
PdfPug
Release 0.5

Oct 21, 2019

Contents

1 Licensing 3

Index 41

i

ii

PdfPug, Release 0.5

PdfPug is a tool that makes it easy to create rich beautiful PDFs from scratch. It provides simple APIs that allow
for quick creation of PDF files without any fuss. Read more about the vision that drives the development efforts of
this library here.

PdfPug consists of small building blocks like Table, Header, OrderedList etc. and the ability to customise
these component to suit different use cases.

Note: The library is still very new and as a result the APIs can be assumed to not be stable. Do not use this library in
production. Any bugs found can be reported at the project’s Gitlab repo.

Here is a small example to create a basic PDF that contains a header and a paragraph,

from pdfpug.modules import Header, Paragraph
from pdfpug import PdfReport

Create modules
intro_header = Header("Introduction to PdfPug")
para = Paragraph(

"Lorem Ipsum is simply <u>dummy</u> text of the printing and typesetting "
"industry. Lorem Ipsum has been the industry's standard dummy text "
"ever since the 1500s, when an unknown printer took a galley of type"
" and scrambled it to make a type specimen book. It has survived not "
"only five centuries, but also the leap into electronic typesetting, "
"remaining essentially unchanged. It was popularised in the 1960s with "
"the release of Letraset sheets containing Lorem Ipsum passages, and "
"more recently with desktop publishing software like Aldus PageMaker "
"including versions of Lorem Ipsum."

)

Create a PdfReport object
report = PdfReport()

Add modules to report
report.add_element(intro_header)
report.add_element(para)

Generate PDF Report
report.generate_pdf("test-report.pdf")

Contents 1

https://gitlab.com/krnekhelesh/pdfpug

PdfPug, Release 0.5

2 Contents

CHAPTER 1

Licensing

PdfPug uses the MIT license and as such is open source and welcomes contribution. The license file can be found in
the project’s Gitlab repo.

1.1 Vision

If you are wondering about the motivation behind creating yet another Python library to create PDF files? The answer
is simple. The Python ecosystem does not have a library that is simple enough to use while providing the means to
create rich beautiful professional PDFs. Either they are simple yet lacking certain features or they are fully featured
but difficult to use.

That’s great. Is PdfPug the solution to the above problem? Well, it is intended to be. At the moment, it is still in
its infancy to match up to that expectation. But that is the vision that drives the development efforts of PdfPug. Also,
balancing features with ease of use is a difficult balance to achieve, but something that is worth trying.

How do we measure success? Just about anyone should be able to create professional looking PDFs in a live coding
session. It should not be intimidating.

If this is something that excites you, and you are interested in helping make that a reality, then please do check out the
Contributing Guide.

1.2 Tutorial

This section strives to introduce PdfPug by means of examples. The examples vary in difficult from simple to complex
PDF files. By going through these examples, one can get a good idea of the capabilities and ease of use of PdfPug.
Each example will provide a detailed explanation of how we arrived at the final output. The links to the full source
code and output PDF file will be provided for each example. You are encouraged to download them and explore them.
Tweak them. Improve them.

3

https://gitlab.com/krnekhelesh/pdfpug

PdfPug, Release 0.5

Note: The examples below are also used by the library author to dogfood the library APIs and check if the usage
pattern is simple and understandable.

1.2.1 Prerequisites

It is recommended to set up a clean environment before starting the examples. Let’s quickly do that before diving into
the examples.

1. Create a new folder

2. Inside the newly created folder, set up a Python Virtual Environment

3. Activate Environment

4. Pip install PdfPug

The commands for Linux are provided below for reference,

mkdir pdfpug-examples && cd pdfpug-examples
python -m venv venv
source venv/bin/activate
pip install pdfpug

Python Wikipedia Article

In this tutorial, we will walk through how to reproduce the Wikipedia article about Python. You will find the online
reference here. This article has a good balance of simple elements like Paragraph, Header while also housing
slightly complex 2 column layouts. This should serve as a good introduction to the PdfPug layout system.

Note: This tutorial focuses on introducing the various PdfPug modules and layouts. As such, the content of the
wikipedia article being showcased will be truncated and be a smaller subset of the actual content in the wikipedia
article.

The final output would look something like,

The source code and the output PDF file can be downloaded here. If you notice any discrepancies, do report a bug.
Source Code, Output PDF, Python Logo Image

Article Title

The first element to be defined is the article header “Python (programming language)”. We can define headers using
Header class. PdfPug header also supports adding a caption (or sub-header) which can be used to add the supporting
text “From Wikipedia, the . . . ”.

from pdfpug.modules import Header
from pdfpug.common import Alignment

main_title = Header(
"Python (programming language)",
sub_header="From Wikipedia, the free encyclopedia",
alignment=Alignment.left,

)

4 Chapter 1. Licensing

https://docs.python.org/3/tutorial/venv.html
https://en.wikipedia.org/wiki/Python_(programming_language)

PdfPug, Release 0.5

1.2. Tutorial 5

PdfPug, Release 0.5

Introduction Section

The introduction section is a 2 column layout with an introduction paragraph on the left and a table on the right. There
are multiple ways of implementing this layout. We will take the approach of creating the left column first followed by
the right column and then add them both to a grid.

Let us start with creating the left column contents which is a Paragraph containing URL links and line breaks.

Note: The Paragraph class supports formatting text (bold, italics, underline, superscript etc.), adding URL and
line breaks.

from pdfpug.modules import Paragraph
from pdfpug.common import superscript, url

Define URLs before to maintain code sanity
interpreted = url("https://en.wikipedia.org/wiki/Interpreted_language", "interpreted")
guido = url("https://en.wikipedia.org/wiki/Guido_van_Rossum", "Guido van Rossum")
readability = url("https://en.wikipedia.org/wiki/Code_readability", "code readability
→˓")
high_level = url(

"https://en.wikipedia.org/wiki/High-level_programming_language", "high-level"
)
general_purpose = url(

"https://en.wikipedia.org/wiki/General-purpose_programming_language",
"general-purpose",

)
programming_language = url(

"https://en.wikipedia.org/wiki/Programming_language", "programming language"
)
whitespace = url(

"https://en.wikipedia.org/wiki/Off-side_rule", "significant whitespace"
)

intro_para = Paragraph(
f"Python is an {interpreted}, {high_level}, {general_purpose}, "
f"{programming_language} Created by {guido} and first released in 1991, "
f"Python's design philosophy emphasizes {readability} with its notable use of"
f"with its notable use of {whitespace}. Its language constructs and "
f"object-oriented approach aim to help programmers write clear, logical code "
f"for small and large-scale projects.{superscript('[27]')}"
f"

Python is dynamically typed and garbage-collected. It supports multiple

→˓"
f"programming paradigms, including procedural, object-oriented, and functional "
f'programming. Python is often described as a "batteries included" language '
f"due to its comprehensive standard library.{superscript('[28]')}

"

)

With the content ready, let’s add it to a Column. Since we need a 2 column layout, the width of both the left and right
column need to be specified.

from pdfpug.layouts import Column

intro_para_column = Column(width=7)
intro_para_column.add_element(intro_para)

Let’s now proceed to build the right column and its contents. As can be seen, the right column consists of an image

6 Chapter 1. Licensing

PdfPug, Release 0.5

and a table. PdfPug allows us to add these content types via the Image and Table class.

