

PDSA: Probabilistic Data Structures and Algorithms in Python

[image: MIT License]
 [https://github.com/gakhov/pdsa/blob/master/LICENSE.txt][image: Current Release Version]
 [https://github.com/gakhov/pdsa/releases][image: pypi Version]
 [https://pypi.python.org/pypi/pdsa][image: Documentation Version]
 [http://pdsa.readthedocs.io/en/latest/][image: Python versions]
 [https://github.com/gakhov/pdsa]Probabilistic data structures is a common name of data structures
based on different hashing techniques.

Unlike regular (or deterministic) data structures, they always give you
approximated answers and usually provide reliable ways to estimate
the error probability.

The potential losses or errors are fully compensated by extremely
low memory requirements, constant query time and scaling.

GitHub repository: https://github.com/gakhov/pdsa

	Quickstart

	Cardinality
	Linear Counter

	Probabilistic Counter

	HyperLogLog

	Frequency
	Count Sketch

	Count-Min Sketch

	Membership
	Classical Bloom Filter

	Counting Bloom Filter

	Rank
	Quantile Digest (q-digest)

Quickstart

from pdsa.membership.bloom_filter import BloomFilter

bf = BloomFilter(80000, 4)

print(bf)
print("Bloom filter uses {} bytes in the memory".format(bf.sizeof()))

print("Filter contains approximately {} elements".format(bf.count()))

print("'Lorem' {} in the filter".format(
 "is" if bf.test("Lorem") else "is not"))

words = set(LOREM_IPSUM.split())
for word in words:
 bf.add(word.strip(" .,"))

print("Added {} words, in the filter approximately {} elements".format(
 len(words), bf.count()))

print("'Lorem' {} in the filter".format(
 "is" if bf.test("Lorem") else "is not"))

Cardinality

The cardinality is the number of distinct elements in a set.

Calculating the exact cardinality of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets.

	Linear Counter
	Build a counter

	Index element into the counter

	Size of the counter in bytes

	Length of the counter

	Count of unique elements in the counter

	Probabilistic Counter
	Build a counter

	Index element into the counter

	Size of the counter in bytes

	Length of the counter

	Count of unique elements in the counter

	HyperLogLog
	Build a counter

	Index element into the counter

	Size of the counter in bytes

	Length of the counter

	Count of unique elements in the counter

Linear Counter

A Linear-Time probabilistic counting algorithm, or Linear Counting algorithm,
was proposed by Kyu-Young Whang at al. in 1990.

It’s a hash-based probabilistic algorithm for counting the number of
distinct values in the presence of duplicates.

The algorithm has O(N) time complexity, where N is the total number of elements,
including duplicates.

This implementation uses bitvector to store the counter’s array.

from pdsa.cardinality.linear_counter import LinearCounter

lc = LinearCounter(1000000)
lc.add("hello")
print(lc.count())

Build a counter

To build a counter, specify its length.

from pdsa.cardinality.linear_counter import LinearCounter

lc = LinearCounter(100000)

Note

Memory for the counter is assigned by chunks, therefore the
length of the counter can be rounded up to use it in full.

Note

This implementation uses MurmurHash3 family of hash functions
which yields a 32-bit hash value that implies the maximal length
of the counter.

Index element into the counter

lc.add("hello")

Note

It is possible to index into the counter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Size of the counter in bytes

print(lc.sizeof())

Length of the counter

print(len(lc))

Count of unique elements in the counter

print(lc.count())

Warning

It is only an approximation, that is quite good for not huge cardinalities.

Probabilistic Counter

Probabilistic Counting algorithm with stochastic averaging
(Flajolet-Martin algorithm) was proposed by Philippe Flajolet
and G. Nigel Martin in 1985.

It’s a hash-based probabilistic algorithm for counting the number of
distinct values in the presence of duplicates.

