
pcapgraph Documentation
Release 1.3.2

Ross Jacobs

Nov 08, 2018

Contents:

1 About 3
1.1 Platforms . 4
1.2 Description . 4
1.3 License . 4

Python Module Index 35

i

ii

pcapgraph Documentation, Release 1.3.2

Create bar graphs with packet capture timestamps.

Contents: 1

https://en.wikipedia.org/wiki/Pcap

pcapgraph Documentation, Release 1.3.2

2 Contents:

CHAPTER 1

About

Three packet captures taken of the same network traffic, staggered by 20 seconds.

3

pcapgraph Documentation, Release 1.3.2

1.1 Platforms

Linux, macOS, Windows

1.2 Description

• Assists with flow-based troubleshooting where there are at least 3 pcaps. See Usage for detailed use cases.

• Create a horizontal bar graph to visualize when pcaps were taken.

• Use set operations to find patterns among multiple packet captures in ways that Wireshark is not able to.

• If an output format is not specified, the default behavior is to print to stdout and send a matplotlib graph to the
screen (thus the name).

1.3 License

Apache 2.0

1.3.1 Install

Python is not the only language being used for network automation but the combination of being an
easy to learn language with many code samples and utilities has made it a go-to language for network
engineers.

—Cisco DevNet

Prerequisites: Wireshark

• These package managers have it in their repositories: apt, dnf, pacman, brew, choco, ...

• To download and install precompiled binaries, visit Wireshark’s website.

Installing PcapGraph

-> Install PcapGraph with Python pip

pip install --user pcapgraph

Notes:

• This project requires python3.5 or later. pip is bundled with Python starting with python3.4.

• You can check your version of Python with python -V in a terminal.

• To download and install precompiled Python binaries, visit python’s website.

4 Chapter 1. About

example_usage.rst
https://matplotlib.org/
http://www.apache.org/licenses/LICENSE-2.0
https://www.wireshark.org/download.html
https://www.python.org/downloads/

pcapgraph Documentation, Release 1.3.2

• macOS comes with Python 2.7 by default. If installing python separately, make sure to add alias
'python=python3' to your .bashrc.

-OR- Install from source

git clone https://github.com/pocc/pcapgraph
cd pcapgraph
make install

-OR- Use the standalone executable

Download the latest executable for your OS from the releases page and run:

./pcapgraph

Note: Using an executable will have startup lag when PyInstaller extracts required files to a temporary folder.

Install Errors

Note: These are some misconfiguration errors I came across during testing on Ubuntu. If you have trouble installing,
please create an issue.

_tkinter not installed

On ubuntu, you may need to install the python3-tk package to use the tkinter parts of matplotlib.

ImportError: cannot import name ‘multiarray’

If you have versions of numpy or matplotlib that were installed on different minor versions of python, you may need
to reinstall both.

python -m pip uninstall -y numpy matplotlib
python -m pip install --user numpy matplotlib

Testing Install

Test whether pcapgraph is working:

pcapgraph -V

1.3. License 5

https://github.com/pocc/pcapgraph/releases/latest
https://github.com/pocc/pcapgraph/issues

pcapgraph Documentation, Release 1.3.2

1.3.2 CLI Usage

PcapGraph args

PcapGraph: Create bar graphs out of packet captures.

USAGE:

pcapgraph [-abdeisuvwx23] (<file>)... [--output <format>]...
pcapgraph (-V | --version)
pcapgraph (-h | --help)

DESCRIPTION:

Analyze packet captures with graphs and set operations. Graphs will show the temporal overlap of pack-
ets. Set operations can help with flow-based troubleshooting across multiple interfaces or devices. The
default behavior for output is a graph (hence the name).

Official documentation: https://pcapgraph.readthedocs.io/

OPTIONS:

SET OPERATIONS:

-b, --bounded-intersection Bounded intersection of packets.

-d, --difference First packet capture minus packets in all succeeding packet captures.

-e, --inverse-bounded Shortcut for applying -b to a group of pcaps and then subtracting
the intersection from each.

-s, --symmetric-difference Packets unique to each packet capture. (see Set Operations >
symmetric difference).

-u, --union All unique packets across all pcaket captures. (see Set Operations >
union).

-i, --intersection All packets that are shared by all packet captures (see Set Operations
> intersection).

OUTPUT OPTIONS:

-a, --anonymize Anonymize packet capture file names with fictional place names and
devices.

-o, --output <format> Output results as a file with format type.

-w Open pcaps in Wireshark after creation. (shortcut for –output pcap
–output wireshark)

-x, --exclude-empty eXclude empty pcaps generated by a set operation from being saved.
Exclude empty input pcaps from being graphed.

-2, --strip-l2 Remove layer2 bits and encode raw IP packets. Use if pcaps track
flows across layer 3 boundaries or L2 frame formats differ between
pcaps (e.g. An AP will have Ethernet/Wi-Fi interfaces that encode
802.3/802.11 frames).

-3, --strip-l3 Remove IP header and encode dummy ethernet/IP headers. Use if
pcaps track flows across IPv4 NAT. -3 implies -2. This flag is IPv4
only as IPv6 should not have NAT.

MISC OPTIONS:

6 Chapter 1. About

https://pcapgraph.readthedocs.io/

pcapgraph Documentation, Release 1.3.2

-h, --help Show this screen.

-v, --verbose Provide more context to what pcapgraph is doing.

-V, --version Show PcapGraph’s version.

INPUT: <file>. . .

One or more files or directories. When PcapGraph detects a directory, it will go one level deep to find packet
captures. This program can read all files that can be read by tshark.

packet capture: pcapng, pcap, cap, dmp, 5vw, TRC0, TRC1, enc, trc, fdc, syc, bfr, tr1, snoop

OUTPUT: [–output <format>]. . .

If no format is specified, a graph is printed to the screen and stdout. Image formats are those supported by
matplotlib on your system. You can see which ones are available by running this in your python interpreter:

matplotlib.pyplot.gcf().canvas.get_supported_filetypes()

pcap, pcapng, and wireshark require a set operation for there to be a file to save/open. generate-pcaps creates
the pcaps simul1 through 3 used in documentation.

