
PBasic for Kids Documentation
Release 1.0

Rogelio Negrete

February 09, 2017

Contents

1 Getting Started 3
1.1 Prepping your Basic Stamp Editor . 3

2 Comments in PBasic 5

3 Variables 7
3.1 Defining and Using Variables . 7

3.1.1 Here’s an analogy of how the size difference works . 7
3.1.2 Some examples of declaring variables . 7

3.2 Some Notes on Variable Types . 8

4 Printing output to the Terminal 9
4.1 Using the comma seperator . 9
4.2 Printing on new lines . 9
4.3 Printing variables . 9
4.4 Auto-printing variables . 10
4.5 Example of combining everything together . 10

5 Conditional Statements 11
5.1 Chaining mutliple IF.. THEN statements together . 11

5.1.1 Notes about Mutliple If statements . 12
5.2 Conditional Logic Operators . 12

5.2.1 Logic Operator: NOT . 13
5.2.2 Logic Operator: AND . 13
5.2.3 Logic Operator: OR . 13

5.3 Nesting IF Statements . 14

6 Do Loops 15
6.1 DO-WHILE loop . 15
6.2 Conclusion . 15

7 FOR Loops 17
7.1 Conclusion . 17

8 Movement 19
8.1 Moving Forward . 19
8.2 Moving Backwards . 20
8.3 Turning . 20

8.3.1 Pivot Turn . 21

i

8.3.2 Spin Turn . 21
8.4 Practice . 21

9 Subroutines 23
9.1 Example . 23
9.2 Calculating the area of a square . 23
9.3 Conclusion . 24
9.4 Practice . 24

10 Whiskers 25
10.1 Example: Outputting values when pressed . 26
10.2 Example: Utilizing the whiskers . 26
10.3 Conclusion . 27

11 Infrared Sensors 29
11.1 Example: Outputting values when detected . 29
11.2 How IR detection works . 29
11.3 Example: Utilizing the IR Sensors . 31

11.3.1 Important notes about Example: Utilizing the IR Sensors 33
11.4 Example: Optimizing the use of IR Sensors . 33

11.4.1 Notes about Example: Optimizing the use of IR Sensors 33
11.5 Conclusion . 34

12 Competition Files 35
12.1 2016 . 35

13 Contact 37

14 Indices and tables 39

ii

PBasic for Kids Documentation, Release 1.0

This is a beginner’s guide for getting started on PBasic which is a programming language created by Parralax as an
easy way to interact with their various robots. For new beginners it can be a little hard to grasp various concepts of
programming but PBasic does a good job at being a language to power the robots while still being user friendly.

Contents 1

http://learn.parallax.com/educators/teach/pbasic-programming-basic-stamp
https://www.parallax.com/

PBasic for Kids Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting Started

Before we get started here are a couple of things you should consider downloading: (For Windows)

1. Parralax USB Driver - USB Driver to recognize the conncetion between your computer and parralax robot

2. BASIC Stamp Editor - A basic IDE to run your PBasic files on your robot.

We’ll be starting off with the easy concepts first as they are part of the core to build upon later on. First on the list is
Variables!

1.1 Prepping your Basic Stamp Editor

Before you attempt to run any files make sure to click the top 2 buttons to create type headers at the top of your file.
These type headers are required in order to for the Stamp Editor to know which version of PBasic to compile and run
on your robot(s).

For this guide you will be using the Green button and PBasic 2.5

3

https://www.parallax.com/downloads/parallax-usb-driver-installer
https://www.parallax.com/downloads/basic-stamp-editor-software-windows

PBasic for Kids Documentation, Release 1.0

4 Chapter 1. Getting Started

CHAPTER 2

Comments in PBasic

Comments in PBasic are ignored when the program runs. Think of it as a way to make notes of what your program does
at certain situations so you can remember later. In PBasic, the way comments are denoted is by using the apostrophe
symbol: ‘

For example:

1 ' This is a comment!
2

3 DEBUG "Hello World!"
4

5 ' Another comment!!!