from pdfpug.modules import Image, Table

The Image class expects the absolute file path of the image!
python_logo = Image(

os.path.join(os.path.dirname(os.path.realpath(__file__)), "python-logo.png")
)

intro_table = Table(
data=[

[
"Paradigm",
"Multi-paradigm, functional, imperative, object-oriented, reflective",

],
["Designed by", "Guido van Rossum"],
["Developer", "Python Software Foundation"],
["First appeared", "1990; 29 years ago"],
["Stable release", "3.7.4 / 8 July 2019
2.7.16 / 4 March 2019"],
["Typing discipline", "Duck, dynamic gradual (since 3.5)"],
["License", "Python Software Foundation License"],
["Filename extensions", ".py, .pyc, .pyd, .pyo"],

]
)

Let’s again build a new column with its contents,

intro_table_column = Column(width=7)
intro_table_column.add_element(python_logo)
intro_table_column.add_element(intro_table)

With the left and right column created, the final step to creating the 2 column grid is to create a Grid and add these
columns to it.

from pdfpug.layouts import Grid

intro_grid = Grid()
intro_grid.add_layout(intro_para_column)
intro_grid.add_layout(intro_table_column)

Table of Contents

One can observe that the table of contents is actually an ordered list. The list is encapsulated within a segment
container. Creating this should be fairly simple.

from pdfpug.modules import OrderedList, Segment

contents_list = OrderedList(
[

"History",
"Features and philosophy",
{

"Syntax and semantics": [
"Indentation",
"Statements and control flow",
"Expressions",

(continues on next page)

1.2. Tutorial 7

PdfPug, Release 0.5

(continued from previous page)

"Methods",
"Typing",
"Mathematics",

]
},
"Libraries",
"Development environments",
{

"Implementations": [
"Reference implementations",
"Other implementations",
"Unsupported implementations",
"Cross-compilers to other languages",
"Performance",

]
},
"Development",
"Naming",
"API documentation generators",
"Uses",
"Langauges influenced by Python",
"See also",
{"References": ["Sources"]},
"Further reading",
"External links",

]
)

contents_segment = Segment(
[Header("Contents", tier=HeaderTier.h3), contents_list],
spacing=SegmentSpacing.compact,

)

Notice that we are setting SegmentSpacing.compact as the segment spacing. This ensures that the segment container
takes only the required amount of width. Otherwise, it would span the entire page width.

History & Other Sections

history_header = Header(
"History", tier=HeaderTier.h2, style=HeaderStyle.dividing, alignment=Alignment.

→˓left
)

history_para = Paragraph(
f"Python was conceived in the late 1980s{superscript('[33]')} by Guido van Rossum

→˓"
f"at Centrum Wiskunde & Informatica (CWI) in the Netherlands as a successor to

→˓the "
f"ABC language (itself inspired by SETL),{superscript('[34]')} capable of "
f"exception handling and interfacing with the Amoeba operating system."
f"{superscript('[8]')} Its implementation began in December 1989."
f"{superscript('[35]')} Van Rossum continued as Python's lead developer until "
f'July 12, 2018, when he announced his "permanent vacation" from his '
f"responsibilities as Python's Benevolent Dictator For Life, a title the "
f"Python community bestowed upon him to reflect his long-term commitment as "

(continues on next page)

8 Chapter 1. Licensing

PdfPug, Release 0.5

(continued from previous page)

f"the project's chief decision-maker.{superscript('[36]')} In January, 2019, "
f"active Python core developers elected Brett Cannon, Nick Coghlan, Barry Warsaw,

→˓"
f'Carol Willing and Van Rossum to a five-member "Steering Council" to lead the '
f'project.{superscript("[37]")}'

)

library_header = Header(
"Libraries",
tier=HeaderTier.h2,
style=HeaderStyle.dividing,
alignment=Alignment.left,

)

library_para = Paragraph(
"Python's large standard library, commonly cited as one of its greatest strengths,

→˓"
"[97] provides tools suited to many tasks. For Internet-facing applications, "
"many standard formats and protocols such as MIME and HTTP are supported. It "
"includes modules for creating graphical user interfaces, connecting to

→˓relational "
"databases, generating pseudorandom numbers, arithmetic with arbitrary precision "
"decimals,[98] manipulating regular expressions, and unit testing."
"

Some parts of the standard library are covered by specifications "
"(for example, the Web Server Gateway Interface (WSGI) implementation wsgiref "
"follows PEP 333[99]), but most modules are not. They are specified by their "
"code, internal documentation, and test suites (if supplied). However, because "
"most of the standard library is cross-platform Python code, only a few modules "
"need altering or rewriting for variant implementations."
"

As of March 2018, the Python Package Index (PyPI), the official "
"repository for third-party Python software, contains over 130,000[100] "
"packages with a wide range of functionality, including: "

)

library_list = UnorderedList(
[

"Graphical user interfaces",
"Web frameworks",
"Multimedia",
"Databases",
"Networking",
"Test frameworks",
"Automation",
"Web scraping[101]",
"Documentation",
"System administration",
"Scientific computing",
"Text processing",
"Image processing",

]
)

1.2. Tutorial 9

PdfPug, Release 0.5

Building the PDF

The final thing involves importing the PdfReport class from the PdfPug library and creating an object. This is the
main class that will house all the elements we want to add to our PDF file.

from pdfpug import PdfReport

report = PdfReport("PythonWiki.pdf")
report.add_elements(

[
main_title,
intro_grid,
contents_segments,
history_header,
history_para,
library_header,
library_para,
library_list,

]
)

report.generate_pdf("python.pdf")

Voila! This should generate a PDF file similar to the output shown at the start of this tutorial.

Modern Resume

In this tutorial, we will walk through creating a modern resume. This tutorial is fairly extensive and uses a majority
of the PdfPug modules and their properties to achieve the desired look and feel. If you are unfamiliar with some of
the basic elements of PdfPug, it is recommended to first go through the Python Wikipedia Article tutorial that is easier
than and smaller.

The final output would look something like the screenshot below. Doesn’t it look great? Let’s build that!

Note: The information displayed in the resume may contain factual errors. The point of this tutorial is to explore
PdfPug’s elements and layouts and showcase its capabilities.

The source code and the output PDF file can be downloaded here. If you notice any discrepancies, do report a bug.
Source Code, Output PDF, Elon Musk Profile Picture

Approach

Looking at the output, at a high level, this is a 2 column grid that contains a mixture of elements like headers, list,
paragraphs, tables and even progress bars to indicate skill level. A layout like this should be implemented one at a
time to take an organised approach.

A possible starting point could be the left column that is fairly simple and then moving on to the right column that is
slightly more complex due to the table that contains other elements i.e header inside a cell inside a table. Inception!

Warning: There is a known bug where a Grid that bleeds to the next page causes the layout to go haywire. Due
to this limitation, in this tutorial 2 grid were used. One for the first page and the other for the second page.