IMAGE: eps, jpeg, jpg, pdf, pgf, png, ps, raw, rgba, svg, svgz, tif, tiff

TEXT: txt

PACKET CAPTURE: pcap, pcapng, generate-pcaps, wireshark

EXAMPLE USE CASES:

1. Gut check whether a group of pcaps were taken at the same time

$ pcapgraph file1.pcap file2.pcap file3.pcap

ASCII of matplotlib graph

file1.pcap | MMMMM | Let A = 2018 Sep 26, 09:10:52
| MMMMM | Let F = 2018 Sep 26, 09:30:36
| |

file2.pcap | HHHHHH | A and F are the first and last
| HHHHHH | frames according to timestamp.
| |

file3.pcap | WWWWW | B-E are then equally spaced
| WWWWW | xticks between A and F.
|____________________|
A B C D E F

Opens a matplotlib graph to visualize packet captures. Sometimes when packet captures are taken on
multiple devices, they are started and stopped at different times. If troubleshooting requires traffic to
be the same, then use this tool to quickly determine whether additional packet captures are necessary.

2. Intersection to track traffic across multiple interfaces

$ pcapgraph --intersect --strip-l2 file1.pcap file2.pcap --output pcap

Imagine that you are troubleshooting inter-vlan issues on a router and both ports are configured as
access on different vlans. If you take a packet capture on each interface, frames coming in one port
and going out the other will be different because the src/dst MAC and VLAN tag will change. Using
intersect with strip L2 will remove frame headers so that common traffic can be found.

3. Intersection to find common traffic across a natting firewall

1.3. License 7

pcapgraph Documentation, Release 1.3.2

$ pcapgraph --intersect --strip-l3 file1.pcap file2.pcap --output pcap

Imagine that you are troubleshooting an issue on a natting firewall and you are looking at traffic on lan
and wan ports. Using strip-l3 with intersect will find all common traffic, even though NAT changes
various values. strip-l3 replaces all l3 fields that would change with generic values. Export this traffic
as pcap to review in wireshark.

Note that traffic will look like the following in wireshark:

<RAW IP> 10.0.0.1 -> 10.0.0.2 ICMP echo reply DATA1
<RAW IP> 10.0.0.1 -> 10.0.0.2 UDP 16298 -> 53 DATA2
<RAW IP> 10.0.0.1 -> 10.0.0.2 TCP 28274 -> 80 DATA3

4. Difference between traffic on a switchport and the uplink

$ pcapgraph --difference switch_uplink.pcap switchport3.pcap

Find all packets in switch_uplink.pcap that are also in switchport3.pcap and remove them. This might
be helpful if you know that all traffic coming out of switchport3 is noise for what you are looking for.
Difference is generally helpful as another means to filter pcaps.

5. Union to help diagnose a broadcast storm:

$ pcapgraph --union pcap_dir/

Union, without an output format defaults to a matplotlib graph and text to stdout. This text will contain
the ASCII hexdump of the 10 most common packets along with their count. Knowing what the MAC
(and potentially IP) of the causative packets may be helpful in identifying a switching loop.

Use spanning tree and set a root bridge once you have figured it out.

6. Find unique traffic in the same timeframe across all pcaps

$ pcapgraph file1.pcap file2.pcap --inverse-bounded -w

Assume that you are looking at two packet captures: file1.pcap that has pings to a remote destination
and file2.pcap that should have those pings, but doesn’t. You know that there will be other traffic
on this link like TCP, HTTP, etc. Normally, you might find an ip.id of a packet early in one packet
capture and search for it in the other with ‘ip.id==0xabcd’ for example. Then find the latest packet
in both using the same method and then filter both packet captures by frame number. This funciton
automates that process.

Finds all traffic in the bounding intersection that is unique to each packet capture and opens all of
them in wireshark.

SET OPERATIONS: All set operations require packet captures and do the following:

1. Find all unique packets by their ASCII hexdump value.

2. Strip L2 and L3 headers if those options are specified

3. Apply the operation and generate a list of packets.

4. Reencode the packets in a pcap using text2pcap.

difference: Remove all packets that are present in one pcap from another.

intersection: Find all packets that two pcaps have in common.

union: Find all unique packets found in all provided pcaps.

symmetric difference: Find all packets that are unique to each pcap.

8 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

bounded (time intersection): Find the first and last frames in the frame intersection of all pcaps according to
their timestamp Use these two frames as upper and lower limts to return all frames in each pcap that are
between these two frames. This can help to identify traffic that sholud be in both packet captures, but is in
only one.

inverse bounded (time intersection): Finds which packets are unique to each packet capture in a given time
frame and saves each as a packet capture.

See also:

pcapgraph (https://pcapgraph.readthedocs.io): Comprehensive documentation for this program.

wireshark (https://www.wireshark.org/): Read packet captures to troubleshoot networks.

wireshark utils (https://www.wireshark.org/docs/man-pages/): CLI utils that contain or enhance wireshark func-
tionality. These were used in PcapGraph: editcap, mergecap, reordercap, text2pcap, tshark

pyshark (https://kiminewt.github.io/pyshark/): Python wrapper for tshark.

scapy (https://scapy.readthedocs.io/en/latest/): Python program to manipulate frames.

matplotlib (https://matplotlib.org/): Python package to plot 2D graphs.

1.3.3 Pcap Preparation

This program will be most useful if packet captures are filtered for relevant traffic. The smaller the packet captures
are, the faster pcapgraph is at processing them and the easier it will be to draw conclusions from exported graphs and
packet captures.

Filtering for Relevant Traffic

tshark is a utility bundled with Wireshark that can use filter a pcap with display filters and save to pcap.

tshark -r <in.pcap> -Y "<display filter>" -w <out.pcap>

For example, to filter for ICMP traffic going to/from Cloudflare’s DNS service, use "icmp && ip.addr==1.1.
1.1" in place of “<display filter>”.

More information about tshark usage can be found on the tshark manpage.

Decreasing the Size of the Packet Capture

If your packet capture is very large even after filtering, you may want to split it into multiple files.

editcap -c <packets per split> source.pcap split.pcap

Additional examples can be found at Packet Life.

Modifying Timestamps

Sometimes, packet captures are taken by devices whose system clocks are off. If you took the packet capture on a
unix-like system, you can get the time offset with ntpdate -q time.nist.gov.