5

PBasic for Kids Documentation, Release 1.0

6 Chapter 2. Comments in PBasic

CHAPTER 3

Variables

Variables are a way to temporarily store data. Think of it as the same as variables in your math class where you can
define x = 5

3.1 Defining and Using Variables

Before you can use a variable in a PBASIC program you must declare it. “Declare” means letting the BASIC Stamp
know that you plan to use a variable. The format for declaring variables is as follows

variable_name VAR VarType

VarType refers to the following 4 values: Bit, Nib, Byte, and Word. Try to think of a variable type as classifying how
much space the variable has to store values.

VarType Value Size
Bit Value can be 0 or 1
Nib Value can be 0 to 15
Byte Value can be 0 to 255
Word Value can be 0 to 65535

3.1.1 Here’s an analogy of how the size difference works

We can arrange these 4 objects in order by how much they can store: Envelope, Shoebox, Fridge, Room

Envelope (Bit) < Shoebox (Nib) < Fridge (Byte) < Room (Word)

3.1.2 Some examples of declaring variables

Choose variable names that make sense to you and are not absurd like: ThisVariable_DoessomethingreallyCOOL

1 x VAR Bit
2 dog VAR WORD
3 is_zero VAR Nib
4 someVariable VAR Byte

7

PBasic for Kids Documentation, Release 1.0

3.2 Some Notes on Variable Types

Under certain situations you might use different variable types. However, for the programming problems that you will
encounter while undergoing the competition it might be best to just stick to Byte and Word

8 Chapter 3. Variables

CHAPTER 4

Printing output to the Terminal

DEBUG is used to print output to the computer screen while running your program. Think of it as a way to make sure
things are are running properly while your program runs.

The easiest use case is regular messages:

DEBUG "Hello, World!"
DEBUG "I'm learning how to program."

4.1 Using the comma seperator

We can have multiple messages added together on the same line by using the comma seperator:

DEBUG "Wow this is a", " multi message!"

4.2 Printing on new lines

We can use the keyword (CR) to start on a new line. Think of it like pressing enter in Microsoft Word:

DEBUG "This should be on", CR
DEBUG "multiple lines."

4.3 Printing variables

We can also print variables:

1 x VAR Word
2

3 Init:
4 x = 65
5

6 Main:
7 DEBUG x
8 END

Uh oh! When trying to run the above code there should be an issue. It’s printing the letter “A”?! This is because
by default the BS2 model displays everything as ASCII characters. I won’t go into detail what ASCII is but you can
follow the link to read more.

9

https://en.wikipedia.org/wiki/ASCII

PBasic for Kids Documentation, Release 1.0

Anyways, in order to properly print the value of x we need to use the decimal formatter, DEC:

1 x VAR Word
2

3 Init:
4 x = 65
5

6 Main:
7 DEBUG DEC x
8 END

4.4 Auto-printing variables

Using the keyword (?) we can auto-print the variable name and value:

1 x VAR Word
2

3 Init:
4 x = 65
5

6 Main:
7 DEBUG DEC ? x
8 END

4.5 Example of combining everything together

1 x VAR Word
2 y VAR Word
3

4 Init:
5 x = 65
6 y = 99
7 Main:
8 DEBUG DEC "Our value of x is: ", x, CR
9 DEBUG DEC ? y

10 END

10 Chapter 4. Printing output to the Terminal

CHAPTER 5

Conditional Statements

Conditional statement are used as a way to direct the way things operate. For example, if I say “Please go to the store
to buy milk. If they don’t have milk then buy apple juice”.

Notice how If there isn’t milk then we buy apple juice. However if there IS milk then we buy milk.

