

Pedal Pi - Application

[image: Build Status]
 [https://travis-ci.org/PedalPi/Application][image: Documentation Status]
 [http://pedalpi-application.readthedocs.io/en/latest/?badge=latest][image: Code coverage]
 [https://codecov.io/gh/PedalPi/Application][image: Code Health]
 [https://landscape.io/github/PedalPi/Application/master]Pedal Pi - Application is a framework for manager the Pedal Pi.
Through it is possible loads Pedal Pi Components [https://github.com/PedalPi/Components]
to provide a Human Machine Interface (HMI) or even have an opening for other software
to consume the features of the Pedal Pi.

The components developed use the API (available through Controllers) to manage the resources of the Pedal Pi.

	Documentation:

	http://pedalpi-application.readthedocs.io/

	Code:

	https://github.com/PedalPi/Application

	Python Package Index:

	https://pypi.org/project/PedalPi-Application

	License:

	Apache License 2.0 [https://github.com/PedalPi/Application/blob/master/LICENSE]

Running Application

Following are the steps required to set up and run Pedal Pi - Application.

Prepare ambient

Install with pip

pip3 install PedalPi-Application

Create the script file that contains the code to run the application (as example start.py)

from application.application import Application

application = Application(path_data="data/", address='localhost')

application.start()

from signal import pause
try:
 pause()
except KeyboardInterrupt:
 application.stop()

Download, compile and install mod-host [https://github.com/moddevices/mod-host]. Mod-host is a LV2 host for Jack controllable via socket or command line.
It is developed by Mod Devices [https://moddevices.com/], a company that also develops professional equipment for musicians.

git clone https://github.com/moddevices/mod-host
cd mod-host
make
make install

Run Application

Start audio process. The required settings for your audio card can vary greatly.
I recommend that you try different possibilities in order to minimize the latency and number of xruns.

If you do not have any experience with JACK, is recommend the lecture of
Demystifying JACK – A Beginners Guide to Getting Started with JACK [http://libremusicproduction.com/articles/demystifying-jack-%E2%80%93-beginners-guide-getting-started-jack] from Linux Music Production.

In this example, is starting a Zoom g3 series audio interface
jackd -R -P70 -t2000 -dalsa -dhw:Series -p256 -n3 -r44100 -s &
mod-host &

Finally, start the application

python3 start.py

Extending

It’s possible add or extends the Pedal Pi with addiction of Component. A component can
provides a Human Machine Interface (HMI) - like Raspberry P0 [https://github.com/PedalPi/Raspberry-P0] - or even have an opening for other software
to consume the features of the Pedal Pi - like WebService [https://github.com/PedalPi/WebService] plugin.

See the github Components Project [https://github.com/PedalPi/Components] for complete components list.

To add a component in your configuration file, download it and register it before starting the application (application.start()):

pip3 install PedalPi-<component name>

from application.Application import Application
application = Application(path_data="data/", address='localhost')

Loading component
from raspberry_p0.raspberry_p0 import RaspberryP0
application.register(RaspberryP0(application))

Start application
application.start()

Don't stop application
from signal import pause
try:
 pause()
except KeyboardInterrupt:
 # Stop components with safety
 application.stop()

Each component needs a configuration to work.
Pay attention to your documentation for details on how to set it up and use it.

Delegating audio processing to other equipment

The connection with mod-host [https://github.com/moddevices/mod-host] is over TCP [https://en.wikipedia.org/wiki/Transmission_Control_Protocol]. So it’s possible to place a
machine to perform the processing and another to provide the control services.

	For example, you have a Raspberry Pi B+ and a PC.

	
	The PC in http://10.0.0.100 will process the audio, then it will execute jack process,
mod-host process and the audio interface will be connected to it.

	The RPi will executes Application with Component, like Raspberry P0 component [https://github.com/PedalPi/Raspberry-P0].
Raspberry P0 disposes a simple current pedalboard control.

application = Application(path_data="data/", address='10.0.0.100')

Creating a component

Subsequently will be added details in the documentation on how to create a component for the Pedal Pi.
For now, you can check the blog post Building a Pedal Pi Component - Pedalboard selector [https://pedalpi.github.io/blog/building-a-pedal-pi-component-pedalboard-selector.html]

Maintenance

Test

The purpose of the tests is:

	Check if the notifications are working, since the module plugins manager is responsible for testing the models;

	Serve as a sample basis.

make test
make test-details

Generate documentation

This project uses Sphinx [http://www.sphinx-doc.org/] + Read the Docs [http://readthedocs.org].