To modify a packet capture to have the correct timestamps, use editcap:

editcap -t <offset> <infile> <outfile>

1.3. License 9

https://pcapgraph.readthedocs.io
https://www.wireshark.org/
https://www.wireshark.org/docs/man-pages/
https://kiminewt.github.io/pyshark/
https://scapy.readthedocs.io/en/latest/
https://matplotlib.org/
https://www.wireshark.org/docs/man-pages/tshark.html
http://packetlife.net/blog/2011/apr/11/extracting-packets-large-captures/

pcapgraph Documentation, Release 1.3.2

More information about editcap usage can be found on the editcap man page.

1.3.4 Using PcapGraph

Note: examples/ contains all packet captures, pngs and txt files used as examples here. You can get the examples/
directory by cloning this repo. You can also use pcapgraph --output generate-pcaps, which will generate
the starting pcaps for you (and then follow the commands below to create the desired file).

About

All set operations use the raw frame’s hex value to determine uniqueness. This ensures that unless ARP traffic is
involved (which has relatively few fields), unique frames are going to be correctly identified as such.

Tip: These set operations are most useful when packet captures have already been filtered for the traffic that is most
relevant. See Pcap Preparation for more details.

Gut check: Visualize your packet captures

pcapgraph examples/ --output png --output txt

Default Image

Quickly check whether pcaps were taken around the same time with a graph. Let’s say that it is necessary for packet
captures to be of the same traffic, taken on different interfaces. If it is clear from a graph that pcaps were taken on
different days, then you’ve saved yourself time looking at pcaps. In this scenario, you might ask for additional pcaps
that do or do not demonstrate the issue you are troubleshooting.

10 Chapter 1. About

https://www.wireshark.org/docs/man-pages/editcap.html
pcap_preparation.html

pcapgraph Documentation, Release 1.3.2

Default Text

Produces the same data as above, but in text.

PCAP NAME DATE 0 DATE $ TIME 0 TIME $ UTC 0 UTC $
simul1 Sep-26 Sep-26 00:09:52 00:10:49 1537945792.6673348 1537945849.
→˓9369159
simul2 Sep-26 Sep-26 00:10:12 00:11:11 1537945812.7556646 1537945871.
→˓086899
simul3 Sep-26 Sep-26 00:10:32 00:11:30 1537945832.8390837 1537945890.
→˓855496

Default Pcap

Does not exist: no set operations are specified.

Union: Troubleshoot broadcast storms

Union will include all unique packets, and so will include the first and last packets of all captures.

1.3. License 11

pcapgraph Documentation, Release 1.3.2

Union Image

pcapgraph examples/ --union --output png

Union image is not very useful as its bar will always span the graph.

Union Text

pcapgraph examples/ --union --output txt

For a packet capture that contains a broadcast storm, this function will find unique packets and packet counts. This
information will not be directly useful because a switching loop, once started, doesn’t depend on the instigators.
However, it may point your troubleshooting in the right direction to help find the loop.

Use the –union of pcaps to find the most frequent packets among all packet capture(s). By default, using the union
flag will print the top ten most common frames in ASCII hexdump format to stdout along with their count:

Count: 3
0000 88 15 44 ab bf dd 24 77 03 51 13 44 08 00 45 00
0010 00 54 7b af 40 00 40 01 92 2a 0a 30 12 90 08 08
0020 08 08 08 00 ae 46 62 8b 00 01 e8 30 ab 5b 00 00
0030 00 00 88 cd 0c 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

(continues on next page)

12 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

(continued from previous page)

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
0060 36 37

Count: 3
0000 88 15 44 ab bf dd 24 77 03 51 13 44 08 00 45 00
0010 00 38 20 40 00 00 40 11 b2 b5 0a 30 12 90 0a 80
0020 80 80 ba dc 00 35 00 24 cb 35 a3 f6 01 00 00 01
0030 00 00 00 00 00 00 06 61 6d 61 7a 6f 6e 03 63 6f
0040 6d 00 00 01 00 01

Count: 3
0000 24 77 03 51 13 44 88 15 44 ab bf dd 08 00 45 00
0010 00 68 f7 f9 40 00 40 11 9a cb 0a 80 80 80 0a 30
0020 12 90 00 35 ba dc 00 54 1e c2 a3 f6 81 80 00 01
0030 00 03 00 00 00 00 06 61 6d 61 7a 6f 6e 03 63 6f
0040 6d 00 00 01 00 01 c0 0c 00 01 00 01 00 00 00 15
0050 00 04 b0 20 67 cd c0 0c 00 01 00 01 00 00 00 15
0060 00 04 cd fb f2 67 c0 0c 00 01 00 01 00 00 00 15
0070 00 04 b0 20 62 a6

Count: 3
0000 24 77 03 51 13 44 88 15 44 ab bf dd 08 00 45 20
0010 00 54 ef c6 00 00 79 01 24 f3 08 08 08 08 0a 30
0020 12 90 00 00 b6 46 62 8b 00 01 e8 30 ab 5b 00 00
0030 00 00 88 cd 0c 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
0060 36 37

Count: 3
0000 88 15 44 ab bf dd 24 77 03 51 13 44 08 00 45 00
0010 00 54 7b fa 40 00 40 01 91 df 0a 30 12 90 08 08
0020 08 08 08 00 74 29 62 93 00 01 e9 30 ab 5b 00 00
0030 00 00 c1 e2 0c 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
0060 36 37

Count: 3
0000 88 15 44 ab bf dd 24 77 03 51 13 44 08 00 45 00
0010 00 38 20 8b 00 00 40 11 b2 6a 0a 30 12 90 0a 80
0020 80 80 ea ea 00 35 00 24 69 94 d5 89 01 00 00 01
0030 00 00 00 00 00 00 06 61 6d 61 7a 6f 6e 03 63 6f
0040 6d 00 00 01 00 01

Count: 3
0000 24 77 03 51 13 44 88 15 44 ab bf dd 08 00 45 00
0010 00 68 f7 fc 40 00 40 11 9a c8 0a 80 80 80 0a 30
0020 12 90 00 35 ea ea 00 54 bd 23 d5 89 81 80 00 01
0030 00 03 00 00 00 00 06 61 6d 61 7a 6f 6e 03 63 6f
0040 6d 00 00 01 00 01 c0 0c 00 01 00 01 00 00 00 14
0050 00 04 b0 20 62 a6 c0 0c 00 01 00 01 00 00 00 14
0060 00 04 b0 20 67 cd c0 0c 00 01 00 01 00 00 00 14
0070 00 04 cd fb f2 67