This implementation stores number of 32-bit single counters (FM Sketches)
consequently in a single bitvector.

from pdsa.cardinality.probabilistic_counter import ProbabilisticCounter

pc = ProbabilisticCounter(256)
pc.add("hello")
print(pc.count())

Build a counter

To build a counter, specify its length.

from pdsa.cardinality.probabilistic_counter import ProbabilisticCounter

pc = ProbabilisticCounter(number_of_counters=256)

Note

Memory for the counter is assigned by chunks, therefore the
length of the counter can be rounded up to use it in full.

Note

This implementation uses MurmurHash3 family of hash functions
which yields a 32-bit hash value that implies the maximal length
of the counter.

Note

The Algorithm has been developed for large cardinalities when
ratio card()/num_of_counters > 10-20, therefore a special correction
required if low cardinality cases has to be supported. In this implementation
we use correction proposed by Scheuermann and Mauve (2007).

from pdsa.cardinality.probabilistic_counter import ProbabilisticCounter

pc = ProbabilisticCounter(
 numbder_of_counters=256,
 with_small_cardinality_correction=True)

Index element into the counter

pc.add("hello")

Note

It is possible to index into the counter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Size of the counter in bytes

print(pc.sizeof())

Length of the counter

print(len(pc))

Count of unique elements in the counter

print(pc.count())

Warning

It is only an approximation of the exact cardinality.

HyperLogLog

HyperLogLog algorithm was proposed by Philippe Flajolet, Éric Fusy,
Olivier Gandouet, and Frédéric Meunier in 2007.

It’s a hash-based probabilistic algorithm for counting the number of
distinct values in the presence of duplicates.

This implementation uses the classical algorithm with a 32-bit hash function
and 4-byte counters.

from pdsa.cardinality.hyperloglog import HyperLogLog

hll = HyperLogLog(10)
hll.add("hello")
print(hll.count())

Build a counter

To build a counter, specify its precision - the number of bits that should be
used to randomly choose the counter (stochastic averaging). The rest of the bits
of the 32-bit hash value will be used to index into the selected counter.

from pdsa.cardinality.hyperloglog import HyperLogLog

hll = HyperLogLog(precision=10)

Note

Precision has to be an integer in range 4 … 16.

Note

This implementation uses MurmurHash3 family of hash functions
which yields a 32-bit hash value.

Index element into the counter

hll.add("hello")

Note

It is possible to index into the counter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Size of the counter in bytes

print(hll.sizeof())

Length of the counter

print(len(hll))

Count of unique elements in the counter

print(hll.count())

Warning

It is only an approximation of the exact cardinality.

Frequency

Many important problems with streaming applications that operate large
data streams are related to the estimation of the frequencies of elements,
including determining the most frequent element or detecting the trending
ones over some period of time.

	Count Sketch
	References

	Build a sketch

	Index element into the sketch

	Estmiate frequency of the element

	Size of the sketch in bytes

	Length of the sketch

	Count-Min Sketch
	References

	Build a sketch

	Index element into the sketch

	Estmiate frequency of the element

	Size of the sketch in bytes

	Length of the sketch

Count Sketch

Count Sketch is a simple space-efficient probabilistic data structure
that is used to estimate frequencies of elements in data streams and can
address the Heavy hitters problem. It was proposed by Moses Charikar, Kevin Chen, and Martin Farach-Colton in 2002.

References

	[1] Charikar, M., Chen, K., Farach-Colton, M.

	Finding Frequent Items in Data Streams
Proceedings of the 29th International Colloquium on Automata, Languages and
Programming, pp. 693–703, Springer, Heidelberg.
https://www.cs.rutgers.edu/~farach/pubs/FrequentStream.pdf

This implementation uses MurmurHash3 family of hash functions
which yields a 32-bit hash value. Thus, the length of the counters
is expected to be smaller or equal to the (2^{32} - 1), since
we cannot access elements with indexes above this value.

from pdsa.frequency.count_min_sketch import CountSketch

cs = CountSketch(5, 2000)
cs.add("hello")
cs.frequency("hello")

Build a sketch

You can build a new sketch either from specifiyng its dimensions
(number of counter arrays and their length), or from the expected
overestimation diviation and standard error probability.