10 Chapter 1. Licensing

PdfPug, Release 0.5

1.2. Tutorial 11

PdfPug, Release 0.5

First Page - Left Column

The first element we need to build is an image that should be circular and centered to the left column layout.

from pdfpug.modules import Image
from pdfpug.common import ImageLayout, ImageStyle, Size

profile_pic = Image(
os.path.join(os.path.dirname(os.path.realpath(__file__)), "musk.jpeg"),
style=ImageStyle.circular,
size=Size.small,
layout=ImageLayout.centered,

)

This is followed by the the info section which comprises of just headers. In the code block below, playing with the
HeaderTier, Alignment and adding a sub-header helped achieved the style. In order to have a dividing horizontal
line be drawn after the info header, a dividing HeaderStyle is used.

from pdfpug.modules import Header
from pdfpug.common import HeaderTier, HeaderStyle, Alignment

info_header = Header(
"Info", tier=HeaderTier.h3, style=HeaderStyle.dividing, alignment=Alignment.left

)

email = Header(
"Email",
sub_header="elonmusk@teslamotors.com",
alignment=Alignment.left,
tier=HeaderTier.h5,

)

Next up is the skills and competences section. Although this requires an unconventional element, it appears to be the
best fit for the use case. The ProgressBar element supports various modifications to its default style like Size,
Color, title etc.

from pdfpug.modules import ProgressBar
from pdfpug.common import Color

skills_header = Header(
"Skills and Competences",
tier=HeaderTier.h3,
style=HeaderStyle.dividing,
alignment=Alignment.left,

)

resiliency = ProgressBar(100, title="Resiliency", size=Size.small, color=Color.orange)

With the content created, we can add them all to a column.

from pdfpug.layouts import Column

first_page_left_column = Column(width=4)
first_page_left_column.add_element(profile_pic)
first_page_left_column.add_element(info_header)
first_page_left_column.add_element(email)
first_page_left_column.add_element(skills_header)

(continues on next page)

12 Chapter 1. Licensing

PdfPug, Release 0.5

(continued from previous page)

first_page_left_column.add_element(resiliency)

First Page - Right Column

In the right column, there is the resume title that displays the name and the current designation. There is a subtle
difference in this header size. It is bigger than a h1 tier header. How do one achieve that? Using the size attribute that
takes in Size enum.

Warning: It is important to note that the header size can be defined either using the tier or size attribute but not
both!

name_header = Header(
"Elon Musk", sub_header="CEO Tesla, SpaceX, PayPal", size=Size.huge, tier=None

)

This is followed by a brief abstract that can be easily implemented using the Paragraph element with one minor
adjustment to the alignment attribute to ensure that the content is centered.

summary = Paragraph(
"Aiming to reduce global warming through sustainable energy production and "
'consumption, and reducing the "risk of human extinction" by '
'"making life multi-planetary" and setting up a human colony on Mars.',
alignment=ParagraphAlignment.center,

)

Now comes the tricky work experience section. At a quick glance, it is fairly obvious that this is a Table. However,
looking closer, there are cells that would need to house other PdfPug elements like header, paragraph to achieve the
desired appearance. This requires us to use the Cell element to implement that inception of elements.

Going by the bottom top approach, the contents can be created using a header and a paragraph. This hybrid content
need to displayed in a vertical layout which can be achieved using a Segment element designed to group content
together. However, the style should be set to SegmentType.basic to ensure that it does not draw any borders. Finally,
this element should added to a Cell which in turn is the basic building block of a Table.

work_header = Header(
"Work Experience",
tier=HeaderTier.h3,
style=HeaderStyle.dividing,
alignment=Alignment.left,

)

work_exp = Table(
data=[

[
"2006 - Present",
Cell(

Segment(
[

Header(
"Chairman",
sub_header="Solar City",
alignment=Alignment.left,

(continues on next page)

1.2. Tutorial 13

PdfPug, Release 0.5

(continued from previous page)

tier=HeaderTier.h4,
),
Paragraph(

"Created a collaboration between SolarCity and Tesla "
"to use electric vehicle batteries to smooth the "
"impact of rooftop solar on the power grid. Provided "
"the initial concept and financial capital."

),
],
segment_type=SegmentType.basic,
spacing=SegmentSpacing.compact,

)
),

]
],
spacing=TableSpacing.compact,
table_type=TableType.bare,

)

Oh, another minor detail to notice is that the table style is set to TableType.bare to ensure no boundaries are drawn.
Take a look at TableType for other table styles.

Finally,

report = PdfReport()
report.add_element(first_page_grid)
report.generate_pdf("modern_resume_tutorial.pdf")

This is where the tutorial can be wrapped up. The contents and layout of page 2 are fairly simple to implement
yourself. Give it a try. If you are stuck, you can always refer to the source code linked at the start of this tutorial.

Inception

This tutorial is one you would enjoy if you read the output PDF instead of boring paragraphs of text here. It all starts
with one of my favorite movie Inception.

The final output would look something like the screenshot below.

The source code and the output PDF file can be downloaded here. If you notice any discrepancies, do report a bug.
Source Code, Output PDF, Picture 1 Picture 2 Picture 3 Picture 4

1.3 API Documentation

Modules are the building blocks of a PDF report. PdfPug provides several modules like Header, OrderedList
that can be used to put together a PDF report. Modules can also take other modules as inputs.

1.3.1 PdfReport

class pdfpug.PdfReport(**kwargs)
This is the main class that assembles the elements together to create the final PDF output. All the PdfPug
elements defined in the API Documentation section need to be added to this class.

Parameters

14 Chapter 1. Licensing

PdfPug, Release 0.5

1.3. API Documentation 15

PdfPug, Release 0.5

• theme (Optional[Theme]) – PDF file theme

• show_page_numbers (bool) – Hide/Show page numbers (defaults to True)

• size (Optional[PageSize]) – Size of pages in the PDF (defaults to A4)

• orientation (Optional[PageOrientation]) – Orientation of pages in PDF (de-
faults to portrait)

>>> from pdfpug.modules import Header
>>> from pdfpug import PdfReport
>>> header = Header('PdfPug Header')
>>> report = PdfReport()
>>> report.add_element(header)
>>> report.generate_pdf('pug-report.pdf')

PdfPug ships with a predefined themes that can be used to further style and modernise the output pdf file.

>>> from pdfpug.common import Theme
>>> report = PdfReport(theme=Theme.mood_swing)
>>> report.generate_pdf('pug-report.pdf')

add_element(element)
Add an element to the PDF file

Parameters element (BasePugElement) – Object instance of the different modules sup-
ported by PdfPug

Raises TypeError – If object instance is not a PdfPug element

Return type None

add_elements(elements)
Add multiple elements in one call to the PDF file

Parameters elements (List[BasePugElement]) – Each element must be an object in-
stance supported by PdfPug

Raises TypeError – If object instance is not a PdfPug element

Return type None

set_meta_information(title=None, description=None, authors=None, keywords=None)
Set the document’s meta information such as title, description, author etc.

Parameters

• title (Optional[str]) – Document title

• description (Optional[str]) – Document description

• authors (Optional[List[~T]]) – Document authors

• keywords (Optional[List[~T]]) – Document keywords

Return type None

generate_pdf(pdf_file_path)
Generate PDF file

Parameters pdf_file_path (str) – Absolute path of the PDF file to be created

Return type None

class pdfpug.common.PageSize
Predefined Page sizes

16 Chapter 1. Licensing

PdfPug, Release 0.5

a3 = 'A3'
ISO Dimensions 297mm x 420mm

a4 = 'A4'
ISO Dimensions 210mm x 297mm (most frequently used for printing)

a5 = 'A5'
ISO Dimensions 148mm x 210mm

b5 = 'B5'
ISO Dimensions 176mm x 250mm

b4 = 'B4'
ISO Dimensions 250mm x 353mm

letter = 'letter'
Equivalent to the dimensions of letter papers in North America 8.5in x 11in

legal = 'legal'
Equivalent to the dimensions of legal papers in North America 8.5in x 14in

ledger = 'ledger'
Equivalent to the dimensions of ledger papers in North America 11in x 17in

class pdfpug.common.PageOrientation
Orientation of Report

portrait = 'portrait'
Page is displayed in portrait mode where the longest edge of the page is vertical

landscape = 'landscape'
Page is displayed in landscape mode where the longest edge of the page is horizontal

1.3.2 Header

class pdfpug.modules.Header(text, **kwargs)
A header element provides a short summary of the body text

It is separated from the body element and has a strong distinct style to stand above all other elements. Headers
give a sense of orientation to the reader.