Count: 3
0000 24 77 03 51 13 44 88 15 44 ab bf dd 08 00 45 20

(continues on next page)

1.3. License 13

pcapgraph Documentation, Release 1.3.2

(continued from previous page)

0010 00 54 f1 7a 00 00 79 01 23 3f 08 08 08 08 0a 30
0020 12 90 00 00 7c 29 62 93 00 01 e9 30 ab 5b 00 00
0030 00 00 c1 e2 0c 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
0060 36 37

Count: 3
0000 88 15 44 ab bf dd 24 77 03 51 13 44 08 00 45 00
0010 00 54 7c 4e 40 00 40 01 91 8b 0a 30 12 90 08 08
0020 08 08 08 00 8e 09 62 9f 00 01 ea 30 ab 5b 00 00
0030 00 00 a6 f6 0c 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
0060 36 37

To view the content of these packets, subtract the count lines,
add and save to <textfile>, and then run

text2pcap <textfile> out.pcap
wireshark out.pcap

Union Pcap

pcapgraph examples/ --union --output pcap

This pcap can be useful for any situation where you need to find all unique packets. This function can be lossy with
timestamps as duplicate packets are excluded, so information can be lost.

Union file: examples/set_ops/union.pcap

Tip: If you want to combine pcaps without loss of duplicate packets, use mergecap instead. mergecap is included by
default in Wireshark installations.

mergecap (<file>) [<file>...] -w union.pcap

Intersection: Find common traffic

Find all packets that are shared between all packet captures.

Intersection Image

The image produced in the graph can be useful in identifying where and at what times frame overlap is occurring.

pcapgraph examples/ --intersect --output png

14 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

Intersection Text

Intersection text will provide the percentage of packets that are the same across multiple packet captures. Especially
if packet captures are filtered before sending to PcapGraph, this can be used to determine what percent of traffic is
failing across multiple interfaces in flow-based troubleshooting.

Intersection will alert you if the intersection has no packets.

SAME % PCAP NAME
31% examples/simul1.pcap
31% examples/simul2.pcap
31% examples/simul3.pcap

Intersection Pcap

pcapgraph examples/ --intersect --output pcap

Taking the intersection of multiple packet captures can provide information on what traffic has made it through all
relevant devices/interfaces. Given pcaps A-F, where A and F are the endpoints, you can find all packets that have made
it from A to F and all points in between.

Intersection file: examples/set_ops/intersect.pcap

1.3. License 15

pcapgraph Documentation, Release 1.3.2

Difference: Remove shared packets

Find all packets that are unique to the first packet capture.

Difference Image

The difference image can be useful in telling at what time shared traffic between two packet captures starts or stops.

pcapgraph examples/ --difference --output png

Difference Text

Difference will alert you if the difference has no packets (i.e. the minuend packet capture is a subset of the remaining
packet captures).

pcapgraph examples/ --difference --output txt

16 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

Difference Pcap

pcapgraph examples/ --difference --output pcap

Taking the difference between two packet captures can help find traffic of interest that is present in one packet capture,
but not another.

Difference file: examples/set_ops/diff_simul1-simul3.pcap

Symmetric Difference

The symmetric difference includes only unique packets from each packet capture.

Symmetric Difference Image

The symmetric difference is essentially the difference applied between the first packet capture and every successive
one.

pcapgraph examples/ --symdiff --output png

1.3. License 17

pcapgraph Documentation, Release 1.3.2

Symmetric Difference Text

Doesn’t produce any text; however will alert if a packet capture has no unique packets.

Symmetric Difference Pcap

pcapgraph examples/ --difference --output pcap

The symmetric difference can help identify which packet captures have unique traffic and exactly what that is. This
can be useful if you have multiple packet captures in which you want to get all unique packets exported on a per-packet
capture basis.

Difference file: examples/set_ops/symdiff_simul1.pcap examples/set_ops/symdiff_simul3.pcap

Timebounded Intersection

Description

It is sometimes useful when doing flow-based troubleshooting to find all packets between the earliest shared frame and
the latest shared frame. It may also be useful to find all traffic that is between two timestamps. These time-bounded
operations are built with, but are not bound by the constraints of set operations.

Example Operation

Let 2 packet captures have the following packets and assume that traffic originates behind the device that Initial 1 is
capturing on:

The algorithm will find that packet A is the earliest common packet and that G is the latest common packet.

Initial 1 Initial 2 Intersect TB Intersect 1 TB Intersect 2
A W A A A
B X B B B
C A C C F
D B F D M
E F G E C
F M F G
G C G
H G
I L

(TB = Time-bounded)

Note:

• In Pcap2, M does not exist in Pcap1

• In Pcap2, C and F are out of order compared to Pcap1

• The intersection does not include these interesting packets that are in one pcap, but note the other.

18 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

Timebound Intersection Text

Does not exist: None created.

Timebound Intersection Pcap

Trim packet captures to a timeframe

Create a packet capture intersection out of two files by finding the first and last instances of identical frames in
multiple packet captures. This is something that you might manually do by finding a shared ip.id at the top of both
packet captures and the ip.id at the bottom of both packet captures and then filtering out all traffic not between the
frame numbers corresponding to the packets with those ip.ids.

This function automates the described manual process.

pcapgraph examples/ --bounded-intersect --output pcap

Inverse Timebounded Intersection

Description

The difference of the intersection and the time-bounded intersection for each packet capture. By definition, the in-
tersection and time-bounded intersection have the exact same starting and ending packets. What may be useful for
troubleshooting is determining in that timeframe which packets are different across pcaps and why.

Example operation

Initial 1 Initial 2 Intersect Inv TB Intersect 1 Inv TB Intersect 2
A W A D M
B X B E
C A C
D B F
E F G
F M
G C
H G
I L

(Inv TB = Inverse Time-bounded)

The key here is to subtract the intersection from each initial packet capture to find the interesting packets that are
unique to each during the intersection time period.

Inverse Timebound Intersection Text

Does not exist: None created.

