a dictionary, mat ching, such thatmatching[v]
== w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

Return type dictionary

Notes

This function is implemented with David Eppstein’s version of the algorithm Hopcroft-Karp algorithm (see
hopcroft_karp_matching ()), which originally appeared in the Python Algorithms and Data Structures
library (PADS).

See also:

hopcroft_karp matching()

142 Chapter 4. Algorithms

http://www.ics.uci.edu/~eppstein/PADS/ABOUT-PADS.txt
http://www.ics.uci.edu/~eppstein/PADS/ABOUT-PADS.txt

NetworkX Reference, Release 2.0.dev20161129121305

hopcroft_karp_matching
hopcroft_karp_matching (G)
Returns the maximum cardinality matching of the bipartite graph G.
Parameters G (NetworkX graph) — Undirected bipartite graph

Returns matches — The matching is returned as a dictionary, matches, such that matches [v]
== w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

Return type dictionary

Notes

This function is implemented with the Hopcroft—Karp matching algorithm for bipartite graphs.
See also:

eppstein_matching()

References

to_vertex_cover
to_vertex_cover (G, matching)
Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph G.
Parameters
* G (NetworkX graph) — Undirected bipartite graph

» matching (dictionary) — A dictionary whose keys are vertices in G and whose values are the
distinct neighbors comprising the maximum matching for G, as returned by, for example,
maximum_matching (). The dictionary must represent the maximum matching.

Returns vertex_cover — The minimum vertex cover in G.

Return type set

Notes

This function is implemented using the procedure guaranteed by Konig’s theorem, which proves an equivalence
between a maximum matching and a minimum vertex cover in bipartite graphs.

Since a minimum vertex cover is the complement of a maximum independent set for any graph, one can compute
the maximum independent set of a bipartite graph this way:

>>> import networkx as nx

>>> G = nx.complete_bipartite_graph(2, 3)

>>> matching = nx.bipartite.maximum_matching (G)

>>> vertex_cover = nx.bipartite.to_vertex_cover (G, matching)
>>> independent_set = set (G) - vertex_cover

>>> print (list (independent_set))

[2, 3, 4]

4.3. Bipartite 143

https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm
https://docs.python.org/2/library/stdtypes.html#set
http://en.wikipedia.org/wiki/K%C3%B6nig%27s_theorem_%28graph_theory%29

NetworkX Reference, Release 2.0.dev20161129121305

4.3.3 Matrix

Biadjacency matrices

biadjacency_matrix(G, row_order|, ...]) Return the biadjacency matrix of the bipartite graph G.

from _biadjacency_matrix(A[, create_using, ...]) Creates a new bipartite graph from a biadjacency matrix
given as a SciPy sparse matrix.

biadjacency_matrix
biadjacency_matrix (G, row_order, column_order=None, dtype=None, weight="weight’, format="csr’)
Return the biadjacency matrix of the bipartite graph G.

Let G = (U,V,E) be a bipartite graph with node sets U = u_{1},...,u_{r} and V =
v_{1},...,v_{s}. The biadjacency matrix l'is the r x s matrix B in which b_{1i, j} = 1 if, and only
if, (u_i,v_7) in E.If the parameter weight is not None and matches the name of an edge attribute, its
value is used instead of 1.

Parameters
* G (graph) — A NetworkX graph
* row_order (/ist of nodes) — The rows of the matrix are ordered according to the list of nodes.

* column_order (/ist, optional) — The columns of the matrix are ordered according to the list
of nodes. If column_order is None, then the ordering of columns is arbitrary.

* dtype (NumPy data-type, optional) — A valid NumPy dtype used to initialize the array. If
None, then the NumPy default is used.

» weight (string or None, optional (default="weight’)) — The edge data key used to provide
each value in the matrix. If None, then each edge has weight 1.

e format (str in {‘bsr’, ‘csr’, ‘csc’, ‘coo’, ‘lil’, ‘dia’, ‘dok’}) — The type of the matrix to be
returned (default ‘csr’). For some algorithms different implementations of sparse matrices
can perform better. See > for details.

Returns M - Biadjacency matrix representation of the bipartite graph G.

Return type SciPy sparse matrix

Notes

No attempt is made to check that the input graph is bipartite.

For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with
ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices
where the rows of one of them are the columns of the other, and then add one to the transpose of the other.

See also:

adjacency_matrix (), from biadjacency_matrix/()

! http:/en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

2 Scipy Dev. References, “Sparse Matrices”, http://docs.scipy.org/doc/scipy/reference/sparse.html

144 Chapter 4. Algorithms

https://docs.python.org/2/library/constants.html#None
http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
http://docs.scipy.org/doc/scipy/reference/sparse.html

NetworkX Reference, Release 2.0.dev20161129121305

References

from_biadjacency_matrix
from biadjacency_matrix (A, create_using=None, edge_attribute="weight’)
Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.
Parameters
* A (scipy sparse matrix) — A biadjacency matrix representation of a graph
* create_using (NetworkX graph) — Use specified graph for result. The default is Graph()

* edge_attribute (string) — Name of edge attribute to store matrix numeric value. The data
will have the same type as the matrix entry (int, float, (real,imag)).

Notes

The nodes are labeled with the attribute bipartite setto an integer O or 1 representing membership in part O
or part 1 of the bipartite graph.

If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph and the
entries of A are of type int, then this function returns a multigraph (of the same type as create_using)
with parallel edges. In this case, edge_attribute will be ignored.

See also:

biadjacency_matrix (), from_numpy_matrix()
References

[1] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

4.3.4 Projections

One-mode (unipartite) projections of bipartite graphs.

projected_graph(B, nodes[, multigraph]) Returns the projection of B onto one of its node sets.

weighted projected _graph(B, nodes|, ratio]) Returns a weighted projection of B onto one of its node
sets.

collaboration weighted projected_graph(B, Newman’s weighted projection of B onto one of its node

nodes) sets.

overlap_weighted_projected_graph(B, Overlap weighted projection of B onto one of its node sets.

nodes|, ...])

generic_weighted_projected_graph(B, Weighted projection of B with a user-specified weight func-

nodes|, ...]) tion.

projected_graph

projected_graph (B, nodes, multigraph=False)
Returns the projection of B onto one of its node sets.

Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their

4.3. Bipartite 145

https://docs.python.org/2/library/functions.html#int
http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

NetworkX Reference, Release 2.0.dev20161129121305

attributes and are connected in G if they have a common neighbor in B.
Parameters
* B (NetworkX graph) — The input graph should be bipartite.
* nodes (l/ist or iterable) — Nodes to project onto (the “bottom” nodes).

» multigraph (bool (default=False)) — If True return a multigraph where the multiple edges
represent multiple shared neighbors. They edge key in the multigraph is assigned to the
label of the neighbor.

Returns Graph — A graph that is the projection onto the given nodes.

Return type NetworkX graph or multigraph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph (4)

>>> G = bipartite.projected_graph (B, [1,3])
>>> 1ist (G)

[1, 3]

>>> list (G.edges())

[(1, 3)]

If nodes a, and b are connected through both nodes 1 and 2 then building a multigraph results in two edges in
the projection onto [a,b‘]:

>>> B = nx.Graph()

>>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)1)
>>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True)
>>> print ([sorted((u,v)) for u,v in G.edges()])

[['a', 'D'], ['a', 'b']]

Notes

No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of
the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned
with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a
directed path between the nodes.

The graph and node properties are (shallow) copied to the projected graph.
See also:

is_bipartite(), is_bipartite_node_set (), sets (), weighted projected_graph(),
collaboration weighted projected _graph(),overlap_weighted projected _graph(),
generic_weighted _projected _graph ()

weighted_projected_graph

weighted_projected_graph (B, nodes, ratio=False)
Returns a weighted projection of B onto one of its node sets.

146 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights
representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared
neighbors if ratio=True !. The nodes retain their attributes and are connected in the resulting graph if they have
an edge to a common node in the original graph.

Parameters
* B (NetworkX graph) — The input graph should be bipartite.
* nodes (list or iterable) — Nodes to project onto (the “bottom” nodes).

* ratio (Bool (default=False)) — If True, edge weight is the ratio between actual shared neigh-
bors and possible shared neighbors. If False, edges weight is the number of shared neigh-
bors.

Returns Graph — A graph that is the projection onto the given nodes.
Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite

>>> B = nx.path_graph(4)

>>> G = bipartite.weighted_projected_graph (B, [1,31])

>>> 1ist (G)

[1, 31

>>> list (G.edges (data=True))

[(1, 3, {'weight': 1})]

>>> G = bipartite.weighted_projected_graph (B, [1,3], ratio=True)
>>> list (G.edges (data=True))

[(1, 3, {'weight': 0.5})]

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(),is_bipartite_node_set (),sets(),collaboration _weighted projected _graph(),
overlap_weighted projected _graph(), generic_weighted projected _graph(),
projected _graph ()

References

collaboration_weighted_projected_graph

collaboration_weighted projected_graph (B, nodes)
Newman'’s weighted projection of B onto one of its node sets.

! Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications.

4.3. Bipartite 147

NetworkX Reference, Release 2.0.dev20161129121305

The collaboration weighted projection is the projection of the bipartite network B onto the specified nodes with
weights assigned using Newman’s collaboration model ':
8y O
Wy,u =
k ky —1

where v and u are nodes from the same bipartite node set, and w is a node of the opposite node set. The value
k_w is the degree of node w in the bipartite network and delta_{v}"{w} is 1 if node v is linked to node w
in the original bipartite graph or 0 otherwise.

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in
the original bipartite graph.

Parameters

* B (NetworkX graph) — The input graph should be bipartite.

* nodes (list or iterable) — Nodes to project onto (the “bottom” nodes).
Returns Graph — A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite

>>> B = nx.path_graph(5)

>>> B.add_edge (1, 5)

>>> G = bipartite.collaboration_weighted_projected_graph (B, [0, 2, 4, 5])
>>> list (G)

[0, 2, 4, 5]

>>> for edge in G.edges (data=True): print (edge)

(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})
Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set (), sets (), weighted projected _graph(),
overlap_weighted _projected_graph(), generic_weighted _projected _graph(),
projected_graph ()

References

overlap_weighted_projected_graph

overlap_weighted projected_graph (B, nodes, jaccard=True)

Overlap weighted projection of B onto one of its node sets.

I Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with
weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite
network ':

or = N@NN@)

" IN(u) UN(v)]
or if the parameter ‘jaccard’ is False, the fraction of common neighbors by minimum of both nodes degree in
the original bipartite graph !:
o IN@NN@)
© o min(IN(u)], [N (v)])

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in
the original bipartite graph.

Parameters
* B (NetworkX graph) — The input graph should be bipartite.
* nodes (list or iterable) — Nodes to project onto (the “bottom” nodes).
* jaccard (Bool (default=True))

Returns Graph — A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite

>>> B = nx.path_graph(5)

>>> G bipartite.overlap_weighted_projected_graph (B, [0, 2, 4])

>>> list (G)

[0, 2, 4]

>>> list (G.edges (data=True))

[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]

>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> list (G.edges (data=True))

[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set (), sets (), weighted projected _graph(),
collaboration_weighted projected _graph(),generic_weighted _projected_graph(),
projected _graph ()

! Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications.

4.3. Bipartite 149

NetworkX Reference, Release 2.0.dev20161129121305

References

generic_weighted_projected_graph
generic_weighted_projected_graph (B, nodes, weight_function=None)
Weighted projection of B with a user-specified weight function.

The bipartite network B is projected on to the specified nodes with weights computed by a user-specified func-
tion. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a
float.

The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node
in the original graph.

Parameters
* B (NetworkX graph) — The input graph should be bipartite.
* nodes (list or iterable) — Nodes to project onto (the “bottom” nodes).

» weight_function (function) — This function must accept as parameters the same input graph
that this function, and two nodes; and return an integer or a float. The default function
computes the number of shared neighbors.

Returns Graph — A graph that is the projection onto the given nodes.
Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):

unbrs = set (G[u])
vnbrs = set (G[v])
return float (len(unbrs & vnbrs)) / len(unbrs | vnbrs)

>>> def my_weight (G, u, v, weight='weight'):
w =0
for nbr in set (G[u]) & set (G[v]):
w += G.edge[u] [nbr].get (weight, 1) + G.edge[v][nbr].get (weight, 1)
return w

>>> # A complete bipartite graph with 4 nodes and 4 edges

>>> B = nx.complete_bipartite_graph(2,2)

>>> # Add some arbitrary weight to the edges

>>> for i, (u,v) in enumerate (B.edges()) :
B.edge[u] [v] ['weight'] = 1 + 1

>>> for edge in B.edges (data=True) :
print (edge)

2, {'weight': 1})
3, {'weight': 2})
2, {'weight': 3})
3, {'weight': 4})
#
G

~ ~

o o -
< .

~

>>> Without specifying a function, the weight is equal to # shared partners

>>> = bipartite.generic_weighted_projected_graph(B, [0, 11])

150 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

>>> print (list (G.edges (data=True)))

[(0, 1, {'weight': 2})]

>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_
—function=jaccard)

>>> print (list (G.edges (data=True)))

[(0, 1, {'weight': 1.0})]

>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my__
—weilght)

>>> print (list (G.edges (data=True)))

[(0, 1, {'weight': 10})]

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set (), sets (), weighted projected _graph(),
collaboration_weighted projected _graph(),overlap_weighted _projected_graph(),
projected_graph ()

4.3.5 Spectral

Spectral bipartivity measure.

spectral_bipartivity(G[, nodes, weight]) Returns the spectral bipartivity.

spectral_bipartivity

spectral_bipartivity (G, nodes=None, weight="weight’)

Returns the spectral bipartivity.
Parameters
* G (NetworkX graph)

* nodes (list or container optional(default is all nodes)) — Nodes to return value of spectral
bipartivity contribution.

» weight (string or None optional (default = ‘weight’)) — Edge data key to use for edge
weights. If None, weights set to 1.

Returns sb — A single number if the keyword nodes is not specified, or a dictionary keyed by node
with the spectral bipartivity contribution of that node as the value.

Return type float or dict

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph (4)

4.3. Bipartite 151

NetworkX Reference, Release 2.0.dev20161129121305

>>> bipartite.spectral_bipartivity (G)
1.0

Notes

This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs.
See also:

color ()

References

4.3.6 Clustering

clustering(G[, nodes, mode]) Compute a bipartite clustering coefficient for nodes.
average_clustering(G[, nodes, mode]) Compute the average bipartite clustering coefficient.
latapy clustering(G[, nodes, mode]) Compute a bipartite clustering coefficient for nodes.
robins_alexander_clustering(QG) Compute the bipartite clustering of G.

clustering

clustering (G, nodes=None, mode="dot’)
Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as ':

ZvEN(N(v)) Cuv
[N (N (u))|

Cy =

where N (N (u)) are the second order neighbors of u in G excluding u, and c__ {uv} is the pairwise clustering
coefficient between nodes u and v.

The mode selects the function for c_ {uv} which can be:

dot:
. _INWNNE)
N (u) U N (v)]
. [N (u) NN (v)
0 min(IN (u)|, [N (v)])

Parameters

* G (graph) — A bipartite graph

! Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social
Networks 30(1), 31-48.

152 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#min
https://docs.python.org/2/library/functions.html#max

NetworkX Reference, Release 2.0.dev20161129121305

* nodes (list or iterable (optional)) — Compute bipartite clustering for these nodes. The default
is all nodes in G.

* mode (string) — The pariwise bipartite clustering method to be used in the computation. It
must be “dot”, “max”, or “min”.

Returns clustering — A dictionary keyed by node with the clustering coefficient value.

Return type dictionary

Examples

>>> from networkx.algorithms import bipartite

>>> G = nx.path_graph(4) # path graphs are bipartite
>>> ¢ = bipartite.clustering(G)

>>> c[0]

0.5

>>> c = bipartite.clustering (G, mode="min")

>>> c[0]

1.0

See also:

robins_alexander_clustering (), square_clustering (), average_clustering()

References

average_clustering
average_clustering (G, nodes=None, mode="dot’)
Compute the average bipartite clustering coefficient.
A clustering coefficient for the whole graph is the average,
1
C==> cn
veG
where n is the number of nodes in G.
Similar measures for the two bipartite sets can be defined !
Cx =g 2
X = Tvr Cy,
|X‘ veX ’
where X is a bipartite set of G.
Parameters
* G (graph) — a bipartite graph

* nodes (list or iterable, optional) — A container of nodes to use in computing the average.
The nodes should be either the entire graph (the default) or one of the bipartite sets.

* mode (string) — The pariwise bipartite clustering method. It must be “dot”, “max”, or “min”

I Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social

Networks 30(1), 31-48.

4.3. Bipartite

153

NetworkX Reference, Release 2.0.dev20161129121305

Returns clustering — The average bipartite clustering for the given set of nodes or the entire graph
if no nodes are specified.

Return type float

Examples

>>> from networkx.algorithms import bipartite

>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)

0.75

>>> X,Y=bipartite.sets (G)

>>> bipartite.average_clustering (G, X)

0.0

>>> bipartite.average_clustering(G,Y)

1.0

See also:

clustering()

Notes

The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets (“top” or
“bottom”) in order to compute the correct average bipartite clustering coefficients.

References

latapy_clustering

latapy_clustering (G, nodes=None, mode="dot’)

Compute a bipartite clustering coefficient for nodes.
The bipartie clustering coefficient is a measure of local density of connections defined as ':

ZvEN(N(v)) Cuv
[N (N (u))|

Cy =
where N (N (u)) are the second order neighbors of u in G excluding u, and c_ {uv} is the pairwise clustering
coefficient between nodes u and v.

The mode selects the function for c_ {uv} which can be:

dot:

min:

o INwAN)
= in(N G N)

! Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social
Networks 30(1), 31-48.

154

Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#min

NetworkX Reference, Release 2.0.dev20161129121305

max:

o IN@ANE)
Y maz(IN (u)], [N (v)])

Parameters
* G (graph) — A bipartite graph

* nodes (list or iterable (optional)) — Compute bipartite clustering for these nodes. The default
is all nodes in G.

* mode (string) — The pariwise bipartite clustering method to be used in the computation. It
must be “dot”, “max”, or “min”.

Returns clustering — A dictionary keyed by node with the clustering coefficient value.

Return type dictionary

Examples

>>> from networkx.algorithms import bipartite

>>> G = nx.path_graph(4) # path graphs are bipartite
>>> ¢ = bipartite.clustering(G)

>>> c[0]

0.5

>>> ¢ = bipartite.clustering (G, mode="min")

>>> c[0]

1.0

See also:

robins_alexander_clustering (), square_clustering (), average_clustering()

References

robins_alexander_clustering

robins_alexander_clustering (G)
Compute the bipartite clustering of G.

Robins and Alexander ! defined bipartite clustering coefficient as four times the number of four cycles C_4
divided by the number of three paths L_ 3 in a bipartite graph:

4*04

CCy = I

Parameters G (graph) — a bipartite graph
Returns clustering — The Robins and Alexander bipartite clustering for the input graph.

Return type float

! Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Compu-
tational & Mathematical Organization Theory 10(1), 69-94.

4.3. Bipartite 155

https://docs.python.org/2/library/functions.html#max
https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> from networkx.algorithms import bipartite

>>> G = nx.davis_southern_women_graph ()

>>> print (round (bipartite.robins_alexander_clustering(G), 3))
0.468

See also:

latapy_clustering (), square_clustering()

References

4.3.7 Redundancy

Node redundancy for bipartite graphs.

node_redundancy(G[, nodes])

in the bipartite graph G.

node_redundancy

node_redundancy (G, nodes=None)

Computes the node redundancy coefficients for the nodes in the bipartite graph G.

The redundancy coefficient of a node v is the fraction of pairs of neighbors of v that are both linked to other

nodes. In a one-mode projection these nodes would be linked together even if v were not there.

More formally, for any vertex v, the redundancy coefficient of ‘v*is defined by

 [{{u,w} € N(w), 30’ £ v, (v',u) € Eand (v',w) € E}|
B \N(v)\(UQV(v)I—l) ’

re(v)

where N (v) is the set of neighbors of v in G.
Parameters
* G (graph) — A bipartite graph

* nodes (l/ist or iterable (optional)) — Compute redundancy for these nodes. The default is all
nodes in G.

Returns redundancy — A dictionary keyed by node with the node redundancy value.

Return type dictionary

Examples

Compute the redundancy coefficient of each node in a graph:

>>> import networkx as nx

>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph (4)

>>> rc = bipartite.node_redundancy (G)

>>> rc[0]

1.0

156

Chapter 4. Algorithms

Computes the node redundancy coefficients for the nodes

NetworkX Reference, Release 2.0.dev20161129121305

Compute the average redundancy for the graph:

>>> import networkx as nx

>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph (4)

>>> rc = bipartite.node_redundancy (G)

>>> sum(rc.values()) / len(G)

1.0

Compute the average redundancy for a set of nodes:

>>> import networkx as nx

>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)

>>> rc = bipartite.node_redundancy (G)

>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes) / len(nodes)
1.0

Raises NetworkXError — If any of the nodes in the graph (or in nodes, if specified) has (out-
)degree less than two (which would result in division by zero, according to the definition of the
redundancy coefficient).

References

4.3.8 Centrality

closeness_centrality(G, nodes[, normalized]) Compute the closeness centrality for nodes in a bipartite
network.

degree_centrality(G, nodes) Compute the degree centrality for nodes in a bipartite net-
work.

betweenness_centrality(G, nodes) Compute betweenness centrality for nodes in a bipartite
network.

closeness_centrality
closeness_centrality (G, nodes, normalized=True)
Compute the closeness centrality for nodes in a bipartite network.

The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected
to all other nodes in the connected component containing that node.

Parameters
* G (graph) — A bipartite network
* nodes (list or container) — Container with all nodes in one bipartite node set.
* normalized (bool, optional) — If True (default) normalize by connected component size.
Returns closeness — Dictionary keyed by node with bipartite closeness centrality as the value.
Return type dictionary
See also:

betweenness_centrality (), degree_centrality(),sets (), is_bipartite()

4.3. Bipartite 157

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains
all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance
for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own
set . Thus the closeness centrality for node v in the two bipartite sets U with n nodes and V with m nodes is

20n —1
Cy = %,forv eU,
20m — 1
CU:%,MGV’

where d is the sum of the distances from v to all other nodes.
Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the values to normalized further to n-1 / size(G)-1
where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely
connected, this algorithm computes the closeness centrality for each connected part separately.

References

degree_centrality
degree_centrality (G, nodes)
Compute the degree centrality for nodes in a bipartite network.
The degree centrality for a node v is the fraction of nodes connected to it.
Parameters
* G (graph) — A bipartite network
* nodes (/ist or container) — Container with all nodes in one bipartite node set.
Returns centrality — Dictionary keyed by node with bipartite degree centrality as the value.
Return type dictionary
See also:

betweenness_centrality (), closeness_centrality(),sets(),is_bipartite ()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains
all nodes from both bipartite node sets.

For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree
(which is n—1 where n is the number of nodes in G).

! Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. Tn Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf

158 Chapter 4. Algorithms

http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX Reference, Release 2.0.dev20161129121305

In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the
opposite node set . The degree centrality for a node v in the bipartite sets U with n nodes and V with m nodes is

g, = dea)
m

,forv € U,

dy

= deg(v) forv € V,
n b) b

where deg (v) is the degree of node v.

References

betweenness_centrality
betweenness_centrality (G, nodes)
Compute betweenness centrality for nodes in a bipartite network.
Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v.

Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by
the relative size of the two node sets '.

Let n be the number of nodes in the node set U and m be the number of nodes in the node set V, then nodes in U
are normalized by dividing by

%[m2(3 124 s+ 1)(2— 5 — 1) — £(25 — £+ 3)],
where

s=Mn—-1)+m,t=(n—-1) modm,

and nodes in V are normalized by dividing by

S0+ 1) 0+ 1)(2r —p—1) (2~ 7 + 3],

where,
p=(m—1)+n,r=(m—1) mod n.

Parameters
* G (graph) — A bipartite graph
* nodes (list or container) — Container with all nodes in one bipartite node set.
Returns betweenness — Dictionary keyed by node with bipartite betweenness centrality as the value.
Return type dictionary
See also:

degree_centrality(),closeness_centrality(),sets(),1is_bipartite()

! Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf

! Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf

4.3. Bipartite 159

http://www.steveborgatti.com/papers/bhaffiliations.pdf
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains

all nodes from both node sets.

References

4.3.9 Generators

Generators and functions for bipartite graphs.

complete bipartite_graph(nl, n2|[,

ate_using])

cre-

Return the complete bipartite graph K_{n_1,n_2}.

configuration_model(aseq, bseql, ...])

Return a random bipartite graph from two given degree se-
quences.

havel_hakimi_graph(aseq, bseq[, create_using])

Return a bipartite graph from two given degree sequences
using a Havel-Hakimi style construction.

reverse_havel hakimi_graph(aseq, bseql, ...])

Return a bipartite graph from two given degree sequences
using a Havel-Hakimi style construction.

alternating havel_ hakimi_graph(aseq, bseq|,

)

Return a bipartite graph from two given degree sequences
using an alternating Havel-Hakimi style construction.

preferential_attachment_graph(aseq, pl, ...])

Create a bipartite graph with a preferential attachment
model from a given single degree sequence.

random_graph(n, m, p[, seed, directed])

Return a bipartite random graph.

gnmk_random_graph(n, m, k[, seed, directed])

Return a random bipartite graph G_{n,m.k}.

complete_bipartite_graph

complete_bipartite_graph (nl, n2, create_using=None)

Return the complete bipartite graph K_{n_1,n_2}.

Composed of two partitions with n_1 nodes in the first and n_2 nodes in the second. Each node in the first is

connected to each node in the second.

Parameters

* nl (integer) — Number of nodes for node set A.

* n2 (integer) — Number of nodes for node set B.

* create_using (NetworkX graph instance, optional) — Return graph of this type.

Notes

Node labels are the integers Oton_1 + n_2 -1.

The nodes are assigned the attribute ‘bipartite’ with the value O or 1 to indicate which bipartite set the node

belongs to.

160

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

configuration_model
configuration_model (aseq, bseq, create_using=None, seed=None)
Return a random bipartite graph from two given degree sequences.
Parameters

* aseq (list) — Degree sequence for node set A.
* bseq (list) — Degree sequence for node set B.
* create_using (NetworkX graph instance, optional) — Return graph of this type.
* seed (integer, optional) — Seed for random number generator.
* Nodes from the set A are connected to nodes in the set B by
* choosing randomly from the possible free stubs, one in A and

e one in B.

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value O or 1 to indicate which bipartite set the node
belongs to.

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

havel_hakimi_graph
havel hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the
highest degree nodes in set B until all stubs are connected.

Parameters
* aseq (/ist) — Degree sequence for node set A.
* bseq (list) — Degree sequence for node set B.

* create_using (NetworkX graph instance, optional) — Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value O or 1 to indicate which bipartite set the node
belongs to.

4.3. Bipartite 161

NetworkX Reference, Release 2.0.dev20161129121305

reverse_havel_hakimi_graph

reverse_havel_ hakimi_graph (aseq, bseq, create_using=None)

Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the
lowest degree nodes in set B until all stubs are connected.

Parameters
* aseq (/ist) — Degree sequence for node set A.
* bseq (list) — Degree sequence for node set B.

* create_using (NetworkX graph instance, optional) — Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value O or 1 to indicate which bipartite set the node
belongs to.

alternating_havel_hakimi_graph

alternating havel_hakimi_graph (aseq, bseq, create_using=None)

Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to
alternatively the highest and the lowest degree nodes in set B until all stubs are connected.

Parameters
* aseq (list) — Degree sequence for node set A.
* bseq (list) — Degree sequence for node set B.

* create_using (NetworkX graph instance, optional) — Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value O or 1 to indicate which bipartite set the node
belongs to.