These types of conditional statements are ordered like this in PBasic:

1 IF (condition) THEN
2 statement(s)
3 ENDIF

A condition is made up of comparison symbols

Comparison Operator Symbol Definition
= Equal
<> Not Equal
> Greater Than
< Less Than
>= Greater Than or Equal To
<= Less Than or Equal To

Here are some examples:

1 IF (4 = 5) THEN
2 DEBUG "4 equals 5"
3 ENDIF
4

5 IF (10 <= 100) THEN
6 DEBUG "10 is less than or equal to 100"
7 ENDIF

5.1 Chaining mutliple IF.. THEN statements together

You can also call chain multiple IF.. THEN statements together through the use of IF.. ELSEIF.. and/or ELSE..

Structure for Multiple If statements:

1 IF (condition) THEN
2 statement(s)
3 ELSEIF (condition) THEN
4 statement(s)
5 ELSE

11

PBasic for Kids Documentation, Release 1.0

6 statement(s)
7 ENDIF

Example:

1 x VAR WORD
2

3 Main:
4 x = 100
5

6 IF (x < 200) THEN
7 DEBUG DEC ? x
8 ELSEIF (x < 50) THEN
9 DEBUG DEC ? x

10 ELSE
11 DEBUG DEC ? x
12 ENDIF

5.1.1 Notes about Mutliple If statements

It’s not necessary to have an ELSE statement at the end. If it’s omitted then the statement will stop at the last ELSEIF
statement instead.

Which means that this is also a valid IF Statement:

1 x VAR WORD
2

3 Main:
4 x = 100
5

6 IF (x < 200) THEN
7 DEBUG DEC ? x
8 ELSEIF (x < 50) THEN
9 DEBUG DEC ? x

10 ENDIF

5.2 Conditional Logic Operators

1 IF (condition) THEN
2 statement(s)
3 ENDIF

A condition is also made up of logic operators:

1. NOT

2. AND

3. OR

Logic operators are a little more confusing. The reason to use logic operators is to do multiple comparisons in one IF
statement. Take for example:

1 IF (5 < 10) AND (1 < 5) THEN
2 DEBUG "Hello there!"
3 ELSE

12 Chapter 5. Conditional Statements

PBasic for Kids Documentation, Release 1.0

4 DEBUG "Goodbye!"
5 ENDIF

Here we have two conditions that we test inside one IF statement AND only if they are both true will you see “Hello
there!” printed.

The following tables and examples may help make clear how logic operators work together:

5.2.1 Logic Operator: NOT

1 IF NOT (1 > 10) THEN
2 DEBUG "Hello World!"
3 ELSE
4 DEBUG "Goodbye"
5 ENDIF
6

7 ' Result: True

Condition A NOT A
False True
True False

5.2.2 Logic Operator: AND

1 IF (1 > 10) AND (4 = 4) THEN
2 DEBUG "Hello World!"
3 ELSE
4 DEBUG "Goodbye"
5 ENDIF
6

7 ' Result: False

Condition A Condition B A AND B
False False False
False True False
True False False
True True True

5.2.3 Logic Operator: OR

1 IF (1 > 10) OR (4 = 4) THEN
2 DEBUG "Hello World!"
3 ELSE
4 DEBUG "Goodbye"
5 ENDIF
6

7 ' Result: True

Condition A Condition B A OR B
False False False
False True True
True False True
True True True

5.2. Conditional Logic Operators 13

PBasic for Kids Documentation, Release 1.0

5.3 Nesting IF Statements

You also have the ability to nest IF statements inside of each other like so:

1 x VAR WORD
2

3 Main:
4 x = 7
5

6 IF (x < 10) THEN
7 IF (x > 5) THEN
8 DEBUG "x is between 5 and 10"
9 DEBUG DEC ? x

10 ENDIF
11 ENDIF

Try to think of nesting as asking another question once you received an answer to your previous question. For example:

1 IF (joe went to the store)
2 IF (he did buy chocolate)
3 "Joe bough chocolate at the store"
4 ELSEIF (he did buy milk)
5 "Joe bought milk at the store"
6 ELSE
7 "Joe bought apple juice at the store"
8 ELSE
9 "Joe never went to the store"

14 Chapter 5. Conditional Statements

CHAPTER 6

Do Loops

Lets say you want to do something forever... in programming you would use a do-loop to perform this action!