1.3. License 19

pcapgraph Documentation, Release 1.3.2

Inverse Timebounded Intersect Pcap

Find what interface traffic fails at

Use the inverse bounded intersection to find traffic that occurred between two frames in all packet captures, but is not
shared between all of pcaps. This can be useful when troubleshooting a flow to determine where it fails.

pcapgraph examples/ --inverse-bounded --output pcap

Have fun with your Downloads folder

If you take a lot of packet captures, you can use pcapgraph to visualize your Downloads folder. Use pcapgraph
--dir ~/Downloads to see what it looks like! (It may take a while to process hundreds of packet captures).

bash on Linux/Macos:

pcapgraph ~/Downloads/

command prompt on Windows:

pcapgraph %USERPROFILE%\\Downloads

Examples of all output formats

.pcap: Use all 6 set flags

pcapgraph examples/ -bdeisu --output pcap

Output

bounded_intersect-simul1.pcap
bounded_intersect-simul2.pcap
bounded_intersect-simul3.pcap
diff_bounded_intersect-simul1.pcap
diff_bounded_intersect-simul2.pcap
diff_bounded_intersect-simul3.pcap
intersect.pcap
symdiff_simul1.pcap
symdiff_simul2.pcap
symdiff_simul3.pcap
union.pcap

Using -x as well will remove these empty files from output:

symdiff_simul2.pcap
diff_bounded_intersect-simul1.pcap
diff_bounded_intersect-simul2.pcap
diff_bounded_intersect-simul3.pcap

20 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

.png: union, difference, intersect, symmetric difference

pcapgraph examples/ -disu --output png

These images contain many set operations applied at the same time. This is more of a demonstration than anything
else, as there isn’t much of a use case to use all of them at the same time.

1.3.5 Addenda

Set Theory

Note: If you want a set primer, you may want to check out the set operations Wikipedia article.

Basic Set Operations

The terminology used here is based on set theory. For example, given sets

A = (1, 2, 3)
B = (2, 3, 4)

1.3. License 21

https://en.wikipedia.org/wiki/Set_(mathematics)#Basic_operations

pcapgraph Documentation, Release 1.3.2

C = (3, 4, 5)

22 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

Set Operation Applied to (A,
B, C)

Definition

Union
(1, 2, 3, 4, 5) All unique elements.

Intersection
(3) All common elements.

Difference
(1) All elements in the first set not in

latter sets.

Symmetric Difference
(1, 5) All elements unique to only one

set.

1.3. License 23

pcapgraph Documentation, Release 1.3.2

Packet Uniqueness

By definition, a set only has unique elements. The result of any set operation is also a set. This program uses the
entire frame as an element to determine uniqueness, which ensures fewer duplicates. The FCS may be stripped by the
NIC depending on network drivers, and so may not necessarily be available for packet identification (I have only seen
Juniper devices take packet captures that contain the FCS).

Set Caveats

Symmetric Difference

Symmetric Difference is included for sake of set operation completeness. It is the equivalent to the set difference
applied to all pcaps where each pcap is at some point the pivot. If the difference contains no packets, it is discarded.

Technically, this usage of symmetric difference is incorrect because it produces multiple packet captures with unique
packets instead of one containing all of them.

Generating Demo Packet Captures

Note: Generating the demo packet captures is optional if you have cloned the repository as these pcaps can be found
in examples/. Above all else, this is documentation of the pcap generation script.

To generate pcaps by letting tshark decide the default interface, enter

pcapgraph --generate-pcaps

If tshark decides to use a non-active interface, you can specify the interface name manually. To find your active
interface, enter ifconfig (unix-like), or ipconfig (Windows) and find which one has an IP address and non-zero Rx/Tx
counts.

pcapgraph --generate-pcaps --int <interface-name>

Warning: On unix-like systems, Wireshark will prompt you during installation to allow/disallow unprivileged
users to take packet captures. If you have disallowed unprivileged users, you may need to use sudo to capture
generated traffic.

Generation Explanation

pcapgraph/generate_example_pcaps.py is the relevant file.

The script creates 3 packet captures, each lasting 60 seconds and starting at 0s, 20s, 40s. After 100s, the script will
stop. Packet capture 0s should have 66% in common with pcap 20s and 33% in common with pcap 40s. Indeed, this
is what we see in the graph.

24 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

1.3.6 API Documentation

Warning: The CLI is the official interface of this project. The API is documented here for sake of completeness
and is not explicity designed to be one.

• genindex

• modindex

pcapgraph module

version file.

pcapgraph.get_tshark_status()
Errors and quits if tshark is not installed.

On Windows, tshark may not be recognized by cmd even if Wireshark is installed. On Windows, this function
will add the Wireshark folder to path so tshark can be called.

Changing os.environ will only affect the cmd shell this program is using (tested). Not using setx here as that
could be potentially destructive.

Raises FileNotFonudError: If wireshark/tshark is not found, raise an error as they are required.

pcapgraph.draw_graph

Draw graph will draw a text or image graph.

pcapgraph.draw_graph.draw_graph(pcap_packets, input_files, output_fmts, exclude_empty,
anonymize_names)

Draw a graph using matplotlib and numpy.

Parameters

• pcap_packets (dict) – All packets, where key is pcap filename/operation.

• input_files (list) – List of input files that shouldn’t be deleted.

• output_fmts (list) – The save file type. Supported formats are dependent on the
capabilites of the system: [png, pdf, ps, eps, and svg]. See https://matplotlib.org/api/pyplot_
api.html#matplotlib.pyplot.savefig for more information.

• exclude_empty (bool) – Whether to exclude empty pcaps from graph.

• anonymize_names (bool) – Whether to change filenames to random values.

pcapgraph.draw_graph.export_graph(pcap_names, save_fmt)
Exports the graph to the screen or to a file.

Parameters

• pcap_names (list) – List of pcap_names

• save_fmt (str) – File extension of output file

1.3. License 25

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig

pcapgraph Documentation, Release 1.3.2

pcapgraph.draw_graph.generate_graph(pcap_vars, empty_files, anonymize_names)
Generate the matplotlib graph.

Parameters

• pcap_vars (dict) – Contains all data required for the graph. {<pcap>: {‘pcap_start’:
<timestamp>, ‘pcap_end’: <timestamp>}, . . . }

• empty_files (list) – List of filenames of empty files.

• anonymize_names (bool) – Whether to use pseudorandom names for files.

pcapgraph.draw_graph.get_graph_vars_from_file(filename)
Setup graph variables.