162

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

preferential_attachment_graph
preferential_attachment_graph (aseq, p, create_using=None, seed=None)
Create a bipartite graph with a preferential attachment model from a given single degree sequence.
Parameters
* aseq (list) — Degree sequence for node set A.
* p (float) — Probability that a new bottom node is added.
* create_using (NetworkX graph instance, optional) — Return graph of this type.

* seed (integer, optional) — Seed for random number generator.

References
Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

random_graph
random_graph (n, m, p, seed=None, directed=False)
Return a bipartite random graph.
This is a bipartite version of the binomial (Erdés-Rényi) graph.
Parameters
* n (int) — The number of nodes in the first bipartite set.
* m (int) — The number of nodes in the second bipartite set.
* p (float) — Probability for edge creation.
* seed (int, optional) — Seed for random number generator (default=None).

* directed (bool, optional (default=False)) — If True return a directed graph

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The bipartite random graph algorithm chooses each of the n*m (undirected) or 2*nm (directed) possible edges
with probability p.

This algorithm is O(n+m) where m is the expected number of edges.

The nodes are assigned the attribute ‘bipartite’ with the value O or 1 to indicate which bipartite set the node
belongs to.

See also:

gnp_random_graph (), configuration_model ()

4.3. Bipartite 163

NetworkX Reference, Release 2.0.dev20161129121305

References

gnmk_random_graph

gnmk_random_graph (n, m, k, seed=None, directed=False)
Return a random bipartite graph G_{n,m,k}.

Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and

k edges.
Parameters
* n (int) — The number of nodes in the first bipartite set.
* m (int) — The number of nodes in the second bipartite set.
* k (int) — The number of edges
* seed (int, optional) — Seed for random number generator (default=None).
o directed (bool, optional (default=False)) — If True return a directed graph
Examples

from networkx.algorithms import bipartite G = bipartite.gnmk_random_graph(10,20,50)
See also:

gnm_random_graph ()

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

If k > m * n then a complete bipartite graph is returned.
This graph is a bipartite version of the G_ { nm} random graph model.

4.3.10 Covering

Functions related to graph covers.

min_edge_cover(G[, matching_algorithm]) Returns a set of edges which constitutes the minimum edge
cover of the graph.

min_edge_cover
min_edge_cover (G, matching_algorithm=None)
Returns a set of edges which constitutes the minimum edge cover of the graph.

The smallest edge cover can be found in polynomial time by finding a maximum matching and extending it
greedily so that all nodes are covered.

Parameters

* G (NetworkX graph) — An undirected bipartite graph.

164 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

» matching_algorithm (function) — A function that returns a maximum cardinality matching
in a given bipartite graph. The function must take one input, the graph G, and return a dic-
tionary mapping each node to its mate. If not specified, hopcroft_karp _matching()
will be used. Other possibilities include eppstein_matching (),

Returns A set of the edges in a minimum edge cover of the graph, given as pairs of nodes. It contains
both the edges (u, v) and (v, u) for given nodes u and v among the edges of minimum edge
cover.

Return type set

Notes

An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of
the set. A minimum edge cover is an edge covering of smallest cardinality.

Due to its implementation, the worst-case running time of this algorithm is bounded by the worst-case running
time of the function matching_algorithm.

4.4 Boundary

Routines to find the boundary of a set of nodes.

An edge boundary is a set of edges, each of which has exactly one endpoint in a given set of nodes (or, in the case of
directed graphs, the set of edges whose source node is in the set).

A node boundary of a set S of nodes is the set of (out-)neighbors of nodes in S that are outside S.

edge_boundary(G, nbunchl[, nbunch2, data, ...]) Returns the edge boundary of nbunchl.

node_boundary(G, nbunchl[, nbunch2]) Returns the node boundary of nbunchl.

4.4.1 edge_boundary
edge_boundary (G, nbunchl, nbunch2=None, data=False, keys=False, default=None)
Returns the edge boundary of nbunchl.

The edge boundary of a set S with respect to a set T is the set of edges (u, v) such that ¥ is in S and v is in 7. If
T is not specified, it is assumed to be the set of all nodes not in S.

Parameters
* G (NetworkX graph)

* nbunchl (iterable) — Iterable of nodes in the graph representing the set of nodes whose edge
boundary will be returned. (This is the set S from the definition above.)

* nbunch?2 (iterable) — Iterable of nodes representing the target (or “exterior”) set of nodes.
(This is the set T from the definition above.) If not specified, this is assumed to be the set of
all nodes in G not in nbunch1.

keys (bool) — This parameter has the same meaning as in Mult iGraph.edges ().

e data (bool or object) — This parameter has the same meaning as in
MultiGraph.edges ().

default (object) — This parameter has the same meaning as in MultiGraph.edges ().

4.4. Boundary 165

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

Returns An iterator over the edges in the boundary of nbunchl with respect to nbunch2. If
keys, data, or default are specified and G is a multigraph, then edges are returned with
keys and/or data, as in MultiGraph.edges ().

Return type iterator

Notes

Any element of nbunch that is not in the graph G will be ignored.

nbunchl and nbunch?2 are usually meant to be disjoint, but in the interest of speed and generality, that is not
required here.

4.4.2 node_boundary
node_boundary (G, nbunchl, nbunch2=None)
Returns the node boundary of nbunchl.

The node boundary of a set S with respect to a set 7 is the set of nodes v in 7 such that for some u in S, there is
an edge joining u to v. If T is not specified, it is assumed to be the set of all nodes not in S.

Parameters
* G (NetworkX graph)

* nbunchl (iterable) — Iterable of nodes in the graph representing the set of nodes whose node
boundary will be returned. (This is the set S from the definition above.)

* nbunch?2 (iterable) — Iterable of nodes representing the target (or “exterior”) set of nodes.
(This is the set T from the definition above.) If not specified, this is assumed to be the set of
all nodes in G not in nbunch1.

Returns The node boundary of nbunch1 with respect to nbunch?2.

Return type set

Notes

Any element of nbunch that is not in the graph G will be ignored.

nbunchl and nbunch?2 are usually meant to be disjoint, but in the interest of speed and generality, that is not
required here.

4.5 Centrality

4.5.1 Degree

degree_centrality(G) Compute the degree centrality for nodes.
in_degree_centrality(QG) Compute the in-degree centrality for nodes.
out_degree_centrality(G) Compute the out-degree centrality for nodes.

166 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

degree_centrality
degree_centrality (G)
Compute the degree centrality for nodes.
The degree centrality for a node v is the fraction of nodes it is connected to.
Parameters G (graph) — A networkx graph
Returns nodes — Dictionary of nodes with degree centrality as the value.
Return type dictionary
See also:

betweenness_centrality (), load _centrality(),eigenvector_centrality/()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

in_degree_centrality
in_degree_ centrality (G)
Compute the in-degree centrality for nodes.
The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.
Parameters G (graph) — A NetworkX graph
Returns nodes — Dictionary of nodes with in-degree centrality as values.
Return type dictionary
Raises NetworkXNotImplemented: — If G is undirected.
See also:

degree_centrality (), out_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

out_degree_centrality

out_degree_centrality (G)
Compute the out-degree centrality for nodes.

The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.

4.5. Centrality 167

NetworkX Reference, Release 2.0.dev20161129121305

Parameters G (graph) — A NetworkX graph
Returns nodes — Dictionary of nodes with out-degree centrality as values.
Return type dictionary
Raises NetworkXNotImplemented: — If G is undirected.
See also:

degree_centrality (), in_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

4.5.2 Eigenvector

eigenvector_centrality(G[, max_iter, tol, ...]) Compute the eigenvector centrality for the graph G.
eigenvector_centrality numpy(G[, weight, ..]) Compute the eigenvector centrality for the graph G.
katz_centrality(Gl, alpha, beta, max_iter, ...]) Compute the Katz centrality for the nodes of the graph G.
katz_centrality_numpy(G[, alpha, beta, ...]) Compute the Katz centrality for the graph G.

eigenvector_centrality
eigenvector_centrality (G, max_iter=100, tol=1e-006, nstart=None, weight="weight’)
Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvec-
tor centrality for node 1 is

Ax = Xx

where A is the adjacency matrix of the graph G with eigenvalue A. By virtue of the Perron—Frobenius theorem,
there is a unique and positive solution if A is the largest eigenvalue associated with the eigenvector of the
adjacency matrix A (%).

Parameters
* G (graph) — A networkx graph
* max_iter (integer, optional) — Maximum number of iterations in power method.
¢ tol (float, optional) — Error tolerance used to check convergence in power method iteration.
* nstart (dictionary, optional) — Starting value of eigenvector iteration for each node.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

Returns nodes — Dictionary of nodes with eigenvector centrality as the value.

Return type dictionary

2 Mark E. J. Newman. Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169.

168 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.path_graph (4)

>>> centrality = nx.eigenvector_centrality (G)

>>> sorted((v, ' '.format (c)) for v, c in centrality.items())
[(0, '0.37"), (1, '0.60"), (2, '0.60"), (3, '0.37")]

Raises
* NetworkXPointlessConcept — If the graph G is the null graph.
* NetworkXError —If each value in nstart is zero.
* PowerIterationFailedConvergence — If the algorithm fails to converge to the
specified tolerance within the specified number of iterations of the power iteration method.
See also:

eigenvector_centrality_numpy (),pagerank (),hits ()

Notes

The measure was introduced by ' and is discussed in 2.

The power iteration method is used to compute the eigenvector and convergence is not guaranteed. Our method
stops after max_iter iterations or when the change in the computed vector between two iterations is smaller
than an error tolerance of G.number_of_nodes () * tol. This implementation uses (A + I) rather than
the adjacency matrix A because it shifts the spectrum to enable discerning the correct eigenvector even for
networks with multiple dominant eigenvalues.

For directed graphs this is “left” eigenvector centrality which corresponds to the in-edges in the graph. For
out-edges eigenvector centrality first reverse the graph with G. reverse ().

References

eigenvector_centrality_numpy
eigenvector_centrality_ numpy (G, weight="weight’, max_iter=50, tol=0)
Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvec-
tor centrality for node 1 is

Ax = \x

where A is the adjacency matrix of the graph G with eigenvalue 1ambda. By virtue of the Perron—Frobenius the-
orem, there is a unique and positive solution if 1ambda is the largest eigenvalue associated with the eigenvector
of the adjacency matrix A (%).

Parameters

* G (graph) — A networkx graph

! Phillip Bonacich. “Power and Centrality: A Family of Measures.” American Journal of Sociology 92(5):1170-1182, 1986 <http://www.
leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf>
2 Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169.

4.5. Centrality 169

http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

NetworkX Reference, Release 2.0.dev20161129121305

» weight (None or string, optional) — The name of the edge attribute used as weight. If None,
all edge weights are considered equal.

* max_iter (integer, optional) — Maximum number of iterations in power method.

* tol (float, optional) — Relative accuracy for eigenvalues (stopping criterion). The default
value of 0 implies machine precision.

Returns nodes — Dictionary of nodes with eigenvector centrality as the value.

Return type dictionary

Examples

>>> G = nx.path_graph(4)

>>> centrality = nx.eigenvector_centrality_numpy (G)

>>> print ([' '%(node,centrality[node]) for node in centrality])
['o 0.37', 'L 0.60', '2 0.60', '3 0.37']

See also:

eigenvector_centrality(),pagerank (),hits ()

Notes

The measure was introduced by .

This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to find the largest eigenvalue/eigenvector
pair.

For directed graphs this is “left” eigenvector centrality which corresponds to the in-edges in the graph. For
out-edges eigenvector centrality first reverse the graph with G.reverse().

Raises NetworkXPointlessConcept — If the graph G is the null graph.

References

katz_centrality

katz_centrality (G, alpha=0.1, beta=1.0, max_iter=1000, tol=1e-06, nstart=None, normalized=True,

weight="weight’)
Compute the Katz centrality for the nodes of the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization
of the eigenvector centrality. The Katz centrality for node 1 is

X, = QZAZ‘J‘CCJ‘ + 8,
J

where A is the adjacency matrix of the graph G with eigenvalues 1ambda.
The parameter beta controls the initial centrality and

1
o<

)\maz

! Phillip Bonacich: Power and Centrality: A Family of Measures. American Journal of Sociology 92(5):1170-1182, 1986 http://www.
leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

170 Chapter 4. Algorithms

http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Katz centrality computes the relative influence of a node within a network by measuring the number of the
immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under
consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter . Connections made with distant
neighbors are, however, penalized by an attenuation factor a1 pha which should be strictly less than the inverse
largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More
information is provided in ' .

Parameters
* G (graph) — A NetworkX graph
* alpha (float) — Attenuation factor

* beta (scalar or dictionary, optional (default=1.0)) — Weight attributed to the immediate
neighborhood. If not a scalar, the dictionary must have an value for every node.

* max_iter (integer, optional (default=1000)) — Maximum number of iterations in power
method.

* tol (float, optional (default=1.0e-6)) — Error tolerance used to check convergence in power
method iteration.

* nstart (dictionary, optional) — Starting value of Katz iteration for each node.
» normalized (bool, optional (default=True)) — If True normalize the resulting values.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

Returns nodes — Dictionary of nodes with Katz centrality as the value.
Return type dictionary
Raises

* NetworkXError — If the parameter beta is not a scalar but lacks a value for at least one
node

* PowerlIterationFailedConvergence — If the algorithm fails to converge to the
specified tolerance within the specified number of iterations of the power iteration method.

Examples

>>> import math

>>> G = nx.path_graph(4)

>>> phi = (l+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)

>>> for n,c in sorted(centrality.items()):

. print (" "$(n,c))

.37
.60
.60
.37

w N = O
o O O O

See also:

katz_centrality_numpy(),eigenvector_centrality(),eigenvector_centrality_numpy(),
pagerank (), hits ()

! Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.

4.5. Centrality 171

NetworkX Reference, Release 2.0.dev20161129121305

Notes

Katz centrality was introduced by .

This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the
adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the
adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error
tolerance of number_of nodes(G)*tol has been reached.

When alpha = 1/lambda_{max} and beta=0, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds to the in-edges in the graph. For out-edges
Katz centrality first reverse the graph with G.reverse().

References

katz_centrality_numpy

katz_centrality numpy (G, alpha=0.1, beta=1.0, normalized=True, weight="weight’)

Compute the Katz centrality for the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization
of the eigenvector centrality. The Katz centrality for node 1 is

€xr; = aZAijxj + 8,
J

where A is the adjacency matrix of the graph G with eigenvalues 1ambda.
The parameter beta controls the initial centrality and

1
a << —.

)\maw

Katz centrality computes the relative influence of a node within a network by measuring the number of the
immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under
consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter 3. Connections made with distant
neighbors are, however, penalized by an attenuation factor a1 pha which should be strictly less than the inverse
largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More
information is provided in ' .

Parameters
* G (graph) — A NetworkX graph
* alpha (float) — Attenuation factor

* beta (scalar or dictionary, optional (default=1.0)) — Weight attributed to the immediate
neighborhood. If not a scalar the dictionary must have an value for every node.

* normalized (bool) — If True normalize the resulting values.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

2Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39—43, 1953 http://phya.snu.ac.kr/~dkim/
PRL87278701.pdf
I Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.

172

Chapter 4. Algorithms

http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Returns nodes — Dictionary of nodes with Katz centrality as the value.
Return type dictionary

Raises NetworkXError — If the parameter beta is not a scalar but lacks a value for at least one
node

Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (l+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy (G, 1/phi)
>>> for n,c in sorted(centrality.items()):
print (" "$(n,c))
.37
.60
.60
.37

w N = O
o O O O -

See also:

katz_centrality (), eigenvector_centrality numpy (), eigenvector_centrality/(),
pagerank (), hits ()

Notes

Katz centrality was introduced by .

This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly
less than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When alpha =
1/lambda_{max} and beta=0, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds to the in-edges in the graph. For out-edges
Katz centrality first reverse the graph with G.reverse().

References

4.5.3 Closeness

closeness_centrality(Gl,u, distance, ...]) Compute closeness centrality for nodes.

closeness_centrality
closeness_centrality (G, u=None, distance=None, normalized=True)
Compute closeness centrality for nodes.

Closeness centrality ' of a node u is the reciprocal of the sum of the shortest path distances from u to all n—1
other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized

2Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39—43, 1953 http://phya.snu.ac.kr/~dkim/
PRL87278701.pdf

! Linton C. Freeman: Centrality in networks: 1. Conceptual clarification. Social Networks 1:215-239, 1979. http://leonidzhukov.ru/hse/2013/
socialnetworks/papers/freeman79-centrality.pdf

4.5. Centrality 173

http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf
http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf

NetworkX Reference, Release 2.0.dev20161129121305

by the sum of minimum possible distances n—1.
n—1
sy d(v,w)

where d (v, u) is the shortest-path distance between v and u, and n is the number of nodes in the graph.

Cu) =

Notice that higher values of closeness indicate higher centrality.
Parameters
* G (graph) — A NetworkX graph
* u (node, optional) — Return only the value for node u

* distance (edge attribute key, optional (default=None)) — Use the specified edge attribute as
the edge distance in shortest path calculations

* normalized (bool, optional) — If True (default) normalize by the number of nodes in the
connected part of the graph.

Returns nodes — Dictionary of nodes with closeness centrality as the value.
Return type dictionary
See also:

betweenness_centrality(), load_centrality(), eigenvector_centrality(),
degree_centrality ()

Notes

The closeness centrality is normalized to (n-1) / (|G| -1) where n is the number of nodes in the connected
part of graph containing the node. If the graph is not completely connected, this algorithm computes the close-
ness centrality for each connected part separately.

If the ‘distance’ keyword is set to an edge attribute key then the shortest-path length will be computed using
Dijkstra’s algorithm with that edge attribute as the edge weight.

References

4.5.4 Current Flow Closeness

current_flow_closeness_centrality(G[,..]) Compute current-flow closeness centrality for nodes.

current_flow_closeness_centrality
current_flow_closeness_centrality (G, weight="weight’, dtype=<type float’>, solver="lu’")
Compute current-flow closeness centrality for nodes.

Current-flow closeness centrality is variant of closeness centrality based on effective resistance between nodes
in a network. This metric is also known as information centrality.

Parameters
* G (graph) — A NetworkX graph

* dtype (data type (float)) — Default data type for internal matrices. Set to np.float32 for lower

174 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

memory consumption.

* solver (string (default="lu’)) — Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes — Dictionary of nodes with current flow closeness centrality as the value.
Return type dictionary
See also:

closeness_centrality()

Notes

The algorithm is from Brandes '.

See also for the original definition of information centrality.

References

4.5.5 (Shortest Path) Betweenness

betweenness_centrality(Gl,k, normalized, ...]) Compute the shortest-path betweenness centrality for
nodes.
edge_betweenness_centrality(Gl,Kk,..]) Compute betweenness centrality for edges.

betweenness_centrality_subset(G, sources,..) Compute betweenness centrality for a subset of nodes.

edge_betweenness_centrality_ subset(G, ..[, Compute betweenness centrality for edges for a subset of
) nodes.

betweenness_centrality

betweenness_centrality (G, k=None, normalized=True, weight=None, endpoints=False, seed=None)
Compute the shortest-path betweenness centrality for nodes.
Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v

en(v) = Z o(s,tlv)

s,teV U(S’ t)
where V is the set of nodes, o (s, t) is the number of shortest (s, t) -paths, and o (s, t|v) is the number of those
paths passing through some node v other than s, t. If s = ¢, 0(s,t) = 1, and if v € s,t, o (s,t|v) =07
Parameters
* G (graph) — A NetworkX graph

* Kk (int, optional (default=None)) — If k is not None use k node samples to estimate between-
ness. The value of k <= n where n is the number of nodes in the graph. Higher values give
better approximation.

! Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS °05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

2 Karen Stephenson and Marvin Zelen: Rethinking centrality: Methods and examples. Social Networks 11(1):1-37, 1989. http://dx.doi.org/10.
1016/0378-8733(89)90016-6

2 Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b- vspbc-08.pdf

4.5. Centrality 175

http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://dx.doi.org/10.1016/0378-8733(89)90016-6
http://dx.doi.org/10.1016/0378-8733(89)90016-6
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

NetworkX Reference, Release 2.0.dev20161129121305

* normalized (bool, optional) — If True the betweenness values are normalized by
2/ ((n-1) (n-2)) for graphs, and 1/ ((n-1) (n—2)) for directed graphs where n is
the number of nodes in G.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

* endpoints (bool, optional) — If True include the endpoints in the shortest path counts.
Returns nodes — Dictionary of nodes with betweenness centrality as the value.
Return type dictionary
See also:

edge_betweenness_centrality (), load _centrality()

Notes

The algorithm is from Ulrik Brandes !. See * for the original first published version and 2 for details on algo-
rithms for variations and related metrics.

For approximate betweenness calculations set k=#samples to use k nodes (“pivots”) to estimate the betweenness
values. For an estimate of the number of pivots needed see °.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

References

edge_betweenness_centrality
edge_betweenness_centrality (G, k=None, normalized=True, weight=None, seed=None)
Compute betweenness centrality for edges.
Betweenness centrality of an edge e is the sum of the fraction of all-pairs shortest paths that pass through e

enle) = Z o(s,tle)

s,tEV 0(57 t)
where V is the set of nodes, o (s, t) is the number of shortest (s, t) -paths, and o (s, t|e) is the number of those
paths passing through edge e .
Parameters
* G (graph) — A NetworkX graph

* k (int, optional (default=None)) — If k is not None use k node samples to estimate between-
ness. The value of k <= n where n is the number of nodes in the graph. Higher values give
better approximation.

! Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.
uni-konstanz.de/algo/publications/b-fabc-01.pdf

4 Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35-41, 1977 http://moreno.ss.uci.edu/23.pdf

3 Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318,
2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf

2 Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b- vspbc-08.pdf

176 Chapter 4. Algorithms

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://moreno.ss.uci.edu/23.pdf
http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

NetworkX Reference, Release 2.0.dev20161129121305

* normalized (bool, optional) — If True the betweenness values are normalized by
2/ (n(n-=1)) for graphs, and 1/ (n (n-1)) for directed graphs where n is the number
of nodes in G.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

Returns edges — Dictionary of edges with betweenness centrality as the value.
Return type dictionary
See also:

betweenness_centrality(),edge_load()

Notes

The algorithm is from Ulrik Brandes '.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

References

betweenness_centrality_subset

betweenness_centrality_subset (G, sources, targets, normalized=False, weight=None)
Compute betweenness centrality for a subset of nodes.

en(v) = Z o(s,tlv)

s€SteT U(S’ t)

where S is the set of sources, T is the set of targets, (s, t) is the number of shortest (s, t) -paths, and o (s, t|v)
is the number of those paths passing through some node v other than s, t. If s = t, o(s,t) = 1, and if
v € s,t,a(s,tlv) =07

Parameters
* G (graph)
* sources (list of nodes) — Nodes to use as sources for shortest paths in betweenness
* targets (list of nodes) — Nodes to use as targets for shortest paths in betweenness

* normalized (bool, optional) — If True the betweenness values are normalized by
2/ ((n-1) (n-2)) for graphs, and 1/ ((n-1) (n—2)) for directed graphs where n is
the number of nodes in G.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

Returns nodes — Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

1A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.
uni-konstanz.de/algo/publications/b-fabc-01.pdf

2 Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b- vspbc-08.pdf

4.5. Centrality 177

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

NetworkX Reference, Release 2.0.dev20161129121305

See also:

edge_betweenness_centrality (), load _centrality()

Notes

The basic algorithm is from '.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

The normalization might seem a little strange but it is the same as in between-
ness_centrality() and is designed to make betweenness_centrality(G) be the same as between-
ness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()).

References

edge betweenness_centrality_subset

edge_betweenness_centrality_subset (G, sources, targets, normalized=False, weight=None)
Compute betweenness centrality for edges for a subset of nodes.

en(v) = Z o(s,tle)

SESteT o(s,1)
where S is the set of sources, T is the set of targets, o (s, t) is the number of shortest (s, t) -paths, and o (s, t|e)
is the number of those paths passing through edge e .
Parameters
* G (graph) — A networkx graph
* sources (list of nodes) — Nodes to use as sources for shortest paths in betweenness
* targets (list of nodes) — Nodes to use as targets for shortest paths in betweenness

* normalized (bool, optional) — If True the betweenness values are normalized by
2/ (n(n-1)) for graphs, and 1/ (n (n-1)) for directed graphs where n is the number
of nodes in G.

» weight (None or string, optional) — If None, all edge weights are considered equal. Other-
wise holds the name of the edge attribute used as weight.

Returns edges — Dictionary of edges with Betweenness centrality as the value.
Return type dictionary
See also:

betweenness_centrality(),edge_load()

! Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http:/www.inf.
uni-konstanz.de/algo/publications/b-fabc-01.pdf

2 Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b- vspbc-08.pdf

178 Chapter 4. Algorithms

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The basic algorithm is from .

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

The normalization might seem a little strange but it is the same as in
edge_betweenness_centrality() and is designed to make edge_betweenness_centrality(G) be the same as
edge_betweenness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()).

References

4.5.6 Current Flow Betweenness

current_flow _betweenness_centrality(Gl, Compute current-flow betweenness centrality for nodes.

)]

edge_current_flow_betweenness_centrality(@ompute current-flow betweenness centrality for edges.

approximate_current_flow_betweenness_centCemptite(@he approximate current-flow betweenness cen-
trality for nodes.

current_flow_betweenness_centrality_subse@@mpute current-flow betweenness centrality for subsets of

) nodes.
edge_current_flow_betweenness_centrality EompateCurrent-flow betweenness centrality for edges us-
) ing subsets of nodes.

current_flow_betweenness_centrality

current_flow_betweenness_centrality (G, normalized=True, weight="weight’, dtype=<type
‘float’>, solver="full’)
Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality .
Parameters
* G (graph) — A NetworkX graph

* normalized (bool, optional (default=True)) — If True the betweenness values are normalized
by 2/[(n-1)(n-2)] where n is the number of nodes in G.

» weight (string or None, optional (default="weight’)) — Key for edge data used as the edge
weight. If None, then use 1 as each edge weight.

 dtype (data type (float)) — Default data type for internal matrices. Set to np.float32 for lower
memory consumption.

* solver (string (default="lu’)) — Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes — Dictionary of nodes with betweenness centrality as the value.

! Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http:/www.inf.
uni-konstanz.de/algo/publications/b-fabc-01.pdf
2 A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).

4.5. Centrality 179

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Return type dictionary
See also:

approximate_ current_flow _betweenness_centrality(),betweenness_centrality/(),
edge_betweenness_centrality (), edge_current_flow_betweenness_centrality ()

Notes

Current-flow betweenness can be computed in O (I (n-1)+mn log n) time I where T (n—1) is the time
needed to compute the inverse Laplacian. For a full matrix this is O (n”3) but using sparse methods you can
achieve O (nm{sqgrt k}) where k is the Laplacian matrix condition number.

The space required is O (nw) where w is the width of the sparse Laplacian matrix. Worse case is w=n for
O (n"2).

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

edge_current_flow_betweenness_centrality

edge_current_flow_betweenness_centrality (G, normalized=True, weight="weight’,

dtype=<type ‘float’>, solver="full’)
Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality .
Parameters
* G (graph) — A NetworkX graph

» normalized (bool, optional (default=True)) — If True the betweenness values are normalized
by 2/[(n-1)(n-2)] where n is the number of nodes in G.

» weight (string or None, optional (default="weight’)) — Key for edge data used as the edge
weight. If None, then use 1 as each edge weight.

* dtype (data type (float)) — Default data type for internal matrices. Set to np.float32 for lower
memory consumption.

* solver (string (default="Iu’)) — Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes — Dictionary of edge tuples with betweenness centrality as the value.
Return type dictionary

Raises NetworkXError — The algorithm does not support DiGraphs. If the input graph is an
instance of DiGraph class, NetworkXError is raised.

! Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS °05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
2 A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).

180

Chapter 4. Algorithms

http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

NetworkX Reference, Release 2.0.dev20161129121305

See also:

betweenness_centrality/(), edge_betweenness_centrality(),
current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in O (I (n-1)+mn log n) time !, where I (n—1) is the time
needed to compute the inverse Laplacian. For a full matrix this is O (n~3) but using sparse methods you can
achieve O (nm{sqgrt k}) where k is the Laplacian matrix condition number.

The space required is O (nw) where " w is the width of the sparse Laplacian matrix. Worse case is w=n for
O0(n"2).

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

approximate_current_flow_betweenness_centrality

approximate_current_flow_betweenness_centrality (G, normalized=True, weight="weight’,
dtype=<type ‘float’>, solver="full’,
epsilon=0.5, kmax=10000)
Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute error of epsilon with high probability '.
Parameters
* G (graph) — A NetworkX graph

* normalized (bool, optional (default=True)) — If True the betweenness values are normalized
by 2/[(n-1)(n-2)] where n is the number of nodes in G.

» weight (string or None, optional (default="weight’)) — Key for edge data used as the edge
weight. If None, then use 1 as each edge weight.

* dtype (data type (float)) — Default data type for internal matrices. Set to np.float32 for lower
memory consumption.

* solver (string (default="lu’)) — Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

« epsilon (floar) — Absolute error tolerance.
e kmax (int) — Maximum number of sample node pairs to use for approximation.
Returns nodes — Dictionary of nodes with betweenness centrality as the value.
Return type dictionary
See also:

current_flow_betweenness_centrality()

! Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS °05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

! Ulrik Brandes and Daniel Fleischer: Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS °05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

4.5. Centrality 181

http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The running time is O ((1/epsilon”2)m{sgrt k} log n) and the space required is O (m) for n nodes

and m edges.

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set

to 1.

References

current_flow_betweenness_centrality_subset

current_flow_betweenness_centrality_subset (G, sources, targets, normalized=True,

weight="weight’, dtype=<type ‘float’>,
solver="lu’)

Compute current-flow betweenness centrality for subsets of nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality .

Parameters

G (graph) — A NetworkX graph
sources (list of nodes) — Nodes to use as sources for current
targets (list of nodes) — Nodes to use as sinks for current

normalized (bool, optional (default=True)) — If True the betweenness values are normalized
by b=b/(n-1)(n-2) where n is the number of nodes in G.

weight (string or None, optional (default="weight’)) — Key for edge data used as the edge
weight. If None, then use 1 as each edge weight.

dtype (data type (float)) — Default data type for internal matrices. Set to np.float32 for lower
memory consumption.

solver (string (default="Iu’)) — Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes — Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

See also:

approximate_ current_flow_betweenness_centrality(),betweenness_centrality(),
edge_betweenness_centrality (), edge_current_flow _betweenness_centrality()

Notes

Current-flow betweenness can be computed in O (I (n-1)+mn log n) time !, where I (n—1) is the time
needed to compute the inverse Laplacian. For a full matrix this is O (n”3) but using sparse methods you can
achieve O (nm{sqgrt k}) where k is the Laplacian matrix condition number.

2 A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
! Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS °05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

182

Chapter 4. Algorithms

http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

NetworkX Reference, Release 2.0.dev20161129121305

The space required is O (nw) where " w is the width of the sparse Laplacian matrix. Worse case is w=n for
0 (n"2).

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

edge_current_flow_betweenness_centrality_subset

edge_current_flow_betweenness_centrality_ subset (G, sources, targets, normalized=True,
weight="weight’, dtype=<type
‘float’>, solver="Ilu’)
Compute current-flow betweenness centrality for edges using subsets of nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality .
Parameters
* G (graph) — A NetworkX graph
* sources (list of nodes) — Nodes to use as sources for current
* targets (list of nodes) — Nodes to use as sinks for current

* normalized (bool, optional (default=True)) — If True the betweenness values are normalized
by b=b/(n-1)(n-2) where n is the number of nodes in G.

» weight (string or None, optional (default="weight’)) — Key for edge data used as the edge
weight. If None, then use 1 as each edge weight.

o dtype (data type (float)) — Default data type for internal matrices. Set to np.float32 for lower
memory consumption.

* solver (string (default="lu’)) — Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes — Dictionary of edge tuples with betweenness centrality as the value.
Return type dictionary
See also:

betweenness_centrality (), edge_betweenness_centrality(),
current_flow _betweenness_centrality()

Notes

Current-flow betweenness can be computed in O (I (n-1)+mn log n) time I where T (n-1) is the time
needed to compute the inverse Laplacian. For a full matrix this is O (n”3) but using sparse methods you can
achieve O (nm{sqgrt k}) where k is the Laplacian matrix condition number.

The space required is O (nw) where " w is the width of the sparse Laplacian matrix. Worse case is w=n for
O (n"2).

2 A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
! Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS °05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

4.5. Centrality 183

http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

NetworkX Reference, Release 2.0.dev20161129121305

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

4.5.7 Communicability Betweenness

communicability betweenness_centrality(G[,Return subgraph communicability for all pairs of nodes in
) G.

communicability_betweenness_centrality
communicability betweenness_centrality (G, normalized=True)
Return subgraph communicability for all pairs of nodes in G.

Communicability betweenness measure makes use of the number of walks connecting every pair of nodes as the
basis of a betweenness centrality measure.

Parameters G (graph)
Returns nodes — Dictionary of nodes with communicability betweenness as the value.
Return type dictionary

Raises NetworkXError —If the graph is not undirected and simple.

Notes

Let G=(V, E) be a simple undirected graph with n nodes and m edges, and A denote the adjacency matrix of G.

Let G(r)=(V,E(r)) be the graph resulting from removing all edges connected to node r but not the node
itself.
The adjacency matrix for G (r) is A+E (r), where E (r) has nonzeros only in row and column r.

The subraph betweenness of a node r is !

1 Gprq
we=z>0 G PFTAET
p q
where G_{prgl=(e”{A}_{pg} —(e”{A+E(r)})_{pg} is the number of walks involving node r,

G_{pal=(e"{A})_{pqg} is the number of closed walks starting at node p and ending at node g, and
C=(n-1) {2}~ (n-1) is a normalization factor equal to the number of terms in the sum.

The resulting omega_ {r} takes values between zero and one. The lower bound cannot be attained for a
connected graph, and the upper bound is attained in the star graph.

! Ernesto Estrada, Desmond J. Higham, Naomichi Hatano, “Communicability Betweenness in Complex Networks” Physica A 388 (2009) 764-
774. http://arxiv.org/abs/0905.4102

184 Chapter 4. Algorithms

http://arxiv.org/abs/0905.4102

NetworkX Reference, Release 2.0.dev20161129121305

References

Examples

>>> G = nx.Graph([(0,1), (1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)1])
>>> cbc = nx.communicability_ betweenness_centrality (G)

4.5.8 Load
load centrality(Gl[, v, cutoff, normalized, ...]) Compute load centrality for nodes.
edge load centrality(G[, cutoff]) Compute edge load.

load_centrality
load_centrality (G, v=None, cutoff=None, normalized=True, weight=None)
Compute load centrality for nodes.
The load centrality of a node is the fraction of all shortest paths that pass through that node.
Parameters
* G (graph) — A networkx graph

* normalized (bool, optional) — If True the betweenness values are normalized by b=b/(n-
1)(n-2) where n is the number of nodes in G.

» weight (None or string, optional) — If None, edge weights are ignored. Otherwise holds the
name of the edge attribute used as weight.

* cutoff (bool, optional) — If specified, only consider paths of length <= cutoff.
Returns nodes — Dictionary of nodes with centrality as the value.
Return type dictionary
See also:

betweenness_centrality ()

Notes

Load centrality is slightly different than betweenness. It was originally introduced by 2. For this load algorithm

see !,

References

edge_load_centrality

edge_load_centrality (G, cutoff=False)
Compute edge load.

2 Kwang-I1 Goh, Byungnam Kahng and Doochul Kim Universal behavior of Load Distribution in Scale-Free Networks. Physical Review Letters
87(27):1-4, 2001. http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

I Mark E. J. Newman: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64, 016132,
2001. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132

4.5. Centrality 185

http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132

NetworkX Reference, Release 2.0.dev20161129121305

WARNING: This concept of edge load has not been analysed or discussed outside of NetworkX that we know
of. It is based loosely on load_centrality in the sense that it counts the number of shortest paths which cross
each edge. This function is for demonstration and testing purposes.

Parameters

* G (graph) — A networkx graph

* cutoff (bool, optional) — If specified, only consider paths of length <= cutoff.
Returns

* A dict keyed by edge 2-tuple to the number of shortest paths

* which use that edge. Where more than one path is shortest

* the count is divided equally among paths.

4.5.9 Subgraph

subgraph_centrality(G) Return subgraph centrality for each node in G.
subgraph_centrality exp(G) Return the subgraph centrality for each node of G.
estrada_index(G) Return the Estrada index of a the graph G.

subgraph_centrality
subgraph_centrality (G)
Return subgraph centrality for each node in G.

Subgraph centrality of a node n is the sum of weighted closed walks of all lengths starting and ending at node
n. The weights decrease with path length. Each closed walk is associated with a connected subgraph ().

Parameters G (graph)

Returns nodes — Dictionary of nodes with subgraph centrality as the value.
Return type dictionary

Raises NetworkXError — If the graph is not undirected and simple.

See also:

subgraph centrality exp () Alternative algorithm of the subgraph centrality for each node of G.

Notes

This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix.

Subgraph centrality of a node u in G can be found using a spectral decomposition of the adjacency matrix !,

j=1

where v_J is an eigenvector of the adjacency matrix A of G corresponding corresponding to the eigenvalue
lambda_ j.

! Ernesto Estrada, Juan A. Rodriguez-Velazquez, “Subgraph centrality in complex networks”, Physical Review E 71, 056103 (2005). http:
/larxiv.org/abs/cond-mat/0504730

186 Chapter 4. Algorithms

http://arxiv.org/abs/cond-mat/0504730
http://arxiv.org/abs/cond-mat/0504730

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.Graph([(1,2),(1,5),(1,8),(2,3),(2,8),(3,4), (3,6), (4,5), (4,7),(5,6), (6,

“’7) r (778)])
>>> sc = nx.subgraph_centrality (G)
>>> print ([' "% (node, sc[node]) for node in sc])

['1 3.%0', '2 3.90', '3 3.64', '4 3.71', '5 3.64', '6 3.71', '7 3.64', '8 3.90']

References

subgraph_centrality_exp
subgraph_centrality_exp (G)
Return the subgraph centrality for each node of G.

Subgraph centrality of a node n is the sum of weighted closed walks of all lengths starting and ending at node
n. The weights decrease with path length. Each closed walk is associated with a connected subgraph ().

Parameters G (graph)

Returns nodes — Dictionary of nodes with subgraph centrality as the value.
Return type dictionary

Raises NetworkXError — If the graph is not undirected and simple.

See also:

subgraph centrality () Alternative algorithm of the subgraph centrality for each node of G.

Notes

This version of the algorithm exponentiates the adjacency matrix.

The subgraph centrality of a node u in G can be found using the matrix exponential of the adjacency matrix of
G,

References
Examples

(from ') >>> G = nx.Graph([(1,2),(1,5),(1,8),(2,3),(2,8),(3.4).(3,6).(4.,5),(4,7),(5.6),(6,7),(7.8)]) >>> sc =
nx.subgraph_centrality_exp(G) >>> print([’%s %0.2f’ %(node,sc[node]) for node in sc]) [‘1 3.90°, 2 3.90°,
‘33.64°,43.71°,°53.64’, ‘6 3.71°, “73.64°, ‘8 3.90°]

! Ernesto Estrada, Juan A. Rodriguez-Velazquez, “Subgraph centrality in complex networks”, Physical Review E 71, 056103 (2005). http:
/arxiv.org/abs/cond-mat/0504730

4.5. Centrality 187

http://arxiv.org/abs/cond-mat/0504730
http://arxiv.org/abs/cond-mat/0504730

NetworkX Reference, Release 2.0.dev20161129121305

estrada_index
estrada_index (G)
Return the Estrada index of a the graph G.
The Estrada Index is a topological index of folding or 3D “compactness” (').
Parameters G (graph)
Returns estrada index
Return type float

Raises NetworkXError —If the graph is not undirected and simple.

Notes

Let G=(V,E) be a simple undirected graph with n nodes and let
lambda_{l}leglambda_{2}legcdotslambda_{n} be a non-increasing ordering of the eigen-
values of its adjacency matrix A. The Estrada index is (!, %)

EE(G) =) M.
j=1

References

Examples

>>> G=nx.Graph ([(0,1), (1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> ei=nx.estrada_index (G)

4.5.10 Harmonic Centrality

harmonic_centrality(G[, nbunch, distance]) Compute harmonic centrality for nodes.

harmonic_centrality

harmonic_centrality (G, nbunch=None, distance=None)
Compute harmonic centrality for nodes.

Harmonic centrality ' of a node u is the sum of the reciprocal of the shortest path distances from all other nodes
tou

1
=2 o
vFEU ’

where d (v, u) is the shortest-path distance between v and u.

I E. Estrada, “Characterization of 3D molecular structure”, Chem. Phys. Lett. 319, 713 (2000). http://dx.doi.org/10.1016/S0009-2614(00)
00158-5

2 José Antonio de la Pefiaa, Ivan Gutman, Juan Rada, “Estimating the Estrada index”, Linear Algebra and its Applications. 427, 1 (2007).
http://dx.doi.org/10.1016/j.1aa.2007.06.020

1 Boldi, Paolo, and Sebastiano Vigna. “Axioms for centrality.” Internet Mathematics 10.3-4 (2014): 222-262.

188 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
http://dx.doi.org/10.1016/S0009-2614(00)00158-5
http://dx.doi.org/10.1016/S0009-2614(00)00158-5
http://dx.doi.org/10.1016/j.laa.2007.06.020

NetworkX Reference, Release 2.0.dev20161129121305

Notice that higher values indicate higher centrality.
Parameters
* G (graph) — A NetworkX graph

* nbunch (container) — Container of nodes. If provided harmonic centrality will be computed
only over the nodes in nbunch.

* distance (edge attribute key, optional (default=None)) — Use the specified edge attribute as
the edge distance in shortest path calculations. If None, then each edge will have distance
equal to 1.

Returns nodes — Dictionary of nodes with harmonic centrality as the value.
Return type dictionary
See also:

betweenness_centrality/(), load _centrality(), eigenvector_centrality(),
degree_centrality (), closeness_centrality()

Notes

If the ‘distance’ keyword is set to an edge attribute key then the shortest-path length will be computed using
Dijkstra’s algorithm with that edge attribute as the edge weight.

References

4.5.11 Reaching

local_reaching centrality(G, v[, paths, ...]) Returns the local reaching centrality of a node in a directed
graph.
global_reaching_centrality(Gl[, weight, ...]) Returns the global reaching centrality of a directed graph.

local_reaching_centrality
local_reaching_centrality (G, v, paths=None, weight=None, normalized=True)
Returns the local reaching centrality of a node in a directed graph.

The local reaching centrality of a node in a directed graph is the proportion of other nodes reachable from that
node '

Parameters
* G (DiGraph) — A NetworkX graph.
* v (node) — A node in the directed graph G.

* paths (dictionary) — If this is not None it must be a dictionary representation of single-
source shortest paths, as computed by, for example, networkx.shortest_path ()
with source node v. Use this keyword argument if you intend to invoke this function many
times but don’t want the paths to be recomputed each time.

! Mones, Enys, Lilla Vicsek, and Tam4s Vicsek. “Hierarchy Measure for Complex Networks.” PLoS ONE 7.3 (2012): €33799. https:/dx.doi.
org/10.1371/journal.pone.0033799

4.5. Centrality 189

https://docs.python.org/2/library/constants.html#None
https://dx.doi.org/10.1371/journal.pone.0033799
https://dx.doi.org/10.1371/journal.pone.0033799

NetworkX Reference, Release 2.0.dev20161129121305

» weight (object) — Attribute to use for edge weights. If None, each edge weight is assumed
to be one. A higher weight implies a stronger connection between nodes and a shorter path
length.

* normalized (bool) — Whether to normalize the edge weights by the total sum of edge
weights.

Returns h — The local reaching centrality of the node v in the graph G.

Return type float

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge (1, 2)

>>> G.add_edge (1, 3)

>>> nx.local_reaching_centrality (G, 3)
0.0

>>> G.add_edge (3, 2)

>>> nx.local_reaching_centrality (G, 3)
0.5

See also:

global_reaching centrality()

References

global_reaching_centrality

global_reaching centrality (G, weight=None, normalized=True)
Returns the global reaching centrality of a directed graph.

The global reaching centrality of a weighted directed graph is the average over all nodes of the difference
between the local reaching centrality of the node and the greatest local reaching centrality of any node in the
graph '. For more information on the local reaching centrality, see 1ocal reaching centrality ().
Informally, the local reaching centrality is the proportion of the graph that is reachable from the neighbors of
the node.

Parameters
* G (DiGraph)

» weight (object) — Attribute to use for edge weights. If None, each edge weight is assumed
to be one. A higher weight implies a stronger connection between nodes and a shorter path
length.

* normalized (bool) — Whether to normalize the edge weights by the total sum of edge
weights.

Returns h — The global reaching centrality of the graph.
Return type float

! Mones, Enys, Lilla Vicsek, and Tamds Vicsek. “Hierarchy Measure for Complex Networks.” PLoS ONE 7.3 (2012): €33799. https:/dx.doi.
org/10.1371/journal.pone.0033799

190 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://dx.doi.org/10.1371/journal.pone.0033799
https://dx.doi.org/10.1371/journal.pone.0033799

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge (1, 2)

>>> G.add_edge (1, 3)

>>> nx.global_reaching_centrality (G)
1.0

>>> G.add_edge (3, 2)

>>> nx.global_reaching_centrality (G)
0.75

See also:

local_reaching centrality()

References

4.6 Chains

Functions for finding chains in a graph.

chain_decomposition(Gl[, root]) Return the chain decomposition of a graph.

4.6.1 chain_decomposition

chain_decomposition (G, root=None)
Return the chain decomposition of a graph.

The chain decomposition of a graph with respect a depth-first search tree is a set of cycles or paths derived from
the set of fundamental cycles of the tree in the following manner. Consider each fundamental cycle with respect
to the given tree, represented as a list of edges beginning with the nontree edge oriented away from the root of
the tree. For each fundamental cycle, if it overlaps with any previous fundamental cycle, just take the initial
non-overlapping segment, which is a path instead of a cycle. Each cycle or path is called a chain. For more

information, see !.

Parameters
* G (undirected graph)

* root (node (optional)) — A node in the graph G. If specified, only the chain decomposition
for the connected component containing this node will be returned. This node indicates the
root of the depth-first search tree.

Yields chain (/ist) — A list of edges representing a chain. There is no guarantee on the orientation
of the edges in each chain (for example, if a chain includes the edge joining nodes 1 and 2, the
chain may include either (1, 2) or (2, 1)).

Raises NodeNotFound — If root is not in the graph G.

! Jens M. Schmidt (2013). “A simple test on 2-vertex- and 2-edge-connectivity.” Information Processing Letters, 113, 241-244. Elsevier.
<http://dx.doi.org/10.1016/j.ip.2013.01.016>

4.6. Chains 191

http://dx.doi.org/10.1016/j.ipl.2013.01.016

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The worst-case running time of this implementation is linear in the number of nodes and number of edges '.

References

4.7 Chordal

Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle).
http://en.wikipedia.org/wiki/Chordal_graph

is_chordal(G) Checks whether G is a chordal graph.
chordal_graph_cliques(G) Returns the set of maximal cliques of a chordal graph.
chordal_graph_treewidth(G) Returns the treewidth of the chordal graph G.
find_induced_nodes(G, s, t[, treewidth_bound]) Returns the set of induced nodes in the path from s to t.

4.7.1 is_chordal
is_chordal (G)
Checks whether G is a chordal graph.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the
cycle).

Parameters G (graph) — A NetworkX graph.
Returns chordal — True if G is a chordal graph and False otherwise.
Return type bool

Raises NetworkXError — The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised.

Examples

>>> import networkx as nx

>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5), (4,6),(5,06)]
>>> G=nx.Graph (e)

>>> nx.1s_chordal (G)

True

Notes

The routine tries to go through every node following maximum cardinality search. It returns False when it finds

that the separator for any node is not a clique. Based on the algorithms in '

I'R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566-579.

192 Chapter 4. Algorithms

http://en.wikipedia.org/wiki/Chordal_graph
https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

References

4.7.2 chordal_graph_cliques
chordal_graph_cliques (G)
Returns the set of maximal cliques of a chordal graph.

The algorithm breaks the graph in connected components and performs a maximum cardinality search in each
component to get the cliques.

Parameters G (graph) — A NetworkX graph
Returns cliques
Return type A set containing the maximal cliques in G.

Raises NetworkXError — The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If the input graph is found to be non-
chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx

>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)

>>> G.add_node (9)

>>> setlist = nx.chordal_graph_cliques (G)

4.7.3 chordal_graph_treewidth
chordal_graph_ treewidth (G)
Returns the treewidth of the chordal graph G.
Parameters G (graph) — A NetworkX graph
Returns treewidth — The size of the largest clique in the graph minus one.
Return type int

Raises NetworkXError — The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If the input graph is found to be non-
chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx

>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),((4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)

>>> G.add_node (9)

>>> nx.chordal_graph_treewidth (G)

3

4.7. Chordal 193

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

References

4.7.4 find_induced_nodes

find induced nodes (G, s, t, treewidth_bound=9223372036854775807)
Returns the set of induced nodes in the path from s to t.

Parameters
* G (graph) — A chordal NetworkX graph
* s (node) — Source node to look for induced nodes
¢ t (node) — Destination node to look for induced nodes

* treewith_bound (float) — Maximum treewidth acceptable for the graph H. The search for
induced nodes will end as soon as the treewidth_bound is exceeded.

Returns I - The set of induced nodes in the path from s to t in G
Return type Set of nodes

Raises NetworkXError — The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If the input graph is found to be non-
chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx

>>> G=nx.Graph ()

>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes (G, 1,9, 2)

>>> list (I)

[, 2, 3, 4, 5, 6, 7, 8, 9]

Notes

G must be a chordal graph and (s,t) an edge that is not in G.

If a treewidth_bound is provided, the search for induced nodes will end as soon as the treewidth_bound is
exceeded.

The algorithm is inspired by Algorithm 4 in '. A formal definition of induced node can also be found on that
reference.

References

4.8 Clique

Functions for finding and manipulating cliques.

! Learning Bounded Treewidth Bayesian Networks. Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699-2731, 2008. http:/jmlr.csail.mit.edu/
papers/volume9/elidan08a/elidan08a.pdf

194 Chapter 4. Algorithms

http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Finding the largest clique in a graph is NP-complete problem, so most of these algorithms have an exponential running
time; for more information, see the Wikipedia article on the clique problem '.

enumerate_all_cliques(G)

Returns all cliques in an undirected graph.

find _cliques(G)

Returns all maximal cliques in an undirected graph.

make_max_clique_ graph(G[, create_using])

Returns the maximal clique graph of the given graph.

make_clique_bipartite(Gl, fpos, ...])

Returns the bipartite clique graph corresponding to G.

graph_clique_number(Gl, cliques])

Returns the clique number of the graph.

graph_number_of_cliques(Gl, cliques])

Returns the number of maximal cliques in the graph.

node_clique_number(G[, nodes, cliques])

Returns the size of the largest maximal clique containing

each given node.

number._of_cliques(G[, nodes, cliques])

Returns the number of maximal cliques for each node.

cliques_containing_node(G[, nodes, cliques])

Returns a list of cliques containing the given node.

4.8.1 enumerate_all_cliques

enumerate_all_cliques (G)
Returns all cliques in an undirected graph.

This function returns an iterator over cliques, each of which is a list of nodes. The iteration is ordered by
cardinality of the cliques: first all cliques of size one, then all cliques of size two, etc.

Parameters G (NetworkX graph) — An undirected graph.

Returns An iterator over cliques, each of which is a list of nodes in G. The cliques are ordered

according to size.

Return type iterator

Notes

To obtain a list of all cliques, use 1ist (enumerate_all_cliques (G)). However, be aware that in the
worst-case, the length of this list can be exponential in the number of nodes in the graph (for example, when
the graph is the complete graph). This function avoids storing all cliques in memory by only keeping current

candidate node lists in memory during its search.

The implementation is adapted from the algorithm by Zhang, et al. (2005) ! to output all cliques discovered.

This algorithm ignores self-loops and parallel edges, since cliques are not conventionally defined with such

edges.

References

4.8.2 find_cliques

find_cliques (G)

Returns all maximal cliques in an undirected graph.

! clique problem:: https://en.wikipedia.org/wiki/Clique_problem

! Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Samatova, N.F., “Genome-Scale Computational Approaches to
Memory-Intensive Applications in Systems Biology”. Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 12, 12-18

Nov. 2005. <http://dx.doi.org/10.1109/SC.2005.29>.

4.8. Clique

195

https://en.wikipedia.org/wiki/Clique_problem
http://dx.doi.org/10.1109/SC.2005.29

NetworkX Reference, Release 2.0.dev20161129121305

For each node v, a maximal clique for v is a largest complete subgraph containing v. The largest maximal clique
is sometimes called the maximum clique.

This function returns an iterator over cliques, each of which is a list of nodes. It is an iterative implementation,
so should not suffer from recursion depth issues.

Parameters G (NetworkX graph) — An undirected graph.

Returns An iterator over maximal cliques, each of which is a list of nodes in G. The order of cliques
is arbitrary.

Return type iterator

See also:

find _cliques_recursive () A recursive version of the same algorithm.

Notes

To obtain a list of all maximal cliques, use 1ist (find_cliques (G)). However, be aware that in the worst-
case, the length of this list can be exponential in the number of nodes in the graph (for example, when the graph
is the complete graph). This function avoids storing all cliques in memory by only keeping current candidate
node lists in memory during its search.

This implementation is based on the algorithm published by Bron and Kerbosch (1973) !, as adapted by Tomita,
Tanaka and Takahashi (2006) > and discussed in Cazals and Karande (2008) 3. It essentially unrolls the re-
cursion used in the references to avoid issues of recursion stack depth (for a recursive implementation, see
find_cliques_recursive ()).

This algorithm ignores self-loops and parallel edges, since cliques are not conventionally defined with such
edges.

References

4.8.3 make_max_clique_graph
make_max_clique_graph (G, create_using=None)
Returns the maximal clique graph of the given graph.

The nodes of the maximal clique graph of G are the cliques of G and an edge joins two cliques if the cliques are
not disjoint.

Parameters
* G (NetworkX graph)

* create_using (NetworkX graph) — If provided, this graph will be cleared and the nodes and
edges of the maximal clique graph will be added to this graph.

Returns A graph whose nodes are the cliques of G and whose edges join two cliques if they are not
disjoint.

! Bron, C. and Kerbosch, J. “Algorithm 457: finding all cliques of an undirected graph”. Communications of the ACM 16, 9 (Sep. 1973),
575-577. <http://portal.acm.org/citation.cfm?doid=362342.362367>

2 Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, “The worst-case time complexity for generating all maximal cliques and computational
experiments”, Theoretical Computer Science, Volume 363, Issue 1, Computing and Combinatorics, 10th Annual International Conference on
Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42 <http://dx.doi.org/10.1016/j.tcs.2006.06.015>

3 F. Cazals, C. Karande, “A note on the problem of reporting maximal cliques”, Theoretical Computer Science, Volume 407, Issues 1-3, 6
November 2008, Pages 564-568, <http://dx.doi.org/10.1016/j.tcs.2008.05.010>

196 Chapter 4. Algorithms

http://portal.acm.org/citation.cfm?doid=362342.362367
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1016/j.tcs.2008.05.010

NetworkX Reference, Release 2.0.dev20161129121305

Return type NetworkX graph

Notes

This function behaves like the following code:

import networkx as nx
G = nx.make_clique_bipartite (G)

cliques = [v for v in G.nodes() if G.node[v]|['bipartite'] == 0]
G = nx.bipartite.project (G, cliques)
G = nx.relabel_nodes (G, {-v: v - 1 for v in G})

It should be faster, though, since it skips all the intermediate steps.