Here’s a basic example that constantly prints to the terminal:

1 DO
2 DEBUG "Hi there!", CR
3 LOOP

Here’s another example that prints the value of x and increases its value:

1 x VAR WORD
2

3 Init:
4 x = 1
5 Main:
6 DO
7 DEBUG DEC ? x, CR
8 x = x + 1
9 LOOP

6.1 DO-WHILE loop

However, more often than not you will want to test some condition to determine whether the loop code should run or
continue to run.

To do this we use a DO-WHILE loop like so:

1 x VAR WORD
2

3 Init:
4 x = 1
5 Main:
6 DO WHILE (x <= 5) ' condition to test before entering loop statements
7 DEBUG "#", CR
8 x = x + 1
9 LOOP

6.2 Conclusion

DO loops are useful when you need to run something forever or until some special condition breaks.

15

PBasic for Kids Documentation, Release 1.0

For an imaginary example:

1 Main:
2 DO WHILE (some_special_condition = 1)
3 ' Do some calculations
4 LOOP

16 Chapter 6. Do Loops

CHAPTER 7

FOR Loops

For loops are a little different than do-loops. For loops were created with the purpose in mind of having a program
execute between a range. That range is defined by you!

Here’s an example that counts from 0 to 10:

1 x VAR WORD
2

3 Main:
4 FOR x = 0 TO 10
5 DEBUG DEC ? x, CR
6 NEXT
7 END

By default, a FOR loop will step through 1 by 1. We can change this behavior by adding a specific value for STEP.

Here the example counts from 0 to 10 but increasing by STEPS of 2:

1 x VAR WORD
2

3 Main:
4 FOR x = 0 TO 10 STEP 2
5 DEBUG DEC ? x, CR
6 NEXT
7 END

Notice how only even numbers are being displayed!

We can also make a FOR loop that decreases in range. Here’s what I mean:

1 Main:
2 FOR 10 TO 5
3 DEBUG "Hello!"
4 NEXT
5 END

7.1 Conclusion

FOR loops are very useful when you know there should be a range where a program should run. If we need to run
something 10 times then it would be useful to use a FOR loop as its easy to create.

Take this for example, printing 1 to 10 by hand:

17

PBasic for Kids Documentation, Release 1.0

1 Main:
2 DEBUG "1"
3 DEBUG "2"
4 DEBUG "3"
5 DEBUG "4"
6 DEBUG "5"
7 DEBUG "6"
8 DEBUG "7"
9 DEBUG "8"

10 DEBUG "9"
11 DEBUG "10"
12 END

VS

Printing 1 to 10 using a for loop:

1 x VAR WORD
2

3 Main:
4 FOR x = 1 to 10
5 DEBUG DEC x
6 NEXT
7 END

18 Chapter 7. FOR Loops

CHAPTER 8

Movement

Moving the wheels of the robot is fairly simple. We will use the PULSOUT keyword to send a signal to the wheels
to turn. Each wheel has a unique ID and takes in a range of “power values” for how fast the wheel spins and in what
direction.

Wheel ID Power Value
Right 12 650 <=> 850
Left 13 650 <=> 850

The power values dictate how fast the wheel spins in a certain direction. Think of a number line where 650 and 850
are at the ends and 750 is the center.

Consider 750 to be the neutral value. This means if you set a wheel to a value of 750 it shouldnt move.

If you set a wheel to either 650 or 850 then it will move at full power in a certain direction.

Power Value Direction
650 Clockwise
750 None
850 Counter-Clockwise

8.1 Moving Forward

In order to move the robot forward we need to spin each wheel either counter-clockwise or clockwise but not the same.
Running this code below will make the wheels move in a very short burst.