This function exists to decrease the complexity of generate graph. The order of return vars start_times_array,
end_times_array, and pcap_names should all match. In other words, the start_times_array[5] is for the same
pcap as end_times_array[5] and pcap_names[5].

Parameters filename (str) – Name of file

Returns File start/stop times if file has 1+ valid packets.

Return type (dict)

pcapgraph.draw_graph.get_x_minmax(start_times, end_times)
Determine the horizontal (x) min and max values.

This function adds 1% to either side for padding.

Parameters

• start_times (np.array) – First packet unix timestamps of all pcaps.

• end_times (np.array) – Last packet unix timestamps of all pcaps.

Returns min_x, max_x to be used for graph

Return type (tuple)

pcapgraph.draw_graph.make_text_not_war(pcap_times)
Make useful text given pcap times.

Parameters pcap_times (dict) – Packet capture names and start/stop timestamps.

Returns Full textstring of text to written to file/stdout

Return type (str)

pcapgraph.draw_graph.output_file(save_format, pcap_packets, exclude_empty,
anonymize_names)

Save the specified file with the specified format.

pcapgraph.draw_graph.remove_or_open_files(new_files, open_in_wireshark, delete_pcaps)
Remove or open files.

delete_pcaps and open_in_wireshark should not both be true, because that would mean that wireshark would try
to open deleted files.

Parameters

• new_files (set) – Set of new filenames to do something with

• open_in_wireshark (bool) – Whether to open files in wireshark

• delete_pcaps (bool) – Whether to delete generated pcaps

26 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

pcapgraph.draw_graph.set_horiz_bar_colors(barlist)
Set the horizontal bar colors.

Color theme is Metro UI, with an emphasis on darker colors. If there are more horiz bars than in the color array,
loop and continue to set colors.

Parameters barlist (list) – List of the horizontal bars.

pcapgraph.draw_graph.set_xticks(first, last)
Generate the x ticks and return a list of them.

Parameters

• first (float) – Earliest timestamp of pcaps.

• last (float) – Latest timestamp of pcaps.

Returns x_ticks (list(float)): List of unix epoch time values as xticks. x_label (string): Text to be
used to label X-axis.

Return type (tuple)

pcapgraph.generate_example_pcaps

Script to create three packet captures to demonstrate PcapGraph.

pcapgraph.generate_example_pcaps.generate_example_pcaps(interface=None)
This script will create 3 packet captures, each lasting 60 seconds and starting at 0s, 20s, 40s. After 100s, this
script will stop. Packet capture 0s should have 66% in common with pcap 20s and 33% in common with pcap
40s. Indeed, this is what we see in the graph.

Parameters interface (string) – Optional interface to specify for wireshark.

pcapgraph.get_filenames

Parse CLI options and return a list of filenames.

pcapgraph.get_filenames.get_filenames(files)
Return a validated list of filenames.

Parameters files (list) – List of file params entered by user

Returns List of files validated to be packet captures.

Return type (list)

pcapgraph.get_filenames.get_filenames_from_directories(directories)
Get all the files from all provided directories.

This function is not recursive and searches one deep.

Parameters directories (list) – List of user-inputted directories.

Returns Filenames of all packet captures in specified directories.

Return type (list)

pcapgraph.get_filenames.parse_cli_args(args)
Parse args with docopt. Return a list of filenames

1.3. License 27

pcapgraph Documentation, Release 1.3.2

Parameters args (dict) – Dict of args that have been passed in via docopt.

Returns List of filepaths

Return type (list)

pcapgraph.manipulate_frames

Parse the frames from files based upon options.

Create the same JSON style with tshark -r examples/simul1.pcap -T json -x Note that the <var>_raw is due to the -x
flag.

Frame JSON looks like this:
{

'_index': 'packets-2018-11-03',
'_type': 'pcap_file',
'_score': None,
'_source': {

'layers': {
'frame_raw': ['881544abbfdd2477035113440800450000380b5d0000...
'frame': {'frame.encap_type': '1', 'frame.time': 'Sep 26, 2...
'eth_raw': ['881544abbfdd2477035113440800', 0, 14, 0, 1],
'eth': {'eth.dst_raw': ['881544abbfdd', 0, 6, 0, 29], 'eth...
'ip_raw': ['450000380b5d00004011c7980a3012900a808080', 14, 2...
'ip': {'ip.version_raw': ['4', 14, 1, 240, 4], 'ip.version'...
'udp_raw': ['ea6200350024a492', 34, 8, 0, 1],
'udp': ['udp.srcport_raw': ['ea62', 34, 2, 0, 5], 'udp.srcp...
'dns_raw': ['9b130100000100000000000006616d617a6f6e03636f6d...
'dns': {'dns.id_raw': ['9b13', 42, 2, 0, 5], 'dns.id': '0x00...

}
}

}

Many of these functions interact with this frame dict format or directly with the frame string (seen in ‘frame_raw’).
The frame string is a string of the hex of a packet.

pcapgraph.manipulate_frames.anonymous_pcap_names(num_names)
Anonymize pcap names.

Creation of funny pcap names like switch_wireless is intendeded behavior.

Parameters num_names (int) – Number of names to be returned

Returns Fake pcap name list

Return type (list)

pcapgraph.manipulate_frames.decode_stdout(stdout)
Given stdout, return the string.

pcapgraph.manipulate_frames.get_flat_frame_dict(pcap_json_list)
Given the pcap json list, return the frame dict.

Parameters pcap_json_list (list) – List of pcap dicts (see parse_pcaps for details)

Returns {<frame>: <timestamp>, . . . }

Return type frame_list (dict)

28 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

pcapgraph.manipulate_frames.get_frame_from_json(frame)
Get/sanitize raw frame from JSON of frame from tshark -x -T json . . .

Parameters frame (dict) – A dict of a single packet from tshark.

Returns The ASCII hexdump value of a packet

Return type (str)

pcapgraph.manipulate_frames.get_frame_list_by_pcap(pcap_json_dict)
Like get_flat_frame_dict, but with pcapname as key to each frame list

Parameters pcap_json_dict (dict) – List of Pcap JSONs.

Returns [[<frame>, . . .], . . .]