This class supports a wide variety of customisation that can be applied to a header from changing the header
weight to the horizontal placement, color or style.

Instantiating a header is as simple as the following,

>>> from pdfpug.modules import Header
>>> intro_header = Header('Introduction')

Want to customise the header weight and color?

>>> from pdfpug.common import HeaderTier, Color
>>> intro_header.tier = HeaderTier.h2
>>> intro_header.color = Color.red

Note: The header size can be set using either the tier or size parameter. Do not set both! Doing so will
result in a ValueError being raised! By default, header tier is set to HeaderTier.h1. When setting size,
be sure to set tier to None.

1.3. API Documentation 17

PdfPug, Release 0.5

Parameters

• text (str) – Header text

• sub_header (Optional[str]) – Caption (sub header) below the header

• tier (HeaderTier) – Header weight (defaults to HeaderTier.h1)

• alignment (Alignment) – Horizontal placement (defaults to Alignment.center)

• size (Optional[Size]) – Size of header

• color (Optional[Color]) – Color of the header text

• style (Optional[HeaderStyle]) – Visual style of header

class pdfpug.common.HeaderTier
Enum Weights to set the hierarchy of a header

The weights are compatible with Markdown levels such as h1, h2, h3 etc.

>>> from pdfpug.modules import Header
>>> from pdfpug.common import HeaderTier
>>> h1_header = Header('h1 Header', tier=HeaderTier.h1)
>>> h2_header = Header('h2 Header', tier=HeaderTier.h2)
>>> h3_header = Header('h3 Header', tier=HeaderTier.h3)

h1 = 'h1'
Page level header. Equivalent to a markdown h1 header.

h2 = 'h2'
Section level header. Equivalent to a markdown h2 header.

h3 = 'h3'
Paragraph level header. Equivalent to a markdown h3 header.

h4 = 'h4'
Paragraph level header. Equivalent to a markdown h4 header.

h5 = 'h5'
Paragraph level header. Equivalent to a markdown h5 header.

class pdfpug.common.HeaderStyle
Enum header styles

>>> from pdfpug.modules import Header
>>> from pdfpug.common import HeaderStyle
>>> block_header = Header('Block Header', style=HeaderStyle.block)

block = 'block'
The header is formatted to appear inside a content block

18 Chapter 1. Licensing

PdfPug, Release 0.5

dividing = 'dividing'
The header is formatted to divide itself from the content below it using a horizontal line

1.3.3 Paragraph

class pdfpug.modules.Paragraph(text, **kwargs)
Paragraphs are considered as one of the core elements of any report with each paragraph being a self-contained
unit around a central idea.

Parameters

• text (str) – Paragraph text

• alignment (ParagraphAlignment) – Horizontal paragraph alignment (defaults to
ParagraphAlignment.left)

Instantiating a paragraph is as simple as the following,

>>> from pdfpug.modules import Paragraph
>>> para = Paragraph("Lorem Ipsum is simply dummy text of the printing industry")

This component supports rich HTML formatting options like , <i>, <u> tags.

>>> para = Paragraph("Lorem Ipsum is simply <u>dummy</u> text!")

class pdfpug.common.ParagraphAlignment
Enum Alignment options

center = 'center'
Center align content

left = 'left'
Left align content

right = 'right'
Right align content

1.3.4 List

class pdfpug.modules.OrderedList(items, **kwargs)
OrderedList is used to represent an ordered list of items in numerical order format.

Parameters

• items (List) – List items

• orientation (Orientation) – Orientation of list (defaults to Orientation.
vertical)

• size (Size) – Size (defaults to Size.small)

1.3. API Documentation 19

PdfPug, Release 0.5

Instantiating a list is as simple as the following,

>>> from pdfpug.modules import OrderedList
>>> chapters = OrderedList(['Introduction', {'Chapter 1': ['Header 1', 'Header 2
→˓']}])

class pdfpug.modules.UnorderedList(items, **kwargs)
UnorderedList is used to represent an unordered list of items in bullet format.

Parameters

• items (List) – List items

• orientation (Orientation) – Orientation of list (defaults to Orientation.
vertical)

• size (Size) – Size (defaults to Size.small)

Instantiating a list is as simple as the following,

>>> from pdfpug.modules import UnorderedList
>>> fruits = UnorderedList(['Apples', 'Oranges', 'Grapes'])

1.3.5 Label

class pdfpug.modules.Label(**kwargs)
Label are useful for depicting classification categories and are analogous to tags. A group of labels are by default
displayed horizontally. They can be customized in various colors and types.

>>> from pdfpug.modules.Label
>>> from pdfpug.common import Color, LabelType
>>> category = Label(text='Documentation', color=Color.blue)
>>> tag = Label(text="v1.0", label_type=LabelType.tag)

Note: Do not mistake a Label element for UI labels that display paragraphs of text! That use case is covered
by Paragraph element.

Parameters

• text (Optional[str]) – content

• subtext (Optional[str]) – content detail

• color (Optional[Color]) – background color

• size (Optional[Size]) – size of label

• label_type (Optional[LabelType]) – label type

class pdfpug.common.LabelType
Enum Label types

tag = 'tag'
Label looks like a shopping tag

20 Chapter 1. Licensing

PdfPug, Release 0.5

basic = 'basic'
Minimalistic label with just an outline

circular = 'circular'
Circular shaped label

1.3.6 Table

class pdfpug.modules.Table(data, **kwargs)
A Table lists data in organised manner making it easier to digest large amounts of data. It is made up of Row
and Cell as shown in the screenshot.

It is also worth noting that the header and body of a table are also comprised of the same. The header and body
attributes exist primarily for style changes. Header contents have a stronger style by being in bold and allow the
reader to be informed of what the categories of data are. The body counterpart places more emphasis on placing
the content in an organised manner so to speak.

Parameters

• header (Optional[List]) – Header row

• data (List[List]) – Body rows

• spacing (TableSpacing) – Table spacing (defaults to TableSpacing.
comfortable)

• striped (Optional[TableRowStyle]) – Table row style

• table_type (TableType) – Table type (defaults to TableType.celled)

• color (Optional[Color]) – Table color

• column_width_rule (Optional[TableColumnWidth]) – Table column width

A simple table consisting of just strings and numbers can be created as shown below.

>>> from pdfpug.modules import Table
>>> basic_table = Table(
... header=['Serial No.', 'Fruit', 'Stock Level'],
... data=
... [
... [1, 'Apple', 'Low'],
... [2, 'Orange', 'Low'],
... [3, 'Grape', 'High'],
... [4, 'Guava', 'Not Available']
...],
...)

1.3. API Documentation 21

PdfPug, Release 0.5

More formatting options are unlocked if the Row and Cell are used. A Cell allows for embedding of other
elements like Header etc thereby providing more control of the content layouts and style.