Build filter from its dimensions

from pdsa.frequency.count_min_sketch import CountSketch

cs = CountSketch(num_of_counters=5, length_of_counter=2000)

Build filter from the expected errors

In this case the number of counter arrays and their length
will be calculated corresponsing to the expected overestimation
and the requested error.

from pdsa.frequency.count_min_sketch import CountSketch

cs = CountSketch.create_from_expected_error(deviation=0.000001, error=0.01)

Note

The deviation is the error ε in answering the paricular query.
For example, if we expect 10^7 elements and allow the fixed
overestimate of 10, the deviation is 10/10^7 = 10^{-6}.

The error is the standard error δ (0 < error < 1).

Note

The Count–Min Sketch is approximate and probabilistic at the same
time, therefore two parameters, the error ε in answering the paricular
query and the error probability δ, affect the space and time
requirements. In fact, it provides the guarantee that the estimation
error for frequencies will not exceed ε x n
with probability at least 1 – δ.

Index element into the sketch

cs.add("hello")

Note

It is possible to index into the counter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Estmiate frequency of the element

print(cs.frequency("hello"))

Warning

It is only an approximation of the exact frequency.

Size of the sketch in bytes

print(cs.sizeof())

Length of the sketch

print(len(cs))

Count-Min Sketch

Count–Min Sketch is a simple space-efficient probabilistic data structure
that is used to estimate frequencies of elements in data streams and can
address the Heavy hitters problem. It was presented in 2003 [1] by
Graham Cormode and Shan Muthukrishnan and published in 2005 [2].

References

	[1] Cormode, G., Muthukrishnan, S.

	What’s hot and what’s not: Tracking most frequent items dynamically
Proceedings of the 22th ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, San Diego, California - June 09-11, 2003,
pp. 296–306, ACM New York, NY.
http://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CormodeM-hot.pdf

	[2] Cormode, G., Muthukrishnan, S.

	An Improved Data Stream Summary: The Count–Min Sketch and its Applications
Journal of Algorithms, Vol. 55 (1), pp. 58–75.
http://dimacs.rutgers.edu/~graham/pubs/papers/cm-full.pdf

This implementation uses MurmurHash3 family of hash functions
which yields a 32-bit hash value. Thus, the length of the counters
is expected to be smaller or equal to the (2^{32} - 1), since
we cannot access elements with indexes above this value.

from pdsa.frequency.count_min_sketch import CountMinSketch

cms = CountMinSketch(5, 2000)
cms.add("hello")
cms.frequency("hello")

Build a sketch

You can build a new sketch either from specifiyng its dimensions
(number of counter arrays and their length), or from the expected
overestimation diviation and standard error probability.

Build filter from its dimensions

from pdsa.frequency.count_min_sketch import CountMinSketch

cms = CountMinSketch(num_of_counters=5, length_of_counter=2000)

Build filter from the expected errors

In this case the number of counter arrays and their length
will be calculated corresponsing to the expected overestimation
and the requested error.

from pdsa.frequency.count_min_sketch import CountMinSketch

cms = CountMinSketch.create_from_expected_error(deviation=0.000001, error=0.01)

Note

The deviation is the error ε in answering the paricular query.
For example, if we expect 10^7 elements and allow the fixed
overestimate of 10, the deviation is 10/10^7 = 10^{-6}.

The error is the standard error δ (0 < error < 1).

Note

The Count–Min Sketch is approximate and probabilistic at the same
time, therefore two parameters, the error ε in answering the paricular
query and the error probability δ, affect the space and time
requirements. In fact, it provides the guarantee that the estimation
error for frequencies will not exceed ε x n
with probability at least 1 – δ.

Index element into the sketch

cms.add("hello")

Note

It is possible to index into the counter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Estmiate frequency of the element

print(cms.frequency("hello"))

Warning

It is only an approximation of the exact frequency.

Size of the sketch in bytes

print(cms.sizeof())

Length of the sketch

print(len(cms))

Membership

A Membership problem for a set is the problem to decide whether some element
belongs to the set or not.

