
PDC Client Documentation
Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

PDC Devel Team

Mar 29, 2018

Contents

1 Installation 3

2 Configuration 5
2.1 Example . 6

3 Python API 7
3.1 Examples . 7
3.2 Module pdc_client . 7

4 Script pdc_client 11

5 Script pdc 13

6 Release 15
6.1 Versioning . 15
6.2 Release Instruction . 16

6.2.1 Tag . 16
6.2.2 Test Build . 16
6.2.3 Push . 17
6.2.4 Release To PyPI . 17

7 Indices and tables 19

Python Module Index 21

i

ii

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

PDC Client is Python API and scripts which simplify access to PDC server.

Contents:

Contents 1

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

2 Contents

CHAPTER 1

Installation

There are multiple ways to install PDC Client API and scripts on your system.

1. Install from packages provided by your distribution.

install scripts
sudo yum install pdc-client

install API for Python 3
sudo yum install python3-pdc-client

install API for Python 2
sudo yum install python2-pdc-client

2. Install from PyPI.

pip install pdc-client

3

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

4 Chapter 1. Installation

CHAPTER 2

Configuration

The client can read server connection details from a configuration file. The configuration file should be located in
/etc/pdc.d/ directory which contains fedora.json, or in ~/.config/pdc/client_config.json. If
both files are present, the system one is loaded first and the user configuration is applied on top of it (to add other
options or overwrite existing ones).

The configuration file should contain a JSON object, which maps server name to JSON object with details. The name
is an arbitrary string used at client run time to identify which server you want to connect to.

The details of a single server must contain at least one key: host which specifies the URL to the API root (e.g.
http:://localhost:8000/rest_api/v1/ for local instance).

Other possible keys are:

• token

If specified, this token will be used for authentication. The client will not try to obtain any token
from the server.

• ssl-verify

If set to false, server certificate will not be validated. See [Python requests documentation](http:
//docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification) for other possible values.

• develop

When set to true, the client will not use any authentication at all, not requesting a token nor send-
ing any token with the requests. This is only useful for working with servers which don’t require
authentication.

• plugins

Plugins are configurable which depends on the user’s needs. If no plugins are configured, the default
plugins will be used. If plugins are configured, they will be merged to the default ones.

5

http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification
http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

2.1 Example

This config defines connection to development server running on localhost and a production server:

{
"local": {

"host": "http://localhost:8000/rest_api/v1/",
"develop": true,
"ssl-verify": false

},
"prod": {

"host": "https://pdc.example.com/rest_api/v1/",
"plugins": ["permission.py", "release.py"]

}
}

6 Chapter 2. Configuration

CHAPTER 3

Python API

Usually you just need to import main class from the module.

from pdc_client import PDCClient

3.1 Examples

• Creating global components based on imported source RPMs

• Find components with multiple contacts of same role

3.2 Module pdc_client

exception pdc_client.NoResultsError(response)
Exception for getting all pages of data Raise this NoResultsError if there is an unexpected data returned when
get all pages of data by results() function.

Data members:

• response – response object

__init__(response)
Create a NoResultsError

class pdc_client.PDCClient(server, token=None, develop=None, ssl_verify=None,
page_size=None)

BeanBag wrapper specialized for PDC access.

This class wraps general BeanBag.v1 objects, but provides easy-to-use interface that can use configuration files
for specifying server connections. The authentication token is automatically retrieved (if needed).

7

https://github.com/product-definition-center/product-definition-center/blob/master/pdc/scripts/create_release_components.py
https://gist.github.com/lubomir/c78091bf286ee9764f99

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

Example: Get per page of release
client = PDCClient(<server>)
client.releases._()
client["releases"]._()
...

Example: create one release data
client["releases"]._(<dict data>)
...

Example: Iterate all pages of releases
Will raise NoResultsError with response when return unexpected result.
try:

for r in client["releases"].results():
...

except NoResultsError as e:
handle e.response ...

__getattr__(name)
If the first attribute/endpoint with “-“, just replace with “_” in name.

Example: get endpoint
client = PDCClient(<server>)
Get the endpoint base-products/
client.base_products._
Get the endpoint base-products/test_123/
client.base_products.test_123._
Get the endpoint products/
client.products._

__init__(server, token=None, develop=None, ssl_verify=None, page_size=None)
Create new pdc client instance.

Once the class is instantiated, use it as you would use a regular BeanBag object. Please look at its docu-
mentation for how to use this class to perform requests.

Parameters

• server – Server API url or server name from configuration

• token – An authentication token string of visiting pdc server

• develop – This is use for dev mode

• ssl_verify – True for validating SSL certificates with system CA store; False for no
validation; path to CA file or directory to use for validation otherwise

• page_size – This is a number of data which is returned per page. A -1 means that pdc
server will return all the data in one request.