A more advanced table would looks something like the following where the cell content alignment is modified.
Also, the table has alternate row colored different and uses a compact style.

>>> from pdfpug.modules import Cell, Row
>>> from pdfpug.common import TableSpacing, TableRowStyle, State, Alignment
>>> advanced_table = Table(
>>> header=['Player', 'Hero', 'Role', 'K/D/A'],
>>> data=
... [
... Row(
... ['Kuro', 'Lion', Cell('Support', row_span=2), '2/10/15'],
... alignment=Alignment.center,
... state=State.negative
...),
... Row(['Gh', 'Oracle', '3/7/6'], alignment=Alignment.center),
... Row(['Miracle', 'Void', 'Carry', '9/2/4'], alignment=Alignment.
→˓center),
... Row(['W33', 'Timber', 'Midlaner', '5/8/2'], alignment=Alignment.
→˓center)
...],
... spacing=TableSpacing.compact,
... striped=TableRowStyle.striped,
...)

class pdfpug.modules.Row(data, **kwargs)
A Row is the next higher order element above Cell. Multiple Rows make up a Table similar to how multiple
Cell make a Row.

22 Chapter 1. Licensing

PdfPug, Release 0.5

Parameters

• data (List) – Row contents

• row_type (TableRowType) – Row type (defaults to TableRowType.body)

• state (Optional[State]) – Row state

• alignment (Optional[Alignment]) – Horizontal alignment of row contents

>>> from pdfpug.modules import Row, Cell, Header
>>> row = Row(
... ['Cell 1', 'Cell 2', Cell(Header('Inception'))], alignment=Alignment.left
...)

class pdfpug.modules.Cell(data, **kwargs)
A Cell is the most basic unit (lowest denominator) of a Table. A group of cells together form a Row .

Parameters

• BasePugElement] data (Union[str,) – Cell content

• cell_type (TableRowType) – Cell type (defaults to TableRowType.body)

• width (Optional[int]) – Cell width (should be in the range of 1-16 & only set for
TableRowType.header cell type)

• row_span (Optional[int]) – Cell span across rows

• column_span (Optional[int]) – Cell span across columns

• state (Optional[State]) – Cell content state

• alignment (Optional[Alignment]) – Cell content horizontal alignment

It can contain a simple string to complex elements like Header, OrderedList etc. This allows for embed-
ding all kinds of data in a Cell.

>>> from pdfpug.modules import Cell, Header
>>> header_cell = Cell(Header('Header Inside Cell'))

A Cell has various customisation attributes that enable data to be represented accurately. For instance, if certain
content need to be represented positively, one can do the following,

>>> from pdfpug.common import State
>>> pos_cell = Cell('Available', state=State.positive)

class pdfpug.common.TableType
Enum Table types

celled = 'celled'
Default table style with each cell clearly visible due to separators

simple = 'basic'
Bare minimum row separating lines with table border

1.3. API Documentation 23

PdfPug, Release 0.5

bare = 'very basic'
Bare minimum row separating lines and no table border

class pdfpug.common.TableColumnWidth
Enum Table column width rules

fixed = 'fixed'
Equal widths for all columns

minimum = 'collapsing'
Minimum width for each column based on their content

class pdfpug.common.TableSpacing
Enum Table row spacing

tight = 'very compact'
Tight spacing of row content

compact = 'compact'
Compact spacing of row content

comfortable = 'padded'
Good spacing of row content

spacious = 'very padded'
Spacious padding of row content

class pdfpug.common.TableRowStyle
Table row style

striped = 'striped'
Set if alternate rows should be colored differently

class pdfpug.common.TableRowType
Table row type

24 Chapter 1. Licensing

PdfPug, Release 0.5

header = 'th'
Header row

body = 'td'
Body row

1.3.7 Image

class pdfpug.modules.Image(path, **kwargs)
Embed picturesque visuals using the Image class with different styles

Parameters

• path (str) – Absolute path of image

• size (Optional[Size]) – Size of image

• style (Optional[ImageStyle]) – Render style

• layout (Optional[ImageLayout]) – Layout options

Instantiating an image is as simple as the following,

>>> from pdfpug.modules import Image
>>> img = Image('/home/johndoe/image.png', size=Size.small, style=ImageStyle.
→˓rounded)

class pdfpug.modules.Images(images, **kwargs)
Embed a row of images together using the Images class.

Parameters

• images (List[Image]) – Group of images

• size (Optional[Size]) – Common size of group images

>>> from pdfpug.modules import Image, Images
>>> images = Images(
... [

(continues on next page)

1.3. API Documentation 25

PdfPug, Release 0.5

(continued from previous page)

... Image('/home/johndoe/image1.png'),

... Image('/home/johndoe/image2.png'),

... Image('/home/johndoe/image3.png')

...],

... size=Size.small

...)

class pdfpug.common.ImageStyle
Enum Image Style

avatar = 'avatar'
Image which appears inline as an avatar (circular image)

rounded = 'rounded'
Image with rounded edges

circular = 'circular'
Crop image into a circular shape. The input image should have the same width and height for this style to
work.

class pdfpug.common.ImageLayout
Enum Image Layouts

left_float = 'left float'
Float to the left of neighbouring content

right_float = 'right float'
Float to the right of neighbouring content

centered = 'centered'
Horizontally center the image

26 Chapter 1. Licensing

PdfPug, Release 0.5

1.3.8 Segment

class pdfpug.modules.Segment(data, **kwargs)
A segment is used to create a grouping of related content.

Parameters

• data – Content to be grouped

• segment_type (Optional[SegmentType]) – Visual style

• aligment (Optional[Alignment]) – Horizontal alignment of all content

• spacing (Optional[SegmentSpacing]) – Padding around the content

• emphasis (Optional[SegmentEmphasis]) – Emphasis strength of segment

>>> from pdfpug.modules import Segment, Header, Paragraph, UnorderedList
>>> from pdfpug.common import HeaderTier
>>> segment = Segment(
... [
... Header('Segment', tier=HeaderTier.h3),
... Paragraph(
... 'Segments are collection views that can be used to group '
... 'content together. They can contain images, headers, and any '
... 'other elements that is supported by PdfPug. Segments come in '
... 'different styles that can be used to modify it to different use '
... 'cases.'
...),
... Paragraph('Some segment types are listed below,'),
... UnorderedList(['Stacked', 'Piled', 'Vertical', 'Basic'])
...],
...)

The appearance of segments can be styled for different use cases and preferences,

>>> from pdfpug.common import SegmentType
>>> segment.segment_type = SegmentType.stacked

class pdfpug.modules.Segments(segments, **kwargs)
A group of Segment can be formatted to appear together using Segments.