In many cases while testing some element for an existance in the set you
don’t need to know exactly which element from the set has been matched,
only the fact of such match matters.

	Classical Bloom Filter
	Build a filter

	Add element into the filter

	Test if element is in the filter

	Size of the filter in bytes

	Length of the filter

	Count of unique elements in the filter

	Counting Bloom Filter
	Build a filter

	Add element into the filter

	Test if element is in the filter

	Delete element from the filter

	Size of the filter in bytes

	Length of the filter

	Count of unique elements in the filter

Classical Bloom Filter

This implementation uses bitvector to store the bloom filter array.

from pdsa.membership.bloom_filter import BloomFilter

bf = BloomFilter(1000000, 5)
bf.add("hello")
bf.test("hello")

Build a filter

You can build a new filter either from specifiyng its length and
number of hash functions, or from the expected capacity and error
probability.

Build filter from its length and number of hash function

from pdsa.membership.bloom_filter import BloomFilter

bf = BloomFilter(100000, 5)

Note

Memory for the filter is assigned by chunks, therefore the
length of the filter can be rounded up to use it in full.

Build filter from the expected capacity and error probability

In this case length of the filter and number of hash functions
will be calculated to handle the requested number of elements
with the requested error.

from pdsa.membership.bloom_filter import BloomFilter

bf = BloomFilter().create_from_capacity(10000, 0.02)

Add element into the filter

bf.add("hello")

Note

It is possible to add into the filter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Test if element is in the filter

bf.test("hello") == True

"hello" in bf

Size of the filter in bytes

print(bf.sizeof())

Length of the filter

print(len(bf))

Count of unique elements in the filter

print(bf.count())

Warning

It is only an approximation, since there is no reliable way to
determine the number of unique elements that are already in the filter.

Counting Bloom Filter

This implementation uses 4-bit counter implementation to store counts
of elements and bitvector to store the bloom filter array.

from pdsa.membership.counting_bloom_filter import CountingBloomFilter

bf = CountingBloomFilter(1000000, 5)
bf.add("hello")
bf.test("hello")
bf.remove("hello")

Build a filter

You can build a new filter either from specifiyng its length and
number of hash functions, or from the expected capacity and error
probability.

Build filter from its length and number of hash function

from pdsa.membership.counting_bloom_filter import CountingBloomFilter

bf = CountingBloomFilter(100000, 5)

Note

Memory for the filter is assigned by chunks, therefore the
length of the filter can be rounded up to use it in full.

Build filter from the expected capacity and error probability

In this case length of the filter and number of hash functions
will be calculated to handle the requested number of elements
with the requested error.

from pdsa.membership.counting_bloom_filter import CountingBloomFilter

bf = CountingBloomFilter().create_from_capacity(10000, 0.02)

Add element into the filter

bf.add("hello")

Note

It is possible to add into the filter any elements (internally
it uses repr() of the python object to calculate hash values for
elements that are not integers, strings or bytes.

Test if element is in the filter

bf.test("hello") == True

"hello" in bf

Delete element from the filter

bf.remove("hello")

Warning

The implementation uses 4-bit counters that freeze at value 15.
So, the deletion, in fact, is a probabilistically correct only.

Size of the filter in bytes

print(bf.sizeof())

Length of the filter

print(len(bf))

Count of unique elements in the filter

print(bf.count())

Warning

It is only an approximation, since there is no reliable way to
determine the number of unique elements that are already in the filter.

Rank

The most commonly used rank characteristics are quantiles, and their
specific types as percentiles and quartiles.