PULSOUT 13, 850
PULSOUT 12, 650

To continuously go forwards for a small time we program it like so:

1 i VAR WORD
2

3 FOR i=1 TO 100
4 PULSOUT 13, 850
5 PULSOUT 12, 650
6 NEXT

19

PBasic for Kids Documentation, Release 1.0

8.2 Moving Backwards

We have the same idea as moving forwards except the values are flipped.

PULSOUT 13, 650
PULSOUT 12, 850

And again to continuously go backwards for a small time we program it like so:

1 i VAR WORD
2

3 FOR i=1 TO 100
4 PULSOUT 13, 650
5 PULSOUT 12, 850
6 NEXT

8.3 Turning

There are 2 approaches to turning your robot.

1. Pivot Turn

2. Spin Turn

This diagram helps to explain the key differences:

20 Chapter 8. Movement

PBasic for Kids Documentation, Release 1.0

Ultimately what type of turns you want to perform is up to you. Just make sure you’re consistent with the type of turns
you perform.

8.3.1 Pivot Turn

Depending on the wheel you want to pivot about influences what code to use.

Pivot about Left Wheel:

1 i VAR WORD
2

3 FOR i=1 TO 100
4 PULSOUT 12, 650
5 NEXT

Pivot about Right Wheel:

1 i VAR WORD
2

3 FOR i=1 TO 100
4 PULSOUT 13, 650
5 NEXT

8.3.2 Spin Turn

Spin turns move both wheels in the same direction either clockwise or counter-clockwise.

Spinning in Clockwise direction:

1 i VAR WORD
2

3 FOR i=1 TO 100
4 PULSOUT 13, 650
5 PULSOUT 12, 650
6 NEXT

Spinning in Counter-Clockwise direction:

1 i VAR WORD
2

3 FOR i=1 TO 100
4 PULSOUT 13, 850
5 PULSOUT 12, 850
6 NEXT

8.4 Practice

I’d like to challenge you to program your robot to move forward, spin in some direction, and then backup with what
you’ve learned so far. In addition, you should try to practice more by programming your own little movement sequence.

8.4. Practice 21

PBasic for Kids Documentation, Release 1.0

22 Chapter 8. Movement

CHAPTER 9

Subroutines

Imagine you have a “special piece of code” that’s 10 lines long. And you have to use it 7 times in your program. Now,
it’s not too hard to copy and paste but one can imagine that having to paste 70 lines of the same code can be repetitive
and ultimately “ugly”. Ugly in the sense that you shouldn’t have to repeat yourself.

There is a rule in programming that goes: DON’T REPEAT YOURSELF (DRY)

With subroutines, you can use the same piece of code without copy and pasting.

The structure of a subroutine is as follows:

1 YourSubroutineName:
2 (Code)
3 RETURN

9.1 Example

1 MySubroutine:
2 DEBUG "Hello there!", CR
3 DEBUG "This is a subroutine", CR
4 RETURN

To call and execute a subroutine you use the GOSUB keyword:

1 Main:
2 DEBUG "We're inside Main... Calling MySubroutine", CR
3 GOSUB MySubroutine
4 END
5

6 MySubroutine:
7 DEBUG "Hello there!", CR
8 DEBUG "This is a subroutine", CR
9 RETURN

9.2 Calculating the area of a square

We can use variables within subroutines like so:

1 sideLength VAR WORD
2 result VAR WORD
3

23

PBasic for Kids Documentation, Release 1.0

4 Main:
5 sideLength = 50
6 GOSUB calcSquareArea
7

8 sideLength = 75
9 GOSUB calcSquareArea

10

11 sideLength = 100
12 GOSUB calcSquareArea
13

14 END
15

16 calcSquareArea:
17 DEBUG DEC "Calculating Area with side legnth: ", sideLength, CR
18 result = sideLength * sideLength ' area = l x w
19 DEBUG DEC "Result: ", result, CR
20 RETURN

9.3 Conclusion

Subroutines are a good way to organize and cleanup your code. If you have parts where you need to constantly repeat
yourself than put it into a subroutine! There is no limit to how many times you can call a subroutine.