4.8.4 make_clique_bipartite
make_clique_bipartite (G, fpos=None, create_using=None, name=None)
Returns the bipartite clique graph corresponding to G.

In the returned bipartite graph, the “bottom” nodes are the nodes of G and the “top” nodes represent the maximal
cliques of G. There is an edge from node v to clique C in the returned graph if and only if v is an element of C.

Parameters
* G (NetworkX graph) — An undirected graph.

* fpos (bool) — If True or not None, the returned graph will have an additional attribute, pos,
a dictionary mapping node to position in the Euclidean plane.

* create_using (NetworkX graph) — If provided, this graph will be cleared and the nodes and
edges of the bipartite graph will be added to this graph.

Returns

A bipartite graph whose “bottom” set is the nodes of the graph G, whose “top” set is the cliques
of G, and whose edges join nodes of G to the cliques that contain them.

The nodes of the graph G have the node attribute ‘bipartite’ set to 1 and the nodes representing
cliques have the node attribute ‘bipartite’ set to O, as is the convention for bipartite graphs in
NetworkX.

Return type NetworkX graph

4.8.5 graph_clique_number
graph_clique_number (G, cliques=None)
Returns the clique number of the graph.
The clique number of a graph is the size of the largest clique in the graph.
Parameters
* G (NetworkX graph) — An undirected graph.

* cliques (/ist) — A list of cliques, each of which is itself a list of nodes. If not specified, the
list of all cliques will be computed, as by find cliques ().

Returns The size of the largest clique in G.

4.8. Clique 197

NetworkX Reference, Release 2.0.dev20161129121305

Return type int

Notes

You should provide cliques if you have already computed the list of maximal cliques, in order to avoid an
exponential time search for maximal cliques.

4.8.6 graph_number_of_cliques
graph_number of_ cliques (G, cliques=None)
Returns the number of maximal cliques in the graph.
Parameters
* G (NetworkX graph) — An undirected graph.

* cliques (l/ist) — A list of cliques, each of which is itself a list of nodes. If not specified, the
list of all cliques will be computed, as by find _cliques ().

Returns The number of maximal cliques in G.

Return type int

Notes

You should provide cliques if you have already computed the list of maximal cliques, in order to avoid an
exponential time search for maximal cliques.

4.8.7 node_clique_number
node_clique_number (G, nodes=None, cliques=None)
Returns the size of the largest maximal clique containing each given node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.8 number_of_cliques
number_of_cliques (G, nodes=None, cliques=None)
Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.9 cliques_containing_node
cliques_containing_node (G, nodes=None, cliques=None)
Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already
computed.

198 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

4.9 Clustering

Algorithms to characterize the number of triangles in a graph.

triangles(G[, nodes])

Compute the number of triangles.

transitivity(G)

Compute graph transitivity, the fraction of all possible tri-
angles present in G.

clustering(Gl[, nodes, weight])

Compute the clustering coefficient for nodes.

average_clustering(G[, nodes, weight, ...])

Compute the average clustering coefficient for the graph G.

square_clustering(G[, nodes])

Compute the squares clustering coefficient for nodes.

generalized degree(G[, nodes])

Compute the generalized degree for nodes.

4.9.1 triangles
triangles (G, nodes=None)
Compute the number of triangles.
Finds the number of triangles that include a node as one vertex.
Parameters
* G (graph) — A networkx graph

* nodes (container of nodes, optional (default= all nodes in G)) — Compute triangles for nodes
in this container.

Returns out — Number of triangles keyed by node label.

Return type dictionary

Examples

>>> G=nx.complete_graph (5)

>>> print (nx.triangles(G,0))

6

>>> print (nx.triangles (G))

{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}

>>> print (list (nx.triangles (G, (0,1)) .values()))
[6, 6]

Notes

When computing triangles for the entire graph each triangle is counted three times, once at each node. Self
loops are ignored.

4.9.2 transitivity

transitivity (G)
Compute graph transitivity, the fraction of all possible triangles present in G.

Possible triangles are identified by the number of “triads” (two edges with a shared vertex).

4.9. Clustering 199

NetworkX Reference, Release 2.0.dev20161129121305

The transitivity is

T 3#trza.ngles
#triads

Parameters G (graph)
Returns out — Transitivity

Return type float

Examples

>>> G = nx.complete_graph (5)
>>> print (nx.transitivity (G))
1.0

4.9.3 clustering
clustering (G, nodes=None, weight=None)
Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node u is the fraction of possible triangles through that node that
exist,

S 2T (u)
Y deg(u)(deg(u) — 1)

where T (u) is the number of triangles through node u and deg (u) is the degree of u.

For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights !,

1 ~ ~ N
= Gegu)(degl) = 1)) 2 Duvuwtiun)

uv

1/3

The edge weights hat {w}_{uv} are normalized by the maximum weight in the network hat {w}_{uv} =
w_{uv}/max (w).

The value of c_u is assigned to 0 if deg (u) < 2.
Parameters
* G (graph)

* nodes (container of nodes, optional (default=all nodes in G)) — Compute clustering for
nodes in this container.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1.

Returns out — Clustering coefficient at specified nodes

Return type float, or dictionary

! Generalizations of the clustering coefficient to weighted complex networks by J. Saramiki, M. Kivel4, J.-P. Onnela, K. Kaski, and J. Kertész,
Physical Review E, 75 027105 (2007). http://jponnela.com/web_documents/a9.pdf

200 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
http://jponnela.com/web_documents/a9.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G=nx.complete_graph (5)

>>> print (nx.clustering(G,0))

1.0

>>> print (nx.clustering(G))

{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

Self loops are ignored.

References

4.9.4 average_clustering
average_clustering (G, nodes=None, weight=None, count_zeros=True)
Compute the average clustering coefficient for the graph G.
The clustering coefficient for the graph is the average,
c=1y
= - Cy,
n
vEG
where n is the number of nodes in G.
Parameters
* G (graph)

* nodes (container of nodes, optional (default=all nodes in G)) — Compute average clustering
for nodes in this container.

» weight (string or None, optional (default=None)) — The edge attribute that holds the numer-
ical value used as a weight. If None, then each edge has weight 1.

* count_zeros (bool) — If False include only the nodes with nonzero clustering in the average.
Returns avg — Average clustering

Return type float

Examples

>>> G=nx.complete_graph (5)
>>> print (nx.average_clustering(G))
1.0

Notes

This is a space saving routine; it might be faster to use the clustering function to get a list and then take the

average.

Self loops are ignored.

4.9. Clustering

https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

References

4.9.5 square_clustering

square_clustering (G, nodes=None)
Compute the squares clustering coefficient for nodes.

For each node return the fraction of possible squares that exist at the node '

ko ko
Zu:l Z1u=u+1 Qv (u’ w)
kv ko ’
Eu:l Zw:qul [av (u’ ’LU) + dv (’U/7 w)]

where g_v (u,w) are the number of common neighbors of u and w other than v (ie squares), and

04(1}) =

a_v(u,w) = (k_u —(l+g_v(u,w)+theta_{uv})) (k_w —(l+g_v (u,w)+theta_{uw})),
where theta_{uw} = 1 if uand w are connected and O otherwise.
Parameters
* G (graph)

* nodes (container of nodes, optional (default=all nodes in G)) — Compute clustering for
nodes in this container.

Returns c4 — A dictionary keyed by node with the square clustering coefficient value.

Return type dictionary

Examples

>>> G=nx.complete_graph (5)

>>> print (nx.square_clustering(G,0))

1.0

>>> print (nx.square_clustering(G))

{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

While C_3 (v) (triangle clustering) gives the probability that two neighbors of node v are connected with each
other, C_4 (v) is the probability that two neighbors of node v share a common neighbor different from v. This
algorithm can be applied to both bipartite and unipartite networks.

References

4.9.6 generalized_degree

generalized_degree (G, nodes=None)
Compute the generalized degree for nodes.

For each node, the generalized degree shows how many edges of given triangle multiplicity the node is connected
to. The triangle multiplicity of an edge is the number of triangles an edge participates in. The generalized
degree of node 1 can be written as a vectormathbf {k}_i=(k_i"~{ (0) },dotsc,k_1i~{ (N-2) }) where
k_1i~{ (3) } is the number of edges attached to node i that participate in ; triangles.

! Pedro G. Lind, Marta C. Gonzélez, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127.

202 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

Parameters
* G (graph)

* nodes (container of nodes, optional (default=all nodes in G)) — Compute the generalized
degree for nodes in this container.

Returns out — Generalized degree of specified nodes. The Counter is keyed by edge triangle multi-
plicity.

Return type Counter, or dictionary of Counters

Examples

>>> G=nx.complete_graph (5)

>>> print (nx.generalized_degree(G,0))

Counter ({3: 4})

>>> print (nx.generalized_degree (G))

{0: Counter ({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter ({3: 4}),
—~4: Counter ({3: 41})}

To recover the number of triangles attached to a node:

>>> k1 = nx.generalized_degree (G, 0)

>>> sum([kxv for k,v in kl.items()])/2 == nx.triangles(G,0)
True

Notes

In a network of N nodes, the highest triangle multiplicty an edge can have is N-2.
The return value does not include a zero entry if no edges of a particular triangle multiplicity are present.

The number of triangles node i is attached to can be recovered from the generalized de-
gree mathbf{k}_i=(k_1i7{(0)},dotsc,k_1i"{(N-2)}) by (k_i~{ (1) }+2k_i"{ (2) }+dotsc
+(N=-2)k_i"{(N=-2)1}) /2.

References

4.10 Coloring

greedy_color(Gl, strategy, interchange]) Color a graph using various strategies of greedy graph col-
oring.

4.10.1 greedy_color
greedy_color (G, strategy="largest_first’, interchange=False)
Color a graph using various strategies of greedy graph coloring.

Attempts to color a graph using as few colors as possible, where no neighbours of a node can have same color
as the node itself. The given strategy determines the order in which nodes are colored.

4.10. Coloring 203

NetworkX Reference, Release 2.0.dev20161129121305

The strategies are described in I and smallest-last is based on 2.

Parameters

* G (NetworkX graph)

* strategy (string or function(G, colors)) — A function (or a string representing a function) that
provides the coloring strategy, by returning nodes in the ordering they should be colored. G
is the graph, and colors is a dictionary of the currently assigned colors, keyed by nodes.
The function must return an iterable over all the nodes in G.

If the strategy function is an iterator generator (that is, a function with yield statements),
keep in mind that the colors dictionary will be updated after each yield, since this
function chooses colors greedily.

If strategy is a string, it must be one of the following, each of which represents one of
the built-in strategy functions.

— 'largest_first'

— 'random_sequential’

— 'smallest_last'

— 'independent_set'

— 'connected_sequential_bfs'
— 'connected_sequential_dfs'

— 'connected_sequential' (alias for the previous strategy)

'strategy_saturation_largest_first'

"DSATUR' (alias for the previous strategy)
« interchange (bool) — Will use the color interchange algorithm described by * if set to True.

Note that strategy_saturation_largest_first and
strategy_independent_set do not work with interchange. Furthermore, if
you use interchange with your own strategy function, you cannot rely on the values in the
colors argument.

Returns

* A dictionary with keys representing nodes and values representing

* corresponding coloring.

Examples

>>> G = nx.cycle_graph (4)

>>> d = nx.coloring.greedy_color (G, strategy='largest_first')
>>> d in [{0O: O, 1: 1, 2: O, 3: 1}, {O0: 1, 1: 0, 2: 1, 3: 0}]
True

' Adrian Kosowski, and Krzysztof Manuszewski, Classical Coloring of Graphs, Graph Colorings, 2-19, 2004. ISBN 0-8218-3458-4.

2 David W. Matula, and Leland L. Beck, “Smallest-last ordering and clustering and graph coloring algorithms” J. ACM 30, 3 (July 1983),
417-427. <http://dx.doi.org/10.1145/2402.322385>

3 Maciej M. Systo, Marsingh Deo, Janusz S. Kowalik, Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983. ISBN 0-486-
45353-7.

204

Chapter 4. Algorithms

http://dx.doi.org/10.1145/2402.322385

NetworkX Reference, Release 2.0.dev20161129121305

Raises NetworkXPointlessConcept

strategy_saturation_largest_first or

and interchange is True.

References

- If strategy is
strategy_independent_set

Some node ordering strategies are provided for use with greedy_color ().

strategy_connected_sequential(G, colors|,

)]

Returns an iterable over nodes in G in the order given by a
breadth-first or depth-first traversal.

strategy_connected_sequential_dfs(G, col- Returns an iterable over nodes in G in the order given by a

ors) depth-first traversal.

strategy_connected_sequential bfs(G, col- Returns an iterable over nodes in G in the order given by a

ors) breadth-first traversal.

strategy_independent_ set(G, colors) Uses a greedy independent set removal strategy to deter-
mine the colors.

strategy_ largest_ first(G, colors) Returns a list of the nodes of G in decreasing order by de-
gree.

strategy_random_sequential(G, colors) Returns a random permutation of the nodes of G as a list.

strategy saturation_largest_first(G, col- Iterates over all the nodes of G in “saturation order” (also

ors)

known as “DSATUR”).

strategy_smallest_last(G, colors)

Returns a deque of the nodes of G, “smallest” last.

4.10.2 strategy_connected_sequential

strategy_connected_sequential (G, colors, traversal="bfs’)
Returns an iterable over nodes in G in the order given by a breadth-first or depth-first traversal.

traversal must be one of the strings 'dfs' or 'bfs', representing depth-first traversal or breadth-first

traversal, respectively.

The generated sequence has the property that for each node except the first, at least one neighbor appeared

earlier in the sequence.

G is a NetworkX graph. colors is ignored.

4.10.3 strategy_connected_sequential_dfs

strategy connected_sequential_dfs (G, colors)

Returns an iterable over nodes in G in the order given by a depth-first traversal.

The generated sequence has the property that for each node except the first, at least one neighbor appeared

earlier in the sequence.

G is a NetworkX graph. colors is ignored.

4.10.4 strategy connected_sequential_bfs

strategy_connected_sequential_bfs (G, colors)

Returns an iterable over nodes in G in the order given by a breadth-first traversal.

The generated sequence has the property that for each node except the first, at least one neighbor appeared

earlier in the sequence.

4.10. Coloring

205

NetworkX Reference, Release 2.0.dev20161129121305

G is a NetworkX graph. colors is ignored.

4.10.5 strategy_independent_set
strategy_independent_set (G, colors)
Uses a greedy independent set removal strategy to determine the colors.
This function updates colors in-place and return None, unlike the other strategy functions in this module.

This algorithm repeatedly finds and removes a maximal independent set, assigning each node in the set an
unused color.

G is a NetworkX graph.

This strategy is related to st rategy_smallest_last (): in that strategy, an independent set of size one is
chosen at each step instead of a maximal independent set.

4.10.6 strategy_largest_first
strategy_largest_first (G, colors)
Returns a list of the nodes of G in decreasing order by degree.

G is a NetworkX graph. colors is ignored.

4.10.7 strategy_random_sequential
strategy_random_sequential (G, colors)
Returns a random permutation of the nodes of G as a list.

G is a NetworkX graph. colors is ignored.

4.10.8 strategy_ saturation_largest_first
strategy_saturation_largest_first (G, colors)
Iterates over all the nodes of G in “saturation order” (also known as “DSATUR”).

G is a NetworkX graph. colors is a dictionary mapping nodes of G to colors, for those nodes that have already
been colored.

4.10.9 strategy_smallest_last
strategy_smallest_last (G, colors)
Returns a deque of the nodes of G, “smallest” last.

Specifically, the degrees of each node are tracked in a bucket queue. From this, the node of minimum degree is
repeatedly popped from the graph, updating its neighbors’ degrees.

G is a NetworkX graph. colors is ignored.

This implementation of the strategy runs in O(n + m) time (ignoring polylogarithmic factors), where n is the
number of nodes and m is the number of edges.

This strategy is related to strategy_independent_set (): if we interpret each node removed as an
independent set of size one, then this strategy chooses an independent set of size one instead of a maximal
independent set.

206 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

4.11 Communicability

Communicability.
communicability(G) Return communicability between all pairs of nodes in G.
communicability_exp(G) Return communicability between all pairs of nodes in G.

4.11.1 communicability
communicability (G)
Return communicability between all pairs of nodes in G.

The communicability between pairs of nodes in G is the sum of closed walks of different lengths starting at node
u and ending at node v.

Parameters G (graph)

Returns comm - Dictionary of dictionaries keyed by nodes with communicability as the value.
Return type dictionary of dictionaries

Raises NetworkXError —If the graph is not undirected and simple.

See also:

communicability exp () Communicability between all pairs of nodes in G using spectral decomposition.

communicability_betweenness_centrality () Communicability betweeness centrality for each
node in G.

Notes

This algorithm uses a spectral decomposition of the adjacency matrix. Let G=(V,E) be a simple undirected
graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph,
the communicability between nodes u and v based on the graph spectrum is '

n

Clu,v) = ¢j(u);(v)e,

j=1

where phi_{J} (u) is the urm{th} element of the jrm{th} orthonormal eigenvector of the adjacency
matrix associated with the eigenvalue lambda_{7}.

References

Examples

>>> G = nx.Graph ([(0,1), (1,2),(1,5),(5,4),(2,4),(2,3), (4,3),(3,6)1)
>>> ¢ = nx.communicability (G)

! Ernesto Estrada, Naomichi Hatano, “Communicability in complex networks”, Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756

4.11. Communicability 207

http://arxiv.org/abs/0707.0756

NetworkX Reference, Release 2.0.dev20161129121305

4.11.2 communicability_exp
communicability_exp (G)
Return communicability between all pairs of nodes in G.

Communicability between pair of node (u,v) of node in G is the sum of closed walks of different lengths starting
at node u and ending at node v.

Parameters G (graph)

Returns comm - Dictionary of dictionaries keyed by nodes with communicability as the value.
Return type dictionary of dictionaries

Raises NetworkXError —If the graph is not undirected and simple.

See also:

communicability () Communicability between pairs of nodes in G.

communicability_betweenness_centrality () Communicability betweeness centrality for each
node in G.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.

Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix
and the number of walks in the graph, the communicability between nodes u and v is !,

C(u,v) = (M) yp,
where A is the adjacency matrix of G.

References

Examples

>>> G = nx.Graph([(0,1), (1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)1])
>>> ¢ = nx.communicability_exp (G)

4.12 Communities

4.12.1 Bipartitions

Functions for computing the Kernighan—Lin bipartition algorithm.

kernighan_1lin_bisection(G[, partition, ...]) Partition a graph into two blocks using the Kernighan—Lin
algorithm.

! Ernesto Estrada, Naomichi Hatano, “Communicability in complex networks”, Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756

208 Chapter 4. Algorithms

http://arxiv.org/abs/0707.0756

NetworkX Reference, Release 2.0.dev20161129121305

kernighan_lin_bisection
kernighan_lin_bisection (G, partition=None, max_iter=10, weight="weight’)
Partition a graph into two blocks using the Kernighan—Lin algorithm.

This algorithm paritions a network into two sets by iteratively swapping pairs of nodes to reduce the edge cut
between the two sets.

Parameters
* G (graph)

* partition (fuple) — Pair of iterables containing an intial partition. If not specified, a random
balanced partition is used.

* max_iter (inf) — Maximum number of times to attempt swaps to find an improvemement
before giving up.

» weight (key) — Edge data key to use as weight. If None, the weights are all set to one.
Returns partition — A pair of sets of nodes representing the bipartition.
Return type tuple

Raises NetworkXError — If partition is not a valid partition of the nodes of the graph.

References

4.12.2 Generators

LFR_benchmark_graph

4.12.3 K-Clique

k_clique_communities(G, k[, cliques]) Find k-clique communities in graph using the percolation
method.

k_clique_communities
k_clique_communities (G, k, cligues=None)
Find k-clique communities in graph using the percolation method.

A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1
nodes) k-cliques.

Parameters

* G (NetworkX graph)

* k (int) — Size of smallest clique

* cliques (list or generator) — Precomputed cliques (use networkx.find_cliques(G))
Returns

Return type Yields sets of nodes, one for each k-clique community.

4.12. Communities 209

https://docs.python.org/2/library/functions.html#tuple

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G = nx.complete_graph(5)

>>> K5 = nx.convert_node_labels_to_integers (G, first_label=2)
>>> G.add_edges_from(K5.edges ())
>>> ¢ = list(nx.k_clique_communities (G, 4))

>>> 1list (c[0])
(o, 1, 2, 3, 4, 5, 6]
>>> list (nx.k_clique_communities (G, 6))

References

4.12.4 Label propagation

Asynchronous label propagation algorithms for community detection.

asyn_lpa_communities(G[, weight]) Returns communities in G as detected by asynchronous la-
bel propagation.

asyn_lpa_communities
asyn_lpa_ communities (G, weight=None)
Returns communities in G as detected by asynchronous label propagation.

The asynchronous label propagation algorithm is described in '. The algorithm is probabilistic and the found
communities may vary on different executions.

The algorithm proceeds as follows. After initializing each node with a unique label, the algorithm repeatedly sets
the label of a node to be the label that appears most frequently among that nodes neighbors. The algorithm halts
when each node has the label that appears most frequently among its neighbors. The algorithm is asynchronous
because each node is updated without waiting for updates on the remaining nodes.

This generalized version of the algorithm in ! accepts edge weights.
Parameters
* G (Graph)

» weight (string) — The edge attribute representing the weight of an edge. If None, each
edge is assumed to have weight one. In this algorithm, the weight of an edge is used in
determining the frequency with which a label appears among the neighbors of a node: a
higher weight means the label appears more often.

Returns communities — Iterable of communities given as sets of nodes.

Return type iterable

Notes

Edge weight attributes must be numerical.

! Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. “Near linear time algorithm to detect community structures in large-scale
networks.” Physical Review E 76.3 (2007): 036106.

210 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

References

4.12.5 Measuring partitions

Functions for measuring the quality of a partition (into communities).

coverage(*args, **kw) Returns the coverage of a partition.
performance(*args, \¥**kw) Returns the performance of a partition.
coverage

coverage (*args, **kw)
Returns the coverage of a partition.

The coverage of a partition is the ratio of the number of intra-community edges to the total number of edges in
the graph.

Parameters
* G (NetworkX graph)

* partition (sequence) — Partition of the nodes of G, represented as a sequence of sets of
nodes. Each block of the partition represents a community.

Returns The coverage of the partition, as defined above.
Return type float

Raises NetworkXError —If partition is not a valid partition of the nodes of G.

Notes

If G is a multigraph, the multiplicity of edges is counted.

References

performance
performance (*args, **kw)
Returns the performance of a partition.

The performance of a partition is the ratio of the number of intra-community edges plus inter-community non-
edges with the total number of potential edges.

Parameters
* G (NetworkX graph) — A simple graph (directed or undirected).

* partition (sequence) — Partition of the nodes of G, represented as a sequence of sets of
nodes. Each block of the partition represents a community.

Returns The performance of the partition, as defined above.
Return type float

Raises NetworkXError —If partition is not a valid partition of the nodes of G.

4.12. Communities 211

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

NetworkX Reference, Release 2.0.dev20161129121305

References

4.12.6 Partitions via centrality measures

Functions for computing communities based on centrality notions.

girvan_newman(G[, most_valuable_edge]) Finds communities in a graph using the Girvan—-Newman
method.

girvan_newman
girvan_newman (G, most_valuable_edge=None)
Finds communities in a graph using the Girvan—-Newman method.
Parameters
* G (NetworkX graph)

* most_valuable_edge (function) — Function that takes a graph as input and outputs an edge.
The edge returned by this function will be recomputed and removed at each iteration of the
algorithm.

If not specified, the edge with the highest networkx.edge_betweenness_centrality ()
will be used.

Returns Iterator over tuples of sets of nodes in G. Each set of node is a community, each tuple is a
sequence of communities at a particular level of the algorithm.

Return type iterator

Examples

To get the first pair of communities:

>>> G = nx.path_graph(10)

>>> comp = girvan_newman (G)

>>> tuple(sorted(c) for c in next (comp))
(to, 1, 2, 3, 41, I[5, 6, 7, 8, 91])

To get only the first k tuples of communities, use itertools.islice ():

>>> import itertools

>>> G = nx.path_graph(8)

>> k = 2

>>> comp = girvan_newman (G)

>>> for communities in itertools.islice(comp, k):
print (tuple (sorted(c) for c in communities))

To stop getting tuples of communities once the number of communities is greater than k, use
itertools.takewhile():

212 Chapter 4. Algorithms

https://docs.python.org/2/library/itertools.html#itertools.islice
https://docs.python.org/2/library/itertools.html#itertools.takewhile

NetworkX Reference, Release 2.0.dev20161129121305

>>> import itertools
>>> G = nx.path_graph(8)
>> k = 4
>>> comp = girvan_newman (G)
>>> limited = itertools.takewhile(lambda c: len(c) <= k, comp)
>>> for communities in limited:
print (tuple (sorted(c) for c in communities))

(o, 1, 2, 31, [4, 5, 6, 71)
(o, 11, (2, 31, [4, 5, 6, 7])
(o, 11, 2, 31, 4, 51, [6, 71)

To just choose an edge to remove based on the weight:

>>> from operator import itemgetter
>>> G = nx.path_graph(10)
>>> edges = G.edges ()
>>> nx.set_edge_attributes (G, 'weight', {(u, v): v for u, v in edges})
>>> def heaviest (G) :
u, v, w = max(G.edges (data="'weight'), key=itemgetter(2))
return (u, v)

>>> comp = girvan_newman (G, most_valuable_edge=heaviest)
>>> tuple (sorted(c) for c in next (comp))
(to, 1, 2, 3, 4, 5, 6, 7, 81, [9])

To utilize edge weights when choosing an edge with, for example, the highest betweenness centrality:

>>> from networkx import edge_betweenness_centrality as betweenness
>>> def most_central_edge (G) :

centrality = betweenness (G, weight='weight"')

return max (centrality, key=centrality.get)

>>> G = nx.path_graph (10)

>>> comp = girvan_newman (G, most_valuable_edge=most_central_edge)
>>> tuple (sorted(c) for c in next (comp))
(to, 1, 2, 3, 41, I[5 6, 7, 8, 9])

To specify a different ranking algorithm for edges, use the most_valuable_edge keyword argument:

>>> from networkx import edge_betweenness_centrality
>>> from random import random
>>> def most_central_edge (G) :
centrality = edge_betweenness_centrality (G)
max_cent = max(centrality.values())
Scale the centrality values so they are between 0 and 1,
and add some random noise.
centrality = {e: c / max_cent for e, c in centrality.items ()}
Add some random noise.
centrality = {e: ¢ + random() for e, c in centrality.items()}
return max (centrality, key=centrality.get)

>>> G = nx.path_graph(10)
>>> comp = girvan_newman (G, most_valuable_edge=most_central_edge)

4.12. Communities 213

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The Girvan—Newman algorithm detects communities by progressively removing edges from the original graph.
The algorithm removes the “most valuable” edge, traditionally the edge with the highest betweenness centrality,
at each step. As the graph breaks down into pieces, the tightly knit community structure is exposed and the
result can be depicted as a dendrogram.