You can generate the documentation in your local machine:

make install-docs-requirements
make docs

make docs-see

Changelog

	Changelog
	Version 0.4.1 - released 03/15/18

	Version 0.4.0 - released 02/18/18

	Version 0.3.0 - released 05/30/17

	Version 0.2.1 - released 04/14/17

	Version 0.2.0 - released 04/05/17

API

Contents:

	PedalPi - Application

	PedalPi - Application - Component
	Creating a component

	Component

	ApplicationObserver

	CurrentPedalboardObserver

	PedalPi - Application - Controller
	Notification scope

	Controller

	ComponentDataController

	CurrentController

	DeviceController

	PluginsController

	PedalPi - Application - Dao
	ComponentDao

	CurrentDao

	PluginsDao

Changelog

Version 0.4.1 - released 03/15/18

	Improve PluginsManager dependency: Now supports path releases

Version 0.4.0 - released 02/18/18

	Issue #55 [https://github.com/PedalPi/Application/issues/55] - Fix bank uuid/name

	Issue #58 [https://github.com/PedalPi/Application/issues/58] - Support v0.6.0: Add connection type (audio or midi) in default bank

	Issue #60 [https://github.com/PedalPi/Application/issues/60] - Add makefile

	Issue #46 [https://github.com/PedalPi/Application/issues/46] - Add changelog in docs

Version 0.3.0 - released 05/30/17

	Issue #29 [https://github.com/PedalPi/Application/issues/29] - Secure components close

	Issue #30 [https://github.com/PedalPi/Application/issues/30] - Replace print log to logging

	Breaking change: Issues #39 [https://github.com/PedalPi/Application/issues/39] and #5 [https://github.com/PedalPi/Application/issues/5] - Change save method to pluginsmanager (v0.5.0) Autosaver

	Removed BanksDao -> Using now pluginsmanager Autosaver

	Removed Database -> Using now pluginsmanager Persistence

	BanksController, PedalboardController, EffectController, ParamController,
CurrentController changes your API

	Issue #41 [https://github.com/PedalPi/Application/issues/41] - Allows current pedalboard is None

	Issue #40 [https://github.com/PedalPi/Application/issues/40] - If current pedalboard index file is wrong, Application now starts
with the current pedalboard = None

	Issue #11 [https://github.com/PedalPi/Application/issues/11] - Banks with same name not will be replaced when Application initialize

	Issue #17 [https://github.com/PedalPi/Application/issues/17] - Fixes: Remove bank with current pedalboard will be crash (when reload Application)

	Issue #45 [https://github.com/PedalPi/Application/issues/45] - Add plugins manager v0.5.0 support

	Removed BanksController, PedalboardController, EffectController, ParamController, NotificationController

	Implemented Application.register_observer(), Application.unregister_observer()

Version 0.2.1 - released 04/14/17

	21fdb32 [https://github.com/PedalPi/Application/commit/21fdb32] Issue #30 [https://github.com/PedalPi/Application/issues/30] - Fix move pedalboard notification

	Fix Readme: Pipy render README.rst

	fbb9908 [https://github.com/PedalPi/Application/commit/fbb9908] - Add Licenses in __init__.py files

Version 0.2.0 - released 04/05/17

	Initial release

PedalPi - Application

PedalPi - Application - Component

Creating a component

Subsequently will be added details on how to create a component for the Pedal Pi.
For now, you can check the blog post Building a Pedal Pi Component - Pedalboard selector [https://pedalpi.github.io/blog/building-a-pedal-pi-component-pedalboard-selector.html]

Component

	
class application.component.component.Component(application)

	
	
close()

	Method called when the application is requested to quit.
Classes components must implement to safely finish their
activities.

	
init()

	Initialize this component

	
register_observer(observer)

	Calls Application.register_observer().

	Parameters

	observer (ApplicationObserver) – The observer who will receive the changes notifications

	
unregister_observer(observer)

	Calls Application.unregister_observer().

	Parameters

	observer (ApplicationObserver) – The observer who will not receive further changes notification

ApplicationObserver

CurrentPedalboardObserver

PedalPi - Application - Controller

Notification scope

pluginsmanager [https://github.com/PedalPi/PluginsManager] can notifies they changes. As an example, if a connection
between effects is created, plugins manager notifies its observers about the change.

This is how ModHost and
Autosaver know when a change occurs.

These observers work passively: they only receive updates, not using the pluginsmanager [https://github.com/PedalPi/PluginsManager]
api to change the state of the application.

Man-Machine Interfaces are usually active: they need to change the state of the application.
As an example, a button that leaves bypass an effect.
They also need to receive notifications, so that the information presented
to the user can be updated in accordance with changes made by other interfaces.

In these cases, is necessary in a change notifiers all except the one who caused the change.

As example, a multi-effects uses Raspberry-P1 [https://github.com/PedalPi/Raspberry-P1] for physical management and
WebService [https://github.com/PedalPi/WebService] for a controller with Apk [https://github.com/PedalPi/Apk] controller. If they uses only
pluginsmanager, a toggle status effect change in a Raspberry-P1 will
informs WebService and unreasonably Raspberry-P1.