9.4 Practice

Create a movement sequence again but this time using subroutines. You should notice you’re code should look a lot
cleaner this time around.

24 Chapter 9. Subroutines

CHAPTER 10

Whiskers

Whiskers are one of the components included in the robot kit. Whisker sensors allow the robot to detect obstacles
when it bumps into them.

Whisker values are accessed via IN5 and IN7
IN id Whisker
IN5 Left Whisker
IN7 Right Whisker

Whisker State Value
Unpressed 1
Pressed 0

25

PBasic for Kids Documentation, Release 1.0

10.1 Example: Outputting values when pressed

1 left_whisker VAR Bit
2 right_whisker VAR Bit
3

4 Main:
5 DO
6 left_whisker = IN5
7 right_whisker = IN7
8

9 IF (left_whisker = 0) AND (right_whisker = 0) THEN
10 DEBUG "Both Whiskers were pressed!"
11 ELSEIF (left_whisker = 0) THEN
12 DEBUG "Left Whisker was pressed!"
13 ELSEIF (right_whisker = 0) THEN
14 DEBUG "Right Whisker was pressed!"
15 ELSE
16 DEBUG "No Whiskers are pressed..."
17 ENDIF
18 LOOP

10.2 Example: Utilizing the whiskers

1 left_whisker VAR Bit
2 right_whisker VAR Bit
3 pulse_count VAR Byte
4

5 Main:
6 left_whisker = IN5
7 right_whisker = IN7
8

9 DO
10 IF (left_whisker = 0) AND (right_whisker = 0) THEN
11 ' Left and Right whiskers are pressed so we back up and make a U-turn by default
12 ' A U-turn is just 2 left turns
13 GOSUB Back_Up
14 GOSUB Spin_Turn_Left
15 GOSUB Spin_Turn_Left
16 ELSEIF (left_whisker = 0) THEN
17 GOSUB Back_Up
18 GOSUB Spin_Turn_Right
19 ELSEIF (right_whisker = 0) THEN
20 GOSUB Back_Up
21 GOSUB Spin_Turn_Left
22 ELSE
23 ' here the whiskers are NOT in contact with a wall so we pulse forward
24 GOSUB Pulse_Forward
25 ENDIF
26 LOOP
27

28

29 Pulse_Forward:
30 PULSOUT 13,850
31 PULSOUT 12,650
32 RETURN

26 Chapter 10. Whiskers

PBasic for Kids Documentation, Release 1.0

33

34 Spin_Turn_Left:
35 FOR pulse_count = 0 TO 50
36 PULSOUT 13, 650
37 PULSOUT 12, 650
38 NEXT
39 RETURN
40

41 Spin_Turn_Right:
42 FOR pulse_count = 0 TO 50
43 PULSOUT 13, 850
44 PULSOUT 12, 850
45 NEXT
46 RETURN
47

48 Back_Up:
49 FOR pulse_count = 0 TO 50
50 PULSOUT 13, 650
51 PULSOUT 12, 850
52 NEXT
53 RETURN

10.3 Conclusion

Whiskers are a good way to detect obstacles in front of the robot. However, whiskers aren’t the best way to detect
obstacles. There are some quirks of the whiskers bending in weird ways and which makes them less reliable. In the
next section we will cover Infrared Sensors which offer much more in terms of depth perception and field of view
(fov).

10.3. Conclusion 27

PBasic for Kids Documentation, Release 1.0

28 Chapter 10. Whiskers

CHAPTER 11

Infrared Sensors

Infrared sensors are the best sensors included in the robot kit. They offer more reliability since they don’t bend or lose
shape over time like the Whiskers. They work in the same way that whiskers work in terms of whether an obstacle is
detected or not detected.