Parameters

• segments (List[Union[Segment, Segments]]) – Group of segments

• segments_type (Optional[SegmentType]) – Visual style

• orientation (Optional[Orientation]) – Orientation of elements

1.3. API Documentation 27

PdfPug, Release 0.5

class pdfpug.common.SegmentType
Enum Segment Type

basic = 'basic'
Basic segment type with no special formatting

stacked = 'stacked'
Segment that appears to contain multiple pages which are stacked cleanly

piled = 'piled'
Segment that appears to look like a pile of papers

vertical = 'vertical'
Segment type that formats the content to be aligned as part of a vertical group

circular = 'circular'
Circular segment type. For a circle, ensure content has equal width and height

class pdfpug.common.SegmentSpacing
Enum Segment Spacing

compact = 'compact'
Segment will take up only as much space as is necessary

padded = 'padded'
Segment will add good amount of padding on all sides making it look more spacious

28 Chapter 1. Licensing

PdfPug, Release 0.5

class pdfpug.common.SegmentEmphasis
Enum Segment Emphasis

secondary = 'secondary'
Lesser emphasis than the normal standard

tertiary = 'tertiary'
Lesser emphasis than secondary elements

1.3.9 LineBreak

class pdfpug.modules.LineBreak(lines_count=1)
Add a line break (blank line)

Parameters lines_count (int) – No of blank lines to add

>>> from pdfpug.modules import LineBreak
>>> from pdfpug import PdfReport
>>> report = PdfReport()
>>> report.add_element(LineBreak())

1.3.10 Message Box

class pdfpug.modules.MessageBox(body, header=None, **kwargs)
A MessageBox can be used to display information in a distinct style that captures the attention of the reader.

Parameters

• header (Optional[str]) – title

• List] body (Union[str,) – message

• color (Optional[Color]) – color

• size (Optional[Size]) – size

1.3. API Documentation 29

PdfPug, Release 0.5

• state (Optional[MessageState]) – state

>>> from pdfpug.modules import MessageBox
>>> from pdfpug.common import MessageState
>>> message = MessageBox(
... header="Important Announcement",
... body="MessageBox is really good at capturing the attention of the reader!
→˓",
... state=MessageState.info
...)

class pdfpug.common.MessageState
Enum Message box style options

positive = 'positive'
Positive message

negative = 'negative'
Negative Message

error = 'error'
Error message

success = 'success'
Success message

warning = 'warning'
Warning message

info = 'info'
Info message

1.3.11 PageBreak

class pdfpug.modules.PageBreak
Add a page break

>>> from pdfpug.modules import PageBreak
>>> from pdfpug import PdfReport
>>> report = PdfReport()
>>> report.add_element(PageBreak())

30 Chapter 1. Licensing

PdfPug, Release 0.5

1.3.12 Progress Bar

class pdfpug.modules.ProgressBar(percent, **kwargs)
Progress bar is a slightly unconventional element, but is surprisingly useful in some scenarios. For instance,
consider a resume where one would like showcase the amount of experience in a language or technology. This
can be expressed visually using a progress bar as seen nowadays in many modern resume styles.

Parameters

• percent (Union[int, float]) – Amount of progress in percentage

• title (Optional[str]) – Describes the progress bar

• subtitle (Optional[str]) – Describes the maximum range value

• color (Optional[Color]) – Color of progress bar

• size (Optional[Size]) – Size of progress bar

>>> from pdfpug.modules import ProgressBar
>>> from pdfpug.common import Color
>>> python_skill = ProgressBar(
... 75, title="Python", subtitle="Expert", color=Color.blue
...)

1.3.13 Statistic

class pdfpug.modules.Statistic(label, value, **kwargs)
A statistic element can be used to show metrics. It adds emphasis with its visual appearance.

Using it is very simple as shown below!

>>> from pdfpug.modules.Statistic
>>> no_of_flights = Statistic(label="Flights", value=14567)

Parameters

• label (str) – Text to provide context of the metric

• value (Union[str, int, float]) – Metric

1.3. API Documentation 31

PdfPug, Release 0.5

• color (Optional[Color]) – Display color

• size (Optional[Size]) – Display size

• orientation (Optional[Orientation]) – Layout of the label and value

1.3.14 Table of Contents

class pdfpug.modules.TableOfContents(**kwargs)
The TableOfContents element automatically searches the entire document for tier h1 and h2 headers and
compiles the overall structure of the document. One needs to only add the table of contents element to the
PdfReport class using the add_element() function.

>>> from pdfpug.modules import TableOfContents, Header
>>> from pdfpug import PdfReport
>>> toc = TableOfContents()
>>> report = PdfReport()
>>> report.add_element(toc)
>>> report.add_element(Header('PdfPug'))
>>> report.generate_pdf('pdfpug.pdf')

1.3.15 Enums

class pdfpug.common.Alignment
Enum Alignment options

right = 'right aligned'
Right align content

left = 'left aligned'
Left align content

justified = 'justified'
Justify content across the line

center = 'center aligned'
Center align content

class pdfpug.common.Color
Enum Colors

red = 'red'
Red

orange = 'orange'
Orange

yellow = 'yellow'
Yellow

olive = 'olive'
Olive

green = 'green'
Green

teal = 'teal'
Teal

32 Chapter 1. Licensing

PdfPug, Release 0.5

blue = 'blue'
Blue

purple = 'purple'
Purple

violet = 'violet'
Violet

pink = 'pink'
Pink

brown = 'brown'
Brown

grey = 'grey'
Grey

class pdfpug.common.Size
Enum Size options

mini = 'mini'
Mini

tiny = 'tiny'
Tiny

small = 'small'
Small

medium = 'medium'
Medium

large = 'large'
Large

big = 'big'
Big

huge = 'huge'
Huge

massive = 'massive'
Massive

class pdfpug.common.Orientation
Enum Orientation options

horizontal = 'horizontal'
Layout elements horizontally

vertical = 'vertical'
Layout elements vertically

class pdfpug.common.State
Enum content state options

positive = 'positive'
Positive content

negative = 'negative'
Negative content

1.3. API Documentation 33

PdfPug, Release 0.5

error = 'error'
Error content

warning = 'warning'
Warning content

active = 'active'
Active content

disabled = 'disabled'
Disabled content

1.3.16 Text Format Helpers

The text formatter functions help set various styles to text like making it bold, underline, strikethrough, superscript
etc. They can be used within any of PdfPug’s modules to further customize them to suit different use cases.

For example,

from pdfpug.modules import Paragraph, Header

Italicized header
header = Header(italic("PdfPug"))

Paragraph with a URL
para = Paragraph(f"{url('https://pypi.org/project/pdfpug/', 'PdfPug PyPi Page')}")

pdfpug.common.url(hyperlink, text=None)
Create a hyperlink

Note: If text is not provided, the hyperlink will be used as the visible text

Parameters

• hyperlink (str) – URL to resource

• text (Optional[str]) – Text displayed instead of hyperlink

Return type str

pdfpug.common.bold(text)
Formats the text to appear bold

Parameters text (str) – Text to be bold formatted

Return type str

pdfpug.common.italic(text)
Formats the text to appear italicized

Parameters text (str) – Text to be italic formatted

Return type str

pdfpug.common.underline(text)
Formats the text to appear underlined

Parameters text (str) – Text to be underline formatted

Return type str

34 Chapter 1. Licensing

PdfPug, Release 0.5

pdfpug.common.strike(text)
Formats the text to appear striked through

Parameters text (str) – Text to be strike through formatted

Return type str

pdfpug.common.superscript(text)
Formats the text to appear as a superscript

Parameters text (str) – Text to be superscript formatted

Return type str

pdfpug.common.subscript(text)
Formats the text to appear as a subscript

Parameters text (str) – Text to be subscript formatted

Return type str

1.3.17 Layouts

class pdfpug.layouts.Grid
A grid is a tabular structure that is divided vertically into Row and horizontally into Column. This allows for
creating complex layouts that would otherwise not be possible. The grid system is illustrated below for more
clarity.

The grid system supports a maximum horizontal size of 14 units. For instance, 2 columns of width 7 units can
be placed in a single row. Or a single column of width 14 units. If the width of the columns in a row exceed 14
units, the extra columns will automatically flow to the next row.