4.13 Components

4.13.1 Connectivity

is_connected(G) Return True if the graph is connected, false otherwise.

number_connected_component s(G) Return the number of connected components.

connected_component s(G) Generate connected components.

connected_component_subgraphs(G[, copy]) Generate connected components as subgraphs.

node_connected_component(G, n) Return the nodes in the component of graph containing
node n.

is_connected
is_connected (G)
Return True if the graph is connected, false otherwise.
Parameters G (NetworkX Graph) — An undirected graph.
Returns connected — True if the graph is connected, false otherwise.
Return type bool
Raises NetworkXNotImplemented: — If G is undirected.

Examples

>>> G = nx.path_graph (4)
>>> print (nx.is_connected(G))
True

See also:

is_strongly connected(), is_weakly_ connected(), is _semiconnected(),
is_biconnected (), connected_components ()

Notes

For undirected graphs only.

number_connected_components

number_connected_components (G)
Return the number of connected components.

214 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

Parameters G (NetworkX graph) — An undirected graph.
Returns n — Number of connected components
Return type integer

See also:

connected_components (), number_weakly connected_components (),
number._strongly_connected_components ()

Notes

For undirected graphs only.

connected_components

connected_components (G)

Generate connected components.
Parameters G (NetworkX graph) — An undirected graph
Returns comp — A generator of sets of nodes, one for each component of G.
Return type generator of sets

Raises NetworkXNotImplemented: — If G is undirected.

Examples

Generate a sorted list of connected components, largest first.

>>> G = nx.path_graph(4)

>>> nx.add_path(G, [10, 11, 12])

>>> [len(c) for c in sorted(nx.connected_components (G), key=len, reverse=True)]
[4, 3]

If you only want the largest connected component, it’s more efficient to use max instead of sort.

>>> largest_cc = max (nx.connected_components (G), key=len)

See also:

strongly connected components (), weakly connected components ()

Notes

For undirected graphs only.

connected_component_subgraphs

connected_component_subgraphs (G, copy=True)

Generate connected components as subgraphs.

Parameters

4.13. Components 215

NetworkX Reference, Release 2.0.dev20161129121305

* G (NetworkX graph) — An undirected graph.

* copy (bool (default=True)) — If True make a copy of the graph attributes
Returns comp — A generator of graphs, one for each connected component of G.
Return type generator

Raises NetworkXNotImplemented: — If G is undirected.

Examples

>>> G = nx.path_graph(4)
>>> G.add_edge (5, 6)
>>> graphs = list (nx.connected_component_subgraphs (G))

If you only want the largest connected component, it’s more efficient to use max instead of sort:

>>> Gc = max(nx.connected_component_subgraphs (G), key=len)

See also:

connected_ components (), strongly_connected component_subgraphs (),
weakly connected component_subgraphs ()

Notes

For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

node_connected_component
node_connected_component (G, n)
Return the nodes in the component of graph containing node n.
Parameters
* G (NetworkX Graph) — An undirected graph.
* n (node label) — A node in G
Returns comp — A set of nodes in the component of G containing node n.
Return type set
Raises NetworkXNotImplemented: — If G is directed.
See also:

connected_components ()

Notes

For undirected graphs only.

4.13.2 Strong connectivity

216 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

is_strongly_connected(QG) Test directed graph for strong connectivity.

number._strongly_connected_components(G) Return number of strongly connected components in graph.

strongly connected component s(G) Generate nodes in strongly connected components of
graph.

strongly_connected_component_subgraphs(G[, Generate strongly connected components as subgraphs.
copy])

strongly_connected _components_recursive(G)Generate nodes in strongly connected components of

graph.
kosaraju_strongly_connected_components(G[, Generate nodes in strongly connected components of
) graph.
condensat ion(Gl, scc]) Returns the condensation of G.

is_strongly_connected
is_strongly connected (G)
Test directed graph for strong connectivity.
Parameters G (NetworkX Graph) — A directed graph.
Returns connected — True if the graph is strongly connected, False otherwise.
Return type bool
Raises NetworkXNotImplemented: — If G is undirected.
See also:

is _weakly_connected(), is_semiconnected(), is_connected(), is_biconnected(),
strongly_connected_components ()

Notes

For directed graphs only.

number_strongly _connected_components
number_strongly connected_components (G)
Return number of strongly connected components in graph.
Parameters G (NetworkX graph) — A directed graph.
Returns n — Number of strongly connected components
Return type integer
Raises NetworkXNotImplemented: — If G is undirected.
See also:

strongly_connected_components(), number._connected_components (),
number._weakly_ connected_components ()

Notes

For directed graphs only.

4.13. Components 217

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

strongly_connected_components
strongly_connected_components (G)
Generate nodes in strongly connected components of graph.
Parameters G (NetworkX Graph) — An directed graph.
Returns comp — A generator of sets of nodes, one for each strongly connected component of G.
Return type generator of sets

Raises NetworkXNotIlmplemented : — If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph (4, create_using=nx.DiGraph())

>>> nx.add_cycle (G, [10, 11, 127])

>>> [len(c) for c in sorted(nx.strongly_connected_components (G),
c key=len, reverse=True)]

[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest = max (nx.strongly_connected_components (G), key=len)
See also:
connected_components (), weakly_ connected_components (),

kosaraju_strongly connected_components ()

Notes

Uses Tarjan’s algorithm[1]_ with Nuutila’s modifications[2]_. Nonrecursive version of algorithm.

References

strongly_connected_component_subgraphs
strongly connected_component_subgraphs (G, copy=True)
Generate strongly connected components as subgraphs.
Parameters
* G (NetworkX Graph) — A directed graph.

* copy (boolean, optional) — if copy is True, Graph, node, and edge attributes are copied to
the subgraphs.

Returns comp — A generator of graphs, one for each strongly connected component of G.
Return type generator of graphs

Raises NetworkXNotImplemented: — If G is undirected.

218 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph (4, create_using=nx.DiGraph())

>>> nx.add_cycle (G, [10, 11, 127])

>>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs (G),
. key=len, reverse=True)]

(4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.strongly_connected_component_subgraphs (G), key=len)
See also:
strongly_connected_components (), connected_component_subgraphs (),

weakly connected component_subgraphs ()

strongly_connected_components_recursive
strongly connected_components_recursive (G)
Generate nodes in strongly connected components of graph.
Recursive version of algorithm.
Parameters G (NetworkX Graph) — An directed graph.
Returns comp — A generator of sets of nodes, one for each strongly connected component of G.
Return type generator of sets

Raises NetworkXNotIlmplemented : — If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph (4, create_using=nx.DiGraph())

>>> nx.add_cycle (G, [10, 11, 127])

>>> [len(c) for c in sorted(nx.strongly_connected_components_recursive (G),
key=len, reverse=True)]

(4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest = max (nx.strongly_connected_components_recursive (G), key=len)

See also:

connected_components ()

Notes

Uses Tarjan’s algorithm[1]_ with Nuutila’s modifications[2]_.

4.13. Components

219

NetworkX Reference, Release 2.0.dev20161129121305

References

kosaraju_strongly_connected_components
kosaraju_strongly_ connected_components (G, source=None)
Generate nodes in strongly connected components of graph.
Parameters G (NetworkX Graph) — An directed graph.
Returns comp — A genrator of sets of nodes, one for each strongly connected component of G.
Return type generator of sets

Raises NetworkXNotImplemented: — If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph (4, create_using=nx.DiGraph())

>>> nx.add_cycle (G, [10, 11, 12])

>>> [len(c) for c in sorted(nx.kosaraju_strongly_connected_components (G),
C. key=len, reverse=True)]

(4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest = max (nx.kosaraju_strongly_connected_components (G), key=len)

See also:

strongly_connected_components ()

Notes

Uses Kosaraju’s algorithm.

condensation

condensation (G, scc=None)
Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected components contracted into a single
node.

Parameters
* G (NetworkX DiGraph) — A directed graph.

* scc (list or generator (optional, default=None)) — Strongly connected components. If pro-
vided, the elements in scc must partition the nodes in G. If not provided, it will be calculated
as scc=nx.strongly_connected_components(G).

Returns C - The condensation graph C of G. The node labels are integers corresponding to the index
of the component in the list of strongly connected components of G. C has a graph attribute
named ‘mapping’ with a dictionary mapping the original nodes to the nodes in C to which they

220 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

belong. Each node in C also has a node attribute ‘members’ with the set of original nodes in G
that form the SCC that the node in C represents.

Return type NetworkX DiGraph

Raises NetworkXNotImplemented: — If G is undirected.

Notes

After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic
graph.

4.13.3 Weak connectivity

is_weakly_connected(G) Test directed graph for weak connectivity.
number_weakly_connected_component s(G) Return the number of weakly connected components in G.
weakly_connected_components(G) Generate weakly connected components of G.

weakly connected_component_subgraphs(G[, Generate weakly connected components as subgraphs.
copy])

is_weakly_connected
is_weakly_connected (G)
Test directed graph for weak connectivity.

A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge
between nodes is ignored.

Parameters G (NetworkX Graph) — A directed graph.
Returns connected — True if the graph is weakly connected, False otherwise.
Return type bool
Raises NetworkXNotImplemented: — If G is undirected.
See also:

is_strongly connected(), is_semiconnected(), is_connected(), is_biconnected(),
weakly connected_components ()

Notes

For directed graphs only.

number_weakly connected_components
number_weakly_connected_components (G)
Return the number of weakly connected components in G.
Parameters G (NetworkX graph) — A directed graph.
Returns n — Number of weakly connected components

Return type integer

4.13. Components 221

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

Raises NetworkXNotImplemented: — If G is undirected.
See also:

weakly connected components (), number._connected_ components (),
number._strongly connected components ()

Notes

For directed graphs only.

weakly_connected_components
weakly_ connected_components (G)
Generate weakly connected components of G.
Parameters G (NetworkX graph) — A directed graph
Returns comp — A generator of sets of nodes, one for each weakly connected component of G.
Return type generator of sets

Raises NetworkXNotImplemented: — If G is undirected.

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph (4, create_using=nx.DiGraph())

>>> nx.add_path(G, [10, 11, 12])

>>> [len(c) for c in sorted(nx.weakly_connected_components (G),
C. key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort:

>>> largest_cc = max(nx.weakly_connected_components (G), key=len)

See also:

connected_components (), strongly_ connected_components ()

Notes

For directed graphs only.

weakly _connected_component_subgraphs
weakly connected_component_subgraphs (G, copy=True)
Generate weakly connected components as subgraphs.
Parameters

* G (NetworkX graph) — A directed graph.

222 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

* copy (bool (default=True)) — If True make a copy of the graph attributes
Returns comp — A generator of graphs, one for each weakly connected component of G.
Return type generator

Raises NetworkXNotImplemented: — If G is undirected.

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph (4, create_using=nx.DiGraph())

>>> nx.add_path (G, [10, 11, 12])

>>> [len(c) for c in sorted(nx.weakly_connected_component_subgraphs (G),
. key=len, reverse=True)]

[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort:

>>> Gc = max(nx.weakly_connected_component_subgraphs (G), key=len)
See also:
weakly connected_components (), strongly_ connected_component_subgraphs(),

connected_component_subgraphs ()

Notes

For directed graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

4.13.4 Attracting components

is_attracting component(G) Returns True if G consists of a single attracting component.
number_attracting_component s(G) Returns the number of attracting components in G.
attracting components(G) Generates a list of attracting components in G.
attracting component_subgraphs(G[, copy]) Generates a list of attracting component subgraphs from G.

is_attracting_component
is_attracting component (G)
Returns True if G consists of a single attracting component.
Parameters G (DiGraph, MultiDiGraph) — The graph to be analyzed.
Returns attracting — True if G has a single attracting component. Otherwise, False.
Return type bool
Raises NetworkXNotImplemented : — If the input graph is undirected.
See also:

attracting components (), number_attracting components (),
attracting component_subgraphs ()

4.13. Components 223

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

number_attracting_components
number_attracting_components (G)
Returns the number of attracting components in G.
Parameters G (DiGraph, MultiDiGraph) — The graph to be analyzed.
Returns n — The number of attracting components in G.
Return type int
Raises NetworkXNotlmplemented : — If the input graph is undirected.
See also:

attracting_components(),1is_attracting_component (),attracting_component_subgraphs ()

attracting_components
attracting_ components (G)
Generates a list of attracting components in G.

An attracting component in a directed graph G is a strongly connected component with the property that a
random walker on the graph will never leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the
attractor containing the node, then the node will be visited infinitely often.

Parameters G (DiGraph, MultiDiGraph) — The graph to be analyzed.
Returns attractors — A generator of sets of nodes, one for each attracting component of G.
Return type generator of sets
Raises NetworkXNotImplemented : — If the input graph is undirected.
See also:

number_attracting_components (), is_attracting component (),
attracting component_subgraphs ()

attracting_component_subgraphs
attracting component_subgraphs (G, copy=True)
Generates a list of attracting component subgraphs from G.
Parameters G (DiGraph, MultiDiGraph) — The graph to be analyzed.
Returns
* subgraphs (list) — A list of node-induced subgraphs of the attracting components of G.
* copy (bool) — If copy is True, graph, node, and edge attributes are copied to the subgraphs.
Raises NetworkXNotlmplemented : — If the input graph is undirected.
See also:

attracting components (), number_attracting components (),
is_attracting component ()

224 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#int

NetworkX Reference, Release 2.0.dev20161129121305

4.13.5 Biconnected components

is_biconnected(G)

Return True if the graph is biconnected, False otherwise.

biconnected_components(G)

Return a generator of sets of nodes, one set for each bicon-
nected

biconnected component_edges(Q)

Return a generator of lists of edges, one list for each bicon-
nected component of the input graph.

biconnected _component_subgraphs(Gl, copy])

Return a generator of graphs, one graph for each bicon-
nected component of the input graph.

articulation_points(G)

Return a generator of articulation points, or cut vertices, of
a graph.

is_biconnected

is_biconnected (G)

Return True if the graph is biconnected, False otherwise.

A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges
incident on that node). If removing a node increases the number of disconnected components in the graph, that
node is called an articulation point, or cut vertex. A biconnected graph has no articulation points.

Parameters G (NetworkX Graph) — An undirected graph.

Returns biconnected — True if the graph is biconnected, False otherwise.

Return type bool

Raises NetworkXNotlmplemented : — If the input graph is not undirected.

Examples

>>> G = nx.path_graph (4)

>>> print (nx.is_biconnected (G))
False

>>> G.add_edge (0, 3)

>>> print (nx.is_biconnected (G))
True

See also:

biconnected_components (),articulation_points(),biconnected_component_edges (),

biconnected_component_subgraphs (),

is_strongly_connected(),

is_weakly_connected(), is_connected(), is_semiconnected()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n
is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from
any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed

consecutively between articulation points.

4.13. Components

225

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

References

biconnected_components

biconnected_components (G)

Return a generator of sets of nodes, one set for each biconnected component of the graph

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component.
Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number
of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.
Parameters G (NetworkX Graph) — An undirected graph.
Returns nodes — Generator of sets of nodes, one set for each biconnected component.
Return type generator

Raises NetworkXNotlmplemented : — If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print (nx.is_biconnected (G))

False

>>> bicomponents = list (nx.biconnected_components (G))
>>> len (bicomponents)

2

>>> G.add_edge (0, 5)
>>> print (nx.is_biconnected (G))

True

>>> bicomponents = list (nx.biconnected_components (G))
>>> len (bicomponents)

1

You can generate a sorted list of biconnected components, largest first, using sort.

>>> G.remove_edge (0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components (G), key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_components (G), key=len)

See also:

is _biconnected(), articulation_points(), biconnected _component_edges (),
biconnected_component__subgraphs ()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n

226

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from
any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

References

biconnected_component_edges
biconnected_component_edges (G)
Return a generator of lists of edges, one list for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected compo-
nent. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one,
biconnected component.

Notice that by convention a dyad is considered a biconnected component.
Parameters G (NetworkX Graph) — An undirected graph.
Returns edges — Generator of lists of edges, one list for each bicomponent.
Return type generator of lists

Raises NetworkXNotlmplemented : — If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph (4, 2)
>>> print (nx.is_biconnected (G))

False

>>> bicomponents_edges = list (nx.biconnected_component_edges (G))
>>> len (bicomponents_edges)

5

>>> G.add_edge (2, 8)
>>> print (nx.is_biconnected (G))

True

>>> bicomponents_edges = list (nx.biconnected_component_edges (G))

>>> len (bicomponents_edges)

1

See also:

is _biconnected(), biconnected_components (), articulation_points(),

biconnected_component__subgraphs ()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n
is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from
any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

4.13. Components 227

NetworkX Reference, Release 2.0.dev20161129121305

References

biconnected_component_subgraphs

biconnected_component_subgraphs (G, copy=True)

Return a generator of graphs, one graph for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component.
Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number
of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.
Parameters G (NetworkX Graph) — An undirected graph.
Returns graphs — Generator of graphs, one graph for each biconnected component.
Return type generator

Raises NetworkXNotlmplemented : — If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print (nx.is_biconnected (G))

False

>>> bicomponents = list (nx.biconnected_component_subgraphs (G))
>>> len (bicomponents)

2

>>> G.add_edge (0, 5)
>>> print (nx.is_biconnected (G))

True

>>> bicomponents = list (nx.biconnected_component_subgraphs (G))
>>> len (bicomponents)

1

You can generate a sorted list of biconnected components, largest first, using sort.

>>> G.remove_edge (0, 5)
>>> [len(c) for c in sorted(nx.biconnected_component_subgraphs (G),
C key=len, reverse=True)]

[5, 2]

If you only want the largest connected component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_component_subgraphs (G), key=len)

See also:

is _biconnected(), articulation_points (), biconnected component_edges (),
biconnected_components ()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n

228

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from
any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

articulation_points
articulation_points (G)
Return a generator of articulation points, or cut vertices, of a graph.

An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the
number of connected components of a graph. An undirected connected graph without articulation points is
biconnected. Articulation points belong to more than one biconnected component of a graph.

Notice that by convention a dyad is considered a biconnected component.
Parameters G (NetworkX Graph) — An undirected graph.
Returns articulation points — generator of nodes
Return type generator

Raises NetworkXNotlmplemented : — If the input graph is not undirected.

Examples

>>> G = nx.barbell_ graph (4, 2)

>>> print (nx.is_biconnected (G))

False

>>> len(list (nx.articulation_points(G)))
4

>>> G.add_edge (2, 8)

>>> print (nx.is_biconnected(G))

True

>>> len(list(nx.articulation_points(G)))
0

See also:

is_biconnected(), biconnected components (), biconnected component_edges(),
biconnected component_subgraphs ()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n
is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from
any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

4.13. Components 229

NetworkX Reference, Release 2.0.dev20161129121305

References

4.13.6 Semiconnectedness

is_semiconnected(G) Return True if the graph is semiconnected, False otherwise.

is_semiconnected
is_semiconnected (G)
Return True if the graph is semiconnected, False otherwise.

A graph is semiconnected if, and only if, for any pair of nodes, either one is reachable from the other, or they
are mutually reachable.

Parameters G (NetworkX graph) — A directed graph.
Returns semiconnected — True if the graph is semiconnected, False otherwise.
Return type bool
Raises
* NetworkXNotlmplemented : — If the input graph is undirected.

* NetworkXPointlessConcept : — If the graph is empty.

Examples

>>> G=nx.path_graph (4, create_using=nx.DiGraph())
>>> print (nx.is_semiconnected (G))

True

>>> G=nx.DiGraph ([(1, 2), (3, 2)1)

>>> print (nx.is_semiconnected (G))

False

See also:

is_strongly_connected(), is_weakly_connected(), is_connected(),

is_biconnected()
4.14 Connectivity
Connectivity and cut algorithms

4.14.1 K-node-components

Moody and White algorithm for k-components

k_component s(G[, flow_func]) Returns the k-component structure of a graph G.

230 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

k_components
k_components (G, flow_func=None)
Returns the k-component structure of a graph G.

A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at
least k nodes to break it into more components. k-components have an inherent hierarchical structure because
they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which
can contain one or more 3-components, and so forth.

Parameters
* G (NetworkX graph)

* flow_func (function) — Function to perform the underlying flow computations. Default value
edmonds_karp (). This function performs better in sparse graphs with right tailed degree
distributions. shortest_augmenting_path () will perform better in denser graphs.

Returns k_components — Dictionary with all connectivity levels k in the input Graph as keys and a
list of sets of nodes that form a k-component of level k as values.

Return type dict
Raises NetworkXNotImplemented: — If the input graph is directed.

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels

>>> G = nx.petersen_graph ()
>>> k_components = nx.k_components (G)
Notes

Moody and White ' (appendix A) provide an algorithm for identifying k-components in a graph, which is
based on Kanevsky’s algorithm * for finding all minimum-size node cut-sets of a graph (implemented in
all_node_cuts () function):

1.Compute node connectivity, k, of the input graph G.
2.1dentify all k-cutsets at the current level of connectivity using Kanevsky’s algorithm.

3.Generate new graph components based on the removal of these cutsets. Nodes in a cutset belong to both
sides of the induced cut.

4.If the graph is neither complete nor trivial, return to 1; else end.
This implementation also uses some heuristics (see * for details) to speed up the computation.
See also:

node_connectivity(),all_node_cuts()

! Moody, J. and D. White (2003). Social cohesion and embeddedness: A hierarchical conception of social groups. American Sociological
Review 68(1), 103-28. http://www2.asanet.org/journals/ASRFebO3MoodyWhite.pdf

2 Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533—541. http://onlinelibrary.wiley.com/
doi/10.1002/net.3230230604/abstract

3 Torrents, J. and F. Ferraro (2015). Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1

4.14. Connectivity 231

https://docs.python.org/2/library/stdtypes.html#dict
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
http://arxiv.org/pdf/1503.04476v1

NetworkX Reference, Release 2.0.dev20161129121305

References

4.14.2 K-node-cutsets

Kanevsky all minimum node k cutsets algorithm.

all _node_ cuts(G[,k, flow_func]) Returns all minimum k cutsets of an undirected graph G.

all_node_cuts
all_node_cuts (G, k=None, flow_func=None)
Returns all minimum k cutsets of an undirected graph G.

This implementation is based on Kanevsky’s algorithm ! for finding all minimum-size node cut-sets of an
undirected graph G; ie the set (or sets) of nodes of cardinality equal to the node connectivity of G. Thus if
removed, would break G into two or more connected components.

Parameters
* G (NetworkX graph) — Undirected graph

* k (Integer) — Node connectivity of the input graph. If k is None, then it is computed. Default
value: None.

* flow_func (function) — Function to perform the underlying flow computations. Default value
edmonds_karp. This function performs better in sparse graphs with right tailed degree dis-
tributions. shortest_augmenting_path will perform better in denser graphs.

Returns cuts — Each node cutset has cardinality equal to the node connectivity of the input graph.

Return type a generator of node cutsets

Examples

>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
>>> G = nx.grid_2d_graph(5, 5)

>>> cutsets = list(nx.all_node_cuts (G))

>>> len (cutsets)

4

>>> all (2 == len(cutset) for cutset in cutsets)
True

>>> nx.node_connectivity (G)

2

Notes

This implementation is based on the sequential algorithm for finding all minimum-size separating vertex sets in
a graph !. The main idea is to compute minimum cuts using local maximum flow computations among a set of
nodes of highest degree and all other non-adjacent nodes in the Graph. Once we find a minimum cut, we add an
edge between the high degree node and the target node of the local maximum flow computation to make sure
that we will not find that minimum cut again.

! Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533—541. http://onlinelibrary.wiley.com/
doi/10.1002/net.3230230604/abstract

232 Chapter 4. Algorithms

http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract

NetworkX Reference, Release 2.0.dev20161129121305

See also:

node_connectivity (), edmonds_karp (), shortest_augmenting_path ()

References

4.14.3 Flow-based Connectivity

Flow based connectivity algorithms

average_node_connectivity(G[, flow_func]) Returns the average connectivity of a graph G.

all _pairs_node_connectivity(G[, nbunch, ...]) Compute node connectivity between all pairs of nodes of
G.

edge_connectivity(Gl, s, t, flow_func]) Returns the edge connectivity of the graph or digraph G.

local_edge connectivity(G,u, v[,...]) Returns local edge connectivity for nodes s and t in G.

local_node_connectivity(G,s,t[,...]) Computes local node connectivity for nodes s and t.

node_connectivity(Gl,s,t, flow_func]) Returns node connectivity for a graph or digraph G.

average_node_connectivity
average_node_connectivity (G, flow_func=None)
Returns the average connectivity of a graph G.

The average connectivity bar {kappa} of a graph G is the average of local node connectivity over all pairs of
nodes of G ! .

Parameters
* G (NetworkX graph) — Undirected graph

* flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See local node connectivity () for details. The
choice of the default function may change from version to version and should not be relied
on. Default value: None.

Returns K — Average node connectivity
Return type float
See also:

local_node_connectivity(), node_connectivity(), edge_connectivity(),
maximum_flow (), edmonds_karp(),preflow_push (), shortest_augmenting_path ()

! Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45. http:
/lwww.sciencedirect.com/science/article/pii/S0012365X01001807

4.14. Connectivity 233

https://docs.python.org/2/library/functions.html#float
http://www.sciencedirect.com/science/article/pii/S0012365X01001807
http://www.sciencedirect.com/science/article/pii/S0012365X01001807

NetworkX Reference, Release 2.0.dev20161129121305

References

all_pairs_node_connectivity
all_pairs_node_connectivity (G, nbunch=None, flow_func=None)
Compute node connectivity between all pairs of nodes of G.
Parameters
* G (NetworkX graph) — Undirected graph

* nbunch (container) — Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.

» flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns all_pairs — A dictionary with node connectivity between all pairs of nodes in G, or in
nbunch if provided.

Return type dict
See also:

local_node_connectivity (), edge_connectivity(), Jlocal_edge connectivity(),
maximum_flow (), edmonds_karp (), preflow_push (), shortest_augmenting_path ()

edge_connectivity
edge_connectivity (G, s=None, t=None, flow_func=None)
Returns the edge connectivity of the graph or digraph G.

The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render
it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum
number of edges that must be removed to break all paths from source to target in G.

Parameters
* G (NetworkX graph) — Undirected or directed graph
* s (node) — Source node. Optional. Default value: None.
* t (node) — Target node. Optional. Default value: None.

* flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns K — Edge connectivity for G, or local edge connectivity if source and target were provided

Return type integer

234 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#dict

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph/()

>>> nx.edge_connectivity (G)

5

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp (), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_ path
>>> nx.edge_connectivity (G, flow_func=shortest_augmenting_ path)
5

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge
connectivity.

>>> nx.edge_connectivity (G, 3, 7)
5

If you need to perform several local computations among different pairs of nodes on the same graph,
it is recommended that you reuse the data structures used in the maximum flow computations. See
local_edge _connectivity () for details.

Notes

This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by
finding a ‘small’ dominating set of nodes of G (see algorithm 7 in ') and computing local maximum flow (see
local_edge_connectivity ()) between an arbitrary node in the dominating set and the rest of nodes in
it. This is an implementation of algorithm 6 in ! . For directed graphs, the algorithm does n calls to the maximum
flow function. This is an implementation of algorithm 8 in ! .

See also:

local_edge_connectivity (), local_node connectivity (), node_connectivity(),
maximum_flow (), edmonds_karp (), preflow_push (), shortest_augmenting_path ()

References

local_edge_connectivity
local_edge_connectivity (G, u, v, flow_func=None, auxiliary=None, residual=None, cutoff=None)
Returns local edge connectivity for nodes s and t in G.

Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to discon-
nect them.

This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary
digraph build from the original network (see below for details). This is equal to the local edge connectivity

! Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

4.14. Connectivity 235

http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson
theorem) ! .

Parameters
* G (NetworkX graph) — Undirected or directed graph
* s (node) — Source node
* t (node) — Target node

* flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

* auxiliary (NetworkX DiGraph) — Auxiliary digraph for computing flow based edge connec-
tivity. If provided it will be reused instead of recreated. Default value: None.