IN id Sensor
IN9 Left Sensor
IN0 Right Sensor

Sensor State Value
Undetected 1
Detected 0

11.1 Example: Outputting values when detected

1 left_ir_sensor VAR Bit
2 right_ir_sensor VAR Bit
3

4 Main:
5 DO
6 FREQOUT 8, 1, 38500
7 left_ir_sensor = IN9
8

9 FREQOUT 2, 1, 38500
10 right_ir_sensor = IN0
11

12 IF (left_ir_sensor = 0) AND (right_ir_sensor = 0) THEN
13 DEBUG "Both sensors detected something!"
14 ELSEIF (left_ir_sensor = 0) THEN
15 DEBUG "Left IR sensor detected something!"
16 ELSEIF (right_ir_sensor = 0) THEN
17 DEBUG "Right IR sensor detected something!"
18 ELSE
19 DEBUG "No detection..."
20 ENDIF
21 LOOP

11.2 How IR detection works

I want to explain what this block of code does inside the DO-LOOP:

29

PBasic for Kids Documentation, Release 1.0

1 FREQOUT 8, 1, 38500
2 left_ir_sensor = IN9
3

4 FREQOUT 2, 1, 38500
5 right_ir_sensor = IN0

FREQOUT makes the IR LED shoot a 38.5 kHz IR signal outwards. Think of it like laser blasters from star wars.

Now, lets say that signal bounces off a wall like deflecting the laser in star wars.

30 Chapter 11. Infrared Sensors

PBasic for Kids Documentation, Release 1.0

The last thing to do is catch the signal in the IR Reciever. Which now makes so we can detect if there is an object
ahead of us or not!

Here’s a pretty good diagram of what I mean:

11.3 Example: Utilizing the IR Sensors

1 left_ir_sensor VAR Bit
2 right_ir_sensor VAR Bit
3 pulse_count VAR Byte

11.3. Example: Utilizing the IR Sensors 31

PBasic for Kids Documentation, Release 1.0

4

5 Main:
6 DO
7 FREQOUT 8, 1, 38500
8 left_ir_sensor = IN9
9

10 FREQOUT 2, 1, 38500
11 right_ir_sensor = IN0
12

13 IF (left_ir_sensor = 0) AND (right_ir_sensor = 0) THEN
14 ' Left and Right IR sensors detected so we back up and make a U-turn by default
15 ' A U-turn is just 2 left turns
16 GOSUB Back_Up
17 GOSUB Spin_Turn_Left
18 GOSUB Spin_Turn_Left
19 ELSEIF (left_ir_sensor = 0) THEN
20 GOSUB Back_Up
21 GOSUB Spin_Turn_Right
22 ELSEIF (right_ir_sensor = 0) THEN
23 GOSUB Back_Up
24 GOSUB Spin_Turn_Left
25 ELSE
26 ' here the IR Sensors DONT detect anything so we pulse forward
27 GOSUB Pulse_Forward
28 ENDIF
29 LOOP
30

31

32 Pulse_Forward:
33 PULSOUT 13,850
34 PULSOUT 12,650
35 RETURN
36

37 Spin_Turn_Left:
38 FOR pulse_count = 0 TO 50
39 PULSOUT 13, 650
40 PULSOUT 12, 650
41 NEXT
42 RETURN
43

44 Spin_Turn_Right:
45 FOR pulse_count = 0 TO 50
46 PULSOUT 13, 850
47 PULSOUT 12, 850
48 NEXT
49 RETURN
50

51 Back_Up:
52 FOR pulse_count = 0 TO 50
53 PULSOUT 13, 650
54 PULSOUT 12, 850
55 NEXT
56 RETURN

32 Chapter 11. Infrared Sensors

PBasic for Kids Documentation, Release 1.0

11.3.1 Important notes about Example: Utilizing the IR Sensors

The way the subroutines are coded is that they have set amounts for how much the robot will turn or backup. This isn’t
the most optimized way to navigate through a maze. You run the risk of either overshooting your turn or not turning
enough. These risks should be very concerning to you even if they aren’t!