Note: Only layouts like Row or Column can be added to the grid layout.

>>> from pdfpug.layouts import Grid, Column
>>> from pdfpug.modules import Paragraph, OrderedList
>>> # Create left column and its contents
>>> para = Paragraph('Python 3.x has several releases as listed,')
>>> left_column = Column(width=5)
>>> left_column.add_element(para)
>>> # Create right column and its contents

(continues on next page)

1.3. API Documentation 35

PdfPug, Release 0.5

(continued from previous page)

>>> releases = OrderedList(['3.0', '3.1', '3.2', '3.3', '3.4', '3.5', '3.6', '3.7
→˓'])
>>> right_column = Column(width=5)
>>> right_column.add_element(releases)
>>> # Construct grid
>>> grid = Grid()
>>> grid.add_layout(left_column)
>>> grid.add_layout(right_column)

add_layout(layout)
Add a Row/Column to the grid

Parameters Row] layout (Union[Column,) – layout to be added to the grid

Return type None

class pdfpug.layouts.Column(**kwargs)
The grid system divides horizontal space into indivisible units called Columns. The Column layout is the one
that contain the actual content like Paragraph etc. Think of it as a container that holds content in a vertical
layout.

Parameters width (int) – Width of the column (should be in the range of 1-14)

add_element(element)
Add element to the column

Parameters element (BasePugElement) – Element to be added to the column

Return type None

class pdfpug.layouts.Row(**kwargs)
Rows are groups of columns which are aligned horizontally. When a group of columns exceed the grid width
(14 units), the content automatically flows to the next row which is to say that rows are created automatically as
required.

However, if explicit control is required for achieving a particular layout it can be declared with columns added
to it. For instance, in the illustration below, the first row has 2 columns A, B which occupy a total of 10 units. If
the row was not explicitly declared, then column C would be placed in the first row due to available space.

add_column(column)
Add column to the row

Parameters column (Column) – Column to be added to the row

Return type None

36 Chapter 1. Licensing

PdfPug, Release 0.5

1.3.18 Theme

PdfPug comes with a set of curated themes that work beautiful with all PdfPug elements like Header and others
defined in the API Documentation section.

Using these themes is as simple as passing it as an argument to the PdfReport class as shown below,

>>> from pdfpug import PdfReport
>>> from pdfpug.common import Theme
>>> report = PdfReport(theme=Theme.mood_swing)
>>> report.generate_pdf("pdfpug.pdf")

Warning: Themes are an experimental feature that is in a state of flux. Expect frequent API breakage!

class pdfpug.common.Theme
Predefined theme collection

mood_swing = 'moodswing'
Mood Swing Theme

1.3. API Documentation 37

PdfPug, Release 0.5

1.4 Changelog

1.4.1 0.5 (21-19-2019)

• Add Statistic element

• Add Label element

• Fixed TableOfContents not showing page numbers

• Add support for customizing the PDF pages like showing/hiding page numbers at the bottom of every page, size
and orientation

• Add inception tutorial to document PdfPug using PdfPug

• Integrate deepsource.io for static code analysis

1.4.2 0.4 (18-09-2019)

• Support setting meta information of document like title, description, authors and keywords

• Support customizing column widths of Table

• Support headless Table

• Add ProgressBar element

• Add TableOfContents element

• Add text format helpers for bold(), italic(). underline(), strike(), superscript(),
subscript() and url()

• Add support for customizing the appearance of reports using predefined themes. Mood Swing is the first theme
to be included in Theme

• Documented TableType with images for better clarity

• Add tutorials to demonstrate usage of APIs and showcase sample PDF files created using PdfPug

1.4.3 0.3 (05-09-2019)

• Add basic layout system Grid, Row and Column

• Add support for Header captions (subheader)

• Fixed Table not being inserted correctly into other elements like Segment

• Improved documentation of Table

• Moved all elements to pdfpug.modules namespace to improve clarity and avoid naming conflicts

• Style and position enums can now only be accessed through pdfpug.common to improve clarity

1.4.4 0.2 (26-08-2019)

• Add new elements Image, PageBreak, Segment and LineBreak

• Add h4 and h5 header tiers

• Setup pytest, Gitlab CI/CD and pre-commit

38 Chapter 1. Licensing

PdfPug, Release 0.5

• Removed unnecessary dependencies like pandas, markdown etc

1.4.5 0.1 (20-08-2019)

• Add new elements Header, Table, OrderedList, UnorderedList, and Paragraph elements

• Setup documentation system using Sphinx

• Project init

1.5 Contributing Guide

Looking to contribute? Thank you very much! All contributions are welcome even if they are as small as fixing a
typo in the documentation. Just the fact that you are reading this document to learn how to contribute is a big deal to
the library author!

A bit of of a confession. This document is a stub with limited exposure to the outside world. If you hit a road block
anywhere or find the instructions to be outdated or incorrect, do report it as a bug here or even better create a pull
request with the fix.

Let’s get started.

The first step towards contributing either code or documentation changes involves grabbing the library’s source code.
You can do that by forking the Gitlab repo.

Note: When contributing new features, it is best to discuss the solution before diving into the implementation. The
simplicity and ease of use of the public APIs are important goals in achieving the vision of PdfPug. This is something
that can be verified only by discussing it with others.

1.5.1 Code Contributions

PdfPug at its core functions by providing an easy to use API for users to create .pug files which is parsed by PyPugJS
and then converted into a PDF using WeasyPrint. All the modules provided by PdfPug essentially create mini pug
snippets that are then compiled together to create the final PDF.

1. Start by installing the development dependencies using pip install -r requirements.txt.

2. Run the tests to confirm if they all pass on your system.

3. Write tests that demonstrate your bug or feature. Ensure that they fail (Test Driven Development - TDD).

4. Make your change.

5. Run the entire test suite again, confirming that all tests pass.

6. Send a pull request to the master branch of the Gitlab repo.

1.5.2 Documentation Contributions

The documentation lives in the docs directory. They are written in reStructuredText, and use Sphinx to generate the
full suite of documentation.

1. Start by installing the development dependencies using pip install -r requirements.txt.

2. Navigate to the docs directory

1.5. Contributing Guide 39

https://gitlab.com/krnekhelesh/pdfpug/issues/new?issue%5Bassignee_id%5D=&issue%5Bmilestone_id%5D=
https://gitlab.com/krnekhelesh/pdfpug
https://github.com/akubera/pypugjs
http://weasyprint.org/
https://gitlab.com/krnekhelesh/pdfpug
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/index.html

PdfPug, Release 0.5

3. Make changes to the documentation.

4. Generate the documentation by running make html

5. Open the index.html that is generated in the docs/build folder. This should show you the updated documentation
with your changes.