* residual (NetworkX DiGraph) — Residual network to compute maximum flow. If provided
it will be reused instead of recreated. Default value: None.

o cutoff (integer, floar) — If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This is only for the algorithms that support the
cutoff parameter: edmonds_karp () and shortest_augmenting_path (). Other
algorithms will ignore this parameter. Default value: None.

Returns K - local edge connectivity for nodes s and t.

Return type integer

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import local_edge_connectivity

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity (G, 0, 6)
5

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that
you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity,
and the residual network for the underlying maximum flow computation.

Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph
reusing the data structures.

>>> import itertools

>>> # You also have to explicitly import the function for

>>> # building the auxiliary digraph from the connectivity package

>>> from networkx.algorithms.connectivity import (
build_auxiliary_edge_connectivity)

! Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

236 Chapter 4. Algorithms

http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

>>> H = build_auxiliary_edge_connectivity (G)

>>> # And the function for building the residual network from the

>>> # flow package

>>> from networkx.algorithms.flow import build_residual_network

>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network (H, 'capacity'")

>>> result = dict.fromkeys (G, dict())

>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters

>>> for u, v in itertools.combinations (G, 2):

k = local_edge_connectivity (G, u, v, auxiliary=H, residual=R)
.. result[u] [v] = k
>>> all (result[u][v] == 5 for u, v in itertools.combinations (G, 2))

True

You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense
networks the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp () which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_ path
>>> local_edge_connectivity (G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the
edmonds_karp () algorithm on an auxiliary digraph build from the original input graph:

If the input graph is undirected, we replace each edge (u,‘v‘) with two reciprocal arcs (u, v) and (v, u) and
then we set the attribute ‘capacity’ for each arc to 1. If the input graph is directed we simply add the ‘capacity’
attribute. This is an implementation of algorithm 1 in !

The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a
maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

See also:

edge_connectivity(), local _node_connectivity(), node_connectivity(),
maximum_flow (), edmonds_karp (), preflow_push (), shortest_augmenting path ()
References

local_node_connectivity
local_node_connectivity (G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None)
Computes local node connectivity for nodes s and t.

Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be
removed (along with their incident edges) to disconnect them.

This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary
digraph build from the original input graph (see below for details).

Parameters

4.14. Connectivity 237

NetworkX Reference, Release 2.0.dev20161129121305

G (NetworkX graph) — Undirected graph

¢ s (node) — Source node

t (node) — Target node

* flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

* auxiliary (NetworkX DiGraph) — Auxiliary digraph to compute flow based node connectiv-
ity. It has to have a graph attribute called mapping with a dictionary mapping node names
in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default
value: None.

* residual (NetworkX DiGraph) — Residual network to compute maximum flow. If provided
it will be reused instead of recreated. Default value: None.

o cutoff (integer, float) — If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This is only for the algorithms that support the
cutoff parameter: edmonds_karp () and shortest_augmenting_path (). Other
algorithms will ignore this parameter. Default value: None.

Returns K — local node connectivity for nodes s and t

Return type integer

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import local_node_connectivity

We use in this example the platonic icosahedral graph, which has node connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_node_connectivity (G, 0, 6)
5

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that
you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity,
and the residual network for the underlying maximum flow computation.

Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph
reusing the data structures.

>>> import itertools

>>> # You also have to explicitly import the function for

>>> # building the auxiliary digraph from the connectivity package

>>> from networkx.algorithms.connectivity import (
build_auxiliary_node_connectivity)

>>> H = build_auxiliary_node_connectivity (G)
>>> # And the function for building the residual network from the
>>> # flow package

238

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

>>> from networkx.algorithms.flow import build_residual_network

>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network (H, 'capacity'")

>>> result = dict.fromkeys (G, dict())

>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters

>>> for u, v in itertools.combinations (G, 2):

k = local_node_connectivity (G, u, v, auxiliary=H, residual=R)
result[u] [v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations (G, 2))

True

You can also use alternative flow algorithms for computing node connectivity. For instance, in dense
networks the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp () which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_node_connectivity (G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of node connectivity. We compute the maximum flow using, by default,
the edmonds_karp () algorithm (see: maximum_flow ()) on an auxiliary digraph build from the original
input graph:

For an undirected graph G having n nodes and m edges we derive a directed graph H with 2n nodes and 2m+n
arcs by replacing each original node v with two nodes v_A, v_B linked by an (internal) arc in H. Then for each
edge (u, v) in G we add two arcs (u_B, v_2) and (v_B, u_23) in H. Finally we set the attribute capacity = 1 for
eacharcinH ' .

For a directed graph G having n nodes and m arcs we derive a directed graph H with 2n nodes and m+n arcs by
replacing each original node v with two nodes v_A2, v_B linked by an (internal) arc (v_A, v_B) in H. Then for
each arc (u, v) in G we add one arc (u_B, v_2) in H. Finally we set the attribute capacity = 1 for each arc in H.

This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of
a minimum s-t-cut.

See also:

local_edge connectivity(), node_connectivity(), minimum_node_cut (),
maximum_flow (), edmonds_karp (), preflow_push (), shortest_augmenting_path ()

References

node_connectivity

node_connectivity (G, s=None, t=None, flow_func=None)
Returns node connectivity for a graph or digraph G.

! Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, ‘Network Analysis: Methodological Foundations’,
Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_
Connectivity.pdf

4.14. Connectivity 239

http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it
trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum
number of nodes that must be removed to break all paths from source to target in G.

Parameters
* G (NetworkX graph) — Undirected graph
* s (node) — Source node. Optional. Default value: None.
* t (node) — Target node. Optional. Default value: None.

» flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns K — Node connectivity of G, or local node connectivity if source and target are provided.

Return type integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph ()

>>> nx.node_connectivity (G)

5

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp (), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_ path
>>> nx.node_connectivity (G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node
connectivity.

>>> nx.node_connectivity (G, 3, 7)
5

If you need to perform several local computations among different pairs of nodes on the same graph,
it is recommended that you reuse the data structures used in the maximum flow computations. See
local_node_connectivity () for details.

Notes

This is a flow based implementation of node connectivity. The algorithm works by solving
O((n-delta-1l+delta(delta-1)/2)) maximum flow problems on an auxiliary digraph. Where delta
is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connec-
tivity see Local_node_connectivity (). This implementation is based on algorithm 11 in I

! Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

240 Chapter 4. Algorithms

http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

See also:

local_node_connectivity(), edge_connectivity(), maximum_flow (),
edmonds_karp (), preflow_push (), shortest_augmenting_path ()

References

4.14.4 Flow-based Minimum Cuts

Flow based cut algorithms

minimum_edge cut(Gl, s, t, flow_func]) Returns a set of edges of minimum cardinality that discon-
nects G.

minimum_ node cut(Gl, s, t, flow_func]) Returns a set of nodes of minimum cardinality that discon-
nects G.

minimum_st_edge_cut(G, s, t[, flow_func, ...]) Returns the edges of the cut-set of a minimum (s, t)-cut.

minimum_st_node_cut(G,s,t[, low_func, ...]) Returns a set of nodes of minimum cardinality that discon-

nect source from target in G.

minimum_edge_cut
minimum_ edge_cut (G, s=None, t=None, flow_func=None)
Returns a set of edges of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if
removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum
cardinality that disconnects G.

Parameters
* G (NetworkX graph)
* s (node) — Source node. Optional. Default value: None.
* t (node) — Target node. Optional. Default value: None.

» flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns cutset — Set of edges that, if removed, would disconnect G. If source and target nodes are
provided, the set contians the edges that if removed, would destroy all paths between source and
target.

Return type set

Examples

>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()

>>> len (nx.minimum_edge_cut (G))

5

4.14. Connectivity 241

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp (), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting path
>>> len (nx.minimum_edge_cut (G, flow_func=shortest_augmenting_path))
5

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge
connectivity.

>>> nx.edge_connectivity (G, 3, 7)
5

If you need to perform several local computations among different pairs of nodes on the same graph,
it is recommended that you reuse the data structures used in the maximum flow computations. See
local_edge_connectivity () for details.

Notes

This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by
finding a ‘small’ dominating set of nodes of G (see algorithm 7 in ') and computing the maximum flow between
an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in
1. For directed graphs, the algorithm does n calls to the max flow function. The function raises an error if the
directed graph is not weakly connected and returns an empty set if it is weakly connected. It is an implementation
of algorithm 8 in !.

See also:
minimum st_edge_cut (), minimum_node_cut (), stoer_wagner (),
node_connectivity (), edge_connectivity (), maximum_flow(), edmonds_karp(),

preflow_push (), shortest_augmenting_path ()

References

minimum_node_cut
minimum node_cut (G, s=None, t=None, flow_func=None)
Returns a set of nodes of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if
removed, would destroy all paths among source and target in G. If not, it returns a set of nodes of minimum
cardinality that disconnects G.

Parameters
* G (NetworkX graph)
* s (node) — Source node. Optional. Default value: None.
* t (node) — Target node. Optional. Default value: None.

» flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,

! Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

242 Chapter 4. Algorithms

http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns cutset — Set of nodes that, if removed, would disconnect G. If source and target nodes are
provided, the set contians the nodes that if removed, would destroy all paths between source and
target.

Return type set

Examples

>>> # Platonic icosahedral graph has node connectivity 5

>>> G = nx.icosahedral_graph()

>>> node_cut = nx.minimum_node_cut (G)
>>> len (node_cut)
5

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp (), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_ path
>>> node_cut == nx.minimum_node_cut (G, flow_func=shortest_augmenting_path)
True

If you specify a pair of nodes (source and target) as parameters, this function returns a local st node cut.

>>> len (nx.minimum_node_cut (G, 3, 7))
5

If you need to perform several local st cuts among different pairs of nodes on the same graph, it is recommended
that you reuse the data structures used in the maximum flow computations. See minimum st_node_cut ()
for details.

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of
maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation
is based on algorithm 11 in '

See also:
minimum_st_node_cut (), minimum_cut (), minimum edge_cut (), stoer_wagner(),
node_connectivity (), edge_connectivity (), maximum_flow(), edmonds_karp(),

preflow_push (), shortest_augmenting_path ()

! Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

4.14. Connectivity 243

https://docs.python.org/2/library/stdtypes.html#set
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

References

minimum_st_edge_cut

minimum_st_edge_cut (G, s, t, flow_func=None, auxiliary=None, residual=None)
Returns the edges of the cut-set of a minimum (s, t)-cut.

This function returns the set of edges of minimum cardinality that, if removed, would destroy all paths among
source and target in G. Edge weights are not considered. See minimum_cut () for computing minimum cuts
considering edge weights.

Parameters
* G (NetworkX graph)
¢ s (node) — Source node for the flow.
¢ t (node) — Sink node for the flow.

* auxiliary (NetworkX DiGraph) — Auxiliary digraph to compute flow based node connectiv-
ity. It has to have a graph attribute called mapping with a dictionary mapping node names
in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default
value: None.

* flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See node_connectivity () for details. The choice of
the default function may change from version to version and should not be relied on. Default
value: None.

* residual (NetworkX DiGraph) — Residual network to compute maximum flow. If provided
it will be reused instead of recreated. Default value: None.

Returns cutset — Set of edges that, if removed from the graph, will disconnect it.

Return type set

See also:
minimum_cut (), minimum node_cut (), minimum_edge_cut (), stoer_wagner (),
node_connectivity (), edge_connectivity (), maximum_flow(), edmonds_karp(),

preflow_push (), shortest_augmenting_path ()

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_edge_cut

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len (minimum_st_edge_cut (G, 0, 6))
5

244 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

If you need to compute local edge cuts on several pairs of nodes in the same graph, it is recommended that you
reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity,
and the residual network for the underlying maximum flow computation.

Example of how to compute local edge cuts among all pairs of nodes of the platonic icosahedral graph reusing
the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # puilding the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
.. build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity (G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network (H, 'capacity')
>>> result = dict.fromkeys (G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations (G, 2):

k = len(minimum_st_edge_cut (G, u, v, auxiliary=H, residual=R))
.. result[u] [v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations (G, 2))

True

You can also use alternative flow algorithms for computing edge cuts. For instance, in dense networks the algo-
rithm shortest_augmenting_path () will usually perform better than the default edmonds_karp ()
which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to
be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len (minimum_st_edge_cut (G, 0, 6, flow_func=shortest_augmenting_ path))
5

minimum_st_node_cut

minimum_ st_node_cut (G, s, ¢, flow_func=None, auxiliary=None, residual=None)

Returns a set of nodes of minimum cardinality that disconnect source from target in G.

This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among
source and target in G.

Parameters
* G (NetworkX graph)
¢ s (node) — Source node.
* t (node) — Target node.

» flow_func (function) — A function for computing the maximum flow among a pair of
nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow () for details). If flow_func is None, the default maximum flow function
(edmonds_karp ()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

4.14. Connectivity 245

NetworkX Reference, Release 2.0.dev20161129121305

* auxiliary (NetworkX DiGraph) — Auxiliary digraph to compute flow based node connectiv-
ity. It has to have a graph attribute called mapping with a dictionary mapping node names
in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default
value: None.

* residual (NetworkX DiGraph) — Residual network to compute maximum flow. If provided
it will be reused instead of recreated. Default value: None.

Returns cutset — Set of nodes that, if removed, would destroy all paths between source and target
in G.

Return type set

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_node_cut

We use in this example the platonic icosahedral graph, which has node connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len (minimum_st_node_cut (G, 0, 6))
5

If you need to compute local st cuts between several pairs of nodes in the same graph, it is recommended that
you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity
and node cuts, and the residual network for the underlying maximum flow computation.

Example of how to compute local st node cuts reusing the data structures:

>>> # You also have to explicitly import the function for

>>> # puilding the auxiliary digraph from the connectivity package

>>> from networkx.algorithms.connectivity import (

.. build_auxiliary_node_connectivity)

>>> H = build_auxiliary_node_connectivity (G)

>>> # And the function for building the residual network from the

>>> # flow package

>>> from networkx.algorithms.flow import build_residual_network

>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network (H, 'capacity'")

>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters

>>> len (minimum_st_node_cut (G, 0, 6, auxiliary=H, residual=R))

You can also use alternative flow algorithms for computing minimum st node cuts. For instance, in dense
networks the algorithm shortest_augmenting_path () will usually perform better than the default
edmonds_karp () which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len (minimum_st_node_cut (G, 0, 6, flow_func=shortest_augmenting_path))
5

246

Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#set

NetworkX Reference, Release 2.0.dev20161129121305

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of
maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation
is based on algorithm 11 in '

See also:
minimum_node_ cut (), minimum_edge_cut (), stoer_wagner (), node_connectivity (),
edge_connectivity (), maximum_flow (), edmonds_karp (), preflow_push (),

shortest_augmenting_path ()

References

4.14.5 Stoer-Wagner minimum cut

Stoer-Wagner minimum cut algorithm.

stoer_wagner(G[, weight, heap]) Returns the weighted minimum edge cut using the Stoer-
Wagner algorithm.

stoer_wagner
stoer_wagner (G, weight="weight’, heap=<class ‘networkx.utils.heaps.BinaryHeap’>)
Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases,
all weights must be nonnegative.

The running time of the algorithm depends on the type of heaps used:

Type of heap | Running time

Binary heap O(n (m + n) log n)

Fibonacci heap | O (nm + n”2 log n)

Pairing heap 0(27{2 sgrt{log log n}} nm + n"2 log n)
Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute named by the
weight parameter below. If this attribute is not present, the edge is considered to have unit
weight.

» weight (string) — Name of the weight attribute of the edges. If the attribute is not present,
unit weight is assumed. Default value: ‘weight’.

* heap (class) — Type of heap to be used in the algorithm. It should be a subclass of MinHeap
or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is recommeded over
PairingHeap for Python implementations without optimized attribute accesses (e.g.,
CPython) despite a slower asymptotic running time. For Python implementations with opti-
mized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default
value: BinaryHeap.

! Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

4.14. Connectivity 247

http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

Returns

* cut_value (integer or float) — The sum of weights of edges in a minimum cut.

* partition (pair of node lists) — A partitioning of the nodes that defines a minimum cut.

Raises

* NetworkXNotImplemented —

If the graph is directed or a multigraph.

* NetworkXError —If the graph has less than two nodes, is not connected or has a negative-

weighted edge.
Examples
>>> G = nx.Graph()
>>> G.add_edge('x','a', weight=3)
>>> G.add_edge('x"', 'b', weight=1)
>>> G.add_edge('a', c', weight=3)
>>> G.add_edge('b', 'c', weight=5)
>>> G.add_edge('b','d', weight=4)
>>> G.add_edge('d','e', weight=2)
>>> G.add_edge('c','y', weight=2)
>>> G.add_edge('e','y', weight=3)
>>> cut_value, partition = nx.stoer_wagner (G)
>>> cut_value
4

4.14.6 Utils for flow-based connectivity

Utilities for connectivity package

build auxiliary_ edge_connectivity(QG)

Auxiliary digraph for computing flow based edge connec-
tivity

build _auxiliary_node_connectivity(G)

Creates a directed graph D from an undirected graph G to
compute flow based node connectivity.

build_auxiliary_edge_connectivity

build_auxiliary_edge_connectivity (G)

Auxiliary digraph for computing flow based edge connectivity

If the input graph is undirected, we replace each edge (u,‘v‘) with two reciprocal arcs (u, v) and (v, u) and
then we set the attribute ‘capacity’ for each arc to 1. If the input graph is directed we simply add the ‘capacity’
attribute. Part of algorithm 1 in '

! Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a chapter, look for the reference of the book). http://www.cse.msu.edu/~cse835/
Papers/Graph_connectivity_revised.pdf

248

Chapter 4. Algorithms

http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

References

build_auxiliary_node_connectivity
build_auxiliary_node_connectivity (G)
Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

For an undirected graph G having n nodes and m edges we derive a directed graph D with 2n nodes and 2m+n
arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc in D. Then for each
edge (u, v) in G we add two arcs (uB, vA) and (vB, ua) in D. Finally we set the attribute capacity = 1 for each
arcinD !,

For a directed graph having n nodes and m arcs we derive a directed graph D with 2n nodes and m+n arcs by
replacing each original node v with two nodes vA, vB linked by an (internal) arc (vA, vB) in D. Then for each
arc (u, v) in G we add one arc (uB, vA) in D. Finally we set the attribute capacity = 1 for each arc in D.

A dictionary with a mapping between nodes in the original graph and the auxiliary digraph is stored as a graph
attribute: H.graph[’mapping’].

References

4.15 Cores

Find the k-cores of a graph.
The k-core is found by recursively pruning nodes with degrees less than k.
See the following references for details:

An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http:
/larxiv.org/abs/cs.DS/0310049

Generalized Cores Vladimir Batagelj and Matjaz Zaversnik, 2002. http://arxiv.org/pdf/cs/0202039

For directed graphs a more general notion is that of D-cores which looks at (k, 1) restrictions on (in, out) degree. The
(k, k) D-core is the k-core.

D-cores: Measuring Collaboration of Directed Graphs Based on Degeneracy Christos Giatsidis, Dimitrios M. Thilikos,
Michalis Vazirgiannis, ICDM 201 1. http://www.graphdegeneracy.org/dcores_ICDM_2011.pdf

core_number(QG) Return the core number for each vertex.
k_core(Gl, k, core_number]) Return the k-core of G.

k_shell(Gl, k, core_number]) Return the k-shell of G.

k_crust(Gl, k, core_number]) Return the k-crust of G.

k_corona(G, k[, core_number]) Return the k-corona of G.

4.15.1 core_number

core_number (G)
Return the core number for each vertex.

! Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, ‘Network Analysis: Methodological Foundations’,
Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_
Connectivity.pdf

4.15. Cores 249

http://arxiv.org/abs/cs.DS/0310049
http://arxiv.org/abs/cs.DS/0310049
http://arxiv.org/pdf/cs/0202039
http://www.graphdegeneracy.org/dcores_ICDM_2011.pdf
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

NetworkX Reference, Release 2.0.dev20161129121305

A k-core is a maximal subgraph that contains nodes of degree k or more.

The core number of a node is the largest value k of a k-core containing that node.
Parameters G (NetworkX graph) — A graph or directed graph
Returns core_number — A dictionary keyed by node to the core number.
Return type dictionary

Raises NetworkXError — The k-core is not implemented for graphs with self loops or parallel
edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

References

4.15.2 k_core
k_core (G, k=None, core_number=None)
Return the k-core of G.
A k-core is a maximal subgraph that contains nodes of degree k or more.
Parameters
* G (NetworkX graph) — A graph or directed graph
* k (int, optional) — The order of the core. If not specified return the main core.
* core_number (dictionary, optional) — Precomputed core numbers for the graph G.
Returns G — The k-core subgraph
Return type NetworkX graph

Raises NetworkXError — The k-core is not defined for graphs with self loops or parallel edges.

Notes

The main core is the core with the largest degree.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.
Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number ()

250 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

References

4.15.3 k_shell
k_shell (G, k=None, core_number=None)
Return the k-shell of G.

The k-shell is the subgraph induced by nodes with core number k. That is, nodes in the k-core that are not in the
(k+1)-core.

Parameters
* G (NetworkX graph) — A graph or directed graph.
* k (int, optional) — The order of the shell. If not specified return the outer shell.
 core_number (dictionary, optional) — Precomputed core numbers for the graph G.
Returns G — The k-shell subgraph
Return type NetworkX graph

Raises NetworkXError — The k-shell is not implemented for graphs with self loops or parallel
edges.

Notes

This is similar to k_corona but in that case only neighbors in the k-core are considered.
Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number (), k_corona ()

References

4.15.4 Kk crust
k_crust (G, k=None, core_number=None)
Return the k-crust of G.
The k-crust is the graph G with the k-core removed.
Parameters
* G (NetworkX graph) — A graph or directed graph.
* k (int, optional) — The order of the shell. If not specified return the main crust.
* core_number (dictionary, optional) — Precomputed core numbers for the graph G.
Returns G — The k-crust subgraph
Return type NetworkX graph

Raises NetworkXError — The k-crust is not implemented for graphs with self loops or parallel
edges.

4.15. Cores 251

NetworkX Reference, Release 2.0.dev20161129121305

Notes

This definition of k-crust is different than the definition in '. The k-crust in ' is equivalent to the k+1 crust of
this algorithm.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.
Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number ()

References

4.15.5 k_corona
k_corona (G, k, core_number=None)
Return the k-corona of G.
The k-corona is the subgraph of nodes in the k-core which have exactly k neighbours in the k-core.
Parameters
* G (NetworkX graph) — A graph or directed graph
¢ Kk (int) — The order of the corona.
* core_number (dictionary, optional) — Precomputed core numbers for the graph G.
Returns G - The k-corona subgraph
Return type NetworkX graph

Raises NetworkXError — The k-cornoa is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.
Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number ()
References

4.16 Covering

Functions related to graph covers.

!' A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS
July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full

252 Chapter 4. Algorithms

http://www.pnas.org/content/104/27/11150.full

NetworkX Reference, Release 2.0.dev20161129121305

min_edge_cover(G[, matching_algorithm]) Returns a set of edges which constitutes the minimum edge
cover of the graph.

is_edge_cover(G, cover) Decides whether a set of edges is a valid edge cover of the
graph.

4.16.1 min_edge_cover
min_edge_cover (G, matching_algorithm=None)
Returns a set of edges which constitutes the minimum edge cover of the graph.

A smallest edge cover can be found in polynomial time by finding a maximum matching and extending it
greedily so that all nodes are covered.

Parameters
* G (NetworkX graph) — An undirected bipartite graph.

* matching_algorithm (function) — A function that returns a maximum cardinality matching
in a given bipartite graph. The function must take one input, the graph G, and return a dic-
tionary mapping each node to its mate. If not specified, hopcroft_karp_matching ()
will be used. Other possibilities include eppstein_matching (), or matching algo-
rithms in the networkx.algorithms.matching module.

Returns min_cover — It contains all the edges of minimum edge cover in form of tuples. It contains
both the edges (u, v) and (v, u) for given nodes u and v among the edges of minimum edge
cover.

Return type set

Notes

An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of
the set. The minimum edge cover is an edge covering of smallest cardinality.

Due to its implementation, the worst-case running time of this algorithm is bounded by the worst-case running
time of the function matching_algorithm.

Minimum edge cover for bipartite graph can also be found using the function present in
networkx.algorithms.bipartite.covering

4.16.2 is_edge_cover
is_edge_cover (G, cover)
Decides whether a set of edges is a valid edge cover of the graph.

Given a set of edges, whether it is an edge covering can be decided if we just check whether all nodes of the
graph has an edge from the set, incident on it.

Parameters
* G (NetworkX graph) — An undirected bipartite graph.
* cover (set) — Set of edges to be checked.
Returns Whether the set of edges is a valid edge cover of the graph.

Return type bool

4.16. Covering 253

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

Notes

An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of

the set.

4.17 Cycles

4.17.1 Cycle finding algorithms

cycle_basis(GI, root])

Returns a list of cycles which form a basis for cycles of G.

simple_cycles(G)

Find simple cycles (elementary circuits) of a directed
graph.

find_cycle(Gl, source, orientation])

Returns the edges of a cycle found via a directed, depth-
first traversal.

4.17.2 cycle_basis

cycle_basis (G, root=None)

Returns a list of cycles which form a basis for cycles of G.

A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written
as a sum of cycles in the basis. Here summation of cycles is defined as “exclusive or” of the edges. Cycle bases
are useful, e.g. when deriving equations for electric circuits using Kirchhoff’s Laws.

Parameters

o G (NetworkX Graph)

* root (node, optional) — Specify starting node for basis.

Returns

* A list of cycle lists. Each cycle list is a list of nodes

* which forms a cycle (loop) in G.

Examples

>>> G=nx.Graph ()

>>> nx.add_cycle(G, [0, 1, 2,
>>> nx.add_cycle(G, [0, 3, 4,
>>> print (nx.cycle_basis(G,0))
[(3, 4, 5, 01, [(1, 2, 3, 0]]

Notes

This is adapted from algorithm CACM 491 !.

! Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

254

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

References

See also:

simple_cycles ()

4.17.3 simple_cycles
simple_cycles (G)
Find simple cycles (elementary circuits) of a directed graph.

A simple cycle,orelementary circuit,isaclosed path where no node appears twice. Two elemen-
tary circuits are distinct if they are not cyclic permutations of each other.

This is a nonrecursive, iterator/generator version of Johnson’s algorithm !. There may be better algorithms for

23
some cases - .

Parameters G (NetworkX DiGraph) — A directed graph

Returns cycle_generator — A generator that produces elementary cycles of the graph. Each cycle
is represented by a list of nodes along the cycle.

Return type generator

Examples

>>> G = nx.DiGraph ([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)1)
>>> len(list (nx.simple_cycles (G)))
5

To filter the cycles so that they don’t include certain nodes or edges, copy your graph and eliminate those nodes
or edges before calling

>>> copyG = G.copy ()

>>> copyG.remove_nodes_from([1])

>>> copyG.remove_edges_from ([(0, 1)1)
>>> len(list (nx.simple_cycles (copyG)))
3

Notes

The implementation follows pp. 79-80 in !

The time complexity is O ((n+e) (c+1)) for n nodes, e edges and c elementary circuits.

References

See also:

1 Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. http://dx.doi.org/
10.1137/0204007

2 Enumerating the cycles of a digraph: a new preprocessing strategy. G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.

3 A search strategy for the elementary cycles of a directed graph. J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS, v. 16,
no. 2, 192-204, 1976.

4.17. Cycles 255

http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007

NetworkX Reference, Release 2.0.dev20161129121305

cycle _basis ()

4.17.4 find_cycle

find_cycle (G, source=None, orientation="original’)

Returns the edges of a cycle found via a directed, depth-first traversal.
Parameters

* G (graph) — A directed/undirected graph/multigraph.