Return type (list)

pcapgraph.manipulate_frames.get_homogenized_packet(ip_raw)
Change an IPw4 packet’s fields to the same, homogenized values.

Replace TTL, header checksum, and IP src/dst with generic values. This function is designed to replace all IP
data that would change on a layer 3 boundary

Note that these options are found only in IPv4. TTL is expected to change at every hop along with header
checksum. IPs are expected to change for NAT.

Parameters ip_raw (str) – ASCII hex of packet.

Returns Packet with fields that would be altered by l3 boundary replaced

Return type (str)

pcapgraph.manipulate_frames.get_packet_count(filename)
Given a file, get the packet count.

Parameters filename (str) – Path of a file, including extension

Returns How many packets were in that pcap

Return type packet_count (int)

pcapgraph.manipulate_frames.get_pcap_as_json(pcap)
Given a pcap, return a json with tshark -r <file> -x -T json.

tshark -r <pcap> -w - Pipes packet capture one packet per line to stdout

tshark -r - Read file from stdin

tshark -r <in.pcap> -x | text2pcap - <out.pcap> Prints hex of pcap to stdout and then resaves it as a pcap.
This WILL delete packet timestamps as that is not encoded in hex output.

Parameters pcap (string) – File name.

Returns List of the pcap json provided by tshark.

Return type (list)

pcapgraph.manipulate_frames.get_pcap_frame_dict(pcaps)
Like get_flat_frame_dict, but with pcapname as key to each frame list

Parameters pcaps (list) – List of pcap file names.

Returns {<pcap>: {<frame>:<timestamp>, . . . }, . . . }

Return type (dict)

1.3. License 29

pcapgraph Documentation, Release 1.3.2

pcapgraph.manipulate_frames.parse_pcaps(pcaps)
Given pcaps, return all frames and their timestamps.

Parameters pcaps (list) – A list of pcap filenames

Returns

All the packet data in json format. [{<pcap>: {PCAP JSON}}, . . .]

Return type pcap_json_list (list)

pcapgraph.manipulate_frames.strip_layers(filenames, options)
Get the PCAP JSON dict stripped per options.

strip-l3: Replace layer 3 fields src/dst IP, ttl, checksum with dummy values

strip-l2: Remove all layer 2 fields like FCS, source/dest MAC, VLAN tag. . .

Parameters

• filenames (list) – List of filenames.

• options (dict) – Whether to strip L2 and L3 headers.

Returns The modified packet dict

Return type (dict)

pcapgraph.pcap_math

Do algebraic operations on sets like union, intersect, difference.

class pcapgraph.pcap_math.PcapMath(filenames, options)
Bases: object

Prepare PcapMath object for one or multiple operations.

Every PcapMath object should start with the data structures filled with the data that each operation needs to
function.

Parameters

• filenames (list) – List of filenames.

• options (dict) – Whether to strip L2 and L3 headers.

bounded_intersect_pcap()
Create a packet capture intersection out of two files using ip.ids.

Create a packet capture by finding the earliest common packet by and then the latest common packet in
both pcaps by ip.id.

Returns Filenames of generated pcaps.

Return type (list(string))

difference_pcap(pivot_index=0)
Given sets A = (1, 2, 3), B = (2, 3, 4), C = (3, 4, 5), A-B-C = (1).

Parameters [int] (pivot_index) – Specify minuend by index of filename in list

Returns Name of generated pcap.

30 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

Return type (string)

get_bounded_pcaps()
Get the pcap frame list for bounded_intersect_pcap

Create a bounding box around each packet capture where the bounds are the min and max packets in the
intersection.

Returns A list of frame_dicts

Return type bounded_pcaps (list)

get_minmax_common_frames()
Get first, last frames of intersection pcap.

Returns Packet strings of the packets that are at the beginning and end of the intersection pcap
based on timestamps.

Return type min_frame, max_frame (tuple(string))

Raises assert – If intersection is empty.

intersect_pcap()
Save pcap intersection. First filename is pivot packet capture.

Returns Fileame of generated pcap.

Return type (str)

inverse_bounded_intersect_pcap(bounded_filelist=False, intersect_file=False)
Inverse of bounded intersection = (bounded intersect) - (intersect)

Parameters

• bounded_filelist (list) – List of existing bounded pcaps generated by
bounded_intersect_pcap()

• intersect_file (string) – Location of intersect file.

Returns Filenames of generated pcaps.

Return type (list(string))

parse_set_args(args)
Call the appropriate method per CLI flags.

difference, union, intersect consist of {<op>: {frame: timestamp, . . . }} bounded_intersect consists of
{pcap: {frame: timestamp, . . . }, . . . }

Parameters args (dict) – Dict of all arguments (including set args).

Returns

List of all files, including ones generated by set operations.

Return type filenames (list)

static print_10_most_common_frames(raw_frame_list)
After doing a packet union, find/print the 10 most common packets.

This is a work in progress and may eventually use this bash:

<packets> | text2pcap - - | tshark -r - -o ‘gui.column.format:”No.”, “%m”,”VLAN”,”%q”,”Src
MAC”,”%uhs”,”Dst MAC”,”%uhd”,”Src IP”,”%us”, “Dst IP”,”%ud”,”Protocol”,”%p”,”Src
port”,”%uS”,”Dst port”,”%uD”’

Alternatively, just use the existing information in pcap_dict.

1.3. License 31

pcapgraph Documentation, Release 1.3.2

The goal is to print frame#, VLAN, src/dst MAC, src/dst IP, L4 src/dst ports, protocol

This should likely be its own CLI flag in future.

Parameters raw_frame_list (list) – List of raw frames

symmetric_difference_pcap()
For sets A = (1, 2, 3), B = (2, 3, 4), C = (3, 4, 5), ABC = (1, 5)

For all pcaps, the symmetric difference produces a pcap that has the packets that are unique to only that
pcap (unlike above where only one set is the result).

Returns Filenames of generated pcaps.

Return type (list(str))

union_pcap()
Given sets A = (1, 2, 3), B = (2, 3, 4), A + B = (1, 2, 3, 4).

About: This method uses tshark to get identifying information on pcaps and then mergepcap to save the
combined pcap.

Returns Name of generated pcap.