Raises pdc_client.config.ServerConfigError – on an configuration error

get_paged(res, **kwargs)
This call is equivalent to res(**kwargs), only it retrieves all pages and returns the results joined into
a single iterable. The advantage over retrieving everything at once is that the result can be consumed
immediately.

Parameters

• res – what resource to connect to

• kwargs – filters to be used

8 Chapter 3. Python API

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

Example: Iterate over all active releases
for release in client.get_paged(client['releases']._, active=True):

...

This function is obsolete and not recommended.

obtain_token()
Try to obtain token from all end-points that were ever used to serve the token. If the request returns 404
NOT FOUND, retry with older version of the URL.

set_comment(comment)
Set PDC Change comment to be stored on the server.

Once you set the comment, it will be sent in all subsequent requests.

Parameters comment (string) – what comment to send to the server

class pdc_client.PDCClientWithPage(server, token=None, develop=None, ssl_verify=None,
page_size=None, page=None)

PDCClient wrapper specialized for setting page in get_paged function.

__init__(server, token=None, develop=None, ssl_verify=None, page_size=None, page=None)
Create new client instance with page prarameter. Other params are all used for base class. :param page:
the page number of the data.

get_paged(res, **kwargs)
Re-write the ge_paged here, and add the self.page check. This call is equivalent to res(**kwargs), if
there is no self.page parameter,only it retrieves all pages and returns the results joined into a single iterable.
The advantage over retrieving everything at once is that the result can be consumed immediately.

Parameters

• res – what resource to connect to

• kwargs – filters to be used

Example: Iterate over all active releases
for release in client.get_paged(client['releases']._, active=True):

...

If there is a self.page parameter here, just return that page’s data with the self.page_size.

exception pdc_client.config.ServerConfigConflictError
Same server defined in multiple config files.

exception pdc_client.config.ServerConfigError
Base class for ServerConfiguration exceptions.

class pdc_client.config.ServerConfigManager(*paths)
Provides configuration for given server name.

Configuration is read from multiple files or directories in order they’re passed to constructor. Files and directo-
ries are read lazily when needed and at most once (cached for later access).

get(server)
Returns ServerConfig instance with configuration given server.

Raises

• ServerConfigConflictError – if configuration directory contains configuration
for same server multiple times

• ServerConfigMissingUrlError – if URL is not specified in the configuration

3.2. Module pdc_client 9

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

• ServerConfigNotFoundError – if configuration for given server is not found

exception pdc_client.config.ServerConfigMissingUrlError
Server configuration is missing URL.

exception pdc_client.config.ServerConfigNotFoundError
Server configuration is missing.

10 Chapter 3. Python API

CHAPTER 4

Script pdc_client

Note: Add argument -h or --help to get general help or help for a command.

This is a very simple client. Essentially this is just a little more convenient than using curl manually. Each invocation
of this client obtains a token and then performs a single request.

This client is not meant for direct usage, but just as a helper for integrating with PDC from languages where it might
be easier than performing the network requests manually.

11

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

12 Chapter 4. Script pdc_client

CHAPTER 5

Script pdc

Note: Use argument -h or --help to get general help or help for a command.

This has much more user friendly user interface than pdc_client. A single invocation can perform multiple re-
quests depending on what subcommand you used.

The pdc client supports Bash completion if argcomplete Python package is installed.

If you installed client from rpm package, the completion file pdc.bash has been installed to /etc/
bash_completion.d/.

For developers or users who try to run pdc from source, to enable completion, run this in your terminal (assuming
pdc is somewhere on path).

eval "$(register-python-argcomplete pdc)"

or put pdc.bash to /etc/bash_completion.d/.

13

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

14 Chapter 5. Script pdc

CHAPTER 6

Release

6.1 Versioning

PDC Client versioning is based on Semantic Versioning.

And it’s RPM compatible.

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner,

3. PATCH version when you make backwards-compatible bug fixing.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

1. A pre-release version MAY be denoted by appending a hyphen and an identifier immediately following the patch
version.

Identifier MUST be comprised and only with ASCII alphanumerics [0-9A-Za-z]. Identifier MUST NOT be
empty. Numeric identifier MUST NOT include leading zeroes. Pre-release versions have a lower precedence
than the associated normal version. A pre-release version indicates that the version is unstable and might not
satisfy the intended compatibility requirements as denoted by its associated normal version. Examples: 1.0.0-
alpha, 1.0.0-sprint5, 1.0.0-rc4.

2. Build metadata MAY be denoted by appending a hyphen and a series of dot separated identifiers immediately
following the patch or a dot and a series of dot separated identifiers immediately following the pre-release
version.