* source (node, list of nodes) — The node from which the traversal begins. If None, then a
source is chosen arbitrarily and repeatedly until all edges from each node in the graph are

searched.

* orientation (‘original’ | ‘reverse’ | ‘ignore’) — For directed graphs and directed multigraphs,
edge traversals need not respect the original orientation of the edges. When set to ‘reverse’,
then every edge will be traversed in the reverse direction. When set to ‘ignore’, then each
directed edge is treated as a single undirected edge that can be traversed in either direction.
For undirected graphs and undirected multigraphs, this parameter is meaningless and is not

consulted by the algorithm.

Returns edges — A list of directed edges indicating the path taken for the loop. If no cycle is found,
then an exception is raised. For graphs, an edge is of the form (u, v) where u and v are the
tail and head of the edge as determined by the traversal. For multigraphs, an edge is of the
form (u, v, key), where key is the key of the edge. When the graph is directed, then u and
v are always in the order of the actual directed edge. If orientation is ‘ignore’, then an edge
takes the form (u, v, key,direction) where direction indicates if the edge was followed
in the forward (tail to head) or reverse (head to tail) direction. When the direction is forward,
the value of direction is ‘forward’. When the direction is reverse, the value of direction

is ‘reverse’.
Return type directed edges

Raises NetworkXNoCycle —If no cycle was found.

Examples

In this example, we construct a DAG and find, in the first call, that there are no directed cycles, and so an
exception is raised. In the second call, we ignore edge orientations and find that there is an undirected cycle.
Note that the second call finds a directed cycle while effectively traversing an undirected graph, and so, we
found an “undirected cycle”. This means that this DAG structure does not form a directed tree (which is also

known as a polytree).

>>> import networkx as nx
>>> G = nx.DiGraph([(0,1), (0,2), (1,2)1)
>>> try:
find_cycle (G, orientation='original')
. except:
pass

>>> list (find_cycle (G, orientation='ignore'))
[(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]

256

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

4.18 Cuts

Functions for finding and evaluating cuts in a graph.

boundary_expansion(G, S) Returns the boundary expansion of the set S.

conductance(G, S[, T, weight]) Returns the conductance of two sets of nodes.

cut_size(G, S[, T, weight]) Returns the size of the cut between two sets of nodes.

edge_expansion(G, S[, T, weight]) Returns the edge expansion between two node sets.

mixing_expansion(G, S[, T, weight]) Returns the mixing expansion between two node sets.

node_expansion(G, S) Returns the node expansion of the set S.

normalized cut_size(G, S|, T, weight]) Returns the normalized size of the cut between two sets of
nodes.

volume(G, S[, weight]) Returns the volume of a set of nodes.

4.18.1 boundary_expansion
boundary_expansion (G, S)
Returns the boundary expansion of the set S.
The boundary expansion is the quotient of the size of the edge boundary and the cardinality of S. [1]
Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.
Returns The boundary expansion of the set S.
Return type number
See also:

edge_expansion (), mixing_expansion (), node_expansion ()
References

4.18.2 conductance
conductance (G, S, T=None, weight=None)
Returns the conductance of two sets of nodes.
The conductance is the quotient of the cut size and the smaller of the volumes of the two sets. [1]
Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.
» T (sequence) — A sequence of nodes in G.

» weight (object) — Edge attribute key to use as weight. If not specified, edges have weight
one.

Returns The conductance between the two sets S and T.

Return type number

4.18. Cuts 257

NetworkX Reference, Release 2.0.dev20161129121305

See also:

cut_size (), edge_expansion (), normalized _cut_size (), volume ()

References

4.18.3 cut_size

cut_size (G, S, T=None, weight=None)

Returns the size of the cut between two sets of nodes.

A cut is a partition of the nodes of a graph into two sets. The cut size is the sum of the weights of the edges
“between” the two sets of nodes.

Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.

* T (sequence) — A sequence of nodes in G. If not specified, this is taken to be the set comple-
ment of S.

» weight (object) — Edge attribute key to use as weight. If not specified, edges have weight
one.

Returns Total weight of all edges from nodes in set S to nodes in set T (and, in the case of directed
graphs, all edges from nodes in T to nodes in S).

Return type number

Examples

In the graph with two cliques joined by a single edges, the natural bipartition of the graph into two blocks, one
for each clique, yields a cut of weight one:

>>> G = nx.barbell_graph(3, 0)
>>> S = {0, 1, 2}

>>> T = {3, 4, 5}

>>> nx.cut_size (G, S, T)

1

Each parallel edge in a multigraph is counted when determining the cut size:

>>> G = nx.MultiGraph(['ab', 'ab'])
>>> S = {'a'}

>> T = {'b'}

>>> nx.cut_size (G, S, T)

2

Notes

In a multigraph, the cut size is the total weight of edges including multiplicity.

258

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

4.18.4 edge_expansion
edge_expansion (G, S, T=None, weight=None)
Returns the edge expansion between two node sets.
The edge expansion is the quotient of the cut size and the smaller of the cardinalities of the two sets. [1]
Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.
» T (sequence) — A sequence of nodes in G.

» weight (object) — Edge attribute key to use as weight. If not specified, edges have weight
one.

Returns The edge expansion between the two sets S and T.
Return type number
See also:

boundary_expansion (), mixing _expansion (), node_expansion ()

References

4.18.5 mixing_expansion
mixing_expansion (G, S, T=None, weight=None)
Returns the mixing expansion between two node sets.
The mixing expansion is the quotient of the cut size and twice the number of edges in the graph. [1]
Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.
* T (sequence) — A sequence of nodes in G.

» weight (object) — Edge attribute key to use as weight. If not specified, edges have weight
one.

Returns The mixing expansion between the two sets S and T.
Return type number
See also:

boundary_expansion (), edge_expansion (), node_expansion ()

References

4.18.6 node_expansion

node_expansion (G, S)
Returns the node expansion of the set S.

The node expansion is the quotient of the size of the node boundary of S and the cardinality of S. [1]

4.18. Cuts 259

NetworkX Reference, Release 2.0.dev20161129121305

Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.
Returns The node expansion of the set S.
Return type number
See also:

boundary_expansion (), edge_expansion (), mixing_expansion ()

References

4.18.7 normalized_cut_size
normalized_cut_size (G, S, T=None, weight=None)
Returns the normalized size of the cut between two sets of nodes.
The normalized cut size is the cut size times the sum of the reciprocal sizes of the volumes of the two sets. [1]
Parameters
* G (NetworkX graph)
* S (sequence) — A sequence of nodes in G.
» T (sequence) — A sequence of nodes in G.

» weight (object) — Edge attribute key to use as weight. If not specified, edges have weight
one.

Returns The normalized cut size between the two sets S and T.

Return type number

Notes

In a multigraph, the cut size is the total weight of edges including multiplicity.
See also:

conductance (), cut_size (), edge_expansion (), volume ()

References

4.18.8 volume
volume (G, S, weight=None)
Returns the volume of a set of nodes.

The volume of a set S is the sum of the (out-)degrees of nodes in S (taking into account parallel edges in
multigraphs). [1]

Parameters
* G (NetworkX graph)

* S (sequence) — A sequence of nodes in G.

260 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

» weight (object) — Edge attribute key to use as weight. If not specified, edges have weight

one.

Returns The volume of the set of nodes represented by S in the graph G.

Return type number
See also:

conductance (), cut_size(),
normalized cut_size()

References

4.19 Directed Acyclic Graphs

Algorithms for directed acyclic graphs (DAGS).

edge_expansion (),

edge_boundary (),

ancestors(G, source)

Return all nodes having a path to source in G.

descendant s(G, source)

Return all nodes reachable from source in G.

topological_sort(G)

Return a generator of nodes in topologically sorted order.

lexicographical_topological_sort(G[, key])

Return a generator of nodes in lexicographically topologi-
cally sorted order.

is_directed_acyclic _graph(G)

Return True if the graph G is a directed acyclic graph
(DAG) or False if not.

is_aperiodic(G)

Return True if G is aperiodic.

transitive closure(G)

Returns transitive closure of a directed graph

transitive_ reduction(G)

Returns transitive reduction of a directed graph

antichains(G)

Generates antichains from a DAG.

dag_longest_path(G[, weight, default_weight])

Returns the longest path in a DAG If G has edges with
‘weight’ attribute the edge data are used as weight values.

dag_longest_path_length(G[, weight, ...])

Returns the longest path length in a DAG

4.19.1 ancestors
ancestors (G, source)
Return all nodes having a path to source in G.
Parameters
* G (NetworkX DiGraph)

¢ source (node in G)

Returns ancestors — The ancestors of source in G

Return type set()

4.19.2 descendants

descendants (G, source)
Return all nodes reachable from source in G.

Parameters

4.19. Directed Acyclic Graphs

261

NetworkX Reference, Release 2.0.dev20161129121305

* G (NetworkX DiGraph)
e source (node in G)
Returns des — The descendants of source in G

Return type set()

4.19.3 topological_sort
topological_sort (G)
Return a generator of nodes in topologically sorted order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears
before v in the topological sort order.

Parameters G (NetworkX digraph) — A directed graph

Returns topologically_sorted_nodes — An iterable of node names in topological sorted order.
Return type iterable

Raises

* NetworkXError — Topological sort is defined for directed graphs only. If the graph G is
undirected, a NetworkXError is raised.

* NetworkXUnfeasible — If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised. This can also be raised if G is changed
while the returned iterator is being processed.

* RuntimeError — If G is changed while the returned iterator is being processed.

Examples

To get the reverse order of the topological sort:

>>> DG = nx.DiGraph([(1, 2), (2, 3)1)
>>> list (reversed(list (nx.topological_sort (DG))))
[3, 2, 1]

Notes

This algorithm is based on a description and proof in Introduction to algorithms - a creative approach ' .
See also:

is _directed_acyclic_graph(), lexicographical_topological_sort ()

I Manber, U. (1989). Introduction to algorithms - a creative approach. Addison-Wesley. http://www.amazon.com/
Introduction- Algorithms- A-Creative- Approach/dp/0201120372

262 Chapter 4. Algorithms

http://www.amazon.com/Introduction-Algorithms-A-Creative-Approach/dp/0201120372
http://www.amazon.com/Introduction-Algorithms-A-Creative-Approach/dp/0201120372

NetworkX Reference, Release 2.0.dev20161129121305

References

4.19.4 lexicographical_topological_sort
lexicographical_topological_sort (G, key=None)
Return a generator of nodes in lexicographically topologically sorted order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears
before v in the topological sort order.

Parameters
* G (NetworkX digraph) — A directed graph

* key (function, optional) — This function maps nodes to keys with which to resolve ambigui-
ties in the sort order. Defaults to the identity function.

Returns lexicographically_topologically_sorted_nodes — An iterable of node names in lexico-
graphical topological sort order.

Return type iterable
Raises

* NetworkXError — Topological sort is defined for directed graphs only. If the graph G is
undirected, a NetworkXError is raised.

* NetworkXUnfeasible —If Gis not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised. This can also be raised if G is changed
while the returned iterator is being processed.

* RuntimeError — If G is changed while the returned iterator is being processed.

Notes

This algorithm is based on a description and proof in Introduction to algorithms - a creative approach ' .
See also:

topological_sort ()

References

4.19.5 is_directed_acyclic_graph
is_directed_acyclic_graph (G)
Return True if the graph G is a directed acyclic graph (DAG) or False if not.
Parameters G (NetworkX graph) — A graph
Returns is_dag — True if G is a DAG, false otherwise

Return type bool

I Manber, U. (1989). Introduction to algorithms - a creative approach. Addison-Wesley. http://www.amazon.com/
Introduction- Algorithms- A-Creative- Approach/dp/0201120372

4.19. Directed Acyclic Graphs 263

https://docs.python.org/2/library/functions.html#bool
http://www.amazon.com/Introduction-Algorithms-A-Creative-Approach/dp/0201120372
http://www.amazon.com/Introduction-Algorithms-A-Creative-Approach/dp/0201120372

NetworkX Reference, Release 2.0.dev20161129121305

4.19.6 is_aperiodic
is_aperiodic (G)
Return True if G is aperiodic.
A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph.
Parameters G (NetworkX DiGraph) — Graph
Returns aperiodic — True if the graph is aperiodic False otherwise
Return type boolean

Raises NetworkXError —If G is not directed

Notes

This uses the method outlined in ', which runs in O(m) time given m edges in G. Note that a graph is not

aperiodic if it is acyclic as every integer trivial divides length O cycles.

References

4.19.7 transitive_closure
transitive_closure (G)
Returns transitive closure of a directed graph

The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that for all v,w in V there is an edge (v,w) in E+
if and only if there is a non-null path from v to w in G.

Parameters G (NetworkX DiGraph) — Graph
Returns TC — Graph
Return type NetworkX DiGraph

Raises NetworkXNotImplemented —If G is not directed

References

4.19.8 transitive_reduction
transitive_reduction (G)
Returns transitive reduction of a directed graph

The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that for all v,w in V there is an edge (v,w) in
E- if and only if (v,w) is in E and there is no path from v to w in G with length greater than 1.

Parameters G (NetworkX DiGraph) — Graph
Returns TR - Graph
Return type NetworkX DiGraph

Raises NetworkXError — If G is not a directed acyclic graph (DAG) transitive reduction is not
uniquely defined and a NetworkXError exception is raised.

! Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical
Modeling: A Multidisciplinary Approach, CRC Press.

264 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

References

https://en.wikipedia.org/wiki/Transitive_reduction

4.19.9 antichains
antichains (G)
Generates antichains from a DAG.
An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable.
Parameters G (NetworkX DiGraph) — Graph
Returns antichain
Return type generator object
Raises
¢ NetworkXNot Implemented —If G is not directed

* NetworkXUnfeasible —If G contains a cycle

Notes

This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It’s included
in NetworkX with permission from the authors. Original SAGE code at:

https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

References

4.19.10 dag_longest_path
dag_longest_path (G, weight="weight’, default_weight=1)
Returns the longest path in a DAG If G has edges with ‘weight’ attribute the edge data are used as weight values.
Parameters
* G (NetworkX DiGraph) — Graph
» weight (string (default ‘weight’)) — Edge data key to use for weight

o default_weight (integer (default 1)) — The weight of edges that do not have a weight at-
tribute

Returns path — Longest path

Return type list

Raises NetworkXNotImplemented — If G is not directed
See also:

dag_longest_path length ()

4.19. Directed Acyclic Graphs 265

https://en.wikipedia.org/wiki/Transitive_reduction
https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py
https://docs.python.org/2/library/functions.html#list

NetworkX Reference, Release 2.0.dev20161129121305

4.19.11 dag_longest_path_length
dag_longest_path_length (G, weight="weight’, default_weight=1)
Returns the longest path length in a DAG
Parameters
* G (NetworkX DiGraph) — Graph
» weight (string (default ‘weight’)) — Edge data key to use for weight

o default_weight (integer (default 1)) — The weight of edges that do not have a weight at-
tribute

Returns path_length — Longest path length

Return type int

Raises NetworkXNotImplemented — If G is not directed
See also:

dag_longest_path ()

4.20 Dispersion

dispersion

4.21 Distance Measures

Graph diameter, radius, eccentricity and other properties.

center(G[,e]) Return the center of the graph G.
diameter(G[, e]) Return the diameter of the graph G.
eccentricity(Gl,vV, spl) Return the eccentricity of nodes in G.
periphery(Gl, e]) Return the periphery of the graph G.
radius(GI, e]) Return the radius of the graph G.

4.21.1 center
center (G, e=None)
Return the center of the graph G.
The center is the set of nodes with eccentricity equal to radius.
Parameters
* G (NetworkX graph) — A graph
* e (eccentricity dictionary, optional) — A precomputed dictionary of eccentricities.
Returns c¢ — List of nodes in center

Return type list

266 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#list

NetworkX Reference, Release 2.0.dev20161129121305

4.21.2 diameter

diameter (G, e=None)
Return the diameter of the graph G.

The diameter is the maximum eccentricity.
Parameters
* G (NetworkX graph) — A graph
* e (eccentricity dictionary, optional) — A precomputed dictionary of eccentricities.
Returns d — Diameter of graph
Return type integer
See also:

eccentricity()

4.21.3 eccentricity
eccentricity (G, v=None, sp=None)
Return the eccentricity of nodes in G.
The eccentricity of a node v is the maximum distance from v to all other nodes in G.
Parameters
* G (NetworkX graph) — A graph
* v (node, optional) — Return value of specified node
* sp (dict of dicts, optional) — All pairs shortest path lengths as a dictionary of dictionaries
Returns ecc — A dictionary of eccentricity values keyed by node.

Return type dictionary

4.21.4 periphery
periphery (G, e=None)
Return the periphery of the graph G.
The periphery is the set of nodes with eccentricity equal to the diameter.
Parameters
* G (NetworkX graph) — A graph
* e (eccentricity dictionary, optional) — A precomputed dictionary of eccentricities.
Returns p — List of nodes in periphery

Return type list

4.21. Distance Measures

267

https://docs.python.org/2/library/functions.html#list

NetworkX Reference, Release 2.0.dev20161129121305

4.21.5 radius

radius (G, e=None)
Return the radius of the graph G.

The radius is the minimum eccentricity.
Parameters
* G (NetworkX graph) — A graph
* e (eccentricity dictionary, optional) — A precomputed dictionary of eccentricities.
Returns r — Radius of graph

Return type integer

4.22 Distance-Regular Graphs

4.22.1 Distance-regular graphs

is_distance_regular(G) Returns True if the graph is distance regular, False other-
wise.

is_strongly_ regular(G) Returns True if and only if the given graph is strongly reg-
ular.

intersection_array(G) Returns the intersection array of a distance-regular graph.

global_parameters(b,c) Return global parameters for a given intersection array.

4.22.2 is_distance_regular
is_distance_regular (G)
Returns True if the graph is distance regular, False otherwise.

A connected graph G is distance-regular if for any nodes X,y and any integers i,j=0,1,...,d (where d is the graph
diameter), the number of vertices at distance i from x and distance j from y depends only on i,j and the graph
distance between x and y, independently of the choice of x and y.

Parameters G (Networkx graph (undirected))
Returns True if the graph is Distance Regular, False otherwise

Return type bool

Examples

>>> G=nx.hypercube_graph (6)
>>> nx.is_distance_regular (G)
True

See also:

intersection _array (), global_parameters ()

268 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

Notes

For undirected and simple graphs only

References

4.22.3 is_strongly_regular
is_strongly_regular (G)
Returns True if and only if the given graph is strongly regular.
An undirected graph is strongly regular if
eit is regular,
ecach pair of adjacent vertices has the same number of neighbors in common,
ecach pair of nonadjacent vertices has the same number of neighbors in common.

Each strongly regular graph is a distance-regular graph. Conversely, if a distance-regular graph has di-
ameter two, then it is a strongly regular graph. For more information on distance-regular graphs, see
is_distance_regular().

Parameters G (NetworkX graph) — An undirected graph.
Returns Whether G is strongly regular.

Return type bool

Examples

The cycle graph on five vertices is strongly regular. It is two-regular, each pair of adjacent vertices has no shared
neighbors, and each pair of nonadjacent vertices has one shared neighbor:

>>> import networkx as nx
>>> G = nx.cycle_graph(5)

>>> nx.is_strongly_regular (G)
True

4.22.4 intersection_array
intersection_array (G)
Returns the intersection array of a distance-regular graph.

Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d such that for any 2 vertices x,y in G at a
distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a
distance of i+1 from x.

A distance regular graph’s intersection array is given by, [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]
Parameters G (Networkx graph (undirected))
Returns b,c

Return type tuple of lists

4.22. Distance-Regular Graphs 269

https://docs.python.org/2/library/functions.html#bool

NetworkX Reference, Release 2.0.dev20161129121305

Examples

>>> G=nx.icosahedral_graph ()
>>> nx.intersection_array (G)
(s, 2, 11, (1, 2, 5])

References

See also:

global_parameters ()

4.22.5 global_parameters
global_parameters (b, c)
Return global parameters for a given intersection array.

Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d such that for any 2 vertices x,y in G at a
distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a
distance of i+1 from x.

Thus, a distance regular graph has the global parameters, [[c_0,a_0,b_0],[c_1,a_1,b_1],...... ,Jc_d,a_d,b_d]] for
the intersection array [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d] where a_i+b_i+c_i=k , k= degree of every vertex.

Parameters
* b (list)
* ¢ (list)
Returns An iterable over three tuples.

Return type iterable

Examples

>>> G = nx.dodecahedral_graph()

>>> b, ¢ = nx.intersection_array(G)

>>> list (nx.global_parameters (b, c))

r¢<o, o, 3, (1, o0, 2, (1, 1, 1y, (1, 1, 1), (2, 0, 1), (3, 0, 0)]

References

See also:

intersection_array ()

4.23 Dominance

Dominance algorithms.

270 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

immediate dominators(G, start) Returns the immediate dominators of all nodes of a directed
graph.

dominance_frontiers(G, start) Returns the dominance frontiers of all nodes of a directed
graph.

4.23.1 immediate_dominators
immediate_dominators (G, start)
Returns the immediate dominators of all nodes of a directed graph.
Parameters
* G (a DiGraph or MultiDiGraph) — The graph where dominance is to be computed.
* start (node) — The start node of dominance computation.
Returns idom — A dict containing the immediate dominators of each node reachable from start.
Return type dict keyed by nodes
Raises
¢ NetworkXNotImplemented — If G is undirected.

e NetworkXError —If start isnotin G.

Notes

Except for start, the immediate dominators are the parents of their corresponding nodes in the dominator tree.

Examples

>>> G = nx.DiGraph ([(1, 2), (1, 3), (2, 5, (3, 4), (4, 51)
>>> sorted(nx.immediate_dominators (G, 1).items())

[, 1), 2, 1), (3, 1), (4, 3), (5 1)]

References

4.23.2 dominance_frontiers
dominance_frontiers (G, start)
Returns the dominance frontiers of all nodes of a directed graph.
Parameters
* G (a DiGraph or MultiDiGraph) — The graph where dominance is to be computed.
* start (node) — The start node of dominance computation.
Returns df — A dict containing the dominance frontiers of each node reachable from start as lists.
Return type dict keyed by nodes
Raises

* NetworkXNotImplemented —If G is undirected.

4.23. Dominance 271

NetworkX Reference, Release 2.0.dev20161129121305

e NetworkXError —If start isnotin G.

Examples

>>> G = HX-DiGraph([(lr 2)! (11 3)! (2! 5)/ (31 4)7 (4/ 5)1)
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers (G, 1) .items())
(1, 1), (2, [51), (3, [5]), (4, [5]), (5, [1)]

References

4.24 Dominating Sets

Functions for computing dominating sets in a graph.

dominating_set(GI, start_with]) Finds a dominating set for the graph G.

is_dominating_set(G, nbunch) Checks if nbunch is a dominating set for G.

4.24.1 dominating_set
dominating_set (G, start_with=None)
Finds a dominating set for the graph G.

A dominating set for a graph with node set V is a subset D of V such that every node not in D is adjacent to at
least one member of D !

Parameters

* G (NetworkX graph)

* start_with (node (default=None)) — Node to use as a starting point for the algorithm.
Returns D — A dominating set for G.

Return type set

Notes

This function is an implementation of algorithm 7 in > which finds some dominating set, not necessarily the
smallest one.

See also:

is_dominating_set ()

! http://en.wikipedia.org/wiki/Dominating_set
2 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

272 Chapter 4. Algorithms

https://docs.python.org/2/library/stdtypes.html#set
http://en.wikipedia.org/wiki/Dominating_set
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX Reference, Release 2.0.dev20161129121305

References

4.24.2 is_dominating_set
is_dominating_set (G, nbunch)
Checks if nbunch is a dominating set for G.

A dominating set for a graph with node set V is a subset D of V such that every node not in D is adjacent to at
least one member of D !

Parameters
* G (NetworkX graph)
* nbunch (iterable) — An iterable of nodes in the graph G.
See also:

dominating_ set ()

References

4.25 Efficiency

Provides functions for computing the efficiency of nodes and graphs.

efficiency(G,u, V) Returns the efficiency of a pair of nodes in a graph.
local_efficiency(Q) Returns the average local efficiency of the graph.
global_efficiency(QG) Returns the average global efficiency of the graph.

4.25.1 efficiency
efficiency (G, u,v)
Returns the efficiency of a pair of nodes in a graph.
The efficiency of a pair of nodes is the multiplicative inverse of the shortest path distance between the nodes .
Parameters

* G (networkx.Graph) — An undirected graph for which to compute the average local
efficiency.

* u, v (node) — Nodes in the graph G.
Returns Multiplicative inverse of the shortest path distance between the nodes.

Return type float

Notes

Edge weights are ignored when computing the shortest path distances.

! http:/en.wikipedia.org/wiki/Dominating_set
! Latora, Vito, and Massimo Marchiori. “Efficient behavior of small-world networks.” Physical Review Letters 87.19 (2001): 198701. <http:
//dx.doi.org/10.1103/PhysRevLett.87.198701>

4.25. Efficiency 273

https://docs.python.org/2/library/functions.html#float
http://en.wikipedia.org/wiki/Dominating_set
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1103/PhysRevLett.87.198701

NetworkX Reference, Release 2.0.dev20161129121305

See also:

local_efficiency(),global_efficiency()

References

4.25.2 local_efficiency
local_efficiency (G)
Returns the average local efficiency of the graph.

The efficiency of a pair of nodes in a graph is the multiplicative inverse of the shortest path distance between the
nodes. The local efficiency of a node in the graph is the average global efficiency of the subgraph induced by
the neighbors of the node. The average local efficiency is the average of the local efficiencies of each node !.

Parameters G (networkx.Graph)— Anundirected graph for which to compute the average local
efficiency.

Returns The average local efficiency of the graph.

Return type float

Notes

Edge weights are ignored when computing the shortest path distances.
See also:

global_efficiency ()

References

4.25.3 global_efficiency
global_efficiency (G)
Returns the average global efficiency of the graph.

The efficiency of a pair of nodes in a graph is the multiplicative inverse of the shortest path distance between the
nodes. The average global efficiency of a graph is the average efficiency of all pairs of nodes '.

Parameters G (networkx.Graph) — An undirected graph for which to compute the average
global efficiency.

Returns The average global efficiency of the graph.
Return type float

! Latora, Vito, and Massimo Marchiori. “Efficient behavior of small-world networks.” Physical Review Letters 87.19 (2001): 198701. <http:
/ldx.doi.org/10.1103/PhysRevLett.87.198701>

! Latora, Vito, and Massimo Marchiori. “Efficient behavior of small-world networks.” Physical Review Letters 87.19 (2001): 198701. <http:
/ldx.doi.org/10.1103/PhysRevLett.87.198701>

274 Chapter 4. Algorithms

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1103/PhysRevLett.87.198701

NetworkX Reference, Release 2.0.dev20161129121305

Notes

Edge weights are ignored when computing the shortest path distances.
See also:

local_efficiency/()

References

4.26 Eulerian

Eulerian circuits and graphs.

is_eulerian(G) Returns True if and only if G is Eulerian.
eulerian_circuit(G[, source]) Returns an iterator over the edges of an Eulerian circuit in
G.

4.26.1 is_eulerian
is_eulerian (G)
Returns True if and only if G is Eulerian.

An graph is Eulerian if it has an Eulerian circuit. An Eulerian circuit is a closed walk that includes each edge
of a graph exactly once.

Parameters G (NetworkX graph) — A graph, either directed or undirected.

Examples

>>> nx.is_eulerian (nx.DiGraph ({0: [3], 1: [2], 2: [31, 3: [0, 11}))
True

>>> nx.is_eulerian (nx.complete_graph(5))

True

>>> nx.is_eulerian (nx.petersen_graph())

False

Notes

If the graph is not connected (or not strongly connected, for directed graphs), this function returns False.