40 Chapter 1. Licensing

Index

A
a3 (pdfpug.common.PageSize attribute), 16
a4 (pdfpug.common.PageSize attribute), 17
a5 (pdfpug.common.PageSize attribute), 17
active (pdfpug.common.State attribute), 34
add_column() (pdfpug.layouts.Row method), 36
add_element() (pdfpug.layouts.Column method), 36
add_element() (pdfpug.PdfReport method), 16
add_elements() (pdfpug.PdfReport method), 16
add_layout() (pdfpug.layouts.Grid method), 36
Alignment (class in pdfpug.common), 32
avatar (pdfpug.common.ImageStyle attribute), 26

B
b4 (pdfpug.common.PageSize attribute), 17
b5 (pdfpug.common.PageSize attribute), 17
bare (pdfpug.common.TableType attribute), 23
basic (pdfpug.common.LabelType attribute), 20
basic (pdfpug.common.SegmentType attribute), 28
big (pdfpug.common.Size attribute), 33
block (pdfpug.common.HeaderStyle attribute), 18
blue (pdfpug.common.Color attribute), 32
body (pdfpug.common.TableRowType attribute), 25
bold() (in module pdfpug.common), 34
brown (pdfpug.common.Color attribute), 33

C
Cell (class in pdfpug.modules), 23
celled (pdfpug.common.TableType attribute), 23
center (pdfpug.common.Alignment attribute), 32
center (pdfpug.common.ParagraphAlignment at-

tribute), 19
centered (pdfpug.common.ImageLayout attribute), 26
circular (pdfpug.common.ImageStyle attribute), 26
circular (pdfpug.common.LabelType attribute), 21
circular (pdfpug.common.SegmentType attribute), 28
Color (class in pdfpug.common), 32
Column (class in pdfpug.layouts), 36

comfortable (pdfpug.common.TableSpacing at-
tribute), 24

compact (pdfpug.common.SegmentSpacing attribute),
28

compact (pdfpug.common.TableSpacing attribute), 24

D
disabled (pdfpug.common.State attribute), 34
dividing (pdfpug.common.HeaderStyle attribute), 19

E
error (pdfpug.common.MessageState attribute), 30
error (pdfpug.common.State attribute), 33

F
fixed (pdfpug.common.TableColumnWidth attribute),

24

G
generate_pdf() (pdfpug.PdfReport method), 16
green (pdfpug.common.Color attribute), 32
grey (pdfpug.common.Color attribute), 33
Grid (class in pdfpug.layouts), 35

H
h1 (pdfpug.common.HeaderTier attribute), 18
h2 (pdfpug.common.HeaderTier attribute), 18
h3 (pdfpug.common.HeaderTier attribute), 18
h4 (pdfpug.common.HeaderTier attribute), 18
h5 (pdfpug.common.HeaderTier attribute), 18
Header (class in pdfpug.modules), 17
header (pdfpug.common.TableRowType attribute), 24
HeaderStyle (class in pdfpug.common), 18
HeaderTier (class in pdfpug.common), 18
horizontal (pdfpug.common.Orientation attribute),

33
huge (pdfpug.common.Size attribute), 33

I
Image (class in pdfpug.modules), 25

41

PdfPug, Release 0.5

ImageLayout (class in pdfpug.common), 26
Images (class in pdfpug.modules), 25
ImageStyle (class in pdfpug.common), 26
info (pdfpug.common.MessageState attribute), 30
italic() (in module pdfpug.common), 34

J
justified (pdfpug.common.Alignment attribute), 32

L
Label (class in pdfpug.modules), 20
LabelType (class in pdfpug.common), 20
landscape (pdfpug.common.PageOrientation at-

tribute), 17
large (pdfpug.common.Size attribute), 33
ledger (pdfpug.common.PageSize attribute), 17
left (pdfpug.common.Alignment attribute), 32
left (pdfpug.common.ParagraphAlignment attribute),

19
left_float (pdfpug.common.ImageLayout attribute),

26
legal (pdfpug.common.PageSize attribute), 17
letter (pdfpug.common.PageSize attribute), 17
LineBreak (class in pdfpug.modules), 29

M
massive (pdfpug.common.Size attribute), 33
medium (pdfpug.common.Size attribute), 33
MessageBox (class in pdfpug.modules), 29
MessageState (class in pdfpug.common), 30
mini (pdfpug.common.Size attribute), 33
minimum (pdfpug.common.TableColumnWidth at-

tribute), 24
mood_swing (pdfpug.common.Theme attribute), 37

N
negative (pdfpug.common.MessageState attribute), 30
negative (pdfpug.common.State attribute), 33

O
olive (pdfpug.common.Color attribute), 32
orange (pdfpug.common.Color attribute), 32
OrderedList (class in pdfpug.modules), 19
Orientation (class in pdfpug.common), 33

P
padded (pdfpug.common.SegmentSpacing attribute), 28
PageBreak (class in pdfpug.modules), 30
PageOrientation (class in pdfpug.common), 17
PageSize (class in pdfpug.common), 16
Paragraph (class in pdfpug.modules), 19
ParagraphAlignment (class in pdfpug.common), 19
PdfReport (class in pdfpug), 14

piled (pdfpug.common.SegmentType attribute), 28
pink (pdfpug.common.Color attribute), 33
portrait (pdfpug.common.PageOrientation attribute),

17
positive (pdfpug.common.MessageState attribute), 30
positive (pdfpug.common.State attribute), 33
ProgressBar (class in pdfpug.modules), 31
purple (pdfpug.common.Color attribute), 33

R
red (pdfpug.common.Color attribute), 32
right (pdfpug.common.Alignment attribute), 32
right (pdfpug.common.ParagraphAlignment attribute),

19
right_float (pdfpug.common.ImageLayout at-

tribute), 26
rounded (pdfpug.common.ImageStyle attribute), 26
Row (class in pdfpug.layouts), 36
Row (class in pdfpug.modules), 22

S
secondary (pdfpug.common.SegmentEmphasis at-

tribute), 29
Segment (class in pdfpug.modules), 27
SegmentEmphasis (class in pdfpug.common), 28
Segments (class in pdfpug.modules), 27
SegmentSpacing (class in pdfpug.common), 28
SegmentType (class in pdfpug.common), 27
set_meta_information() (pdfpug.PdfReport

method), 16
simple (pdfpug.common.TableType attribute), 23
Size (class in pdfpug.common), 33
small (pdfpug.common.Size attribute), 33
spacious (pdfpug.common.TableSpacing attribute), 24
stacked (pdfpug.common.SegmentType attribute), 28
State (class in pdfpug.common), 33
Statistic (class in pdfpug.modules), 31
strike() (in module pdfpug.common), 34
striped (pdfpug.common.TableRowStyle attribute), 24
subscript() (in module pdfpug.common), 35
success (pdfpug.common.MessageState attribute), 30
superscript() (in module pdfpug.common), 35

T
Table (class in pdfpug.modules), 21
TableColumnWidth (class in pdfpug.common), 24
TableOfContents (class in pdfpug.modules), 32
TableRowStyle (class in pdfpug.common), 24
TableRowType (class in pdfpug.common), 24
TableSpacing (class in pdfpug.common), 24
TableType (class in pdfpug.common), 23
tag (pdfpug.common.LabelType attribute), 20
teal (pdfpug.common.Color attribute), 32

42 Index

PdfPug, Release 0.5

tertiary (pdfpug.common.SegmentEmphasis at-
tribute), 29

Theme (class in pdfpug.common), 37
tight (pdfpug.common.TableSpacing attribute), 24
tiny (pdfpug.common.Size attribute), 33

U
underline() (in module pdfpug.common), 34
UnorderedList (class in pdfpug.modules), 20
url() (in module pdfpug.common), 34

V
vertical (pdfpug.common.Orientation attribute), 33
vertical (pdfpug.common.SegmentType attribute), 28
violet (pdfpug.common.Color attribute), 33

W
warning (pdfpug.common.MessageState attribute), 30
warning (pdfpug.common.State attribute), 34

Y
yellow (pdfpug.common.Color attribute), 32

Index 43

	Licensing
	Index