11.4 Example: Optimizing the use of IR Sensors

1 left_ir_sensor VAR Bit
2 right_ir_sensor VAR Bit
3 pulse_left VAR Word
4 pulse_right VAR Word
5

6 Main:
7 DO
8 FREQOUT 8, 1, 38500
9 left_ir_sensor = IN9

10

11 FREQOUT 2, 1, 38500
12 right_ir_sensor = IN0
13

14 IF (left_ir_sensor = 0) AND (right_ir_sensor = 0) THEN
15 ' Both sensors detect something so we back up
16 pulse_left = 650
17 pulse_right = 850
18 ELSEIF (left_ir_sensor = 0) THEN
19 ' We pulse spin-turn the wheels to the right
20 pulse_left = 850
21 pulse_right = 850
22 ELSEIF (right_ir_sensor = 0) THEN
23 ' We pulse spin-turn the wheels to the left
24 pulse_left = 650
25 pulse_right = 650
26 ELSE
27 ' We pulse forward
28 pulse_left = 850
29 pulse_right = 650
30 ENDIF
31

32 ' Apply the pulse to the wheels
33 PULSOUT 13, pulse_left
34 PULSOUT 12, pulse_right
35 LOOP

11.4.1 Notes about Example: Optimizing the use of IR Sensors

This is a much more accurate way to traverse a maze. Since changes to the direction the robot is moving is now done
in single pulses. We get a much more reliable way to move throughout the maze. Now we don’t have to worry about
turning too much or too little!

11.4. Example: Optimizing the use of IR Sensors 33

PBasic for Kids Documentation, Release 1.0

11.5 Conclusion

The IR sensors are reliable and are the ones I encourage you to use. One thing that I’d like to take a moment to address
is that you can change the signal frequency at which the IR transmitter sends. Increasing or decreasing has effects on
the distance at which an object can be detected.

For example:

FREQOUT 8, 1, 40500
left_ir_sensor = IN9

34 Chapter 11. Infrared Sensors

CHAPTER 12

Competition Files

Here you can find all the files used in the competion from previous years. Click to download the files!

12.1 2016

1. Cha-Cha-Slide.bs2

2. Dance.bs2

35

PBasic for Kids Documentation, Release 1.0

36 Chapter 12. Competition Files

CHAPTER 13

Contact

If you have any questions then feel free to send me an email and I’ll try to get back to you as soon as possible:

rogelio_negrete@live.com

37

PBasic for Kids Documentation, Release 1.0

38 Chapter 13. Contact

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

39

	Getting Started
	Prepping your Basic Stamp Editor

	Comments in PBasic
	Variables
	Defining and Using Variables
	Here's an analogy of how the size difference works
	Some examples of declaring variables

	Some Notes on Variable Types

	Printing output to the Terminal
	Using the comma seperator
	Printing on new lines
	Printing variables
	Auto-printing variables
	Example of combining everything together

	Conditional Statements
	Chaining mutliple IF.. THEN statements together
	Notes about Mutliple If statements

	Conditional Logic Operators
	Logic Operator: NOT
	Logic Operator: AND
	Logic Operator: OR

	Nesting IF Statements

	Do Loops
	DO-WHILE loop
	Conclusion

	FOR Loops
	Conclusion

	Movement
	Moving Forward
	Moving Backwards
	Turning
	Pivot Turn
	Spin Turn

	Practice

	Subroutines
	Example
	Calculating the area of a square
	Conclusion
	Practice

	Whiskers
	Example: Outputting values when pressed
	Example: Utilizing the whiskers
	Conclusion

	Infrared Sensors
	Example: Outputting values when detected
	How IR detection works
	Example: Utilizing the IR Sensors
	Important notes about Example: Utilizing the IR Sensors

	Example: Optimizing the use of IR Sensors
	Notes about Example: Optimizing the use of IR Sensors

	Conclusion

	Competition Files
	2016

	Contact
	Indices and tables