Return type (string)

pcapgraph.save_file

Save file.

pcapgraph.save_file.convert_to_pcaptext(raw_packet, timestamp=”)
Convert the raw pcap hex to a form that text2cap can read from stdin.

hexdump and xxd can do this on unix-like platforms, but not on Windows.

tshark -r <file> -T json -x produces the “in” and text2pcap requires the “out” formats as shown below:

Per Text2pcap documentation: “Text2pcap understands a hexdump of the form generated by od -Ax -tx1 -v.”

In format:

247703511344881544abbfdd0800452000542bbc00007901e8fd080808080a301290000
082a563110001f930ab5b00000000a9e80d0000000000101112131415161718191a1b1c
1d1e1f202122232425262728292a2b2c2d2e2f3031323334353637

Out format:

0000 24 77 03 51 13 44 88 15 44 ab bf dd 08 00 45 20
0010 00 54 2b bc 00 00 79 01 e8 fd 08 08 08 08 0a 30
0020 12 90 00 00 82 a5 63 11 00 01 f9 30 ab 5b 00 00
0030 00 00 a9 e8 0d 00 00 00 00 00 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35
0060 36 37

NOTE: Output format doesn’t need an extra n between packets. So in the above example, the next line could be
0000 00 . . . for the next packet.

Parameters

32 Chapter 1. About

pcapgraph Documentation, Release 1.3.2

• raw_packet (str) – The ASCII hexdump seen above in ‘In’

• timestamp (str) – An optional packet timestamp that will precede the 0000 line of the
packet hex.

Returns Packet in ASCII hexdump format like Out above

Return type formatted_string (str)

pcapgraph.save_file.reorder_packets(pcap)
Union causes packets to be ordered incorrectly, so reorder properly.

Reorder packets, save to 2nd file. After this is done, replace initial file with reordered one. Append temporary
file with ‘_’.

Parameters pcap (str) – Filename of packet capture. Should end with ‘_’, which can be stripped
off so that we can reorder to a diff file.

pcapgraph.save_file.save_pcap(pcap_dict, name, options)
Save a packet capture given ASCII hexdump using text2pcap

Parameters

• pcap_dict (dict) – List of pcaps of frames to timestamps. Format: {<frame>: <times-
tamp>, . . . }

• name (str) – Type of operation and name of savefile

• options (dict) – Whether to encode with L2/L3 headers.

1.3. License 33

pcapgraph Documentation, Release 1.3.2

34 Chapter 1. About

Python Module Index

p
pcapgraph, 25
pcapgraph.draw_graph, 25
pcapgraph.generate_example_pcaps, 27
pcapgraph.get_filenames, 27
pcapgraph.manipulate_frames, 28
pcapgraph.pcap_math, 30
pcapgraph.pcapgraph, 6
pcapgraph.save_file, 32

35

pcapgraph Documentation, Release 1.3.2

36 Python Module Index

Index

A
anonymous_pcap_names() (in module pcap-

graph.manipulate_frames), 28

B
bounded_intersect_pcap() (pcap-

graph.pcap_math.PcapMath method), 30

C
convert_to_pcaptext() (in module pcapgraph.save_file),

32

D
decode_stdout() (in module pcap-

graph.manipulate_frames), 28
difference_pcap() (pcapgraph.pcap_math.PcapMath

method), 30
draw_graph() (in module pcapgraph.draw_graph), 25

E
export_graph() (in module pcapgraph.draw_graph), 25

G
generate_example_pcaps() (in module pcap-

graph.generate_example_pcaps), 27
generate_graph() (in module pcapgraph.draw_graph), 25
get_bounded_pcaps() (pcapgraph.pcap_math.PcapMath

method), 31
get_filenames() (in module pcapgraph.get_filenames), 27
get_filenames_from_directories() (in module pcap-

graph.get_filenames), 27
get_flat_frame_dict() (in module pcap-

graph.manipulate_frames), 28
get_frame_from_json() (in module pcap-

graph.manipulate_frames), 28
get_frame_list_by_pcap() (in module pcap-

graph.manipulate_frames), 29
get_graph_vars_from_file() (in module pcap-

graph.draw_graph), 26

get_homogenized_packet() (in module pcap-
graph.manipulate_frames), 29

get_minmax_common_frames() (pcap-
graph.pcap_math.PcapMath method), 31

get_packet_count() (in module pcap-
graph.manipulate_frames), 29

get_pcap_as_json() (in module pcap-
graph.manipulate_frames), 29

get_pcap_frame_dict() (in module pcap-
graph.manipulate_frames), 29

get_tshark_status() (in module pcapgraph), 25
get_x_minmax() (in module pcapgraph.draw_graph), 26

I
intersect_pcap() (pcapgraph.pcap_math.PcapMath

method), 31
inverse_bounded_intersect_pcap() (pcap-

graph.pcap_math.PcapMath method), 31

M
make_text_not_war() (in module pcap-

graph.draw_graph), 26

O
output_file() (in module pcapgraph.draw_graph), 26

P
parse_cli_args() (in module pcapgraph.get_filenames), 27
parse_pcaps() (in module pcapgraph.manipulate_frames),

29
parse_set_args() (pcapgraph.pcap_math.PcapMath

method), 31
pcapgraph (module), 25
pcapgraph.draw_graph (module), 25
pcapgraph.generate_example_pcaps (module), 27
pcapgraph.get_filenames (module), 27
pcapgraph.manipulate_frames (module), 28
pcapgraph.pcap_math (module), 30
pcapgraph.pcapgraph (module), 6

37

pcapgraph Documentation, Release 1.3.2

pcapgraph.save_file (module), 32
PcapMath (class in pcapgraph.pcap_math), 30
print_10_most_common_frames() (pcap-

graph.pcap_math.PcapMath static method),
31

R
remove_or_open_files() (in module pcap-

graph.draw_graph), 26
reorder_packets() (in module pcapgraph.save_file), 33

S
save_pcap() (in module pcapgraph.save_file), 33
set_horiz_bar_colors() (in module pcap-

graph.draw_graph), 26
set_xticks() (in module pcapgraph.draw_graph), 27
strip_layers() (in module pcapgraph.manipulate_frames),

30
symmetric_difference_pcap() (pcap-

graph.pcap_math.PcapMath method), 32

U
union_pcap() (pcapgraph.pcap_math.PcapMath method),

32

38 Index

	About
	Platforms
	Description
	License

	Python Module Index