A quick review will be given ahead. For more details, see the pluginsmanager observer
documentation [http://pedalpi-pluginsmanager.readthedocs.io/en/latest/observer.html].

pluginsmanager [https://github.com/PedalPi/PluginsManager] has a solution to this problem. Defining a observer:

class MyAwesomeObserver(UpdatesObserver):

 def __init__(self, message):
 self.message = message

 def on_bank_updated(self, bank, update_type, **kwargs):
 print(self.message)

 # Defining others abstract methods
 ...

Using:

>>> observer1 = MyAwesomeObserver("Hi! I am observer1")
>>> observer2 = MyAwesomeObserver("Hi! I am observer2")
>>>
>>> manager = BanksManager()
>>> manager.register(observer1)
>>> manager.register(observer2)
>>>
>>> bank = Bank('Bank 1')
>>> manager.banks.append(bank)
"Hi! I am observer1"
"Hi! I am observer2"
>>> with observer1:
>>> del manager.banks[0]
"Hi! I am observer2"
>>> with observer2:
>>> manager.banks.append(bank)
"Hi! I am observer1"

Using application, the process changes a bit. Because pluginsmanager does not support the current
pedalboard change notifications, clients should extend from ApplicationObserver,
a specialization that adds this functionality:

class MyAwesomeObserver(ApplicationObserver):

 def __init__(self, message):
 self.message = message

 def on_current_pedalboard_changed(self, pedalboard, **kwargs):
 print('Pedalboard changed!')

 def on_bank_updated(self, bank, update_type, **kwargs):
 print(self.message)

 # Defining others abstract methods
 ...

To correctly register ApplicationObserver, you must use Application.register_observer()
(or Component.register_observer()):

>>> observer1 = MyAwesomeObserver("Hi! I am observer1")
>>> observer2 = MyAwesomeObserver("Hi! I am observer2")
>>>
>>> application.register_observer(observer1)
>>> application.register_observer(observer2)

Note

Registering directly to the pluginsmanager will result in not receiving updates
defined by ApplicationObserver

Using:

>>> manager = application.manager
>>>
>>> bank = Bank('Bank 1')
>>> manager.banks.append(bank)
"Hi! I am observer1"
"Hi! I am observer2"
>>> with observer1:
>>> del manager.banks[0]
"Hi! I am observer2"
>>> with observer2:
>>> manager.banks.append(bank)
"Hi! I am observer1"

Warning

The operations performed by PluginsManager are not atomic.
This architectural constraint was based on the experienced experience
that one user will use the system at a time.
In this way, try not to abuse the concurrence.

If you are having problems while doing this, let us know [https://github.com/PedalPi/Application/issues/].

Controller

	
class application.controller.controller.Controller(application)

	Abstract class for Application controllers.

Extends to offer functionalities for this API. Remember to manually register
the extended class in Application (in private _load_controllers
method)

	Parameters

	application (Application) – Application instance

	
close()

	The close method is called by Application when application termination is requested

	
configure()

	The configure method is called by Application for initialize this object

ComponentDataController

CurrentController

DeviceController

PluginsController

PedalPi - Application - Dao

Dao classes provide a means to persist information.

Warning

When creating a component, the model informations are persisted by Autosaver class.

Warning

If you need persists and load any data, use the ComponentDataController.

ComponentDao

CurrentDao

PluginsDao

Index

 C
 | I
 | R
 | U

C

 	
 	close() (application.component.component.Component method)

 	(application.controller.controller.Controller method)

 	
 	Component (class in application.component.component)

 	configure() (application.controller.controller.Controller method)

 	Controller (class in application.controller.controller)

I

 	
 	init() (application.component.component.Component method)

R

 	
 	register_observer() (application.component.component.Component method)

U

 	
 	unregister_observer() (application.component.component.Component method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Pedal Pi - Application

 		
 Changelog

 		
 Version 0.4.1 - released 03/15/18

 		
 Version 0.4.0 - released 02/18/18

 		
 Version 0.3.0 - released 05/30/17

 		
 Version 0.2.1 - released 04/14/17

 		
 Version 0.2.0 - released 04/05/17

 		
 PedalPi - Application

 		
 PedalPi - Application - Component

 		
 Creating a component

 		
 Component

 		
 ApplicationObserver

 		
 CurrentPedalboardObserver

 		
 PedalPi - Application - Controller

 		
 Notification scope

 		
 Controller

 		
 ComponentDataController

 		
 CurrentController

 		
 DeviceController

 		
 PluginsController

 		
 PedalPi - Application - Dao

 		
 ComponentDao

 		
 CurrentDao

 		
 PluginsDao

_static/up.png

_static/up-pressed.png