	Quantile Digest (q-digest)
	Build a q-digest

	Add element into q-digest

	Quantile Query

	Inverse Quantile Query

	Interval (range) Query

	Merge q-digests

	Length of the q-digest

	Size of the q-digest in bytes

	Count of elements in the q-digest

Quantile Digest (q-digest)

Quantile Digest, or q-digest, is a tree-based stream summary algorithm
that was proposed by Nisheeth Shrivastava, Subhash Suri et al. in
2004 in the context of monitoring distributed data
from sensors.

from pdsa.rank.qdigest import QuantileDigest

qd = QuantileDigest(3, 5)
for i in range(100):
 qd.add(random.randrange(0, 8))
qd.compress()

qd.quantile_query(0.5)
qd.inverse_quantile_query(5)
qd.interval_query(2, 6)

Build a q-digest

Quantile Digest is designed to be built on integer numbers from a known range.

The range of the supported integers is defined by the number of bytes in thier
maximal representation. Thus, for k-bytes integers, the range will
be [0, 2^k - 1].

from pdsa.rank.qdigest import QuantileDigest

qd = QuantileDigest(3, 5)

Note

The ranges up to 32 bytes only are supported in the current implementation.

Add element into q-digest

qd.add(5)

Quantile Query

Given a fraction q from [0, 1], the quantile query
is about to find the value whose rank in a sorted sequence
of the n values is q * n.

qd.quantile_query(0.95)

Inverse Quantile Query

Given an element, the inverse quantile query
is about to find its rank in sorted sequence of values.

qd.inverse_quantile_query(4)

Interval (range) Query

Given a value the interval (range) query
is about to find the number of elements in the given range
in the sequence of elements.

qd.interval_query(3, 6)

Merge q-digests

qd1.merge(qd2)

Warning

Only q-digets with same compression_factor and range are possible to merge correctly.

Length of the q-digest

Length of the q-digest is the number of buckets (nodes) included into the q-digest.

print(len(qd))

Size of the q-digest in bytes

print(qd.sizeof())

Warning

Since we can’t calculate exact size of a dict in Cython,
this function return some estimation based an ideal size of
keys, values of each bucket.

Count of elements in the q-digest

print(qd.count())

Warning

While we can’t say exactly which elements are in the q-digest,
(because the compression is a lossy operation), it’s still
possible to say how many in total elements were added.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 PDSA: Probabilistic Data Structures and Algorithms in Python

 		
 Quickstart

 		
 Cardinality

 		
 Linear Counter

 		
 Build a counter

 		
 Index element into the counter

 		
 Size of the counter in bytes

 		
 Length of the counter

 		
 Count of unique elements in the counter

 		
 Probabilistic Counter

 		
 Build a counter

 		
 Index element into the counter

 		
 Size of the counter in bytes

 		
 Length of the counter

 		
 Count of unique elements in the counter

 		
 HyperLogLog

 		
 Build a counter

 		
 Index element into the counter

 		
 Size of the counter in bytes

 		
 Length of the counter

 		
 Count of unique elements in the counter

 		
 Frequency

 		
 Count Sketch

 		
 References

 		
 Build a sketch

 		
 Index element into the sketch

 		
 Estmiate frequency of the element

 		
 Size of the sketch in bytes

 		
 Length of the sketch

 		
 Count-Min Sketch

 		
 References

 		
 Build a sketch

 		
 Index element into the sketch

 		
 Estmiate frequency of the element

 		
 Size of the sketch in bytes

 		
 Length of the sketch

 		
 Membership

 		
 Classical Bloom Filter

 		
 Build a filter

 		
 Add element into the filter

 		
 Test if element is in the filter

 		
 Size of the filter in bytes

 		
 Length of the filter

 		
 Count of unique elements in the filter

 		
 Counting Bloom Filter

 		
 Build a filter

 		
 Add element into the filter

 		
 Test if element is in the filter

 		
 Delete element from the filter

 		
 Size of the filter in bytes

 		
 Length of the filter

 		
 Count of unique elements in the filter

 		
 Rank

 		
 Quantile Digest (q-digest)

 		
 Build a q-digest

 		
 Add element into q-digest

 		
 Quantile Query

 		
 Inverse Quantile Query

 		
 Interval (range) Query

 		
 Merge q-digests

 		
 Length of the q-digest

 		
 Size of the q-digest in bytes

 		
 Count of elements in the q-digest

_static/up.png