4.26.2 eulerian_circuit
eulerian_circuit (G, source=None)
Returns an iterator over the edges of an Eulerian circuit in G.
An Eulerian circuit is a closed walk that includes each edge of a graph exactly once.
Parameters

* G (NetworkX graph) — A graph, either directed or undirected.

4.26. Eulerian 275

NetworkX Reference, Release 2.0.dev20161129121305

* source (node, optional) — Starting node for circuit.
Returns edges — An iterator over edges in the Eulerian circuit.
Return type iterator
Raises NetworkXError — If the graph is not Eulerian.
See also:

is_eulerian()

Notes

This is a linear time implementation of an algorithm adapted from '.

For general information about Euler tours, see 2,

References
Examples

To get an Eulerian circuit in an undirected graph:

>>> G = nx.complete_graph (3)

>>> list (nx.eulerian_circuit (G))

[0, 2), (2, 1), (1, 0)]

>>> list (nx.eulerian_circuit (G, source=1))
[(x, 2), (2, 0), (0, 1)]

To get the sequence of vertices in an Eulerian circuit:

>>> [u for u, v in nx.eulerian_circuit (G)]
[0, 2, 1]

4.27 Flows

4.27.1 Maximum Flow

maximum_f1ow(G, s, t[, capacity, flow_func]) Find a maximum single-commodity flow.

maximum_flow_value(G, s, t[, capacity, ...]) Find the value of maximum single-commodity flow.

minimum_cut(G, s, t[, capacity, flow_func]) Compute the value and the node partition of a minimum (s,
t)-cut.

minimum_cut_value(G, s, t[, capacity, flow_func]) Compute the value of a minimum (s, t)-cut.

maximum_flow

maximum_flow (G, s, t, capacity="capacity’, flow_func=None, **kwargs)
Find a maximum single-commodity flow.

1'J. Edmonds, E. L. Johnson. Matching, Euler tours and the Chinese postman. Mathematical programming, Volume 5, Issue 1 (1973), 111-114.
2 http://en.wikipedia.org/wiki/Eulerian_path

276 Chapter 4. Algorithms

http://en.wikipedia.org/wiki/Eulerian_path

NetworkX Reference, Release 2.0.dev20161129121305

Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

* s (node) — Source node for the flow.
¢ t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* flow_func (function) — A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three parameters: a Graph or
Digraph, a source node, and a target node. And return a residual network that follows Net-
workX conventions (see Notes). If flow_func is None, the default maximum flow function
(preflow_push()) is used. See below for alternative algorithms. The choice of the
default function may change from version to version and should not be relied on. Default
value: None.

» kwargs (Any other keyword parameter is passed to the function that) — computes the maxi-
mum flow.

Returns
* flow_value (integer, float) — Value of the maximum flow, i.e., net outflow from the source.

 flow_dict (dict) — A dictionary containing the value of the flow that went through each edge.

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded — If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow_value (), minimum_cut (), minimum_ cut_value(), edmonds_karp(),
preflow_push (), shortest_augmenting_ path ()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf"']. For each edge
(u,v) inR,R[u] [v] ['flow'] represents the flow function of (u, v) and satisfies R[u] [v] ['flow']
== —-R[v][u]l['"flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reacha-
bility to t using only edges (u, v) suchthatR[u] [v] ['flow'] < R[u][v]['capacity"'] inducesa
minimum s-t cut.

Specific algorithms may store extra data in R.

4.27. Flows 277

NetworkX Reference, Release 2.0.dev20161129121305

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b', c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow returns both the value of the maximum flow and a dictionary with all flows.

>>> flow_value, flow_dict = nx.maximum_flow (G, 'x', 'vy")
>>> flow_value

3.0

>>> print (flow_dict['x']['b'])

1.0

You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow (G, ' 'v',
flow_func=shortest_augmenting_path) [0]

v
Xy

True

maximum_flow_value

maximum flow_value (G, s, t, capacity="capacity’, flow_func=None, **kwargs)

Find the value of maximum single-commodity flow.
Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

* s (node) — Source node for the flow.

t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

 flow_func (function) — A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three parameters: a Graph or
Digraph, a source node, and a target node. And return a residual network that follows Net-
workX conventions (see Notes). If flow_func is None, the default maximum flow function
(preflow_push ()) is used. See below for alternative algorithms. The choice of the
default function may change from version to version and should not be relied on. Default
value: None.

278

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

» kwargs (Any other keyword parameter is passed to the function that) — computes the maxi-
mum flow.

Returns flow_value — Value of the maximum flow, i.e., net outflow from the source.
Return type integer, float
Raises

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded —If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_ cut (), minimum cut_value (), edmonds_karp (),
preflow _push (), shortest_augmenting path ()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity"'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value

that does not affect the solution of the problem. This value is stored in R.graph['inf"']. For each edge
(u,v) inR,R[u] [v] ['flow"'] represents the flow function of (u, v) and satisfies R[u] [v] ['flow']
== —R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reacha-

bility to t using only edges (u, v) suchthat R[u] [v] ['flow'] < R[u][v]['capacity'] induces a
minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge ('x ','a capacity=3.0)
>>> G.add_edge ('x 'b! capacity=1.0)
>>> G.add_edge('a','c' capacity=3.0)
>>> G.add_edge('b', c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow_value computes only the value of the maximum flow:

4.27. Flows 279

NetworkX Reference, Release 2.0.dev20161129121305

>>> flow_value = nx.maximum_flow_value (G, 'x', 'y')
>>> flow_value
3.0

You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path

>>> flow_value == nx.maximum_flow_value (G, 'x', 'vy',
flow_func=shortest_augmenting_path)

True

minimum_cut
minimum_cut (G, s, t, capacity="capacity’, flow_func=None, **kwargs)
Compute the value and the node partition of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a
maximum flow.

Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

* s (node) — Source node for the flow.
* t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* flow_func (function) — A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three parameters: a Graph or
Digraph, a source node, and a target node. And return a residual network that follows Net-
workX conventions (see Notes). If flow_func is None, the default maximum flow function
(preflow_push()) is used. See below for alternative algorithms. The choice of the
default function may change from version to version and should not be relied on. Default
value: None.

o kwargs (Any other keyword parameter is passed to the function that) — computes the maxi-
mum flow.

Returns
* cut_value (integer, float) — Value of the minimum cut.
* partition (pair of node sets) — A partitioning of the nodes that defines a minimum cut.

Raises NetworkXUnbounded — If the graph has a path of infinite capacity, all cuts have infinite
capacity and the function raises a NetworkXError.

See also:

maximum flow (), maximum_ flow_value (), minimum cut_value (), edmonds_karp(),
preflow_push (), shortest_augmenting path ()

280 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity"'] isequal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf"']. For each edge
(u,v) inR,R[u] [v]['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —R[v][u]['"flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reacha-
bility to t using only edges (u, v) suchthatR[u] [v] ['flow'] < R[u][v]['capacity'] induces a
minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut computes both the value of the minimum cut and the node partition:

v 1

>>> cut_value, partition = nx.minimum_cut (G, 'x', 'vyv')
>>> reachable, non_reachable = partition

‘partition’ here is a tuple with the two sets of nodes that define the minimum cut. You can compute the cut set
of edges that induce the minimum cut as follows:

>>> cutset = set ()

>>> for u, nbrs in ((n, G[n]) for n in reachable):

.. cutset.update((u, v) for v in nbrs if v in non_reachable)
>>> print (sorted(cutset))

[('c'y "y"), ('x', 'b")]

>>> cut_value == sum(G.edge[u] [v]['capacity'] for (u, v) in cutset)
True

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path

>>> cut_value == nx.minimum_cut (G, 'x', 'y',

C flow_func=shortest_augmenting_path) [0]
True

4.27. Flows 281

NetworkX Reference, Release 2.0.dev20161129121305

minimum_cut_value

minimum_cut_value (G, s, t, capacity="capacity’, flow_func=None, **kwargs)

Compute the value of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a
maximum flow.

Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

¢ s (node) — Source node for the flow.
* t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* flow_func (function) — A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three parameters: a Graph or
Digraph, a source node, and a target node. And return a residual network that follows Net-
workX conventions (see Notes). If flow_func is None, the default maximum flow function
(preflow_push()) is used. See below for alternative algorithms. The choice of the
default function may change from version to version and should not be relied on. Default
value: None.

o kwargs (Any other keyword parameter is passed to the function that) — computes the maxi-
mum flow.

Returns cut_value — Value of the minimum cut.
Return type integer, float

Raises NetworkXUnbounded — If the graph has a path of infinite capacity, all cuts have infinite
capacity and the function raises a NetworkXError.

See also:

maximum_ _flow(), maximum_ flow_value(), minimum_cut (), edmonds_karp (),
preflow _push (), shortest_augmenting path ()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) isnot a self-loop, and at least one of (u,v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity"'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) inR,R[u] [v] ['flow"'] represents the flow function of (u, v) and satisfies R[u] [v] ['flow']
== —R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reacha-
bility to t using only edges (u, v) suchthat R[u] [v] ['flow'] < R[u][v]['capacity'] induces a
minimum s-t cut.

282

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge ('x ','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b', c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut_value computes only the value of the minimum cut:

>>> cut_value = nx.minimum_cut_value (G, 'x', 'y'")
>>> cut_value
3.0

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path

>>> cut_value == nx.minimum_cut_value (G, 'x', 'vy',

C flow_func=shortest_augmenting_path)
True

4.27.2 Edmonds-Karp

edmonds_karp(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the
Edmonds-Karp algorithm.

edmonds_karp
edmonds_karp (G, s, t, capacity="capacity’, residual=None, value_only=False, cutoff=None)
Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of O (n m”~2) for n nodes and m edges.
Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

¢ s (node) — Source node for the flow.

¢ t (node) — Sink node for the flow.

4.27. Flows 283

NetworkX Reference, Release 2.0.dev20161129121305

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* residual (NetworkX graph) — Residual network on which the algorithm is to be executed. If
None, a new residual network is created. Default value: None.

* value_only (bool) — If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

* cutoff (integer, float) — If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum
cut. Default value: None.

Returns R — Residual network after computing the maximum flow.
Return type NetworkX DiGraph
Raises

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded —If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow (), minimum_cut (), preflow_push (), shortest_augmenting_ path ()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) inR,R[u] [v] ['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —R[v][u]["flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If
cutoff is not specified, reachability to t using only edges (u,v) such that R[u] [v] ['flow'] <
R[u] [v] ['capacity'] induces a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import edmonds_karp

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph ()
G.add_edge('x','a', capacity=3.

>>> G.add_edge('x','b', capacity=1.

>>> G.add_edge('a','c', capacity=3.
G ("b"'",'c', capacity=b5.

>>>

o O O O

>>> .add_edge

284

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

>>>
>>>
>>>
>>>
>>>
>>>
>>>
3.0
>>>
True

G.add_edge('b', 'd", capacity=4.
G.add_edge('d','e', capacity=2.
G.add_edge('c','y"', capacity=2.
G
R

o O O O

)
)
)
.add_edge('e','y', capacity=3.0)
= edmonds_karp (G, 'x', 'v")

flow_value = nx.maximum_flow_value (G, 'x', 'y')
flow_value

flow_value == R.graph['flow_value']

4.27.3 Shortest Augmenting Path

shortest_augmenting path(G,s,t[,...])

augmenting path algorithm.

Find a maximum single-commodity flow using the shortest

shortest_augmenting_path

shortest_augmenting path (G, s, f, capacity="capacity’, residual=None, value_only=False,

two_phase=False, cutoff=None)

Find a maximum single-commodity flow using the shortest augmenting path algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of O (n~2 m) for n nodes and m edges.

Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

* s (node) — Source node for the flow.
¢ t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* residual (NetworkX graph) — Residual network on which the algorithm is to be executed. If
None, a new residual network is created. Default value: None.

* value_only (bool) — If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

* two_phase (bool) — If True, a two-phase variant is used. The two-phase variant improves the
running time on unit-capacity networks from O (nm) to O (min (n"{2/3},m"{1/2})
m) . Default value: False.

o cutoff (integer, float) — If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum
cut. Default value: None.

Returns R - Residual network after computing the maximum flow.
Return type NetworkX DiGraph

Raises

4.27. Flows

285

NetworkX Reference, Release 2.0.dev20161129121305

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded —If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow (), minimum_cut (), edmonds_karp (), preflow_push ()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value

that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) inR,R[u] [v] ['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —-R[v][u]l["flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If

cutoff is not specified, reachability to t using only edges (u,v) such that R[u] [v] ['flow'] <
R[u] [v] ['capacity'] induces a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import shortest_augmenting_ path

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph ()

>>> G.add_edge('x','a', capacity=3.0)

>>> G.add_edge('x','b', capacity=1.0)

>>> G.add_edge('a','c', capacity=3.0)

>>> G.add_edge('b','c', capacity=5.0)

>>> G.add_edge('b','d', capacity=4.0)

>>> G.add_edge('d','e', capacity=2.0)

>>> G.add_edge('c','y', capacity=2.0)

>>> G.add_edge('e','y', capacity=3.0)

>>> R = shortest_augmenting_path(G, 'x', 'v')
>>> flow_value = nx.maximum_flow_value (G, 'x', 'v')
>>> flow_value

3.0

>>> flow_value == R.graph['flow_value']

True

4.27.4 Preflow-Push

preflow_push(G, s, t[, capacity, residual, ...])

label preflow-push algorithm.

286

Chapter 4. Algorithms

Find a maximum single-commodity flow using the highest-

NetworkX Reference, Release 2.0.dev20161129121305

preflow_push
preflow_push (G, s, t, capacity="capacity’, residual=None, global_relabel_freq=1, value_only=False)
Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of O (n"2 sqgrt{m}) for n nodes and m edges.
Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

¢ s (node) — Source node for the flow.

t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* residual (NetworkX graph) — Residual network on which the algorithm is to be executed. If
None, a new residual network is created. Default value: None.

* global_relabel_freq (integer, float) — Relative frequency of applying the global relabeling
heuristic to speed up the algorithm. If it is None, the heuristic is disabled. Default value: 1.

* value_only (bool) — If False, compute a maximum flow; otherwise, compute a maximum
preflow which is enough for computing the maximum flow value. Default value: False.

Returns R — Residual network after computing the maximum flow.
Return type NetworkX DiGraph
Raises

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded — If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow (), minimum _cut (), edmonds_karp (), shortest_augmenting path ()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v, u) exists in G. For
eachnode uin R, R.node [u] ["excess '] represents the difference between flow into u and flow out of u.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) inR,R[u] [v] ['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —R[v][u]["flow'].

4.27. Flows 287

NetworkX Reference, Release 2.0.dev20161129121305

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reacha-
bility to t using only edges (u, v) suchthatR[u] [v] ['flow'] < R[u][v]['capacity"'] inducesa
minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import preflow_push

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph ()

>>> G.add_edge ('x ','a capacity=3.0)
>>> G.add_edge('x"','b’ capacity=1.0)
>>> G.add_edge('a','c' capacity=3.0)
>>> G.add_edge('b', c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = preflow_] push('x', 'y")

>>> flow_value = nx.maXLmum_flow_value(G, k', 'y!")
>>> flow_value == R.graph['flow_value']
True

>>> # preflow_push also stores the maximum flow value

>>> # in the excess attribute of the sink node t

>>> flow_value == R.node['y']['excess']

True

>>> # For some problems, you might only want to compute a
>>> # maximum preflow.

>>> R = preflow_push(G, 'x', 'y', value_only=True)
>>> flow_value == R.graph['flow_value']
True
>>> flow_value == R.node['y']['excess']
True

4.27.5 Dinitz

dinitz(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using Dinitz’ al-
gorithm.
dinitz

dinitz (G, s, t, capacity="capacity’, residual=None, value_only=False, cutoff=None)
Find a maximum single-commodity flow using Dinitz’ algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of O (n”~2 m) for n nodes and m edges _[1].

Parameters

288 Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

¢ s (node) — Source node for the flow.
¢ t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* residual (NetworkX graph) — Residual network on which the algorithm is to be executed. If
None, a new residual network is created. Default value: None.

* value_only (bool) — If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

* cutoff (integer, float) —If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum
cut. Default value: None.

Returns R — Residual network after computing the maximum flow.
Return type NetworkX DiGraph
Raises

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded —If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow (), minimum_cut (), preflow_push (), shortest_augmenting_ path ()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u, v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) iInR,R[u] [v] ['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —R[v][u]["flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If
cutoff is not specified, reachability to t using only edges (u,v) such that R[u] [v] ['flow'] <
R[u] [v] ['capacity'] induces a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import dinitz

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

4.27. Flows 289

NetworkX Reference, Release 2.0.dev20161129121305

>>> G = nx.DiGraph ()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add edge('b', c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = dinitz (G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value (G, 'x', 'v')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True
References

4.27.6 Boykov-Kolmogorov

boykov_kolmogorov(G, s, t[, capacity, ...]) Find a maximum single-commodity flow using Boykov-

Kolmogorov algorithm.

boykov_kolmogorov
boykov_kolmogorov (G, s, t, capacity="capacity’, residual=None, value_only=False, cutoff=None)
Find a maximum single-commodity flow using Boykov-Kolmogorov algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has worse case complexity O (n*2 m |C|) for n nodes, m edges, and |C| the cost of the
minimum cut '. This implementation uses the marking heuristic defined in > which improves its running time in
many practical problems.

Parameters

* G (NetworkX graph) — Edges of the graph are expected to have an attribute called ‘capacity’.
If this attribute is not present, the edge is considered to have infinite capacity.

* s (node) — Source node for the flow.

t (node) — Sink node for the flow.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

* residual (NetworkX graph) — Residual network on which the algorithm is to be executed. If
None, a new residual network is created. Default value: None.

! Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9), 1124-1137. http://www.csd.uwo.ca/~yuri/Papers/pami04.pdf

2 Vladimir Kolmogorov. Graph-based Algorithms for Multi-camera Reconstruction Problem. PhD thesis, Cornell University, CS Department,
2003. pp. 109-114. https://pub.ist.ac.at/~vnk/papers/thesis.pdf

290 Chapter 4. Algorithms

http://www.csd.uwo.ca/~yuri/Papers/pami04.pdf
https://pub.ist.ac.at/~vnk/papers/thesis.pdf

NetworkX Reference, Release 2.0.dev20161129121305

* value_only (bool) — If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

* cutoff (integer, float) — If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum
cut. Default value: None.

Returns R — Residual network after computing the maximum flow.
Return type NetworkX DiGraph
Raises

* NetworkXError — The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

* NetworkXUnbounded — If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow (), minimum_cut (), preflow_push (), shortest_augmenting_ path ()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u, v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) inR,R[u] [v] ['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —R[v][u]["flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If
cutoff is not specified, reachability to t using only edges (u,v) such that R[u] [v] ['flow'] <
R[u] [v] ['capacity'] induces a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import boykov_kolmogorov

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G.add_edge 'y', capacity=3.0)
= boykov_kolmogorov(G, ', 'y")
>>> flow_value = nx.maximum_flow_value (G, 'x', 'y')

>>> flow_value

>>> G = nx.DiGraph ()
>>> G.add_edge(' x','a"', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b', c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c', y', capacity=2.0)
G ('
R

>>>

4.27. Flows 291

NetworkX Reference, Release 2.0.dev20161129121305

3.0
>>> flow_value == R.graph['flow_value']
True

A nice feature of the Boykov-Kolmogorov algorithm is that a partition of the nodes that defines a minimum cut
can be easily computed based on the search trees used during the algorithm. These trees are stored in the graph
attribute t rees of the residual network.

>>> source_tree, target_tree = R.graph['trees']

>>> partition = (set (source_tree), set(G) - set (source_tree))
Or equivalently:

>>> partition = (set(G) - set (target_tree), set (target_tree))
References

4.27.7 Utils

build residual_network(G, capacity) Build a residual network and initialize a zero flow.

build_residual_network

build_residual_network (G, capacity)

Build a residual network and initialize a zero flow.

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u,v) and (v, u) iff (u,v) is not a self-loop, and at least one of (u,v) and (v, u) existsin G.

For each edge (u,v) inR,R[u] [v] ['capacity'] is equal to the capacity of (u, v) in G if it exists in G
or zero otherwise. If the capacity is infinite, R[u] [v] ['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge
(u,v) iInR,R[u] [v]['flow"] represents the flow function of (u, v) and satisfies R[u] [v] ['flow"']
== —R[v][u]["flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If
cutoff is not specified, reachability to t using only edges (u,v) such that R[u] [v] ['flow'] <
R[u] [v] ['capacity'] induces a minimum s-t cut.

4.27.8 Network Simplex

network_simplex(G[, demand, capacity, weight])

graph G.

min_cost_flow_cost(G[, demand, capacity, weight]) Find the cost of a minimum cost flow satisfying all de-
mands in digraph G.

min_cost_ f1low(G[, demand, capacity, weight]) Return a minimum cost flow satisfying all demands in di-
graph G.

cost_of_flow(G, flowDict[, weight]) Compute the cost of the flow given by flowDict on graph
G.

max_flow _min_cost(G, s, t[, capacity, weight]) Return a maximum (s, t)-flow of minimum cost.

292

Chapter 4. Algorithms

Find a minimum cost flow satisfying all demands in di-

NetworkX Reference, Release 2.0.dev20161129121305

network_simplex
network_simplex (G, demand="demand’, capacity="capacity’, weight="weight’)
Find a minimum cost flow satisfying all demands in digraph G.
This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

* G (NetworkX graph) — DiGraph on which a minimum cost flow satisfying all demands is to
be found.

* demand (string) — Nodes of the graph G are expected to have an attribute demand that indi-
cates how much flow a node wants to send (negative demand) or receive (positive demand).
Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this
attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

» weight (string) — Edges of the graph G are expected to have an attribute weight that indicates
the cost incurred by sending one unit of flow on that edge. If not present, the weight is
considered to be 0. Default value: ‘weight’.

Returns
* flowCost (integer, float) — Cost of a minimum cost flow satisfying all demands.

 flowDict (dictionary) — Dictionary of dictionaries keyed by nodes such that flowDict[u][v]
is the flow edge (u, v).

Raises

* NetworkXError — This exception is raised if the input graph is not directed, not con-
nected or is a multigraph.

* NetworkXUnfeasible — This exception is raised in the following situations:
— The sum of the demands is not zero. Then, there is no flow satisfying all demands.
— There is no flow satisfying all demand.

* NetworkXUnbounded — This exception is raised if the digraph G has a cycle of negative
cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded
below.

Notes

This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and
roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant
edge attributes by a convenient constant factor (eg 100).

See also:

cost_of flow(),max _flow_min cost(),min cost_flow(),min_cost_flow_cost ()

4.27. Flows 293

NetworkX Reference, Release 2.0.dev20161129121305

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_node('a', demand=-5)

>>> G.add_node('d', demand=5)

>>> G.add_edge('a', 'b', weight=3, capacity=4)
>>> G.add_edge('a', 'c', weight=6, capacity=10)
>>> G.add_edge('b', 'd', weight=1, capacity=9)
>>> G.add_edge('c', 'd', weight=2, capacity=5)
>>> flowCost, flowDict = nx.network_simplex(G)

>>> flowCost

24

>>> flowDict

{'a': {'c': 1, '"b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between
two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then
run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying
positive flow will indicate the path.

>>> G=nx.DiGraph ()

>>> G.add_weighted_edges_from([('s', 'u' ,10), ('s' ,'x"'" ,5),
("u', 'v'" ,1), ('u' ,'x" ,2),
('v'y 'y' ,1), ('x'" ,'u' ,3),
("x"', 'v' ,5), ('x" ,'y"'" ,2),
. ('y'y 's'"), (y' 'V ,6)1)
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex (G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight")

True

>>> sorted ([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x"), ('u', 'v'), ('x', 'u')l

>>> nx.shortest_path(G, 's', 'v', weight = 'weight')

['S', IXI’ lul’ v

v']

It is possible to change the name of the attributes used for the algorithm.

>>> G = nx.DiGraph ()

>>> G.add_node('p', spam=-4)

>>> G.add_node('qg', spam=2)

>>> G.add_node('a', spam=-2)

>>> G.add_node('d', spam=-1)

>>> G.add_node('t', spam=2)

>>> G.add_node('w', spam=3)

>>> G.add_edge('p', 'g', cost=7, vacancies=5)
>>> G.add_edge('p', 'a', cost=1l, vacancies=4)
>>> G.add_edge('g', 'd', cost=2, vacancies=3)
>>> G.add_edge('t', 'g', cost=1l, vacancies=2)
>>> G.add_edge('a', 't', cost=2, vacancies=4)
>>> G.add_edge('d', 'w', cost=3, vacancies=4)
>>> G.add_edge('t', 'w', cost=4, vacancies=1)
>>> flowCost, flowDict = nx.network_simplex (G, demand='spam',

capacity='vacancies',
weight="'cost")

294

Chapter 4. Algorithms

NetworkX Reference, Release 2.0.dev20161129121305

>>> flowCost

37

>>> flowDict

{'a': {'t': 4}, 'd': {'w': 2}, 'g': {'d': 1}, 'p': {'g': 2, 'a': 2}, 't': {'g': 1,
o 'w'io1}, 'w'i o {}}

References

min_cost_flow_cost
min_cost_flow_cost (G, demand="demand’, capacity="capacity’, weight="weight’)
Find the cost of a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

* G (NetworkX graph) — DiGraph on which a minimum cost flow satisfying all demands is to
be found.

* demand (string) — Nodes of the graph G are expected to have an attribute demand that indi-
cates how much flow a node wants to send (negative demand) or receive (positive demand).
Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this
attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.

* capacity (string) — Edges of the graph G are expected to have an attribute capacity that
indicates how much flow the edge can support. If this attribute is not present, the edge is
considered to have infinite capacity. Default value: ‘capacity’.

» weight (string) — Edges of the graph G are expected to have an attribute weight that indicates
the cost incurred by sending one unit of flow on that edge. If not present, the weight is
considered to be 0. Default value: ‘weight’.

Returns flowCost — Cost of a minimum cost flow satisfying all demands.
Return type integer, float
Raises

* NetworkXError — This exception is raised if the input graph is not directed or not con-
nected.

* NetworkXUnfeasible — This exception is raised in the following situations:
— The sum of the demands is not zero. Then, there is no flow satisfying all demands.
— There is no flow satisfying all demand.

* NetworkXUnbounded — This exception is raised if the digraph G has a cycle of negative
cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded
below.

See also:

cost_of_flow(),max_flow _min_cost (),min_cost_flow(),network_simplex ()

4.27. Flows 295

NetworkX Reference, Release 2.0.dev20161129121305

Notes

This algorithm is not guaranteed to work if edge weights or demands are floating point numbers (overflows and
roundoff errors can cause problems). As a workaround you can use integer numbers by multiplying the relevant
edge attributes by a convenient constant factor (eg 100).

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_node('a', demand = -5)

>>> G.add_node('d', demand = 5)

>>> G.add_edge('a', 'b', weight 3, capacity = 4)
>>> G.add_edge('a', 'c', weight 6, capacity = 10)
>>> G.add_edge('b', 'd', weight 1, capacity = 9)
>>> G.add_edge('c', 'd', weight 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost (G)

>>> flowCost

24

min_cost_flow

min_cost_flow (G, demand="demand’, capacity="capacity’, weight="weight’)
Return a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

* G (NetworkX graph) — DiGraph on which a minimum cost flow satisfying all demands is to
be found.

* demand (string) — Nodes of the graph G are expected to have an attribute demand that indi-
cates how much flow a node wants to send (negative demand) or receive (positive demand).
Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this
attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.

* capacity (string) — Edges of the graph G are expected to h