Identifiers MUST be comprise and only with ASCII alphanumerics [0-9A-Za-z]. Identifiers MUST NOT be
empty. Build metadata SHOULD be ignored when determining version precedence. Thus two versions that dif-
fer only in the build metadata, have the same precedence. Examples: 1.0.0-12.g1234abc, 1.0.0-s5.4.g1234abc.

15

http://semver.org/spec/v2.0.0.html

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

6.2 Release Instruction

In practice, we use tito to add git tag and do release including tag based on releases and current HEAD based on test
releases.

Note: tito version >= 0.6.2, install guide refer to: https://github.com/dgoodwin/tito

A short instructions as:

1. Tag: tito tag

2. Test Build: tito build --rpm ---offline

3. Push: git push origin && git push origin $TAG

4. Release: tito release copr-pdc/copr-pdc-test

For each step, more detail are:

6.2.1 Tag

A new git tag need to be added before starting a new release:

$ tito tag

It will:

• bump version or release, based on which tagger is used, see .tito/tito.props;

• create an annotated git tag based on our version;

• update the spec file accordingly, generate changelog event.

For more options about tito tag, run tito tag –help.

6.2.2 Test Build

Once release tag is available, we can do some build tests including source tarball checking, and rpm building testing.

generate local source tarball
$ tito build --tgz --offline

generate local rpm build
$ tito build --rpm --offline

If everything goes well, you could push your commit and tag to remote, otherwise the tag need to be undo:

$ tito tag -u

Note: During developing, we could also generate test build any time, which will be based on current HEAD instead
of latest tag.

generate test builds
$ tito build --test --tgz/srpm/rpm

16 Chapter 6. Release

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

6.2.3 Push

When you’re happy with your build, it’s time to push commit and tag to remote.

$ git push origin && git push origin <your_tag>

6.2.4 Release To PyPI

The Python Package Index or PyPI is the official third-party software repository for the Python programming language.
Release PDC Client to PyPI make it be able to pip install this for usage in other projects. pdc-client was already
registered in PyPI.

If you haven’t created an account in PyPI or configured PyPI in local environment, you may need:

• create your account on PyPI Live.

• contact PDC team to get PyPI pdc-client access.

• create ~/.pypirc configuration file with content:

[distutils]
index-servers=pypi

[pypi]
repository = https://pypi.python.org/pypi
username = your_username
password = your_password

Finally, you can upload your distributions to PyPI. There are two options:

1. Use twine. Twine uses only verified TLS to upload to PyPI in order to protect your credentials from theft:

twine upload dist/*

2. (Not recommended): Use setuptools. This approach is covered here due to it being mentioned in other guides,
but it is not recommended as it may use a plaintext HTTP or unverified HTTPS connection on some Python
versions, allowing your username and password to be intercepted during transmission.

The command could be:

python setup.py sdist upload

6.2. Release Instruction 17

https://pypi.python.org/pypi
https://pypi.python.org/pypi/pdc-client
https://pypi.python.org/pypi?%3Aaction=register_form
https://pypi.python.org/pypi/pdc-client
https://python-packaging-user-guide.readthedocs.org/en/latest/projects/#twine
https://python-packaging-user-guide.readthedocs.org/en/latest/projects/#setuptools

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

18 Chapter 6. Release

CHAPTER 7

Indices and tables

• genindex

• search

19

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

20 Chapter 7. Indices and tables

Python Module Index

p
pdc_client, 7
pdc_client.config, 9

21

PDC Client Documentation, Release pdc-client-1.8.0-4-30-g7236fd8-7236fd8

22 Python Module Index

Index

Symbols
__getattr__() (pdc_client.PDCClient method), 8
__init__() (pdc_client.NoResultsError method), 7
__init__() (pdc_client.PDCClient method), 8
__init__() (pdc_client.PDCClientWithPage method), 9

G
get() (pdc_client.config.ServerConfigManager method), 9
get_paged() (pdc_client.PDCClient method), 8
get_paged() (pdc_client.PDCClientWithPage method), 9

N
NoResultsError, 7

O
obtain_token() (pdc_client.PDCClient method), 9

P
pdc_client (module), 7
pdc_client.config (module), 9
PDCClient (class in pdc_client), 7
PDCClientWithPage (class in pdc_client), 9

S
ServerConfigConflictError, 9
ServerConfigError, 9
ServerConfigManager (class in pdc_client.config), 9
ServerConfigMissingUrlError, 10
ServerConfigNotFoundError, 10
set_comment() (pdc_client.PDCClient method), 9

23

	Installation
	Configuration
	Example

	Python API
	Examples
	Module pdc_client

	Script pdc_client
	Script pdc
	Release
	Versioning
	Release Instruction
	Tag
	Test Build
	Push
	Release To PyPI

	Indices and tables
	Python Module Index

